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ABSTRACT OF DISSERTATION

WOODY COVER IN AFRICAN SAVANNAS: MAPPING STRATEGIES AND 

ECOLOGICAL INSIGHTS AT REGIONAL AND CONTINENTAL SCALES

Savanna ecosystems are characterized by the coexistence of woody and 

herbaceous vegetation.  They are recognized as highly heterogeneous, for their diversity 

of growth forms and woody plant spatial arrangements.  The relative fraction of woody 

versus herbaceous cover is particularly important in determining ecosystem functions 

such as water and biogeochemical cycles and energy fluxes, availability of graze and 

browse resources for wild and domestic herbivores, and availability of fuel-wood and 

other savanna products for human societies.  

This dissertation research focused on woody cover in tropical African savannas, 

with two main objectives, i) to map woody cover at regional to continental scales across 

Africa, and ii) to model its dependence on biotic and abiotic factors, at landscape, 

regional and continental scales.  Among the most important outcomes are the creation of 

woody cover maps for Kruger National Park (South Africa) and the African continent 

using combined optical and radar imagery, and the development of ecological models 

that provided empirical evidence for resource-competition and disturbance mechanisms. 
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The two-scale approach allowed the identification of relationships between 

woody cover and spectral predictors which can successfully be scaled up to predict the 

continental distributions of woody vegetation across the full gradient from deserts, 

through grasslands and savannas, to the dense tropical forests.  The ecological models 

identified mean annual precipitation (MAP) as the main determinant of woody cover at 

the continental level.  Regional variations of this MAP-driven woody cover arose from 

dynamics dependent on perturbations such as fire frequency, herbivory, and 

anthropogenic activities combined with soil characteristics.

Gabriela Bucini
Graduate Degree Program in Ecology

Colorado State University
Fort Collins, CO 80523

Summer 2010
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CHAPTER 1

INTRODUCTION

The ecology of savanna woody vegetation
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The central theme of this work is woody cover in tropical African savannas. 

Defined as the vertical projection of a woody plant crown, woody cover is a fundamental 

variable to characterize and quantify vegetation structure at the ecosystem level along 

with height, basal area and crown size. Savannas’ uniqueness is the coexistence of woody 

and herbaceous vegetation.  They are acknowledged as highly heterogeneous ecosystems 

for their diversity of growth forms and woody plants spatial arrangements (Scholes and 

Archer 1997, Rietkerk et al. 2002). The relative fraction of woody versus herbaceous 

cover is particularly important in determining ecosystem functions such as water and 

biogeochemical cycles and energy fluxes (Hanan 2001, Baldocchi et al. 2004, Ratnam et 

al. 2008, Williams et al. 2008). Woody cover fraction is an indicator of how resources 

(water, light and nutrients) are partitioned and how net primary production is distributed 

between woody and herbaceous plants and spatially distributed in the horizontal 

dimensions. Studies of woody cover therefore strongly contribute to the understanding of 

savanna morphology and functioning.

The assessment of woody cover can be done both by using field and remote-

sensing techniques. Remote-sensing has the advantage to provide information at multiple 

scales and resolutions. It can reach areas that would be inaccessible from the ground and 

it covers spatial and temporal extents that would be unaffordable with field surveys. Most 

of the savanna studies have been focused on local to landscape scales to unravel the 

mechanisms underlying woody-grass coexistence. However, the more recent ecological 

questions related to global climate change and ecosystem functioning, have solicited 

savanna scientists to investigate how local processes are transferred across scales and 

how regional to global vegetation patterns and processes influence and are influenced by 
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large-scale dynamics and energy exchanges.  There are a number of questions and issues 

pertaining to our current ability to both assess and model woody cover at broad scales:

• There are two tree cover maps at the continental level available at the moment: the 

Vegetation Continuous Field (VCF) (Hansen et al. 2003, Hansen et al. 2006) and the 

tree cover map developed by Rokhmatuloh, Nitto et al. (2005) at the Center for 

Environmental Remote Sensing, Japan. The mapping strategies used for these two 

maps are not optimal to accurately discriminate and assess woody vegetation in 

savannas: the tree cover calibration data underestimate woody plants (Bucini and 

Hanan 2007), and the predictive remote-sensing layers (from the Moderate 

Resolution Imaging Spectroradiometer, MODIS) used for the up-scaling are in the 

optical range where deciduous trees and grasses have low separability. 

• There exists a large body of knowledge about ecological mechanisms driving savanna 

tree-grass coexistence (Walter 1971, Scholes and Archer 1997, Higgins et al. 2000, 

Jeltsch et al. 2000, House et al. 2003, van Langevelde et al. 2003, Ogle and Reynolds 

2004, Sankaran et al. 2004, Lehmann and Hanan 2010) and several models have been 

developed (Walker et al. 1981, Walker and Langridge 1996, Higgins et al. 2000, 

Jeltsch et al. 2000, van Wijk and Rodriguez-Iturbe 2002, Bond et al. 2005, Wiegand 

et al. 2006, Hanan et al. 2008). Field experiments have been carried out to test and 

improve these models (Trollope 1982, Skarpe 1991, Weltzin and McPherson 1997, 

Skarpe et al. 2000, Gillson 2004, Otieno et al. 2005, Archibald and Scholes 2007, 

Higgins et al. 2007) but they have been limited to local and landscape scales or 

focused on controlling for a single determinant. There is a need for a comprehensive 
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model with empirical evidence that explains the coexistence and the relative 

abundance of woody and herbaceous vegetation (Sankaran et al. 2004).  

• Humans and savannas have coevolved and people have adapted to live with climate 

variability and sparse resources. Still now most of the savanna regions are inhabited 

and managed. However over the past 50 years, drylands have undergone a persistent 

decrease in productivity and other ecosystem services and there is a need for an 

accurate evaluation of the human-disturbance interactions especially in face of 

climate change and new market policies (Scholes 2009, Verstraete et al. 2009).  This 

phenomenon needs to be addressed at all scales and requires information about the 

relative importance of human activities versus natural disturbance in shaping, 

maintaining and modifying savanna vegetation cover.

My work focuses on the regional and continental scales and takes a semi-

empirical approach to tackle two main issues: (i) to examine and improve the available 

spatial information on woody plant distribution in African savannas using remote sensing 

and (ii) to investigate ecological, environmental and anthropogenic drivers and their 

relationship with the mapped patterns of woody cover.

1.1 Savanna ecology and research

Savannas are known to be highly complex ecosystems with strong geographic 

variability in vegetation structure that results from the dynamics of biotic and abiotic 

factors. The most prominent characteristic of savannas is the coexistence of woody and 

herbaceous plant functional types (Scholes and Archer 1997). Their relative proportion 

defines different savanna types including shrublands, open-canopy savannas with a 

dominating grass layer and few scattered trees, mosaic savannas with tree clumps, 
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savannas with a mixture of grass, shrubs and trees, closed canopy savannas and 

woodlands (Scholes and Walker 1993, Solbrig et al. 1996). In the African savannas 

considered in this work, woody cover spans from about 5 to 70 % (House et al. 2003). 

Structural heterogeneity emerges at local to continental scales and is both a driver and an 

effect of ecological and environmental mechanisms (Rietkerk et al. 2002, Caylor et al. 

2004, Levin 2005). 

Tropical savannas are water-limited ecosystems because the evaporative demand 

(potential evapotraspiration PET) is higher than the precipitation for 4 to 11 months in the 

year (Solbrig 1996). The rain occurs during the summer months and therefore the 

growing season is associated with water availability and high temperatures.  As an 

adaptive strategy to drought, most of the woody species are deciduous. Woody vegetation 

(shrubs and trees) has organs able to store water or access deep soil water (long vertical 

roots) and some species are found to green-up before the onset of the rain in response to 

longer day lengths (Shackleton 1999, Do et al. 2005, Archibald and Scholes 2007).  On 

the other hand, the herbaceous species (grass and forbs) are dependent on rain to resprout 

or germinate (Scanlon et al. 2002). Similarly, woody vegetation has a longer green period 

and often senesces after the grasses. This temporal phenology difference is an important 

feature that can be exploited in remote-sensing analyses to discriminate woody plants 

from the herbaceous layer.   Tropical savanna regions of Africa can be nutrient-limited, 

too.  At the continental level, the infertile soils lie on old and weathered parent material in 

the sub-humid regions and are distinct from the more fertile soils on younger parent 

material in the arid and semi-arid regions (north, east and southern Africa; Scholes and 

Walker 1993). A visual comparison of mean annual rainfall (MAP), fertility and woody 

5



cover suggests that MAP has a stronger association than fertility with cover (Figure 1-1). 

Geomorphologic characteristics become more important at local and regional level in 

determining water flows, soil type and water holding capacity and therefore vegetation 

patterns.

3001 – 3417 mm

0 – 500 mm

3001 – 3417 mm

0 – 500 mm

3001 – 3417 mm

0 – 500 mm

3001 – 3417 mm

0 – 500 mm

Figure 1-1: Top left: distribution of fertile and infertile savannas (Scholes and Walker 
1993). Dark shaded areas are nutrient-poor savanna; striped areas are nutrient-rich 
savannas. Top right: Mean Annual Rainfall (ANU-CRES, Centre for Resource and 
Environmental Studies, Australia). Bottom: woody cover % (Bucini et al., in 
prepaparation).
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Figure 1-2: Left: Fire return over an 8-year period (Barbosa et al. 1999). Right: cattle 
density (World Resources Institute - PAGE, 2000)

Fire and herbivory (Figure 1-2) are natural perturbations considered important in 

shaping savanna vegetation.  Fires are mainly carried by the herbaceous layer and 

therefore their frequency depends on grass production. In general, mesic savannas present 

higher fire frequency than arid savannas. Humans manage fire principally to maintain 

grass in the system and support pastoral activities as well as agriculture.  

This highly complex dynamics feeds what is the overarching research question for 

savanna ecologists: which are the biotic and abiotic factors and processes that give rise to 

and maintain coexistence and the woody-herbaceous vegetation mixture?   Field 

experiments have allowed us to study interactions between vegetation and both 

environmental  (climate, soil characteristics and topography) and perturbation (fire, 

herbivory, human activity) factors. From the theoretical point of view, two distinct 

paradigms exist: (i) the resource competition paradigm allows coexistence through root 
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niche partitioning of water and resources (Walter 1971) and (ii) the demographic 

bottleneck paradigm where coexistence results from fire, herbivory and water variability 

limiting woody vegetation establishment and growth (Higgins et al. 2000). Despite 

accumulated evidence for both models, they singularly are not able to explain all the 

properties found in savanna regions across the globe. The first attempt to integrate the 

two theoretical frameworks came from Sankaran et al. (2004) and was very recently 

extended by Hanan and Lehmann (2010). The latter effort proposes a conceptual 

framework where a bottleneck on seed establishment is set by water limitation and 

variability determining an upper bound on woody cover in more arid savannas.  In more 

mesic savannas, water limitation is less but seedlings competition with adult trees and 

grasses restricts woody cover. In combination with resource-based dynamics, disturbance 

such as fire, herbivory and human activities, determine the observable woody cover. At 

the continental scale, the empirical evidence for a unified paradigm was given first by a 

metadata analysis (Sankaran et al. 2005) based on 850 sites distributed across the African 

savannas. Their semi-empirical model showed that mean annual rainfall is the main 

limiting resource factor in maximum cover of woody plant in the arid and semi-arid 

savannas (MAP 100-650 mm) while perturbations are key to inhibit tree establishment 

and potential canopy closure in wet savannas (MAP 650-1200mm). Both MAP and 

perturbations act at all levels but their role changes across the rainfall gradient.

The plan for this dissertation is to pair efforts on the mapping aspect of woody 

cover with efforts on woody cover modeling.  The broad aim is to provide a better 

quantification and understanding of savannas woody cover at regional and continental 

levels. The variety of radiometric ranges available from more recent remote-sensing 
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instruments opened up the possibility to investigate the benefit of combining optical and 

radar systems. The resulting maps of woody cover were compared and validated to build 

a robust and new source of information for applications requiring woody cover estimates. 

Empirical models were also included in form of exploring complex relationships between 

woody cover, climate, soil properties, fire, herbivory and human activities. This 

dissertation is organized in five chapters summarized in the following paragraphs:

Chapter 1: Introduction

The introduction gives an overview on the ecology of savanna vegetation with 

particular emphasis on woody vegetation and woody cover. 

Chapter 2:  A continental-scale analysis of tree cover in African savannas 

(Bucini, G., and N. P. Hanan. 2007. Global Ecology and Biogeography 16:593-605).

How biotic and abiotic factors interact to promote and modify tree cover at the 

continental level?

This is a semi-empirical analysis of continental woody-cover patterns in relation 

to climate, soil properties, fire, herbivory and human activities comparing and ranking 

alternative non-linear models according to the Bayesian information criterion (BIC). 

This chapter also highlights the inaccuracy of the VCF tree cover product on savannas 

and the necessity to investigate new approaches to map woody cover in savannas.
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Chapter 3: Woody fractional cover in Kruger National Park, South Africa: 

remote-sensing-based maps and ecological insights. (Bucini, G., N. P. Hanan, R. B. 

Boone, I. P. J. Smit, S. Saatchi, M. A. Lefsky, and G. P. Asner. 2010. In M. J. Hill and N. 

P. Hanan, editors. Ecosystem function in savannas: measurement and modeling at 

landscape to global scales. CRC/Taylor and Francis; in press).

1. Can the combination of optical and radar remote-sensing provide an improved 

approach to map woody cover (including small trees and shrubs) in savannas?

2. How biotic and abiotic factors interact to give rise to spatial woody vegetation 

patterns at landscape to regional scales?

This is a complete study in mapping and ecological modeling focused at the 

regional scale of Kruger National Park. This study was also used as a pilot study to 

develop experience and lay out strategies for the continental woody cover mapping work. 

Chapter 4: Mapping woody cover percent in Africa: an empirical approach 

with radar and optical remote-sensing. (Bucini, G., N. P. Hanan, S. Saatchi, M. 

Sankaran M., Lefsky, in preparation).

1. Is the combination of optical and radar imagery a good approach to up-scale 

and map woody cover at the scale of continental Africa? 

2. Are radar and optical remote-sensing systems suited for mapping woody cover 

across the highly variable range of woody cover (desert, shrubland, open canopy 

savanna with scattered or clumped trees, closed canopy savanna, dense forest)?

10



a. Can these remote-sensing systems discriminate woody vegetation from 

grass and/or bare ground?

b. Are remote-sensing systems sensitive to the different types of woody 

plants (deciduous or evergreen, shrubs, short trees, multi-stemmed trees, 

tall trees) in African ecosystems? 

This chapter examines different methodologies based on the combination of 

optical and radar imagery for woody cover mapping at the continental scale with 

particular emphasis on the ability to detect woody plants in arid and semi-arid system. It 

shows that the larger spectral domain of optical and radar bands that are sensitive to 

greenness (chlorophyll content), brightness, woody material, water content and structure, 

responds to the observed variability in woody cover and captures about 70% of it by use 

of multiple linear regression models with data stratification. In this work, limitations and 

inaccuracies come from both the woody cover training data (plot scale, spatial 

distribution and assessments methods) and the remote-sensing information (signal 

saturation, spectral separability, topography, soil moisture and roughness). 

Chapter 5: Conclusions
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2.1 Abstract

Aim We present a continental-scale analysis that explores the processes 

controlling woody community structure in tropical savannas. We analyse how biotic and 

abiotic factors interact to promote and modify tree cover, examine alternative ecological 

hypotheses and quantify disturbance effects using satellite estimates of tree cover.

Location African savannas.

Methods Tree cover is represented as a resource-driven potential cover related to 

rainfall and soil characteristics perturbed by natural and human factors such as fire, cattle 

grazing, human population and cultivation. Within this framework our approach 

combines semi-empirical modelling and information theory to identify the best models.

Results Woody community structure across African savannas is best represented 

by a sigmoidal response of tree cover to mean annual rainfall (MAP), with a dependency 

on soil texture, which is modified by the separate effects of fire, domestic livestock, 

human population density and cultivation intensity. This model explains ~66% of the 

variance in tree cover and appears consistent across the savanna regions of Africa. 

Main conclusions The analysis provides new understanding of the importance 

and interaction of environmental and disturbance factors that create the broad spatial 

patterns of tree cover observed in African savannas. Woody cover increases with rainfall, 

but is modified by disturbances.  These “perturbation” effects depend on MAP regimes: 

in arid savannas (MAP<400 mm), they are generally small (<1% decrease in cover), 

while in semi-arid and mesic savannas (400-1600 mm), perturbations result in an average 

2% (400 mm) to 23% (1600 mm) decrease in cover; fire frequency and human population 

have more influence than cattle, and cultivation appears, on average, to lead to small 
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increases in woody cover. Wet savannas (1600-2200 mm) are controlled by perturbations 

that inhibit canopy closure and reduce tree cover by, on average, 24-34%. Full 

understanding of the processes determining savanna structure requires consideration of 

resource limitation and disturbance dynamics.

Keywords: Africa, disturbance, fire, savanna, tree cover, tree-grass interactions
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2.2 Introduction

The vegetation of climatically similar regions of the world often presents similar 

structural and functional attributes, independent of the evolutionary history of their flora 

and fauna. Such ecological convergence implies that global patterns of vegetation are 

broadly predictable from environmental variables, primarily precipitation and 

temperature. In addition to climate, however, other factors such as soil characteristics, 

fire, herbivory and human activities are important forces in the development and control 

of vegetation structure and function.

Savannas are defined on the basis of both ecological characteristics and climatic 

attributes. The common characteristic of all savannas is the coexistence of woody and 

herbaceous vegetation in regions where seasonality is controlled by distinct dry seasons, 

rather than by cold (Scholes & Archer, 1997). Ecologists have long been interested in the 

mechanisms that create and maintain the coexistence of trees and grasses in savanna 

systems. The factors responsible for the coexistence of these two very different 

vegetation forms are varied: early hypotheses centred on inter-specific competition and 

vertical niche separation between the roots of woody and herbaceous species in the soil 

(Walker & Noymeir, 1982; Scholes & Archer, 1997). More recent work has highlighted 

the importance of disturbances such as fire, herbivory and human activities (Higgins et  

al., 2000; van Langevelde et al., 2003; Sankaran et al., 2004; Sankaran et al., 2005). 

The critical importance of water is well recognized for savanna vegetation 

(Scholes & Archer, 1997; Walker & Langridge, 1997; Sankaran et al., 2004).  Mean tree 

cover among sites, and maximum observed tree cover increase with mean annual rainfall, 

but substantial variation in tree cover occurs with disturbance and climate variability 
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(Fernandez-Illescas & Rodriguez-Iturbe, 2004; Wiegand et al., 2006).  The role of soil 

substrate is inseparable from the role of water because it acts as a temporary store for 

precipitation inputs and as a regulator for the major outflows through evapotranspiration 

and deep percolation (Noy-Meir, 1973). The inverse texture hypothesis (Noy-Meir, 1973) 

has generally been interpreted with respect to primary productivity, with fine texture soils 

able to support more net primary production (NPP) than coarse soils at higher rainfall 

(above MAP~400 mm) and coarse soils supporting higher NPP at low rainfall (Sala et al., 

1988).  However, in his 1973 paper, Noy-Meir also relates the inverse texture hypothesis 

to the prominence of perennial vegetation, stating that in wetter climates fine texture soils 

will support “taller and denser perennial vegetation” than coarse texture soils, and vice 

versa for dry climates.  This prediction with respect to the impact of soil texture and 

rainfall on the success of perennial versus annual plants, or indeed woody versus 

herbaceous plants, has not, to our knowledge, been tested with observational or 

experimental data. 

Woody community structure in savannas is also strongly affected by fire 

(Hochberg et al., 1994; Gignoux et al., 1997; Higgins et al., 2000; Bond & Keeley, 

2005), herbivory (Ellis & Swift, 1988; Skarpe, 1991; Van de Koppel & Prins, 1998), and 

other perturbations linked to human land use (Belsky, 1987; Ellis & Galvin, 1994; 

Higgins et al., 1999; Laris, 2002). Fire and herbivory alter the mix of plant growth-forms, 

and the competitive interactions between them, through direct consumption of living and 

dead plant material. Savannas are the most frequently burnt ecosystems (Barbosa et al., 

1999; Dwyer et al., 2000) and fire is considered to have a large regulatory influence on 

emergent vegetation structure (Scholes & Archer, 1997; Jeltsch et al., 2000; House et al., 
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2003; Sankaran et al., 2004). In particular, fire frequency can control the probability of 

tree seedling escape from the flame zone and survival to mature size classes.  Fires can 

thereby suppress woody cover and contribute to tree–grass coexistence in mesic and wet 

savannas (Higgins et al., 2000). Browsers can have analogous effects, suppressing 

seedlings by browsing (Prins & Van der Jeugd, 1993; Van de Koppel & Prins, 1998), 

whereas grazers (particularly domestic cattle) are generally considered to suppress grass 

biomass and thereby release woody plants from competition and reduce the frequency or 

intensity of fires, leading to increased woody cover (Bond et al., 2005; Metzger et al., 

2005). Humans also interact directly with the system using land for pasture, agriculture, 

fuel and timber, and causing alterations in tree cover proportions (Sinclair & Fryxell, 

1985; Homewood et al., 2001; Shackleton et al., 2005).

Sankaran et al. (2004) suggest that the integration of resource-based and 

disturbance-based models is required to explain tree–grass coexistence and their relative 

abundance in savannas. A landscape-scale study conducted in an arid savanna of Namibia 

by Wiegand et al. (2006) concluded that the tree–grass ratio is influenced both by 

primary (rain and nutrients) and secondary (fire and herbivory) determinants. Significant 

advances in understanding savanna ecology have been made over many years of research, 

but published studies often base ecological conclusions, and mathematical models, on 

data from a small number of sites with particular climatic, edaphic and disturbance 

characteristics, thus limiting the broad relevance of the conclusions.  Comprehensive 

analyses aimed at separating the role of resources and competition from the role of 

disturbances across broad-scale climatic and environmental gradients are relatively few 

and far between. In this paper we develop and test a series of empirical, but functionally 
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meaningful, models to investigate variability in tree cover across all African savannas. 

Our aim is to identify the processes that create and modify tree cover at these large 

continental-scales where climate, soil type and disturbances by fire, herbivores and 

humans vary substantially. We examine the extent to which variations in annual 

precipitation, soil nitrogen and texture, fire frequency, cultivation intensity, cattle density, 

and human population may contribute to observed emergent properties of tree cover 

across Africa.  

In the following sections we develop a conceptual model for the ways in which 

climate and other factors interact to control woody community structure in savanna 

systems. We translate these concepts into quantitative models and test the alternative 

hypotheses using satellite-derived tree cover data. Achieving a broad understanding of 

resource use and perturbation influences requires describing the processes that drive 

variation in the dynamics of tree cover development and persistence. A general model 

predicting tree cover must discriminate the action of different factors and evaluate their 

effects in relation to their intensity. We use our models to illuminate possible dynamics 

that are common among African savannas and to quantify the importance and role of 

climate, soil and disturbance in controlling observed tree cover across the savannas of 

Africa. 

2.3 Methods

2.3.1 Conceptual framework 

We postulate that the coexistence of trees and grasses in savannas results from 

competition between the two vegetation forms as well as their complex interactions with 
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climate, soil biochemistry, fire, herbivory, and human activities. These factors can lead to 

the direct mortality of trees or grasses, or change the competitive interactions between 

them (Sankaran et al., 2004). To explain the tree cover fraction in African savannas, we 

propose to partition the variation of tree cover into two primary constituents: the potential 

cover configuration in undisturbed systems (U) and a modification of U dependent on 

perturbation interactions (M). We relate each constituent to a different set of explanatory 

variables: the first consisting of climatological and soil descriptors, and the second 

consisting of natural and human-related perturbations. In this approach, we build models 

using separate multiplicative terms U and M:

MUtc ⋅=    Equation 2-1 
 

where tc is tree cover (%), U is composed of functions u that depend on variables related 

to undisturbed tree growth, and M is composed of functions m that depend on variables 

related to perturbation. By partitioning, we seek to resolve the relative importance of: (1) 

environmental components that determine the vegetation structure in the absence of 

perturbations; and (2) the perturbation components that create a departure from the 

“potential” (i.e. undisturbed) state. 

2.3.2 Models

Given the conceptual framework, we now choose explanatory variables and 

structure alternative models. Each model comprises a set of predictors and functions that 

describe ecological or heuristic relationships of tree cover with the predictors. Table 2-1 

shows the variables used for the analysis, their relation to the potential-perturbation 

framework and their notation. The response variable is tree cover percent (tc) estimated 
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using the MODerate-resolution Imaging Spectroradiometer (MODIS) sensor onboard 

NASA's Terra satellite (Hansen et al., 2003). 

The independent variables for U (Equation 2-1) are mean annual precipitation 

(MAP) or, alternatively, growing season length (GSL).  GSL was computed from rainfall 

and potential evapotranspiration estimates (Allen et al., 1998) to explore whether other 

aspects of climate (that take into account both rainfall and evaporative demand) need to 

be considered in addition to rainfall. Soil texture and soil nitrogen effects were also 

included in U to represent the possible impacts of these on water and nutrient 

relationships that might alter the climate-driven woody community structure. The term M 

depends on the perturbation variables fire frequency, cattle density, human population 

density and cultivation intensity. Pearson correlation coefficients between predictor 

variables are less than 0.5 indicating that the variables are not strongly correlated. 

In structuring the models, we consider four alternative functions u (Figure 2-3) 

representative of hypotheses concerning the response of tree cover to moisture (using 

either MAP or GSL):

Linear. The linear response represents the case in which tree cover increases 

proportionally with water across the rainfall gradient. This can be considered as the null 

model and the following alternative functions are attempts to account for more complex 

responses of tree cover to moisture regimes.

Michaelis-Menton. The shape of this function reflects a saturation hypothesis 

where at relatively high moisture the response levels out as canopy closure approaches 

and other factors become limiting. 
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Sigmoid. This curve corresponds to the hypothesis that a minimum in moisture is 

required for woody plants to establish and survive and that tree cover then increases to an 

asymptote as canopy closure approaches. 

Piecewise linear. This line results from quantile regression of tree cover on 

rainfall determined by Sankaran et al. (2005) using independent field measurements. We 

used the piecewise linear equation with fixed parameters as reported by Sankaran et al. to 

provide an estimate of the moisture-driven potential tree cover from which we attempted 

to fit the perturbation effects. 

The full term U relates tree cover to MAP or GSL using one of these four curves 

with an adjustment for different soil texture classes, multiplied by a linear function of soil 

nitrogen. Conceptually, U represents tree cover in undisturbed systems but it is 

recognized that such conditions rarely occur in reality because most savannas are 

perturbed to a greater or lesser degree. The relationships described by U will be referred 

to as climate-driven tree cover and can be considered the mean climate response around 

which low-perturbation points lie.  

The term M (Equation 2-1) is based on parametric functions with a rational form:

( ) βα v1vm ⋅−=                      Equation 2-2 

with v a perturbation variable in the interval [0,1] and α and β parameters (β>0). Each 

function m depends on one perturbation variable and decreases or increases the value of 

tree cover predicted by the term U by the fraction αv β depending on the nature of the 

interactions and the patterns embedded in the observations. This mathematical structure 

permits both suppression and facilitation of moisture-driven tree cover by perturbations, 
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with convex, quasi-linear and concave forms possible depending on fitted parameter 

values. 

In composing different models of tree cover, a moisture function was always 

selected, with or without soil nitrogen and texture functions, to form U. The U term was 

then tested with all possible combinations of the perturbation functions m (including 

models with, and without, perturbations), making a total of 512 candidate models.

2.3.3 Statistical framework

A critical aspect of inference in environmental science involves the search for an 

appropriate approximating model supported by empirical data. Information theory 

approaches allow evaluation of the weight of evidence for multiple hypotheses 

represented by a set of possible models, and selection of a single model or a subset of 

models (where there is ambiguity) that provide the “best”, and most parsimonious, 

representation of the data (Burnham & Anderson, 2002). Models that are poor at 

explaining the information in the data, which have errors in their structure and/or 

predictor choice, receive high model-selection uncertainty. 

The Bayesian information criterion (BIC) (Schwarz, 1978) offers a way to 

provide balance between accuracy and parsimony. The expression of BIC entails terms 

representing lack of fit based on the maximized likelihood associated with the model 

parameters, a bias correction factor related to model complexity and a penalty term 

dependent on sample size. This criterion was developed within the Bayesian framework 

(Hoeting et al., 1999; Hobbs & Hilborn, 2006) and provides a method for approximating 

model posterior probabilities that is accurate when the sample size is large, i.e. more than 

20 times the number of predictors (Kass & Raftery, 1995). The application of BIC 
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assumes that all models and parameters are initially equally likely (Hoeting et al., 1999; 

Wintle et al., 2003); this is the ‘default’ approach when there is insufficient information 

to define prior distributions. 

In traditional (frequentist) statistics there is an absence of formal methods for 

deriving and incorporating model uncertainty conditional to the data. Frequentist 

approaches and the Akaike information criterion (AIC) (Akaike, 1973) do not account for 

sample size and, when a data set is large, they would favour complex models that better 

fit variance but may fail to identify the factors of importance (Kass & Raftery, 1995; 

Zucchini, 2000; Johnson & Omland, 2004).

In this paper, we were interested in finding one or more models that describe tree 

cover patterns in order to better understand which factors and processes give rise to it. 

We used BIC to evaluate objectively and rank models of differing complexity by 

extracting a sample of data points from the continental dataset that was large compared to 

the model dimensions. Relative differences among model BIC values enable the 

derivation of posterior probabilities called “weights” (w) that allow the candidate models 

to be ranked and quantify model selection uncertainty (Burnham & Anderson, 2002; 

Hobbs & Hilborn, 2006). 

2.3.4 Implementation

We defined the savanna regions of Africa using a bioregion map (Table 2-1) and, 

within these, we selected areas with MAP less than 2200 mm. We randomly sampled 

0.02% from the 500-metre tree cover dataset obtaining 13,416 points for the subsequent 

analysis. This sample size represents a trade-off between a sample that is representative 

of the tree cover variability across the continent while also being manageable for 
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statistical analyses. The difference between the population mean (15.96±0.09%) and 

sample mean (15.86±0.31%) was not statistically significant. 

We extracted data for all the other variables (Table 2-1) at the sample locations. 

In many cases the data available with continental coverage for Africa are at much coarser 

spatial resolution than the tree cover dataset (see, for example, soil texture and cultivation 

intensity in Table 2-1). This scale mismatch means that some fine-scale responses of tree 

cover to potential drivers cannot be represented in the following analysis.  However, we 

decided against degrading the response variable (tc) to the coarsest resolution since there 

is real information in tc at these scales, and we are interested in the extent to which fine-

grain patterns respond to the fine scale drivers that are available. In this situation, the 

coarse resolution datasets provide our “best estimate” of conditions at the tc locations, 

with an expectation that the resulting relationships will be weaker than would be 

expected if all data were available at high resolution.      

The values of the perturbation variables and soil nitrogen were rescaled in the 

interval [0,1] between minimum and maximum to make their effects comparable and 

enhance the numerical stability of the statistical models. Log and square-root 

transformations were applied to soil nitrogen and human population variables, 

respectively, adjusting for skewness. We implemented the models using SAS software 

(SAS, 2000) and fitted them using PROC NLMIXED with the optimization technique 

based on a dual quasi-Newton algorithm. The SAS procedure provides BIC values from 

which we calculated the weights w. 
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2.4 Results

Among the 512 competing models, 96% satisfied convergence criteria but only 

35% of the fitted solutions had both high likelihood ranking and, when examined more 

closely, fitted parameter values that were physically and biologically meaningful.  Table

2-2 lists the four models with the highest BIC weights. Note that the summed BIC 

weights of the first four models are 0.999, indicating almost no empirical support in the 

data for the 508 models not shown in Table 2-2.  The model for African savanna woody 

cover with best support (w=0.88) from this analysis is: 
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Equation 2-3

This model accounts for 66% of the variability in the sample dataset and included 

all the predictors and 18 parameters. Table 2-3 reports the parameter estimates and their 

95% confidence intervals. The parameters t0, αs, βs, and γ define the shape of the 

sigmoidal rainfall-driven tree cover response. The parameter t0 represents the minimum 

tree cover percent, αs gives the tree cover range, βs determines the curvature and γ is the 

MAP value at tc = αs/2. The parameters αs and βs showed a dependence on soil texture 

categories (s). The parameter αn defines a linear effect of soil nitrogen, and the 

parameters αj and βj control the perturbation effects, with j=f, c, p and l being indices for 

fire frequency, cultivation intensity, human population, and cattle density, respectively. 

The sigmoid function was selected in all the top-ranked models and hence has the 

greatest support in the data. There is effectively no support for models structured with 

linear, piece-wise linear or Michaelis-Menten functions. Associated with the sigmoid 
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shape, MAP is a better predictor than GSL. The soil texture variable, soil nitrogen and all 

the perturbation variables, fire frequency, human population, cultivation and cattle 

density appear in the best model with virtually no uncertainty as to the significance of 

their effects. 

The fitted sigmoid lines represent predicted tree cover on fine, medium and coarse 

soils for locations with little or no perturbation and low soil nitrogen (Figure 2-4). Fine 

texture soils appear to have slightly higher tree cover than coarse soils across all rainfall 

zones with MAP>300 mm. The medium soil texture class is similar to the fine texture 

soils at low rainfall, but at high rainfall it appears to have lower cover than even the 

coarse soils (perhaps related to the relatively small number of savanna points in the very 

high rainfall zones above 1700 mm MAP). 

The perturbation effects are shown in Table 2-3 and Figure 2-5. The relationships 

are plotted with larger symbols to represent the interquartile range to give an idea of the 

distribution of the perturbation variables across the intensity range. The contribution of 

soil nitrogen to rainfall-driven tree cover appears to be positive, but for 75% of the points 

this effect is relatively weak (αnn<0.13 in Equation 2-3). More frequent fires, higher 

cattle density, and larger human population densities all tend to depress rainfall-driven 

tree cover. Cattle normalized values do not exceed 0.04 (10 cattle per km2) for 75% of the 

locations and rainfall-driven tree cover is reduced at the maximum by a factor -0.16 (term 

-αll βl in Equation 2-3).  The interquantile ranges show that suppression of tree cover by 

fire and human population is often important (~ -0.24 at their 75th percentiles). At the 

highest extremes, fire and cattle appear to reduce potential tree cover by a factor -0.4. 

However, these are less strong modifiers than human population that, at its highest levels 
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in urban areas (8900 people per km2), can effectively eliminate tree cover. An unexpected 

result concerns the positive effect of cultivation: for most of the pixels cultivation appears 

to have relatively minimal effect on woody cover (<0.002), but the fitted response curve 

suggests that where cultivation intensity is >0.75 (more than 75% cultivated land) this 

can result in an increase from rainfall-driven woody cover by a factor 0.1-0.3. 

To validate our results, we used the best model (Equation 2-3 and Table 2-1) to 

predict tree cover on a new random sample that was ten times larger than the pilot 

sample. The model predictions fit the MODIS observations with a slope of 0.98 (p-

value=0.002) and an intercept of –0.03 (p-value=0.5; R2=0.65), and show moderate 

dispersion (root mean square error RMSE = 10.9) (Figure 2-6). The residuals from all 

predictions were normally distributed with homoschedastic variance, though with some 

tendency to overestimate tree cover in dry systems and underestimate it at the wetter end 

of the rainfall gradient (Figure 2-6).

2.4.1 Perturbation impacts across rainfall zones

At the continental scale, MAP defines the functional base line for tree cover, 

while the perturbations increase or, more generally, decrease that tree cover depending on 

the intensity of the various perturbation factors. We analyzed the average effect of the 

perturbations at different MAP levels.  For this purpose, we divided the MAP range (0-

2200 mm) into classes of 100 mm and, for each one, calculated the average values of the 

perturbations and their modifying effects with respect to the rainfall-driven tree cover U. 

Figure 2-7 shows the trends for each perturbation and their summed effects. Maximum 

fire frequencies occur in the semi-arid and mesic savannas (800-1500 mm; Figure 2-7a) 

and lead, on average, to 20-25% (-0.2 to -0.25) suppression of the rainfall-driven tree 
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cover. Human population (Figure 2-7c) in savannas does not exceed average density 

(averaged within each rainfall interval) of more than about 30 people per km2 and its 

largest negative effect (-0.17 to -0.23) on tree cover occurs in areas with MAP higher 

than 600 mm. Cattle density (Figure 2-7d) reaches its highest averaged value of 16 cattle 

per km2 at 800 mm MAP, where it decreases the rainfall-driven tree cover by about -0.15. 

For MAP < 700 mm, cattle density appears to have a stronger negative effect than fire, 

but both effects are relatively limited in the drier savannas. The suppressive action of fire 

increases between 800 and 1500 mm MAP where fire becomes a more important factor in 

reducing zone-averaged tree cover than human population (Figure 2-7e). The positive 

effect of cultivation (Figure 2-7b) is generally small, never surpassing a proportion of 

0.024 of the rainfall-driven tree cover, which corresponds to a 0.4% increase in actual 

tree cover at 700 mm. Figure 2-7f compares the rainfall-driven tree cover to the modified 

tree cover and highlights the fact that the perturbing agents have a relatively minor 

influence when MAP < 400mm, but they become increasingly important in determining 

actual tree cover as MAP increases above 600 mm in both relative (reduction with respect 

to the climate-driven tree cover) and absolute (percent reduction in tree cover) terms.

2.4.2 Model robustness

Statistical analysis and model fitting should be relatively insensitive to the sample 

data used for the analysis and model parameterization.  We performed the model 

selection analysis on ten independent random samples of 13,416 points (same number of 

points as the pilot sample) from the continental dataset. We tallied the proportion πi of 

samples for which model i was selected as the best model among the ten datasets. The 

first four models selected using the pilot sample (Table 2-2) were also the top ranked 
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models across all ten independent datasets. The same model (Equation 2-3) was ranked 

first with a frequency π1=0.5 and weights w>0.76. Models two and three were each 

selected twice as “best” and model four was selected once. The parameter estimates of 

the best models were in general not significantly different from the estimates obtained for 

the pilot sample. On two occasions the cattle-density effect indicated a weaker grazing 

effect than in the pilot dataset. These results suggest that, while there is some sensitivity 

to the sample dataset in the model selection procedure, the balance of evidence supports a 

model containing all the perturbations, while indicating lower relative importance of the 

soil nitrogen and cattle density predictors. 

We studied the residuals from the predictions with respect to the savanna 

bioregions to assess whether model performance varies among the different savanna 

types. The comparison of residuals suggests that the model performs very well across 

biomes, with little bias among regions, suggesting that the processes controlling tree 

cover in these diverse savanna types are similar. 

Figure 2-8 shows predictions of woody cover for the whole of the African 

savanna region based on the best model parameters obtained using the pilot sample 

alongside the MODIS tree cover map. These maps demonstrate the ability of the fitted 

model to reproduce the broad-scale patterns of tree cover in Africa, but also show that the 

fine-scale variability is often missed in the model, reflecting in large part, the lack of 

fine-spatial resolution information on the long-term intensity and impact of many of the 

important drivers. 
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2.5 Discussion

Savannas are highly dynamic systems, where stochastic events (e.g. wet or dry 

years, more or less frequent fires) can have considerable impact on woody community 

demographics, from seed production to seedling emergence, seedling and sapling 

survival, and adult recruitment. Thus woody cover in any single savanna location is 

strongly contingent on prior conditions, over one or two years for seedlings and small 

trees, but over decades for adult trees.  Such historical contingency could be used to 

support the non-equilibrium view of savannas (Ellis & Swift, 1988).  That is, savanna 

structure fluctuates widely, and with no preferred directionality, based on multi-year 

history of rainfall and disturbance variability.  On the other hand, the analysis of 

Sankaran et al. (2005)  showed that maximum woody cover is rainfall-limited in arid and 

semi-arid areas (<650 mm MAP) but not in wetter savannas (>650 mm; Figure 2-4). 

These results were interpreted to suggest that the drier savannas of Africa are climatically 

‘stable’ (canopy closure is prevented by insufficient mean rainfall), while the wetter 

savannas are ‘unstable’ (canopy closure and grass exclusion are possible). However, in 

almost all cases, woody cover is well below the mean climate potential woody cover 

because of climate variability and disturbance events. Thus, most savanna locations are in 

a ‘disequilibrium’ state.  During periods of near average climate and low disturbance, 

such savanna systems presumably relax, with directional preference, towards the climatic 

potential cover. However, since climatic variability and disturbance are so prevalent in 

savannas, the probability of a savanna location actually achieving the woody canopy 

cover corresponding to the mean climate is low. 
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In this analysis we asked the question: “what are the processes determining tree 

cover in African savannas? “. We concentrated on mean rainfall and disturbance statistics 

across the continent as primary drivers of actual tree cover. We recognize, however, that 

temporal variability (the historical contingency discussed above) in both rainfall and 

disturbance can have strong effects on local woody community dynamics. The 500-metre 

tree cover data product based on MODIS observations (Hansen et al., 2003) provided 

data at an appropriate scale and resolution for discriminating the main features of tree 

cover in the African savannas. We tested and applied empirical curves that: (1) reflect 

hypotheses relating the nature of tree-grass interactions in drought-limited systems, and 

the impact of disturbances such as fire, herbivory and humans, on tree community 

structure; and (2) were flexible enough to allow the relationships inherent in the data to 

determine the shape, direction and magnitude of the response functions. Inherent in our 

approach is the idea that the disequilibrium dynamics and variability discussed above, 

and the complexity of the driving factors, are such that the processes are difficult to 

discern using data from a small number of sites. However, by extracting a very large 

dataset from the whole of Africa, representing the full range of climatic, soil and 

disturbance conditions, we hope to identify and quantify both the mean resource (i.e. 

rainfall) response and the more stochastic and highly variable disturbance-based 

responses. 

The model with the highest support in the data included a sigmoidal increase in 

tree cover with MAP and strongly supported all the predictor variables.  Thus, at the 

continental scale, rainfall is a primary driver, but it is not sufficient to explain the 

observations without accounting for the effect of other factors.  The selected model 
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supports a complex behaviour of woody vegetation from which some important general 

behaviours for the ensemble of African savannas can be extracted. 

Three major types of savannas can be defined based on the sigmoidal response to 

MAP:  arid savannas  (MAP<400 mm), where tree cover is low and is relatively 

insensitive to increasing rainfall; semi-arid/mesic savannas (400<MAP<1600 mm), 

where potential and average tree cover increase rapidly with MAP; and finally mesic/wet 

savannas (MAP>1600 mm), where tree cover is high on average, relatively insensitive to 

MAP and limited by other agents.  We obtained a weak response of tree cover to rainfall 

when MAP<400 mm. Previous research has shown that the pulse-reserve hypothesis may 

be particularly relevant for arid systems: woody establishment is driven by non mean-

field precipitation characteristics, such as rainfall amounts in particularly wet years, or 

the seasonal distribution or size of individual rain events (Higgins et al., 2000; 

Fernandez-Illescas & Rodriguez-Iturbe, 2004; Reynolds et al., 2004).  In semi-arid areas, 

MAP sets a tree cover line around which a large variability is created by perturbations 

(Figure 2-4). In mesic/wet savannas, we observed a weakening of MAP control on tree 

cover, where the systems would tend to converge to a wooded state and disturbances are 

essential for tree-grass coexistence (Sankaran et al., 2005).

The influence on the climatic relationship from environmental factors such as soil 

nitrogen and soil texture, while statistically significant, is relatively small. Fine soils 

appear to support higher tree cover across the rainfall gradient but we were not able to 

detect the differential benefit of soil texture on woody cover postulated by the “inverse 

texture hypothesis” (Noy-Meir, 1973). Furthermore, Sankaran et al. (2005) found a weak 

positive relationship between soil sand content and tree cover in semi-arid and mesic 
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savannas (>350 mm MAP), which appears to contradict the inverse texture hypothesis 

and our results. Thus, while the soil water availability considerations of the inverse 

texture hypothesis may have direct impacts on vegetation productivity (Sala et al., 1988), 

they appear less directly linked to the competitive interactions, demographic and 

disturbance dynamics that control woody cover in African savannas. Soil nitrogen 

appears to have a positive but relatively weak effect on tree cover, increasing it by a few 

percent above the moisture-driven level.

The model analysis revealed several relationships between tree cover and the 

disturbance factors that change with the MAP regime (Figure 2-7). Given the nature of 

the data set and our analyses, we cannot assess causality, but the results provide 

(correlative) support for hypotheses regarding the role of different processes in 

controlling vegetation structure. In arid systems, perturbations have little impact on tree 

cover. In semi-arid and mesic savannas, MAP controls maximum tree cover and 

perturbations act as modifiers. The cattle density effect is negative and generally less 

strong than fire and human population effects. A small positive contribution to tree cover 

comes in association with cultivation, but overall the combination of perturbation factors 

causes a decrease from the rainfall-driven tree cover. In mesic and wet savannas 

(MAP>1600 mm), precipitation no longer strongly limits tree cover and thus the 

combined effects of disturbance factors are most important in determining tree cover, 

with fire being more effective than humans and cattle in the emergent tree cover fraction.

The effect of cattle reducing rainfall-driven tree cover was not expected since 

grazing is commonly considered to be a major cause of woody encroachment (Jeltsch et  

al., 1997; Roques et al., 2001). This is mostly observed in areas affected by overgrazing 
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(Scholes & Archer, 1997), but the coarse spatial resolution of the cattle data available at 

continental scales for Africa tends to spatially homogenize density, with only 0.2% of the 

points having cattle density higher than 50 km-2 .  Hence the statistical relationship is 

mainly driven by low-density values (Figure 2-5 and Figure 2-7). Moreover, the absence 

of shrubs in MODIS tree cover product (Hansen et al., 2003) is likely to make it 

somewhat insensitive to shrub encroachment per se. The important role of wild 

herbivores in structuring savanna vegetation (Cumming et al., 1997; Scholes & Archer, 

1997) could not be analyzed in this study because comprehensive data on wild herbivore 

biomass outside of the major parks is not available. The increase in woody cover with 

agricultural intensification (Figure 2-5) is also counter-intuitive but may correspond to 

the cultivation and protection of shade and fruit trees on the margins of arable fields. 

Equally important, particularly in the semi-arid regions where cereal crops (millet, 

sorghum and maize) and fallow rotations are prevalent, is the possibility that rapid 

resprouting and recolonization of woody species adapted to cultivated areas (e.g. Guiera 

senegalensis in west Africa) may lead to overall small increases in the woody cover of 

the agricultural areas.  Direct cultivation of economically important tree crops such as 

karite (Butyrospermum parkii) and gum Arabic (Acacia senegal) in the drier (e.g. 

Sahelian and Sudanian) regions, or fruit and beverage plantations in the wetter regions 

(>1800 mm MAP), may also play a role in this relationship.

The MODIS tree cover dataset was created using a supervised regression tree 

approach (Hansen et al., 2002) and therefore contains spatial and numerical noise and 

error. The reported standard error of estimates varies from 8 to 18%, which is similar to 

the residuals of our best models. A particular limitation of the MODIS tree cover dataset, 
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however, is that woody plants less than 5 m in height were not included in the ground 

calibration datasets and hence the product tends to underestimate woody cover in 

savannas where shrubs are common. This may explain the presence of zero or near-zero 

tree cover in the MODIS dataset in areas where we might expect woody plants to be 

present in greater abundance (e.g. southern Kalahari and eastern Namibia). This omission 

may explain why our predicted tree cover values have a tendency to overestimation at the 

low range of MAP. We also tend to underestimate tree cover, relative to the satellite 

observations, in high rainfall areas surrounding the moist tropical forests of the Congo 

Basin (MAP~2000 mm; Figure 2-6 and Figure 2-8).  It appears that our model is less 

effective in these forest–savanna transition zones, possibly because of changing 

relationships with the various biotic and abiotic factors.

This work relates to the recent study by Sankaran et al. (2005), who used data 

from 850 field sites (~0.25-0.5 ha) across the African continent. We included their 

quantile regression line as one of the candidate models for this analysis, but it provided 

overall model fits that were far less efficient in representing the data than the sigmoid 

curves. As discussed above, the selected sigmoid curves do not predict a maximum, but 

rather predict the MAP-dependent cover. In fine scale datasets, such as the Sankaran et  

al. study, local heterogeneity (dense or sparse locations) is likely to be more important 

than in the relatively coarse scale (500 metre = 25 ha pixels) of the MODIS data used 

here.  Nevertheless, the MODIS data do show a small number of locations with tree cover 

matching the maximum MAP line of the Sankaran et al. study (Figure 2-4), suggesting 

underlying agreement between the datasets despite the scale mismatch. 

38



This study confirms the necessity to look at savannas as systems with multiple 

dynamic behaviours that only a combination of the resource- and perturbation-based 

theories can interpret. However, due to the statistical nature of this analysis, we cannot 

resolve specific mechanisms behind the data trends. The unexplained 44% variability in 

the data is probably related to data quality issues, and our failure to include certain 

processes and mechanisms that occur at very fine (patch-landscape) scales.  As noted by 

other authors (Gillson, 2004; Wiegand et al., 2006), research at multiple scales may 

provide a better understanding of the roles of rainfall  (amount and variability), landscape 

scale processes and both local and broad scale perturbations in determining tree cover. It 

seems very likely that the complexity of tree cover patterns observable at different scales 

is an emergent property of different factors, processes and interactions in the progression 

from plant and patch scales, through landscape to regional and continental scales. 

2.6 Conclusion

Savannas ecosystems comprise coexisting herbaceous and woody vegetation 

forming a continuum between grassland with few scattered shrubs and trees to closed 

canopy woodland with few grasses. Recognition of the determinants, interactions and 

dynamics creating and maintaining tree-grass mixtures has been a challenge for 

ecologists that have developed varied theories. The conceptual framework and the 

character of the models developed here (intermediate between mechanistic and 

phenomenological) offer an integrative attempt to build our understanding of vegetation 

structure in savanna at very coarse (continental) scales. 

The selected model was able to identify some of the controls and the processes 

that create coarse-scale patterns of tree cover in African savannas and explained 66% of 
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observed variance. Given relatively coarse spatial resolution of some datasets, the 

predictions were not able to capture all of the tree cover heterogeneity at finer scales seen 

in the MODIS tree cover (Figure 2-8). Furthermore, our analysis inherits any errors or 

biases inherent in the tree cover data.  We cannot improve on that dataset with our 

models but we can use the MODIS data to provide a very large sample of data from 

across the continent and examine relationships and patterns that are difficult, if not 

impossible, to discern within one region or across a small number of sites.

Our work confirms the need for a synthetic approach to explain tree–grass 

coexistence based on both resource limitation and disturbance dynamics. Together with 

the large literature on savanna dynamics and tree–grass interactions at site scale, this 

research provides some new understanding of the relative importance and interaction of 

environmental and disturbance factors that create the broad spatial patterns of tree cover 

observed in savannas across Africa.  Whether these patterns will hold for other tropical 

savannas, or the mixed tree-grass systems of temperate latitudes, remains open to further 

research.
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TABLES AND FIGURES

Table 2-1: Datasets used in analysis of African savanna tree cover dynamics.  The dataset consists of ten layers. The last 
column relates each variable to equations 1 and 3. The lower case letter defines the variable symbol. The letter U stands for 
the “undisturbed tree cover” term and M for the “modifications by perturbation” term. Summary statistics, mean and range, 
are reported.

Data layer Origin Description Symbol and summary 
statistics 

Tree-cover 
percent

500m MODIS Vegetation Continuous Fields 
(Hansen, 2003)

Proportional estimates of tree-cover derived 
from monthly composites of MODIS data of 
2002.

Resolution: 500 m; Units: percent

t  (response variable)

t  =16%

min=0%, max= 89%

Mean annual 
precipitation 
(MAP)

ANU-CRES fitted climatic grids (Hutchinson, 
1996) 

Total monthly rainfall values averaged over 
1951-1995 period. 

Resolution: 0.05 degrees; Units: mm

r; U

r =769 mm

min=11mm,  max= 2192 mm 

Growing season 
length (GSL)

- ANU-CRES fitted climatic grids 
(Hutchinson, 1996) 

- Potential Evapotranspiration (Allen, 1998)

GSL = (average monthly rainfall /PET) * (days 
per month)  (Sankaran, unpublished data)

 Resolution: 0.05 degree; Units= days

g;U 

g =127.5 days

min=2 days, max= 337 days

Soil texture Zobler soil datasets (texture layer) 

Source: UNEP/GRID (Zobler, 1986)

Global distribution of soil texture classes 

Resolution: 1 degree

 s; U

Classes: fine, medium and 
coarse 

Soil Nitrogen Global Gridded Surfaces of Selected Soil 
Characteristics.

Source: IGBP-DIS (Group, 2000).

Total nitrogen density.

Resolution:  0.0833 degrees; Units: g/m²

 n; U

n =832 g/m²

min=0 g/m², max= 4875 g/m²

Fire frequency GVM, Joint Research Center, Italy Burned areas in 1981-1991 derived from f; M
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(Barbosa, 1999 #139; Barbosa, 1999) NOAA-AVHRR GAC data over the period 
1981-1991.

Resolution: 8km; Units: fire return over 8 year

f =2 years

 min=0 years,  max= 1 year

Human 
population 
density for 2002

Oak Ridge National Laboratory (ORNL)  

LandScan Global Population Database 2002: 
http://www.ornl.gov/sci/gist/landscan/ 

Census counts (at sub-national level).

Resolution: 30" X 30" latitude/longitude grid; 
Units: number of people per cell

 p; M

p =19 km-2

 min=0 km-2,  max=8906 km-2

Cultivation 
intensity

International Livestock Research Institute 
(ILRI);  UNEP-GRID & GISS 

(Matthews, 1983)

Percentage that is under cultivation, versus the 
percentage of natural vegetation, including 
five classes. 

Resolution: 1 degree; Units: percent

c; M

c  =16%

min=0%, max=100%

Cattle density World Resources Institute - PAGE, 2000 Density of cattle in Africa compiled by the 
International Livestock Research Institute 
(ILRI). 

Resolution: 0.090597 degrees; Units: Cattle 
per km2

l; M

l  = 7 km-2

min= 0 km-2, max= 242 km-2

Biome IUCN, as digitized by UNEP/GRID in 1986.

Created by (Udvardy, 1975).

Biogeographical provinces of the world, 
Africo-tropical Realm: Biogeographical 
provinces are defined as ecosystematic or 
biotic subdivisions of the realms (floral 
"regions" and faunal "provinces"). 
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Table 2-2: Four models with highest posterior model probabilities based on the Bayesian information criterion (BIC). All 
these models are structured with the sigmoid function. Presence of a predictor in a model is marked by a dot (r=mean annual 
precipitation, g=growing season length, s=soil texture, n=soil nitrogen, f=fire frequency, c=cultivation intensity, p=human 
population, and l=cattle density). K is number of free parameters; for each model i, Δi= BICi-BICmin and wi is the derived BIC 
weight (model posterior probability). MAP, mean annual rainfall; GSL, growing season length.

Climate 
pot.

Soil Perturbations Statistics BIC AIC

Model 
no.

r g x n f c p l K Δi L(θi|Y) wBIC wAIC

1 ● ● ● ● ● ● ● 18 0 1.0000 0.8786 0.9999

2 ● ● ● ● ● ● 16 4 0.1353 0.1189 7.5E-05

3 ● ● ● ● ● ● 17 12 0.0025 0.0022 7.5E-05

4 ● ● ● ● ● 15 16 0.0003 0.0003 3.4E-09

W+ 1.0 0.0 1.0 0.998 1.0 0.881 1.0 1.0
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Table 2-3: Summary statistics for parameter estimates using the sigmoid relationship and 
MAP. The indices xf, xc and xm for fine are for coarse and medium texture classes. 
Parameters for the effects of soil nitrogen, fire frequency, cultivation, human population 
and cattle density are also shown. Values for parameter estimates, unconditional standard 
error (Eq. 6) and 95% confidence interval (eq. 7) are retrieved from model averaging. 

Variable Par Estimate
Uncond.
s.e.

Uncond.
95% C.I.

MAP t0 -0.89 0.25 -1.39 -0.39

αxf 117.89 6.92 104.33 131.46

αxc 110.65 7.09 96.76 124.54

αxm 110.92 5.99 99.17 122.67

βxf 2.25 0.09 2.06 2.43

βxc 2.58 0.10 2.39 2.76

βxm 1.96 0.06 1.84 2.08

γ 1435.77 65.70 1306.97 1564.57
Soil Nitrogen αn 0.27 0.07 0.14 0.40
Fire frequency αf 0.38 0.01 0.36 0.40

βf 0.54 0.04 0.46 0.61
Cultivation intensity αc -0.40 0.10 -0.61 -0.20

βc 3.59 0.63 2.35 4.83
Human population αp 1.01 0.05 0.91 1.10

βp 1.24 0.06 1.12 1.36
Cattle density αl 0.45 0.05 0.36 0.54

βl 0.33 0.04 0.26 0.40
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Table 2-4: Models frequencies πi obtained from the ten samples compared to the weights 
w obtained from the pilot sample. Models 1 to 4 are listed like in Table 2; models 5 and 6 
are the two new best models. K is the model size.

Model 
no.

K πAIC wAIC πBIC wBIC

1 18 0.7 0.9999 0.5 0.8786

2 16 0.1 7.5E-05 0.1 0.1189

3 17 0.1 7.5E-05 0.2 0.0022

4 15 3.4E-09 0.1 0.0003

5 14 0.1

6 15 0.1
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Figure 2-3: Hypothesized functional responses of tree-cover to moisture. The independent variable (q) could be either MAP or GSL.
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Figure 2-4:  Tree-cover percent versus MAP: MODIS-based tree-cover% (dots), predicted rainfall-driven tree-cover on three 
calls of soil texture, fine, medium, and coarse (solid lines), and piecewise linear relationship marking the upper bound on 
tree-cover found by Sankaran et al. (2005).
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Figure 2-5:  Perturbation and Soil Nitrogen multiplicative effects on potential tree-cover. 
Larger symbols mark the response interval for the interquartile range of a factor.
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Figure 2-6: Observed vs. predicted tree-cover%: linear fit. 
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                     
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               

a) b) 

c) d) 

e) f) 

Figure 2-7: Averaged perturbation effects in relation to MAP. The top four panels a), b), 
c) and d) report the perturbation values and their corresponding effect as the fraction of 
loss (fire frequency, human population and cattle density) or gain with respect to the 
environmental tree-cover. The graph e) groups the perturbation effects and the graph f) 
reports the averaged environmental tree-cover and the modified tree-cover under the 
influence of the averaged summed effects of the perturbations.
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Figure 2-8: Residuals’ distributions by bioregion. The line inside the box: Median; Plus symbol marker: mean; Lower and 
upper edges of the box: 25th and 75th percentiles; endpoints of lower and upper whiskers: minimum and maximum. 
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Figure 2-9: Tree-cover percent in African savannas. Left: model averaged predictions. Right: retrieved from MODIS sensed 
data.
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3.1 Introduction

The variability in woody vegetation structure characterizes different types of 

savannas and is usually described by quantitative variables such as fractional cover, 

height and biomass. Woody cover has been shown to directly affect important ecological 

processes of savanna ecosystems. It influences biomass production, fire regimes, 

herbivory, nutrient cycling, hydrology and soil erosion (Rietkerk et al., 1997; Scholes and 

Archer, 1997; Archibald et al., 2009). Savannas are characterized by varied spatial 

combinations and relative proportions of woody and herbaceous vegetation. This 

heterogeneity results in diversified habitats and resources determining the large number 

of species that can establish and survive in these ecosystems. The ability to monitor 

woody fractional cover is therefore fundamental to understand savanna dynamics.

Mean annual precipitation (MAP) determines a potential maximum cover for 

woody plants, which however is rarely reached because other regional and local factors 

intervene (Sankaran et al., 2005; Bucini and Hanan, 2007). The variability in observed 

woody cover at the regional scale can be the result of inter-annual variability in rainfall, 

as well as local variability in soil properties and geomorphology, disturbance history, and 

patch dynamics, all of which impact tree-grass interactions and woody plant survival and 

recruitment (Ogle and Reynolds, 2004; Wiegand et al., 2006; Groen et al., 2008; 

Sankaran et al., 2008).

Kruger National Park (KNP) has a tradition of science-informed management that 

has recently focused on maintenance of heterogeneity as a means to create resilience. 

Woody cover assessments have direct impacts on the Park management decisions in 

relation to the extent they reflect and control fire effects, herbivore utilization, elephant 
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damage, animal habitat suitability and hydrology. The most recent study based on aerial 

photography covering the KNP southern-central part, Eckhardt et al. (2000) found that 

between 1940-1998, woody cover slowly increased on granite bedrocks and decreased on 

basalt bedrocks. The most compelling result was a significant decline in trees > 5 m in all 

sampled transects. Elephant numbers and interactions between elephant damage and fire 

were found the principal drivers of this decrease. The scale of woody cover dynamics in 

KNP has a combined local- and regional nature but the Park still lacks high-resolution 

wall-to-wall woody cover maps that allow a thorough cover assessment.

Current techniques to estimate woody canopy cover at the regional level are based 

on remote-sensing scaling-up approaches. At the fine scale, field instruments, aerial 

photographs and high-resolution images provide cover estimates that can be used to 

calibrate remote-sensing images with coarser resolution and full coverage of the study 

area. The main difficulty in woody cover detection in arid and semi-arid systems is to 

separate woody vegetation from the background of grass and soil. Research on woody 

cover mapping has tended to concentrate either on optical or radar-based techniques. 

While optical reflectances and derived vegetation indices are very sensitive to 

photosynthetically active vegetation (e.g., green leaf area), they are not optimal to 

differentiate woody from herbaceous attributes (Glenn et al., 2008). Synthetic aperture 

radar (SAR) sensors, operating in the microwave C, L and P bands, are instead sensitive 

to woody structure and biomass, including in low-density savanna situations (Santos et 

al., 2002; Lucas et al., 2006; Saatchi et al., 2007). The radar backscatter signal, however, 

is affected by spatial and temporal variability in soil and canopy moisture, as well as 

surface roughness. The potential for combined optical and SAR systems should to be 
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explored, given the limitations and strengths in discriminating unique woody vegetation 

signatures using each technology separately.

In this case study, optical and radar imagery are combined to produce a woody 

cover map for the whole KNP at medium resolution (~90 m) and a map that quantifies 

woody-cover heterogeneity as a potential metric for biodiversity studies (Rogers, 2003). 

Then the mapped woody cover patterns are analyzed in relation to environmental and 

ecological factors using a classification and regression tree (CART) approach to construct 

an explanatory model of woody cover distribution (e.g. Breiman et al., 1984; De’Ath and 

Fabricius, 2000).

3.2 Study Area

KNP is located in the lowveld semi-arid savanna of northeastern South Africa 

(22.3-25.5° S, 30.8-32° E; Figure 3-10). The northern part of the park receives 300-500 

mm MAP and is classified as arid bushveld (Venter et al., 2003). The southern part 

receives 500-700 mm MAP and is classified as lowveld bushveld. The long-term MAP is 

506.6 ±144 (mean ± standard deviation) and rainfall distribution has a monomodal 

pattern where the rainy season occurs mainly between October and March (austral 

summer). KNP exhibits a longitudinal geomorphological division between underlying 

basalt bedrock (east) that forms soils rich in clay minerals and granite bedrock (west) that 

produces coarser sandy soils. The Park‘s terrain is fairly level (average slope of 1.6 ± 

2.5°) except for the presence of few geological formations, varying from rugged outcrops 

and gorges to floodplains, in the north, in the southwestern corner and along the eastern 

border.
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The Park is subjected to natural disturbance, including drought cycles, fire and 

herbivory. The physiognomy of the woody plants varies and reflects species genetic 

characteristics as well as phenotypic adaptations to disturbance. Woody plant heights fall 

in the 2-5 m range and can assume the forms of trees and shrubs with single or multi-

stemmed physiognomy. Based on 1955-2004 data, fires occur with an overall average 

return of 4.4 years (frequency ~0.22). Fires are mostly surface fires and they can suppress 

seedlings and saplings. Adult plants taller than 3-m generally survive and have the 

capacity to resrpout from roots after a dieback. Large browsers (elephants, giraffes and 

rhinos) have high potential to alter structure and compositions of plant communities 

(Shannon et al., 2008; Asner et al., 2009).

3.3 Data and Methods

3.3.1 Data

3.3.1.1 Field measurements

The field campaign was carried out during April-May 2006. The 2005-2006 rainy 

season was above long-term average and the trees still had their green canopy. We 

measured canopy cover using a handheld spherical densiometer (Lemmon, 1956), a 

simple and quick method comprising a convex mirror etched with a grid of 24 squares 

within which the observer estimates cover. Our measurements included woody plants 

taller than 1.3 m and we subtracted canopy gaps present inside the crown. Because of the 

60° angle of view, densiometer measurements have been shown to overestimating cover 

(Korhonen et al., 2006; Ko et al., 2009). However, savanna woody plants are generally 

scattered and we conjectured that the bias would not be significant.
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Field plots were distributed to sample the woody cover range in KNP as well as 

the rainfall and soil gradients but did not include riparian areas. We designated 73 plots 

of 250x250 m, with 63 plots laid out in the Experimental Burnt Plots (EBPs) and 10 plots 

in other areas. The EBPs have been maintained at different fire season and frequency 

treatments since 1954 (Biggs et al., 2003) and provide representative cover range levels 

in adjacent plots. In each plot, we collected 30 densiometer measurements on a regular 

6x5 point grid with 50-m pace and averaged them to obtain the plot woody cover 

estimate. The sampled data ranged from 0.4-58 % cover with an average of 23.8 % ±13.7 

percentage point (pp).

3.3.1.2 Remote Sensing Data and Processing 

We sought medium resolution imagery with good quality and no cloud cover. We also 

wanted dry-season images to minimize the moisture contamination in the radar imagery 

and maximize the contrast between photosynthetically active woody vegetation and 

senescent grass. When we started working (2006), the imagery available for the KNP 

with these characteristics included Landsat Enhanced Thematic Mapper (ETM+) and 

JERS-1 Synthetic Aperture Radar (SAR). 

The three orthorectified ETM+ images (source: Global Land Cover Facility, 

http://glcfapp.umiacs.umd.edu/index.shtml) were acquired between May 21 and 30, 2001 

and covered the entire Park except for a small area (1%), for which we found an image 

from June 12, 2000. The images were mosaicked into a single scene at 28.5-m resolution 

using ENVI (http://www.ittvis.com) color adjustment, a method that uses a least-squares 

adjustment to ensure radiometric consistency among the scenes. Using the visible, near-

infrared and short-wave infrared bands, we calculated the Normalized Difference 
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Vegetation Index (NDVI), the Soil Adjusted Vegetation Index (SAVI; Huete, 1988), the 

Modified Soil Adjusted Vegetation Index (MSAVI; Qi et al., 1994) and the first three 

principal components (PCA). The 25-m resolution JERS-1 SAR imagery (source: Alaska 

Satellite Facility http://www.asf.alaska.edu/) included 11 georeferenced scenes of 

backscatter amplitude acquired in the L-band (1275 MHz, 23.5 cm) with HH polarization 

and at 35-degree off-nadir angle. Eight scenes were acquired between April 12 and 

August 20, 1996 and three scenes on March 12, 1995. In the two weeks previous to 

image acquisition, the average gauge rainfall was 20 ± 19 mm in 1996 and 7 ± 8 mm in 

1995, which should not significantly contaminate the backscatter. We applied a Lee filter 

(standard deviation based filter) to smooth speckles in the radar scenes but no radiometric 

corrections were made. Interaction with surface roughness produced some high 

backscatter areas unrelated to vegetation information. We corrected this effect by creating 

a mask for pixels with backscatter amplitude values >45 DN (Digital Number) which 

were generally facing east (aspect 45°-135°) on a slope >2.5° and assigning them a 

reduced amplitude value of 45 DN. We mosaicked the radar images and coregistered it to 

the georectified Landsat mosaic (rms <1 pixel, UTM 36 S projection), resampling at a 

common pixel resolution of 28.5 m. We then ran a focal analysis over all the remote-

sensing layers to smooth image coregistration errors and worked at 85.5 m nominal 

resolution. 

In between data acquisition dates, local woody cover change likely occurred because of 

elephants and other large browsers’ plant utilization, also in combination with fire. We 

decided to run the analysis while recognizing that the data could record local changes and 

give rise to some prediction instability. We ultimately validated our model predictions 
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using an independent woody cover dataset obtained from the Carnegie Airborne 

Observatory (CAO, http://cao.stanford.edu) that integrates high-fidelity imaging 

spectrometers and waveform LiDAR (light detecting and ranging) sensors (Asner et al., 

2007). The measurements were collected at 50 kHz laser pulse repetition frequency from 

an average flying altitude of 2,000 m above ground level, with a + 17 degree scan angle 

(after 2 degree cut-off) and 50% overlap between adjacent flight lines. This resulted in 

LiDAR data with 1.0 m laser spot spacing and 1.12 m beam diameter. 

3.3.1.3 Geospatial input data for CART 

The geospatial data included climate, geomorphology, soils, vegetation, herbivory 

and fire data (Table 3-5). Most of the original data were provided without error estimates. 

We estimated errors for the variables derived from the original data through modeling. 

Data with a temporal dimension (rainfall, fire, herbivore census) were compiled into long 

term averages, discarding years with missing records. All data coverages were 

reprojected to a common format (UTM 36 S) and 1-km pixel spacing.

3.3.2 Analysis and modeling 

Woody-cover was predicted using field measurements and remote-sensing data. 

The explanatory CART model (Brieman et al., 1984) was derived using the 

environmental and ecological databases (Table 3-5). The regression tree (CART) can be 

used to explain variation in a response variable such as woody cover, by inputing a range 

of explanatory variables to split the response variable into more homogeneous groups. 

Models may be selected by: a) iterative comparison based on a hypothesis test; or b) 

selected on the basis of the minimum error which can be assessed by a penalty for 
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complexity using Akaike’s Information Criteria (AIC; Akaike, 1973) or a cross 

validation/bootstrapping approach (De’Ath and Frabricius, 2000). All analysis and 

modeling was conducted using the software package R (version 8.0.2; http://www.r-

project.org). 

3.3.2.1 Woody cover and heterogeneity maps 

A relationship to calibrate the optical and radar data (predictors) was developed 

using the measured woody cover at our 73 field sites (response variable). The initial 

remote-sensing dataset was reduced to eight covariates after eliminating one of a variable 

pair with Pearson correlations coefficient >0.8. Then multiple linear regressions were run 

and the AIC was used to select an optimal model. A jack-knife procedure was used to 

check the stability of the model parameter estimates. The best model was extrapolated to 

estimate woody cover percent over the entire KNP. We also quantified the relative 

contribution of the predictive variables to the total explanatory value of the model using 

the LMG metric (Gromping, 2006). From the map, the woody cover standard deviation 

was calculated as a metric for heterogeneity on a 1-km scale to identify where woody 

cover presents high variability hot spots. This is a scale at which many birds and 

mammals might perceive heterogeneity in the landscape. 

3.3.2.2 Explanatory ecological model 

We studied the mapped woody-cover in association with ecological and 

environmental conditions (Table 3-5). We randomly sampled 1000 points (1-km square 

grid cells) with a minimum 2-km reciprocal distance (training set) and applied the 

regression tree analysis (CART, Breiman et al., 1984). Minimum cross-validation error 
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was used to retrieve the optimal tree size. To verify the stability of the optimal tree, we 

created 10 independent random samples and grew 10 separate regression trees. After 

pruning, we compared them to the regression tree grown on the training set to check that 

there was no, or minimal, deviation in tree structure and variable selection. A random 

forest analysis (Breiman, 2001; a combination of bootstap aggregation and random 

selection of variables) was run to retrieve variable relative importance. 

In order to validate the model, we applied the regression tree on 10 independent 

test samples of 1000 points and compared their predictions to the observed (mapped) 

woody cover. We evaluated the relative weight of the ecological/environmental vs. 

spatial component in the woody cover patterns following the procedure described by 

Boone and Krohn (2000) based on Borcard et al. (1992). The total variance is portioned 

into independent components: pure environmental and ecological variation ve; pure 

spatial variation vs; environmental/ecological variation with spatial structuring ves and; 

unexplained variation vu. Accordingly, we created three types of woody cover models 

(CART): 

1) ecological (with ecological and environmental independent variables) explaining 

the variation; 

VE = ve + ves (Equation 1) 

2) spatial (with UTM x and y coordinates as independent variables) explaining the 

variation; 

VS = vs + ves (Equation 2) 

3) and ecological-spatial (with both ecological/environmental and spatial independent 

variables) explaining the variation; 
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VES = ve + vs + ves. (Equation 3) 

The single variation components can then be retrieved knowing that: 

ves = VE + VS – VES (Equation 4) 

and 

vu = 1 – (ve + vs + ves) (Equation 5) 

3.4 Results 

Woody Cover Percent and Heterogeneity Maps 

The optimal regression model (Table 3-6) that links field measurements to the 

remote sensing variables explains 61% of the variability (p<0.0001) with a residual 

standard error (RSE) of 8.9 %. The residuals were near-normally distributed with a slight 

positive skew. The JERS-1 backscatter intensity and the Landsat green band together 

contributed 0.58 in the total R2. According to the LMG metric for relative variable 

importance (normalized to sum 1), the JERS-1 backscatter intensity (LMG = 0.43 ± 0.14) 

and the Landsat green band (LMG=0.38 ± 0.11) were the two most important variables to 

predict woody cover. The jack-knife analysis (Table 2) indicated model stability and 

absence of points in the dataset with high leverage that could create biased estimates. The 

model performance (Figure 3-11)is good but underestimations occur for some points 

having relatively dense woody cover (>50 %). The validation of the model predictions 

against the LiDAR cover estimates gives strong agreement (Figure 3-11, p<0.0001) and 

the residual standard error (RSE = 8.9 %) was in the order of the model error. 

The KNP woody cover map generated from the model is shown in Figure 3-12. 

The park is characterized by low to medium cover (WC=34.7 % ± 14.6 pp) with the 

granite landscapes (west) supporting higher woody cover (WC=40.2 % ± 11.8 pp) than 
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basalt landscapes (WC=24.4 % ± 14.4 pp). Two emerging features are the sedimentary 

rocks (WC=41.5 % ± 15.3 pp) separating the granitic and basaltic bedrocks in the south 

and the intrusive gabbro sills in the granites with relatively low cover (WC=19.7 % ± 9.5 

pp). The northern mountainous areas have the highest average cover (WC= 45.5 % ± 13.4 

pp). The heterogeneity map (Figure 3-11) brings to light the transitions between the 

savanna domain and the riparian areas (std. dev.>14 %) and the outcrops (std. dev. 8-14 

%). Fairly large homogeneous patches occur on the basalt bedrocks and generally 

correspond to relatively flat upland areas far from drainage lines. 9 

3.4.1 Woody Cover Explanatory Model 

The best explanatory model (Figure 3-13) derived from the CART analysis 

explained 59.4 % of the variability in the mapped woody cover. The regression tree 

structure was stable and the predictions calculated for 10 test samples matched the 

mapped woody cover with an averaged R2=0.54 (p<0.0001) and root mean squared error 

of 8 %. The random forest function assigned the highest relative importance to the fire 

frequency, slope, MAP and “basalt-granite” variables. The first splits in the regression 

tree occurred for the binary geological variable “basalt- granite”. The two branches were 

not characterized by differences in woody cover value ranges but rather by two separate 

ecological behaviors occurring on the two different parent material layers. On the basalt 

rocks, the areas with lowest woody cover (WC=17 %) are located where fire recurs with 

frequency greater than once every five years (0.2), slope <1.1° and MAP <567 mm. Less 

than five-year fire return appears necessary for covers >32 %. The granite branch is first 

split in the northern and the eastern blocks. The CART did not further resolve the cover 

variability in the northern zone, predicting overall WC=49 %. In the east, areas with 
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MAP < 518 mm present less woody cover with crests (DEM >391 m a.s.l.) having the 

lowest cover (WC=28 %). If MAP >518 mm, elephants density >866 kg/km2 correlates 

with reduced woody cover. 

Partitioning of variation among ecological, spatial and combined models (Figure

3-14) showed that the variation in woody cover distribution was predominantly explained 

by ecological and environmental variables, since the pure spatial component explained 

only 2 % of the variability. Two thirds (~40 %) of the variation explained by the 

ecological model was associated with the shared ecological/spatial component. The other 

third (20 %) has a pure ecological/environmental origin coming from variable 

interactions. 

3.5 Discussion 

Woody fractional cover and woody cover heterogeneity are important quantitative 

descriptors of savanna structure that capture biophysical processes driven by 

geomorphology, climate and disturbances such as fire and herbivory. We produced the 

first KNP woody cover map at medium-high (90 m) resolution. We also derived a woody 

cover heterogeneity map and a woody cover ecological model. 

3.5.1 Woody Cover Map 

It is helpful to combine optical and radar imagery for woody cover up-scaling and 

mapping: the JERS-1 L band and the Landsat ETM+ green band were the most important 

variables correlated with woody fractional cover. The strong correlation (r=0.67) between 

woody cover percent and radar L-band backscatter is consistent with the results found in 

the savannas of Queensland, Australia (Lucas et al., 2006). In general, high 
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backscattering is expected from tree boles because of their size similar to that of the L- 

band wavelength (23.5 cm). The signal return results from both direct backscatter and 

from stem-ground double bounce interaction (Durden et al., 1989). Topography 

contributes to woody plant establishment by creating local favorable conditions related to 

energy balance, higher soil moisture or protection from fire and/or herbivory. However, 

woody cover overestimates could arise from enhanced backscatter due to aggregated 

structural information from both vegetation and topography (van Zyl, 1993). Our 

corrective approach, based on applying a mask (with a fixed intensity value) on 

topographic areas, was a rudimentary effort that can be substituted with robust 

radiometric corrections. The negative correlation (r=-0.63) between the ETM+ green 

band and woody cover is in agreement with research showing that in arid and semi-arid 

systems, increasing vegetation cover corresponds to an increase in visible light absorption 

by the canopy leaves (mostly in blue and red bands) and a decrease in the background 

brightness from dry soil and senescent grasses (Yang and Prince, 1997; Xu et al., 2003). 

This behavior however can be non-linear especially when accounting for shadows and 

complex backgrounds. We initially tested simple polynomial relationships but the 

increased model complexity penalized model performance gains. 

The overall good agreement with the woody cover estimates retrieved from 

LiDAR (Figure 3-11) means that our map gives an accurate woody cover representation 

at the KNP scale. Our approach however has limitations that influenced both the amount 

of model unexplained variability and model error. They can be related to woody cover 

temporal variations occurred during the 11-year (1995-2006) span of data acquisition 

dates, field measurement errors and remote-sensing signal variability (shadows and the 
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background contamination effects; Spanner et al., 1990). Disturbances and vegetation 

demographic changes caused cover fluctuations during the data acquisition years. Our 

mapped woody cover is a model-combined value of different year signals and therefore it 

is not a point-in-time representation. Local spatial variability carries also a temporal 

component. The expected cover bias (overestimate) due to the densiometer design did not 

emerge in the validation comparison (Figure 3-11). The exclusion of canopy gaps in the 

densiometer measurements could have compensated the bias introduced by the 

densiometer angular view and lead to a good match with LiDAR estimates that are closer 

to crown cover (gaps included in cover at the operated resolution). Savanna sparse 

vegetation probably reduced the densiometer angular effect, too. Given the densiometer 

problematic aspects, other field methods such as the line intercept or even a modified 

spherical densiometer would be better suited for their unbiased sampling and accuracy 

(Korhonen et al., 2006; Ko et al., 2009). The LiDAR cove deviations from the map 

predictions in the low woody cover range (Figure 3-11) are instead caused by the LiDAR 

sampling approach used for this dataset. It tends to miss plants ≤2 m and hence 

underestimate cover in the more arid areas dominated by short woody plants (Bucini et 

al., unpublished manuscript). 

3.5.2 Ecological Model 

Both the regression tree and the variance partitioning analyses highlighted a 

strong spatial character of the woody plant patterns that arises from interactions with 

spatially structured environmental factors. The analysis was in accord with pieces of 

previous KNP research and combined them into an integrated model. Soil substrates and 

water availability are strong factors in determining woody cover. Excluding the 
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mountainous areas, woody plants can reach fractional covers >30 % with MAP>575 mm 

on basalt and with MAP>518 mm on granite where moisture is more available because of 

clay soil types. Water is more easily found in valleys and depressions. The two tree 

branches “slope>1°” and “DEM<391m” mainly correspond to this location types. In 

particular, “slope>1°” separates both low elevation lands and some outcrops in the basalt 

side. Despite the longstanding concern on elephant impact (Eckhardt et al., 2000; 

Guldemond and Van Aarde, 2008), our model highlights only an area on the granites 

where elephant density is relatively high and woody cover is 30 % although MAP >518 

mm. Contrary to our expectations, the variables representing seasonal or annual rainfall 

variability only appeared at lower unstable nodes indicating either an effect at smaller 

scales or sensitivity to dataset idiosyncrasies. The 40 % unexplained variability is likely 

to be linked to stochasticity in spatial and temporal drivers removed in the temporal 

means and spatially gridded data, and resulting population dynamics (Wiegand et al., 

2006) that the ecological and environmental predictors do not capture. To resolve some 

finer-scale variability, we also run a similar model analysis maintaining the layers 

“distance to water”, “elevation”, “slope” and “aspect” at 90-m resolution but no 

improvement was reached. 

3.5.3 Research and Management Implications 

The procedures used in this work are of interest for implementing a Park 

monitoring program that will collect woody-cover data for long-term monitoring and 

ecological assessments. In particular, heterogeneity has emerged in KNP as a 

management goal in association with maintenance of biodiversity (Rogers, 2003; Venter 

et al., 2008). The derived woody cover and heterogeneity maps can provide information 
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at a scale equivalent to the watershed and landscape scales at which the Park is managed. 

Yet, given the KNP low-to-medium woody cover, the current 8.9 % model error needs to 

be reduced. Very high-resolution imagery and LiDAR have the potential to provide a 

better spatial and temporal sampling of the KNP complex vegetation structure and hence 

to improve up-scaling remote-sensing calibration models. 
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TABLES AND FIGURES

Table 3-5. : Environmental and ecological variables used in the explanatory model. The KNP source reference is the South 
African National Parks (SANParks) database (http://www.sanparks.org/parks/kruger/conservation/scientific/gis/). Most of the 
rainfall gauges had more than 20 years of data except for 3 gauges with 12 years of data. We kept elephants as a separate group 
because they can affect woody vegetation not only as mixed-feeders but also through direct mortality of trees. Abbreviations: 
RSE=residual standard error; sd=standard deviation; “ = same as above.

Variable name and statistic Notes 

Climate KNP database; 26 rain gauges, 1970-2004 

Daily rainfall 

Mean annual precipitation (mm) Calculated: generalized regression model with x, y coordinates 
and elevation predictors (R2=0.75, p<0.0001, RSE= 38.8) 

Variability of mean annual precipitation variability – coefficient of 
variation (CV) 

Calculated: generalized regression model with x, y coordinates 
and elevation predictors (R2=0.31, p=0.01, RSE=0.06) 

Mean annual precipitation in the dry season (mm) Calculated: generalized regression model with x, y coordinates 
predictors (R2=0.63, p<0.0001, RSE=10.9) 

Variability of mean annual precipitation in the dry season (CV) Calculated: generalized regression model with x, y coordinates 
predictors (R2=0.3, p=0.004, RSE=0.08) 

Average length of dry spells in the wet season (No. days) Calculated: generalized regression model with x, y 
coordinates, elevation and slope predictors (R2=0.8, p<0.0001, 
RSE=0.65) 

Number of dry days in the wet season Calculated: Interpolation with regularized spline method 
(ESRI, http://www.esri.com/, ArcGIS 9.1) 
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Fire KNP database; annual burnt areas (polygon file), 1955-2004 

Fire frequency (number/yr) Calculated: sum of annual burnt area layers divided by 50-year 
time period. 

Herbivory KNP database; annual dry-season aerial census, GPS points of 
herbivore counts, 1981-2005 

Elephant biomass density (mean kg/km2) Calculated: For each census point and for each year, species 
counts were scaled to biomass using elephant average weight. 
An inverse-distance density function (ESRI, ArcGIS 9.1) with 
a radius of 40 km was applied to distribute point observations 
and create continuous elephant biomass maps. The annual 
mean of biomass maps gave the final map.

Browsers and mixed-feeders biomass density (mean kg/km2) Calculated: For each census point and for each year, species 
counts were scaled to biomass using browser and mixed-
feeder species-specific average weights. Half of the mixed-
feeders biomass was kept with the browser group and half put 
with the grazer group. An inverse-distance density function 
with a radius of 20 km was applied to distribute point 
observations and create continuous browser biomass maps. 
The annual mean of biomass maps gave the final map. 

Grazers and mixed-feeders biomass density (mean kg/km2) Calculated: same as browser and mixed-feeders map but with 
gazer and mixed-feeder species-specific average weights. 

Geomorphology and Soils KNP database; vectorized from the Chief Directorate Survey’s 
and Mapping (CDSM) 20m contour lines 

Elevation (m asl) Statistics: min=88 m, max=1172.3 m, mean=376.1 m, sd 
=124.3 m. 
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Slope (degree) Calculated (ESRI, ArcGIS 9.1); Statistics:min=0°, max=59.8°, 
mean=2.1°, sd=3.2°. 

Aspect (categorical) Calculated (ESRI, ArcGIS 9.1): originally in degrees and then 
assigned to classes: north: (0°-44° and 315°-359°), east (45°-
134°), south (135°-224°) and west (225°-314°). 

Basalt/granite bedrocks 

Soil texture (g/kg) Subset on KNP 

Total soil nitrogen (categorical) Subset on KNP 

Water KNP database; rivers and water points maps 

Distance to water (m) Calculated (ESRI, ArcGIS 9.1): Euclidean distance function 

Soil/Vegetation Complex Polygon vegetation map (Gertenbach, 1983) and polygon 
bedrock map (Venter, 1990) 

soil-vegetation Calculated: Vegetation map was reclassified into three classes: 
mopane (Colophospermum mopane), non-mopane species, 
sandveld communities. The intersection between the 
reclassified vegetation map and the bedrock map produced a 
five-class final map: mopane on basalt, mopane on granite, 
non-mopane on basalt, non-mopane on granite, sandveld 
communities on granite. 
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Table 3-6.Woody cover regression model (columns 2, 3, 4). Coefficient estimates, 
standard error, and p-value for the selected variables. The multiple R2= 0.61, residual 
standard error= 8.9 and p < 0.0001.Jack-knife estimates of the model coefficients for the 
predictors (columns 5, 6, 7):mean, standard error and bias (Efron, 1993).

Woody cover predictive model Jack-knife estimates

Estimate Std. Error p-value Mean Std. Error Bias

Intercept 2.97 39.7 0.9404 3.00 33.88 1.62

JERS-1 1.35 0.4 0.0003 1.36 0.29 0.03

Landsat band2 -6.55 1.9 0.0013 -6.55 1.71 0.06

Landsat PCA3 -5.39 2.4 0.0255 -5.39 2.08 0.09

Landsat band5 3.01 1.3 0.0222 3.02 1.11 -0.06

SAVI 322.21 141.5 0.0259 322.12 123.57 -6.54
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Figure 3-10: Study area: KNP and the distribution of the field plots across the MAP 
gradient.
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Figure 3-11: Model evaluation: observed (densiometer) versus predicted woody cover 
percent points (circles) and fitted line (solid, R2= 0.61 and RSE = 8.6, p<0.0001). Model 
validation: LiDAR estimates versus predicted woody cover percent points (stars) and 
fitted line (dashed, R2=0.79, RSE=8.9, p<0.0001). 
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Figure 3-12: Top left: KNP woody cover percent map (90-m nominal resolution). Top 
right: heterogeneity map for Kruger National Park with focal resolution of 1 km. Bottom: 
woody cover map zoom on Sabie river. Bottom left: false color infrared-composite of a 
4-m resolution IKONOS image (4-28-2001) (photosynthetically active vegetation in red 
shades). Bottom right: woody cover percent estimates. 
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Figure 3-13: Ecological model (regression tree) with end node values being woody cover 
percent. Each split refers to the condition for the left child branch. The values at the end 
nodes are the mean response for that stratum. Node variables: basalt/granite bedrocks, 
fire frequency (fire freq), elevation (DEM), slope, mean annual precipitation (map), 
mopane (Colophospermum Mopane species), sanveld community species (sanveld 
comm.) and elephant biomass density (el). 
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Figure 3-14: Variation partitioning for the CART models. Variability explained by the 
ecological-spatial model: 61.5=39.1+20.3+2.1 %. Unexplained variability: 38.5 %.
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4.1 Introduction 

The extent, the spatial arrangement and the structure of woody vegetation 

influence important ecosystem processes including carbon storage, respiration, energy 

transformations, biogeochemical and biogeophysical cycles (Belsky et al. 1993, Hanan 

2001, Baldocchi et al. 2004, Ratnam et al. 2008, Williams et al. 2008). For the African 

continent in particular, there is a strong need for further research on carbon dynamics, 

especially in savanna systems that appear to be highly sensitive to climate variations 

(Williams et al. 2007, Williams et al. 2008, Scheiter and Higgins 2009). Woody plants 

regulate runoff and erosion (Mougin et al. 2009) and are of considerable significance for 

biodiversity as their structural characteristics influence flora (Ludwig et al. 2008) and 

fauna (du Toit 2003, Owen-Smith 2004) survival. Humans also depend on woody plants 

to obtain fruits, firewood, construction material and medicinal products. In the African 

continent, especially in rural and poorer urban households, fuel wood is a major resource 

for cooking, lighting and heating (Mahiri and Howorth 2001, Arthur et al. 2010). In 

contrast, woody encroachment and thickening in grasslands and savannas has long been a 

concern because it decreases herbaceous production and hence negatively impacts 

livestock-dependent livelihoods (Shackleton and Gambiza 2008, Wigley et al. 2009). The 

importance of information on woody cover to understand ecosystem functioning has 

grown in the recent decades also in response to scientific questions related to global 

earth-atmosphere dynamics, pressing climate change issues, biodiversity and natural 

resource management. The scientific community has since then expanded its spatial 

scopes and aimed at integrating plot- with large-scale data and models. Technological 
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advances have been pivotal in this process with remote-sensing instruments and image 

processing techniques providing multi-scale data for earth observing and monitoring. 

In this work, we develop an approach that quantitatively relates woody plant 

radiative and structural properties to create a woody cover map. Over the last two 

decades, the large-scale mapping approach has mainly changed in three ways:  (i) with a 

transition from discrete vegetation categories to continuous fields (DeFries et al. 1999); 

(ii) with the use of multi-temporal spectral data (Hansen et al. 2000, Hansen et al. 2002) 

and (iii) with the inclusion of more detailed woody cover information for model 

calibration.  The continuous fields approach moved away from rigid class boundaries and 

assigned a continuous value of fractional cover to each pixel bringing to light gradients 

and heterogeneous spatial patterns in the landscape (DeFries et al. 1999). 

The use of multi-temporal data takes advantage of phenological information for 

the mapping process. In general, different life-forms (annual and perennial herbaceous 

vegetation and deciduous and evergreen woody vegetation) exhibit different temporal 

behaviors in their seasonality (green-up, maturity and senescence) that can be exploited 

to extract vegetation attributes from remote-sensing imagery. Annual metrics derived 

from multi-temporal data such as annual mean, maximum, minimum and range of 

reflectance and/or vegetation indices provide quantities with possible biophysical 

significance (DeFries et al. 1995, DeFries et al. 1997, Hansen et al. 2002). These metrics 

are detached from a specific date and hence are useful for analyses over large areas where 

phenological cycles have different timings or there is opposite hemispherical seasonality. 

When derived from optical spectral bands, these metrics are related to vegetation 

photosynthetic activity and they indicate either the phase or changes in vegetation 
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greenness over the year. In the case of dense evergreen forests, the phenological patterns 

are relatively simple with an average high greenness maintained throughout the year 

(Xiao et al. 2005, Prasad et al. 2007). Drought seasonal grasslands, on the other hand, can 

be successfully distinguished by relatively high greenness ranges (Butterfield and 

Malmstrom 2009) originating from the temporally limited season with green standing 

grass. The application of annual metrics for savanna or woodland characterizations is 

instead more complicated because of the phenological complexity arising from their 

mixture of herbaceous, deciduous and semi-deciduous life-forms (Scanlon et al. 2002, Do 

et al. 2005, Archibald and Scholes 2007). Results from Asner et al. (1998) in a South 

Texas savanna show that areas with mixed woody and herbaceous vegetation have lower 

Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) than dense woodland 

but higher than areas dominated by grass.  This ecological information combined with 

multi-temporal remote-sensing data is useful for identifying savannas among others 

ecosystems. However, the ability to quantitatively separate the woody vegetation 

contribution to the pixel reflectance remains poor because of low contrast between green 

woody and herbaceous reflectance. 

The capacity of all-weather condition Synthetic Aperture Radar (SAR) systems is 

advantageous for vegetation remote-sensing (Waring, 1995) and mapping purposes 

(Santos et al. 2002, Lucas et al. 2006, Lucas and Armston 2007, Lucas et al. 2007, 

Saatchi et al. 2007, Viergever et al. 2007, Ribeiro et al. 2008, Mitchard et al. 2009). 

Radar waves not only can penetrate clouds but also the vegetation canopy (Waring et al. 

1995). In general, the radar wave interacts more strongly with objects that have a size 

comparable to the IR wavelength. Differently from optical sensors, radars are sensitive to 
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the woody (nonphotosynthetic) components of vegetation. Shorter wavelengths (K-, X-, 

C-band) are more sensitive to the elements of the canopy surface (leaves and small 

branches), leaf water content and moisture (Waring et al. 1995, Kasischke et al. 1997).  In 

particular, shrub-grass separation can be problematic in the optical domain (DeFries et al. 

1999), but it could become possible in the radar domain since shrubs and grasses have 

different canopy structures and/or water contents. Important factors that may contaminate 

the vegetation backscatter are topological features, soil roughness and soil moisture (van 

Zyl 1993). Conceptually, if we can combine the information contained in the radiative 

responses of both optical and radar systems, the approach to woody cover mapping can 

result in improved predictions with respect to approaches based on one system alone. It is 

therefore very important to examine the benefits of combining the different and 

complementary data from these two systems. 

The most current woody cover map products that include the whole African 

continent are two: the Vegetation Continuous Fields (VCF, Hansen et al. 2003) and the 

tree cover map developed by Rokhmatuloh et al. (2005). Both studies derived the percent 

tree cover from optical features. The training data for the VCF product are built on 250 

Landsat land cover classifications (De Fries et al. 1998, Hansen et al. 2002) that were 

then aggregated to four cover strata (0%, 25%, 50% and 80%). Averaging the cover strata 

to MODIS 500-m cells provided a continuous cover data set. However, small trees and 

shrubs were eliminated from the field calibration set. That is, vegetation classes including 

bushland and shrubland with an proximate height of mature woody vegetation < 5 m 

were included in the zero tree stratum even if the estimated woody cover was > 40 %. 

The consequence is a strong underestimation of woody cover in savanna ecosystems 
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(Figure 4-15)  that comprise almost half of the African land surface. Rokhmatuloh et al. 

(2005) potentially improved the woody cover estimates for savannas by classifying 11 

very high-resolution (0.6 m) pan-sharpened IKONOS images. The fraction of high-

resolution pixels classified as “tree” provided a continuous woody cover value in a 

MODIS 1-km resolution cell. The authors stratified their sampling by selecting one 

IKONOS image for each class of the Global Land Cover 2000 map (GLC2000, 

Bartholome and Belward 2005).  This approach provides a limited representation of the 

within-class cover variability across the continent. The positive side of these two studies 

is that the training datasets had a very large number of points (pixels) because they were 

generated from remote-sensing images.  
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Figure 4-15: Field measured (Sankaran et al. 2005) vs. 500-m MODIS VCF (Hansen et 
al. 2003) woody cover percent in 850 sites across African savannas: scatter plot with 
regression line. 
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In this work, we aim at a providing a more complete assessment of woody cover 

for Africa giving particular attention to include shrubs and small trees that represent a 

large component of woody vegetation in savannas regions. We believe that we can attain 

this by including two particular elements in our analysis: (i) our training data are direct 

measurements of woody cover comprising shrubs, small and large trees and (ii) we 

combine microwave and optical remote-sensing to include data more sensitive to woody 

material that we wish to detect. The rationale for our approach builds on earlier research. 

Bucini et al. (2010) combined optical and radar imagery to map woody cover at the 

regional scale of Kruger National Park (KNP, South Africa) using field measurements. 

This savanna area spans arid and semi-arid climate conditions with vegetation composed 

by shrubs and trees in diverse proportions. Our woody cover model explained 61% of the 

variability and its predictions were comparable with LiDAR cover estimates.  The present 

work is an extension to the African continent. Other studies in Australia, Amazon, Belize 

and Mozambique (Lucas et al. 2000, Saatchi et al. 2007, Viergever et al. 2007, Ribeiro et 

al. 2008) showed the benefits of combined radar and optical remote-sensing for biomass 

and vegetation structure mapping at large scales. Mitchard et al. (2009) showed that the 

radar sensitivity to woody structures creates a consistent baseline to detect woody 

biomass across African savannas and woodlands. While recognizing that different radar 

wavelengths interact with different vegetation elements and depths, studies show 

consensus on microwave sensitivity to woody biomass (Lucas et al. 2004). We 

hypothesize that this property can be exploited to create direct relationships between 

woody cover and microwave backscatter over continental gradients. Specifically, our 

research questions are the following:
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1. What are the relationships between woody cover and remote sensing data and 

which remote-sensing indicators are the most suitable and important to predict 

woody cover?

2. What are the characteristics of these relationships: do overall continental 

relationships exist or is it useful/necessary to introduce regional data 

stratifications?

3. Does the combination of microwave and optical data increase the predictive 

power of ordinary least squares models compared to models based only on optical 

or microwave data?

We predicted woody cover using an empirical modeling approach built on a 

sample of direct woody cover measurements. We sought a direct relationship to tie 

woody cover to spectral features in the optical and shortwave spectra. More specifically, 

we made use of MODIS, Quick-Scat and SRTM satellite products to derive spectral 

metrics. We tested different ways to model (calibrate) remote-sensing data and validated 

them against an independent woody cover validation dataset. We estimated the error 

components originating from the training data and from the regression model. 

4.2 Materials and Methods

4.2.1 Woody cover training data (response variable)

The woody cover training data play a critical role because they provide data for 

model calibration. They should represent the potential variability that can be captured by 

the modeling process. Our sampling strategy aimed at building a representative dataset of 

woody cover (%) across the range found across African ecosystems. In collecting our 
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data, we took into account the observable variation in cover as well as in environmental 

and climatic conditions that could affect remote-sensing measurements. We worked with 

a dataset of 982 woody cover assessments from two different sources, field 

measurements and high-resolution remote-sensing image estimates.  

Most of our field measurements (850) were compiled in 2000-2003 at sites across 

African savannas (see Sankaran et al. (2005) for a complete description of the dataset). 

These data provide a unique source of information over a range of woody cover between 

0-90%, with 75% of the points between 0-20%. A drawback of this dataset is the 

relatively small plot size (~ 1 ha) that might cause scale incompatibility with the 1x1 km 

remote-sensing cells. However, while the scale mismatch may increase variability in the 

calibration data relative to the remote-sensing data, the large sample size means that it 

should not contribute any bias. Densiometer measurements from three field surveys were 

also included: (i) 73 data points from a 2006 campaign conducted by Bucini et al. (2010) 

in Kruger National Park, South Africa (see also Chapter 3), (ii) 12 data from a 2008 

campaign conducted by Mitchard E. in 11 transects (20m x 200m) and one 2-ha plot in 

the Budongo Forest, Uganda, and (iii) 49 data points from a 2009 campaign conducetd by 

Theron L.-J. 250x250 m plot in Zambia. We averaged the values from plots falling in the 

same remote-sensing 1-km pixel and obtained 803 points.  

We also used high-resolution imagery available in Google-Earth ® (GE, 

http://earth.google.com) to estimate woody cover in non-savanna biomes. A total of 173 

sample sites were identified within forest and seasonal woodland ecosystems (Miombo 

woodlands, dry and wet forests), deserts, water bodies, urban and agricultural areas 

across Africa. The high-resolution images consist of IKONOS and Quickbird (Digital 
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Globe, http://worldview2.digitalglobe.com/) true color composites (blue, green, red 

bands), with resolutions between 0.6 and 4 m. The Satellite Imaging Corporation (http://

www.satimagingcorp.com/google_earth.html) showed that the actual image resolution on 

GE might not match the detail and quality of the original images.  Regardless, the GE 

high-resolution imagery was appropriate to resolve woody plant crowns in forested areas. 

The selected GE images dated from 2000 to 2007 with the majority of them being close 

to 2000-2002, to minimize temporal discrepancies between sample and large-scale 

remote-sensing data.  For each sample site, we built a 1x1 km georectified grid in ArcGIS 

9.1 (Environmental Systems Research Institute, CA, USA) representing a remote-sensing 

pixel. Each grid was composed of 16 250x250 m cells and within each cell we deployed 

an 8x8 point sub-grid. We estimated fractional cover based on presence and absence of 

woody plant crowns (pinpoint assessment) at each of the 8x8 digital points of a cell. 

While conducting the pinpoint assessments, we also recorded the number of points with 

uncertainty in crown identification. The error estimated from this uncertainty amounted 

to an average 3.7 % cover across all the high-resolution sites. The woody cover percent 

for the entire 1x1 km pixel was calculated averaging cover values from six random cells 

in the grid. This criterion was decided after conducting a sensitivity analysis on the 

number of grid cells assessments needed to obtain a cover value with a coefficient of 

variation (CV) < 0.2, accounting for all possible cell combinations (Figure 4-16). The 

sensitivity analysis was run in four separate sites characterized by low, medium, high and 

clumped woody cover and we found that with 6 cells, we met the requisite in all four 

cover types.
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Figure 4-16: Coefficient of variation for woody cover vs. number of grid cells (n = 1, …, 
16). For each fixed number n of cells, the coefficient of variations is calculated from the 
set of all possible combinations (the group of 16 cells taken n at a time). 

4.2.2 Remote-sensing data (predictive variables)

We compiled a set of remote-sensing data from optical and microwave sensors. 

We derived metrics that could potentially be linked to physiological and structural 

attributes of woody vegetation (Table 4-7).  To quantify greenness patterns, we used 

optical multispectral data derived from NASA MODIS products. We used the 32-day 

MODIS composite reflectances over five years (2000 – 2004) to develop our average 
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spectral metrics. The processes of compositing and averaging over multiple years 

improved the data quality by minimizing the cloud and noise contamination in the 

reflectance values. From this process, we developed a one-year averaged monthly 

reflectance data at 1-km resolution and subsequently generated the normalized difference 

vegetation index (NDVI), and phenological metrics of mean, maximum, green (average 

of the greenest quarter related to maximum NDVI) and green_brown (the difference 

between NDVI of maximum and minimum quarters) NDVI.   

Imagery from Q-SCAT (Quick Scatterometer) available in three-day composite at 

2.25 km resolution over 5 years (2000-2004) were processed into average monthly 

composite and resampled (rebinned) at 1-km resolution. Q-SCAT is an active microwave 

sensor operating in the Ku band (12 GHz frequency, ~ 2 cm wavelength) at both HH and 

VV polarizations and it is sensitive to canopy roughness, moisture and leaf water content 

(Saatchi et al. 2007, Saatchi et al. 2008). From these data, we produced two metrics, the 

averaged annual mean and standard deviation in the HH polarization (assuming a high 

correlation between HH and VV polarizations over vegetation). In ecosystems with low 

woody plant density, these metrics are correlated with aboveground biomass (Long et al., 

2001, Saatchi et al. 2007, 2008). Given Q-SCAT short wavelength, the backscatter 

measurements should be sensitive to small branches and leaves and therefore to the 

presence of shrubs and small trees. However, backscatter from the herbaceous 

background may also be included in the signal (Hill M. 2005, Lucas 2006). By taking the 

backscatter annual mean and standard deviation, we hoped to detect the consistent signal 

from woody vegetation and roughness variations due to structural differences between 

grass and branches. In forested areas with tall trees and large canopies, the Q-SCAT 
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metrics respond to top of the canopy roughness and moisture and should be directly 

related to the canopy size and hence cover. In summary, we created six remote-sensing 

layers at 1 km resolution in sinusoidal projection.  

Spectral 
variable

Remote-sensing 
instrument

Biophysical 
variable

Derived metrics

Monthly NDVI 
(2000-2004)

MODIS Photosynthetic 
activity

NDVI_mean: annual mean NDVI

NDVI_max: annual maximum NDVI
NDVI_green: average of the greenest 
quarter related to maximum NDVI
NDVI_green_brown: difference 
between NDVI of maximum and 
minimum quarters

Radar 
backscatter (HH) 
monthly mean 
(2000-2004)

Quick-
Scatterometer

Canopy 
roughness and 
moisture, wood 
density  

QSCAT_mean: annual mean (HH 
Polarization)

QSCAT_std: annual standard 
deviation (HH Polarization)

Table 4-7: Remote sensing layers and metrics from MODIS and Q-SCAT (Quick 
Scatterometer) sensors.
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Figure 4-17: Spectral spaces: 2-D spectral scatter plots of the remote-sensing variables 
used in this study.  Each row is related to a different remote-sensing system: QuickSCAT 
(radar) and MODIS (optical). On the left: spectral space for the remote-sensing data for 
the continent. On the right: spectral space for the training dataset. The training data are 
symbol-coded by land cover class from the MODIS land cover product with the IGBP 
legend (http://www-modis.bu.edu/landcover/index.html).  Our training data have a good 
representative range on the spectral ranges except for areas with very low Q-SCAT 
backscatter (Quick-scat_mean < - 1500) mainly corresponding to deserts and water 
bodies.
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4.2.3 Modeling approach

The ultimate goal of our analysis is to find a predictive model of woody cover 

using our training sample and to extrapolate it over the whole African continent. In our 

modeling approach, we sought quantitative relationships that predict cover as a function 

of remote-sensing spectral features (Figure 4-17) and for this purpose we used multiple 

linear regression analysis. We accounted for non-linearity by applying transformations to 

the predictor variables and including them in a model selection procedure using the 

Bayesian information criterion (BIC, Schwarz 1978). BIC favors parsimonious models by 

penalizing both for the number of model parameters and number of observations. The 

optimal model, contingent to the data at hand, is the one with the lowest BIC value. We 

did not include points (20) from the classes “water”, “city” and “wetland” because they 

are not representative of the main land covers and their spectral position is distant from 

the rest of the data such as to affect the regression parameters. 

In structuring our models, we also investigated the practical benefit of including a 

class variable (categorical variable) to stratify the data. The stratification was based on an 

initial ISODATA unsupervised classification (ENVI ITT Visual Information Solutions 

http://www.ittvis.com) of the spectral variables (Figure 4-18). By including the resulting 

classes in the predictor set, we sought to test whether there exist significantly different 

spectral behaviors at continental scales. Two sets of models are hence considered in the 

analysis:

1. Dependent on spectral variables only (no stratification) 

2. Dependent on the set of spectral variables and a class variable (stratified). This 

stratification reflects a natural spectral clustering of our remote-sensing 
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information for Africa and it is independent from any bias based on vegetation 

cover type. 

Before running the regressions, we discarded NDVI_max and NDVI_green 

variables because of high collinearity with NDVI_mean (Pearson correlation coefficient 

> 0.9) and we kept all the other variables, which had Pearson correlation coefficients < 

0.7. We examined the trends of woody cover vs. each predictor (Figure 4-19) to check for 

non-linearity and selected the appropriate non-linear transformations.  We also rescaled 

the Q-SCAT variable between (–10, 0) to have more comparable input ranges for the 

models. The full set of predictors (12) is reported in Table 4-8. We split our sample 

points into a training (90 %, Figure 4-20) and a validation (10%) sets.  After selecting an 

optimal model, we tested it on the validation dataset and created a woody cover map that 

we compared to various other information sources of woody cover at different spatial 

scales. 
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Figure 4-18: Upper left: ISODATA unsupervised classification (4 classes) derived from 
the remote-sensing layers. There are affinities with known large-scale vegetation patterns. 
The very arid areas (class 3) were separated from the grasslands/shrublands (class 5) 
characterized by high annual NDVI variability and low woody biomass. Class 4 appears 
to include taller savannas, seasonal and moist tropical forests. Upper right: box plot of 
woody cover in the three unsupervised classes, excluding water. Lower left: unsupervised 
classes in the radar spectral space. Lower right: unsupervised classes in the optical 
spectral space.
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Figure 4-19: Scatter plots of woody cover (training data) vs. the four spectral metrics 
selected as predictors for the modeling analysis (the Pearson correlation coefficients 
between NDVI_green, NDVI_max and NDVI_mean were > 0.9 and NDVI_mean had the 
highest correlation with woody cover therefore we only selected NDVI_mean for the 
analysis). The graphs report the best-fit univariate models (coefficients, R2 and p-value).
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Sprectral predictor Variable Transformation Transformed 

variable

QuickSCAT mean Qscat_mean exp(x) exp_qscatmean

QuickSCAT standard 

deviation 
Qscat_std exp(-x) exp_qscatstd

NDVI MEAN NDVI_mean exp(x) exp_ndvimean  

NDVI GREEN-BROWN NDVI_green_brown -x2 sqr_ndvigrbr   

Stratification classes 

(categorical variable)
class

Table 4-8: The predictive variable set: continuous variables including linear and non-
linear (transformed) terms and categorical variable (stratification classes).
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Figure 4-20: Histogram of Woody cover percent for the training dataset (832 points).

4.3 Results

We fitted woody cover percent data (832 points) with models that depended on all 

possible combinations of spectral metrics with and without data stratification. Each 

model was ranked according to its BIC value. Table 4-9 reports the first five ranked 

models (the other models had essentially no empirical support according to BIC). The 

weight of evidence w for the selected best model (1) relative to model 2 and 3 is weak. 

This suggests that the model selection uncertainty is likely to be high and the best model 

could vary depending on the sample (Burnham and Anderson 2002). When we examined 

other performance parameters, we noticed that the model 1 has comparable R2, residual 

standard error with respect to the other two models. For the three models, residuals are 

near-normally distributed with ranges between –66 and 66 % cover, median ~ -1.5 % and 
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1st-3rd quartile ranges between –9 and 7 %. On the independent validation dataset, the 

regressions between observed and predicted woody cover values show that these three 

models perform similarly (Table 4-9). 

Table 4-9: The first five ranked models. For each predictive model, the table reports R2, 
Residual Standard Error (RSE), the number of model parameters N, ΔBIC and the model 
probabilities w (left side).  Right side: R2, RSE, slope and intercept of the regression line 
between observed vs. predicted cover on the validation dataset.

We selected model 1 (Table 4-10) and refer to it as the continental model. The 

significance of the stratification (class variable) is related to: (1) separating the woody 

cover behavior in more arid systems (classes 3 and 5 intercept) and (2) achieving a strong 

positive exponential relationship between cover and the Q-SCAT annual backscatter 

mean in class 4. The relationship with exp_qscatmean is positive in all the classes. 

Woody cover is also positively correlated with NDVI_mean as expected. Model 1 

includes the linear term of NDVI_green_brown that might capture the lower temporal 

MODEL STRATIF. PREDICTIVE MODEL VALIDATION

R2 RSE N ΔBIC w R2 RSE slope intercept

 1 YES 0.589 15.13 8 0 0.417 0.666 19 0.96 -0.8

 2 YES 0.592 15.08 9 1 0.264 0.659 19.2 0.96 -0.9

 3 YES 0.595 15.04 10 2 0.190 0.655 19.3 0.96 -0.8

 4 YES 0.591 15.11 9 4 0.056 0.665 19.1 0.96 -0.8

 5 YES 0.590 15.12 9 5 0.029 0.666 19 0.6 -0.8
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variability of greenness in dense evergreen forests. A bootstrap analysis (Table 4-11) 

showed that the model is stable as the parameter estimates had relatively small bias and 

standard error. The LMG metric (Gromping 2007) is derived from decompositions of the 

model R2 and provides a measure of variable relative importance scaled between 0 and 1. 

The metric ranked Qscat_mean as the most important variable to predict woody cover 

(LMG=0.59) followed by NDVI_mean  (LMG=0.23) and  NDVI_green_brown (LMG 

=0.18). Model 2 contains the additional quadratic term of NDVI_green_brown describing 

an unexpected positive parabola. Model 3 contains the NDVI_green_brown quadratic 

term and the QuickSCAT standard deviation. 

Predictor
Model 

parameter

Std. 

error
p-value

Variable

Importance 

(LMG)

Intercept:

         class 3

         class 4               

         class 5               

exp_qscatmean:

         class 3

         class 4 

         class 5  

NDVI_MEAN 

NDVI_GREEN_BROWN 

-5.9

 -92.6

-19 

 

44.5

 357

117.8

 27.7

 -42.7

9.2 

10.9 

10.3

39.1

42.9 

42.7

7.2    

5.8 

0.51 

< 0.0001  ***    

0.2                

0.2    

< 0.0001 ***

0.09       .

0.0001    ***  

< 0.0001 *** 

 

0.59

0.23

0.18
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Table 4-10: Summary statistics for the parameter estimates of the selected continental 
model: standard deviation, p-value and LMG metric for variable relative importance. 
Parameters for the main effects (exp_qscatmean, NDVI_MEAN, 
NDVI_GREEN_BROWN), the 3 categorical classes and for the interactions between the 
classes and exp_qscatmean. Significance levels are also coded as:  p<0.0001 = '***', 
<0.001 = '**', <0.01 = '*', <0.05 = '.'. 

Predictor

Original 

model 

parameter

Bias Std error

Intercept:

        class 3

        class 4               

        class 5               

exp_qscatmean:

        class 3

        class 4               

        class 5               

NDVI_MEAN 

NDVI_GREEN_BROWN 

-5.9

-92.6

-19         

44.5

357

117.8

27.7

-42.7

0.09 

 0.3 

-0.11

-0.42

-0.71 

0.47

0.14    

-0.34 

3.2 

8.8  

4.4        

14.3    

29.2

18.5

9

7.5 

Table 4-11 Bootstrap statistics for the parameter estimates of the selected continental 
model on 10000 bootstrap replications: original value, bias and standard error. Average 
R2=0.589.

The model validation graph (Figure 4-21) shows a tendency to overestimate in the 

low cover range possibly because of soil and/or grass contamination. Points in middle 

cover range exhibit the highest scatter. We believe that this is due to the relatively little 

availability of training data for this range. High woody cover points show instead some 
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underestimation. In our modeling analysis, we eliminated one outlier. It was collected on 

Google Earth in a region of forest-savanna mosaic with spatial heterogeneity comparable 

to or finer than the remote-sensing data pixel resolution. Coregistration errors probably 

caused the association of this low cover site to a neighbor remote-sensing pixel carrying 

the spectral information of a densely wooded patch.
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Figure 4-21: Continental model performance: observed (measured) versus predicted 
woody cover % for the training dataset (left) and for the validation dataset (right). For our 
purposes, model output values < 0 % were considered 0 % and values > 100 % were 
considered 100 %.

The woody cover percent map is shown in Figure 4-22. A visible characteristic of 

this map is the high spatial heterogeneity at several scales deriving from the combined 

radar, optical and altitude features. The expected continental-scale trend reflecting the 

mean annual rainfall gradients is well represented. Both the radar and the optical imagery 

are usually able to capture this trend at least in relative terms. The challenge is to both 
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attain accurate absolute cover values and to reproduce real smaller-scale patterns. Deserts 

have covers ranging from 0-10 %. A closer look at our training data revealed some points 

with relatively high cover in class 3 that might leverage it to slightly high levels. The 

desert highlands (Chad and Niger) and the escarpment in south Namibia stand out for 

unrealistically high cover. In these locations, surface roughness and topography result in 

high radar backscatter (van Zyl 1993) that the model translates into a false presence of 

woody cover (up to 40% overestimation). The dynamic radar range at low to medium 

cover levels (0-40%) is well reflected in gradients and regional patterns present in arid 

and mesic savannas. In the tropical wet forests of central Africa, cover has values > 80% 

as expected. Signal saturation in both NDVI (Huete et al. 1999) and radar backscatter 

(Lucas et al. 2000, Santos et al. 2002) in densely vegetated systems decreases sensitivity 

and the ability to detect cover variability. In our study, saturation was not pronounced and 

only limited to woody cover close to 100 % (Figure 4-19 and Figure 4-21). Around the 

northern and eastern sides of the Congo basin, we expected to find higher cover contrast 

between the Central African Republic and the Cameroon-Gabon areas. The central and 

northern parts of the Central African Republic (800-1300 mm mean annual rainfall) are 

characterized by humid and sub-humid savannas while the south and south-west 

Cameroon, Equatorial Guinea and northern Gabon (1300-2500 mm mean annual rainfall) 

are classified as dense moist forests (Eerens et al., http://www.spot-

vegetation.com/vegetationprogramme/Pages/vgtprep/vgt2000/eerens.pdf). This effect on 

the map results from NDVI_mean values generally lower (0.3-0.6) in the west than in the 

Central African Republic savannas (0.5-0.7). Likely, the low NDVI values are caused by 

the persistent stratiform-cloud-cover contamination (Le Moigne et al. 2002) that is 
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generated on the coast by the cold Atlantic waters and can spread far inland (Giresse 

2007). The Q-SCAT backscatter, which is not affected by cloud cover, shows higher 

values for the western regions than the central savannas. The Rift Valley of East Africa is 

a very well recognizable topographic feature in the map and is characterized by low cover 

on higher altitudes and regional higher cover in valleys around lakes. Finally, agricultural 

areas are more difficult to evaluate for their variable woody cover dependent on the type 

of cultivation. For example, the area situated along the Senegalese coast north of Dakar is 

cultivated for vegetables (Sall and Vanclooster 2009) and results in low cover in our map. 

On the other hand, in the intensely cultivated areas in the Lake Victoria catchment in 

Uganda, our model predicts woody cover as high as the dense dry forests (both mean Q-

SCAT and NDVI_MEAN values similar to forested areas). These values could be 

realistic and are confirmed by observations of high tree density and biomass associated 

with indigenous agroforestry systems (Isabirye et al. 2008).

To further investigate qualities and weaknesses of our map, we compared it to the 

MODIS VCF product (continental scale), the optical-radar woody cover map produced 

for KNP  (regional scale, Bucini et al. 2010), the vegetation-biomass map of the Turkana 

District, Kenya (regional scale, Ellis et al. 1987) and to photos taken on the ground in 

various parts of Namibia (local scale).  
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Figure 4-22: Woody cover percent map extrapolated from the continental model.
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4.3.1 MODIS VCF comparison

The regression line between VCF and our continental model woody cover % 

(Figure 4-23) shows an overall (continental scale) tendency of the VCF product to predict 

lower cover than the our model. We mapped the difference Δ = VCF - continental model 

cover % (Figure 4-23). The results from this comparison analysis are the following:

• In some desert areas, our model produces overestimates with 2 < cover < 10%. 

The VCF product correctly predicts 0 % cover. 

• Arid savannas characterized by shrubs and thickets (White 1983) have near 0 % 

cover in the VCF map. In our map, they have up to 20% more cover (see in 

southern Africa: southeast Namibia, south Botswana, northeast South Africa; in 

west Africa: south Senegal, south Mali, Burkina Faso, southwest Chad and south 

east Sudan; in the Eastern Horn).  

• The seasonal woodlands have comparable values in the two maps (-10< Δ<10) 

• The Guineo-Congolian areas along the African west coast (from Guinea Bissau to 

Nigeria) and the regions surrounding the dense tropical forests (Cameroon, 

Central African Republic, west Uganda and southern part of the Republic of 

Congo) are predicted with up to 30 % more cover with respect to VCF estimates. 

Here the mixture of deciduous, semi-deciduous and evergreen vegetation creates 

complex behaviors in annual metrics that could be difficult to model. The signal 

from woody structures is more consistently captured in the radar backscatter and 

could be the reason behind the prevalent higher cover. However, there are cases 

where Google Earth shows open areas with little or no woody plants where our 

map assigns nonzero cover.  
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• The dense wet forests in the Congo basin have higher predicted woody cover in 

our map because the VCF product has a maximum 80 % cover value imposed by 

the cover classes used for training data. 

• Our map is less affected by the persistent cloud cover in the central west areas 

(Gabon, Cameroon, Central Guinea) .

• One large area of higher MODIS VCF predictions is evident (orange-red shades) 

in eastern South Africa. This is a very intensely cultivated with no plantations. 

The predicted cover in the VCF map (0-20%) may be related to high greenness 

signal during the growing season. 
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Figure 4-23: Top: our continental model and the MODIS VCF woody cover % maps. 
Bottom: Difference map between our model and VCF woody cover %. Red shades for 
our model < MODIS VCF woody cover %; blue shades for our model > MODIS VCF 
woody cover %. Graph: Regression line between MODIS VCF and our continental model 
woody cover on the training datatset. 
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4.3.2 Comparison with KNP and Turkana woody cover maps 

At the regional scale of Kruger National Park, Figure 4-24depicts the subset from 

the continental map, the KNP woody cover map (Bucini et al. 2010) resampled at 1 km 

resolution and their relative difference map. The continental map tends to predict lower 

woody cover % in the denser areas (west) but up to + 20 % cover on the eastern open-

canopy areas. It broadly captures few lower-cover patches (east) and the higher cover 

areas in the northern and southern hills. Cross-validation with LiDAR cover estimates, 

gave good confidence about the KNP map estimates (Bucini et al. 2010).  Therefore, we 

can say that in KNP, the coarse resolution of the remote-sensing layers used to build the 

continental layers homogenizes the cover patters towards the average cover value but that 

the average spatial patterns are well represented.  
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Figure 4-24: Top: woody cover % maps: subset from the continental map and KNP study 
map (Bucini et al. 2010). Bottom: difference map between the continental and the KNP 
study woody cover % maps. Graph: regression line between woody cover predictions 
from our continental model and the KNP study map on 100 random points across the 
KNP.
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Moving to the Turkana district (Kenya), we compared our map (Figure 4-25) with 

a non-digital vegetation map (Ellis et al. 1987) reporting information about % canopy 

cover in four classes (<2%, 2-20%, >20%, closed canopy) derived from Landsat MSS 

imagery (1975 - 1979). The high variability in woody cover with patches of higher 

vegetation at the landscape scale is real and matches the patterns delineated by Ellis et al. 

in terms of both cover values and spatial location. Our map nicely separates the riparian 

vegetation along the Turkwel river (center-bottom Figure 4-25) and the gradient from 

Turkana Lake grasslands to the upland forests along the border with Uganda defined as 

closed canopy by Ellis et al. (50-60 % woody cover on our map). Our map features a 

high-cover patch in the southern part of this study area (blue circle) missing in Ellis et al. 

map but visible in Google Earth.
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Figure 4-25: Turkana district, Kenya.  Left: Ellis et al. (1987) map. Color codes: light 
yellow, cover < 2%; yellow, cover ~ 2-20%; light green, cover ~2 to >20%; dark green, 
cover >20%; red, > 20% to closed canopy. Right: continental woody cover map, zoom on 
the district (Turkana Lake is visible combining 0 % cover (black) and NoData (white).
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Figure 4-26: Zoom of continental woody cover map on Namibia. The letter S, T, X, Y 
and Z symbols indicate the area where the photos were taken. Predicted woody cover: 
~8% at S,  15-20% at T, 15-30% at X,  15-25% at Y and 20-30% at Z.

121



4.3.3 Woody cover comparison with ground photos in Namibia 

Ground pictures can also provide a qualitative way to evaluate the map outputs. 

We received six photos taken across the woody cover range of Namibia (Figure 4-26, 

courtesy of Theo Wassenaar, African Wilderness Restoration, Windhoek, Namibia). The 

far north east of the country receives about 600 mm of annual rain and can be densely 

wooded. The area around point Z has variable woody cover depending on fire and 

elephant interactions and comprises sites with very dense scrubs. Similarly to the KNP 

case, our continental map tends to miss the high woody cover spots and to predict a fairly 

homogeneous average cover around 20-30 %. The point T picture suggests low to 

medium cover similar or slightly higher than our map suggests (15-20% cover). The area 

of point Y appears dominated by fairly dense shrubs and some short scattered trees. Our 

continental map depicts variable cover (15-25%) but it is hard to evaluate our predictions 

from this photo. Point S lies in the central Namibia plains that are crossed by several 

large ephemeral rivers often supporting large trees. The continental map shows coarse 

patterns of river drainages (20-25% cover) surrounded by low cover landscapes. The Fish 

River Canyon (point X) is raviney, mountainous and sparsely vegetated. On the 

continental map, we find up to 35% cover overestimates. These overestimation zones are 

recognizable by their high backscatter on the mean Q-SCAT layer (van Zyl 1993) along 

the escarpment.  The continental map appears fairly consistent with the predominant 

cover patterns found in the photographed areas except for the rough topographic zone in 

the country south. 
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4.4 Discussion 

Satellites provide a means for estimating ecologically relevant vegetation 

parameters such as cover, biomass, height, phenology and canopy structure that influence 

ecosystem functioning.  In this paper, we used statistical model-fitting techniques to 

retrieve woody cover percent from optical and SAR (radar) systems. This is the first 

attempt to combine the two systems at the continental scale of Africa for woody cover 

predictions. The interest for this work mainly spawned from the need for a woody 

resource map that better represents savannas.

Because we were interested in cover, we sought radiative signatures related to 

canopy. We used data in the shortwave radar domain (Ku band, λ~2cm) where the 

contribution to backscatter mainly comes from two vegetation components: the season-

specific leaf component and the small branch woody component (Saatchi et al. 2007, 

Saatchi et al. 2008). We combined the radar information with annual NDVI metrics 

reflecting greenness dynamics. We found that the Q-SCAT annual mean backscatter and 

mean annual NDVI were the most important variables to predict woody cover with the 

data we had at hand. Q-scat backscatter intensity was related to cover with an exponential 

relationship indicating non-linearity and higher dynamic range in the low-to-medium 

backscatter intensities (Table 4-10). Importantly, we found significant large-scale 

relationships denoting a consistent spectral response to woody cover across ecosystems 

(Table 4-10). From these results, we can answer our third research question and conclude 

that a synergistic approach with radar and optical observations provides a framework to 
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overcome limitations of single sensors and exploit their complementary sensitivities to 

woody cover.  

We found a relatively high model selection uncertainty with three competing 

models presenting substantial level of support in the data. Two extra predictors could 

serve nearly equally well in modeling the data information. Model averaging can in this 

case provide a more stabilized inference and better precision (Burnham and Anderson 

2002). For the manuscript, we plan to create a new woody cover map based on model 

averaged parameters weighted by their BIC probability (w) using the set of the three best 

models.   

The sensitivity of a specific sensor or a spectral band to woody vegetation can 

change across environments. We noticed for example that Q-SCAT backscatter 

maintained higher spectral sensitivity than NDVI in arid areas and allowed to predict 

shrub and small tree cover. On the other hand, bare surfaces such as outcrops or cliffs can 

exhibit strong backscatter (Vanzyl et al. 1993) resulting from surface instead of 

vegetation roughness. This special effect in the radar data is absent in optical radiometry. 

In our work, this resulted in significant overestimates of woody cover in some 

mountainous areas (e.g., Namibia escarpment and Saharan highlands). In final 

preparation of this chapter for journal submission, we will examine ways to remove or 

correct for these topographic effects. Optical data combined with elevation information 

could provide a heuristic toolbox for terrain corrections on radar backscatter.

In our modeling procedure, several sources of errors affect model predictive 

power (Table 4-11). The variability in spectral metrics mainly arises from diversity in 

plant growth-forms, phenology, spatial arrangement and density as well as surface 
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backgrounds and topography. Our training data captured a fairly good proportion of this 

variation but did not represent the entire spectral space (Figure 4-17). The extrapolated 

map however presented reasonable values with some areas that need further investigation 

and/or increased sampling such as the deserts and topographically variable sites and the 

region around the Cameroon-Gabon border.  We believe that the relatively high 

unexplained variability (41%) and model error (15% cover on training data and 19% 

cover on validation data) also originated from the scale mismatch between field and 

remote-sensing data (Table 4-12). The heterogeneity found at the plot scale (~1 ha) did 

not directly translate in spectral variability and hence could not be accounted for by the 

model. 

Table 4-12: Different sources of error that could potentially affect the woody cover map. 
Note that other sources of error occur.

A possible way to improve model predictions is to put more effort in the training 

data collection. Very high-resolution imagery (≤ 1 m) provides an appropriate base to 

detect woody plants including shrubs and trees but assessments can be labor-intensive. 

Object-oriented analysis coupled with rule-based classification algorithms can be 

partially automated and offer an improved approach for crown detection (Laliberte et al. 

Error origin Mean error 

Sample data Field data

Google Earth estimations

11.6% cover

3.7 % cover

Model fit RSE 15.1 % cover

Image co-registration 3 pixels 
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2004, Bunting and Lucas 2006, Laliberte et al. 2007). Investing in a large high-resolution 

image sample has a high informative potential: its comprehensive radiometric properties 

can be modeled to determine relationships with woody cover. These relationships can 

then be confidently extrapolated and repeatedly applied over time on new remote-sensing 

data acquisitions. 

The adoption of SAR imagery with higher spatial resolution and different 

wavelengths than Q-SCAT (2.25 km) could also improve mapping of woody cover. For 

example, the ENVISAT satellite operating at C-band with original resolution of 30 m 

could be considered for future mapping projects. Furthermore, longwave SAR (L- and P-

bands) interacting with deeper vegetation layers can be adopted to better discriminate 

woody vegetation. The Advanced Land Observing Satellite (ALOS) launched in 2006 is 

an important resource to explore for the high data quality that it provides and its multi-

temporal observations at global scale (Shimada et al. 2009). The data acquired by the 

Phase Array L-band SAR (PALSAR) on–board ALOS have already been used in 

regional-scale savanna to study vegetation biomass and structure (Lucas and Armston 

2007, Mitchard et al. 2009). In particular, simulations based on data from central 

Queensland, Australia, (Lucas et al. 2006) suggest that in medium dense vegetation with 

stem heights about 2-5 m, the integration of L-band HH and HV backscatter brings 

information from both stem-ground double bounce and branch volume scattering, 

respectively. In mixed vegetation systems, this extra information can enhance the ability 

to detect the presence of small to medium size woody plants. 

Our work has demonstrated that it is possible to retrieve reliable woody cover 

estimates for savanna systems despite their spectral complexity arising from the presence 
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of coexisting woody and herbaceous vegetation.  Field measurements from savanna sites 

evidence that our map has improved the woody cover estimates currently provided by the 

VCF product built on optical remote-sensing alone (Figure 4-27). If we consider the full 

range of woody cover values (0-100%), MODIS VCF performs better in terms of R2 and 

residual standard error (RSE) than the continental model (Figure 4-27). A plausible 

reason for the higher point dispersion related the continental model is the scale mismatch 

between many of the field plots (~1 ha) and the 1-km remote-sensing pixel: the higher 

small-scale woody cover variability is smoothed in the coarser remote-sensing pixel 

signals and remains unexplained by the continental model. On the other hand, the 

sampling method based on aggregating Landsat cover estimates, results in tree cover 

values spatially more concordant to the remote-sensing MODIS pixels (500 m). For this 

reason the relationship between predicted and observed cover is tighter in the case of 

MODIS VCF. However, the bias introduced in the sample tree cover value by assigning 

0% cover to arid systems and a 80% tree cover upper threshold, results in a significant 

intercept of 12 % cover (p-value < 0.0001) and a general woody cover underestimation. 
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Figure 4-27: Top: Field measured (Sankaran et al. 2005) vs. predicted woody cover. 
Bottom: Field measured (validation set) vs. predicted woody cover. Left: x-axis 
represents woody cover predicted by the continental model; right: x-axis represents 
woody cover predicted by MODIS VCF resampled at 1 km resolution. In black: data and 
regression lines; in red: one-to-one line. 

4.4.1 Development and applications

Variations and temporal trends in vegetation properties are critical to characterize 

and monitor ecosystems. The African continent has been undergoing extensive land cover 
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change and experiencing land degradation especially in arid systems (Verstraete et al. 

2009). Limited research (Williams et al. 2008, Scheiter and Higgins 2009) has been 

conducted at the continental scale to understand consequences of climate change on 

natural resources and ecosystem services derived from woody plants. One of the reasons 

for a delay in scientific understanding of continental vegetation dynamics is a lack of 

appropriate data and adequate dynamic global vegetation models especially for 

woodland-savanna systems (Scheiter and Higgins 2009). Our modeling approach has the 

potential to create improved maps and hence contribute to scientific progress. A pertinent 

direction for future research is the creation of an algorithm for regular temporal 

assessments of woody cover at continental scale.  

4.5 Conclusions

The use of combined optical and shortwave radar remote sensing enhanced the 

ability to relate woody cover data to remote-sensing observations and to build strong 

predictive models across African eco-regions. Large training datasets are necessary to 

represent woody cover variability in space across the continent and in the spectral space 

of remote-sensing data.  

We improved the current continental information on woody cover particularly in 

savannas by accounting for shrubs and short trees that were ignored in previous 

continental–scale analyses.  Our mapping results are consistent with other woody cover 

information sources from continental to regional scale. This research can provide the 

necessary map accuracy for robust ecological inference.  Because African ecosystems 

endure increasing land-use pressures, remote sensing analyses focused on quantifying 
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vegetation structural characteristics and their change can significantly contribute to 

understanding change in the continent and the role of Africa in global carbon, water and 

biogeochemical cycles. 
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             The overall objectives of this dissertation, to map woody cover and model 

its dependence on biotic and abiotic factors, were addressed at two spatial scales, regional 

and continental. The research focused on African savannas where woody plants coexist 

with herbaceous vegetation and explored the interface between ecosystem ecology and 

remote-sensing science. These two disciplines have long blended because ecosystem 

ecologists recognized remote-sensing as a unique and powerful means to expand research 

to larger scales with consistent long-term observations. 

A thread underlying my research is an interest in scale. Ecosystem ecology deals 

with interactions between organisms and their environment as a whole system. It 

recognizes that we observe a phenomenon/pattern at a specific scale but this 

phenomenon/pattern is the result of processes taking place also at finer and broader scales 

(spatial and temporal). One of the most fascinating objectives of ecosystem ecology is to 

integrate multi-scale dynamics to understand ecosystem functioning. I see research as an 

active effort to both test and integrate insights from three different sources: theoretical 

(mechanistic) work, experiments and empirical correlations. A critical place to start is to 

measure the variable of interest and to define its spatial detail and extent.  

Under the overarching question, what creates and maintains the coexistence of 

herbaceous and woody vegetation in savannas, I have taken a heuristic approach to 

explore how complex interactions among biotic and abiotic factors manifest as patterns in 

woody vegetation cover and I sought interrelations between regional and continental 

scales. Many ecological theories (Sankaran et al. 2004) have been developed to explain 

tree-grass coexistence and tested with experiments. From this body of work, I have 

learned that coexistence mechanisms involve direct interactions between the two 
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vegetation functional types for resource access as well as interactions with disturbance 

factors such as fire, herbivory and anthropogenic activity. These interactions always need 

to be contextualized to account for environmental and physical conditions.

My research work developed in response to the need for accurate woody cover 

data and for empirical evidence in relation to conceptual models of tree-grass 

coexistence: 

• The ecological model (chapter 2) developed to explain continental woody cover 

patterns derived from MODIS sensor (Hansen et al. 2006) revealed a multi-scale 

behavior. Continental gradients of woody cover dependent on mean annual rainfall 

(MAP) were found to be broken down into finer-scale patterns controlled by a set of 

different variables including perturbations and soil factors. 

• The Kruger National Park (KNP) case study provided the opportunity to directly 

explore regional interactions. Using a woody cover map that we created for the 

Park, we found that the underlying parent material was the main driver in shaping 

woody cover across the Park and that mean annual rainfall was correlated with 

some landscape-scale patterns (chapter 3). We also found significant effects from 

fire frequency, elephant density, elevation and slope. Other tested variables such as 

rainfall variability, grazer density, browser density, distance to water and aspect did 

not significantly influence the ecological model. 

• The continental study (chapter 2) also brought the attention to the inadequacy of the 

MODIS VCF tree cover percent map for savanna research. This map does not 

include trees < 5 m height, which are dominant in savanna systems and therefore 
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provides underestimated cover values in systems where small trees and shrubs are 

common. 

• The regional-scale mapping process (chapter 3) provided accurate and more 

detailed information of woody cover for the savannas of KNP. At the same time, it 

was a learning ground for sampling strategies and for testing the suitability of 

remote-sensing data types for woody cover mapping. Combined optical and radar 

remote-sensing were found to significantly increase the ability to predict woody 

cover. This result directed the design of the continental mapping project (chapter 4). 

• The continental mapping project confirmed that woody cover models greatly 

benefit from including predictors derived from both optical and radar data. The 

strong relationship found at regional scale between woody cover and optical and 

radar variables holds at larger scales from shrublands across savannas to seasonal 

woodlands and dense forests. Our approach improved mapping with more realistic 

cover estimates in savannas where radar remained sensitive to woody structures and 

able to differentiate their signal from the grass signal. In general, our woody cover 

estimates across the continent are higher compared to the MODIS VCF estimates.

5.1 Ecological models

The ecological/environmental models developed for my work have a semi-

empirical (continent) and empirical (regional) nature. Statistical models must be taken 

with prudence because correlations can also result from chance or from biases of 

modeling methods. However, several statistical techniques have been developed to 

quantify model strength and I tried to use the most up-to-date and validated approaches. I 

see empirical models contributing to ecological research in three ways: (i) they can 

139



provide initial suggestions for mechanisms, (ii) given a theoretical model, they can 

provide empirical evidence for hypothesized mechanisms and (iii) they can find 

correlations in the data that were not expected but are related to real ecological 

phenomena.

The models tested in this dissertation quantitatively described how woody cover 

is organized in relation to biotic and abiotic factors. The continental model was structured 

to test several possible relationships between rainfall and woody cover accounting for 

disturbance (fire frequency, cattle density, cultivation intensity and human population 

density) and soil nitrogen and texture. The results showed that a sigmoidal (non-linear) 

relationship best describes how woody cover responds to mean annual rainfall (MAP) 

and that this relationship represents a potential woody cover level in the absence of the 

disturbance factors (suppressors). With more and better continental data on factors that 

could create deviations from the MAP-driven woody cover line such as browsers and 

grazers densities, rainfall variability, fire intensity, cultivation types, we would expect the 

MAP-driven sigmoidal curve to probably approach an upper envelope line. However, the 

envelope line for our data may not only be the result of MAP in absence of perturbations. 

Woody cover could exhibit higher values than the MAP-driven potential cover at 

local/regional scales in response to promoting factors. For example, our model found that 

agriculture, most likely in the form of agroforestry or plantations, can lead to regionally 

high woody cover values not expected by the average climate conditions (and elimination 

of fire and herbivory disturbance). 

Our results were harder to interpret in relation to soil nitrogen, also found as a 

promoting factor, and to soil texture. In arid and semi-arid areas (MAP < 500 mm), when 
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the soils get sandier (coarser texture), woody cover tends to increase while nutrient 

availability decreases (Walker and Langridge 1997). Our model did not distinguish 

nitrogen content effect by soil texture type. The positive effect of nitrogen was generally 

small for most of the points. The model indicates that fine textured soils support higher 

woody cover than coarse textured soils across the whole MAP gradient. However, several 

studies have found that there should be a soil texture inversion going from arid (MAP < 

500 mm) to humid climates (Noy-Meir 1973, Walker and Langridge 1997); in more arid 

climates, coarser textured soils generally support taller and denser vegetation than finer 

soils for the same amount of rain. The opposite happens in humid climates. Our model 

shows agreement with the textural observations in the humid sites but it does not show 

the hypothesized inverse soil texture effect moving to the arid sites. We could not think 

of any biological data or statistical reason to explain these contradictory findings.

An important contribution of this work is the relative quantification of disturbance 

effects taking into account their prominent dependence on climate regimes. For example, 

fire frequency increases with MAP until about 1500 mm and its effect is generally 

negative on woody cover with increasing suppressive intensity going from arid to mesic 

savannas. Cattle density instead has a relatively high suppressing effect only in semi-arid 

and mesic savannas where pastoral activity is concentrated.

The model was also an important contribution towards the effort to integrate 

resource competition- and perturbation-based theoretical frameworks. It gave empirical 

support for the integrated model proposed by Sankaran et al. (2004, 2005): in stable 

savannas, tree-grass coexistence occurs because woody vegetation is driven and limited 

by MAP whereas, in unstable savannas, MAP does not limit woody cover that could 
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hence potentially outcompete grass but it is suppressed by perturbations. Tree-on-tree 

competition is another mechanism that could limit woody cover at medium to high cover 

levels. 

The regional-scale ecological/environmental model clearly showed that, when we 

zoom in, we loose direct sense of the continental MAP driving trend and we see that finer 

woody cover patterns emerge in relation to other possible determinants. In our KNP case 

study, the basalt and granite underlying rocks explained the broad trend in woody cover. 

Smaller scale patterns on each rock types were related to perturbations such as fire 

frequency and herbivory in interplay with rainfall regimes and topographic features. For 

example, the lowest woody cover areas in the Park are located in the open savannas on 

the basalt rocks in association with fires recurring more often than once every five years, 

flat areas and relatively lower MAP.  This work also emphasized that the variability in 

woody cover explained by the model had a strong ecological/environmental origin. 

Basically all the spatial structure of woody cover explained by the model derived from 

the spatial structure of the ecological/environmental determinants. 

5.2 Woody cover predictive models and mapping 

The mapping work was essentially motivated by the need to obtain more accurate 

woody cover estimates for savanna systems than the ones provided by existing products 

and to use them to improve ecological inference. These products will also be made 

available in digital form for additional research (e.g. managers and scientists in KNP are 

using the KNP woody cover map for modeling habitat selection by elephants (de Knegt et 

al. 2010), net primary production, effects of climate change on vegetation and 

142



biodiversity characterization, and the continental map will be of interest in the study of 

woody resource dynamics and carbon research).   

My work has demonstrated the potential of combined SAR and optical remote-

sensing for prediction of woody cover through scaling-up plot- and high-resolution-based 

measurements to regional and continental extents. The advantage of using combined 

optical and radar data comes from a wider set of spectral information available to 

distinguish woody from herbaceous vegetation and the background. In particular, optical 

remote-sensing is sensitive to photosynthetically active vegetation but does not provide 

sufficient discrimination of woody and herbaceous vegetation. This puts serious limits in 

woody plant detection in savanna systems. Microwave data, on the other hand, are 

sensitive both to woody branches and leaf moisture content and their backscatter provides 

distinctive information on woody vegetation. 

The approach was successful at both scales and multiple linear regression 

appeared appropriate for the task producing models that explained 61 % of the variability 

in Kruger National Park and 58% at continental level. At the regional level, we worked at 

90-m resolution with imagery original resolutions of 25 m from JERS-1 and 28.5 m from 

Landsat ETM+.  At the continental scale we used remote-sensing imagery with 

resolutions of 2.25 km (QuickScatterometer) and 500 m (MODIS). The output map for 

KNP captured woody cover patterns recognizable by local experts to the scale of ~ 100 m 

and the absolute values of woody cover in the more mesic areas were in agreement with 

LiDAR assessments. The continental map also reproduced continental to landscape 

patterns consistent with average cover values from independent regional to landscape 
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sources. In particular, it improved predictions for arid and semi-arid systems that show up 

to 20% cover values.

 A very important finding from these two mapping studies is that the strong 

predictive ability of radar backscatter intensity and optical greenness scaled-up from 

regional to continental scale. Although the up-scaling involved different sensors and 

predictive metrics (radar L-band vs. Ku-band for KNP vs. continental map and single-

date vs. annual metrics for the KNP vs. continental map, respectively) and differing 

environmental and vegetation characteristics, our analyses show that the significant 

positive correlation of cover with radar backscatter and optical greenness found in the 

KNP savannas was transferable across scale and ecosystems, accounting for some non-

linearity. We recognized that radar sensitivity to surface roughness was a common 

problem in both these maps.  It created significant cover overestimates especially evident 

in bare rocky and rugged areas. This problem was partially corrected in the KNP woody 

cover map but not in the continental map. Terrain corrections for radar imagery usually 

require fairly complex geometric models that account for both radar incidence angle and 

terrain slope. We will probably use a more heuristic approach in which we will identify 

problematic areas by high backscatter, terrain roughness (high elevation variations) and 

low NDVI variations. We could then assign corrected radar backscatter values from 

neighbor pixels.

5.3 Conclusions

Following the progress in savannas ecology theoretical and experimental work 

and in remote-sensing, my work generated empirical evidence for a savanna unified 

theory including resource- and disturbance-based mechanisms, it elucidated some scale 
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dependencies and tested a new approach for woody cover mapping with combined radar 

and optical imagery that has enhanced sensitivity to woody vegetation. The impact of the 

new woody cover maps is significant for savanna research that uses woody cover as 

explanatory or input variable such as in modeling work at different scales to predict 

vegetation distribution (Dynamic Global Vegetation Model, DGVM), climate (Global 

Climate Model, GCM), carbon stocks and sequestration, biogeochemical cycles, animal 

habitat, population dynamics, fire spread and other ecological processes and quantities 

that can inform both scientists and managers. 
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