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ABSTRACT 
 
 
 

EVALUATING THE IMPACT OF DEEP-WATER CHANNEL ARCHITECTURE ON THE 

PROBABILITY OF CORRECT FACIES CLASSIFICATION USING 3D SYNTHETIC 

SEISMIC DATA 

 
 
 

Modeling studies of bed-to geobody-scale architecture in deep-water channel deposits 

reveal that channel element stacking patterns and internal architecture strongly control 

connectivity. This architecture is critical to understanding hydrocarbon flow and recovery but is 

unresolvable in exploration-scale seismic-reflection profiles. Forward seismic reflectivity 

modeling of a digital outcrop models is commonly used to explore how depositional architecture 

is interpretable in a filtered seismic response. One limitation of forward seismic reflectivity 

modeling studies is that they often stop short of qualitatively assessing the link between underlying 

depositional architecture and seismic response. This study addresses the gap between qualitative 

interpretation and quantitative evaluation by calculating the prediction reliability of inverted 

seismic data.   

Specifically, this study uses synthetic 3D seismic modeling and inversion of a 3D outcrop 

model of deepwater channels in the Tres Pasos Formation of the Magallanes Basin of southern 

Chile. The model includes outcrop- (bed and geobody) to seismic- (reservoir to basin) scale 

architecture. The primary objective is to quantify where and when channel architecture is 

accurately predicted by seismic facies classification. Bayesian classification is used to test the 

probability of correct facies classification from P-impedance and if the classification results are 

dependent upon architectural styles (e.g., channel element stacking patterns). Model sensitivity 



 

 

iii 

variables include seismic frequency (ranging from 15 to 180 Hz) and deep versus shallow rock 

properties. Results show that prediction reliability increased for both channel element axis 

sandstone and mass transport deposits with increasing frequency. Deep reservoirs or faster seismic 

velocities more accurately predict facies than shallow reservoirs or slower seismic velocities due 

to the increasing contrast between sandstone and shale velocities. Channel axis sandstone is less 

easily interpreted where channel elements are vertically aggraded, reducing acoustic impedance 

contrasts with background shale. When channel elements are laterally stacked or disorganized, 

facies can be predicted from seismic attributes with a higher confidence, due to a strong contrast 

between channel element sandstone and background shale. This study highlights that architectural 

information strongly impacts 3D inverted seismic data and highlights conditions that either hinder 

or aid accurate interpretation from facies classification.  
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CHAPTER 1: RESEARCH MOTIVATION 
 
 
 

1.1 Introduction 

Deep-water slope deposits host some of the largest and most valuable oil and gas reserves 

in the world, but prior to 3-D seismic data (circa 1985) were challenging to drill successfully 

(Pettingill and Weimer, 2002). Since 1985, the oil and gas industry has had increasing success in 

the exploration for hydrocarbons in deep-water settings (Pettingill and Weimer, 2002) due largely 

to technological advances in 3D seismic acquisition, processing, and interpretation (Alfaro et al., 

2007), engineering advances, including drilling (Epelle and Gerogiorgis, 2020) and geotechnical 

advances, including new techniques and equipment to characterize the seabed (Randolph et al., 

2011). Increasing success in exploration for hydrocarbons is also a result of scientists gaining a 

better understanding of deep-water sedimentological processes and their resulting deposits.  

Accumulations of sediment on deep-water slopes are a result of sediment gravity-flows in 

the marine environment, transporting sediment from the shelf to the seafloor (Slatt, 2006). These 

processes have historically been difficult to monitor, but recent research has provided new data 

on sediment gravity-flows, including sediment trap samples, velocity measurements, and seafloor 

cores (Maier et al., 2019). Monitoring modern seafloor processes provides insight into how such 

processes create and preserve deposits of sand in ocean basins, deposits that are seen at the bed-

scale in outcrop and core. This deep-water architecture, specifically channel fill styles and 

stacking patterns, strongly controls reservoir fluid distribution and flow connectivity (Jackson et 

al., 2019; Meirovitz et al., 2020). However, this scale of architecture, which is on the order of 10’s 

of meters thick and 100-400 meters wide (McHargue et al., 2011) is difficult to interpret in 
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seismic-reflection profiles due to limits of resolvability (e.g., Stright et al., 2014; Nielson, 2017; 

Pemberton et al., 2018).  

Advances in seismic data acquisition, processing and interpretation reduce the risk of 

drilling deep-water wells in a poor location that proves to be uneconomic (e.g., poor quality 

reservoir or limited reservoir thickness, negligible to no hydrocarbon saturation). When this 

happens, it is called drilling a dry hole. These advances improve the difficult task of interpreting 

drill locations using seismic data by better predicting reservoir presence and quality. Advances in 

data acquisition include increasing azimuthal coverage of the survey to improve signal to noise 

ratio, thus improving seismic data quality, along with vertically aligning sources and receivers 

(Alfaro et al., 2007). Improved processing techniques, such as surface-related multiple elimination 

(SRME), also improve seismic data quality by reducing noise (Alfaro et al., 2007). Additionally, 

new workflows have been created for more reliable interpretation of subsurface architecture using 

single seismic attributes (e.g., inversion models) and combinations of seismic attributes (e.g., 

amplitude, phase, and spectral frequency; La Marca, 2020). Seismic attributes are used in 

interpretation and modeling workflows (Chopra and Marfurt, 2008), and increasingly in machine 

learning workflows (La Marca et al., 2019; Li et al., 2019). Finally, advances in computing 

capabilities have led to improved efficiency (e.g., processing speed and resolution; Neal & Krohn, 

2012).  

While these improvements lower the risk of drilling a dry hole through more accurate 

imaging and interpretation, correct versus incorrect interpretation cannot be checked or evaluated 

due to unknown architecture and challenges with resolvability. Understanding the linkage 

between reliable facies classification and architecture can aid in interpretation and modeling 

workflows with the goal of decreasing risk in exploration and development. Forward seismic 



 

 

3 

reflectivity modeling of outcrops explores interpretability of depositional architecture in a 

filtered seismic response (Biddle et al., 1992; Stafleu and Schlager, 1995; Campion et al., 2000; 

Gartner et al., 2001; Tomasso et al., 2006; Schwab et al., 2007; Falivene et al., 2010; Pemberton 

et al., 2018). One limitation of this approach is that it stops short at qualitatively assessing the 

link between underlying depositional architecture and seismic response, and concludes, 

somewhat predictably, that decreasing seismic frequency results in a decrease in resolvability 

without quantification of the error in the prediction (Schwab et al., 2007). This study addresses 

this gap by quantifying interpretable deep-water channel architecture preserved in inverted 

seismic data.   

For this study, an architecturally accurate geocellular model (Ruetten, 2021), derived from 

outcrop observations and interpretations (Macauley and Hubbard, 2013; Fletcher, 2013; Southern 

et al., 2017), forms the foundation of forward seismic models which are then in turn, inverted and 

classified. Comparison of the resulting classification with the truth model provides a clear 

understanding of the probability of correct classification and how it is a function of architecture. 

Using 3D synthetic forward seismic modeling and inversion, the overarching goal is to quantify 

how well acoustic impedance accurately predicts deep-water channel architecture. Specifically, 

one objective is to look at correct versus incorrect classification of channel element axis sandstone 

and mass transport deposits (MTDs) as a function of frequency. Classification sensitivity to deep 

and shallow rock properties is also evaluated. Finally, the impact of architecture on correct versus 

incorrect classification is further evaluated as a function of channel element stacking patterns.  
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1.2 Thesis Format 

Beyond this chapter, there are an additional five chapters (Chapters 2-6). Chapter 2 

reviews the geologic background of the Magallanes Basin and provides a description of the 

Laguna Figueroa outcrop, including data, observations, facies and stratigraphic interpretation. 

Previous modeling work of this outcrop that is the foundation for this research, is reviewed. 

Chapter 3 presents the methodology and results of forward seismic modeling and inverse 

modeling. Chapter 4 presents the methodology and sensitivity analysis of the facies classification 

using inverse models from Chapter 3. The impact of facies architecture on sensitivity is also 

examined within Chapter 4. Chapter 5 discusses the implications this study has for reservoir 

prediction and reservoir modeling. Chapter 6 provides the conclusions and discusses future work 

that could be done related to this study.  
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CHAPTER 2: GEOLOGIC BACKGROUND 
 
 
 
2.1 Geologic Setting 

The Magallanes Basin is a retroarc foreland basin on the tip of South America, covering 

parts of Chile and Argentina (Fig. 1A: Fildani and Hessler, 2005; Romans et al., 2011; Daniels et 

al., 2019). The Rocas Verdes backarc basin underlies the Magallanes basin and formed from 

extension related to the Jurassic breakup of Gondwana (Dalziel et al., 1974; Wilson, 1991; Fildani 

and Hessler, 2005; Fosdick et al., 2011; Romans et al., 2011). Compression caused uplift of the 

Andean fold-thrust belt, the closure of the Rocas Verdes Basin and the formation of the 

Magallanes retroarc foreland basin along the western margin of South America (Dalziel et al., 

1974; Wilson, 1991; Fildani and Hessler, 2005; Fosdick et al., 2011; Romans et al., 2011). The 

subsidence was promoted by the dense extensional predecessor basin, the Rocas Verdes Basin 

(Covault et al., 2009; Romans et al., 2009). This, in addition to the load added by the fold and 

thrust belt, produced bathymetric relief of the shelf-to-basin floor profile that is comparable with 

large-scale continental margins (Covault et al., 2009; Romans et al., 2009). As a result, this basin 

contains over 4000 m of deep-water fill (Fildani and Hessler, 2005; Romans et al., 2010). A 

longitudinal basin filling pattern is seen from north to south (Romans et al., 2009).  

 The three major phases of deposition occurred in the Magallanes Basin during the 

Cretaceous. The first phase is recorded in the Punta Barrosa Formation (~92-85 Ma) which 

consists of thin-bedded, sandy turbidites (Fig. 1; Fildani and Hessler, 2005; Romans et al., 2010; 

Romans et al., 2011). Overlying the Punta Barrosa Formation is the second phase of the shale 

dominated Cerro Toro Formation (86-80 Ma) with a conglomeratic channel-levee-complex 

system running parallel to the basin axis (Fig. 1; Romans et al., 2011). The third phase of 
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deposition is the Tres Pasos Formation (81-72 Ma), which represents the final deep-water phase 

and infilling of the basin through a prograding clinoform system (Fig. 1; Romans et al., 2011. This 

deep-water slope system transported turbidity currents resulting in slope deposits of sandstone 

rich channel elements with related thin-bedded inner and outer levee deposits (Hubbard et al., 

2010; Romans et al., 2011). Various scales of mudstone-rich MTDs are also present at the base of 

the Tres Pasos Formation marking the initiation of slope progradation and intermittently higher 

up in the stratigraphy within the channelized sections (Romans et al., 2009; Hubbard et al., 2010; 

Romans et al., 2011; Macauley and Hubbard, 2013). The overlying Dorotea formation (~72-65 

Ma), consisting of shallow marine deltaics, is genetically linked as a sediment source for the 

progradational slope system (Fig. 1; Covault et al., 2009; Romans et al., 2009).  
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Figure 1. (A) Geologic map of the Última Esperanza District in southern Chile (Vento, 2020; 
modified from Romans et al., 2011; originally adapted from Wilson, 1991; and Fosdick et al., 
2011). This map shows the formations of the Magallanes Basin. Moving to the east, the Late 
Cretaceous-age strata becomes older with a paleoflow direction of south to southeast along the 
axis of the elongate basin. The Tres Pasos Fm. (Ktp), modeled in this study, is located to the east 
of the Cerro Toro Fm. (Kct) and west of the Dorotea Fm. (KPgd). The star marker represents the 
study area, Laguna Figueroa, which is located north of Puerto Natales. (B) Stratigraphic column 
of the Magallanes Basin (Modified from Daniels et al., 2018, GSA Bulletin) with the Tres Pasos 
Fm. bolded.  
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2.2 Laguna Figueroa Outcrop 

The Laguna Figueroa outcrop, named for a nearby lake, is a 2.5 km long, 300 m thick 

section of the uplifted slope system located in the Última Esperanza District of Chile (Figs. 1A 

and 2A; Fletcher, 2013; Macauley and Hubbard, 2013). Data collected along the 2.5 km long and 

300 m thick Laguna Figueroa outcrop exposure include 68 measured sections totaling 3,435 m 

and over 100 paleocurrent measurements comprise the foundation for sedimentological and 

stratigraphic interpretations (Figs. 2B and 2C; Fletcher, 2013; Macauley and Hubbard, 2013; 

Southern et al., 2017). Additional supplementary data was used to guide channel element plan 

view interpretation and geocellular modeling, including thousands of GPS points, high-resolution 

satellite imagery, and drone data resulting in photomosaics and drone photogrammetry models. 

These data help to delineate facies transitions as well as capture the major stratigraphic horizons 

(Fletcher, 2013; Macauley and Hubbard, 2013; Southern et al., 2017). 

2.2.1 Description of Facies and Interpretation  

Analysis of bed-scale observations (e.g., grainsize, bed thickness, sedimentary structures) 

resulted in the interpretation of 4 facies (F1-F4) which include:  thick-bedded, highly amalgamated 

sandstone (F1); thick- to thin-bedded, semi-amalgamated sandstone and siltstone (F2); and thick- 

to thin-bedded, largely non-amalgamated sandstone and siltstone (sandstone-dominated) (F3); and 

medium- to very-thin bedded largely non-amalgamated sandstone and siltstone (siltstone-

dominated) (F4) (Fig. 3; Fletcher, 2013; Macauley and Hubbard, 2013; Southern et al., 2017).  

The internal channel element architecture is formed mainly from these facies, which are 

correlated with channel position (Macauley and Hubbard, 2013). Channel element axis sandstone 

is predominantly composed of F1, while channel margins are predominantly composed of F3 (Fig. 
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3). Between the channel element axis and the margin, the “off-axis” is predominantly composed 

of F2 (Fig. 3, Macauley and Hubbard, 2013). Thin-bedded F4 is present along the bases of the 

channel elements, predominantly below the margin and off-axis and less commonly present 

draping the channel element base below the axis. Channel element stacking and these thin drapes 

are important features due to their impact on reservoir connectivity and flow (Jackson et al., 2019; 

Meirovitz et al., 2020; Ruetten, 2021). Although channel element base drapes are critical in 

defining reservoir flow pathways, these facies are sub-seismic scale and are not imaged in seismic 

reflectivity.  
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Figure 2.  (A) Photo of the outcropping deep-water channel strata of the Laguna Figueroa 
outcrop with complex sets outlined (Modified from Ruetten 2021; originally adapted from 
Daniels et al., 2019). (B) Oblique dip-oriented cross section of Upper Figueroa with channel 
elements labeled. Channel complexes are separated by dashed red lines. Note that Lower and 
Upper Pink are each distinct complexes (adapted from Southern et al., 2017). (C) Oblique dip-
oriented cross section of Lower Figueroa with channel elements labeled. Channel complexes are 
separated by dashed red lines (adapted from Southern et al., 2017). 
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Figure 3. (A) Channel element cross section showing channel positions and related facies.  (B) 
Photos of channel element facies including: F1 – thick-bedded amalgamated sandstone; F2 – thin- 
to thick-bedded, semi-amalgamated sandstone; F3 – thick- to thin-bedded non-amalgamated 
sandstone and siltstone (sandstone-dominated); and F4 – medium- to very-thin bedded largely 
non-amalgamated sandstone and siltstone (siltstone-dominated).  (Modified from Jackson et al., 
2019 and Meirovitz et al. (2020).) 

Three additional facies are observed at the outcrop and in analog subsurface data that are 

important to this study: inner levee and outer levee facies, and mass transport deposit (MTD) 
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facies. The inner levee and outer levee facies comprise the model background. In the model, the 

outer levees fully or partially bound the entire channel-levee system (Kane and Hodgson, 2011; 

Macauley and Hubbard, 2013). Smaller, internal levees bound individual channel elements within 

the channel belt. (Kane and Hodgson, 2011). The levees present at Laguna Figueroa are composed 

of mudstone-prone turbiditic deposits, and are often covered by vegetation (Deptuck et al., 2003; 

Macauley and Hubbard, 2013; Hubbard, 2014). Due to a lack of levee exposure at the outcrop, it 

is difficult to know whether the entire channel system is erosionally- or levee-confined. 

Mass transport deposits (MTDs) are formed by submarine mass movement and include 

debris-flow deposits and slide deposits (Nardin et al., 1979; Armitage and Stright, 2009). MTDs 

can act as a reservoir, a migration pathway, or as a seal due to varying lithologies (Cardona et al., 

2020). Within the Tres Pasos Formation at Laguna Figueroa, the widespread MTDs show 

chaotically bedded mudstone and sandstone (Fletcher, 2013). They overlie deep-incision surfaces 

and underlie channel elements (Fletcher, 2013). MTDs are also present in the outcrop within 

channel elements, between channel elements, and draping the bases of some complexes and 

between the lower and upper channel complex set (Macauley and Hubbard, 2013; Hubbard et al., 

2014; Pemberton et al., 2018). MTDs modeled in this study have low porosity and permeability, 

acting as baffles and barriers to fluid flow (Ruetten, 2021). 
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Figure 4. (A) Deep-water channel system stratigraphic hierarchy displayed in a seismic reflection 
image from the Dalia field, West Africa. The scale of various features is highlighted as well as 
their seismic response (Modified from Jackson et al., 2019; originally from Zhang et al., 2017). 
(B) Conceptual model of Lower and Upper Laguna Figueroa outcro Hierarchical architecture is 
shown, including channel complex boundary surfaces. (Modified from Ruetten, 2021; originally 
adapted from Macauley and Hubbard, 2013 and Covault et al., 2016). A different number of 
channel elements is used in this interpretation, but it maintains a similar overall hierarchy. The red 
line marks the outcrop profile. 
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2.2.2 Deep-water Stratigraphic Hierarchy  

The outcrops at Laguna Figueroa contains high-quality exposures of channelized turbidite 

systems (Macauley and Hubbard, 2013; Southern et al., 2017; Fletcher, 2013).  Deep-water 

architecture is often categorized using a common stratigraphic hierarchy (Fig 2A and 2B). At 

Laguna Figueroa there are two channel systems (i.e., complex sets; Fig. 2A), Lower and Upper 

Figueroa, separated by a mass transport complex (MTC), which consists of a series of stacked 

mass transport deposits (MTDs) (Fig. 4B; Ruetten, 2021).  

The channel element is the main architectural element of channelized deep-water systems, 

and it is made up of a composite channel surface and sediment infill (Fig. 4A; McHargue et al., 

2011; Fig. 3A). A series of genetically related stacked channel elements, laterally or vertically, 

organized or disorganized, make up a channel complex (Fig. 4A). A series of genetically related 

channel complexes make up a channel complex set (Fig. 4A; McHargue et al., 2011).  

The first interpretation of the Laguna Figueroa outcrop was only comprised of strata from 

the lower channel complex set and was interpreted as 18 individual channel elements grouped into 

3 channel complexes (Macauley and Hubbard, 2013). Additional work and new data collected in 

the area, revised this original interpretation to 12 channel elements in 3 complexes (Fig. 4B and 

3C; Southern et al., 2017) and expanded the interpretation to include the upper channel complex 

set with four channel complexes and thirteen individual channel elements (Fig. 4B and 3B; 

Fletcher, 2013; Southern et al., 2017).  
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2.3 Previous Modeling Work 

The work presented in this thesis is the next step in a series of modeling studies of the 

Laguna Figueroa outcrop, built upon the previous work of researchers in the Chile Slope Systems 

joint industry project. Sedimentological observations and interpretations of the Laguna Figueroa 

outcrop (Macauley and Hubbard, 2013; Fletcher, 2013; Southern et al., 2017) served as the 

foundation for fine-scale geocellular models utilizing planforms and vertical stacking which 

analyzed static connectivity (Jackson et al., 2019; Ruetten, 2021). Further studies analyzed the 

influence of stacked channel element architecture on seismic response (Nielson, 2017; Pemberton 

et al., 2018), and how stacking patterns matter for reservoir connectivity and fluid flow (Meirovitz 

et al., 2020; Ruetten, 2021). The database of outcrop statistics used to create these models 

(Southern et al., 2017) was also used in a study designed to bridge the gap between sedimentology 

and data analytics using machine learning algorithms to predict stratigraphic architecture and 

heterogeneity in a deep-water slope channel system (Vento, 2020). 

 

2.3.1 Legacy Modeling Work (2013-2019)  

Stratigraphic interpretations provided the basis for the modeling work, and at the Lower 

Figueroa channel complex set, 18 channel elements were interpreted by Macauley and Hubbard 

(2013). These interpretations were used to create the first geocellular model of the Laguna 

Figueroa outcrop which was constructed for a study that analyzed static connectivity (Jackson et 

al., 2019). The fine-scale model had cell sizes of 2m x 2m x 0.25 m (6.5 ft x 6.5 ft x 0.8 ft; total 

model size > 600 M cells) and focused on channel elements and their stacking patterns without 

explicit stratigraphic hierarchical groupings. Channel elements had dimensions of 200-300 m 

wide and 14 m thick. Complex surfaces and MTDs were not included in this model. Jackson et al. 
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(2019) examined how upscaling grid cell size impacted the “true” connectivity observed in the 

fine-scale model. They concluded that connectivity is a function of cell size, which is a decision 

in the modeling workflow. Furthermore, connectivity is highest when channel elements are 

vertically stacked and lowest when they are laterally stacked. When lateral migration between 

successive channel elements was more than 2/3 of a channel element width, connections are cut 

off completely. Thin channel element base drapes are responsible for controlling connectivity 

(Jackson et al., 2019). Channel element base drapes do not contribute significantly to net-to-gross 

(NTG), the fraction of reservoir volume occupied by hydrocarbon-bearing rocks, and are sub-

seismic scale. This is important because if a system is interpreted as high NTG from seismic 

interpretation and/or attributes, connectivity could be overestimated. Linking stacking patterns to 

connectivity highlights the importance of correctly interpreting and predicting channel element 

architecture from seismic interpretation.   

Given the role of element stacking and intra-element heterogeneity on static connectivity, 

a second study explored the impact on dynamic reservoir connectivity and performance (Meirovitz 

et al., 2020). Meirovitz et al. (2020) isolated two channel elements in twelve different stacking 

patterns to explore the impact of bed- to geobody-scale architecture on fluid flow connectivity in 

a water flood scenario (Meirovitz et al., 2020). Their results further supported the conclusion that 

thin-beds (i.e., drapes and thin-bedded margin facies; facies 3 and 4) impeded flow in laterally 

offset stacked scenarios, and flow is funneled through vertically aligned channel elements 

(Meirovitz et al., 2020). If the thin-beds are not taken into account in recovery estimates, the flow 

and recoveries are misleadingly optimistic (Meirovitz et al., 2020).  

These two research studies begged the question of what architecture can be interpreted in 

the seismic reflection data to guide connectivity, fluid flow and recovery predictions. Therefore, 
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a seismic-reflectivity modeling study using the two element models generated by Meirovitz et al. 

(2020) provided insight into when and at which frequencies channel element stacking patterns 

might be detectable in seismic (Nielson, 2017). Nielson (2017) utilized rock properties from 

multiple cored wells that penetrate the subsalt Gulf of Mexico, an analogous depositional system. 

1-D convolutional forward seismic models were generated using a Ricker wavelet with peak 

frequencies of 20, 30, 40, 50, 60, 90, 120 and 180 Hz. Nielson (2017) analyzed these models by 

interpretating top and base of channel element pairs, calculating RMS amplitude and exploring 

RMS amplitude as a function of both true stratigraphic thickness and apparent thickness. He found 

that laterally migrating channel elements are harder to interpret stratigraphically in comparison 

with vertically aggrading channel elements due to tuning. If a priori information is known about 

channel element width and thickness, patterns seen in seismic-reflection profiles could be used to 

interpret one versus two channel elements and infer stacking patterns (Nielson, 2017). However, 

Nielson (2017) recognized the simplicity of the modeling and that the inclusion of more than two 

channel elements would generate more challenges to interpretation. 

To test the impact of multiple channel elements and their realistic stacking configurations, 

the 18-channel element geocellular model created by Jackson et al. (2019) provided the foundation 

for a study to analyze the influence of stacked channel element architecture on seismic-reflectivity 

(Pemberton et al., 2016). Pemberton et al. (2016) generated a synthetic seismic model of the 

Jackson et al. (2019) Laguna Figueroa model and compared the results to a synthetic seismic 

model of the nearby outcrop showing weakly confined channel strata (Arroyo Picana; Pemberton 

et al., 2018). Arroyo Picana architecture includes channel elements of varying widths and depths, 

as well as variably sized scours and scour complexes (Pemberton et al., 2016). Rock properties 

for both models came from the same analogous depositional system in the Gulf of Mexico used 
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by Nielson (2017). Forward seismic models were generated using a Ricker wavelet at peak 

frequencies of 15, 30, 60, 90, 120, and 180 Hz and 1-D convolution for both study areas. The 

confined channel strata at Laguna Figueroa were generally more accurately resolved in seismic 

reflection data than the mixed channel and scour architecture at Arroyo Picana until the lowest 

frequencies (i.e., 15 and 30 Hz) where neither were clearly resolved (Pemberton et al., 2018). 

Tuning effects result in composite seismic surfaces that were vertically displaced from their true 

location, inhibiting accurate interpretation, and erroneously grouping strata into stratigraphic 

packages in which they did not belong (Pemberton et al., 2018). Additionally, at peak frequencies 

commonly encountered in the subsurface, the number of complexes were underestimated and size, 

shape and type of architectural bodies (channels vs. scours; large vs. small channels) were difficult 

to differentiate. Gross rock volume (total reservoir volume) calculations were over-estimated by 

10% - 50%, the error increasing with decreasing frequency (Pemberton et al., 2018).  

While these modeling studies provided insight into how architecture impacts static and 

dynamic connectivity and seismic-reflectivity responses, they did not include critical architecture 

including MTDs, channel element grouping into complexes and complex sets. 

 

2.3.2 Updated Architectural Model (2019-present) 

A new interpretation was created in which the upper channel complex set at Laguna 

Figueroa was measured, mapped and interpreted similar to the lower channel complex set used 

for the legacy modeling work (Fletcher, 2013; Southern et al., 2017). Southern et al., (2017) also 

reinterpreted the lower channel complex set to fewer channel elements, 12 instead of 18, causing 

them to be thicker. These new data and interpretations, along with measured sections and mapped 

surfaces provided the foundation for a new seismic-scale, deterministic, 3D geocellular model 
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(Fig. 4A; Figs. 5 and 6; Ruetten, 2021).  Ruetten’s (2021) model encompassed Lower and Upper 

Laguna Figueroa and captured hierarchal organization including complex and complex set 

surfaces, along with MTDs associated with these surfaces. A detailed description of how the 

geocellular model used in this study was built can be found in Ruetten (2021) and will be briefly 

described herein.  

Ruetten (2021) created a deterministic outcrop model that is 265 m high, 2.25 km long 

(orientated north to south), and 2 km wide (oriented east to west) and with ~ 5.7 M grid cells that 

are 50 m x 50 m x 2.5 m (Figs. 5 and 6), a significant increase from Jackson et al. (2019) cell 

sizes. The model includes two channel complex sets, Lower and Upper Figueroa, separated by a 

MTC (Fig. 2; Hubbard et al., 2014). Within the lower channel complex set, twelve channel 

elements have been interpreted within three channel complexes (Fig. 2). Each channel element 

has a standardized width of 400 m and a thickness of 25 m (Ruetten, 2021), compared to the 

previous channel element dimensions of 200-300 m wide and 14 m thick (Jackson et al., 2019). 

Within the upper channel complex set, eight channel elements have been interpreted within four 

channel complexes (Fig. 2). The exception is the lowest element in the upper channel complex 

set, modeled as a laterally migrating, sandy, amalgamated channel complex of multiple 

indistinguishable channel elements, which is 800 m wide (Ruetten, 2021).  

Ruetten’s (2021) outcrop model was used to test how fluid flow behavior responds to 

channel element stacking patterns, channel element net to gross ratio, channel element base drape 

coverage, and MTD properties (Ruetten, 2021). Drapes and/or low NTG margins acted as baffles 

that reduced water breakthrough, with increasing drape leading the baffle to become a barrier 

(Ruetten, 2021). Reservoir compartmentalization was also created in a variety of ways, revealed 

by this study, including channel element base drape coverage, laterally divergent stacking 
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patterns, low NTG margins, and the presence of MTDs, which all resulted in a reduction in 

recovery efficiency (RE; Ruetten, 2021). Ruetten (2021) compared the deterministic flow 

responses to simplified models to better understand general flow character. He also attempted to 

model the channel elements and MTDs with object-based methods to see if the flow character 

could be reproduced with simple out-of-the-box modeling tools, but it could not.  

  The database of outcrop statistics from Lower and Upper Laguna Figueroa was further 

utilized in a study designed to bridge the gap between sedimentology and machine learning to 

predict stratigraphic architecture (Vento, 2020). Variables which captured channel element 

stacking patterns (i.e., channel element positions: axis, off-axis, and margin) were classified by 

the machine learning algorithms. Complex algorithms (i.e., random forest, XGBoost, and neural 

networks) had higher accuracies, above 80%, while less complex algorithms, (i.e., decision trees), 

had lower accuracies, between 60% - 70% (Vento, 2020). Additionally, the transitional off-axis 

class was more difficult for the machine learning algorithms to classify, compared to axis and 

margin (Vento, 2020).   
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Figure 5. 3D geocellular model displaying model dimensions with inset showing grid cell 
dimensions. Channel elements are color coded according to channel complex. MTCs are shown 
in gray at the base of each channel complex (Ruetten, 2021). 
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Figure 6. Facies within the model were calculated using a normalized distance from the centerline 
(A). Axis is within 15% of the centerline, Off-Axis is 15% to 34% of the centerline, Margin is 
34% and beyond from the centerline. (B) The resulting facies model with vertical cutoffs. 



 

 

23 

CHAPTER 3: FORWARD SEISMIC AND INVERSE MODELING 
 
 
 
3.1 Methodology 

 
 This study utilizes 3D synthetic forward seismic and inverse modeling of the seismic-scale, 

3D geocellular model generated by Ruetten (2021) to quantify how well acoustic impedance can 

be used to accurately predict and interpret deep-water channel facies and subsequent 

architecture. The forward seismic modeling process begins with a facies model derived from 

outcrop data (Fig. 7). An earth model of acoustic impedance (AI) is defined by assigning 

analogous AI properties to this facies model (Fig. 7). A reflectivity series can be derived from 

the AI model and then convolved with an input wavelet to generate the forward model (Fig. 7). 

The inverse modeling process begins by deconvolving the wavelet from the seismic trace to 

obtain a reflectivity series and subsequent AI for each seismic trace. From this model, facies 

classification models can be produced to generate a model of the probability of encountering 

specific facies at any point in the seismic volume (Fig. 7).  

 

Figure 7. The forward and inverse modeling process, showing how it begins and ends with an 
acoustic impedance model. (Modified from Stright, CSU course materials). 
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3.1.1 Rock Properties Assigned to Facies 

 

Average acoustic impedance (AI) values from analogous deep-water systems (shallow 

offshore West Africa and deep Gulf of Mexico) are assigned to facies to create two unique AI 

models (Fig. 8; Table 1). 

 

Figure 8. 2D cross sections from 3D models showing A) the facies model, and B) AI values 
assigned to each facies using values from shallow offshore West Africa, C) AI values assigned to 
each facies using values from deep Gulf of Mexico, which together lead to the input AI earth 
models.  
 
Table 1. Acoustic Impedance (AI) value assigned to each facies for the AI model. Shallow and 
deep rock properties were used to construct two separate models. 
 

Facies 

Shallow West Africa Acoustic 

Impedance (g/cm3 km/s) 

Deep Gulf of Mexico Acoustic 

Impedance (g/cm3 km/s) 

Channel Axis 4.397 9.489 
Channel Off Axis 4.416 9.386 
Channel Margin 4.526 9.055 

Inner Levee 4.759 8.797 
Outer Levee 5.039 8.465 

Mass Transport Deposit  5.277 8.131 
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3.1.2 Forward modeling method  
 

In this study, forward seismic models are generated in Petrel™ 2019 (Schlumberger, 2019) 

from the geocellular model (Ruetten, 2021). Zones of overburden and underburden 300 m thick 

are added to bound the model. The model was converted from depth to time using a constant 

interval velocity of 3,750 m/s and converted back from time to depth using that same velocity. 

This velocity (3,750 m/s) is close to the velocity for interbedded sandstone and shale (3,675 m/s) 

from the deep Gulf of Mexico rock properties.  

Forward seismic models are created using 1D convolution with Ormsby wavelets at 

varying dominant frequencies of 15, 30, 60, 90, and 180 Hz (Fig. 9; Table 2). Ormsby wavelets 

were used rather than simple Ricker wavelets because Ormsby wavelets contain numerous side 

lobes, rather than only two, resulting in a smaller impact to the shape of the amplitude tuning curve 

(Fig. 9; Table 2; personal communication Andrew Wilson from CNOOC).  

 

 

Figure 9. Ormsby Wavelets used in this study with dominant frequencies, d, of (A) 15 Hz, (B) 30 
Hz, (C) 60 Hz, (D) 90 Hz, (E) 180 Hz. The diagrams in the upper right corner show the amplitude 
and trapezoidal shaped frequency spectrum used when making the wavelet.  
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Table 2. Ormsby wavelet dominant frequency and parameters used to create each wavelet. 
Ormsby wavelets are created using a low-cut, low-pass, high-pass, and high-cut frequency, rather 
than a single dominant frequency.  
 

Dominant 

Frequency 

(Hz) 

Length 

(ms) 

Sample 

Rate 

(ms) 

Low-Cut 

Frequency 

(Hz) 

Low-Pass 

Frequency 

(Hz) 

High-Pass 

Frequency 

(Hz) 

High-Cut 

Frequency 

(Hz) 

15 200 1 1 3 23 35 
30 200 1 2 6 45 70 
60 100 1 4 12 90 140 
90 100 1 6 18 135 210 
180 26 1 10 30 225 350 

 

To create the forward seismic models, the algorithm selected was post stack, normal 

incidence and the parameter used was acoustic impedance. The post-stack trace can be 

approximately modeled using the convolutional model of the recorded seismogram (Yilmaz, 2001) 

which is given by:  

 𝒔𝒔𝒕𝒕 = [𝒓𝒓𝒕𝒕 ∗ 𝒘𝒘𝒕𝒕 + 𝒏𝒏𝒕𝒕]       (1) 

 

In this equation, st = the seismic trace, rt = the earth’s reflectivity, wt = the seismic wavelet, nt = 

additive noise, and “*” denotes convolution (Russell and Hampson, 1991; Yilmaz, 2001). Noise 

was not added to these models because this was not a variable observed in this study. Noise 

could be added in further studies to study its effects.  

Two different background models were used to represent the earth’s reflectivity, 

comparing deep Gulf of Mexico rock properties with shallow offshore West Africa rock properties.  

Combining the background assigned acoustic impedance models with the Ormsby wavelets 

produced a variety of forward seismic models. Below a workflow graphic shows the detailed 

process of creating the forward models (Fig. 10). Forward seismic models were created at 
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frequencies of 15, 30, 60, 90, and 180 Hz for shallow offshore West Africa rock properties and 

frequencies of 15, 30, and 60 Hz, for deep Gulf of Mexico rock properties. Channel element base 

drapes are not directly modeled in this work, however, they may be interpreted or modeled from 

seismic reflection data where channel elements are imaged due to their clear association with 

channel elements. These forward seismic models are used for inverse modeling. 

 

 

Figure 10. Workflow for creating the forward seismic models. 

 

3.1.3 Inverse modeling method 

 

The 3D seismic models produced in the forward modeling process serve as input for post-

stack inversion (Fig. 11). To obtain acoustic impedance, the wavelet is deconvolved, leaving a 

filtered version of the earth’s normal incidence reflectivity, which is related to acoustic impedance 

by the equation (Russell and Hampson, 1991; Yilmaz, 2001): 𝐙𝐙𝐭𝐭+𝟏𝟏 = 𝐙𝐙𝐭𝐭 �𝟏𝟏+𝐫𝐫𝐭𝐭𝟏𝟏−𝐫𝐫𝐭𝐭�     (2) 
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 In this equation, Zt = ptVt, which is the acoustic impedance of layer t, where pt = density, 

and Vt = compressional wave velocity, and layer t overlies layer t +1 (Russell and Hampson, 1991; 

Yilmaz, 2001). The interface property (i.e. reflectivity) is converted to a rock property (i.e. 

acoustic impedance). Thus, we can obtain Zt and Zt+1, the acoustic impedance of layer t and t+1, 

from the inversion. The post-stack inversion inverts the post-stack seismic amplitude volumes into 

elastic properties in the seismic grid (i.e., acoustic impedance). The output of each inversion is a 

3D acoustic impedance volume.  

Inputs for the inversion included a stacked seismic cube, a wavelet, and a prior low 

frequency model (LFM) cube or constant (Fig. 11). A LFM constant was used which consisted of 

a prior model cube of P-impedance with a single value of 5.04 kPa.s/m. This choice was simpler 

than creating a layered low frequency model and it allowed quick creation of the inverse models. 

Parameters included the signal to noise ratio (SNR), horizontal continuity, tie to low frequency 

model (LFM), and reflection threshold (Fig. 11).  The default values were kept for these variable 

parameters because this study does not test the sensitivity to these variables.  
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Figure 11. Workflow for creating the 3D inverse models. 

3.2 Results 

 

This section presents an overview of the results from the forward and inverse modeling. A 

comprehensive set of seismic models, including cross sections through 3-D cubes at each 

frequency for different rock properties, are compiled in Appendices A and B.   

 

3.2.1 Forward Models  

 

Eight forward seismic models were created to analyze the seismic expression of 

reservoir architecture at different frequencies for deep versus shallow rock properties. These 

forward seismic models serve as input for the inverse modeling process (Chapter 3.2.2). Five 

models were created at varying frequencies, 15, 30, 60, 90, and 180 Hz, using the shallow offshore 

West Africa rock properties, while three additional models were created at varying frequencies, 

15, 30, and 60 Hz, using the deep Gulf of Mexico rock properties.  
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  Figure 12 shows seismic models at frequencies of 15, 30, 60, 90, and 180 Hz, with higher 

resolution at higher frequencies, created using shallow Offshore West Africa rock properties. 

Figure 12A shows the lowest resolution model of the Laguna Figueroa outcrop, at a dominant 

frequency of 15 Hz. At 15 Hz channel complex set boundaries are interpretable  in the model, but 

individual channel elements, which have a thickness of 25 m, are not resolvable. Mass transport 

deposits (MTDs) are also not resolvable.  

Individual channel elements can be seen in some areas at 30 Hz (Fig. 12B). It is difficult 

to interpret overlapping channel elements at this frequency. Channel elements which have an MTD 

underlying them are the best resolved. MTDs are not easily distinguishable at 15, but at 30 Hz and 

above, they can be detected as a blue reflector underlying the red-orange reflectors of the channel 

elements. In seismic reflection data, MTDs commonly have a chaotic response (Posamentier and 

Kolla, 2003; Armitage and Stright, 2009). At 60 Hz (Fig. 12C), overlapping channel architecture 

can start to be distinguished. At 90 Hz (Fig. 12D), individual and overlapping channel elements 

can be more accurately resolved, but it is fairly similar to the 60 Hz result. At least 4 elements can 

be distinguished here. At 180 Hz (Fig. 12E), fewer reflectors are seen, leaving gray space within 

the individual channel complexes due to stacked and overlapping channel elements. The lack of 

definition may make interpretation more challenging.  

When evaluating the thickness of architecture from seismic, the thickness that is at 

theoretical resolution (λ/4; see Sheriff and Geldart, 1995) is known as the tuning thickness. Above 

tuning thickness, the apparent thickness interpreted from seismic will always be greater than the 

true stratigraphic thickness (Pemberton et al., 2018). The true thicknesses of isolated channel 

elements will be interpretable at their center, maximum thickness (25 m) at 30 Hz and above for 

shallow rock properties, and at 60 Hz and above for deep rock properties. At these frequencies, 
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the channel element maximum thickness of 25 m is thicker than the tunning thickness (24.4 m at 

30 Hz for shallow rock properties and 21.0 m at 60 Hz for deep rock properties; Table 3).  At 90 

Hz and lower for shallow rock properties, 5 m thick MTDs will be tuned and thus interpreted as 

thicker than reality in seismic reflection data. For all frequencies tested using deep rock properties 

(15, 30, and 60 Hz), the MTDs will be tuned (Fig. 12).  

 
Table 3. Tuning thickness for shallow and deep rock properties for channel element axis (CEA) 
and mass transport deposit (MTD) at frequencies modeled. 
 

Dominant 

Frequency 

(Hz) 

Tuning 

Thickness CEA 

Shallow (m) 

Tuning 

Thickness 

CEA Deep (m) 

Tuning 

Thickness MTD 

Shallow (m) 

Tuning 

Thickness 

MTD Deep (m) 

15 48.9 93.3 53.2 83.9 
30 24.4 46.7 26.6 42.0 
60 12.2 23.3 13.3 21.0 
90 8.1 - 8.9 - 
180 4.1 - 4.4 - 
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Figure 12. Seismic models at varying frequencies of 15, 30, 60, 90, and 180 Hz, A-E, created 
using shallow offshore West Africa rock properties. 
 

Figure 13 shows seismic models at frequencies of 15, 30, and 60 Hz, created using deep 

Gulf of Mexico rock properties. Figure 13A. shows the lowest resolution model of the Laguna 

Figueroa outcrop, at a dominant frequency of 15 Hz. Individual channel elements are not 

resolvable at 15 Hz , yet two can be seen at 30 Hz, and at 60 Hz several can be seen. MTDs are 

not  resolvable at 15, however they can be roughly seen at 30 Hz, and three can be seen at 60 Hz. 
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Overall, the seismic images created using the deep Gulf of Mexico rock properties are of similar 

but slightly lower quality as the forward models created using shallow offshore West Africa rock 

properties at the same frequencies.  

 

 
 

Figure 13. Seismic models at varying frequencies of 15, 30, and 60 Hz, A-C, created using deep 
Gulf of Mexico rock properties. 
 

Figure 14 provides a side-by-side comparison of each set of rock properties modeled at 30 

Hz. One observation is that reflectors showing the same surfaces in each model are the opposite 

color (Fig. 14). Where there are blue reflectors in the shallow model, they are red in the deep 

model, known as a polarity reversal.  The polarity reversal is a result of hard sandstone having 

higher impedance than shale (i.e., MTD) in the deep model and soft sandstone having a lower 
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impedance than shale (i.e., MTD) in the shallow model. Overall, the image quality is comparable 

and would allow for similar interpretations to be made (Fig. 14).  

 

 

Figure 14. Seismic models at a frequency of 30 Hz, created using A,C) shallow offshore West 
Africa rock properties and B,D) deep Gulf of Mexico rock properties. 
 
 
See appendix A for figures with cross sections of the forward models at each frequency. 
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3.2.2 Inverse Models  

 

Eight inverse models were created from the forward seismic models. Five models were 

created at varying frequencies, 15, 30, 60, 90, and 180 Hz, using the shallow offshore West Africa 

rock properties (Fig. 15), while three additional models were created at varying frequencies, 15, 

30, and 60 Hz, using the deep Gulf of Mexico rock properties (Fig. 16).  

Individual channel elements are not observable in the 15 Hz inverse model (Fig. 15A) and 

appear thicker than they are due to the results of tuning. They are seen at higher frequencies, 30, 

60, 90 and 180 Hz, and with a more accurate thickness, where the effects of tuning lessen (Fig. 

15). Channel element axis sandstone has a lower AI relative to the surrounding facies. At 90 and 

180 Hz, the channel element axis AI rises compared to lower frequencies, and it looks more similar 

to the background AI. 

MTDs, seen in dark blue, are not interpretable within the 15 Hz inverse model (Fig. 15A), 

and only two are seen in the 30 Hz model (Fig 15B.), but they gradually become more interpretable 

with increasing frequency. They are 5m thick and significantly thinner than channel elements, 

making them hard to detect at low frequencies. At 90 Hz (Fig. 15D) and 180 Hz (Fig. 15E), all 

MTDs in the model can be seen. They have a higher AI relative to the surrounding facies, making 

them easily distinguishable  
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Figure 15. Inverse models at varying frequencies, A-E, using shallow Offshore West Africa rock 
properties. 
 

Figure 16 shows the inverse model using deep Gulf of Mexico properties. Similar to the 

shallow rock property 15 Hz inverse model, individual channel elements are not observable, but 

at 30 Hz and 60 Hz they can be seen. Likewise, MTDs can start to be seen at 30 Hz (Fig. 16B) 

and are more easily distinguished at 60 Hz (Fig. 16C). Channel complex set surfaces can be seen 

at all frequencies modeled for both sets of rock properties (Fig. 16). The AI Range for the deep 
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Gulf of Mexico models is larger than that of the shallow offshore West Africa models. A few 

vertical, low AI stripes are also seen on the sides of the model and are artifacts from an unknown 

source, possibly from an issue with the input model (Fig. 16). These were not present in the AI 

models using the shallow offshore West Africa rock properties, although the same steps were 

taken to create both sets of models. However, the low AI stripes do not impact the model results 

and analysis since they are outside of the analysis area. 

 

Figure 16. Inverse models at varying frequencies, A-C, using deep Gulf of Mexico rock properties. 

 

Figure 17 provides a side-by-side comparison of each set of rock properties modeled at 30 

Hz. Overall, the image quality is similar and would allow for similar interpretations to be made 

(Fig. 17).  
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Figure 17. Inverse models at a frequency of 30 Hz, created using A,C) shallow offshore West 
Africa rock properties and B,D) deep Gulf of Mexico rock properties. 
 

See appendix B for figures with cross sections through the inverse models at each frequency. 

 

3.3 Summary 

 

Eight forward seismic and inverse models were created from the geocellular model. As 

frequency increased, so did the ability to resolve individual channel elements and MTDs, due to 

less tuning. Models created using shallow offshore West Africa rock properties had smaller 

tuning thickness than those created with deep Gulf of Mexico rock properties. These models 

serve as an important input for facies classification and the finding the probability of correct 

classification. Understanding what architecture can be interpreted from these models aids in the 

understanding of prediction models created in the next section.  

 



 

 

39 

CHAPTER 4: FACIES CLASSIFICATION 
 
 
 
4.1 Methodology 

 

Seismic facies classification from 3D seismic attributes provides a seismic-scale prediction 

of facies. However, results are rarely validated due to lack of a truth model. Herein the outcrop 

model serves as a foundation to quantify where and when channel architecture is accurately 

predicted from facies classification. Seismic facies probabilities are generated with Bayesian 

classification and correlated with the underlying geologic truth model to test 1) the probability of 

correct classification overall, and 2) the probability of correct classification as a function of 

different architectural styles (e.g., channel element stacking patterns). 

 

4.1.1 Bayesian Classification 

 

Bayesian classification (Eq. 3) is performed using a calibration with three synthetic wells 

derived from the “ground truth” facies model to classify the seismic response from collocated 

seismic traces (Fig. 18; e.g., Zhu and Journel, 1993; Goovaerts, 1997; Avseth et al., 2005).  

 

𝑷𝑷(𝑨𝑨|𝑫𝑫) =
𝑷𝑷(𝑨𝑨)𝑷𝑷(𝑫𝑫|𝑨𝑨) 𝑷𝑷(𝑫𝑫)

                                                         (3) 

 

In this equation showing the Bayesian classification, A = facies (e.g., axis, margin, inner 

levee, etc.), and D = inverted seismic attribute (P-impedance). P(A) is the overall probability of 

encountering facies A in the model, or the overall proportion of facies A. P(D) is the probability 

distribution of P-impedance values (Fig. 18). The calibration of facies (A) interpreted at the well 

location to P-impedance at a collocated seismic trace location (D) provides a filtered probability 
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distribution function, P(D), where A is present, hence P(D|A) (Fig. 18). This calibration is repeated 

for each defined facies [1,n]. 

Applying the calibration to the full seismic dataset generates models of the probability of 

encountering facies away from well locations. Therefore, the calibration is utilized to predict the 

probability of encountering facies, A, for a given value of P-impedance, D, resulting in P(A|D). 

The Bayesian classification results in probability models which can be used to determine the 

probability of correct vs. incorrect classification. 

 

 

Figure 18. Left: Conceptual diagram showing the probability curves and cumulative probability 
when no information. The probability is equal to the proportion of facies, so P(A|D) = P(A), and 
no information is provided from seismic. Classification is based off the global probability or the 
proportion of facies A. Right: Conceptual diagram showing the probability curves and cumulative 
probability when there is exact information. P(A|D) = 1. The seismic provides exact information 
and classification is based off the probability of facies A, which is perfectly calibrated with 
seismic. (Modified from CSS consortium materials) 
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4.1.2 Classification Evaluation 

 

The reliability of facies classification from the probability models is tested against the 

“ground truth” facies model  to quantify the probability of correct or incorrect classification overall 

and for channel element axis sandstone and mass transport deposits (MTDs). The probability of 

correct classification is evaluated and quantified using the Markov-Bayes calibration coefficient, 

or herein referred to as the “B value”, (Zhu and Journel, 1993; Goovaerts, 1997; Avseth et al., 

2005): 

 𝑩𝑩 = ∆𝝁𝝁 = 𝑬𝑬{𝑷𝑷(𝑨𝑨|𝑫𝑫)} − 𝑬𝑬{𝑷𝑷(𝑨𝑨�|𝑫𝑫)}                          (4) 

The B value provides a measure of facies prediction reliability by quantifying the expected 

value (E) of the probability of correct classification of a facies (e.g., channel element axis 

sandstone, A=1) from AI (D) minus the expected value of the probability of misclassification of a 

facies (not channel element axis sandstone, A=0) from AI (D). Simply put, B captures the expected 

value of a facies being predicted correctly where it exists minus the average value of the facies 

being predicted where it should not be. When B = 1, the average probability of correct 

classification is 1, and incorrect classification is 0 (B = 1 – 0, or perfect information) (Fig. 19). 

When B = 0, on average, the prediction will be right as many times as it is wrong (no information), 

and when B = -1, the probability of an incorrect classification is 1 (misinformation from D) (Fig. 

19). The B value (probability of correct classification) shows how well a seismic attribute (i.e., AI) 

is able to classify facies. 
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Figure 19. Left: The B value captures the expected value of a facies being predicted correctly 
where it exists (green line) minus the average value of the facies being predicted where it should 
not be (red line). Right: When the B value is 0, the seismic provides no information. When the B 
value is 1, it provides perfect information. With a rise in seismic frequency, a rise in B value was 
hypothesized. (CSS consortium materials) 

 

4.1.3 Evaluation of Facies by Frequency, Rock Properties and Architecture  

 

  The facies classification is evaluated by frequency, rock properties, and architecture. To 

evaluate the effect of frequency, the facies classification and evaluation was performed on all 8 

inverse models. Specifically, the effect of frequency was evaluated at frequencies of 15, 30, 60, 

90, and 180 Hz using the shallow offshore West Africa rock properties. Probability models of 

channel element axis sandstone and MTD facies were evaluated for correct classification due to 

their importance as reservoir (channel element axis) or flow baffles and barriers (MTD). 

  Probability models created at 15, 30, and 60 Hz using the deep Gulf of Mexico rock 

properties were compared to shallow offshore West Africa models at the same frequencies to 

evaluate the effects of rock properties. The probability of correct classification (B value) provides 

a quantitative measure to compare the effects of rock properties on facies classification of channel 
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element axis sandstone. MTD facies were not looked at using the deep Gulf of Mexico models. 

The effect of frequency was also analyzed on these three deep Gulf of Mexico models since they 

were created at three different frequencies.  

The global evaluation gives an indication for overall probability of correct classification 

(B value) for the entire dataset. We hypothesized that the B value would be a function of 

architecture, specifically, channel stacking patterns that vary throughout the dataset. However, 

stacking patterns are difficult to quantify. Jackson et al. (2019) showed that higher NTG was 

correlated with more vertically aligned (and connected) channel elements and a narrower channel 

system, thus NTG can be used as a proxy for stacking patterns. To quantify the changes in 

architecture throughout the dataset, the model was broken into 18 sectors and NTG and channel-

to-channel distance were calculated within each sector. The 18 sectors consist of 9 lower channel 

complex set containers and 9 upper channel complex set containers. Net is the proportion of sand 

within the sector volume (channel element axis sandstone), and gross is the total volume of the 

complex set container. Volumes of net and gross were found for each sector to find net to gross 

per sector. The background outer levee facies were not included in the NTG and B value 

calculations. Channel-to-channel distance is measured from the centerline at the base of the lowest 

channel to the next closest channel base, and so on to the top channel in the channel complex set. 

These two methods provided a way to quantify stacking patterns and thus allowed for quantitative 

comparison with the B value. 

4.2 Results 

 

This section presents an overview of the results from the Bayesian classification and the 

classification evaluation. The classification evaluation is further sectioned into 1) facies by 

frequency and rock properties and 2) architecture by channel element stacking pattern.  
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4.2.1 Bayesian Classification 

 

The Bayesian classification used a calibration with three synthetic wells derived from the 

“ground truth” facies model to classify the seismic response from collocated seismic traces (Fig. 

20). The three wells were placed in the north, south, and middle of the channel system. The 

calibration is utilized to predict the probability of encountering facies, A, for a given P-impedance 

value, D, for example shown in blue-green on Figure 20, resulting in P(A|D), shown by a black 

box on the upper right side of Figure 20. For this example, the probability of encountering sand is 

higher than the probability of encountering any other facies, given this P-impedance (Fig. 20). 

 

Figure 20. Left: Well logs at the south pseudowell showing assigned AI, facies, the seismic model 
at 30 Hz using offshore West Africa rock properties, and the AI model at 30 Hz. Black boxes show 
where the AI in the well correlates with AI in the cumulative probability distribution. Upper Right: 
Cumulative probability, P(A|D), from the well to seismic calibration. Lower Right: Probability 
curves, P(A|D), from the well to seismic calibration. Channel element axis sandstone and mass 
transport deposits (MTDs) have the highest P(A|D). (Modified from CSS consortium materials) 
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This classification provides a filtered probability distribution function, P(D), where A is 

present, hence P(D|A) at all points in the model, allowing prediction of AI values away from the 

well location. This results in a probability model for each of the 6 facies (Fig. 21). Channel element 

axis sand and MTD facies had the highest probabilities, near one in some parts of the probability 

models (Fig. 21). The other four facies, channel off-axis, channel margin, inner levee, and outer 

levee, had low probabilities, near 0 in some cases.  The classification probability models were 

evaluated using the B value, and results are described in the next section.  

 

Figure 21. Probability models for each facies from Bayesian classification with three calibration 
wells. The calculated B value for each facies is shown, using shallow rock properties. Negative B 
values result when the average probability of incorrect classification is great then the probability 
of correct classification. 
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4.2.2 Classification Evaluation 

The classification evaluation shows that channel element axis sandstone and MTD facies 

have the highest probability of correct classification (i.e., B value; Fig. 21). The other four facies 

have low B values, as expected from the low probabilities shown throughout the models overall 

and are not further discussed (Fig. 21). Figure 22 shows the Bayesian classification results and the 

corresponding B values. Figure 22A shows the location of one of the three pseudowells used in 

the model. Figure 22B provides an example showing channel element axis sandstone probability, 

P(A|D), where A is channel element axis sandstone and D is P-impedance at a collocated seismic 

trace location, from Bayesian classification. The mean value of the probability of correct prediction 

(Fig. 22C) minus the mean value of the probability of incorrect prediction (Fig. 22D), provides the 

probability of correct classification, also called the B value. The classification was evaluated by 

frequency, rock properties, and architecture using stacking patterns. 

 

Figure 22.  Facies classification and analysis that starts with an A) inversion model and synthetic 
well used in calibration for Bayesian classification that produces B) channel element axis 
sandstone probability, P(A|D), where A is channel element axis sandstone and D is AI, from 
Bayesian classification. This model (B) has a B value (probability of correct classification) of 
0.469 resulting from the difference of the mean value of the probability of correct prediction 
(shown in C) and the mean value of the probability of incorrect prediction (shown in D). 
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4.2.2.1 Facies by Frequency and Rock Properties 

 

            The classification response to seismic frequency and rock properties is examined. 

Probability models were produced using Bayesian classification for each of the six facies in the 

model and for all frequencies and rock properties (e.g., shallow OWA, 30Hz; Fig. 21). Of these 

six facies, channel element axis sandstone and MTD facies were evaluated for correct 

classification. Facies classification is evaluated by frequency using shallow rock properties and 

then by rock properties (e.g., shallow vs. deep). Sensitivity to seismic frequency is tested using 

frequencies of 15, 30, 60, 90, and 180 Hz and the model created using shallow rock properties. 

Various seismic frequencies are available in industry, depending on the stage of the project. With 

increasing frequency, probability of correct classification (B value) increased for channel element 

axis sandstone (Figs. 23 and 24). Likewise, probability of correct classification (B value) increased 

for MTDs with increasing frequency (Figs. 23 and 25). 

 

 

Figure 23. Channel element axis sandstone B value (probability of correct classification) increases 
gradually up to 60 Hz, then decreases gradually with increasing frequency, while B value 
(probability of correct classification) increases steeply for MTDs. Channel element axis sandstone 
is tuned at frequencies below the dashed yellow line. MTDs are tuned at frequencies below the 
dashed red line. 
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Figure 24. Probability models for channel element axis at each frequency, A-E, from Bayesian 
classification with three calibration wells. The calculated B value for each model is shown, using 
shallow rock properties. Channel element axis sandstone B value (probability of correct 
classification) decreases with increasing frequency.  
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Figure 25. Mass transport deposit (MTD) probability models at each frequency, A-E, from 
Bayesian classification with three calibration wells. The calculated B value for each model is 
shown, using shallow rock properties. MTD B value (probability of correct classification) 
increases with increasing frequency. 
 

Three additional models were created at varying frequencies of 15, 30, and 60 Hz using 

the deep Gulf of Mexico rock properties (Fig. 26). The facies classifications of these models were 

compared to the shallow Offshore West Africa rock properties at 15, 30, and 60 Hz (Fig. 26). 

When comparing shallow offshore West Africa rock properties and deep Gulf of Mexico rock 

properties, the probability of correct classification (B value) is higher for deep rock properties than 

shallow rock properties at all frequencies compared (Figs. 27 and 28). This result was 

counterintuitive but may result from the fact that the deep rock properties have a wider AI range 
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than the shallow rock properties. At deeper depths, compaction has a greater effect on the rocks, 

and sand becomes more compacted and less porous than shale due to cementation (Regenauer-

Lieb et al., 2018). This is likely why the deep rock properties have a wider AI range than the 

shallow rock properties.  

 

 

Figure 26. Probability models for channel element axis sandstone at each frequency, A-C, from 
Bayesian classification with three calibration wells. Rock properties used are from the deep Gulf 
of Mexico. The calculated B value for each facies is shown, using deep rock properties. Probability 
of correct classification (B value) increases with increasing frequency. 
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Figure 27. Probability of correct classification (B value) is higher at frequencies modeled, 15, 30, 
and 60 Hz, for Deep GOM rock properties in comparison with Shallow OWA rock properties. 
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Figure 28.  Probability models for channel element axis from Bayesian classification with three 
calibration wells. The calculated B value is shown, at varying frequencies, A-C, using shallow 
offshore West Africa rock properties and D-F using deep rock properties from the Gulf of Mexico. 
Probability of correct classification (B value) is higher for facies classification of models using 
deep rock properties from the Gulf of Mexico compared to models using shallow rock properties 
from offshore West Africa.  
 

4.2.2.2 Architecture by Channel Element Stacking Pattern 

 

Classification is evaluated by architecture using channel element stacking patterns. The 

hypothesis is that interference from successively stacked channel elements reduces channel 

element sandstone axis imaging due to the loss of AI contrast. The hypothesis is tested by 

evaluating stacking patterns using 1) NTG within channel complex set containers as a proxy for 

stacking (i.e., high NTG represents vertically aligned/stacked channel elements and low NTG 
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represents channel elements that are spread out), and 2) the cumulative distance between stacked 

channel elements. To do so, the model is broken up into eighteen sectors, representing upper and 

lower channel complex set containers, and NTG within channel complex set containers is 

evaluated by sector (Fig. 29).  

 

Figure 29.  North to South cross section sectors through the facies model showing an array of 
stacking patterns present. Each of the nine sectors is further broken apart into two sectors, one 
for the upper channel complex set, and one for the lower channel complex set, resulting in 
eighteen sectors overall representing channel complex set containers at 9 cross-sections through 
the model. Net-to-gross (NTG) and stacking distance (SD) are labeled by sector. 
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Using NTG as a proxy for stacking, organized stacking patterns correlate with higher 

NTG, while disorganized stack patterns correlate with lower NTG (Fig. 30). This supports the 

hypothesis that interference from successively stacked channel elements (i.e., high NTG, 

reduces channel sandstone axis imaging due to the loss of AI contrast). This is true for models 

using both sets of rock properties (Fig. 31). 

 

Figure 30. A) Plot of probability of correct classification (B value) vs. NTG where net is defined 
as the channel element axis sandstone. Organized stacking patterns (B,D) show lower B values 
than disorganized stacking patterns (C,E). 
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Figure 31.  B value (probability of correct classification) for channel element axis sandstone 
decreases as net-to-gross (NTG) increases for each of the 18 sectors (30 Hz models) using both 
sets of rock properties, showing how predictability is stronger when channel elements are isolated 
in background facies. 
 
 

Another way to capture stacking patterns is through the cumulative distance between 

successively stacked channel elements or stacking distance (Fig. 32). Stacking distance and NTG 

have a negative association (Fig. 33). Channel complex sets with a short stacking distance were 

organized or vertically aligned (higher NTG), whereas a longer stacking distance meant the 

channel elements were more disorganized or laterally spread out (lower NTG). Probability of 

correct classification (B value) was found to be higher for disorganized stacking patterns, which 

had a lower NTG and a longer stacking distance, compared to organized stacking patterns, which 

had a higher NTG and a shorter stacking distance (Fig. 32). Disorganized stacking patterns isolate 

channel elements within background levee facies, allowing for better imaging of top and base of 

sandstone, and thus more accurate prediction.  
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Figure 32. A) Plot of probability of correct classification (B value) vs. channel-to-channel 
stacking distance. Organized stacking patterns with shorter channel-to-channel stacking distance 
(B, D) show lower B values than disorganized stacking patterns with longer channel-to-channel 
stacking distance (C, E), similar to net-to-gross (NTG) results in Fig. 30. 
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Figure 33. Net-to-gross (NTG) vs stacking distance values for each of the 18 sectors. They are 
negatively correlated with an R2 value of 0.481.  

 

Plotting the B values at each of the 5 frequencies tested for channel element axis sandstone 

using OWA rock properties vs NTG provides further insight (Fig. 34). B values decrease most 

sharply with increasing NTG at 15 Hz, while also decreasing at 30, 60, and 90 Hz. At 180 Hz, B 

values increase slightly. Thus NTG is seen to have the largest impact on the 15 Hz model and the 

least impact on the 180 Hz model.   
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Figure 34. B values for channel element axis sandstone using offshore West Africa rock 
properties vs net-to-gross (NTG) for each of the eighteen sectors. B values decrease most sharply 
with increasing NTG at 15 Hz. At 180 Hz, B values increase slightly.  

 
4.3 Summary 

The results of this study indicate that inverted 3D seismic models show increasing 

probability of correct facies classification for channel element axis sandstone with increasing 

seismic frequency. The results also show increasing probability of correct facies classification for 

MTDs with increasing seismic frequency. Both results can be explained by the greater impact of 

tuning at lower frequencies. 3D synthetic seismic models created using deeper rock properties 

have a higher correct predictability than the models created with shallower rock properties.   
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The hypothesis that interference from successively stacked channel elements reduces 

channel element sandstone axis imaging due to the loss of AI contrast proved to be true. Stacking 

patterns were evaluated using 1) NTG within channel complex set containers as a proxy for 

stacking and 2) the cumulative distance between stacked channel elements. There is the highest 

probability of correct classification where there is a large contrast of AI. This is driven by 

architecture (i.e., channel stacking patterns and MTD location and thickness). 
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CHAPTER 5: DISCUSSION 
 
 
 

The results of this study will have implications for reservoir prediction and modeling. 

There are implications for interpretation and seismic attributes, and also implications for using 

probabilities for modeling. These results will be discussed in a broader context and in relation to 

other relevant studies.  

 

5.1 Implications for Interpretation and Seismic Attributes 

 
This study seeks to quantitatively evaluate the preservation of deep-water channel 

architecture using 3D synthetic seismic modeling of outcrop data. Exploration seismic typically 

has 5 to ~20 Hz peak frequency, appraisal has >25 Hz peak frequency, and development scale has 

up to 50 Hz peak frequency (Stright et al., 2014; Nielson, 2019). Forward seismic modeling 

provides insight into what higher frequency data may look like if it was available.   

As frequency increased within the seismic and inverse models, so did the ability to resolve 

individual channel elements and mass transport deposits (MTDs), due to less tuning. Models 

created using shallow offshore West Africa rock properties had smaller tuning thickness than those 

created with deep Gulf of Mexico rock properties. Pemberton et al. (2018) noted that tuning effects 

result in composite seismic surfaces that were vertically displaced from their true location, 

inhibiting accurate interpretation. Similar to this work, at low frequencies (i.e., 15 and 30 Hz), 

neither the confined channel strata at Laguna Figueroa nor the mixed channel and scour 

architecture at Arroyo Picana were clearly resolved (Pemberton et al., 2018). 

The seismic volumes in this study were inverted to create acoustic impedance models. 

Well-to-seismic calibration from these models was used to predict facies away from well control. 
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Factors affecting the quality of this prediction include: the amount of impedance variations in rock 

properties, quality of the seismic data, and reliability of the impedance volume (Cerney and Bartel, 

2012). Thus, the input seismic has a large effect on the quality of the output impedance models. 

Factors affecting the inversion output also include quality of the input parameters for the inversion 

and the inversion technique itself (Cerney and Bartel, 2012). Seismically derived impedances are 

band-limited because the input seismic data are frequency band-limited (Cerney and Bartel, 2012). 

Low frequency models are used to correct for this. This study had a simple low frequency model 

which consisted of a prior model cube of P-impedance with a single value of 5.04 kPa.s/m. This 

simple choice allowed quick creation of the inverse models. A more complex, advanced low 

frequency model may have led to a better inversion, and thus better interpretation from acoustic 

impedance, and better well-to-seismic calibration for the facies prediction.  

 
5.2 Implications for Modeling and Probabilities for Modeling 

 

The results of this study indicate that inverted 3D seismic models show increasing 

probability of correct facies classification (B value) for channel element axis sandstone with 

increasing seismic frequency. Channel element axis sandstone B value increases gradually up to 

60 Hz, then decreases gradually with increasing frequency of 90 and 180 Hz. One possible reason 

for this is that at higher frequencies, less contrast was seen in the inverse models where there were 

stacked channels (Figs. 15 and 16). It is possible in these areas, the AI value reverted to the value 

of the LFM model, which used the AI of shale. Results also showed B values increased steeply 

for MTDs with increasing frequency. This is because at frequencies less than 150 Hz, the 5m thick 

MTDs are below tuning thickness. Tomasso et al. (2006) came to the same conclusion when 

modeling a deep-water slope within the Brushy Canyon Formation of west Texas: that 
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resolvability of architectural elements in seismic is dependent upon object thickness and tuning 

thickness.  

The probability of correct classification was higher for deep rock properties in 

comparison to shallow rock properties. This was contrary to what was expected. AI is known to 

increase with depth (Bakke et al., 2013) as is shown within the deeper rock properties used.  At 

deeper plays, the frequency of the seismic signal decreases, which present resolution and 

imaging issues with seismic data (Schwab et al., 2007). Since the model used does not have 

noise incorporated, this could be one reason the deeper model did not show a lower probability 

of correct classification as expected. There would be more noise in a deeper seismic section 

compared to a shallower seismic section. The probability of higher correct classification for deep 

rock properties in comparison to shallow rock properties may also result from the fact that the AI 

range of the deep rock properties is greater than the AI range of the shallow rock properties, 

providing greater AI contrast. 

Numerous studies have created forward seismic reflectivity models from outcrop data to 

provide insight into what heterogeneity is preserved in a filtered seismic response. Much of this 

work has been done in 2D, creating synthetic seismic lines (Biddle et al., 1992; Stafleu and 

Schlager, 1995; Campion et al., 2000; Gartner et al., 2001; Tomasso et al., 2006; Schwab et al., 

2007; Falivene et al., 2010; Stright et al., 2014), but more recent work has been done in 3D, 

generating synthetic seismic volumes (Falivene et al., 2010; Pemberton et al., 2018).  

Similarly, Schwab et al. (2007) looks at the effect of channel stacking architecture on 

seismic response. A simple impedance model with two facies is used to create the 2D synthetic 

seismic sections. It consists of channel sandstone and a background mud, but lacks the ability to 

capture heterogeneity from channel axis to margin. Lateral and offset channel configurations were 



 

 

63 

modeled at 30, 40, and 50 Hz. They noted the importance of 3D seismic to verify lateral accretion 

architecture seen on 2D seismic. Access to 3D data is important since stacking patterns can have 

a significant impact on facies predictability.  

These results provide a quantitative measure of how well facies can be classified from 

inverted seismic attributes (P-impedance). Identifying how architecture impacts prediction can 

help scientists understand which scenarios may be risker due to a lower probability of correct 

facies classification. A higher probability of correct prediction will aid in building better dynamic 

models for flow modeling. Thus, models with laterally stacked channel elements and higher NTG 

may be more accurate than those with vertically stacked channel elements and lower NTG. 

Understanding these results can aid in modeling.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 
 
 
 

6.1 Conclusions 

 
Forward seismic and inverse models were created of a deep-water channel system for a 

range of frequencies from 15 – 180 Hz using two sets of rock properties from shallow offshore 

West Africa and the deep Gulf of Mexico. The probability of correctly classifying facies was 

tested using a Bayesian classification and a Markov-Bayes calibration coefficient. Channel 

element axis sandstone had increasing probability of correct classification up to 90 Hz, with a 

slight decrease seen at 120 and 180 Hz. Mass transport deposits (MTDs) are not predicted well 

at 15 and 30 Hz, but with increasing frequency the effects of tuning on the 5m thick MTDs 

lessen and the probability of correct classification improves. 

There is a highest probability of correct classification where there is a large contrast of 

AI.  This is driven by architecture - channel element stacking patterns and MTD location and 

thickness. Lower NTG and disorganized stacking leads to a higher probability of correct 

classification due to isolating and imaging individual channel elements. There is a higher 

probability of correct classification for deep rock properties compared to shallow rock 

properties, possibly due to a wider spread of AI values for the deep rock properties.  

In summary, laterally stacked or disorganized architecture leads to a better prediction of 

facies. Thus, there can be higher confidence when modeling channel systems with this 

architecture, in comparison to vertically stacked or organized channels. Understanding channel 

architecture can reduce uncertainty in geologic modeling. 
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6.2 Future Work 

 

 Future work on this study can test the impact of noise using both sets of rock properties 

since this study did not use noise. The deeper set could be tested with more noise than the 

shallow set because deeper sections tend to be nosier. Testing the impact of noise may make the 

seismic data and impedance data look more realistic. Other seismic attributes such as 

instantaneous frequency and phase might be used in similar ways to how amplitude was used in 

this study.   

Data from this study can also be run through a machine learning workflow. Machine 

learning may increase the probability of correct classification. It may also provide insight as to 

what variables are affecting the prediction the most.  

Future work could use full elastic pre-stack inversion instead of post stack inversion. Full 

elastic pre-stack inversion produces multiple impedance attributes including P-impedance, s-

impedance, and density. Using three attributes (i.e., Vp, Vs, and density) instead of one (Vp) 

may increase the probability of correct facies classification. The AVO class of the seismic could 

also be interpreted from the pre-stack seismic cubes.  

 Lastly, future work could include a more detailed low frequency model. A simple p-

impedance cube was used. A more detailed low frequency model can be built using the 

pseudowells in the model. Additional pseudowells can be added in the inner and outer levee 

areas so the model is not biased toward channel axis element sandstone, channel off-axis, and 

channel margin. When used correctly, low frequency models can lead to a more accurate 

inversion. They can also lead to a worse inversion if they are not built correctly. A variety of low 

frequency models could be made and tested to see which performs best.  
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APPENDIX A: FORWARD SEISMIC MODELS 
 
 
 

 
 
Figure A1. Sectors of the 3D forward seismic model at 15 Hz using shallow offshore West 
Africa rock properties.  
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Figure A2. Sectors of the 3D forward seismic model at 30 Hz using shallow offshore West 
Africa rock properties. 
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Figure A3. Sectors of the 3D forward seismic model at 60 Hz using shallow offshore West 
Africa rock properties. 
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Figure A4. Sectors of the 3D forward seismic model at 90 Hz using shallow offshore West 
Africa rock properties. 
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Figure A5. Sectors of the 3D forward seismic model at 180 Hz using shallow offshore West 
Africa rock properties. 
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Figure A6. Sectors of the 3D forward seismic model at 15 Hz using deep Gulf of Mexico rock 
properties. 
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Figure A7. Sectors of the 3D forward seismic model at 30 Hz using deep Gulf of Mexico rock 
properties. 
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Figure A8. Sectors of the 3D forward seismic model at 60 Hz using deep Gulf of Mexico rock 
properties. 
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APPENDIX B: INVERSE MODELS: 
 
 
 

 
 

Figure B1. Sectors of the 3D inverse model showing acoustic impedance (g/cm3 km/s) at 15 Hz 
using shallow offshore West Africa rock properties.  
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Figure B2. Sectors of the 3D inverse model showing acoustic impedance (g/cm3 km/s) at 30 Hz 
using shallow offshore West Africa rock properties.  
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Figure B3. Sectors of the 3D inverse model showing acoustic impedance (g/cm3 km/s) at 60 Hz 
using shallow offshore West Africa rock properties.  
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Figure B4. Sectors of the 3D inverse model showing acoustic impedance (g/cm3 km/s) at 90 Hz 
using shallow offshore West Africa rock properties.  
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Figure B5. Sectors of the 3D inverse model showing acoustic impedance (g/cm3 km/s) at 180 Hz 
using shallow offshore West Africa rock properties.  
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Figure B6. Sectors of the 3D inverse model showing acoustic impedance (g/cm3 km/s) at 15 Hz 
using deep Gulf of Mexico rock properties.  
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Figure B7. Sectors of the 3D inverse model showing acoustic impedance (g/cm3 km/s) at 30 Hz 
using deep Gulf of Mexico rock properties.  
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Figure B8. Sectors of the 3D inverse model showing acoustic impedance (g/cm3 km/s) at 60 Hz 
using deep Gulf of Mexico rock properties.  
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