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ABSTRACT OF DISSERTATION

MULTIPLICITIES AND EQUIVARIANT COHOMOLOGY

The aim of this paper is to address the following problem: how to relate the

algebraic definitions and computations of multiplicity from commutative algebra

to computations done in the cohomology theory of group actions on manifolds.

Specifically, this paper is concerned with applications of commutative algebra to

the study of cohomology rings arising from group actions on manifolds, in the way

that Quillen initiated in [Qui71a, Qui71b]. This paper synthesizes two distinct

areas of pure mathematics (commutative algebra and cohomology theory) and two

ways of computing multiplicities in order to link them, a la Quillen [Qui71a] and

Maiorana [Mai76]. In order to accomplish this task, a discussion of commutative

algebra will be followed by a discussion of cohomology theory. A link between

commutative algebra and cohomology theory will be presented, followed by its

application to a significant example.

In commutative algebra, we discuss graded rings, Poincaré Series, dimension,

and multiplicities. Whereas the theory for multiplicities has been developed for

local rings, we give an exposition of the theory for graded rings. Several definitions

for dimension will be presented, and it will be proven that all of these distinct

definitions are equal. The basic properties of multiplicities will be introduced, and

a brief discussion of a classical multiplicity in commutative algebra, the Samuel

multiplicity, will be presented. Then, Maiorana’s C-multiplicity will be defined,

and a relationship between all of these multiplicities will be observed.

iii



In cohomology theory, we address smooth actions of finite groups on mani-

folds. As a part of this study in cohomology theory, we will consider group actions

on topological spaces and the Borel construction (equivariant cohomology), com-

pleting this part of the paper with a discussion of smooth (or differentiable) actions,

setting some notation necessary for our discussion of Maiorana’s results in [Mai76],

which inspires some of our main theorems, but which we do not actually rely on

in this dissertation.

Following the treatments of commutative algebra and cohomology theory, we

present Quillen’s main result of [Qui71a] without proof, linking these two distinct

areas of pure mathematics. Quillen’s work results in a formula for finding the

multiplicity of the equivariant cohomology of a compact G-manifold with G a

compact Lie group. We apply these results to the compact G-manifold U/S, where

G (a compact Lie group) is embedded in a unitary group U = U(n) and S = S(n)

is the “diagonal” p-torus of rank n in U(n), resulting in a nice topological formula

for computing multiplicities. Finally, we end the paper with a proposal for future

research.

Rebecca E. Lynn
Department of Mathematics

Colorado State University
Fort Collins, Colorado 80523

Spring 2010
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Chapter 1

TOPICS FROM COMMUTATIVE ALGEBRA

In this chapter, we develop the theory for multiplicities in the graded case.

The material in this chapter follows the exposition of [Eis95] and [Ser00], who

develop the theory for local rings. Many of the proofs follow directly from Serre’s

exposition with some minor notational adjustments, in which case the proof is not

provided here. However, when there are more significant differences, we sometimes

provide the proof. In addition, we define Maiorana’s C-multiplicity and relate the

C-multiplicity to more classical multiplicities. It is assumed that the reader has

a firm understanding of basic concepts in module theory over commutative rings.

Additional sources include [Gro61], [Tha07], [DF99], [Eve91], and [AM69].

1.1 Graded Rings and Modules

We will claim that the cohomology ring of a group G with coefficients in Λ,

H∗(G,Λ) = ⊕
n≥0

Hn(G,Λ), forms a graded ring under particular conditions. For the

purposes of this paper, we present only the basics of graded rings and modules in

this section.

1.1.1 Basic Definitions for Any Graded Ring

Definition 1.1.1. Let S be a ring, not necessarily commutative, with identity. S

is graded if there exists a family of abelian subgroups Sn, n ∈ Z, of S such that

S = ⊕
n∈Z

Sn and Sn ·Sm ⊆ Sn+m for all n,m ∈ Z. A graded ring S is nonnegatively

graded if Sn = 0 for all n < 0. A non-zero element x ∈ Sn is a homogeneous

element of S of degree n. We define zero to be homogeneous of every degree.
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If S = ⊕
n∈Z

Sn is a graded ring, then S0 is a subring of S and Sn is an S0-module

for all n.

Definition 1.1.2. Let S = ⊕
n∈Z

Sn be a graded ring. If x ∈ S, x =!
∑
x(i) where

x(i) ∈ Si and x(j) = 0 for all but finitely many j. x(i) is the homogeneous compon-

tent of x of degree i.

Definition 1.1.3. An ideal of a graded ring S is a homogeneous (or graded) ideal

if and only if I = ⊕
n∈Z
In where In = I

⋂
Sn.

The terms “homogeneous” and “graded” will be used interchangeably when

applied to ideals in this paper.

Proposition 1.1.4. An ideal I is homogeneous if and only if for all x ∈ I, the

homogeneous components of x are all in I. That is, I is homogeneous if and only

if for all x ∈ I, x can be written uniquely as
∑
x(i) where x(i) ∈ Si, and x(i) ∈ I.

For an example of a nonhomogeneous ideal, consider the polynomial ring k[x]

where x has degree 1. Then

k ⊕ kx⊕ kx2 ⊕ kx3 ⊕ · · ·

is a graded ring given this grading. Let I = (x + 1). Then x + 1 ∈ I. Consider

x+ 1 written with the zeroth homogeneous component and the first homogeneous

component: (x + 1)(0) + (x + 1)(1). Since (x + 1)(0) = 1 is not in I, then I is not

a homogeneous ideal. (Note that (x + 1)(1) = x is not in I either.) On the other

hand, (x) is a homogeneous ideal in the graded ring k ⊕ kx⊕ kx2 ⊕ kx3 ⊕ · · · .

Proposition 1.1.5. If I is a homogeneous ideal of a graded ring S, then S/I is

a graded ring, using the definition (S/I)n=̇Sn/(I ∩ Sn)=̇Sn/In.

Note that any commutative ring A may be regarded as a graded ring “con-

centrated in degree zero;” i.e., A0 = A and Ai = 0 for all i 6= 0.
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1.1.2 Nonnegatively Graded Rings and Graded Modules

Definition 1.1.6. Suppose R = R0 ⊕ R1 ⊕ · · · is a nonnegatively graded ring.

Then a graded module over R is a module M with a decomposition

M =
∞
⊕

i=−∞
Mi as abelian groups

such that RiMj ⊂Mi+j for all i, j.

We can define a graded vector space over the field k (regarded as a graded

ring concentrated in degree zero) similarly.

One way of forming graded rings and modules, given an ideal I in a ring A is

as follows.

Definition 1.1.7. Let I be an ideal of a ring A, not necessarily graded. We define

the associated graded ring of A with respect to I, denoted gIA, to be the graded

ring

gIA := A/I ⊕ I/I2 ⊕ · · · where (gIA)n =̇In/In+1.

For a ∈ Im/Im+1 and b ∈ In/In+1 with representatives a′ and b′ of a in Im and

b in In, respectively, we define ab ∈ Im+n/Im+n+1 to be the image of a′b′. Notice

that this is well-defined, modulo Im+n+1. This defines multiplication in gIA.

Similarly, if M is a A-module, not necessarily graded, we can define the asso-

ciated graded module as follows.

Definition 1.1.8. If M is a A-module and I is an ideal in A, not necessarily

graded, the associated graded module of M with respect to I, denoted gIM , is the

graded module

gIM := M/IM ⊕ IM/I2M ⊕ · · · .

Note that gIM is a graded gIA-module.

If R is a nonnegatively graded ring and M is a graded R-module, we can alter

M by “shifting” (or “twisting”) its grading d steps.

3



Definition 1.1.9. Define M(d) to be the shifted graded module (or, dth twist of

M) such that

M(d)e = Md+e.

Definition 1.1.10. For R a nonnegatively graded ring, an R-module homomor-

phism of degree zero does not change degree; that is, if M and N are graded

R-modules, then φ : M → N is an R-module homomorphism of degree zero if and

only if φ : Mi → Ni for all i.

1.2 Results from Grothendieck

We summarize some useful definitions and results from Grothendieck [Gro61]

in this section. Assume that R is a nonnegatively graded ring, but R0 is not

necessarily a field. A graded R-module M need not be nonnegativley graded.

Definition 1.2.1. Define the “superfluous” or “irrelevant” ideal of R

R+=̇ ⊕
n≥1

Rn.

Note that if R0 is a field, then R+ is the unique graded (homogeneous) maximal

ideal in R.

Definition 1.2.2. If d > 0, define

R(d)=̇ ⊕
n≥0

Rnd.

This is also a graded ring.

Definition 1.2.3. If d > 0 and i is an integer such that 0 ≤ i ≤ d− 1, then define

M(d,i)=̇ ⊕
n∈Z

Mnd+i.

Note that M(d,i) is an R(d)-module.
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Lemma 1.2.4. [Gro61, Lem. 2.1.3, Cor. 2.1.4, Cor. 2.1.5]. Let R be a nonneg-

atively graded ring.

a. E ⊆ R+ (consisting of homogeneous elements) generates R+ as an R-module

if and only if E generates R as an R0-algebra.

b. R+ is a finitely generated ideal in R if and only if R is a finitely generated

R0-algebra.

c. R is Noetherian if and only if R0 is Noetherian and R is a finitely generated

R0-algebra.

Proposition 1.2.5. [Gro61, Lem. 2.1.6]. Suppose that R is a nonnegatively

graded ring and that M is a finitely generated graded R-module.

a. For all n ∈ Z, Mn is a finitely generated R0-module, and there exists an

n0 ∈ Z such that Mi = 0 for i ≤ n0.

b. There exists an n1 ∈ Z and a positive integer i such that for every n ≥ n1,

Mn+i = RiMn.

c. For every (d, i), where d is a positive integer and i is an integer, 0 ≤ i ≤ d−1,

M(d,i) is a finitely generated R(d)-module.

d. For every positive integer d, R(d) is a finitely generated R0-module.

e. There exists a positive integer i such that Rmi = (Ri)
m, for every m ≥ 0.

f. For every positive integer n, there exists a nonnegative integer m0 such that

Rm ⊆ Rn
+, for m ≥ m0.

Corollary 1.2.6. [Gro61, Cor. 2.1.7]. If R is Noetherian, then so is R(d) for all

d > 0.

5



1.3 The Category C(R)

From this point forward, R will be a nonnegatively graded commutative ring,

with R0 = k, a fixed field. We begin by defining the category C(R) and the direct

sum for modules in this category.

Definition 1.3.1. For R a nonnegatively graded commutative ring with R0 = k,

a fixed field, the category C(R) has as its objects the graded R-modules that are

finitely generated as graded R-modules, with all nonzero homogeneous elements

having nonnegative degree. The morphisms of C(R) are the R-module homomor-

phisms of degree zero.

Definition 1.3.2. Let M,N ∈ C(R). Then M⊕N ∈ C(R) is the graded R-module

defined by

(M ⊕N)i =̇Mi ⊕Ni.

We will not have to define the arbitrary graded tensor product M⊗RN , which

is defined by Grothendieck [Gro61], but we do define M ⊗k N .

Definition 1.3.3. Let M,N ∈ C(R) and let k be the field R0. Then M ⊗k N is

the graded vector space over k defined by

(M ⊗k N)i =̇ ⊕
0≤j≤i

Mj ⊗k Ni−j.

1.3.1 C(R) when R is Noetherian

We will assume that R is finitely generated as a k-algebra (thereby imply-

ing that R is Noetherian) by a set of homogeneous elements of positive degree.

Note that from the usual proofs in the non-graded case, for all M ∈ C(R), every

submodule and quotient of M is in C(R) as well.

The following three propositions are proven in this paper and will be utilized

later in the paper as we develop our theory for graded rings.
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Let R be a nonnegatively graded ring, such that R0 = k, a field. The super-

fluous ideal

m = R+ = ⊕
n≥1

Rn

is the unique graded homogeneous maximal ideal in R. Consequently, for R = ⊕Rn

with R0 = k and Rn = 0 for n < 0, we see that R/m = k as graded rings

concentrated in degree zero. Note also that k is a graded submodule of R.

Proposition 1.3.4. Suppose that M ∈ C(R). For every n ≥ 0, M/mnM is a

finite dimensional graded vector space over k.

Proof. By the Noetherian hypotheses, miM is a finitely generated graded R-

module for all i, so that for all j ≥ i, miM/mjM is a finitely generated graded

R-module. Thus, miM/mi+1M is a finitely generated R/m-module, so it is a finite

dimensional vector space over k for all i. Notice that M/mnM has a finite filtration

0 ⊆ mn−1M/mnM ⊆ · · · ⊆ mM/mnM ⊆M/mnM

such that successive quotients are finite dimensional graded vector spaces over k.

Therefore, M/mnM is a finite dimensional graded vector space over k.

For the following proposition, we need some notation. If α = (α1, . . . , αt) is

a multi-index of nonnegative integers, we say the degree of α is α1 + · · · + αt.

If w1, . . . , wt ∈ m are homogeneous elements, the graded subring of R generated

by k and w1, . . . , wt will be denoted by k 〈w1, . . . , wt〉. The superfluous ideal in

k 〈w1, . . . , wt〉 will be denoted by m(w), and the monomial wα denotes wα1
1 · · ·wαt

t .

Proposition 1.3.5. Suppose that I ⊆ R is an ideal in R generated as an R-module

by homogeneous elements w1, . . . , wt ∈ m. Then, if M ∈ C(R),

a. For every n ≥ 0, InM = m(w)nM .

b. M/IM ∈ C(k) if and only if M/m(w)M ∈ C(k).
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Proof. For part (a), since m(w) ⊆ I, then m(w)nM ⊆ InM for all n ≥ 0. On the

other hand, suppose that x ∈ InM . Then there exist rα ∈ R and xα ∈ M such

that
x =

∑
deg(α)=n

rαw
αxα

=
∑

deg(α)=n

wα(rαxα), where rαxα ∈M for all α.

Thus x ∈ m(w)nM .

Part (b) follows naturally from part (a).

Proposition 1.3.6. Suppose that I ⊆ R is an ideal in R generated by homogeneous

elements w1, . . . , wt ∈ m. Then, if M ∈ C(R), the following are equivalent:

a. M ∈ C (k 〈w1, . . . , wt〉).

b. M/IM ∈ C(k).

c. M/InM ∈ C(k), for every n ≥ 0.

d. There exists an n0 > 0 such that mn0M ⊆ IM .

e. There exists an n0 > 0 such that mn0jM ⊆ IjM for every j ≥ 1.

Proof. For (a) ⇒ (b) and (a) ⇒ (c), apply Proposition 1.3.4 to k 〈w1, . . . , wt〉

and m(w). Then, M/m(w)nM is a finite dimensional graded vector space over k.

Applying Proposition 1.3.5, we get that M/IM ∈ C(k) and M/InM ∈ C(k) for

all n ≥ 0.

For (b) ⇒ (a), suppose that M/IM ∈ C(k). Then M/IM is a finite dimen-

sional vector space over k and there exist x1, . . . , xs, homogeneous elements of M

such that for x̃i=̇xi + IM , x̃1, . . . , x̃s is a basis for M/IM . Suppose there exists a

nonzero homogeneous element m0 ∈M such that m0 has least positive degree with

respect to not being in the span of x1, . . . , xs as a k 〈w1, . . . , wt〉-module. Then

m0 + IM =
s∑
i=1

aix̃i, ai ∈ k for all i

8



⇒ m0 −
s∑
i=1

aixi ∈ IM.

So there exist elements z1, . . . , zt ∈M such that

m0 −
s∑
i=1

aixi =
t∑

j=1

wjzj.

The degree of wj ∈ R is positive for all j, so the degree of zj is strictly less than

the degree of m0 for all j. Hence, zj is in the k 〈w1, . . . , wt〉-span of x1, . . . , xs and

m0 is in the k 〈w1 . . . , wt〉-span of x1, . . . , xs also.

For (d) ⇒ (b), there exists n0 > 0 such that mn0M ⊆ IM . Hence, M/IM ⊆

M/mn0M and M/IM is finite dimensional over k by Proposition 1.3.4.

For (b) ⇒ (d), let M/IM ∈ C(k). Suppose that x1, . . . , xs are homogeneous

elements of M such that, for x̃i = xi + IM , x̃1, . . . x̃s form a basis of M/IM as

a k-vector space. Let n0 − 1 = max{deg(xi) | i = 1, . . . , s}. Then, (M/IM)i = 0

for i ≥ n0. Hence, if z ∈ mn0M is a homogeneous element, then deg(z) ≥ n0, so

z ∈ IM and mn0M ⊆ IM .

For (d) ⇒ (e), suppose that n0 > 0 such that mn0M ⊆ IM . Fix j ≥ 1.

Assume that mn0jM ⊆ IjM . Then

mn0(j+1)M = mn0j (mn0M)
⊆ mn0jIM
= Imn0jM
⊆ IIjM
= Ij+1M.

1.3.2 Filtrations of Graded Rings

Definition 1.3.7. A filtration of a graded ring R is a sequence of homogeneous

ideals

· · · ⊆ F2(R) ⊆ F(R) ⊆ F0(R) = R

satisfying F i(R)F j(R) ⊆ F i+j(R) for all i, j. We say that R is a filtered ring if

a filtration exists. Similarly, a filtration of a graded R-module M over the filtered

9



ring R (where R has a specific filtration F•(R) given) is a sequence of graded

submodules

· · · ⊆ F2(M) ⊆ F(M) ⊆ F0(M) = M

satisfying F i(R)F j(M) ⊆ F i+j(M) for all i, j, and we say that M is a filtered

module if a filtration exists.

Filtrations are most often used in the case where the F j(R) are the jth powers

of a single graded ideal, I. This is called the I-adic filtration of R. We can

generalize to the case of modules where the I-adic filtration of a module M is

· · · ⊆ I2M ⊆ I1M ⊆ I0M = M.

Another filtration unique to graded rings is the “standard” filtration defined

by R(i)=̇ ⊕
j≥i

Rj. The standard filtration over the standard filtered ring R of a

graded module M =
∞
⊕

i=−∞
Mi is given by

· · · ⊆M (i+1) ⊆M (i) ⊆ · · ·

where M (i)=̇ ⊕
j≥i

Mj.

Another example of a filtration uses the functor Hom. Let the graded ring R

have a filtration, M a graded R-module, and N a graded R-module with filtration.

Then, the submodules HomR(M,Fn(N)) of HomR(M,N) define a filtration on

HomR(M,N).

Theorem 1.3.8. (Artin-Rees). [Ser00] Suppose that M ∈ C(R), L is a graded

submodule of M , and I is a graded proper ideal in R. Then, there exists an

m0 ≥ 0 such that

L ∩ Im+m0M = Im (L ∩ Im0M) ,

for every m ≥ 0.

The proof of Theorem 1.3.8 is the same as in the non-graded case.
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Definition 1.3.9. Suppose M ∈ C(R). Let

· · · ⊆ Fn(M) ⊆ Fn−1(M) ⊆ · · · ⊆ F1(M) ⊆ F0(M) = M

be a filtration of M by submodules F i(M) ∈ C(R), and let I be a graded proper

ideal in R. The filtration F(M) is I-bonne if Fn+1(M) ⊇ IFn(M) for every

n ≥ 0, and if F i+1(M) = IF i(M), for i >> 0.

Example 1.3.10. Examples of I-bonne filtrations.

a. The I-adic filtration

· · · InM ⊆ In−1M ⊆ · · · ⊆ I1M ⊆ I0M = M

is I-bonne.

b. Theorem 1.3.8 gives us that the filtration Fn(L) = L ∩ InM is I-bonne if L

is a graded submodule of M .

Throughout the rest of this chapter, we will often follow Serre’s exposition

in [Ser00] with some modifications in the graded case. We now define an ideal of

definition in the graded case, which is similar to Serre’s definition in the local case.

Definition 1.3.11. [Ser00] If M ∈ C(R), then an ideal of definition for M is

a graded ideal I ⊆ m (i.e., a graded proper ideal) such that M/IM is a finite

dimensional vector space over k.

Proposition 1.3.6 gives some equivalent conditions for an ideal to be an ideal

of definition which are useful.

Theorem 1.3.12. (See [Ser00].) Suppose that

0→ L→M → N → 0

is a short exact sequence in C(R), and that I is an ideal of definition for M . Then

I is also an ideal of definition for N and L.
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Proof. There exists a short exact sequence for all n ≥ 0

0→ L/(L ∩ InM)→M/InM → N/InN → 0.

Since I is an ideal of definition for M , we have that dimkM/InM < ∞. Thus,

dimk L/(L ∩ InM) < ∞ and dimkN/InN < ∞ for all n ≥ 0. This gives us that

I is an ideal of definition for N .

By Artin-Rees (Theorem 1.3.8), there exists m0 ≥ 0 such that

L ∩ Im0+mM = Im(L ∩ Im0M) ⊆ ImL

for every m ≥ 0. So, there exists a surjection

L/(Im(L ∩ Im0M))→ L/ImL

for all m ≥ 0. Therefore, dimk L/InL < ∞ for all n ≥ 0, and I is an ideal of

definition for L.

Corollary 1.3.13. If M ∈ C(R) and

· · · Fn(M) ⊆ Fn−1(M) ⊆ · · · ⊆ F1(M) ⊆ F0(M) = M

is a filtration of M by graded R-submodules, and I is an ideal of definition for M ,

then I is an ideal of definition for F i(M) and for F i−1(M)/F i(M) for every i.

Proof. Consider the short exact sequence

0→ F i+1(M)→ F i(M)→ F i(M)/F i+1(M)→ 0

for every i. We will proceed using induction on i.

For i = 0, we have the short exact sequence

0→ F1(M)→M →M/F1(M)→ 0.

By Theorem 1.3.12, since I is an ideal of definition for M , I is also an ideal of

definition for F1(M) and for M/F1(M).
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Suppose that I is an ideal of definition for F i−1(M) and for F i−2(M)/F i−1(M).

Consider the short exact sequence

0→ F i(M)→ F i−1(M)→ F i−1(M)/F i(M)→ 0.

By Theorem 1.3.12, we have that I is an ideal of definition for F i(M) and for

F i−1(M)/F i(M) for every i.

If w1, . . . , wt are homogeneous elements of the superfluous ideal in R, m, that

generate an ideal I in R, we define

gm(w)k 〈w1, . . . , wt〉 =̇A(w) = ⊕
n≥0

m(w)n/m(w)n+1,

the associated graded ring for m(w) ⊆ k 〈w1, . . . , wt〉. Now, A(w) is really a bi-

graded ring, but we disregard the grading that A(w) inherits from the grading

that k 〈w1, . . . , wt〉 has as a subring of R. That is, when we say “an element σ of

A(w) of degree s” we mean “σ ∈ m(w)s/m(w)s+1.” Note that A(w) is generated

as a graded k-algebra by a k-basis for m(w)/m(w)2, so A(w) is finitely generated

as a k-algebra by elements of degree one.

We define the graded A(w)-module

gIM=̇ ⊕
n≥0
InM/In+1M,

the associated graded module of M with respect to I. Note that gIM is also a

graded gIR-module. More generally, suppose that

· · · ⊆ Fn(M) ⊆ Fn−1(M) ⊆ · · · ⊆ F1(M) ⊆ F0(M) = M

is a filtration of M by submodules F i(M) ∈ C(R). The associated graded module

for the filtration is

gF(M)=̇ ⊕
n≥0
Fn(M)/Fn+1(M).

We disregard the grading that these associated graded modules inherit from M .

That is, we consider M(I) as a graded A(w)-module with the set of elements of

degree s being IsM/Is+1M .
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Proposition 1.3.14. Suppose that M ∈ C(R) and I is an ideal of definition for

M . Let F(M) be an I-bonne filtration of M . Suppose also that w1, . . . , wt are

homogeneous elements that generate I as an ideal in R. Then,

a. InM ⊆ Fn(M) for every n ≥ 0.

b. Fn(M)/Fn+1(M) is a finite dimensional vector space over k for every n ≥ 0.

c. M ∈ C(k 〈w1, . . . , wt〉), via restriction to the subring k 〈w1, . . . , wt〉 of R, and

F(M) is also an m(w)-bonne filtration of M as a k 〈w1, . . . , wt〉-module.

d. The associated graded module

gF(M)=̇
∑
n≥0

Fn(M)/Fn+1(M)

is a finitely generated graded A(w)-module.

Proof. For part (a), F(M) is an I-bonne filtration of M , so IF s(M) ⊆ F s+1(M)

for s ≥ 0. Since F0(M) = M , we have

IM = IF0(M) ⊆ F1(M)

and

I2M ⊆ IF1(M) ⊆ F2(M).

Therefore, by induction, InM ⊆ Fn(M) for all n ≥ 0.

For (b), there exists a short exact sequence of vector spaces over k for all

n ≥ 0,

0→ Fn(M)/Fn+1(M)→M/Fn(M)→M/Fn+1(M)→ 0.

From part (a), InM ⊆ Fn(M) for all n ≥ 0, so there exists a surjection

M/InM →M/Fn(M)→ 0.

From Proposition 1.3.6, M/Fn(M) ∈ C(k) (and M/Fn+1(M) ∈ C(k)) for n ≥ 0,

so Fn(M)/Fn+1(M) ∈ C(k) for n ≥ 0.
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At this time we sketch proofs for parts (c) and (d). Part (c) follows from

Propositions 1.3.5 and 1.3.6, Corollary 1.3.13, and the definition of I-bonne, Defi-

nition 1.3.9. For part (d), Let n0 be such that IFn(M) = m(w)Fn(M) = Fn+1(M)

for n ≥ n0. Then gF(M) is generated by a k-basis for

n0∑
i=0

F i(M)/F i+1(M),

as an A(w)-module.

1.4 Integer-Valued Functions and Polynomial Functions

Definition 1.4.1. The polynomials Qi(x), i = 0, 1, . . .

Q0(x) = 1,

Q1(x) = x,

...

Qi(x) =

(
x

i

)
=
x(x− 1) · · · (x− i+ 1)

i!
,

...

are called the binomial polynomials and make up a basis of Q[x] as a vector space

over Q.

Definition 1.4.2. ∆ denotes the standard difference operator; that is, for f(x) ∈

Q[x], ∆f(x) = f(x+ 1)− f(x).

Proposition 1.4.3. For the binomial polynomials Qi(x) as defined above, we have

that ∆Qi = Qi−1 for i > 0.

Proof. Let Qi(n) =
(
n
i

)
. Then, for all n ∈ Z, we have

∆Qi(n) = Qi(n+ 1)−Qi(n)
=

(
n+1
i

)
−
(
n
i

)
=
(
n
i−1

)
= Qi−1(n).

Since ∆Qi(n) = Qi−1(n) for all n ∈ Z, then ∆Qi(x) = Qi−1(x) in Q[x].
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Lemma 1.4.4. [Ser00] For f ∈ Q[x], the following are equivalent:

a. f is a Z-linear combination of the binomial polynomials.

b. f(n) ∈ Z for all n ∈ Z.

c. f(n) ∈ Z for all n ∈ Z such that n >> 0.

d. ∆f has property (a) and there is at least one integer n such that f(n) ∈ Z.

A polynomial f having the properties of Lemma 1.4.4 is called an integer-

valued polynomial, and we write ei(f) for the coefficients of Qi in the decomposition

of f , so that

f =
∑

ei(f)Qi,

where ei(f) ∈ Z for all i, and the sum is finite. Clearly, ei(f) = ei−1(∆f) for i > 0

(since Qi = ∆Qi+1 by Proposition 1.4.3). In fact, if deg f ≤ i, then we see (by

induction on i) that ei(f) = ∆if , a constant polynomial, and we have

f(x) = ei(f)
xi

i!
+ g(x), (1.4.0.1)

with deg g < i. It is also clear that if deg f = i, then

lim
n→∞

[
ei(f) +

g(n)i!

ni

]
= lim

n→∞

f(n)i!

ni
,

and since deg g < i, we conclude that

ei(f) = lim
n→∞

f(n)i!

ni
.

Thus, ei(f) > 0 if and only if f(n) > 0 for all n >> 0.

Definition 1.4.5. For n0 ∈ Z and [n0,∞) = {z ∈ Z | z ≥ n0}, let the function

f : [n0,∞) → Z. (If n0 = −∞, then f : Z → Z.) We say f is a polynomial

function of n if and only if there exists Pf ∈ Z[x] such that

Pf (n) = f(n) for all n >> 0.

We then say f ∼ Pf , and f has degree d if and only if Pf has degree d.
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Clearly, Pf is uniquely defined by f , and Pf is integer-valued. If f is a polyno-

mial function of n with associated polynomial Pf , we shall write ek(f) in place of

ek(Pf ). Serre [Ser00] refers to polynomial functions as “polynomial-like” functions.

Now, we give some properties of polynomial functions that we will use later. The

straightforward proofs are left to the reader.

Lemma 1.4.6. The following are equivalent for f as in Definition 1.4.5:

a. f is a polynomial function of n of degree d;

b. ∆f is a polynomial function of n of degree d− 1;

c. There exists r ≥ 0 such that ∆rf(n) = 0 for all n >> 0, and d is the largest

r such that ∆rf 6≡ 0.

Furthermore, if any of the above equivalent conditions hold,

d. ∆df = ed(f) = (the leading coefficient of Pf )d! if d = degPf .

Lemma 1.4.7. If f and g are polynomial functions of n and c ∈ Z is an integer

constant, then the following hold:

a. If f, g : [n0,∞)→ Z, then f + cg and fg are polynomial functions of n.

b. If f : [n0,∞)→ [m0,∞) is increasing strictly for n >> 0 and g : [m0,∞)→

Z, then g ◦ f is a polynomial function of n.

Lemma 1.4.8. For n0 a positive integer, let f : [n0,∞) → Z be a polynomial

function of n with degree d, and let g(n) = f(n) + f(n − 1) + · · · + f(n0) for

n >> 0. Then,

a. g is a polynomial function of n;

b. ∆g(n) = f(n+ 1) for n >> 0;

c. deg g = d+ 1.
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Lemma 1.4.9. If f is a polynomial function of n of degree d and g is a polynomial

function of n of degree less than d, then f + g is a polynomial function of n of

degree d and the leading coefficient of Pf+g is the same as that for Pf .

Proof. Suppose Pf (t), Pg(t) ∈ Z[t] such that f(n) ∼ Pf (n) and g(n) ∼ Pg(n) for

n >> 0 where degPf = d and degPg < d. Denote Pf (t) = adt
d + · · · + a0 and

Pg(t) = bet
e + · · ·+ b0 where e < d and ai, bj ∈ Z for every i, j. Then for n >> 0,

f(n) + g(n) = Pf (n) + Pg(n)
=

(
adt

d + · · ·+ a0

)
+ (bet

e + · · ·+ b0)
= adt

d + · · ·+ ae+1t
e+1 + (ae + be) t

e + · · ·+ (a0 + b0)

Therefore, degPf+g = deg(f + g) = d = deg f and the leading coefficient of Pf+g

is ad, which is the leading coefficient of Pf .

1.5 Poincaré Series of Graded Modules

As we have seen in Section 1.3, if M ∈ C(R) (recall the Noetherian hypothesis

on R), then Mi is a finite dimensional vector space over k for every i.

Definition 1.5.1. For M ∈ C(R), we define

PS(M, t) =
∞∑
i=0

(dimkMi) t
i,

the Poincaré series for M . In fact, PS(M, t) is defined in the same way for every

nonnegatively graded k-vector space M such that dimkMi <∞ for all i.

Proposition 1.5.2. For M,N ∈ C(R), the following properties hold:

a. PS(M(−r), t) = tr PS(M, t) for all r ≥ 0.

b. PS(M ⊕N) = PS(M) + PS(N).

c. PS(M ⊗k N) = PS(M) PS(N).

Proof. Let M,N ∈ C(R).
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a. Applying the defintion of PS(M) and shifting (or twisting), we see

PS(M(−r), t) =
∞∑
i=0

(dimkM(−r)i) ti =
∞∑
i=0

(dimkMi−r) t
i

=
∞∑
i=0

(dimkMi) t
r+i = tr

∞∑
i

(dimkMi) t
i = tr PS(M, t).

b. Using definitions, we have

PS(M ⊕N, t) =
∞∑
i=0

(dimk(Mi ⊕Ni)) t
i =

∞∑
i=0

(dimkMi + dimkNi) t
i

=
infty∑
i=0

dimkMit
i +

∞∑
i=0

dimkNit
i = PS(M, t) + PS(N, t).

c. Again, applying the definitions, we have

PS(M ⊗k N, t) =
∞∑
i=0

dimk

(
⊕

0≤j≤i
(Mj ⊗k Ni−j)

)
ti

=
∞∑
i

i∑
j

(dimk(Mj ⊗k Ni−j)) t
i

=
∞∑
i=0

i∑
j

(dimkMj) (dimkNi−j) t
i

=
∞∑
i=0

(dimkMi) t
i ·
∞∑
i=0

(dimkNi) t
i = PS(M, t) PS(N, t).

Example 1.5.3. Examples of Poincaré Series.

a. Let M = k[x], where deg x = d. As a graded ring, we write

k[x] = k ⊕ kx⊕ kx2 ⊕ · · · .

Since dimk k = 1, we have

PS(k[x], t) = 1 + td + t2d + · · · ,

so

PS(k[x], t) =
∞∑
i=0

(td)i =
1

1− td
.
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b. Let M = k[x1, . . . , xn], where deg xi = di. As a graded vector space,

k[x1, . . . xn] ∼= k[x1]⊗k · · · ⊗k k[xn].

Since PS(k[xj], t) = 1

1−tdj
for all 1 ≤ j ≤ n, and using Proposition 1.5.2, we

have

PS(k[x1, . . . , xn], t) = PS(k[x1], t) PS(k[x2], t) · · ·PS(k[xn], t) =
1

n∏
j=1

(1− tdj)
.

In the following proposition, we see that the Poincaré series is a rational

function of t; that is, the Poincaré series can be written as a quotient of polynomials

where the denominator has a particular form.

Proposition 1.5.4. [Smo72, Thm. 4.2]. Suppose that M ∈ C(R), M 6= 0. If R

is generated as a graded k-algebra by x1, . . . , xn of positive degrees d1, . . . , dn, then

PS(M, t) =
q(t)

n∏
i=1

(1− tdi)
,

where q(t) ∈ Z[t].

Therefore, we see that, given the hypotheses of Proposition 1.5.4, PS(M, t)

has a pole of order ≥ 0 at t = 1.

Definition 1.5.5. If M satisfies the hypotheses of Proposition 1.5.4, we define

`(M) to be the order of the pole at t = 1 of PS(M, t). For convenience, `(0)=̇−∞.

In [Mai76], Maiorana defines his C-multiplicity.

Definition 1.5.6. ([Mai76]) For M 6= 0, define the C-multiplicity as

C(M)=̇lim
t→1

(1− t)`(M) PS(M, t) ∈ Q.

If M = 0, define C(M)=̇0.
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C(M), Maiorana’s C-multiplicity, is usually not an integer but is a rational

number and is called deg(M) (the degree of M) by Benson [BCB95], among others.

PS(M, t) expanded as a Laurent series in (1− t) is

PS(M, t) = C(M)(1− t)−`(M) + “higher order terms”

where C(M) 6= 0, if M 6= 0.

The reader may verify the following two lemmas from Maiorana.

Lemma 1.5.7. [Mai76, Pg. 254]. Suppose that 0 → L → M → N → 0 is a

short exact sequence in C(R). Then `(M) = max{`(L), `(N)}. Also, the following

properties hold:

a. If `(L) < `(M), then C(M) = C(N).

b. If `(N) < `(M), then C(M) = C(L).

c. If `(L) = `(N) = `(M), then C(M) = C(L) + C(N).

Definition 1.5.8. For M,N ∈ C(R), we say that PS(M, t) ≤ PS(N, t) if and only

if PS(M, t) is less than PS(N, t) coefficientwise—that is, dimkMi ≤ dimkNi for

all i.

Lemma 1.5.9. [Mai76, Pg. 254-255] Let L,M,N ∈ C(R). Then, the following

properties hold:

a. `(M(−r)) = `(M) and C(M(−r)) = C(M).

b. `(M ⊗k N) = `(M) + `(N).

c. If N is such that Nn = 0 for n >> 0, and PS(L, t) ≤ PS(M ⊗k N, t), then

`(L) ≤ `(M).

d. C(M ⊗k N) = C(M)C(N).

21



Now that we have several properties established for the Poincaré series, we

define the following invariants from Smoke [Smo72] for future use.

Definition 1.5.10. [Smo72] Let M ∈ C(R), M 6= 0.

a. Define d(M) to be the least d such that there exist positive integers ξ1, . . . , ξd

with (
d∏
i=1

(
1− tξi

))
PS(M, t) ∈ Z[t].

We define d(M) = 0 if and only if PS(M, t) is a polynomial in t.

b. Define s(M) to be the least s such that there exist homogeneous elements

y1, . . . , ys ∈ m with M finitely generated over k 〈y1, . . . , ys〉 ⊆ R. We define

s(M) = 0 if and only if M is a finite dimensional vector space over k.

c. For convenience, we define d(0) = s(0) = −∞.

1.6 Dimension and Multiplicities for Graded Rings

We begin this section by reviewing some basic definitions and theorems from

commutative algebra in the graded context, followed by a definition of Krull di-

mension. Then we will discuss a classical example of multiplicity, the Samuel

multiplicity, for graded rings. We will end this section with some properties of

Maiorana’s C-multiplicity. The material of this section draws from the works of

[Eis95], [Ser00], [Smo72] and [Mai76].

1.6.1 Background

Recall that R is a nonnegatively graded Noetherian ring with R0 = k, a field,

as usual. Let M be a (finitely generated) graded R-module. As we have seen, the

Noetherian hypothesis means that R is a finitely generated k-algebra.
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Definition 1.6.1. The annihilator of M in R is

Ann(M) = {r ∈ R | rm = 0, for all m ∈M}.

Proposition 1.6.2. [Eis95] Ann(M) is a homogeneous, or graded, ideal in R.

Definition 1.6.3. Let M ∈ C(R).

a. The homogeneous spectrum of M is

V(M) = {p | p is a homogeneous prime ideal in R,Ann(M) ⊆ p}.

b. Proj(M)=̇V(M)− {m}.

Definition 1.6.4. A prime ideal p is associated to M if p is the annihilator of

an element of M (i.e., there exists x ∈ M such that p = ann(x)). The set of all

associated primes to M is called Ass(M).

Lemma 1.6.5. [Eis95] For M ∈ C(R) where M 6= 0, Ass(M) 6= ∅; moreover,

every associated prime is homogeneous and contains Ann(M). In fact, if p ∈

Ass(M), then p = ann(x) for some homogeneous element x ∈M .

Let M 6= 0 and let x be a homogeneous element of M of degree d(x) ≥ 0,

such that ann(x) = p is a homogeneous prime ideal in R. Then, there exists an

injection of graded R-modules

φ : (R/p) (−d(x))→M

defined by r + p 7→ rx. Conversely, if p is a homogeneous prime ideal of R such

that there exists an injection of graded R-modules ι : (R/p) (−d) → M , for some

d ≥ 0, then p = ann (ι(1 + p)) is an associated prime of M .

Definition 1.6.6. A minimal prime of M is a minimal element, with respect to

inclusion, of the set of all prime ideals of R that contain Ann(M).

23



Forgetting the grading on M and R, form the localizations

Rp=̇S
−1R and Mp=̇S

−1M, where S = R− p.

Now consider the following theorem from commutative algebra, the proof of which

carries over to the category C(R) with slight modification.

Theorem 1.6.7. [Ser00] Let M ∈ C(R).

a. There exists a finite filtration of M by graded submodules

0 = FN+1(M) ⊆ FN(M) ⊆ · · · ⊆ F i+1(M) ⊆ F i(M) ⊆ · · · ⊆ F0(M) = M,

a set of homogeneous prime ideals pi in R and integers di ≥ 0, for 0 ≤ i ≤ N ,

with F i(M)/F i+1(M) ∼= (R/pi) (−di) as graded R-modules, for every i.

b. For any filtration F of M satisfying the conditions of (a) above, define

SF=̇ {pi|1 ≤ i ≤ N}. Then, Ass(M) ⊆ SF ⊆ V(M), and all three of these

sets have the same minimal elements. Thus, every minimal prime of M is

homogeneous. In addition, there are only a finite number of minimal primes,

and there are only a finite number of associated primes.

c. The set of minimal elements in Ass(M) is equal to the set of minimal primes

of M .

d. Let F be any filtration of M satisfying the conditions of (a) above. Let p be

a fixed minimal prime of M . Then, Mp has finite length l(Mp) as an Rp-

module, and the number of times that (R/p) (−d) appears as (isomorphic to)

a successive quotient F i(M)/F i+1(M), for all d, is equal to l(Mp). Hence,

this number is independent of the filtration.
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1.6.2 Dimension

The length of the chain p0 ⊂ p1 ⊂ · · · ⊂ pn involving n + 1 distinct homoge-

neous prime ideals is n.

Definition 1.6.8. The Krull dimension, (or just dimension) of a graded ring R,

written Dim(R), is the supremum of the lengths of chains of distinct homogeneous

prime ideals in R.

That is, Dim(R) is the greatest D such that there exists a strictly increasing

chain

p0 ⊂ · · · ⊂ pD

of homogeneous prime ideals in R. Similarly, the Krull dimension of a graded

R-module M , denoted Dim(M), is the greatest D such that there exists a strictly

increasing chain

Ann(M) ⊆ p0 ⊂ · · · ⊂ pD

of homogeneous prime ideals in R. Note that the Krull dimension of M is the same

as that of the graded ring R/Ann(M) since, for all homogeneous ideals I in R, the

homogeneous prime ideals in R, p, containing I are in one-to-one correspondence

with the homogeneous prime ideals in R/I. We define Dim(0)=̇−∞.

Example 1.6.9. Examples of Dimension

a. Any field k has Krull dimension 0. The graded polynomial ring k[x] (where x

has any degree you like) has dimension 1. The chain of homogeneous primes

(x) ⊃ 0 is of length 1. Since (x) is the only homogeneous prime ideal, there

are no chains of homogeneous primes of greater length.

b. More generally, consider a graded polynomial ring R = k[x1, . . . , xn], where

deg xi = di, and the sequence of homogeneous prime ideals

(x1, . . . , xn) ⊃ (x1, . . . , xn−1) ⊃ · · · ⊃ (x1) ⊃ 0.

The theorem below states that there is no chain of greater length.
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Theorem 1.6.10. Suppose k is a field. Let x1, . . . , xn be indeterminants of degrees

d1, . . . , dn ≥ 0, where deg xi = di. Then, Dim(k[x1, . . . , xn]) = n.

Recall the invariants d(M) and s(M) as defined in Section 1.5. The following

proposition will prove to be valuable later in this section.

Proposition 1.6.11. [Smo72, Thm. 5.5, Prop. 6.2]. Let M ∈ C(R), and let

d(M) and s(M) be as defined in Section 1.5.

a. d(M) = s(M) = Dim(M) <∞.

b. If d(M) = s(M) = Dim(M) = D, and y1, . . . , yD ∈ m are homogeneous

elements such that M is finitely generated over k 〈y1, . . . , yD〉, then y1, . . . , yD

are algebraically independent over k.

Part (b) in Proposition 1.6.11 is not necessarily true in the non-graded case.

The next corollary follows from Proposition 1.6.11.

Corollary 1.6.12. If R is a Noetherian graded ring, then the Krull dimension

of R is finite. Similarly, for a finitely generated graded R-module M, the Krull

dimension of M is finite.

1.6.3 Hilbert Polynomial

Definition 1.6.13. Let M be a module. A finite chain of submodules of M is a

sequence of submodules with strict inclusions

0 = Fn(M) ⊂ · · · ⊂ F1(M) ⊂ F0(M) = M.

This chain is said to have length n.

Definition 1.6.14. Let M be a module. A chain of submodules of M is a compo-

sition series if F iM/F i+1M is a (nonzero) simple module (no proper submodules)

for all i.
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Definition 1.6.15. For M a module, we define lengthM to be the smallest length

of a composition series of M . If M has no finite composition series, we define

lengthM=̇∞.

Definition 1.6.16. A commutative ring A is Artinian if and only if A has the

descending chain condition on ideals (i.e., every descending chain of ideals in A

eventually terminates).

The following lemmas are well-known.

Lemma 1.6.17. Let the ring A be commutative. Then, the following are equiva-

lent:

a. A is Artinian.

b. A has finite length (as a module over itself).

c. A is Noetherian, and every prime ideal of A is maximal.

Lemma 1.6.18. Suppose A is an Artinian commutative ring. If M is a finitely

generated A-module, then M has a (finite) composition series and any two compo-

sition series for M have the same finite length.

Theorem 1.6.19. Let A be an Artinian ring. If 0→ L→M → N → 0 is a short

exact sequence of finitely generated modules over A, then

0 = lengthA(L)− lengthA(M) + lengthA(N).

Corollary 1.6.20. Given a long exact sequence of finitely generated modules, M(i),

over the Artinian ring A,

0→M(1) → · · · →M(n−1) →M(n) → 0

we have that

0 =
n∑
i=1

(−1)i lengthAM(i).
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Returning to the graded category and applying Lemma 1.6.18, we have the

following well-known lemma.

Lemma 1.6.21. For S a nonnegatively graded ring, with S0 Artinian, then any

finitely generated module, M , over S0 has a composition series

0 = Fn(M) ( · · · ( F2M ( F1(M) ( F0(M) = M,

which has the defining property that the successive quotients are nonzero simple

S0-modules (no nonzero proper submodules). The length of the composition series

above is lengthS0
(M) = n. Furthermore, any two such composition series have the

same length.

For example, let S0 = k, a field. The only simple vector space is a one-

dimensional vector space. For every finite dimensional vector space, V , we get a

descending series where we get the quotients by adding one basis vector at a time.

The dimension of the vector space is the sum of the dimensions of the quotients.

Therefore, lengthk(V ) as a k-module is dimk V .

For S such that S0 is not necessarily a field but is an Artinian ring, let M be

a finitely generated graded S-module. Each Mn is a finitely generated S0-module

by Proposition 1.2.5; therefore, each Mn has finite length, denoted lengthS0
(Mn).

If S0 is a field, then

lengthS0
(Mn) = dimS0(Mn), for all n.

Consider the nonnegatively graded ring S such that S0 is an Artinian ring

and S is finitely generated as an S0-algebra by r elements in S1. Suppose that Z

is any nonnegatively graded S-module that is finitely generated as an S-module.

Then Zn has finite length as an S0-module for every n. When S0 is a field, note

that the length of Zn is the dimension of Zn as a vector space over S0.
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Definition 1.6.22. [Ser00] For S and Z as defined in the previous paragraph,

χ(Z, n) = lengthS0
(Zn), where lengthS0

(Zn) is the length of Zn as an S0-module.

We call n 7→ χ(Z, n) the Hilbert function.

Theorem 1.6.23. [Ser00, Sec. II.B.3, Thm. 2].(Hilbert’s Theorem). Let S be

a nonnegatively graded ring such that S0 is an Artinian ring and S is finitely

generated as an S0-algebra by r elements in S1. Let Z be any nonnegatively graded

S-module that is finitely generated as an S-module. Then χ(Z, n) is a polynomial

function of n of degree no greater than r − 1.

Suppose S and Z are as in Theorem 1.6.23. The Hilbert polynomial of Z,

Pχ is the polynomial associated to the Hilbert function, n 7→ χ(Z, n). Note that

lengthS0
(Z) < ∞ if and only if Pχ(n) ≡ 0 since lengthS0

(Z) < ∞ implies Zn = 0

for n >> 0. By Theorem 1.6.23, degPχ ≤ r − 1 for r ≥ 1.

Thus, ∆r−1Pχ=̇er−1(Pχ) is a nonnegative constant (using the notation from

Section 1.4) since Pχ(n) ≥ 0 for n >> 0 as it measures the length of Z over S0,

which is never negative. Note that if degPχ = r − 1, then

∆r−1Pχ = (the leading coefficient of Pχ)(r − 1)!,

using Lemma 1.4.6; and if degPχ < r− 1, then ∆r−1Pχ = 0. If Pχ(n) 6≡ 0, then its

leading coefficient must be positive since, for n >> 0, the polynomial is dominated

by the term with the leading coefficient.

Now we have an upper bound for ∆r−1Pχ=̇er−1(Pχ).

Theorem 1.6.24. [Ser00, Sec. II.B.3, Thm. 2’]. Let S and Z be as defined

in Theorem 1.6.23. Suppose that Z0 generates Z as a graded S-module. Then

∆r−1Pχ ≤ length(Z0).
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1.6.4 Samuel Polynomial

In this section, we define a classical polynomial function from commutative

algebra and consider some of its properties. Let R be a nonnegatively graded

Noetherian ring with R0 = k, a fixed field, as usual. Let I be an ideal of definition

for M ∈ C(R). Therefore, by Proposition 1.3.6, we have that M/I iM is a finite

dimensional graded vector space over k for every i ≥ 1. We assume that Ann(M) ⊆

I from this point forward.

Definition 1.6.25. Let I be an ideal of definition for M ∈ C(R). The Samuel

function for the I-adic filtration is

p(M, I, n) = dimk(M/In+1M),

for n ≥ 0.

Using Proposition 1.3.14, we see that there are Samuel functions for any I-

bonne filtration of M , and we see that Definition 1.6.25 is a special case of the

following definition.

Definition 1.6.26. The Samuel function for an I-bonne filtration of M , F(M),

is

p(F(M), n) = dimk(M/Fn+1(M)).

Theorem 1.6.27. (Samuel’s Theorem) Suppose that M ∈ C(R). Let I be an ideal

of definition for M and let F(M) be an I-bonne filtration of M . Then p(F(M), n)

is a polynomial function of n for n >> 0 with degree not more than r, where I is

generated by x1, . . . , xr.

Proof. We apply Proposition 1.3.14. Let A(x) = ⊕
i≥0

m(x)i/m(x)i+1, the asso-

ciated graded ring for m(x) ⊆ k 〈x1, . . . , xr〉, with grading such that A(x)n =

m(x)n/m(x)n+1. Define

Z =
∑
n≥0

Fn(M)/Fn+1(M).
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Using Proposition 1.3.14(d), we know that A = A(x) and Z satisfy the hypotheses

of Hilbert’s Theorem. (Here, A0 = k and lengthA0
(−−) = dimk(−−).)

Thus,

χ(Z, n) = dimk

(
Fn(M)/Fn+1(M)

)
is a polynomial function of n for n >> 0 of degree no greater than r − 1. Also,

∆p(F(M), n) =̇ p(F(M), n+ 1)− p(F(M), n)
= dimk (M/Fn+2(M))− dimk (M/Fn+1(M))
= dimk (Fn+1(M)/Fn+2(M))
= χ(Z, n+ 1).

Since χ(Z, n+1) is a polynomial function of n of degree no greater than r−1,

using Lemma 1.4.7 and Theorem 1.6.23, p(F(M), n) is a polynomial function of n

for n >> 0 of degree less than or equal to r by Lemma 1.4.6.

Definition 1.6.28. If M ∈ C(R) and I is an ideal of definition for M , then d1(M)

is the degree of the polynomial function of n that calculates p(M, I, n) for n >> 0.

We define d1(0)=̇−∞.

Now we will show how the Samuel functions for any I-bonne filtration can

be compared to the Samuel functions for the I-adic filtration. This comparison

will allow us to conclude that d1(M) is independent of the choice of the ideal of

definition I. The following theorems follow from Serre [Ser00].

Theorem 1.6.29. [Ser00] Suppose that M ∈ C(R), M 6= 0, and I is an ideal of

definition for M containing Ann(M). Let F(M) be an I-bonne filtration of M .

a. For n >> 0, p(M, I, n) = p(F(M), n) + R(n), where R(n) is a polynomial

function of n whose leading coefficient is positive if R(n) 6≡ 0, and whose

degree is strictly less than the degree of the polynomial function determined

by p(M, I, n).

b. If I/Ann(M) is finitely generated by r homogeneous elements as an ideal in

R/Ann(M), then for n >> 0, p(M, I, n) is a polynomial function of degree

less than or equal to r, and ∆rp(M, I, n) ≤ dimk(M/IM).
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Lemma 1.6.30. [Ser00] Suppose that

0→ L→M → N → 0

is a short exact sequence in C(R), and that I is an ideal of definition for M . Then,

I is an ideal of definition for N and L, and, for n >> 0,

p(M, I, n) + q(n) = p(N, I, n) + p(L, I, n),

where q(n) is a polynomial function of n, whose leading coefficient is positive if

q 6≡ 0, and whose degree is strictly less than d1(L).

Proof. By Theorem 1.3.12, we have that I is an ideal of definition for N and L.

Consider the filtration Fn(L) = L ∩ InM . For all n ≥ 0, there exists a short

exact sequence

0→ L/Fn(L)→M/InM → N/InN → 0.

(Note that it is necessary to use L/Fn(L) instead of L/InL in order to have an

exact sequence.) Hence,

p(M, I, n) = p(N, I, n) + p(F(L), n).

Using the Artin-Rees Theorem (Theorem 1.3.8), F(L) is an I-bonne filtration

of L. So, by Theorem 1.6.29, for n >> 0,

p(L, I, n) = p(F(L), n) + q(n),

where q(n) is a polynomial function of n whose leading coefficient is positive if

q 6≡ 0 and whose degree is strictly less than the degree of the polynomial function

determined by p(L, I, n), giving

p(M, I, n) = p(N, I, n) + p(L, I, n)− q(n).
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In the following theorem, we see that the degree of the Samuel polynomial

does not depend on I.

Theorem 1.6.31. Suppose that I is an ideal of definition for M ∈ C(R). Then,

for n >> 0, the degrees of the polynomial functions defined by p(M, I, n) and

p(M,m, n) are equal.

Proof. Let PI and Pm be the associated polynomials for the polynomial functions

of n, p(M, I, n) and p(M,m, n), respectively, and let dI = degPI(n) and dm =

degPm(n).

First we show that dm ≤ dI . Since I ⊆ m, we know that In ⊆ mn for all

n ≥ 1. Hence, InM ⊆ mnM for all n ≥ 1, and for φn : M/InM → M/mnM , φ is

a surjective map for all n ≥ 1. Thus, for n >> 0,

dimk (M/mnM) ≤ dimk (M/InM)
⇒ p(M,m, n) ≤ p(M, I, n)
⇒ Pm(n) ≤ PI(n).

Suppose that dm > dI . Then, since

xn=̇
Pm(n)

ndI
≤ PI(n)

ndI
=̇yn

for n >> 0, and the left sequence xn diverges, so must the right sequence, yn,

contradicting that yn converges to adI , where adI is the leading coefficient for

PI(n). Thus, dm ≤ dI .

Now we show that dm ≥ dI . By Proposition 1.3.6 (e), there exists n0 > 0 such

that mn0nM ⊆ InM for all n ≥ 1. Hence,

p(M, I, n) ≤ p(M,m, n0n)

for all n ≥ 1. We proceed as before, but divide by ndm , concluding that dm ≥ dI .

Therefore, dm = dI .
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1.6.5 Equality of Dim(M), s1(M), and d1(M)

For I an ideal of definiton for M ∈ C(R), the following definition will help

us find a relationship between the Krull dimension of M and the degree of the

polynomial function of n that calculates the Samuel function p(M, I, n) for the

I-adic filtration.

Definition 1.6.32. If M ∈ C(R) with M 6= 0, let s1(M) be the least s such that

there exist homogeneous elements y1, . . . , ys ∈ m such that M/(y1, . . . , ys)M is a

finite dimensional graded vector space over k. Note that s1(M) = 0 if and only if

M is a finite dimensional graded vector space over k. We define s1(0)=̇−∞.

The relationship between the degree of the Hilbert polynomial and the Krull

dimension is the following:

Theorem 1.6.33. [Ser00, Sec. III.B.2, Thm. 1]. If M ∈ C(R), then Dim(M) =

d1(M) = s1(M).

We end this section with a proof of this important theorem. However, in order

to prove the theorem, we need a few tools. Our first tool is Nakayama’s lemma,

modified for our context.

Lemma 1.6.34. [Ser00] Let M ∈ C(R), and let I be any ideal of R contained in

m, the superfluous ideal of R. If IM = M , then M = 0.

Definition 1.6.35. Let M ∈ C(R) and let x ∈ m be a homogeneous element. Then

we define (x : 0)M=̇xM=̇{m ∈M | xm = 0}; this is called the conductor of x to 0

in M .

Note that (x : 0)M is a graded R-module.

The following lemma is an adaptation of a lemma in Serre (see [Ser00, Sec.

III.B.2, Lem. 2]).
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Lemma 1.6.36. Let M be in C(R), I be an ideal of definition for M , and x ∈ m

be a homogeneous element.

a. I is also an ideal of definition for M/xM and for (x : 0)M .

b. For n >> 0, p((x : 0)M , I, n)− p(M/xM, I, n) is a polynomial function of n

of degree less than d1(M).

c. s1(M) ≤ s1(M/xM) + 1.

Proof. For part (a), we see that there are exact sequences of graded R-modules

0→ (x : 0)M →M → xM → 0

and

0→ xM →M →M/xM → 0.

By Theorem 1.3.12, I is an ideal of definition of (x : 0)M and M/xM (and xM).

For part (b), using the sequences above and by Lemma 1.6.30, there exist

q1, q2 ∈ Z[t], polynomials with nonnegative leading terms and with

deg q1(n) ≤ deg p ((x : 0)M , I, n)− 1

and

deg q2(n) ≤ deg p (xM, I, n)− 1

such that

p(M, I, n) = p ((x : 0)M , I, n) + p(xM, I, n)− q1(n)

and

p(M, I, n) = p (xM, I, n) + p(M/xM, I, n)− q2(n).

So

p ((x : 0)M , I, n)− q1(n) = p(M/xM, I, n)− q2(n)

35



and

p ((x : 0)M , I, n)− p(M/xM, I, n) = q1(n)− q2(n).

Notice that

deg (p(M, I, n)) = max{deg (p ((x : 0)M , I, n)) , deg (p(xM, I, n))}.

Since deg (q1(n)− q2(n)) ≤ deg (p(M, I, n))− 1, we know that

deg (p ((x : 0)M , I, n)− p(M/xM, I, n)) = deg(q1 − q2) < d1(M).

Part (c) is a direct application of the definition of s1(M).

Recall from Definition 1.6.3 that V(M) is the set of homogeneous prime ideals

in R containing Ann(M). As stated in Theorem 1.6.7, M has a finite number of

associated primes, and the associated primes are all homogeneous prime ideals in

R. Certain associated primes are the minimal primes of M .

Definition 1.6.37. A subset of the minimal primes of M , D(M), is defined as

follows:

p ∈ D(M) if and only if Dim(R/p) = Dim(M).

The following lemma is a modification from Serre [Ser00].

Lemma 1.6.38. [Ser00, Sec. III.B.2, Lem. 2.b]. If M ∈ C(R) and x ∈ m is a

homogeneous element such that x /∈ p, for every p ∈ D(M), then Dim (M/xM) ≤

Dim(M)− 1.

The previous two lemmas give us the desired theorem about dimension.

Theorem 1.6.39. [Ser00] If M ∈ C(R), then Dim(M) = d1(M) = s1(M).

Proof. We begin by showing Dim(M) ≤ d1(M), using induction on d1(M). If

d1(M) = 0, then the polynomial function of n, p(M,m, n), has degree 0, so

dimk(M/mnM) is constant for all n >> 0. Hence, mnM = mn+1M for some
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n. By Lemma 1.6.34, mnM = 0. Thus, M is Artinian as we see by refining the

filtration of Proposition 1.3.4, and Dim(M) = 0 using Lemma 1.6.17 applied to

R/Ann(M), noting that mn ⊆ Ann(M).

Now we sketch the proof for Dim(M) ≤ d1(M) for d1(M) ≥ 1. Considering

a chain p0 ⊂ · · · pm of length m of homogeneous prime ideals in R containing

Ann(M), let p0 be the minimal prime ideal of the chain. There exists a submodule

N of M and an integer di such that N ∼= R/p0(−di), and p0 is the only associated

prime of N . We show m ≤ d1(M) by induction on m.

The result is trivial for m = 0. Consider m ≥ 1. There is a homogeneous

element y ∈ p1 such that y /∈ p0. Hence, y is not a zero divisor on N and

0→ N → yN → N/yN → 0

is a short exact sequence. By Lemma 1.6.38,

Dim(N/yN) ≤ Dim(N)− 1 < Dim(N)

and by Lemma 1.6.36,

d1(N/yN) ≤ d1(N)− 1.

By induction,

m− 1 ≤ d1(N/yN) ≤ d1(N)− 1,

so

m ≤ d1(N) ≤ d1(M) since N ⊆M.

Therefore, Dim(M) ≤ d1(M).

Now we show that d1(M) ≤ s1(M). Let I = (x1, . . . , xr) ⊆ m be such that

M/IM has finite dimension over k. Without loss of generality, we may assume

that Ann(M) ⊆ I. I is an ideal of definition for M by definition. By Theorem

1.6.29 (b), the degree of the polynomial function of n, p(M, I, n), is less than or

equal to r. Therefore, d1(M) ≤ s1(M).
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Finally, we show that s1(M) ≤ Dim(M), using induction on Dim(M), which

is finite according to the first part of our proof. Suppose Dim(M) = 0. Since

Ann(M) ⊆ m, m is the only homogeneous prime containing Ann(M). Thus, m is

minimal over Ann(M) and an associated prime to M . Since all associated primes

to M are homogeneous, m is the only associated prime of M . Hence, Ann(M) is m-

primary, Ann(M) = m. There exists j such that mj ⊆ Ann(M), so M = M/mjM .

By Proposition 1.3.4, M is a finite dimensional graded vector space over k, and

s1(M) = 0.

Now, suppose that for Dim(M) = m − 1 where m ≥ 1, we have also that

s1(M) ≤ m − 1. Consider M such that Dim(M) = m ≥ 1. Let pi ∈ D(M) as

defined in Definition 1.6.37 be the set of prime ideals of V(M), the homogeneous

spectrum of M , such that DimR/pi = m. This is a finite set, and these ideals are

not maximal when m ≥ 1. Hence, there exists a homogeneous element x ∈ m such

that x /∈ pi for all i (by “prime avoidance”: if pi ( m for all i, where 1 ≤ i ≤ t, then

p1 ∪ · · · ∪ pt ( m.). By Lemma 1.6.36, we have that s1(M) ≤ s1 (M/xM) + 1; by

Lemma 1.6.38, we have that Dim (M/xM) ≤ Dim(M)− 1. Since Dim (M/xM) =

m − 1, we know from the inductive hypothesis that s1 (M/xM) ≤ Dim (M/xM),

and we have that

s1(M) ≤ s1 (M/xM) + 1 ≤ Dim (M/xM) + 1 ≤ Dim(M).

Combining Proposition 1.6.11 and Theorem 1.6.39, we have the following

corollary.

Corollary 1.6.40. For M ∈ C(R), we define D(M)=̇d(M) = d1(M) = s(M) =

s1(M) = Dim(M).

Definition 1.6.41. If M ∈ C(R) with M 6= 0, and Dim(M) = D, then a sequence

y1, . . . , yD of homogeneous elements of m ⊂ R such that M is a finitely generated

k 〈y1, . . . , yD〉-module is called a system of parameters for M , as an R-module.
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Note that by Proposition 1.6.11, the yi’s are algebraically independent.

1.6.6 Samuel Multiplicity for Graded Rings

Although there are several differently-defined types of multiplicities, in this

section we discuss only the classical definition of multiplicity from commutative

algebra, the Samuel multiplicity. In a following section, we will define and compare

Maiorana’s C-multiplicity.

Using Theorems 1.6.27 and 1.6.39, we conclude that the Samuel function

n 7→ dimk

(
M/In+1M

)
is a polynomial function of n of degree D(M)=̇ Dim(M), for n >> 0. From

equation 1.4.0.1, recall for M 6= 0 that there is a positive integer

e(M, I)

such that for n >> 0,

p(M, I, n) =
e(M, I)nD(M)

D(M)!
+ terms of lower degree in n.

In addition, from the same section we conclude that

e(M, I) = ∆D(M) (p(M, I, n)) ,

and if r > D(M),

∆r (p(M, I, n)) = 0

for n >> 0.

Definition 1.6.42. If M ∈ C(R) and I is an ideal of definition for M , then the

integer

e(M, I)=̇ lim
n→∞

p(M, I, n)D(M)!

nD(M)

is called the Samuel multiplicity of M with respect to the ideal I.
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The following is a corollary to the proof of Theorem 1.6.31.

Corollary 1.6.43. Suppose that I is an ideal of definition for M ∈ C(R). If n0−1

is the highest degree of a basis element for M/IM as a graded vector space over

k, then

e(M,m) ≤ e(M, I) ≤ e(M,m)n
D(M)
0 .

Proof. From the proof of Theorem 1.6.31, we have that p(M,m, n) ≤ p(M, I, n)

for all n and p(M, I, n) ≤ p(M,m, n0n) for all n ≥ 1. Then for n >> 0,

p(M,m, n)D(M)!

nD(M)
≤ p(M, I, n)D(M)!

nD(M)
≤ p(M,m, n0n)D(M)!

(n0n)D(M)
n
D(M)
0 .

Applying n→∞, we have our conclusion.

1.6.7 Properties of Abstract Multiplicities

A “multiplicity,” or “geometric degree,” function for C(R) has the following

properties.

A multiplicity function for C(R) is a correspondence

M 7→ E(M) ∈ Q

from objects of C(R) to the rational numbers such that,

1. for an exact sequence in C(R)

0→ L→M → N → 0,

we have the following:

a. if D(L) = D(M) = D(N), then E(M) = E(L) + E(N),

b. if D(L) = D(M) > D(N), then E(M) = E(L),

c. if D(L) < D(M) = D(N), then E(M) = E(N).

and
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2. An associativity (or linearity) formula

E(M) =
∑

p∈D(M)

NpE (R/p)

holds, where Np ∈ Q for all p ∈ D(M) as defined in Definition 1.6.37.

Example 1.6.44. For M ∈ C(R) and I an ideal of definition for M , the Samuel

multiplicity, e(M, I), is a multiplicity according to the above properties. That

the Samuel multiplicity is a multiplicity in the non-graded case was discussed by

Eisenbud [Eis95].

In the graded case, however, we provide the proof here. For the first property,

consider the short exact sequence

0→ L→M → N → 0.

From Lemma 1.6.30, we have that

p(M, I, n) + q(n) = p(N, I, n) + p(L, I, n)

where q(n) is a polynomial function of n whose leading coefficient is positive and

whose degree is strictly less than D(L). Suppose that D(L) = D(M) = D(N).

Then,

p(M, I, n)D(M)!

nD(M)
+
q(n)D(M)!

nD(M)
=
p(N, I, n)D(M)!

nD(M)
+
p(L, I, n)D(M)!

nD(M)
.

Applying the limit as n→∞, since deg q(n) < D(L) = D(M) = D(N), we have

e(M, I) = e(N, I) + e(L, I).

For the cases D(L) = D(M) > D(N) and D(L) < D(M) = D(N), we proceed

similarly with the results e(M, I) = e(L, I) and e(M, I) = e(N, I), respectively.

For the second property, using Corollary 1.3.13 and Lemma 1.6.30, we obtain

the following theorem, similar to Serre in the non-graded case (see [Ser00, Sec.

II.B.4, Prop. 10]).
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Theorem 1.6.45. Let M ∈ C(R) and let I be an ideal of definition of M generated

by homogeneous elements x1, . . . , xD(M). Let D(M) be the subset of the set of

minimal primes defined by p ∈ D(M) if and only if Dim(M) = Dim(R/p). Then,

for every p ∈ D(M), I is an ideal of definition for R/p, and

e(M, I) =
∑

p∈D(M)

Npe(R/p, I),

for certain integers Np.

Proof. Using Theorem 1.6.7, there is a filtration of M by graded submodules

0 = FN+1(M) ⊆ FN(M) ⊆ · · · ⊆ F i+1(M) ⊆ F i(M) ⊆ · · · ⊆ F0(M) = M,

homogeneous prime ideals pi and positive integers di, for 0 ≤ i ≤ N , with

F i(M)/F i+1(M) ∼= (R/pi)(−di) as R-modules, for every i. Every minimal prime

for M occurs as one of the primes pi.

By Corollary 1.3.13, since I is an ideal of definition for M , it is also an ideal of

definition for F i(M)/F i+1(M), 0 ≤ i ≤ N , and thereby I is an ideal of definition

for (R/pi)(−di) for 0 ≤ i ≤ N . By Proposition 1.3.14, (R/pi)(−di) is a finite

dimensional vector space over k. Since I is an ideal of definition for (R/pi)(−di),

then I is also an ideal of definition for R/p for every p ∈ D(M).

Notice that we have the short exact sequence

0→ F1(M)→M →M/F1(M)︸ ︷︷ ︸
(R/p0)(−d0)

→ 0.

Using Lemma 1.6.30, we conclude that, for n >> 0,

p(M, I, n) = p(F1(M), I, n) + p((R/p0)(−d0), I, n)− q0(n)

where q0(n) is a polynomial with positive leading coefficient and with deg q0 <

Dim(F1(M)).
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Notice also that we have the short exact sequence

0→ F i+1(M)→ F i(M)→ F i(M)/F i+1(M)︸ ︷︷ ︸
(R/pi)(−di)

→ 0

for all i such that 0 ≤ i ≤ N . Likewise, for n >> 0 and for 0 ≤ i ≤ N , we have

the equation

p(F i(M), I, n) = p(F i+1, I, n) + p((R/pi)(−di), I, n)− qi(n),

where qi(n) is a polynomial with deg qi < Dim(F i(M)) and with positive leading

coefficient.

Since p((R/pi)(−di), I, n) = p(R/pi, I, n), for n >> 0 we obtain the equation

p(M, I, n) =
N∑
i=0

p(R/pi, I, n)−
N∑
i=0

qi(n).

We see that for i when Dim(M) > Dim((R/pi)(−di)) = Dim(R/pi), multiplying

by D(M)!

nD(M) and applying the limit as n → ∞ results in 0 for the corresponding

p(R/pi, I, n) terms. In addition, since deg qi(n) < Dim(F i(M)) ≤ Dim(M) for all

0 ≤ i ≤ N , the qi(n) terms also go to 0 in the limit.

Therefore, we obtain the equation

e(M, I) =
N∑
i=0

e(R/pi, I),

and, dropping the R/pi where e(R/pi, I) = 0 and letting Np be the number of

times that R/p occurs as a factor in the filtration, we get

e(M, I) =
∑

p∈D(M)

Npe(R/p, I).

1.6.8 Smoke Multiplicity

At this point, we define and state some properties of a second multiplicity—

the Smoke multiplicity—for future use. We begin by reviewing some definitions of

homological algebra following the treatment in [Smo72].
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Now, every free module in C(R) is of the form R⊗k V , for some finite dimen-

sional vector space V over k.

Definition 1.6.46. A surjective map θ : L → M in C(R) is minimal if L is free

and ker θ ⊂ mL.

Definition 1.6.47. A minimal resolution of M in C(R) is a resolution

· · · θ2→ R⊗k V1
θ1→ R⊗k V0

θ0→M → 0

of M by free modules in C(R) such that θ0 is a minimal surjection and θi : R⊗kVi →

ker θi−1 is a minimal surjection for every i > 0.

Theorem 1.6.48. [Smo72, Cor. 2.2]. Every module M in C(R) has a minimal

resolution.

Theorem 1.6.49. [Smo72, Prop. 2.3]. Given a minimal resolution

· · · θ2→ R⊗k V1
θ1→ R⊗k V0

θ0→M → 0

of M , there are graded vector space isomorphisms

TorRi (M,k) ∼= Vi,

for every i ≥ 0.

Considering the vector spaces Vi of Theorem 1.6.49, we see that since Vi is a

finite-dimensional graded vector space over k for every i, we must have dimk(Vi)j =

0 for j >> 0.

Corollary 1.6.50. Given M ∈ C(R), the Poincaré series of the graded module

TorRi (M,k)

PS(TorRi (M,k), t) =
∞∑
j=0

dimk(TorRi (M,k)j)t
j

is a polynomial in t for every i.
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Consider a graded polynomial ring S = k[x1, . . . , xn] over k, where x1, . . . , xn

are algebraically independent of positive degree over k, and M ∈ C(S). Using the

Hilbert syzygy theorem (Theorem 1.13 of [Eis95]), k has a finite free resolution by

finitely generated free graded S-modules Fi

0→ Fn → · · · → F0 → k = S/(x1, . . . , xn)→ 0.

Theorem 1.6.51. [Smo72] Let M ∈ C(S) where S is defined as above. The

Poincaré series

PS
(
TorSi (M,k), t

)
=
∑
j

dimk

(
TorSi (M,k)j

)
tj

is a polynomial with nonnegative integer coefficients.

On the other hand, the existence of the above finite free resolution tells us

that TorSi (M,k) = 0 for i > n. Therefore, we may define a polynomial (the Smoke

polynomial) with integer coefficients as follows:

Definition 1.6.52. (Smoke Polynomial) For S = k[x1, . . . , xn] a graded polyno-

mial ring over k, where x1, . . . , xn are algebraically independent of positive degree

over k and M ∈ C(S), we define the polynomial

χ(S,M)=̇
∑
i

(−1)i PS
(
TorSi (M,k), t

)
.

Evaluating this polynomial at t = 1 results in an integer.

Definition 1.6.53. (Smoke Multiplicity for S) For S = k[x1, . . . , xn] a graded

polynomial ring over k, where x1, . . . , xn are algebraically independent of positive

degree over k and M ∈ C(S), we define the multiplicity

e(S,M)=̇χ(S,M)(1) =
∑
i

(−1)i dimk TorSi (M,k) ∈ Z.

Using these definitions, Smoke proves the following theorems.
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Theorem 1.6.54. [Smo72, Thm. 3.1]. If S is any finitely generated graded poly-

nomial ring over k and M ∈ C(S), then χ(S,M) = χ(S, k) PS(M, t).

Theorem 1.6.55. [Smo72, Prop. 4.1] Let S be the graded polynomial ring S =

k[x1, . . . , xn] where the degree of xi is equal to di for every i. Then

χ(S, k) =
n∏
i=1

(1− tdi).

Corollary 1.6.56. If the graded polynomial ring S = k[x1, . . . , xn] and the degree

of xi equals di for every i, then for M ∈ C(S),

PS(M, t) =
χ(S,M)
n∏
i=1

(1− tdi)
.

Theorem 1.6.57. [Smo72, Cor. 6.5]. If S is any finitely generated graded poly-

nomial ring over k and M is in C(S), then e(S,M) ≥ 0. Furthermore, if M 6= 0,

then e(S,M) > 0.

Now we return to the case of the general graded ring R, as defined previously,

and consider M ∈ C(R). Choose a system of parameters y1, . . . , yD(M) of degrees

d1 ≤ d2 ≤ · · · ≤ dD(M) for M . (We know we can do this by the definition of s(M)

in Definition 1.5.10.)

Definition 1.6.58. Let the ideal of R generated by y1, . . . , yD(M) be defined as

I(ȳ) = (y1, . . . , yD(M)),

and let the polynomial subring of R generated by y1, . . . , yD(M) be denoted as

Sȳ = k[y1, . . . , yD(M)].

Sȳ is a graded polynomial subring of R using Proposition 1.6.11, and M is a

finitely generated module over Sȳ.
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Definition 1.6.59. Let M ∈ C(R), and let y1, . . . , yD(M) be a system of parameters

for M as an R-module. If M 6= 0, the positive integer e(ȳ,M)=̇e(Sȳ,M) is the

Smoke multiplicity of M with respect to the system of parameters y1, . . . , yD(M).

Lemma 1.6.60. [Duf08] Let M ∈ C(R), and let y1, . . . , yD(M) be a system of

parameters for M as an R-module. Then the following multiplicities are equal:

• the Samuel multiplicity e(M, I(ȳ)), the leading coefficient in the polynomial

in n that computes dimkM/I(ȳ)n+1M , for n >> 0, multiplied by D(M)!

• the Smoke multiplicity e(ȳ,M)=̇
∑
j

(−1)j dimk Tor
Sȳ

j (M,k).

Furthermore, the common number defined by these multiplicities is a nonnegative

integer, and if M 6= 0, this number is positive.

1.6.9 Maiorana’s Multiplicity

We are now ready to study in more detail the multiplicity with which this

paper is concerned, Maiorana’s C-multiplicity. Recall the definition of C(M) in

Definition 1.5.6. Let y1, . . . , yD(M) be a system of parameters for M as an R-

module, with deg yi = di.

We have shown that if M ∈ C(R), M 6= 0, then D(M) = d(M) = d1(M) =

s(M) = s1(M) = Dim(M). Using Corollary 1.6.56, we see that

PS(M, t) =
χ(Sȳ,M)

D(M)∏
i=1

(1− tdi)
.

Therefore,

(1− t)D(M) PS(M, t) =
χ(Sȳ,M)

D(M)∏
i=1

(1 + t+ · · ·+ tdi−1)

. (1.6.9.2)

Proposition 1.6.61. If M ∈ C(R) with M 6= 0, `(M), the order of the pole

of PS(M, t) at t = 1, is exactly D(M) = d(M) = d1(M) = s(M) = s1(M) =

Dim(M).
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Proof. By Theorem 1.6.57, χ(Sȳ,M)(1) = e(Sȳ,M) > 0. Thus χ(Sȳ,M) has no

zero at 1, and using equation 1.6.9.2, we see that (1− t)D(M) PS(M, t) is a rational

function whose numerator and denomenator have no zero at 1. Therefore, the

order of the pole at t = 1, by definition, of PS(M, t) must be equal to D(M).

Other than the fact that C(M) is not always an integer, Maiorana’s C-

multiplicity behaves “like a multiplicity should.” Lemma 1.5.7 demonstrates that

C behaves like a multiplicity for properties under (1) in Section 1.6.7. Now we

show that C satisfies property (2) for multiplicities.

Lemma 1.6.62. Suppose that M ∈ C(R) and M 6= 0. Let

0 = Fn+1(M) ⊆ Fn(M) ⊆ · · · ⊆ F0(M) = M

be a sequence of graded submodules of M . Let D(F) be the set of indices i with

D (F i(M)/F i+1(M)) = D(M). Then D(F) is nonempty and

C(M) =
∑

i∈D(F)

C
(
F i(M)/F i+1(M)

)
.

Proof. To prove this lemma, we combine Proposition 1.6.61 and Lemma 1.5.7,

replacing ` in 1.5.7 with D.

With the given filtration of M , we have that

PS(M, t) =
n∑
i=0

PS
(
F i(M)/F i+1(M), t

)
.

Multiplying both sides by (1− t)D(M) and taking the limit as t→ 1, and we have

lim
t→1

(1− t)D(M)PS(M, t) =
n∑
i=0

lim
t→1

(1− t)D(M)PS
(
F i(M)/F i+1(M), t

)
.

By definition, the left hand side is C(M). We know that, for all i,

D(M) ≥ D
(
F i(M)/F i+1(M)

)
.

We have two possibilities to consider when determining the right hand side.
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It may be that D(M) > D (F i(M)/F i+1(M)) for some of the i = 0, . . . , n.

Then, after simplifying, we have (1−t)m, where m = D(M)−D (F i(M)/F i+1(M)),

remaining, and the limit as t→ 1 is zero. These F i(M)/F i+1(M) may as well be

disregarded in the right hand side.

For the remaining i, D(M) = D (F i(M)/F i+1(M)). We collect these i into a

set, D(F). The right hand side, then, becomes

∑
i∈D(F)

C
(
F i(M)/F i+1(M)

)
,

and we have the desired sum.

Now suppose that D(F) = ∅. Then, as shown above,

D(M) > D
(
F i(M)/F i+1(M)

)
for all i, resulting in C(M) = 0. This occurs only when M = 0. Therefore, D(F)

is nonempty.

The above lemma yields the following theorem.

Theorem 1.6.63. Let M ∈ C(R). Let D(M) be the subset of the set of minimal

primes defined by: p ∈ D(M) if and only if Dim(M) = Dim (R/p). Then

C(M) =
∑

p∈D(M)

NpC (R/p) ,

for certain integers Np.

Proof. Using theorem 1.6.7, we have a filtration of M by graded submodules

0 = Fn+1(M) ⊆ Fn(M) ⊆ · · · ⊆ F0(M) = M,

homogeneous prime ideals pi, and positive integers di, for 1 ≤ i ≤ n, with

(
F i(M)/F i+1(M)

) ∼= R/pi(−di)
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as R-modules, for every i. We know that every minimal prime occurs as at least

one of the primes pi.

The proof follows directly from Lemma 1.6.62 with simply a different way of

“bookkeeping.” Note first that since(
F i(M)/F i+1(M)

) ∼= R/pi(−di)

for every i, we have

Dim
(
F i(M)/F i+1(M)

)
= Dim (R/pi(−di))

and

C
(
F i(M)/F i+1(M)

)
= C (R/pi(−di))

for all i.

Now, instead of keeping track of each F i(M)/F i+1(M) for which

DimM = DimF i(M)/F i+1(M),

as we did in Lemma 1.6.62, we keep track of the homogeneous prime ideals, pi, for

which (
F i(M)/F i+1(M)

) ∼= R/pi(−di)

and

Dim(M) = Dim(R/pi) = Dim
(
F i(M)/F i+1(M)

)
,

and let Npi be the number of times that homogeneous ideal is used (since there

may be j 6= i such that pi = pj).

Therefore, by Lemma 1.5.7 and Theorem 1.6.63, C(M) does act “as a multi-

plicity should.”

Now, using Theorem 1.6.60 and the equation

(1− t)D(M) PS(M, t) =
χ(Sȳ,M)

D(M)∏
i=1

(1 + t+ · · ·+ tdi−1)

,

we have the following corollary which relates Maiorana’s C-multiplicity with Smoke’s

and Samuel’s multiplicities.
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Corollary 1.6.64. If M ∈ C(R) and y1, . . . , yD(M) of degrees d1 ≤ d2 ≤ · · · ≤

dD(M) form a system of parameters for M as an R-module, then

C(M) =
e(ȳ,M)

d1 · · · dD(M)

=
e(M, I(ȳ))

d1 · · · dD(M)

,

and C(M) > 0 for M 6= 0. Furthermore, the ratio

e(ȳ,M)

d1 · · · dD(M)

is independent of the choice of system of parameters y1, . . . , yD(M) for M .
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Chapter 2

SMOOTH ACTIONS OF FINITE GROUPS ON

MANIFOLDS

In this chapter, we begin by defining topological groups, compact Lie groups,

and other basic concepts. We discuss Milnor’s construction of the universal fi-

bration G → EG → BG. We then consider Borel’s construction of equivariant

cohomology and end the chapter with a discussion of tubes and smooth actions.

Definition 2.0.65. A topological group G is a set G together with a group struc-

ture and topology on G such that the function (st) 7→ st−1 is a continuous function

G×G→ G.

A topological manifold is a second countable Hausdorff space which is locally

homeomorphic to Euclidean space by a collection (called an atlas) of homeomor-

phisms called charts. An atlas on a topological space X is a collection of pairs

{(Ui, φi)} called charts, where the Ui are open sets which cover X, and for each i,

φi : Ui → Rn is a homeomorphism of Ui onto an open subset of Rn. The composi-

tion of one chart with the inverse of another chart is a function called a transition

map and defines a homeomorphism of an open subset of Euclidean space onto

another open subset of Euclidean space. The transition maps of the atlas are func-

tions φi,j = φi ◦ φ−1
j |φj(Ui∩Uj) : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj). One defines a topological

manifold to be a space as above with an equivalence class of atlases.
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Definition 2.0.66. A differentiable manifold is a topological manifold equipped

with an atlas whose transition maps are all differentiable. More generally, a Cn-

manifold is a topological manifold with an atlas whose transition maps are all

n-times continuously differentiable. A smooth manifold, or C∞-manifold, is a

differentiable manifold for which all of the transition maps are smooth; that is,

derivatives of all orders exist.

Definition 2.0.67. Let G be a group. A Lie group is a differentiable manifold G

such that the group multiplication

µ : G×G→ G

and the map sending g to g−1 are differentiable maps.

For us, the word differentiable means infinitely differentiable. Throughout

this paper, we use the terms differentiable and smooth interchangeably.

For A an n × n matrix with complex numbers as entries, we define AT to

be the transpose of A, Ā to be the complex conjugate of A, and A∗ = ĀT , the

Hermitian adjoint of A.

Definition 2.0.68. Let k be either the field R or the field C. The orthogonal

group O(n, k) is defined as

O(n, k) = {A ∈ GLn(k) | AAT = I}.

The unitary group U(n, k) is defined as

U(n, k) = {A ∈ GLn(k) | AA∗ = I}.

For convenience, we let O(n)=̇O(n,R), and we let U(n)=̇U(n,C).

Example 2.0.69. Suppose that n = 1. Note that for z ∈ C, z∗ = z̄. Then

U(1) = {z ∈ C|zz̄ = |z|2 = 1} = S1 ⊂ C = R2,
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where S1 is the circle group, a closed subspace of C. Notice that U(1) is a real

manifold of dimension 1.

Suppose that n = 2. Then we have

U(2) =

{[
z1 z2

z3 z4

]
|
[
z1 z2

z3 z4

] [
z̄1 z̄2

z̄3 z̄4

]
=

[
1 0
0 1

]}
⊆ C2 = R4.

Multiplying the matrices in the definition of U(2) results in the following equations:

z1z̄1 + z2z̄2 = |z1|2 + |z2|2 = 1

z3z̄3 + z4z̄4 = |z3|2 + |z4|2 = 1

z1z̄3 + z2z̄4 = 0

z3z̄1 + z4z̄2 = 0.

Each of the first two equations result in S3, giving us a total dimension of 6 so

far. The last two equations are duals of each other, so we have only one extra

condition. Without loss of generality, we will consider the third equation. In real

coordinates, we write

0 = (x1 + iy1)(x3 − iy3) + (x2 + iy2)(x4 − iy4)
= (x1x3 + y1y3) + i(x3y1 − x1y3) + (x2x4 + y2y4) + i(x4y2 − x2y4)
= [x1x3 + y1y3 + x2x4 + y2y4] + i [x3y1 − x1y3 + x4y2 − x2y4]

resulting in the two equations

x1x3 + y1y3 + x2x4 + y2y4 = 0

and

x3y1 − x1y3 + x4y2 − x2y4 = 0,

each of which decreases the real dimension by 1. Hence, U(2) has dimension 6−2 =

4 over R.

In fact, it turns out that for any n, U(n) has real dimension n2.
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Theorem 2.0.70. [Bre72] U(n) is a differentiable manifold of dimension n2 (over

R).

Since AT and A∗ are continuous functions of A and multiplication of matrices

is continuous, the orthogonal group and the unitary group are closed subgroups of

GLn(k). In addition, since A∗ is a continuous function of A and AA∗ = I defines

U(n), we see that U(n) is bounded in the metric space of all n×n matrices over C.

Therefore, U(n) is a compact (as a result of the Heine-Borel Theorem) topological

space, as is O(n) since it is a closed subgroup of U(n).

Theorem 2.0.71. [Pri77, Thm. 6.1.1] A compact topological group is a Lie group

if and only if it is isomorphic to a closed subgroup of U(n) for some n.

For an example of a proof to the above theorem, see Price [Pri77], although

it was originally proven by Pontrjagin [Pon34].

Example 2.0.72. Examples of Compact Lie Groups

a. finite groups (with the discrete topology)

b. the circle group, S1 = U(1)

c. orthogonal groups O(n)

d. unitary groups U(n)

2.1 Group Actions on Topological Spaces

We now turn to the topological formation of cohomology of groups. This pro-

cess will require some basic topological understanding, the development of the join

of topological spaces and the strong topology, and an understanding of connected-

ness. It is assumed that the reader is familiar with these concepts. We begin our

discussion with some basic definitions. Then, we will consider some properties of
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the contractible G-space, EG, on which G acts freely, based on Milnor’s construc-

tion. We will see that (EG, p,BG) is a fiber bundle with structure and fiber G and

with EG contractible. Finally, after some examples of EG given particular groups,

we will conclude by stating the connection between the algebraic and topological

formulations of cohomology of groups.

The material in this chapter follows the exposition of [Mil56b]. Other sources

might include [Mun00], [Mun84], [Mil56a], [Hus66], [Spa66] and [Ste65].

2.1.1 Background

We begin with defining a G-space and set some related important notation.

Definition 2.1.1. Let G be a topological group. Then, a left G-space is a topologi-

cal space X together with a continuous function G×X → X such that (g, x) 7→ gx

and the following axioms hold:

a. The relation (gh)x = g(hx) holds for each x ∈ X and for each g, h ∈ G.

b. For 1 the identity of G, the relation 1x = x holds for each x ∈ X.

Right G-spaces are defined similarly.

Definition 2.1.2. If G is a Lie group acting on a differentiable manifold X and

the function G × X → X defining the group action is differentiable, then G acts

smoothly (or differentiably) on X.

Definition 2.1.3. Let X be a G-space. For x ∈ X, the subspace

Gx = {gx ∈ X | g ∈ G}

is called the orbit of x under the action of G. The isotropy group of x ∈ X is

Gx = {g ∈ G | gx = x}.
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Notice that

Ggx = gGxg
−1

for all g ∈ G and for all x ∈ X.

Definition 2.1.4. Let X/G denote the set whose elements are the orbits Gx of G

on X. Let π : X → X/G denote the canonical projection map taking x 7→ Gx.

Then we say that X/G under the quotient topology is called the orbit space of X

(with respect to G).

Definition 2.1.5. Let G be a topological group, and let X be a G-space. Then for

every subgroup H of G, define the fixed points of X as the set

XH=̇{x ∈ X | hx = x for every h ∈ H}.

Proposition 2.1.6. Let G be a group. Then the following hold:

a. If G is a topological group acting on a Hausdorff topological space X, then

Gx is closed for every x ∈ X. [tD87, Prop. 3.5]

b. If G is a compact Lie group, then every closed subgroup H is a submanifold

of G; i.e., H is a compact Lie group also. [BtD85, Prop. 3.11]

c. If G is a compact Lie group acting on a Hausdorff topological space X, then

Gx is a compact Lie group for every x ∈ X.

Definition 2.1.7. For all A ≤ G, G a group, the conjugacy class of A is

[A] = {B ≤ G |B ∼ A},

where A is conjugate to B if and only if there exists g ∈ G such that gAg−1 = B.

For A,B ≤ G, we say that A is subconjugate to B (A . B) if and only if there

exists g ∈ G such that gAg−1 ⊆ B. In addition, we say that

[A] ≤ [B]⇔ A . B.
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Lemma 2.1.8. Let X be a topological space, and let A ≤ G where G is a topological

group acting on X. Then x ∈ XA if and only if A ≤ Gx. More generally, z ∈

GXA .
= {gx | g ∈ G, x ∈ XA} if and only if A . Gz.

Proof. First,

x ∈ XA ⇔ ax = x for all a ∈ A⇔ a ∈ Gx for all a ∈ A⇔ A ≤ Gx.

Next, for z ∈ GXA, there exists g ∈ G and x ∈ XA such that z = gx. Now,

Gz = Ggx = gGxg
−1. Since A ≤ Gx, we have that gAg−1 ≤ gGxg

−1 = Gz.

Conversely, if A . Gz, for z ∈ X, then there exists a g ∈ G such that

gAg−1 ≤ Gz, so that A ≤ Gg−1z. Thus, g−1z ∈ XA, so that z ∈ GXA.

Proposition 2.1.9. ([tD87]) If G is a compact Lie group, X a smooth G-manifold

and H any isotropy group of X, then X(H) = {x ∈ X | [Gx] = [H]} is a submanifold

of X.

From the above proposition, we can conclude that XG = X(G) is a closed

submanifold ([tD87]); more generally, we have the following lemma.

Lemma 2.1.10. Let G be a compact Lie group, A be a closed subgroup of G, and

X be a differentiable G-manifold. Then GXA is a closed submanifold of X.

Proof. : Let A ≤ G. Then A is also a compact Lie group. Therefore, XA is a

closed submanifold of X.

There is a differentiable surjective map θ : G×XA → GXA where (g, x) 7→ gx

such that (gh)x = g(hx) and ex = x for all g, h ∈ G and x ∈ XA. Therefore, since

both G and XA are compact, GXA is a compact (and thereby closed) subspace of

X for every A ≤ G.

Now, Lemma 2.1.8 shows that GXA = {x ∈ X | [Gx] ≥ [A]}. Therefore,

GXA = ∪
[A]≤[H]

X(H),

where the “H” in the index set is a subgroup of G. Since the above union is a

disjoint union, GXA must be a submanifold of X, using Proposition 2.1.9 .
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Lemma 2.1.11. : Let G be a compact Lie group, A be a subgroup of G, and X be

a differentiable G-manifold. Then GXA is G-invariant.

Proof. : For all h ∈ G, h(GXA) = h ∪
g∈G

gXA = ∪
g∈G

hgXA. Since hg ∈ G for all

g ∈ G, hgXA ∈ GXA for all g ∈ G. Thus, hGXA ⊆ GXA for all h ∈ G.

2.1.2 Milnor’s Construction

The results in this section were established by Milnor in [Mil56a] and [Mil56b].

We do not give the details of the construction here but refer the reader to Milnor’s

papers.

Let G be an arbitrary topological group. Let EG=̇G ∗G ∗ · · · ∗G ∗ · · · ., the

infinite join of copies of G in the strong topology. (For a definition of the strong

topology, see [Mil56b].)

An element of EG is 〈g, t〉 = (t0g0, t1g1, . . . , tkgk, . . .) where gi ∈ G and ti ∈

[0, 1] such that a finite number of ti 6= 0 and
∑
0≤i
ti = 1. In EG, 〈g, t〉 =

〈
ĝ, t̂
〉

if

and only if ti = t̂i for all i, and gi = ĝi for all i such that ti = t̂i > 0. Notice that

if ti = t̂i = 0, gi may not be equal to ĝi but 〈g, t〉 =
〈
ĝ, t̂
〉
.

If we define EG(n) as the finite join G ∗ G ∗ · · · ∗ G of n + 1 copies of G, we

can think of an element of EG(n) as 〈g, t〉 = (t0g0, t1g1, . . . , tngn, 0, 0, 0, . . .) in EG.

Clearly, EG(n) ⊂ EG for all n. Notice also that EG(n) ⊂ EG(n + 1) since any

element in EG(n) can be thought of as 〈g, t〉 = (t0g0, t1g1, . . . , tngn, 0) ∈ EG(n+1).

Therefore, we get the ascending chain · · · ⊂ EG(n) ⊂ EG(n+1) ⊂ · · · ⊂ EG, and

we also get EG = ∪EG(n).

The right action of G on EG(n) is defined by

〈g, t〉h = (t0g0, t1g1, . . . , tngn)h
= (t0g0h, t1g1h, . . . , tngnh)
= (t0(g0h), t1(g1h), . . . , tn(gnh))

for h ∈ G.

In order to make EG a G-space, we need the following topology. We have

two families of functions, ti : EG → [0, 1] where (t0g0, t1g1, . . .) 7→ ti ∈ [0, 1] and
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gi : (ti)−1(0, 1] → G where (t0g0, t1g1, . . .) 7→ gi ∈ G for 0 ≤ i. Notice that for

(ti)−1(0) we do not get a unique gi ∈ G. When s ∈ EG and h ∈ G, we have the

relations gi(sh) = (gi(s))h and ti(sh) = ti(s) between the functions giand ti with

the action of G. Let EG have the smallest topology such that the functions ti and

gi are continuous and let (ti)−1(0, 1] ⊂ EG have the subspace topology.

With the topology described above, one sees that EG is a G-space.

Definition 2.1.12. A group G acts freely on a topological space X if and only if

whenever g ∈ G, x ∈ X, and g · x = x , then g = e (the identity in G).

Note that by using the definition of above, the G-action on EG is free.

Definition 2.1.13. A topological space X is contractible if the identity map iX :

X → X is nullhomotopic (that is, homotopic to a constant map).

It turns out that EG is the total space of a principal fiber bundle (see [Hus66]

for a definition) whose base space is the space BG, the orbit space of the G-

action on EG, where b ∼ b̂ if and only if b̂ ∈ Gb, the orbit of b. We will let

p : EG → BG be this identification map, and we define the resulting bundle

by ωG = (EG, p,BG). One can show that BG is a CW-complex since EG is a

CW-complex, and the G-action on EG is free; we summarize this in the following

theorem.

Theorem 2.1.14. ([Mil56a]). Let the G-space EG be as defined in the Milnor

construction. Then,

a.) EG is contractible.

b.) EG is a CW -complex.

c.) (EG, p,BG) is a principal G-bundle.
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In fact, (EG, p,BG) is a universal G-bundle. For more about universal bun-

dles, see [Hus66].

The theory (see [Hus66] and [Mil56b]) says that a property of the universal

G-bundle ωG = (EG, p,BG) is that ωG is the unique principal G-bundle (up to

equivalence) E → B such that

a. the total space E is contractible,

b. G acts freely on the total space, and

c. B ∼= E/G.

Example 2.1.15. Examples of EG and BG

a. Let G = Z/2, a finite group. Then, the space EG(n) is Sn (up to homeo-

morphism). We think of G as the two homeomorphisms 1 and a of Sn where

1 is the identity map and a is the antipodal map. The base space BG(n) is

RP n, the real n-dimensional projective space.

b. Let G = S1, an infinite group. Then, the space EG(n) is S2n+1 (up to

homeomorphism). For each eiθ ∈ G, the right action of G on EG(n) defined

by the relation (z0, z1, . . . , zn)eiθ = (z0e
iθ, z1e

iθ, . . . , zne
iθ). The base space

BG(n) is CP n, the complex n-dimensional projective space.

For any space Y , and commutative ring Λ, there exists the cup product pairing

Hn(Y,Λ) × Hm(Y,Λ)
∪→ Hn+m(Y,Λ) such that, for homogeneous elements x ∈

Hn(Y,Λ) and y ∈ Hm(Y,Λ), we have x ∪ y = (−1)nmy ∪ x.

Lemma 2.1.16. [Rot] If Y is a topological space and Λ is a commutative ring,

then H∗(Y,Λ) = ⊕Hn(Y,Λ) is a graded ring under cup product.

Let G be a finite group with the discrete topology. Then, H∗(BG,Λ), the

singular cohomolgy of BG with coefficients in Λ, is isomorphic to H∗(G,Λ) =
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Ext∗ZG(Z,Λ), using the algebraic definition of group cohomology [Bro82], [Ben04].

This is an important connection between group cohomology and topological coho-

mology. For more about the algebraic definition of group cohomology, see [Rot79].

Example 2.1.17. Examples Computing Cohomology

a. Let G = Z/p for p 6= 0, G = S1 for p = 0, and k be a field of characteristic

p. Using cohomology with coefficients in k, we have

H∗(BG) =


k[t] p = 0,

k[s] p = 2,

k[t]⊗ ∧[s] p 6= 0, 2.

(2.1.2.1)

where t ∈ H2(BG) and s ∈ H1(BG). [tD87, pg. 200].

b. Let G = Z/p× · · · × Z/p, with n factors. With coefficients in the field k,

H∗G = H∗(BG) =

{
k[x1, . . . , xn] p even,

k[y1, . . . , yn]⊗k ∧[x1, . . . , xn] p odd.
(2.1.2.2)

where xi ∈ H1(BG) and yi ∈ H2(BG) for all i = 1, . . . , n, and where

∧[x1, . . . , xn] is a graded vector space over k = Z/p with graded basis

xi1xi2 · · ·xij , 1 ≤ i1 < · · · < ij ≤ n,

and the following properties hold:

(a) xixj = −xjxi for all i 6= j,

(b) xixi = 0 for all i,

(c) distributive laws

(d) (α1x̂1)(α2x̂2) = α1α2(x̂1x̂2) where x̂1 = xi1 · · ·xil, x̂2 = xj1 · · ·xjm and

α1, α2 ∈ k.
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2.2 The Borel Construction

In this section, we let G be a compact Lie group, let X be a G-space, and

choose a principal G-bundle p : EG → BG with EG contractible. EG × X has

the diagonal action (i.e., g(a, b) = (ga, gb) for all g ∈ G, for all a ∈ EG, and for all

b ∈ X) since X is a G-space, and we can form the associated orbit space

EG×G X=̇(EG×X)/G=̇XG.

Example 2.2.1. Suppose that X = {x0}, a one-point G-space. Then one sees that

EG×G {x0} ∼= BG.

Note that the universal bundle p : EG→ BG induces a bundle map

pX : EG×G X = (EG×X)/G→ EG/G = BG

such that [e, x] 7→ [e]. One can show that this is a fibration with fiber X. The

equivariant cohomology with coefficients in Λ is defined by

H∗G(X,Λ)=̇H∗(EG×G X,Λ) = H∗(XG,Λ)

where by H∗(Y,Λ) we usually mean singular cohomology of the space Y with

coefficients in the ring Λ. This cohomology was introduced by Borel in [Bor60].

A benefit to this construction is that after constructing XG, we can work with

a topological space rather than a group action. Since the action of G on EG×X

is free, then passing to XG preserves many of the properties of X. Another benefit

of equivariant cohomology is that we have a tool for computing the cohomology of

fibrations, namely, the Leray-Serre spectral sequence. (See [McC01] for more on

Leray-Serre spectral sequences.) The Leray-Serre spectral sequence allows one to

compute the cohomology of the total space from the cohomology of the base space

and the fiber space.
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Equivariant cohomology inherits the structure of a H∗(BG)-module as follows.

Given the definitions of the maps p and pX above, we see that with information

about H∗(X) and H∗(BG), one can deduce information about H∗G(X). Since

cohomology is a contravariant functor, pX induces a map p∗X : H∗(BG)→ H∗G(X).

We use this map to define the following action of H∗(BG) on H∗G(X): Given

x ∈ H∗(BG) and y ∈ H∗G(X), define xy = p∗X(x) ∪ y ∈ H∗G(X) where ∪ denotes

the cohomology cup product. With this definition, H∗G(X) is a graded H∗(BG)-

module.

When G is a fixed topological group, the category of G-spaces has morphisms

called “equivariant maps” (or “G-maps”).

Definition 2.2.2. For X and Y G-spaces, an equivariant map φ : X → Y is a

map which commutes with the group actions; that is, φ(g(x)) = g(φ(x)) for all

g ∈ G and x ∈ X.

More generally, a pair of continuous maps φ̃ : G1 → G2, φ : X → Y ,

where G1, G2 are topological groups acting on the spaces X, Y respectively, is an

equivariant pair if φ̃ is a homomorphism, and if for every g ∈ G and x ∈ X,

φ(gx) = φ̃(g)φ(x).

With the definitions above, one can show that the Borel construction is func-

torial: given an equivariant pair (φ̃, φ) as above, there is a continuous function

(φ̃, φ) : XG1 → YG2 that satisfies the usual functorial rules (see [Qui71a, pp. 550-

551]).

2.3 Differentiable Actions

In this section, we will not define basic topological notions. The reader may

refer to [Hus66] or [tD87] for these definitions.

In the following discussion, we follow the exposition of Duflot in [Duf83],

although this material is standard in algebraic topology.
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Definition 2.3.1. A Riemannian metric on a differentiable manifold X is a dif-

ferentiable inner product on the tangent bundle τX .

Theorem 2.3.2. [Bre72, p. 305] Let G be a compact Lie group. A differentiable

G-manifold X has an invariant Riemannian metric.

Let X be a differentiable manifold with a Riemannian metric, and let Y ⊆ X

be a submanifold with Y embedded in X. Y has a tangent space, τY =
∐
y∈Y

τY (y)

where τY (y) is the tangent space to Y at the point y, that is a subset of the

tangent space of X, τX =
∐
x∈X

τX(x). The existence of the Riemannian metric

allows one to construct the normal bundle to Y in X, νY , a bundle over Y , whose

fiber at y ∈ Y is the orthogonal complement to τY (y) in τX(y). If the differentiable

manifold X has a smooth G-invariant Riemannian metric and if Y is a closed G-

invariant submanifold of X, then the normal bundle νY is a G-vector bundle since

the metric defining νY is G-invariant. This allows one to construct the bundle νYG

to YG=̇EG ×G Y in XG=̇EG ×G X. Note that the dimension of νYG is the same

as the dimension of νY . We will assume that νY , and therefore νYG , are orientable

vector bundles. (See Husemoller [Hus66] or Atiyah [Ati67], for example, for more

about normal bundles and orientability.)

We now briefly define tubular neighborhoods and the Thom isomorphism, for

use later.

Definition 2.3.3. [Bre72] Let G be a Lie group, and let X be a differentiable

G-manifold. If Y ⊆ X is a smooth, invariant, closed submanifold, then an open

invariant tubular neighborhood of Y in X is a differentiable G-vector bundle ξ on

Y with total space E(ξ) and an equivariant diffeomorphism φ : E(ξ) → X onto

some open neighborhood of Y in X such that the restriction of φ to Y (the zero-

section of ξ) is the inclusion of Y in X. Furthermore, if ξ is a G-bundle on Y

whose fibers have a G-invariant inner product varying continuously over Y (i.e.,

ξ is a G-invariant Euclidean vector bundle over Y ), then the restriction of the
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diffeomorphism φ to the unit disk bundle D(ξ) → X is called a closed invariant

tubular neighborhood of Y .

Theorem 2.3.4. [Bre72, Thm. 2.2, Ch. VI] Let G be a compact Lie group, and

let X be a differentiable G-manifold. If Y ⊆ X is a closed, invariant submanifold,

then Y has an open invariant tubular neighborhood in X. If X has a G-invariant

Riemannian metric, this tubular neighborhood is obtained from the disk bundle of

the normal bundle to Y in X.

Applying Theorem 2.1 in Chapter VI from Bredon [Bre72], whenG is compact,

every open invariant tubular neighborhood “contains” a closed invariant tubular

neighborhood.

For future use, we present a theorem from Spanier.

Theorem 2.3.5. [Spa66, Thm. 10, pg. 259] (Thom Isomorphism Theorem). Let

ξ be an oriented n-disk bundle (a fiber bundle whose fiber is a unit ball Bn) over

the base space B. There exist natural isomorphisms for any coefficient ring Λ

γ : Hq(B,Λ)
∼=→ Hq+n(E, Ė,Λ).

In fact, γ(v) = p∗v ∪ Uξ where p : E → B is the bundle projection for ξ, and

Uξ ∈ Hn(E, Ė,Λ) is the orientation class of ξ.

Another version of this theorem is the following corollary.

Corollary 2.3.6. Let G be a compact Lie group, let X be a differentiable G-

manifold with a smooth G-invariant Riemannian metric, and let Y be a smooth

invariant submanifold of X. Let νY be the normal bundle to Y in X, and let

d = dim νY . Consider the embedding D(νY ) → X of D(νY ) as a closed invariant

tubular neighborhood of Y . Then, if νY is orientable, there exist natural isomor-

phisms for all q, for any coefficient ring Λ,

τ : Hq(Y,Λ)
∼=→ Hq+d(D(νY ), D(νY )− Y,Λ).
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Proof. Let Ḋ be the boundary (or sphere part) of D(νY )=̇D. Applying Theorem

2.3.5, there exists an isomorphism

γ̃ : Hq(Y )
∼=→ Hq+d(D, Ḋ)

for all q. There also exists a G-invariant deformation retraction D−Y r→ Ḋ. This

fact results in the following exact columns:

...
...

Hq−1(D)
?

= - Hq−1(D)
?

Hq−1(Ḋ)
?

∼=
r∗
- Hq−1(D − Y )

?

Hq(D, Ḋ)
?

θ
- Hq(D,D − Y )

?

Hq(D)
?

= - Hq(D)
?

Hq(Ḋ)
?

∼=
r∗
- Hq(D − Y )

?

...

?
...

?

Therefore, by the Five Lemma, Hq(D, Ḋ) ∼= Hq(D,D − Y ).

The composition map,

τ : Hq(Y )→ Hq+d(D,D − Y ),

such that τ = θ ◦ γ̃, is an isomorphism. We will call this the Thom isomorphism,

also.
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Chapter 3

LINKING COMMUTATIVE ALGEBRA AND

TOPOLOGY

This chapter summarizes some results from Quillen [Qui71a] and Maiorana

[Mai76] and concludes with our own results, which use Quillen’s results but do not

rely on Maiorana’s results. In the first section, we discuss ideas needed for the

remainder of the paper. The second section, presents some of Quillen’s results,

followed by a section in which we make modifications to Maiorana’s work to fit

within our context, resulting in a topological sum formula for computing the C-

multiplicity of a compact manifold using fixed point sets. We then apply these

results to the special case when a compact Lie group, G, embeds in a unitary

group, U . We prove that the C-multiplicity of H∗G (as an Hev
G -module) may be

computed using the C-multiplicity of H∗CG(A) where A is a maximal rank p-torus of

G. We conclude our discussion with some remarks relating this last topological sum

formula for computing the C-multiplicity to the sum formula from commutative

algebra in Theorem 1.6.63.

3.1 H∗ and Hev

Since we will ultimately be applying results of Chapter 1 to cohomology rings,

we switch indexing for our graded rings to upper indexing, and we use “H” instead

of “R”.

Consider the graded ring H∗ = ⊕
i≥0
H i, where H0 = k, a field with characteristic

p > 0 with p odd prime, and H∗ is graded-commutative (i.e. for every x, y ∈ H∗,
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if x ∈ H i and y ∈ Hj are homogeneous elements, then xy = (−1)ijyx.) Define the

subring Hev=̇ ⊕
i≥0
H2i, the even part of H∗. Note that Hev is a strictly commutative

graded ring.

If p = 2, then H∗ is already commutative, and we do not need to consider

Hev. In this paper, we address the p odd case, and we leave the corresponding

adjustments to the reader for the p = 2 case.

Proposition 3.1.1. Let the graded ring H∗ be finitely generated as a graded-

commutative algebra over H0 = k, a field of characteristic p > 0 odd. Then

a. Hev is a finitely generated graded k-algebra.

b. H∗ is finitely generated as a graded module over its subring Hev.

c. If M is a finitely generated graded H∗-module, then M is also a finitely

generated graded Hev-module.

Proof. Note first that H∗ = Hev ⊕Hodd where Hodd=̇H
i≥0

2i+1. By hypothesis, there

exist homogeneous elements x1, . . . , xm, y1, . . . , yn that generate H∗ as a k-algebra

where the xi are of odd degree and the yj are of even degree.

Thus, everything in Hev can be written as a linear combination of elements of

the form xa1
1 · · ·xamm yb11 · · · ybnn with coefficients in k. Notice that since yi has even

degree for every i, yb11 · · · ybnn has even degree, and thereby xa1
1 · · ·xamm must also

have even degree. For characteristic p > 0, p odd, we know that xaii = 0 for ai ≥ 2,

so ai = 0 or ai = 1 for all i. In addition, we know that xixj = −xjxi for i 6= j.

Applying these two properties implies that Hev is spanned as a vector space over

k by “monomials” of the form xj1xj2 · · ·xjly
b1
1 · · · ybnn where 1 ≤ j1 < j2 < · · · <

jl ≤ m and l is even. We can group the xji ’s in pairs as follows: let wj1,j2=̇xj1xj2 ,

j1 < j2. Clearly wj1,j2 must have even degree. Now we see that Hev is spanned

by elements of the form wj1,j2wj3,j4 · · ·wjl−1,jly
b1
1 · · · ybnn . As there are no more than
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(
m
2

)
of the wi,j where 1 ≤ i < j ≤ m, we see that Hev is finitely generated as an

algebra over k.

Similarly, since xaii = 0 for ai ≥ 2 and xixj = −xjxi, the spanning set for H∗

over Hev consists of elements of the form xj1 · · ·xjl , where 1 ≤ j1 < j2 < · · · <

jl ≤ m and l is odd. (If l were even, then xj1 · · ·xjl ∈ Hev.) There are at most
(
m
l

)
of the xj1 · · ·xjl , so we see that H∗ is a finitely generated Hev-module.

Finally, if M is finitely generated as a module over H∗, and H∗ is finitely

generated as a module over Hev, then M is finitely generated as a module over

Hev.

Combining results from previous sections, specifically Proposition 1.6.61, with

Proposition 3.1.1, we have the following theorem.

Theorem 3.1.2. Suppose that H∗ is finitely generated as a graded-commutative

algebra over H0 = k. If M is a nonzero finitely generated graded H∗-module,

then M is a finitely generated graded Hev-module, and the order of the pole of the

Poincaré series PS(M, t) at t = 1 is

D(M) = DimHev(M),

the Krull dimension of M as a finitely generated graded Hev-module. In particular,

the order of the pole at t = 1 of PS(H∗, t) is equal to the Krull dimension of the

graded ring Hev.

Adapting results from commutative algebra to the graded-commutative case,

we obtain the following lemma.

Lemma 3.1.3. Let H∗1 and H∗2 be finitely generated as graded-commutative alge-

bras over k = H0
1 = H0

2 , and let φ : H∗1 → H∗2 be a map of graded-commutative

k-algebras such that φ makes H∗2 into a finitely generated H∗1 -module. Then,

φ : Hev
1 → Hev

2 , making Hev
2 a finitely generated Hev

1 -module, and

DimHev
1
H∗2 = DimHev

2
H∗2 = Dim (Hev

1 / kerφ) = DimHev
2 .
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Proof. Since H∗2 is finitely generated as an H∗1 -module and H∗1 is finitely generated

as a Hev
1 -module, then H∗2 is finitely generated as an Hev

1 -module. Therefore, by

Theorem 3.1.2,

DimHev
1
H∗2 = the order of the pole, at t = 1, of PS(H∗2 , t).

In addition, since H∗2 is finitely generated as an Hev
2 -module, we also have that

DimHev
2
H∗2 = the order of the pole, at t = 1, of PS(H∗2 , t),

resulting in

DimHev
1
H∗2 = DimHev

2
H∗2 .

On the other hand, H∗2 is also an Hev
1 -algebra, via φ, that is finitely generated

as an Hev
1 -module. Since Hev

1 is Noetherian, the Hev
1 -submodule Hev

2 of H∗2 is

finitely generated as a module over Hev
1 , via φ. In other words, H∗2 is a finitely

generated module over its subring Hev
1 / kerφ. Thus, by Theorem 17 of Kaplansky

[Kap74], Hev
2 is integral over Hev

1 / kerφ. Therefore, by Theorem 48 of Kaplansky

[Kap74],

the order of the pole, at t = 1, of PS(H∗2 , t) = DimHev
2 = Dim (Hev

1 / kerφ) .

Now we can define Maiorana’s C-multiplicity in this context.

Definition 3.1.4. If M is a nonzero finitely generated graded H∗-module, the

Maiorana multiplicity C(M) is equal to the Maiorana multiplicity of M considered

as an object in C(R) where R = Hev,

C(M) = lim
t→1

(1− t)D(M)PS(M, t),

where D(M) = DimR(M). We define C(0)=̇0.
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3.2 Quillen’s Results

In this section, we state some of Quillen’s results [Qui71a] without proof, and

we include several additional useful results, many of which rely on Quillen’s work.

Let G be a compact Lie group. Let X be a compact (or paracompact of finite mod

p cohomological dimension) manifold on which G acts continuously. We define

H∗G(X)=̇H∗G(X,Z/pZ)

where p is a prime number. We will assume that p is odd; the p = 2 case can be

handled similarly. In addition, for the rest of this section we let k = Z/pZ.

Recall that to say A is a p-torus is the same as saying that A is elementary

abelian; i.e.,

A ∼= Z/pZ× · · · × Z/pZ

as a group. We say that rankA, the rank of A, is equal to the number of Z/pZ

factors.

Lemma 3.2.1. Let K be a p-torus of rank n. If H ≤ K, then H is a p-torus of

rank ≤ n.

Proof. H is a finite abelian group, so there exist i1, i2, . . . , im with ij ≥ 1 such

that H ∼= Z/pi1 × · · ·Z/pim . For all h ∈ H where x 6= eH , |x| = p. Hence, ij = 1

for all j = 1, . . . ,m, implying that H is a p-torus of rank m. Since H ≤ K, then

rankH = m ≤ n = rankK.

For G a compact Lie group which acts smoothly on the manifold X, let

A(G,X) denote Quillen’s category of pairs with objects (A, c), where A is a p-

torus in G and c is a (nonempty) connected component of XA 6= ∅, and morphisms

θ : (A, c)→ (A′, c′), where θ is conjugation of A into (a subgroup of) A′ by an ele-

ment g ∈ G such that c′ ⊆ gc. The objects of A(G,X) are partially ordered using

the definition (A, c) ≤ (A′, c′) if and only if A ≤ A′ and c′ ⊆ c ⊆ XA. [Qui71a]
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Recall the definitions of conjugate, subconjugate, conjugacy class, and in-

equality of conjugacy classes for A ≤ G from Definition 2.1.7. We extend these

definitions to A(G,X).

Definition 3.2.2. (A, c) is subconjugate to (A′, c′), or (A, c) . (A′, c′), in A(G,X)

if and only if HomA(G,X) ((A, c), (A′, c′)) 6= ∅. (A, c) is conjugate to (A′, c′), or

(A, c) ∼ (A′, c′), in A(G,X) if an only if (A, c) and (A′, c′) are isomorphic objects.

Let [(A, c)] be the conjugacy class of (A, c) in A(G,X). Then, [(A, c)] =

[(A′, c′)] if and only if (A, c) ∼ (A′, c′). We say that [(A, c)] ≤ [(A′, c′)], if and only

if (A, c) . (A′, c′).

Let A(G) = {A | A is an elementary abelian p-subgroup of G}.

Definition 3.2.3. If X is a G-space:

a. A0(G,X)
.
= {A ∈ A(G) | XA 6= ∅}.

b. B(G,X)
.
= {[A]|A ∈ A0(G,X) and A is of maximal rank in A0(G,X)}.

When X = {x0} is a one point space, note that A0(G, {x0}) and B(G, {x0})

are

A0(G, {x0}) = A(G)

and

B(G)=̇ = B(G, {x0}) = {[A] | A a maximal rank p-torus in G},

respectively.

Note the following lemma.

Lemma 3.2.4. [Qui71a, Lem. 6.3] Every compact Lie group has finitely many

conjugacy classes of elementary abelian p-subgroups.

Recall that for a map X → {x0}, there exists a ring homomorphism

H∗G({x0})=̇H∗G → H∗G(X)

making H∗G(X) a graded H∗G-module.
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Theorem 3.2.5. Let G be a compact Lie group, acting on a topological space X.

Suppose that H∗(X) is finite dimensional as a graded vector space over k. Then

the following hold:

a. H∗G(X) is a finitely generated graded k-algebra. [Qui71a, Cor. 2.2]

b. H∗G(X) is a finitely generated graded module over H∗G. [Qui71a, Cor. 2.3]

c. If H ≤ G, then the natural homomorphism of rings H∗G(X)
res→ H∗H(X) makes

H∗H(X) into a finitely generated graded module over H∗G(X). [Qui71a, Cor.

2.3]

As a result of this theorem, we apply Proposition 3.1.1 to conclude the fol-

lowing corollary.

Corollary 3.2.6. Let G be a compact Lie group, and let H∗(X) be finite dimen-

sional as a graded vector space over k. Then, H∗G(X) is a finitely generated graded

module over Hev
G , and Hev

G is a finitely generated k-algebra.

Therefore, applying the theory for graded rings developed in Chapter 1, the

following invariants exist as in Corollary 1.6.40 and in Definitions 1.5.5, 1.6.42,

and 1.5.6:

• D(H∗G(X)), defined by considering H∗G(X) as an R = Hev
G -module, is equal

to the order of the pole of the Poincaré series for H∗G(X), `(H∗G(X)),

• for I ⊆ R an ideal of definition for H∗G(X) considered as an object in C(R),

the integer e(H∗G(X), I) is the Samuel multiplicity of H∗G(X) with respect to

the ideal I, and

• the rational number C(H∗G(X)) = lim
t→1

(1 − t)D(H∗G(X)) PS(H∗G(X), t) is Maio-

rana’s C-multiplicity. Note that C is defined in terms of the Poincaré series,

so C appears to depend only on the vector space structure of H∗G(X).
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We also have the following theorem from Quillen.

Theorem 3.2.7. [Qui71a, Thm. 7.7] (Quillen’s Main Theorem) Let G be a com-

pact Lie group. For p prime, let X be a compact (or paracompact with finite mod-p

cohomological dimension) G-space. If H∗(X) is finite dimensional, then `(H∗G(X))

equals the maximum rank of a p-torus A in G such that XA 6= ∅, i.e.,

`(H∗G(X)) = max{rankA | A a p-torus in G,XA 6= ∅}

= max{rankA | A ∈ A0(G,X)}.

We do not define paracompact nor mod-p cohomological dimension here. See

[Mun00] and [Qui71a] for definitions.

For H any compact Lie group, we define the p-rank of H as follows:

p- rankH=̇ max{rankB |B is a p-torus in H}.

Corollary 3.2.8. Let X be a one-point space, and let G be a compact Lie group.

Then, for p prime, since H∗G(X)=̇H∗(BG)=̇H∗G,

`(H∗G) = p- rankG.

The following corollary follows from Lemma 2.1.8 and the fact that every

subgroup of a p-torus is a p-torus, as shown in Lemma 3.2.1.

Corollary 3.2.9. Suppose that G is a compact Lie group acting on the topological

space X. If Gx is a p-torus for x ∈ XA, then A is a p-torus also.

Moreover, if A ≤ G, then, for every z ∈ GXA, p-rankGz ≥ p-rankA.

Corollary 3.2.10. With the same hypotheses on G and X as Theorem 3.2.7, we

have

`(H∗G(X)) = max{p- rankGx | x ∈ X}
= max{`(H∗Gx

) | x ∈ X}.
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Proof. By Quillen’s Main Theorem and the definitions of a p-torus, we have that

` (H∗G(X)) = max{rankA | A a p-torus in G,XA 6= ∅}
= max{rankA | A ∈ A0(G,X)}.

For Gx the isotropy group for x ∈ X, let

`(H∗Gx
) = max{rankB |B ∈ A(Gx)}.

Consider A ∈ A0(G,X). Since XA 6= ∅, there exists x ∈ X such that A ≤ Gx.

Thus, A ∈ A(Gx). On the other hand, for some x ∈ X, consider B ∈ A(Gx).

Then, B ≤ Gx and x ∈ XB. Thus, XB 6= ∅, and B ∈ A0(G,X). Therefore,

{A | A ∈ A0(G,X)} = ∪
x∈X
{B | B ∈ A(Gx)},

and

`(H∗G(X)) = max{`(H∗Gx
) | x ∈ X}.

Corollary 3.2.11. Let G and X be as defined in Theorem 3.2.7. If Y is a G-

invariant subspace of X such that Y also satisfies the hypotheses of Theorem 3.2.7,

then

`(H∗G(Y )) ≤ `(H∗G(X)).

Proof. By Corollary 3.2.10, `(H∗G(Y )) = max{`(H∗Gy
) | y ∈ Y } and `(H∗G(X)) =

max{`(H∗Gx
) | x ∈ X}. Then, since Y ⊆ X, we have that

max{`(H∗Gy
) | y ∈ Y } ≤ max{`(H∗Gx

) | x ∈ X}.

Using Quillen’s Main Theorem and our previous results that the Krull di-

mension equals the order of the pole of the Poincaré series at t = 1, we have the

following corollary.
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Corollary 3.2.12. With the same hypothesis as Theorem 3.2.7, D(H∗G(X)), the

Krull dimension of H∗G(X) as an Hev
G -module, equals the maximum rank of an

elementary abelian p-subgroup A of G such that XA 6= ∅.

For future use, we note the following lemma.

Lemma 3.2.13. Let G be a compact Lie group, and let H∗(X) be finite dimensional

as a graded vector space over k. Then, the Krull dimension of H∗G(X) as an Hev
G -

module is equal to the Krull dimension of Hev
G (X) as a commutative ring.

Proof. We know that H∗G(X) is finitely generated as an Hev
G -module. Therefore,

since Hev
G (X) is an Hev

G -submodule of H∗G(X) and Hev
G is a commutative Noetherian

ring, we have that Hev
G (X) is finitely generated as an Hev

G -module. Therefore, using

Lemma 3.1.3, for the ring homomorphisms φ : Hev
G → Hev

G (X) and φ : Hev
G →

H∗G(X), we have

DHev
G
Hev
G (X) = D(Hev

G (X)) = DHev
G

(H∗G(X)) = D (Hev
G / kerφ) .

We take some time to discuss relationships between the various subspaces

GXA, as A varies.

Lemma 3.2.14. Let A,B ≤ G, a compact Lie group, and let X be a compact

topological space on which G acts. Let z ∈ X. Then, z ∈ GXA ∩GXB if and only

if [A] ≤ [Gz] and [B] ≤ [Gz].

Proof. Suppose there exists z ∈ GXA ∩ GXB. By Corollary 3.2.9, Gz contains a

conjugate of A and a conjugate of B. This implies that A . Gz and B . Gz.

Therefore, [A] ≤ [Gz] and [B] ≤ [Gz].

Suppose that [A] ≤ [Gz] and [B] ≤ [Gz] for some z ∈ X. Then there exists

g, g̃ ∈ G such that gAg−1 ⊆ g̃Gzg̃
−1, which implies that g̃−1gAg−1g̃ ⊆ Gz. For all

a ∈ A, we have that g̃−1gag−1g̃z = z, so g−1g̃z ∈ XA, and z ∈ GXA. Similarly,

we can show that z ∈ GXB. Therefore, z ∈ GXA ∩GXB.
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Lemma 3.2.15. Let A and B be maximal p-tori in a group G. Then

[A] ≤ [B]⇔ A ∼ B.

Proof. Since A,B maximal in A(G) and [A] maximal with respect to ≤,

[A] ≤ [B]⇔ [A] = [B]⇔ A ∼ B.

Proposition 3.2.16. Let G be a compact Lie group acting on a compact topological

space X such that each isotropy group Gx for all x ∈ X has a unique maximal p-

torus, and let A and B be maximal in A0(G,X). Then, [A] = [B] in A0(G,X) if

and only if GXA = GXB.

Proof. Suppose that [A] = [B]. Then A ∼ B, so there exists g ∈ G such that

gAg−1 = B, and we see that

GXB = GXgAg−1

.

Hence, for all y ∈ XB and for all a ∈ A,

gag−1y = y
ag−1y = g−1y.

However, g−1y ∈ X, so

g−1y ∈ XA.

If hy ∈ GXB, where h ∈ G, we have

hy = h(gag−1y) = (hga)(g−1y) ∈ GXA

since hga ∈ G and g−1y ∈ XA, and we see that

GXB ⊆ GXA.

Similarly, we can show the reverse inclusion, and we conclude that GXB = GXA.
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On the other hand, suppose thatGXB = GXA. Then for all gx ∈ GXA (where

g ∈ G and x ∈ XA), there exists hy ∈ GXB (where h ∈ G and y ∈ XB) such that

gx = hy. Note that since B is maximal in A0(G,X), then B is maximal in A(Gy).

Similarly, since A is maximal in A0(G,X), then A is maximal in A(Gx). Then,

by the hypothesis, B is the unique maximal p-torus in Gy, and A is the unique

maximal p-torus in Gx.

Let ĝ = h−1g. For all a ∈ A,

ĝaĝ−1y = h−1gag−1hy
= h−1gx
= y.

This implies that ĝAĝ−1 ⊆ Gy.

Consider the p-torus ĝAĝ−1. Suppose there exists Ã ⊆ Gy such that ĝAĝ−1 ⊆

Ã ⊆ Gy. Then, for ã ∈ Ã,

ĝ−1ãĝx = g−1hãh−1gx
= g−1hãy
= g−1hy
= g−1gx
= x

Hence, we see that A ⊆ ĝ−1Ãĝ ⊆ Gx. However, since A is the unique maximal

p-torus in Gx, then A = ĝ−1Ãĝ. Thus, ĝAĝ−1 = Ã, so ĝAĝ−1 is a maximal p-torus

in Gy. Therefore, ĝAĝ−1 = B, and A ∼ B.

Lemma 3.2.17. Let G be a compact Lie group acting on a compact topological

space X such that each isotropy group Gx for all x ∈ X has a unique maximal p-

torus. Then, GXA∩GXB = ∅ for all [A] 6= [B], where A,B maximal in A0(G,X).

Proof. Suppose that for some A,B maximal in A0(G,X), [A] 6= [B] and that

GXA∩GXB 6= ∅. Then there exists z ∈ GXA∩GXB. By Lemma 3.2.14, we have

that [A] ≤ [Gz] and [B] ≤ [Gz]. Since A and B are maximal, and Gz has a unique

maximal p-torus, [A] = [B]. Contradiction.
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Lemma 3.2.18. Let G be a compact Lie group and let X be a compact topological

space on which G acts. Then `(H∗G(X)) = `(H∗G(GXA)) for all [A] ∈ B(G,X).

Proof. By Theorem 3.2.7, for all A ∈ A0(G,X) of maximal rank,

`(H∗G(X)) = rankA.

Using Corollary 3.2.10,

`(H∗G(GXA)) = max{p- rankGx|x ∈ GXA}.

If x ∈ GXA, then Gx contains a conjugate of A by Lemma 2.1.8. Since A is

isomorphic to its conjugates,

rankA ≤ p- rankGx.

Since A is a maximal rank p-torus in A0(G,X), rankA = p- rankGx. Therefore,

rankA = p- rankGx for all x ∈ GXA, and

`(H∗G(X)) = rankA = `(H∗G(GXA)) for all [A] ∈ B(G,X).

Lemma 3.2.19. Let G be a compact Lie group and let X be a compact topological

space on which G acts. Suppose that each isotropy group Gx, for x ∈ X, has a

unique maximal p-torus. Then:

a. The union ∪
[A]∈B(G,X)

GXA is a disjoint union:
∐

[A]∈B(G,X)

GXA.

b. If z /∈
∐

[A]∈B(G,X)

GXA, then `(H∗Gz
) < `(H∗G(GXA)) for all [A] ∈ B(G,X).

Proof. For a., the indicated union is disjoint using 3.2.17.

For b., since z /∈
∐

[A]∈B(G,X)

GXA, then z /∈ GXA for all [A] ∈ B(G,X). This

implies that Gz does not contain a conjugate of A for all [A] ∈ B(G,X), and

`(H∗Gz
) = p- rankGz < rankA = `(H∗G(GXA)) for all [A] ∈ B(G,X).
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3.3 Results Regarding Maiorana’s C-Multiplicity

From this point forward, unless otherwise stated, let X be a differentiable

compact manifold with a Riemannian metric, on which a compact Lie group G acts

differentiably. In this section, we state Maiorana’s main result in [Mai76] without

proof. Then we prove variations of Maiorana’s theorem suitable for our purposes.

We do not use any of Maiorana’s results in our proofs. With our definition of

equivariant cohomology H∗G(X) for an action of G on X, we will obtain a formula

for the invariant D(H∗G(X)) in terms of the isotropy groups, and ultimately we

will obtain a formula for C(H∗G(X)) involving the collection of fixed point sets of

subgroups. (Note that all cohomology has Z/pZ coefficients, where p is a prime

number.)

Definition 3.3.1. Suppose a group G acts on a smooth compact manifold X. Let

F be an invariant submanifold of X. F is isolated if there is some neighborhood

Ux of x for each x ∈ F , such that `(H∗Gy
) < `(H∗G(F )) for y ∈ Ux − F .

Using the above definition for an isolated submanifold, Maiorana [Mai76]

proves the following proposition, without using Quillen’s Main Theorem (Theo-

rem 3.2.7).

Proposition 3.3.2. [Mai76, Prop. 4.2] Let G be a p-group which acts on a com-

pact manifold X with F1, F2, . . . , Fm closed, invariant, disjoint, and isolated sub-

manifolds. If p is odd, then suppose that each normal bundle νFi
is oriented. If

`(H∗G(Fi)) ≥ `(H∗G(X)) for each i, and if `(H∗Gx
) < `(H∗G(X)) for all x ∈ X−

m
∪
i=1
Fi,

then
m∑
i=1

C(H∗G(Fi)) = C(H∗G(X)).

Using Quillen’s Main Theorem (Theorem 3.2.7), we will prove a generalization

of Maiorana’s Proposition 3.3.2 that suits our purposes. We do not use Maiorana’s

results.
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Theorem 3.3.3. Let a compact Lie group G act smoothly on a compact manifold

X with Z =
n
∪
i=1
Zi where the Zi’s are closed, G-invariant, disjoint submanifolds of

X such that νZi
is orientable for all i (but νZi

may have different dimensions over

different components of Zi). Assume that

(i.) ` (H∗G(X)) = ` (H∗G(Zi)) for all i,

(ii.) if z /∈ Z, then `
(
H∗Gz

)
< ` (H∗G(Zi)) for all i, and

(iii.) π0(Zi), the set of connected components of Zi, has a finite number, qi, of

orbits under the G action.

Then,

C (H∗G(X)) =
n∑
i=1

C (H∗G(Zi)) .

The proof of this theorem, finally accomplished on page 93, requires some

notation and several lemmas.

3.3.1 Notation

We begin the proof of Theorem 3.3.3 by setting notation and stating some

basic facts.

Let Y =
m
∪
i=1
Yi where the Yi’s are closed, connected, G-invariant disjoint sub-

manifolds of X such that νYi is orientable and dim νYi = di ≥ 0 for all i. There is

an exact equivariant Gysin sequence for the embedding Y → X,

· · · → Hq
G(Yi)(−di)

φi→ Hq
G(X)

g∗i→ Hq
G(X − Yi)

σi→ Hq+1
G (Yi)(−di)→ · · ·

for every i.

To see this, we begin by letting Di be a closed, G-invariant, tubular neighbor-

hood of Yi in X obtained by equivariantly embedding the total space of the disk

bundle associated to νYi in X such that Di∩Dj = ∅ for all i 6= j.Define D =
m
∪
i=1
Di.

Note also that
m
∪
i=1

(Di − Yi) =
m
∪
i=1
Di −

m
∪
i=1
Yi.
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Define the following canonical maps, all of which are restriction maps:

f : (X, ∅)→ (X,X − Y ) induces f ∗ : Hq
G(X,X − Y )→ Hq

G(X),
g : X − Y → X induces g∗ : Hq

G(X)→ Hq
G(X − Y ).

For each i = 1, ...,m, define the following canonical maps, all of which are restric-

tion maps also:

fi : (X, ∅)→ (X,X − Yi) induces f ∗i : Hq
G(X,X − Yi)→ Hq

G(X),
gi : X − Yi → X induces g∗i : Hq

G(X)→ Hq
G(X − Yi),

hi : (X,X − Y )→ (X,X − Yi) induces h∗i : Hq
G(X,X − Yi)→ Hq

G(X,X − Y ),

h̃i : X − Y → X − Yi induces h̃∗i : Hq
G(X − Yi)→ Hq

G(X − Y ).

Diagram 3.3.4. These degree-preserving maps, along with the connecting homo-

morphisms ∆Y and ∆i, yield the following commutative diagram with exact rows

of the pairs (XG, (X − Yi)G) and (XG, (X − Y )G):

· · · - Hq
G(X,X − Yi)

f∗i- Hq
G(X)

g∗i- Hq
G(X − Yi)

∆i- Hq+1
G (X,X − Yi) - · · ·

· · · - Hq
G(X,X − Y )

h∗i
?

f∗- Hq
G(X)

=

?
g∗- Hq

G(X − Y )

h̃∗i
?

∆Y- Hq+1
G (X,X − Y )

h∗i
?

- · · ·

Diagram 3.3.5. Using excision, we have the isomorphisms

eD : Hq
G(X,X − Y )→ Hq

G

(
m
∪
i=1
Di,

m
∪
i=1

(Di − Yi)
)

obtained by excising X −D and

ei : Hq
G(X,X − Yi)→ Hq

G(Di, Di − Yi)

obtained by excising X−Di for all i, resulting in the following commutative diagram

for all q:

Hq
G(X,X − Yi)

ei - Hq
G(Di, Di − Yi)

Hq
G(X,X − Y )

h∗i
?

eD- Hq
G

(
m
∪
i=1
Di,

m
∪
i=1

(Di − Yi)
)ι∗i?

∩

∼=
m
⊕
i=1
Hq
G(Di, Di − Yi)

where ι∗i : Hq
G(Di, Di − Yi) → Hq

G

(
m
∪
i=1
Di,

m
∪
i=1

(Di − Yi)
)

is inclusion onto the ap-

propriate direct summand.
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Diagram 3.3.6. Since the space (Yi)G is equivariantly embedded in (Di)G as the

zero section of the disk bundle associated to νG : NG → YG, then by Proposition

2.3.6, there is a Thom isomorphism τi : Hq
G(Yi)(−di) → Hq

G(Di, Di − Yi). The

Gysin sequence for this normal bundle,

· · · - Hq
G(Yi)(−di)

φi - Hq
G(X)

g∗i- · · ·

Hq
G(Di, Di − Yi)

τi
?

e−1
i - Hq

G(X,X − Yi)

f∗i

6

· · · g∗i - Hq
G(X − Yi)

σi - Hq+1
G (Yi)(−di) - · · ·

Hq+1
G (X,X − Yi)

∆i
?

ei- Hq+1
G (Di, Di − Yi),

τ−1
i

6

is obtained using φi=̇f
∗
i e
−1
i τi and σi=̇τ

−1
i ei∆i for all i.

3.3.2 Basic Lemmas

At this point, we will prove a series of lemmas which will aid in the proof of

Theorem 3.3.3.

Definition 3.3.7. Define

H̃q
G(Y )=̇

m
⊕
i=1

Hq
G(Yi)(−di)=̇

m
⊕
i=1

Hq−di
G (Yi)

as a graded object.

Lemma 3.3.8. Let G be a compact Lie group and let Y =
m
∪
i=1
Yi, where the Yi’s

are closed, connected, G-invariant, disjoint submanifolds of a compact manifold X

such that νYi is orientable for all i and dim νYi = di ≥ 0 for all i. Then,

a. H̃∗G(Y ) is a graded module over H∗G.

b. H̃∗G(Y ) is a finitely generated H∗G-module.

c. `(H̃∗G(Y )) = `(H∗G(Y )).
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d. C(H̃∗G(Y )) = C(H∗G(Y )).

Proof. Consider ξ ∈ Hp
G and ξ̃ ∈ H̃q

G(Y ) =
m
⊕
i=1
Hq
G(Yi)(−di). We write

ξ̃ = ξ̃1 + · · ·+ ξ̃m,

where ξ̃i ∈ Hq−di(Yi). Then,

ξξ̃ = ξξ̃1 + · · ·+ ξξ̃m,

where ξξ̃i ∈ Hp+q−di
G (Yi). Hence, ξξ̃ ∈ H̃p+q

G (Y ), confirming that H̃∗G(Y ) is a graded

module over H∗G.

Since H∗G(Yi) is finitely generated as an H∗G-module for all i by Theorem 3.2.5,

then H∗G(Yi)(−di) is also a finitely generated H∗G-module for all i. Therefore,

H̃∗G(Y ) =
m
⊕
i=1
H∗G(Yi)(−di) is a finitely generated H∗G-module.

Recall that H̃q
G(Y ) =

m
⊕
i=1
Hq−di
G (Yi). Then we have that

PS(H̃∗G(Y ), t) =
∞∑
q=0

dim

(
m
⊕
i=1
Hq−di
G (Yi)

)
tq =

∞∑
q=0

m∑
i=1

dim
(
Hq−di
G (Yi)

)
tq

=
m∑
i=1

∞∑
q=0

dim
(
Hq−di
G (Yi)

)
tq =

m∑
i=1

tdi
(
∞∑
q=0

dim
(
Hq−di
G (Yi)

)
tq−di

)
=

m∑
i=1

tdi
(
∞∑
q=0

dim (Hq
G(Yi)) t

q

)
=

m∑
i=1

tdi (PS (H∗G(Yi), t))

=
m∑
i=1

(PS (H∗G(Yi)(−di), t))

Now, we see that `(H̃∗G(Y )) = max {` (H∗G(Yi)(−di)) | i = 1, . . . ,m}. Recall

that `(M(−r)) = `(M). Then, ` (H∗G(Yi)(−di)) = ` (H∗G(Yi)) for all i = 1, . . . ,m.

Therefore, `(H̃∗G(Y )) = max {` (H∗G(Yi)) |i = 1, . . . ,m}.

Since PS(H̃∗G(Y ), t) =
m∑
i=1

(PS(H∗G(Yi)(−di), t)) = PS(H∗G(Y ), t), as shown

above, and since `(H̃∗G(Y )) = `(H∗G(Y )), multiplying by (1− t)`(H̃∗G(Y )) and taking

the limit as t→ 1 results in

C(H̃∗G(Y )) = C(H∗G(Y )).
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Define the homomorphism of graded H∗G-modules

φ : H̃∗G(Y )→ H∗G(X)

such that if ξ ∈ H̃q
G(Y ), write ξ =!

m∑
i=1

ξi where ξi ∈ Hq
G(Yi)(−di), then

φ(ξ)=̇
m∑
i=1

φi(ξi) ∈ Hq
G(X).

Notice that with this definition, φ preserves grading.

Define the homomorphism of graded H∗G-modules

σ : H∗G(X − Y )→ H̃∗G(Y )

as follows. Let ζ ∈ Hq
G(X − Y ). Consider the connecting homomorphism ∆Y for

the long exact sequence of the pair X,X − Y ,

∆Y : Hq
G(X − Y )→ Hq+1

G (X,X − Y ),

and the excision isomorphism eD obtained by excising M −D,

eD : Hq+1
G (X,X − Y )→ Hq+1

G

(
m
∪
i=1
Di,

m
∪
i=1

(Di − Yi)
)

=
m
⊕
i=1
Hq+1
G (Di, Di − Yi),

for all q. There exists a unique

[eD (∆Y (ζ))]i ∈ H
q+1
G (Di, Di − Yi) such that eD (∆Y (ζ)) =

m∑
i=1

[eD (∆Y (ζ))]i .

Then

τ−1
i [eD (∆Y (ζ))]i ∈ H

q+1
G (Yi)(−di) for all i.

Now define

σ(ζ) =
m∑
i=1

τ−1
i [eD (∆Y (ζ))]i ∈

m
⊕
i=1
Hq+1
G (Yi)(−di) = H̃q+1

G (Y ).

Notice that with this definition, σ raises degree by 1.

The following lemma and proof are an elaboration of [Duf83].
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Lemma 3.3.9. (The Gysin Triangle). Let a compact Lie group G act smoothly

on a compact manifold X with Y =
m
∪
i=1
Yi, where the Yi’s are closed, connected, G-

invariant, disjoint submanifolds of X such that the normal bundle νYi is orientable

and dim νYi = di ≥ 0 for all i. Using the definitions of the maps above, we have

that
H∗G(X − Y ) �

g∗
H∗G(X)

H̃∗G(Y )

φ

-

σ -

is an exact triangle, where φ and g∗ preserve degree and σ raises degree by 1.

Proof. We will approach this proof in three parts.

a. kerφ ⊆ imσ.

Take ξ ∈ H̃q
G(Y ) such that ξ =!

m∑
i=1

ξi where ξi ∈ Hq
G(Yi)(−di) for all i and

φ(ξ) = 0 in Hq
G(X). Then we can write

φ(ξ) =
m∑
i=1

φi(ξi) = 0

and

φi(ξi) = 0 in Hq
G(X) for all i.

Since the Gysin sequence is exact, we have that

ξi ∈ imσi for all i.

Thus, there exists ωi ∈ Hq−1
G (X − Yi) such that σi(ωi) = ξi for all i. This

implies that, for all i, we have h̃∗i (ωi) ∈ Hq−1
G (X − Y ), so

m∑
i=1

h̃∗i (ωi) ∈

Hq−1
G (X − Y ). Using the diagrams above and the facts that ∆Y is a ho-

momorphism and ι∗i is inclusion, we see that

σ

(
m∑
i=1

h̃∗i (ωi)

)
=

m∑
i=1

τ−1
i

[
eD

(
∆Y

(
m∑
i=1

h̃∗i (ωi)

))]
i

=
m∑
i=1

τ−1
i

[
eD

(
m∑
i=1

∆Y h̃
∗
i (ωi)

)]
i

=
m∑
i=1

τ−1
i

[
m∑
i=1

eDh
∗
i∆i(ωi)

]
i

=
m∑
i=1

τ−1
i

[
m∑
i=1

ι∗i ei∆i(ωi)

]
i

=
m∑
i=1

τ−1
i ei∆i(ωi)

=
m∑
i=1

σi(ωi) =
m∑
i=1

ξi = ξ
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We leave the reverse inclusion to the reader.

b. ker g∗ ⊆ imφ.

Consider η ∈ ker g∗. Since g∗ preserves degree, without loss of generality

we assume that η ∈ Hq
G(X) and g∗η = 0 in Hq

G(X − Y ). There exists

η̂ ∈ Hq
G(X,X − Y ) such that η = f ∗(η̂) since the rows in Commutative

Diagram 3.3.4 are exact. In addition, we see that

eD(η̂) =
m∑
i=1

η̂i ∈ Hq
G

(
m
∪
i=1
Di,

m
∪
i=1

(Di − Yi)
)
,

where η̂i ∈ Hq
G(Di, Di−Yi). This implies that (ι∗i )

−1 [eD(η̂)]i = η̂i ∈ Hq
G(Di, Di−

Yi). Since the Gysin sequence is exact,

τ−1
i (ι∗i )

−1 [eD(η̂)]i = τ−1
i η̂i=̇ξi ∈ Hq

G(Yi)(−di).

Let ξ ∈ H̃q
G(Y ) such that ξ =

m∑
i=1

ξi where ξi ∈ Hq
G(Yi)(−di) for all i. Using

our various diagrams, we have

φξ =
m∑
i=1

φiξi =
m∑
i=1

f ∗i e
−1
i τiξi

=
m∑
i=1

f ∗h∗i e
−1
i τiξi = f ∗

m∑
i=1

e−1
D ι∗i η̂i

= f ∗e−1
D

m∑
i=1

η̂i = f ∗η̂ = η

Therefore, ker g∗ ⊆ imφ. We leave the reverse inclusion to the reader.

c. kerσ ⊆ im g∗.

Suppose that ρ ∈ kerσ. Then σ(ρ) = 0 and ρ ∈ Hq
G(X − Y ). Notice that

σ(ρ) =
m∑
i=1

τ−1
i [eD (∆Y ρ)]i = 0 in

m
⊕
i=1

Hq+1
G (Yi)(−di).

⇒ τ−1
i [eD (∆Y ρ)]i = 0 in Hq+1

G (Yi)(−di) for all i

⇒ [eD (∆Y ρ)]i = 0 in Hq+1
G (Di, Di − Yi) since τi an isomorphism for all i

⇒ eD (∆Y ρ) = 0 in Hq+1
G

(
m
∪
i=1
Di,

m
∪
i=1

(Di − Yi)
)
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⇒ ∆Y ρ = 0 in Hq+1
G (X,X − Y ) since eD an isomorphism

⇒ ρ ∈ ker ∆Y = im g∗ by exactness in Commutative Diagram 3.3.4

Therefore, ker σ ⊆ im g∗. We leave the reverse inclusion to the reader. This

completes our proof.

Corollary 3.3.10. Suppose that G = {e}. Then, if any two corners of the Gysin

Triangle in Lemma 3.3.9 are finite dimensional graded vector spaces over k, then

so is the third.

In order to compare Poincaré series in the exact triangle in Lemma 3.3.9, we

prove a lemma about Poincaré series for general exact triangles.

Lemma 3.3.11. Consider three graded vector spaces, A, B, and C, over k such

that their Poincaré series are defined. Let A =
∞
⊕
q=0
Aq, B =

∞
⊕
q=0
Bq, and C =

∞
⊕
q=0
Cq

such that there is a long exact sequence of finite dimensional spaces

· · · → Cq−1 σ→ Aq
φ→ Bq g∗→ Cq → · · ·

where Aq = Bq = Cq = 0 for all q < 0. Then,

(i.) PS(B, t) ≤ PS(A, t) + PS(C, t).

(ii.) PS(A, t) ≤ tPS(C, t) + PS(B, t).

(iii.) tPS(C, t) ≤ PS(A, t) + tPS(B, t).

Proof. (i.) We know that the sequence

0 - φ(Aq) ⊂ - Bq g∗-- g∗(Bq) - 0

is exact for all q. This results in

dimBq = dimφ(Aq) + dim g∗(Bq)
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for all q. We have that dimφ(Aq) ≤ dimAq for all q, and since g∗(Bq) ⊆ Cq,

we also have that dim g∗(Bq) ≤ dimCq for all q. These facts imply that

dimBq ≤ dimAq + dimCq

for all q. Therefore,

PS(B, t) ≤ PS(A, t) + PS(C, t).

(ii.) For all q, we know that the sequence

0 - σ(Cq−1) ⊂ - Aq
φ-- φ(Aq) - 0

is exact. This sequence results in

dimAq = dimσ(Cq−1) + dimφ(Aq)

for all q. We have that dimσ(Cq−1) ≤ dimCq−1 for all q, and since φ(Aq) ⊆

Bq, we also have that dimφ(Aq) ≤ dimBq for all q. These facts imply that

dimAq ≤ dimCq−1 + dimBq

for all q. Certainly, then, we have

∞∑
q=0

dimAqtq ≤
∞∑
q=0

dimCq−1tq +
∞∑
q=0

dimBqtq

= t
∞∑
q=1

dimCq−1tq−1 +
∞∑
q=0

dimBqtq

= t
∞∑
q=0

dimCqtq +
∞∑
q=0

dimBqtq,

resulting in

PS(A, t) ≤ tPS(C, t) + PS(B, t).

(iii.) For q = −1, B−1 = C−1 = 0, so dimB−1 = dimC−1 = 0. Certainly,

dimA0 ≥ 0. These facts result in the inequality

dimCq ≤ dimAq+1 + dimBq
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for q = −1. In addition, for q 6= −1, we have the exact sequence

0 - g∗(Bq) ⊂ - Cq σ-- σ(Cq) - 0

resulting in the dimension relationship

dimCq = dim g∗(Bq) + dim σ(Cq).

We have that dim g∗(Bq) ≤ dimBq, and since σ(Cq) ⊆ Aq+1, we also have

that dimσ(Cq) ≤ dimAq+1 for q 6= −1. Thus,

dimCq ≤ dimAq+1 + dimBq

for all q. Certainly, then, we have

∞∑
q=0

dimCqtq+1 ≤
∞∑

q=−1

dimAq+1tq+1 +
∞∑
q=0

dimBqtq+1

t
∞∑
q=0

dimCqtq ≤
∞∑
q=0

dimAqtq + t
∞∑
q=0

dimBqtq

tPS(C, t) ≤ PS(A, t) + tPS(B, t).

3.4 Two Main Theorems

The following two theorems are two of the main theorems of this paper.

Theorem 3.4.1. Let a compact Lie group G act smoothly on a compact manifold

X with Y =
m
∪
i=1
Yi where the Yi’s are closed, connected, G-invariant, disjoint sub-

manifolds of X such that each νYi is orientable and dim νYi = di ≥ 0 for all i.

Assume that

(i.) ` (H∗G(X)) = ` (H∗G(Yi)) for all i and

(ii.) if z /∈ Y , then `
(
H∗Gz

)
< ` (H∗G(Yi)) for all i.

Then

C (H∗G(X)) =
m∑
i=1

C (H∗G(Yi)) .
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Proof. Since X is compact and Y is closed, therefore compact also, we have that

H∗(X) andH∗(Y ) are finite dimensional graded vector spaces. By Corollary 3.3.10,

H∗(X − Y ) is also finite dimensional.

For D a closed tubular neighborhood of Y as defined on page 82, let D̊ be the

interior of D. Notice that since X is compact, X − D̊ is also compact. Of course,

X − D̊ ⊂ X − Y .

By Quillen’s results, as stated in Corollary 3.2.10, we have that

`(H∗G(X − D̊)) = max
{
`
(
H∗Gz

)
|z ∈ X − D̊

}
,

so `
(
H∗G(X − D̊)

)
< ` (H∗G(Yi)) = `(H∗G(X)) for all i, using hypotheses (i.) and

(ii.). In addition, since there exists a G-deformation retraction X − Y → X − D̊,

resulting in

H∗G(X − Y ) ∼= H∗G(X − D̊),

we have that `(H∗G(X − Y )) < `(H∗G(X)).

Recall from Lemma 3.3.8 that `
(
H̃∗G(Y )

)
= ` (H∗G(Y )). Also,

PS

(
m
⊕
i=1
H∗G(Yi), t

)
= PS (H∗G(Y1), t) + · · ·PS (H∗G(Ym), t) ,

and `

(
m
⊕
i=1
H∗G(Yi)

)
= ` (H∗G(Yi)) = `(H∗G(X)) for all i = 1, . . . ,m. Therefore,

` (H∗G(X − Y )) < `
(
H̃∗G(Y )

)
= `(H∗G(X)).

From Lemma 3.3.11 applied to the Gysin triangle of Lemma 3.3.9,

PS (H∗G(Y ), t) ≤ tPS (H∗G(X − Y ), t)
+ PS (H∗G(X), t) .

Hence, if `=̇`(H∗G(X)) = `(H∗G(Y )) = `(H∗G(Yi)) for all i, since all Poincaré series

have nonnegative integer coefficients,

lim
t→1

(1− t)` PS
(
H̃∗G(Y ), t

)
≤ lim

t→1
(1− t)`tPS (H∗G(X − Y ), t)

+ lim
t→1

(1− t)` PS (H∗G(X), t) ,
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which results in

C (H∗G(Y )) = C(H̃∗G(Y )) ≤ C (H∗G(X))

since ` (H∗G(X − Y )) < ` (H∗G(X)) = `, using Lemma 3.3.8, part (d.).

On the other hand, from Lemma 3.3.11 applied to the Gysin triangle of Lemma

3.3.9,

PS (H∗G(X), t) ≤ PS
(
H̃∗G(Y ), t

)
+ PS (H∗G(X − Y ), t) .

Hence,

lim
t→1

(1− t)` PS (H∗G(X), t) ≤ lim
t→1

(1− t)` PS
(
H̃∗G(Y ), t

)
+ lim

t→1
(1− t)` PS (H∗G(X − Y ), t) ,

which results in

C (H∗G(X)) ≤ C
(
H̃∗G(Y )

)
= C(H∗G(Y ))

since ` (H∗G(X − Y )) < ` (H∗G(X)). Therefore,

C (H∗G(X)) = C

(
m
⊕
i=1
H∗G(Yi)

)
=

m∑
i=1

C(H∗G(Yi)).

Our last step is to prove finally Theorem 3.3.3, which was stated on page 82.

Proof. We can write

Zi =

qi∐
j=1

Gci,j

where ci,j ∈ π0(Zi), Gci,j = ∪
g∈G

gci,j, and Gci,j ∩ Gci,k = ∅ for all j 6= k. In other

words, {ci,j | 1 ≤ j ≤ qi} is a set of representatives for the orbits of the G-action

on π0(Zi). Notice that Gci,j is closed and G-invariant and that νGci,j is orientable

and of constant dimension for each i, j. Without loss of generality, we can order

the Gci,j such that

Zi = Gci,1
∐
· · ·
∐

Gci,ri
∐

Gci,ri+1

∐
· · ·
∐

Gci,qi
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where

` (H∗G(Gci,j)) = ` (H∗G(X)) for 1 ≤ j ≤ ri

and

` (H∗G(Gci,j)) < ` (H∗G(X)) for ri < j ≤ qi.

Here we use the hypothesis that `(H∗G(X)) = `(H∗G(Zi)) for all i.

Let Z̃i =
rj∐
j=1

Gci,j ⊆ Zi for each i, and let Z̃ =
n∐
i=1

Z̃i ⊆ Z. Note that

`(H∗G(Z̃i)) = `(H∗G(X)) for all i,

by definition. Suppose that z ∈ X − Z̃. On the one hand, suppose z /∈ Z. Then

`(H∗Gz
) < `(H∗G(X)) = `(H∗G(Z̃i)) for all i by the hypothesis. On the other hand,

suppose z ∈ Z. Then z ∈ Zi but z /∈ Z̃i for some unique i, and so z ∈ Gci,j for

some j, ri < j ≤ qi. By definition,

`(H∗G(Gci,j)) < `(H∗G(X)) since ri < j ≤ qi.

Now, since z ∈ Gci,j, Lemma 3.2.19 shows that

`(H∗Gz
) ≤ `(H∗G(Gci,j)),

and we know that, by definition of Z̃i,

`(H∗G(X)) = `(H∗G(Z̃i)) for all i.

So, we see that, if z ∈ X − Z̃,

`(H∗Gz
) < `(H∗G(Z̃i)) for all i.

By Theorem 3.4.1 applied to Z̃ ⊆ X, decomposed as
n∐
i=1

rj∐
j=1

Gci,j, we see that

C(H∗G(X)) =
n∑
i=1

ri∑
j=1

C (H∗G(Gci,j)) .
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Since

Z =
n∐
i=1

Zi =
n∐
i=1

qi∐
j=1

Gci,j,

we have

n∑
i=1

PS(H∗G(Zi), t) =
n∑
i=1

qi∑
j=1

PS(H∗G(Gci,j), t)

=
n∑
i=1

ri∑
j=1

PS(H∗G(Gci,j), t) +
n∑
i=1

qi∑
j=ri+1

PS(H∗G(Gci,j), t).

Multiplying by (1− t)`(H∗G(X)), and taking the limit as t→ 1, we have

n∑
i=1

C(H∗G(Zi)) =
n∑
i=1

ri∑
j=1

C(H∗G(Gci,j))

since `(H∗G(Gci,j)) = `(H∗G(X)) for 1 ≤ j ≤ ri and `(H∗G(Gci,j)) < `(H∗G(X)) for

ri < j ≤ qi for all i.

Therefore,

C(H∗G(X)) =
n∑
i=1

C(H∗G(Zi)).

3.5 Properties of U/S

In this section, we apply our results from Section 3.2 to a special manifold in

order to apply Theorem 3.3.3. Recall from Chapter 2, that the unitary group is

defined as

U(n, k) = {A ∈ GLn(k) | AA∗ = I},

where k = R or k = C. For convenience, we let U(n)=̇U(n,C). We have seen in

Chapter 2 that U(n) is a compact smooth manifold of real dimension n2.

Let

T (n) = {A ∈ GLn(C) | aij = 0 for all i 6= j, |aii| = 1 for all i} ∼= S1 × · · · × S1︸ ︷︷ ︸
n

and let

Sp(n) = {A ∈ T (n) | apii = 1 for all i = 1, . . . , n} ∼= Z/pZ× · · · × Z/pZ︸ ︷︷ ︸
n

,
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the “diagonal” p-torus of rank n in U(n). Since U(n) is a manifold and Sp(n) acts

freely and differentiably on U(n) via left multiplicaiton, the orbit space

F (n)=̇U(n)/Sp(n)

is a manifold, too [tD87, Ch. 1, Prop. 5.2].

From this point forward, we will use U = U(n), T = T (n), S = Sp(n), and

F = F (n) for some n.

Fix an embedding of a compact Lie group G in the unitary group U . This

makes U a differentiable G-manifold with G acting on U by left multiplication.

Of course, S also acts on U by left multiplication. Let F = U/S be the compact

smooth G-manifold of orbits. We now consider several properties involving F .

Lemma 3.5.1. Let F = U/S, and let G be a compact Lie group embedded in U .

For all z ∈ F , Gz is a p-torus in G. Furthermore, for every p-torus A of G, there

exists a z ∈ F such that A ≤ Gz. Thus, A0(G,F ) = A(G), and B(G,F ) = B(G).

Proof. Recall that S ∼= Z/p× · · · × Z/p︸ ︷︷ ︸
n

, a p-torus.

Since z ∈ F = U/S, there exists u ∈ U such that z = uS. Then,

Gz = {g ∈ G | gz = guS = uS} = {g ∈ G | u−1gu ∈ S}
= {g ∈ G | g ∈ uSu−1} = uSu−1 ∩G.

Notice that Gz ≤ uSu−1 ∼= S, a finite abelian group and a p-torus of rank n.

Therefore, by Lemma 3.2.1, Gz is a p-torus also.

Now, suppose that A is a p-torus in G. Then A is a set of commuting matrices

over C, all of which are diagonalizable. Therefore the set A is “simultaneously

diagonalizable”; i.e., there exists an element u ∈ U such that uAu−1 ⊂ T . Since

uAu−1 is a p-torus, we must have uAu−1 ⊆ S. So, Gu−1S = u−1Su ∩G ≥ A.

A direct application of Lemmas 2.1.8, 3.5.1, 3.2.18, and 3.2.19 results in the

following corollary. Recall that B(G) is the set of conjugacy classes of p-tori in G

of maximal rank.
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Corollary 3.5.2. For G a compact Lie subgroup of U and F = U/S, the following

properties hold.

a. If A is a maximal (with respect to ≤) p-torus in G, then FA 6= ∅, and for all

x ∈ FA, A = Gx. Furthermore, for all x ∈ GFA, A ∼ Gx.

b. `(H∗G(F )) = `(H∗G(GFA)) for all [A] ∈ B(G).

c. GFA ∩GFB = ∅ for all [A] 6= [B] with [A], [B] ∈ B(G).

d. If z /∈
∐

[A]∈B(G)

GFA, then `(H∗Gz
) < `(H∗G(GFA)) for all [A] ∈ B(G).

From Duflot [Duf83, Cor. 1 and 2], we can conclude the following lemma.

Lemma 3.5.3. [Duf83] Let G be a compact Lie group, and let A be a p-torus acting

smoothly on a differentiable manifold X. Assume that X has a smooth G-invariant

Riemannian metric. Then, the normal bundle νXA has a complex structure and,

therefore, is orientable.

Note that Duflot’s paper [Duf83] requires p odd. For the p = 2 case, all

bundles are orientable mod-2, so we do not need Lemma 3.5.3 if p = 2.

Applying this lemma to the differentiable manifold F = U/S and to the

compact Lie group G embedded in U , we have the following corollary.

Corollary 3.5.4. For G a compact Lie group embedded in U and F = U/S, the

normal bundle for FA, νFA, is orientable for every p-torus A of G.

3.6 Application of Theorem 3.3.3 to F = U/S

Given the many facts concerning the space F = U/S where G is a compact

Lie group embedded in U as shown in Lemmas 2.1.10, 2.1.11, 3.2.17, 3.2.4, and

3.5.3 and Corollaries 3.2.10 and 3.2.11, we now apply Theorem 3.3.3 to this special

case, resulting in a significant formula for calculating the C-multiplicity of H∗G(F ).
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Theorem 3.6.1. Let G be a compact Lie group which embeds in U , let F = U/S,

and let B(G) be the set of conjugacy classes of maximal rank p-tori of G. Then

C (H∗G(F )) =
∑

[A]∈B(G)

C
(
H∗G(GFA)

)
.

Using further results from [Duf84], we will use the above theorem to conclude

with a nice formula for finding the C-multiplicity of H∗G. Further embellishments

will be considered in future research.

3.6.1 Review of Duflot’s Results

Definition 3.6.2. The normalizer of A in G is defined by

NG(A) = {g ∈ G|gA = Ag},

the largest subgroup of G having A as a normal subgroup. The centralizer of A in

G is defined by

CG(A) = {g ∈ G|ga = ag for all a ∈ A}.

It is important to note that NG(A) and CG(A) are both subgroups of G and that

CG(A) is a normal subgroup of NG(A). The Weyl group of A in G is defined by

WG(A)=̇NG(A)/CG(A).

Note that WG(A) is a finite group. More generally, in order to apply the above

definitions to Quillen’s category of pairs, we make the following definiton.

Definition 3.6.3. For G a group which acts smoothly on a manifold X and

(A, c) ∈ A(G,X), we define

NG(A, c) = {g ∈ G | gA = Ag and gc = c},
CG(A, c) = {g ∈ G | ga = ag for all a ∈ A and gc = c},
WG(A, c) = NG(A, c)/CG(A, c).
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Lemma 3.6.4. [Duf84, Lem. 3.4] Let G be a compact Lie group, and fix an em-

bedding of G in a unitary group U . Let F = U/S, and let (A, c) be maximal

in A(G,X), where X is either compact and every orbit of X is a G-deformation

retract of one of its neighborhoods, or X is paracompact with finite mod-p cohomo-

logical dimension. Then, there are isomorphisms for i ≥ 1,

H∗G
(
G ·
(
c× (FA)i

)) ∼=→ H∗NG(A,c)

(
c× (FA)i

)
.

Recall that if Y is a topological space, then π0(Y ) is the set of connected

components of Y .

The following theorem was proved on pages 98–99 of Duflot [Duf84].

Theorem 3.6.5. [Duf84] Let G be a compact Lie group, and let A be a p-torus of

G. Fix an embedding of G in a unitary group U , and let F = U/S as a G-space.

Then, for every A ∈ A(G,F ) = A(G), and for every component c of FA,

a. CG(A, c) = CG(A), and CG(A) acts trivially on π0(FA). Therefore the group

WG(A) = NG(A)/CG(A) acts on π0(FA).

b. WG(A)=̇NG(A)/CG(A) acts freely on π0(FA).

Applying the theorem above, Duflot concludes the following lemma.

Lemma 3.6.6. [Duf84, Lem. 3.5 and 3.6] Let G be a compact Lie group, and fix

an embedding of G in a unitary group U . If (A, c) ∈ A(G,X), where X is either

compact and every orbit of X is a G-deformation retract of one of its neighborhoods,

or X is paracompact with finite mod-p cohomological dimension, then

a. for F = U/S, H∗CG(A,c)

(
c× (FA)i

)
is a free Z/pZ[WG(A, c)]-module for every

i ≥ 1, where WG(A, c) = NG(A, c)/CG(A, c).

b. there are isomorphisms for i ≥ 1,

H∗NG(A,c)

(
c× (FA)i

) ∼=→ H∗CG(A,c)

(
c× (FA)i

)WG(A,c)
.
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Applying Lemmas 3.6.4 and 3.6.6 to X = {x0}, a one-point space, we have

the following corollary.

Corollary 3.6.7. Let G be a compact Lie group, and fix an embedding of G in a

unitary group U . Let F = U/S, and let A be maximal in A(G). Then, there are

isomorphisms

H∗G
(
GFA

) ∼= H∗CG(A)

(
FA
)WG(A)

.

3.6.2 Application of Duflot’s Results

We first consider the following well-known lemma from representation theory,

which we will apply to the lemmas stated earlier in this section.

Lemma 3.6.8. Let W be a finite group and let V be a free k[W ]-module, for k a

field, of rank d. Then

dimk V
W =

dimk V

|W |
.

Proof. Since V is a free k[W ]-module, then

V ∼= k[W ]⊕ · · · ⊕ k[W ]︸ ︷︷ ︸
d

with d copies of k[W ]. Consider an element ξ ∈ k[W ]. We may write the element

ξ =
∑
g∈W

αgg where αg ∈ k. Then we see that dimk k[W ] = |W | because W is a

basis for k[W ] over k, and we determine that dimk V = d|W |.

Now consider

V W ∼=

k[W ]⊕ · · · ⊕ k[W ]︸ ︷︷ ︸
d

W

∼= (k[W ])W ⊕ · · · ⊕ (k[W ])W︸ ︷︷ ︸
d

.

For an element ξ ∈ (k[W ])W , we know that ξ ∈ k[W ] and w · ξ = ξ for all w ∈ W .

Therefore, for all w ∈ W ,

w · ξ = w ·
∑
g∈W

αgg

=
∑
g∈W

αg(wg)

=
∑
g∈W

αgg.
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Hence, αg = αwg for all w ∈ W , implying that αg = α for all g ∈ W . Define

N
·

=
∑
g∈W

g. Then for all ξ ∈ (k[W ])W ,

ξ =
∑
g∈W

αg = α
∑
g∈W

g = αN.

Then we see that (k[W ])W is one-dimensional, generated over k by N . Therefore,

dimk V
W = d · 1 = d, and we can conclude that dimk V

W = d = dimk V
|W | .

As a direct result of Lemmas 3.6.6 and 3.6.8, we get the following corollary.

Corollary 3.6.9. Let G be a compact Lie group, and fix an embedding of G in U .

Let F = U/S and let A be a maximal rank p-torus in G. Then,

dimZ/pZ

(
Hq
CG(A)(F

A)WG(A)
)

=
1

|WG(A)|
dimZ/pZH

q
CG(A)(F

A)

for all q ≥ 0.

Applying Corollaries 3.6.7 and 3.6.9 to the definition of Poincaré series, we

have the following result.

Corollary 3.6.10. Let G be a compact Lie group, and fix an embedding of G in

U . Let F = U/S, and let A be a maximal rank p-torus in G. Then,

PS
(
H∗G(GFA)

)
=

1

|WG(A)|
PS

(
H∗CG(A)(F

A)
)
.

3.7 Main Results Regarding Maiorana’s C-Multiplicity

In this portion of this chapter, we conclude with a series of significant theo-

rems. The first of these theorems results in a formula for computing C(H∗G(F )),

which is more simple than that found in Theorem 3.6.1. The final theorem states

a nice formula for computing the C-multiplicity of H∗G using the C-multiplicities

of H∗CG(A) for A a maximal rank p-torus in G.
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Theorem 3.7.1. Let G be a compact Lie group embedded in a unitary group U ,

F = U/S, and B(G) be the set of conjugacy classes of maximal rank p-tori in G.

Then

C (H∗G(F )) =
∑

[A]∈B(G)

1

|WG(A)|
C
(
H∗CG(A)(F

A)
)
.

Proof. From Corollary 3.6.10, we can conclude that

`=̇`
(
H∗G(GFA)

)
= `

(
H∗CG(A)(F

A)
)
.

Using the definition of the C-multiplicity and applying it to the result in Corollary

3.6.10, we see that

C
(
H∗G(GFA)

)
= lim

t→1
(1− t)`PS

(
H∗G(GFA)

)
= lim

t→1
(1− t)` 1

|WG(A)|PS
(
H∗CG(A)(F

A)
)

= 1
|WG(A)| limt→1

(1− t)`PS
(
H∗CG(A)(F

A)
)

= 1
|WG(A)|C

(
H∗CG(A)(F

A)
)

From Theorem 3.6.1, we have that

C (H∗G(F )) =
∑

[A]∈B(G)

C
(
H∗G(GFA)

)
=

∑
[A]∈B(G)

1
|WG(A)|C

(
H∗CG(A)(F

A)
)
.

Now we want to connect H∗G = H∗(BG) to ⊕
[A]∈B(G)

H∗G(GFA).

Corollary 3.7.2. Let F = U/S and G be a compact Lie group embedded in U .

Then

H∗G(F ) ∼= H∗G ⊗Z/pZ H
∗(F ).

Proof. From Quillen’s Lemma 6.5 in [Qui71a], we can conclude that

H∗G(F ) ∼= H∗G ⊗H∗U H
∗
S.

The proof of Quillen’s lemma cited above also gives us the following fact:

H∗ (BU,H∗(F )) ∼= H∗(BS).
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Here, the coefficients H∗(F ) are simple coefficients, since, considering the long

exact sequence in homotopy for a fibration and using the facts that U is connected

and EU is contractible, we know that π1(BU) is trivial. Since the cohomology of

BU is free over the integers, applying the Universal Coefficient Theorem (as found

in [Mun84]) then gives us

H∗ (BU,H∗(F )) ∼= H∗(BU)⊗Z/pZ H
∗(F ).

Since H∗S = H∗(BS) and H∗U = H∗(BU), we can conclude

H∗G(F ) ∼= H∗G ⊗H∗U H
∗
S

∼= H∗G ⊗H∗U
(
H∗U ⊗Z/pZ H

∗(F )
)

∼=
(
H∗G ⊗H∗U H

∗
U

)
⊗Z/pZ H

∗(F )
∼= H∗G ⊗Z/pZ H

∗(F ).

Theorem 3.7.3. If a compact Lie group G embeds in a unitary group U and

F = U/S, then

C (H∗G(F )) = C(H∗G)f(1)

where f(t) = PS (H∗(F ), t).

Proof. Applying our facts about Poincaré series in Proposition 1.5.2 to Corollary

3.7.2, we have

PS (H∗G(F ), t) = [PS (H∗G, t)] · [PS (H∗(F ), t)] .

Recall that F is a compact manifold with finite dimension, so Hq(F ) = 0 for all q >

dim(F ), implying that PS (H∗(F ), t) is a polynomial: f(t). In addition, f(1) 6= 0

since f(1) =
dim(F )∑
i=0

dimZ/pZ (H i(F )), the total dimension of the cohomology of F ,

which is not 0. Hence,

`=̇` (H∗G(F )) = ` (H∗G) .
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Using the definition of the C-multiplicity, we have that

C(H∗G(F )) = lim
t→1

(1− t)`PS (H∗G(F ), t)

= lim
t→1

(1− t)`PS (H∗G, t)PS (H∗(F ), t)

= lim
t→1

(1− t)`PS (H∗G, t) f(t)

= C (H∗G) · f(1).

Corollary 3.7.4. Let G be a compact Lie group which embeds in U , let F = U/S,

and let A be a maximal rank p-torus in G. Then,

C
(
H∗CG(A)(F

A)
)

= C
(
H∗CG(A)

)
f(1),

where f(t) = PS (H∗(F ), t).

Proof. Notice that CCG(A)(A) = CG(A) and that NCG(A)(A) = CCG(A)(A), so

WCG(A)(A) contains only the identity. Applying the results of Theorem 3.7.1 to

CG(A) instead of G, since A is of maximal rank in CG(A) and there is only one

conjugacy class of A in CG(A), we have that

C
(
H∗CG(A)(F )

)
=

∑
[A]∈B(CG(A))

1
|WCG(A)(A)|C

(
H∗CG(A)(F

A)
)

= C
(
H∗CG(A)(F

A)
)
.

Applying Theorem 3.7.3 with CG(A) instead of G, CG(A) ⊆ G ⊆ U , we also have

that

C
(
H∗CG(A)(F )

)
= C

(
H∗CG(A)

)
· f(1),

where f(t) = PS (H∗(F ), t). Therefore,

C
(
H∗CG(A)(F

A)
)

= C
(
H∗CG(A)

)
· f(1).

Finally, we have our “centerpiece” Theorem:
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Theorem 3.7.5. Let G be a compact Lie group, and let B(G) be the set of conju-

gacy classes of maximal rank p-tori of G. Then

C (H∗G) =
∑

[A]∈B(G)

1

|WG(A)|
C
(
H∗CG(A)

)
.

Proof. Representation theory tells us that there exists a unitary group U and an

embedding G ↪→ U of G as a closed subgroup of U (see [Pri77], Theorem 6.1.1).

Fix such an embedding, and let F = U/S, as usual.

By Theorem 3.7.3, we have that

C (H∗G(F )) = C (H∗G) · f(1),

where f(t) = PS (H∗(F ), t). By Theorem 3.7.1, we have that

C (H∗G(F )) =
∑

[A]∈B(G)

1

|WG(A)|
C
(
H∗CG(A)(F

A)
)
.

Combining these two theorems and using the fact from Corollary 3.7.4, we have

that

C(H∗G) · f(1) =
∑

[A]∈B(G)

1

|WG(A)|
C
(
H∗CG(A)

)
f(1).

Therefore, dividing both sides by f(1) results in the nice formula

C(H∗G) =
∑

[A]∈B(G)

1

|WG(A)|
C
(
H∗CG(A)

)
.

3.8 Final Remarks

Let G be a compact Lie group. Let the graded ring H∗ be finitely generated

as a graded-commutative algebra over H0 = k, a field of characteristic p > 0 odd

prime.

We have seen that there is a filtration of H∗G by graded Hev
G -submodules

0 = Fn+1(H∗G) ⊆ · · · ⊆ F0(H∗G) = H∗G,
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homogeneous prime ideals pi in Hev
G , and positive integers d̃i, for 0 ≤ i ≤ n, with

F i(H∗G)/F i+1(H∗G) ∼= Hev
G /pi(−d̃i)

as Hev
G -modules, for every i. We also know that every minimal prime ideal for H∗G

as an Hev
G -module occurs as at least one of the pi.

Recall from Chapter 1, we have

C(H∗G) =
∑

p∈D(H∗G)

NpC(Hev
G /p)

where Np is the number of times that Hev
G /p, twisted possibly, occurs as a factor in

the filtration, and D(H∗G) is the subset of minimal primes defined by: p ∈ D(H∗G)

if and only if Dim(H∗G) = Dim(Hev
G /p).

By Quillen [Qui71b, Prop. 11.2], as applied to the context of X a one-point

set, there is a one-to-one correspondence between conjugacy classes of maximal p-

tori in A(G) and minimal prime ideals of Hev
G given by associating to A the prime

ideal pA. For rankA = n, this correspondence is defined by

Hev
G

res→ Hev
A

π→ Hev
A /
√

0 ∼= k[y1, . . . , yn].

(Recall Example 2.1.17.) π ◦ res : Hev
G → Hev

A /
√

0 has kernel

pA=̇ ker (π ◦ res) .

(Note:
√

0 is the nilradical of Hev
A .)

Using Lemma 3.1.3 and 3.2.5, we see that Hev
A /
√

0 is a finitely generated

Hev
G -module, and using theorems from Kaplansky, as in the proof of Lemma 3.1.3,

Dim (Hev
G /pA) = Dim

(
Hev
A /
√

0
)

= n = rankA,

since Hev
A /
√

0 is a polynomial ring in n-variables. Therefore, the pA ∈ Hev
G such

that DimHev
G = Dim (Hev

G /pA) are exactly those corresponding to A ∈ A(G) with

maximal rank; that is, [A] ∈ B(G).
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Therefore, we also have

C(H∗G) =
∑

[A]∈B(G)

NpAC(Hev
G /pA).

Notice that this sum formula has the same index set as the sum formula in The-

orem 3.7.5. A comparison of the summands of each formula is reserved for future

research.
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Chapter 4

FUTURE RESEARCH

We first note that straightforward modifications may be applied to extend our

results to X × F , rather than just F , to obtain the following conjecture:

Conjecture 4.0.1. Let G be a compact Lie group, and let either X be compact

with every orbit of X a G-deformation retract of one of its neighborhoods, or X be

paracompact with finite mod-p cohomological dimension. Let B̃(G,X) be the set of

conjugacy classes of (A, c) ∈ A(G,X) of maximal rank in A0(G,X). Then,

C(H∗G(X)) =
∑

[(A,c)]∈B̃(G,X)

1

|WG(A, c)|
C(H∗CG(A,c)(c)).

Some form of this conjecture is certainly true, but we chose not to explicitly

develop the modifications necessary in this paper in order to simplify the exposi-

tion. An initial future project will be to explicitly develop and write down these

modifications.

Recall that the ultimate goal of this paper was to determine how to relate the

algebraic definitions and computations of multiplicity from commutative algebra

to computations done in the cohomology theory of group actions on manifolds. In

this paper, we have accomplished major steps toward this goal:

a. We have set definitions and constructed explicit proofs extending the theory

of the Samuel multiplicity to the context of graded rings suitable for our

purposes. This work resulted in an associativity (or linearity) formula for

e(M, I) and C(M), the Samuel multiplicity and Maiorana’s C-multiplicity,

respectively.
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b. We related the Samuel multiplicity, e(M, I), in general to Maiorana’s C-

multiplicity, C(M).

c. Using Quillen’s results in [Qui71a] and [Qui71b], we have proven a generaliza-

tion of Maiorana’s work in [Mai76]. We did not use any of Maiorana’s results

in our proofs. This theorem resulted in a topological formula for computing

the C-multiplicity, expressing C(M) in terms of fixed point sets.

d. Using our own results and Quillen’s work, we studied the topological sum

formula for the situation where, for U the unitary group and S the p-torus

in U , F = U/S is a compact differentiable manifold, with G a compact

Lie group embedded in U , as constructed by Duflot in [Duf84]. This work

resulted in a topological sum formula, not involving F , for C(H∗G).

e. Using Quillen, we explored the connection between the algebraic and topo-

logical sum formulas for C(H∗G).

In the future, we plan to extend the work done in this thesis in the following

ways:

a. We will continue to investigate the commutative algebra sum formula and

the topological sum formula for the C-multiplicity of H∗G to determine con-

nections between the summands of these formulas.

b. We will consider the lists of computations of cohomology of groups which

have been done in the past ten years and compare these computations with

our theorems.

c. We will study the Steenrod algebra and investigate the work we framed in

terms of modules over the Steenrod algebra. We will study how the invariants

presented in this paper can be related to the invariants Kuhn presents in

[Kuh07].
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