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ABSTRACT 

Satellite photographs during the summer months frequently 

reveal a weather situation in which strong convective develop-

ment is observed over the Rocky Mountains and several hundred 

kilometers to the east of the mountains~ while the region imme­

diately to the lee is essentially cloud free. It is proposed that an 

orographically induced mesoscale wave phenomenon may produce 

this situation. A dynamical model is developed which yields stand­

ing wave solutions of wavelength < 1000 km for conditions of low 

mean wind speed and low thermal stability. Application of the 

model to the case of 20 -21 July 1966 indicates a reasonable 

agreement between observation and theory; however, the sensitivity 

of the model to input parameters suggests that certain refinements 

need to be made. Further investigation will be necessary to deter­

mine the extent to which orographic influences are responsible for 

the generation of mesoscale systems. 
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1. Introduction 

Mesoscale systems (dimensions 10
4 

- 10
6
m) have been studied 

with increasing emphasis during recent years, particularly with 

regard to severe storms. Important advances have been made 

through the efforts of the Thunderstorm Project and the National 

Severe Storms Project by employing a dense ground-base measure­

ment network equipped with continuously recording instruments 

(Byers and Braham, 1949; Lee, 1962). In addition, regular upper 

air data were supplemented by radar observations and specially 

instrumented aircraft flights. In this way some of the more promi­

nent mesoscale structures such as dew point fronts, the low -level 

jet, and squall lines have been explored successfully (McGuire, 1962; 

Bonner, 1966; Fujita, 1955). However, a major data gap still exists 

in the free atmosphere. On the average upper air stations are 

spaced over 300 km apart and for the detection and study of meso­

scale systems this spatial resolution is generally inadequate. 

Meteorological satellites provide a valuable means of bridging 

this gap, especially so since early 1966 when satellite coverage 

has been made available over a given region several times a day. 

In eastern Colorado, frequently during the summer, convective 

cloud and thunderstorm development is observed initially over the 

mountains beginning about mid-morning followed by afternoon 

development far to the east of the Continental Divide (100-500 km). 

The latter convective activity frequently develops into extensive 

squall lines which sometimes migrate eastward, persisting into 

the late night and early morning hours. Between these regions 

of convective development, a well-defined cloud free region is 

commonly observed immediately to the lee of the mountains. This 

gap is considerably larger than that suggested by lee-wave theory 

( ...... 10 krn), yet considerably smaller than the wave length of planetary 

disturbances (Scorer, 1949; Bolin, 1950). 
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On 20 July the cloud features in this belt exhibit a general cellular 

structure with several regions of more intense development. By 21 July 

the system has a more unified appearance in the television pictures. 

The infrared pictures taken 21 July, 0612 GMT and 0757 GMT (Fig. 5), 

indicate fairly distinct regions of pronounced development spaced on the 

order of 100 or 200 kilometers apart (scale distortion at the picture edges 

prevents an accurate estimation of the distances involved). Such spacing 

could possibly be interpreted as a succession of stationary mesoscale 

waves. Several such excessively bright regions appear along the cold 

front in Fig. I, taken by Nimbus II HRIR, 20 July at 0645 GMT. These 

could conceivably result from the amplification of frontal activity due to 

the superposition of a mesoscale wave disturbance. The distribution of 

precipitation (Fig. 11) further supports the concept of aligned regions 

of more intense convective activity and also delineates the southern 

limit of the squall line in central Oklahoma. 

The surface analysis for 22 July, 0600 GMT indicates the forma­

tion of a pre-cold front squall line in extreme western Kansas, as 

the front advances into the region. This squall line, unlike the pre­

existing one. show s a definite relation to the cold front; however, 

it too may have been triggered by an orographically generated meso­

scale wave. The presence of a mountain range certainly is not a 

necessary condition for squall development since it has long been 

known that such pre-frontal squall lines occur frequently in regions 

far removed from orographic influences (Newton, 1950). However, 

the fact that the line of thunderstorms considered here develops in 

the lee of the mountains in a region frequented by strong convective 

activity and hailfall, and also assumes an orientation nearly parallel 

to the mountains, suggests a certain orographic control in this 

formation. Infrared photography corresponding closely to the 

time of the surface analYSis show s that intense development of 

the squall line has not yet occurred (Fig. 9, Nimbus HRIR photo­

graph taken 22 July at 0724 GMT). Subsequent maps and photographs 
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illustrate the passage of the second cold front through the region 

under study; however, this time the extensive cloud cover does 

not reveal the distinct regions of pronounced development, and 

the cloud band in western Kansas does not exist after the frontal 

advance. 

The Colorado State University Hail Project observed hailstorms 

in the late afternoon on both 20 and 21 July (Marwitz, 1967). In each 

case the storm was observed to develop over the mountains, pro­

ducing hail immediately to the lee of the mountains as shown by 

asterisks in Fig. 11. Evidence of the storm on the 21 st of July 

may be seen in Fig. 8 just northeast of the 105 longitude 40 latitude 

intersection. Both of these storms died out or deteriorated rapidly 

as they moved eastward. This fact lends further evidence that 

convective activity near, and to the lee of, the mountains is 

suppressed by mesoscale dynamical effects. 

Upper air analyses reveal a short wave over the Great Plains 

which appears in both the temperature and height contours (Fig. 12). 

The persistence of this feature, shown on the maps of 19 July, 0000 GMT 

to 22 June, 0000 GMT, suggests a quasi-stationary nature of the dis­

turbance. The assumption of a stationary wave phenomenon, on which 

the following dynamic model is based, thus appears justified. The 

analyses presented here, as well as the upper winds at levels below 

500 mb, indicate a cyclonic circulation in the region of interest, 

whereas the large scale flow pattern over the western and central 

United States is generally anticyclonic. The jet stream influence 

is probably not significant since the region of maximum wind is 

located quite far to the north over the Dakotas and also has an anti­

cyclonic curvature. 
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III. Theoretical Model 

Theoretical approaches to the formulation of mesoscale flow 

phenomena in terms of the fundamental dynamical equations have 

been few. primarily because such approaches had to be purely 

academic for lack of observational data. With the availability 

of cloud photographs taken at regular intervals over the same 

geographic area. one may now check a given theory against 

observational evidence provided by well-developed cloud systems. 

Since mountain barriers are known to generate planetary waves 

(Bolin, 1950), as well as gravity waves of the shorter dimensions 

of lee waves (Scorer, 1949) and of clear air turbulence (Foltz. 

1967; Reiter and Foltz, 1967). one may suspect that orographic 

obstacles can also serve as a source region for mesoscale dis­

turbances. The region to the east of the Colorado Rockies. there­

fore. is of particular interest for the study of such flow phenomena. 

From previous investigations there is evidence available which 

documents that this orographic barrier is capable of producing 

mesoscale phenomena under certain conditions (Conover. 1960; 

Reiter, et al., 1965; Reiter and Mahlman, 1965; Chappell, 1967). 

These mesoscale waves apparently exhibit a quasi-horizontal 

character. at least qualitatively similar to synoptic-scale waves. 

In most theoretical studies of atmospheric motion. the physical 

equations are scaled a priori in such manner that either the large 

scale waves or the gravitational waves are systematically eliminated. 

The justification for such scaling is based on the usually valid assump­

tion that a discrete separation of scales exists between the micro- and 

macroscales in the atmosphere. However. as noted above. this may 

not be strictly true under certain atmospheric conditions. The intent 

of this chapter is to deal with flow processes in such manner that the 

basic physical equations do not eliminate this intermediate scale prior 

to the analysis. 
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In order that an analytical solution can be attained. the standard 

linearization procedure is employed in which the disturbed motion is 

a small perturbation on a well-defined mean flow. Since the theoretical 

model will be applied to the region east of the Rocky Mountains, we 

may assume that the waves generated by the mountain barrier will 

be stationary. It will be shown that the inclusion of this restraint 

acts to reduce the usual wave spectrum to a single wavelength which 

is uniquely defined in terms of characteristics of the basic current. 

In order to simplify the problem without destroying the character 

of the physical problem, the following assumptions are employed: 

1) The flow is hydrostatic, frictionless, and adiabatic; 

2) The perturbation motion is assumed to be independent 

of the y coordinate; 

3) The basic current possesses vertical, but no lateral 

wind shear; 

4) In the continuity equation, horizontal density advection 

is assumed to be negligible relative to vertical density advection; 

5) Static stability and vertical wind shear are assumed to 

be constant; 

6) Although the mean wind speed and mean temperature 

are actually functions of height, whenever they appear in undiffer­

entiated form, they are replaced by a suitable vertically averaged 

value. This mathematical expedient was first employed by Rossby 

(1939) and later by Charney (1947). 

7) The basic current is assumed to be zonal with no mean 

y and z components; 

8) The earth is assumed to be an infinite, rotating plane. 

The fundamental equations used in this analysis are: 

aU aU aU a£np - + u - + w - + RT - fv = 0 at oX aZ oX (1) 
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av + u av + w av + RT a..enp + fu = 0 
at ax az ay 

......:JL _ a ..en p = 0 
RT az 

au + a v + 8 w + w 8..en p = 0 
ax 8y 8z 8z 

where t = time 

x, y, z = Cartesian coordinate directions 

R = gas constant for dry air 

T = temperature 

..en p = logarithm of pressure 

f = Coriolis parameter 

U , v, w = velocity components in x, y, and z directions 

g = acceleration of gravity 

c = specific heat of dry air at constant pressure 
p , 

p = density 

(2) 

(3) 

(4) 

(5) 

Eqs. (1-3) are the equations of motion, (4) is the thermodynamic 

equation, and (5) is the continuity equation. By writing the dependent 

variables of Eqs. (1-5) as the sum of a mean (bar) and a perturbation 

(prime) term, one obtains 

u = u + u l 

V = VI , (v = 0) 

w = WI , (w = 0) (6) 

T = T + TI 

..enp = (..enp) + (..en p) I 
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By substituting the definitions (6) into Eqs. (1-5) and assuming 

that products of perturbations are negligibly smalll separate sets 

of equations for the mean and perturbation motion are obtained since 

the mean motion is satisfied independently. 

The equations for the ground state are: 

u = 

a Unp) 
az 

RT a Unp) 
f ay 

= -4:. . 
RT 

Thusl the ground state is completely specified by the geostrophic 

and hydrostatic equations. Combining Eqs. (7) and (8) gives the 

relation between the mean wind and the mean temperature fieldl 

au _....:.&.. aT u aT 
a z - fT ay - T --a;-

(7) 

(8) 

(9a) 

or I to an excellent approximation for even large temperature lapse 

ratesl 

au = ..:lL aT 
az fT ay 

This is the most common form of the thermal wind relationship. 

The equations for the perturbed motion are given by 

au' - au' au - a Unp') -- + u -- + w' - + RT - fv' = 0 
at ax az ax 

av' - av' 0 Un p) -- + u -- + RT' + fu' = 0 at ax ay 

(9b) 

(10) 

(11 ) 
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~ 
-2 

RT 
= 0 

aT' - aT' aT aT!J 
--+u--+v'--+w'(-+~) = 0 
at ax ay az c 

p 

au' ow' a Un P ) 0 -- + -- + w' - = 
ax az oZ 

1 
Eq. (12) makes use of the expansion -=---

T+T' 
neglecting higher order terms. 

1 
= ---

T 
T' 
-2 +. 
T 

(12) 

(13) 

(14) 

. . , 

In general, one may assume solutions for the linear Eqs. (10 -14) 

of the form 

u' w' v' Unp )' 
A(z) = B(z} = c(z) = D(z) 

= T' = e i f.l (x-ct) 
E(z} 

where A(z}, B(z), C(z), D(zL and E(z) are possibly complex 

perturbation amplitudes; f.l is the wave number = ~1T ; L is the 

(15) 

wavelength; and c is the phase speed which also may become com­

plex. Since the perturbations are assumed to be orographically 

generated, hence stationary, no complex frequencies will be per­

mitted. Consequently, in order that the physical perturbation 

quantities remain real. the perturbation amplitudes must also 

be real. In view of the realistic assumption that an orographic 

perturbation is produced at the ground and vanishes at great 

height, this suggests that the amplitude may be written in the form 

A(z) 

where A is a constant, and n is a vertical damping coefficient-­
o 

assumed to be a negative, real number. With the use of this 

simplification, one may write the assumed solutions of Eqs. (15) 

(16) 
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u l WI VI 
-- = -- = -- = 
A 

o 
B o C o 
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Lenp )1 
D 

o 

TI =. eif-L(x-ct) + nz 
=e- (17) 

o 

A more complete justification for the use of this simplified 

assumed solution is presented in Appendix A. It is shown in this 

appendix, by use of the assumed solutions (15), that the perturbation 

amplitudes possess solutions of the same form as Eq. (16). 

Now by substituting Eqs. (17) into Eqs. (10-14), one obtains 

au -
if-L (u-c) A +;- B + if-L RTD - fC 

o liZ 0 0 0 
= 0 (18) 

if-L (~-c) C + R a Lenp) E + fA 
o ay 0 0 

= 0 (19) 

nD - g E = 0 
o RT2 0 

(20) 

. aT aT fj 
1fJ.(u-c)E + - C + (-+~)B = 0 

o ay 0 az c 0 
p 

(21) 

(22) 

This is a system of linear, homogeneous algebraic equations. 

In order that non -trivial solutions exist, the determinant of the 

coefficients of Eqs. (18-22) must vanish. By substituting the ground 

state Eqs. (7) and (9b) and assuming (because of the stationary per­

turbation) that c = 0, solution of the determinant of the coefficients 

of Eqs. (18-22) for the stationary wavelength yields 

{

- -2 ~ 
L = 2

f

TI u[ u n(n+ az ) 
- au fj aT fj 

- un - +~ (- + ~ )] 
az T az cp 

Q 
(23) , 

1/2 
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where 

Q 
- 8~ 8u 

(n + 8.mp )+(8U)2 un 
= un(n+- ) 

8z 8z 8z 8z g 

-2 8u n 8 £np ) - un (.£1:.. + ~ ) - u - (n + 
T 8z g 8z 8z c 

P 

Since the wavelength is a positive real number. Eq. (23) allows 

only one simple wavelength in terms of the properties of the ground 

state variables and the damping coefficient n. A major difficulty 

arises in the evaluation of Eq. (23) because of the uncertainty in 

assessing the magnitude of n. However. an approximate range 

for n can be deduced on physical grounds. Fig. 13 gives the damp-

ing curves for various assumed values of n in the height range 0-10 km. 

A value of n = - 10-4m -1 gives a perturbation intensity at 10 km which 
-3 -1 

is 37% of the surface value. An n of -10 m produces virtually com-

plete damping at 10 km and is reduced to 10% of the surface intensity 
-4 -1 

at 2. 3 km. Consequently. it may be deduced that the range -10m 
-3 -1 

< n <-10 m completely encompasses the allowable values of n in 

this particular model. Additional justification for this range of n is 

given in Appendix A. 

Eq. (23) is rather difficult to evaluate in its present form. It 

can be simplified considerably if one notes from a simple scale 

analysis that. even for large values of ~ and 8u • the third and 
8z 

fourth terms in the denominator of Eq. (23) are always between 

two and three orders of magnitude smaller than the first and 

second terms. With this simplification Eq. (23) becomes 

L = 21T 
f (n + 8.me ) {~n _ 

8z 

1/2 

(24) 



-1 ;~-

IV. Evaluatioll_.S?! the~.v avelength Equation 

It is now of particular interest to determine from Eq. (24) who.t 

combination of input conditions acts to produce wavelengths in the 

mesoscale range. In order to simplify the interpretation o~ (24). 
- -4 -1 o1!np -4-1 

it is assumed for all cases that T = 250K, f = 10 sec , <:. = 10m • 
- uZ 

and that the wind shear (2..~) can be directly related to the mean wind u. oZ 
This is accomplished by assuming that the mean wind is one-half the 

10 km wind and that the wind shear may be simply expressed by twice 

the mean wind divided by the total distance 10 km. For example, a 
-1 -3 -1 

mean u of 10 m sec would possess a mean shear of 2 x 10 sec 
- -1 -3 -1 
u = 15 m sec would have a shear of 3 x 10 sec ,etc. Strictly 

speaking, this is not completely accurate because, in this model, the 

mean wind does not vanish completely at the surface. However, the 

error committed is so small that its effect does not perceptibly alter 

the results. 

With the above Simplifications, Eq. (24) is such that the stationary 

wavelength L is determined by the mean wind field, the temperature 

lapse rate, and the value of the damping coefficient n. Solutions of 

Eq. (24) for various combinations of the above parameters are given 

in Fig. 14'!.- In these figures the wavelength L is plotted against the 

stability .£.1... + L. Each diagram is for a different given value of oZ cp 
mean wind u, and each curve in a given figure represents a constant 

specified value of n. One is now in a position to infer from Fig. 14 

the conditions required for generation of mesoscale wavelengths. If 

one roughly considers the transition from meso- to synoptic-scale 

to be 1000 km, then Fig.14 show s quite clearly that low mean wind 

speeds and small stability values (.£T + f-) are highly favorable oZ p 
for the formation of wavelengths in the mesoscale region. It is also 

evident that larger negative values of n are more conducive to the 

generation of waves in the shorter scale. Conversely, high wind 

speeds and high stabilities do not permit formation of such meso­

scale waves. 
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A further simplification of Eq. (24) can be achieved if, in the 

original perturbation Eqs. (10-14). the third term of Eq. (14) is 

omitted. This is equivalent to assuming that the flow is incompress­

ible. In this case the equation for the wavelength is the same as 
(Uno Eq. (24) except that the terms are absent. Fig. 15 gives aZ 

the results for L in the same manner as in Fig. 14. It may be 

immediately seen that the results of Fig. 15 are very similar to 

Fig. 14, particularly for larger negative values of n. However, 

it is also evident that the predicted wavelength for the incompress­

ible case is always longer than the wavelengths obtained for the 

compressible case. This result is analogous to the result obtained 

by Haurwitz (1931), which demonstrated that the wavelengths of 

billow clouds are always shorter for the condition of compress­

ibility as compared with that obtained for an incompressible fluid. 

Since the solution of Eq. (24) suggests very strongly that meso­

scale waves will not form unless iT and aT + f- are both quite 
8z p 

small, it may be immediately inferred that only summertime flow 

conditions are at all favorable for the formation of these shorter 

waves. This inference is at least in qualitative agreement with 

observation since, in general, mesoscale phenomena occur most 

commonly east of the Rocky Mountains in the summer months. 

v. Comparison with Other Investigations 

Only a very limited number of attempts have been made toward 

deducing the characteristics of waves in this intermediate region 

between the micro- and the synoptic-scale. Queney (1947), in a 

more general formulation, derives a differential equation for a 

pressure wave in this intermediate scale, but no attempt is made 

to deduce a wavelength for the case of a stationary orographic per­

turbation. He does, however. mention this possibility, and also 

alleges that these intermediate waves are controlled by the earth r s 

rotation and the thermal stratification. This is in qualitative agree­

ment with the result obtained here. 
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An admittedly crude analysis by Godske et ala (1957, p. 343) 

attempted to find a wavelength of maximum instability lying some­

where between that of inertial and shearing waves. However, since 

neither of the assumed regimes possessed any kinematic restraints 

in the original equations, it is difficult to see that much correspondence 

with reality could be expected. Moreover, the model employed in this 

paper is for a stable wave with zero propagation rate, while the analy­

sis of Godske et al. attempted to find the wavelength of maximum 

instability. As a result of this, their result probably cannot be 

applied realistically here. 

The results obtained in this paper are in quite satisfactory agree­

ment with those presented by Kasahara (I966) for flow in a channel 

over a mountain barrier. Kasahara's investigation was a numerical 

integration of essentially the same equation set as Eqs. (I -5), but 

for the Simplified case of the homogeneous, incompressible atmos­

phere. Furthermore, his analysis was for a circular obstacle rather 

than the infinite lateral mountain presented here. However, the results 

of his integrations show that the orographically induced wavelength in 

his model is only about one-third as long for the case of u = 8 m sec-1 

- -1 
as compared with the case of u = 40 m sec This result is in 

excellent agreement with those given in Figs. 14 and 15 and strongly 

suggests that the results from the linear analysis presented here 

may be tested against occurrence of such waves in the real atmosphere. 

VI. Comparison of Observation and Theory 

The model proposed in the foregoing chapter predicts the gene­

ration of mesoscale waves only under very limited conditions- -very 

low stability and light winds--and thus is most applicable to summer 

convective systems under orographic control. The strong circulation 

patterns associated with well-defined stable air masses during winter 

give solutions of a much larger scale (wavelengths in the order of 
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1000 -3000 km}, i. e .• on the cyclone or synoptic scale. This is 

readily supported by the fact that wintertime synoptic features 

are dominated by large cyclones and anticyclones. The summer 

systems are much weaker (at least in total energy) and not nearly 

as well-defined .. occurring mainly as weak frontal disturbances, 

squall lines, and clusters of thunderstorms. The effect of the 

weak large-scale circulation, thus, is readily over-ruled by 

regional mesoscale features as illustrated during July 1966. 

Tropospheric data from the Denver soundings for 20 -22 July 

may be applied to the theoretical model in order to test its applica­

bility to a real atmosphere. The not uncommon occurrence of a 

near adiabatic lapse rate up to 500 or 550 mb at Denver during 

the summer, as shown in Fig. 16, provides the low thermal 

stability needed for the generation of mesoscale waves. This 

condition may also be met by a moist adiabatic ascent in a very 

moist atmosphere. The light wind conditions required for a meso­

scale wave formation are also characteristic throughout this time 

period. Using only the westerly component of the wind field further 

reduces the wavelength obtained. (This is certainly valid due to the 

north-south orientation of the mountain range. ) 

Values of input parameters, as obtained from the Denver sound-

ings, and computed wavelength are given in Table 1. Since the model only 

allows for a linear vertical wind shear, this was estimated by the best 

linear fit to a vertical plot of the westerly component of the wind at 

Denver. The parameters were calculated between the surface (or sur­

face inversion layer) htL and a mid-tropospheric level htU. This upper 

boundary was usually chosen as the discontinuity in the temperature 

field frequently found in summer conditions between 500 and 600 mb 

(see Fig. 16). When this discontinuity was not present, the 500 mb 

level was arbitrarily chosen as the upper boundary. Since the mountain 
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barrier reaches a maximum level of about 700 mb, it is reasonable 

to assume that the structure of the perturbation field is mainly 

determined by the features of the lower half of the troposphere. 

The mean wind value was determined as the mid-point of the linear 

wind profile. The temperature lapse rate was estimated by the 

difference between the boundary temperatures over the thickness 

f 0 -3 -1 d th " t"f" o the layer. A value of n = - O. 3 x 1 m was use, e JUs 1 1-

cation for which is given in Appendix A. A reasonable value of 
EHnp -3 -1 

~:"""<-'- was assumed to be - 0.1 x 10 m . oz 

u L 
c Date Time htL htU 

(GMT) (km) (km) 

TABLE I 

aT/az 

(oK/km) (m/s) 

au/az 

(m/s/km) (km) 

moist 
20 00 2. 7 4. 6 adiabatic 4.0 3. 1 255 

12 2. 3 4. 5 260 6.02 2. 5 2. 3 1090 

21 00 1.6 5.0 255 8.92 4.0 1. 8 710 

12 2.4 5.4 265 8. 15 1.0 -2. 3 imago 

Results of these computations give a range of wavelengths from 

200-1100 km which correspond favorably to the 500-600 km estimated 

from the satellite and precipitation data. The precision of these compu­

tations is greatly restricted because they are based on a single sound­

ing in which local perturbation quantities may overshadow the mean 

regional conditions which determine the wave properties. It would 

probably be better to use the average of three or four soundings; 

however, the nearest stations (Grand Junction, North Platte, or 

Dodge City) are too far away to characterize the conditions found 

in the region of the mesoscale system. Also, the time scale (12 

hours) is probably too large in most cases to allow the use of the 
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average of several successive soundings, even under quasi-stationary 

upper-flow conditions. Time-averaging might give a better approxi­

mation of mean conditions than the space-average of neighboring 

stations. An average of the condition for the first three times 

given in Table I was used to compute a mean wavelength. Due to 

the persistence and stationary character of this particular system, 

a reasonable average wavelength of 925 km was thus determined. 

The negative shearing term at 21 July, 12 GMT,does not appear 

to be applicable to the model. It is also questioned whether the 

negative shear represents the mean flow conditions. 

The dominance of the stability term in Eq. (24) is very evident 

from Fig. 14 in the previous chapter. This can al.so be easily seen 

from an order of magnitude calculation of the terms under the radical 

in the wavelength equation, Eq. (24). Assuming the following charac-
- -3 -1-

teristic values: u = 5 m/ s, ou/oz = 1. 0 x 10 sec ,T = 270 deg, 
-3 -3 -3 

aT/az=7.8xlO deg/m,n=-0.3xl0 ,a£np/az=-O.lxlO , 

h d· al h· 3.0 + 1. 5 + 72. 6 
t e ra lC terms t en glve: . 12 + .08 + .002 • The other terms 

in the numerator become significant only for near adiabatic conditions. 

The second term in the denominator may be large for conditions of 

large wind shear associated with a low mean wind component normal 

to the mountain range. The first term in the denominator is essentially 

a constant, the third term is generally negligible. Similar conclusions 

may be drawn from Fig. 14. 

The rather sensitive dependence of wavelength on low stability 

values is clearly seen in Fig. 14. For example, looking at Fig. 14 

for 5m/s, a stability value of 0.1 x 10-
3 

and n = -0.3 x 10- 3 gives 

a wavelength of about 425 km, while a stability value of 0.2 x 10- 3 yields 

a wavelength of about 525 km. Furthermore, an adiabatic lapse condition 

would give a wavelength of 300 km. Since lapse rate variations of a 

single sounding from actual mean conditions may be of a larger 
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magnitude than the values considered above~ the computed wave­

lengths may be subject to considerable errors. 

Wavelength estimates from satellite photographs or from wind 

field analyses made from the standard network are also subject to 

errors of similar magnitude. The above estimates of wavelength 

from satellite photographs assume a mesoscale ridge to be present 

over the Continental Divide~ with a region of maximum convective 

development occurring at 3/4 of a wavelength downstream. This 

is in analogy to the region of maximum upper divergence found in 

planetary waves (Petterssen~ 195()~ p. 330). It is not unreasonable 

to assume that the same divergence distribution would apply to a 

mesoscale system as well. 

It should be stated that the theoretical model in its present form 

is useful for indicating the probable existence ornon-existence of 

mesoscale waves~ but it is not adequate for accurately determining 

the wavelengths produced. It will be necessary to revise the model 

in order to make it less sensitive to the estimated input data~ or 

else the input data will have to be more accurately determined. 

Detailed wind analyses may~ at times~ reveal mesoscale wave 

features. An example is given by an analysis of the flow patterns 

for 8 -9 May 1962 when a well-defined~ slow-moving, mesoscale 

wave appears over the Great Plains (Fig. 17). It should be noted 

that this wave became evident only after pilot-balloon data were 

added to the information supplied by the standard radiosonde network 

(Reiter and Mahlman~ 1965). This illustrates the inadequate resolu-

tion of the existing upper air network for the study of mesoscale 

phenomena. Application of the synoptic parameters from the Denver 

sounding yielded solutions in the range of 400 -1400 km. Estimates 

from the wind analysis suggest a 800-1000 km wavelength. Unfortunately. 

no satellite data were available for this time period so that associated 
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cloud patterns and cloud-free regions could not be clearly observed. 

Precipitation data also favorably supports the wind analysis where 

heavy precipitation is found 700-800 km east of the Continental Divide 

(as seen in Fig. 18). 

Unfortunately, the presently available wind information from the 

free atmosphere lacks the resolution of the cloud information pro­

vided by the weather satellite system. Even the combined use of 

radiosonde and pilot balloon network often has incomplete or missing 

data as a result of adverse weather in the mesoscale system under 

study. Heavy rainfall associated with squall lines or thunderstorms 

may prevent tracking of radiosonde or pibal balloons. Furthermore, 

local inflow into, and outflow from convective systems, may obscure 

the larger mesoscale circulation. 

Although winds cannot be sensed directly from satellites as yet, 

ATS (stationary satellites) systems might provide enough resolution 

in the time scale so that considerable wind information could be 

inferred from the motion and development of cloud features. The 

levels in the atmosphere for which these motions are characteristic 

might, furthermore, be estimated in conjunction with high resolution 

infrared measurements. 

VII. Conclusions 

Observational evidence of the orographic influence in the meso­

scale region of the spectrum of atmospheric motions has been pre­

sented. Data from ESSA and Nimbus satellites is instrumental in 

detecting such mesoscale mountain influences on a systematic basis. 

These data may be used effectively in filling the gap between the 

capabilities of a single station ground observer and of the existing 

upper air network. 
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A theoretical model has been developed which explains the 

occurrence of mesoscale systems, but additional improvement 

is necessary to eliminate extreme sensitivity of the model to 

crudely estimated atmospheric input parameters, particularly 

the stability. 

Mesoscale phenomena of this type deserve considerably more 

attention. A better understanding of these phenomena would pro­

vide more accurate short-term forecasting capability of severe 

weather occurrences to the lee of the Rocky Mountains and over 

the Great Plains. Orographic control immediately to the lee of 

the Rocky Mountains will have to be considered as an important 

factor in severe weather development east of the mountains. 

Further detailed investigations will be necessary to establish 

the extent to which a large orographic barrier is capable of 

modifying atmospheric structure and flow patterns in the meso­

scale range. 
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Appendix A 

In Part III of this paper it was argued thatl for the stable 

perturbation equations under the boundary condition that an 

orographic perturbation must vanish at infinite heightl the per­

turbation amplitude may be written in the form const x e nz. It 

is the intent of this section to provide a more rigorous justification 

for the use of this form of the perturbation amplitude. This will 

be accomplished by assuming the more general solution for the 

perturbations and solving for the form of the perturbation ampli­

tude. 

The fundamental equation set willI as beforel be Eqs. (10-14). 

Howeverl this time the assumed solutions will be of the more general 

form of Eqs. (15) 

u l WI VI Unp)1 
A(z) = B(z) = C(z) = D(z) 

TI 
= E(z) 

ijJ- (x-ct) = e . (15) 

By sub stitution of the assumed solutions (15) into Eqs. (10 -14) lone 

obtains the following equation set 

fu 
ijJ- ( u-c) C - T E + fA = 0 

dD 
dz 

. - aT aT!1 
IjJ-(u-c)E + -c + (-+ ~)B ay az c 

p 

ijJ- A + dB + a <.en p ) 
dz az B = 0 

(A-I) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 
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Eqs. (AI -A5) are a set of ordinary differential equations in terms 

of the perturbation amplitudes. Again, the mathematical expedient 

of Charney (1947) is utilized; whenever the mean wind speed and 

mean temperature appear in undifferentiated form, they are replaced 

by a representative mean value. By a very lengthy process of sub­

stitution and cross-differentiation, Eqs. (AI-A5) can be reduced to 

a second order differential equation in terms of the single unknown B 

[(~-c) 

[ - i ] d
2

B (u-c)--
a~:c 2 

dz 

a.me 
az 

+ 

aT L-

(A-6) 

[ 
a~ a.me 
oZ oZ 

f au b~c 
az 

(u-c)a* + 
g ( -az- + cp ) f6~:c fa*b~:c 1 
--::~--...... --- + -- - B ::: 0 

T (u-c) a* 2~ 

where a~:C 
- fu 

::: "d u - c) + -g--:(=u=---c :-} 
au 
oZ 

b~c = f[TI u (aT +~) 
(u-c) oZ c 

p 

. da~:c 
a~!~ - dz and 

, db~:' 
b~:< - dz 

8lne 
8z 1 

a'" 

(A-7) 

(A-8) 

(A-9) 

(A-IO) 

Eq. (A-6) is to be solved employing the single boundary condition 

B (00 ) = O. In analogy with the more simplified approach in Part III 

it will be specified that c = 0, since the orographic perturbation 

is stationary in nature. As before, this procedure yields a single 
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wavelength in terms of the ground state parameters. For the case 

of c = OJ consider the following definitions: 

f3 - u 

'Y - az 
au a lnp 

az 

-a = 

i au 
alnp az 

+ az ua * 1 

f au b * 
az 1 

-~---.:~ + 
ua * 1 

f2 
u ---

a * 1 

fb* 1 
+ 

a * 1 

(A-ll) 

2. 
f a * 1 

+ 
2* a

I 

(A-I2) 

g(aT+...L) f'b * fa *b ~c 
az cp + _1_ _ 1 1 
'Ttl a I * a 2* 

1 
(A-I3) 

f 
a * 

au - f.Lu +-1 g az 
(A-14) 

b * r[-~ ( aT + -L-) alnp 

1 -1 az c az p 
(A-15) 

da * 
• 1 
a * - dz 1 

(A-16) 

db * • 1 
b * - dz 1 

(A-I?) 

With the above definitions Eq. (A-6) can now be written in the form 

d
2

B dB + 
a dz 2 + f3 dz 'Y B = o • (A-I8) 

Because of the method of regarding the ground state parameters 

as being effectively constant when appearing in undifferentiated form, 
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as long as a suitable mean level is chosen, Eq. (A -18) may be 

considered to be a linear second order differential equation 

with constant coefficients a. (3. and 'Y. A general solution 

of Eq. (A-I8) is 

B(z) = KIexp [ -2(3", +' IL _.L] z + K exp[.:IL :-IL --L] z 
'-< t- Vol. 2 a 2 2 a -VJ:. 2 a 

4a 4a 

(A-I9) 

where KI and K2 are arbitrary constants. 

A particular solution of Eq. (A-I9) can be obtained by employing 

the upper boundary condition B ( 00) = O. It is difficult to apply this 

boundary condition immediately because the complicated nature of 

the bracketed terms does not readily permit identification of their 

respective algebraic signs. A way to circumvent this difficulty is 

to assign values of the ground state variables which indicated forma­

tion of wavelengths in the mesoscale range, and then evaluate the 

bracketed quantities of Eq. (A-I9) in terms of sign and magnitude. 

In line with this procedure the following values were selected: 

u= 10 m sec-I. f= 10-4sec- I . aiiiP = _IO-4m- I . T = 250 deg' 
• • az • • - -3 -1 6 au -3-1 

aT + L = 1 x 10 degm ; L = 10 m; and - = 2 x 10 sec 
az cp az 

This gives the values for the derived quantities of: aI~:C ~ 39. 5 

-11 -1 -1 '" -13 -2 -1 - -8 -1 -1 
x 10 In sec ; a

1 
':c -.79 x 10 m sec ; b* -1 x 10 m sec ; 

- -14 -2 -1 - -1 - -3-1 
b':~-36xIO m sec; a -I5.4msec ;(3 -8.6xIO sec; 

- -6 -1 -1 
and 'Y - 3. 3 x 10 m sec • By substitution of these numerical 

values Eq. (A-I9) becomes to an excellent approximation: 

-4 -4 
B(z) ::: K +8.2 x 10 z K -2. 6 x 10 z 

Ie + 2e (A-20) 
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Now if the upper boundary condition B (00) = 0 is substituted into 

Eq. (A-20). to reject the positive root, K must = 0, and the form 
1 

of B for the problem studied here is 

B(z) = K exp[.:L =/8 2 
- -L] z • 

2 20' 40' 2 a 

For the numerical values assumed above 

-4 
B(z) :::: K e -2. 6 x 10 z 

2 

(A-21) 

(A-22) 

It may be readily seen that the form of Eq. (A-21) is identical in 

form to that of the assumed form of the perturbation amplitude 

given in Eq. (16) if one is permitted to write 

n = ..::JL --V L - --L-
20' 4a 2 a 

As a consequence of this analysis, n is seen to be a very com­

plicated function of the ground state parameters. For a given set 

of ground state parameters, n is a constant value. However, if 

the ground state conditions are changed, then n itself must change. 

Thus, contrary to the implications of Figs. 14 and 15, n may not 

be varied arbitrarily in this problem, but in actuality changes with 

the ground state conditions. 

On the other hand, this does not negate the value of Figs. 14 

and 15. This analysis merely suggests a more restricted range of 

acceptable n values, and as a result, probably more accurate values 

of stationary wavelength. 

A check can be made on the equivalence of the two approaches 

outlined here by reading the value of n from Fig. 14 for the above 
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employed ground state parameters. This graph suggests a value of 

n of - 2.9 x 10 -4m -1 for these conditions while the above analysis 
. -- -4 -1 

gives an approximate value of n -- - 2. 6 x 10 m In view of the 

original uncertainty in determining a reasonable n value l this 

agreement is striking and suggests that the first approach may 

be employed with a high degree of confidence. 
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