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ABSTRACT 

 

NATURAL FREQUENCIES OF TWISTED CABLES: A NUMERICAL AND 

EXPERIMENTAL STUDY 

As the uses of cables have increased in different engineering applications, a better 

understating of their mechanical and dynamical behavior becomes more critical. Over the past 

several decades, many analytical, experimental, and finite element models have been developed to 

investigate vibrations of the cable structure. This attention explains the importance of such a 

structure, where it is more challenging than many ordinary structures because of the nonlinearity 

of the geometry and other combined effects. In addition, the twist along cable length leads to 

coupling behavior on the various kinematic variables of the cable system. This work is aimed at 

predicting and investigating the natural frequencies and the translations and rotations mode shapes 

occurring stimulatingly for both horizontal and inclined sagged cables, using both numerical and 

experimental methods  

An efficient numerical procedure using elasticity-based finite elements is presented to 

generate the primary elastic stiffness coefficients of single-layered six-wire strands where the 

cables are subjected to axial and torsional loads in three-dimensional space. Cable models with lay 

angles varying from 5 to 30 degrees are then compared to eight different one-dimensional 

analytical models for the same range of angles. The finite element model gives stiffness 

coefficients that are in good agreement with the analytical models for angles below the maximum 

angle of the cable.  

The free vibration behavior of untwisted and twisted cables is then analyzed using the 

derived stiffness and mass matrices. When discretized over the horizontal span, the sagged cable 
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is represented using transformed axial, coupling, and torsional characteristics where the resulting 

two-node cable element has three translational and three rotational degrees of freedom. A similar 

computational approach is used for inclined cables using inclination angles from 10 to 60 degrees. 

The natural frequencies and modal shapes are found to be in very good agreement in comparison 

with the results obtained using extensive experimental tests for identical cable geometries and 

materials. Where a harmonically time-varying support motion is employed, undergo different 

conditions. The acceleration and angular velocity time histories are then collected by sensors 

mounted on the mid and quarter span of the cables.  

In addition to the experimental results, the frequency spectrum and the translational and 

rotational mode shapes are analyzed and compared with the limited analytical model available 

from the literature and the computer finite element software ABAQUS. Practical examples are 

used to demonstrate the validity and applicability of the finite element model for untwisted and 

twisted cables. Then, the influence of the principal and microstructural parameters variation on the 

dynamics of the cable is investigated.  

This study shows that the elasticity, twist coupling, initial sag, inclination angle, and self-

weight of the cable play a considerable role in the frequency and modal coupling behavior. It 

further suggests that some of the simple models available may not be adequate to fully understand 

the significant levels of modal coupling in the cable's dynamic behavior. The methods used in this 

study are finally extended to experimentally find the internal damping ratios and the reduction in 

the in-plane peak motions when a damper is used.   
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Cable structures have been widely used in a wide variety of tensile structures, for example, 

cable-supported bridges, large-span roof, marine, and offshore structures, guy lines for towers, and 

power supply lines as results of their capability of transmitting force, carrying payloads, and 

conducting signals, as well as their aesthetic appearance. A Cable is an old tool that humankind 

has used in the history of civilization; 700 B.C., as a structural element, after World War II, it was 

used as network systems in civil engineering architectures [1]. Recently, the interest in cables 

increased as their use, so the latter application required a more thorough and detailed investigation 

of the mechanics in cables. 

The term cable is used to indicate a generic sense of a tension member that is a flexible 

metal. A cable can be in the form of a single line (untwisted) Fig. 1.1 or wrapping wires around a 

central line (twisted) Fig. 1.2 that may be a wire strand, a group of strands, rope, ropes, or a parallel 

wires that acts as a unit member. Besides, the wire strand can be defined as a group of wires that 

are wounded around a center straight wire (also called core wire) in one or more symmetrical 

layers. However, a wire rope has several strands that are twisted around a core; this core can be a 

solid wire or a wire made of metallic, polymeric, or natural materials.  

Transmitting forces or singles is the main feature of cables. Cables are categorized as 

mechanical cable for guy wire and structural uses, electrical cable to transmit signals, or optical 

fiber cables. Mechanical wires can transmit forces between locations, while signal cables transmit 

signals, mechanical wires are subjected to much higher stress than signal wires; however, signal 

wires have greater requirements for minimal vibration [2]. 
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Fig. 1.1 Untwisted cable 

 

 

Fig. 1.2 Twisted cable 

 

Cables can be subjected to axial forces, which result in tension, torsion, and lateral forces, 

which result in bending. So, it can be said that due to their construction, cables combine two 
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functional properties that can be highly useful: high axial strength and flexibility in bending. These 

properties convert cables into indispensable transmission elements for many applications. 

The mechanical behavior of cables, including static and dynamic, generally depends on 

their unique geometry, material properties, and lay configuration. This configuration is helping the 

cable to bind together [3]. A solid rod with the same cross-section area has a very close tensile 

strength of a cable. However, for flexural rigidity, it could be only 20% of solid beams; as result 

cables are particularly suitable for being used as a tension member [4]. A common property for 

such a structure is its ability to resist relatively large axial load in comparison to bending and 

torsion loads. Also, because of their high flexibility, they are subjected to high nonlinear behavior 

with large-amplitude vibration. Another essential characteristic is its damping capability. It is 

known that losses of energy in the cable are more significant than those caused by the material 

viscosity. This damping property attracts designers to use it as a flexible structure, and the reason 

for that is the self-damping feature, which is vital for dynamic stability. So, the analysis and the 

construction of such a structure are more challenging than ordinary structures.  

Typically, the designer first starts with estimating the external load acting on a structural 

member. After that, the stresses are then calculated so the structure life is predicted by knowing 

the fatigue and correction data. The knowledge of stress would give an indication of the actual 

safety factor against the plastic or even the initial failure of a structure. That is done generally in 

the design process of structural members. However, for such a complex structure as cables and 

insufficient research on the topic has resulted in creating a complicated procedure for steel cables, 

for example [5]. Also, the inter-wire contact and coupling phenomena have even gotten little 

attention in all the published work for small and large cables.  
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Even though that cables were used a structural member for a long time, the theoretical and 

experimental work done to analyze and understand their behavior has fallen behind their 

applications when comparing with other studies on commonly used members such as rods, beams, 

and columns. Recently, the distinctive phenomena of the cable vibration attract researchers to 

understand better the behavior, of which certain are concerned by theoretical development and/or 

experimental validation of the relevant governing differential equations of motion, and others 

depend on the exact or approximate numerical approaches to find a proper solution. , Fig. 1.3 

shows the number of publications in the past two decades. 

 

Fig. 1.3 Number of publications of cable vibration from 1990 to 2020 (image courtesy Web of Science) 

 

The main goal of this dissertation is to study the dynamic behavior of cables. And since 

they have very complex geometry, the finite element method is used. This method was introduced 

in 1956, when Tuner et al. used pin-jointed bars and triangular plates to solve airplane structures 

[6]. It has the ability to describe the displacement field of a structure using differential equations 

for problems that are difficult to solve by analytical methods. The structure is discretized into a 
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large number of small subdomains, which are called finite elements. This subdivision of the 

domain enables an accurate representation of the structure geometry, including material properties, 

a simple representation of the solution, and capturing all the local and global effects. In addition, 

since this method is based on numerical analysis, it has clear steps which lead to an accurate 

solution.   

1.2  Problem Statement  

The significant characteristic of twisted cables that their static response is coupled. This 

means that when a cable has a twist along its length, recent studies showed that, it exhibits coupled 

extensional-torsional behavior, when an axial load is in action it will undergoes simultaneous 

extensional and rotational displacements, similarly when torque load is subjected both rotational 

and extensional displacements exist in the longitudinal axis in case the cable is tight and horizontal. 

This behavior has a critical impact on the dynamic response of the cable; however, it has received 

little attention. In addition, the full effect of twist, sag, and cable weight on the coupling between 

extensional-torsional behavior on the longitudinal, vertical, and transverse axis and between each 

must be studied. When the mentioned loads undergo, six types of waves will propagate through 

the cable, three characterizing the extensional-compressive deformations and the others are 

describing the torsional deformations, the interaction, and superposition of these six waves will 

make the cable oscillation very complicated. The main objective herein is to investigate 

numerically and experimentally the ability to accurately predict and measure the dynamic motion 

and resonances considering the undamped and damped free vibrational analysis of the coupled 

extensional-torsional actions for untwisted and twisted cable, which is imperative to result in 

enhancing a safe design and reliable system for the cables as well as the structure associated with. 
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Vibration analysis of coupled behavior for cable is of considerable significance, and the 

reason for that is the practical nature of engineering applications of this structure member involved 

in. Failure to have an accurate estimating of the natural frequency and motion interaction may 

result in failure of the system under resonance. Therefore, the cable and, as a result, the structural 

element that associated, for example, towers in case of transmission lines, are subjected to higher 

dynamic stress, which may lead to mechanical failures, such as loosening, ejection or wear of bolts, 

ovalling of holes, and distortion of swivel. In addition, when all the mentioned failures happen, it 

will necessarily have a high average annual cost for repairing, as well as for control devices 

installation. This cost is additional to the loss of review during serving any application cables are 

employed in, and millions of dollars might be spent every ten years for that. 

Designing tools for estimation the overall coupled elastic stiffness coefficients of twisted 

cable structure under different scenarios is a must for designers, where the coupled behavior of 

realistic helical strand is addressed. Simplified routines (using FORTRAN language) are presented 

in this work for obtaining the upper and lower bond to various strand stiffness using the elasticity 

method through a three-dimensional finite element model. Unlike several analytical models which 

some of them are replicated and presented here, this model includes the actual helical geometry, 

as well as the Poisson ratio, and the variation of the twist angle of the cable to have a realistic 

model, in addition to the influence of the principal cable parameters which are carefully studied. 

Numerical examples of twisted cables are shown to facilitate the use of the developed 

formulations.  

The advantage of having these expressions will enable an accurate dynamic analysis of the 

considered horizontal and inclined cables first to construct the frequency spectrum and then the 

corresponding mode shapes resulting from the out-of-plane, symmetric in-plane, antisymmetric 
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in-plane, axial, and torsional vibration. Then explore and analyze the complex waveform vibration 

that is repeated simultaneously resulting from considering the six degrees of freedom for the 

sagged cable system. This will be done throughout numerical data obtained through computer 

simulation of mathematical models obtained by the finite element model throughout FORTRAN 

and MATLAB codes. And procedure based on experimental work data by a campaign of dynamic 

tests. The validation of the numerical and experimental analysis proposed is done through 

confrontations of computational results of know analytical and ABAQUS model solution of the 

cable where the twist of the cable is usually ignored.  

Cables are subjected to damping to some degree, and that resulted because of friction and 

other resistances. As a result of the cable’s high flexibility, small weight, and long span, minimum 

vibrations can easily cause large amplitudes. To decrease the damages caused by that, many 

investigations into damping of the cable must undertake. Here the twisted and untwisted cables 

vibration mitigation feasibility is studied through an experimental tests campaign. The internal 

damping ratio is identified using multiple experimental tests. In addition, the in-plane vibration 

with and without damper on the support is investigated. 

This work's challenge is the correlation between vibration data obtained numerically and 

experimentally introduces inherent difficulties in getting the same results. In addition, this is highly 

complex because of the cable’s nonlinear geometry dependence and the twisted configuration, 

which cause interaction between the various vibration modes. These interactions are modeled 

using numerical time-marching in conjunction with the finite element procedure. Finite element 

models can have errors; incorrect modeling concepts, uncertainties in material properties, 

inaccurate modeling details, and applying wrong boundary conditions. When vibration 

experiments are conducted, many sources of errors can be present; mistakes in equipment 
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calibration, noise, equipment damages, inaccurate interoperation data, and incorrect sensor 

positioning. For that, validating the numerical and experimental work proposed will be through a 

comparison with the analytical and ABAQUS model known results for uncoupled cables, as well 

as repeating the experimental tests multiple times.  

1.3  Dissertation Organization    

This dissertation has seven chapters. The first chapter is a general introduction that has two 

sections, (1) is an overview of cables, and (2) a problem statement where the overall mechanical 

and dynamic behavior of cables is described and the objectives of this work. Chapter 2 is a detailed 

and generalized literature review divided into 3 sections; the first is an overview, the second shows 

the cable stiffness previous work, and the third is about cable dynamics. In both sections, most of 

the previous analytical, experimental, and finite element models are reviewed. The third chapter is 

a study on the problem of motion interactions in untwisted cables and the effect of cable sag 

variation. This chapter is divided into 8 parts where a summary and introduction are given in (1) 

and (2), a very detailed explanation of the theory (3) where the finite element method is used, and 

the large-scale experimental model (4) and the available analytical solutions (5) used for validation 

for two types of cables (6). Results and discussion (7) and detailed conclusions (8) are also shown. 

Chapter 4 presents an experimental investigation of cable vibration damping, and this chapter 

consists of seven sections. A detailed explanation of the experimental setup is introduced (3), and 

a summary (1) and introduction (2) are given at the start. After that, the experimental procedure 

(4) and how the data were processed (5) are shown. This chapter shows the experimental results 

(6) and the drawn conclusions (7) for untwisted and twisted cable internal damping and studying 

the cable motions with and without using a damper on the support. Chapter 5 presents a study on 

twisted horizontal cables in seven sections, where the stiffness and the dynamic behavior are 
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found. A summary (1) and an introduction (2) are first introduced, then the strand mechanics are 

explained in section (3), which then enable the free vibration analysis in section (4) where the 

finite element model, experimental, analytical, and ABAQUS model details are shown for cable 

application (5). The new findings are then discussed in results section (6) and listed in the 

conclusion (7).  In chapter 6, the inclined twisted cables dynamic behavior is also presented. 

Similarly, a summary and an introduction are in sections (1) and (2). The twisted cables geometry 

and stiffness are discussed in section (3), then the vibration analysis using the same four 

approaches: finite element model, analytical model, ABAQUS model, and experimental model are 

described in section (4), and results and discussion and conclusions are illustrated in section (5) 

and (6). Chapter 7 is a general conclusion of this dissertation that has two sections, main 

concluding remarks, and research future work.  
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CHAPTER 2: LITERATURE 

2.1  Overview 

Cables are widely used as a structural member in many different engineering applications 

due to their advantages in carrying high tensile forces relative to small dead load and good electric 

conductively. As a results of its importance, in the last several decades, many mathematical models 

allow an analytical approach to the complex problem of calculating the global mechanical behavior 

of cable has been developed, despite the limitation due to simplification hypotheses regarding the 

practical cases which include ignoring friction between wires for example or small displacement 

and strain. The early theoretical work on the mechanical behavior of cable appeared in the 1950’s. 

As a result of the complexity of the cable geometry, a great number of unknown variables are 

involved, for that different approximations and assumptions were made in order to access the 

difficult problem.  

 As introduced, cables term refer to strands or wire rope, where strands are made of helical 

wires that are twisted around a straight core, while wire ropes are obtained by helically twisting 

and grouping strands. More details about cables construction and typologies can be found in Feyrer 

[7] book, while insight into the geometry modeling of the helical assemblies was provided by Lee 

[3]. It should be noted that for simplicity the majority of the mathematical models have been 

applied on a single starlight strand, so the mechanical properties of the wire can be studied.  

For describing cable behavior many researchers in the literature have been working on the 

analytical characterization of the mechanical response of helical structures to different loading 

scenarios. The analysis has been performed by modeling the cable as a perfectly flexible element, 

mostly reacting to only axial forces. Taking account of the bending and torsional stiffness 
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contributions is necessary to overcome the entirely flexible structural model to represent the 

important features of cable mechanics. The analysis can be subdivided on the base of mechanical 

models in describing the wires inside the cable into: discrete and semi-homogenization 

formulations. Discrete models are based on the modeling the wires individually as curved beam or 

thin rod. Instead, semi-homogenization is based on replacing the layers of wires with and 

equivalent elastic continuum, which can be presented as an orthotropic thin layer in a three-

dimensional cylinder or in plane stress state using orthotropic material.  

To have a better understand of the cable behavior, a review on the most well-known models 

and the cable modeling evolution is presented in this chapter. The main objective here is to give a 

general overview of the basic classic models and exploration of new models as well as extension 

of previous models that find the stiffness (section 2) and present the classic and advanced model 

for finding cable vibration (section 3).  

2.2  Cable Stiffness 

Many analytical based models are available to predict the stiffness of isotropic cables that 

are subjected to axial loads, with the component geometry and material given. The first models 

were having the assumption of neglecting the bending and torsion effects on the stiffness of the 

wires and incorporates the effect of tension only. As Hruska [8,9] simple fiber model with 

clamping conditions, in his work friction and radial contraction were ignored. This model was 

extended and motived by Knapp [10] for the rigid central core wire, the same assumptions were 

applied. However, it should be emphasized that ignoring the bending and torsion effect was 

motived and the importance was explained extensively in later models. McConnell and Zemke 

[11] included the torsion stiffness effect on the external (outer) wires.  
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 Further, more sophisticated analytical models are based on the assumptions of beam theory; 

individual wires are modeled using the equations’ of Love [12] curved beam. Machida and Durelli 

[13] investigated the bending and torsion effect on the stiffness matrix of the outer wires, for each 

the bending and twisting moment were found, however, the stiffness matrix symmetry was lost. 

Knapp [14] introduced another stiffness matrix that are subjected to tension and torsion, the radius 

variation in the central wire also was studied, which comes from the pressure of the layers. In 

addition, the equations of equilibrium included the geometry non-linearity, and then it were 

linearized to give a linear stiffness matrix. Costello and Phillips [15] presented a nonlinear theory 

for a strand with one layer without a core or using soft core, in this model, the effect of lay angle 

and radius variation was considered (due to effect of Poisson’s ratio); however, contact 

deformation and friction forced were ignored. Huang [16] investigated the condition of contact 

mode either radial or lateral for the straight simple strand, the Poisson ratio effect was included 

while contact deformation was neglected, it is stated that the radial contact is prevailing case even 

if there are no gaps between the wires in the layers [17]. Costello and Phillips [15] work was 

extended by Velinsky [18] and Phillips and Costello [19] to include internal wire rope. Velinsky 

[18] model included the effect of Poisson ratio, this model was used to study the multi-strand 

responses. Phillips and Costello [19]  generalized Velinsky [18] work to be applied on any type of 

cable with an independent central core wire; the friction between wires was neglected in this 

model. Costello [20] presented a linear theory that included the curvature and twist variations 

effects (recently, Ghoreishi [21] gave a closed form matrix for this model, the symmetry in the 

matrix is lost). Kumar and Cochran [22] extended this theory to develop a linearized form, which 

results in a closed-form expression for the stiffness matrix terms, however, the stiffness matrix 

symmetry also is lost. Utting and Jones [23,24] continued Costello [20] work to include contact 
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deformation (wire flattening) and friction effect, and the results showed that these phenomena have 

a small effect on calculating the global response of the cable. Clair and Costello [25] discussed the 

friction effect of bending load on strands. Jolicoeur and Cardou [26] compared the results of the 

mechanical response for the single straight rope which was predicated by Costello and Phillips 

[15] model with the simple model provided by Hruska [8,9], the comparison resulting in showing 

that the fiber model is not appropriate in case twisting moment and angle have to be taken into 

account and Costello and Phillips [15] model showed a good prediction with experimental results 

done by Utting and Jones [23,24] for cable stiffness. Labrosse [27] presented an analytical method 

that predicted the overall behavior of simple straight wire subjected to tension, bending, and 

torsion; this model excluded the Poisson’s ratio and relatively included the motion between the 

core and the wires, in this theory wires were considered as curved beams. Kumar and Botsis [28] 

used Kumar and Cochran [22] model to find the expression of the maximum contact stress in 

multilayer strands. 

Using discrete thin rod theory, Ramsey [29] introduce a mathematical approach based on 

differential geometry. He stated that more analysis should be done for twisted cable and for that 

he drive a constitutive equations using his theory. However, Ramsey [30] revised his previous 

work and that lead to have a non-zero distributed moment component specifically in the radial 

direction. Also, Sathikh et al. [31] derived a closed-form symmetric linear elastic model for cables 

with a rigid core, the tension, twist, and bending were taking into account, and the lack of 

symmetry was fixed in this model. In addition, after reviewing the discrete models mentioned 

above, it can be said that the neglecting of the helix radius of the outer wires will lead to 

overestimation of the elastic stiffness coefficients. As indicated when the Poisson effect is 

accounted for as well as the internal contact surfaces between the core wire and the outer wires 
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will result in better estimation of the loads. A more recent discrete models are by: Argatov [32] 

where he has proposed a better formulation that considered the contraction between the outer wires 

and the core wire using the method of matched asymptotic expansions, and other using semi-

analytical solutions by Meng et al. [33] and Chen et al. [34]. 

In addition, it is noted that whenever all the previous formulation take into account the 

change in the geometry internally which is obtained by stating the mechanical problem in non-

linear geometric framing and then linearized it and when is done it result in non-symmetric 

stiffness matrix, which is known that violates Betti’s reciprocal theorem. The base of elastic 

systems deepened on Betti’s reciprocal theorem. Karathanasopoulos and Kress [35] found a 

symmetric matrix when proposed a mode to study helical rods response under axial-torsional loads 

and radial contraction was included. In this mode the formulation of the radial strain was 

considered as an external load (Poisson ratio and flattening effects not induced) which is different 

for the previous models. Karathanasopoulos et al. [36] used this model to study the effect of 

thermal loads on braided conductors. More recent, Foti & Martinelli [37] developed a model to 

evaluate the axial-torsional response of a single layered strand considering the deformability of the 

internal contact surfaces, and derived a symmetric the stiffness matrix. 

 A method called homogenization was used in introducing a semi-continuous model by 

Hobbs and Raoof [38] for multilayered cables where each layer is modeled as an equivalent 

orthotropic sheet. This methodology was extended by Raoof and his associates over two decades: 

Raoof [39], Raoof and Hobbs [40], Raoof [41], Raoof and Kraincanic [42], and Mohammed and 

Ivana [43]. This method was described more by Raoof [39]: this model replaced each layer with a 

thin cylindrical orthotropic layer; to be in a plane state of stress.  Blouin and Cardou [44] also used 

the same homogenization to develop another semi-continuous model. Raoof and Kraincanic [42] 
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stated after making a comparison between the semi-continuous models and the thin rod models 

analysis of cable that the thin rod theory was more reliable when the wire strand diameter is small 

or for one or few layers of external wires. However, the semi-continuous models would be 

advantageous when the cable is made with a large number of wires [45]. Jolicoeur [46] compared 

Raoof [39] and Blouin and Cardou [44] models and reported that the previous cylinder model is 

simple and preferred for axial or torsion loads; however, it will fail to capture the bending stiffness 

so the other model is perfect if bending will occur. This approach can be applied by replacing each 

layer with a cylinder of orthotropic, transversely isotropic material as in Claude and Alain [47], 

Crossley et al. [48], and Crossley et al. [49] work. Such an approach can be used when the number 

of wires in the layer is large [17]. Also, the use of semi-continuous models of wire ropes will shed 

light on aspects of the problem of bending and torsion behavior [32].  

 All the above-introduced models treat the single-helix wire strand only. In practice, wire 

ropes can have a more complex multi-strand cross-section, which may have a double-helix 

configuration. Lee [3] stated in his discussion of the geometrical property of single- helix and 

double-helix that there are differences between them. Stanova et al. [50] introduced a new 

mathematical model for both single-helix and double-helix in the form of parametric equations. 

This model showed high efficiency in building the finite element model of cable, and the results 

of a multi-layered strand under tension were given, and it agreed well with experimental data [45]. 

 For cables with double-helix configuration; Elata et al. [51] were the first to fully consider 

this configuration. This new model simulated the wire rope behavior using independent wire core 

under axial loading. Rather than considering the effective response of wounded strands, this 

approach was used to consider the complete double-helix configuration of individual wires within 

the wound stand and relates the level of wire stress to the overall load applied. The individual wires 
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bending and torsion stiffness are neglected, however, the lateral surface of the wires is subjected 

to loads, applied by adjacent wires. As a result, the accuracy increased in this model with the 

increase if the wires in the wire rope. It is emphasized that the main focus of Elata et al. [51] work 

was to analyze the double helix configuration effect; however, it did not lead to finding closed-

form equations [17]. Another model was developed by Usabiaga [52] for double-helix cable, 

however, this model neglected the Poisson effect. Recently, Xiang et al. [45] developed a model 

where the focus was to predicted the global stiffness of the cable, and it found that the different 

friction stated between the wires can result in a different distribution of local deformation including 

bending and torsion in case of double-helix wire. 

As for analyzing synthetic cable, many models are available. Leech et al. [53] intruded a 

quasi-static analysis of fiber ropes and included it in a software: Fiber Rope Modeller. Beltran et 

al. [54] developed another model and Beltran [55] and Beltran and Williamson [56] extended it. 

These models are similar to Leech et al. [53]  model, however, they concentrated more on a damage 

model to take into account the degradation of cable properties as a function of loading history. The 

mentioned models are also implemented into a computer program. Ghoreishi et al. [57,58] 

developed two closed-form analytical models, that can be used in sequence to analyze synthetic 

cables. 

 As for using Finite Element Method, Carlson et al. [59] modeled the wire using bar 

elements as well as the connections between the wires. Cutchins et al. [60] modeled the wires using 

six node elements; the connections were simulated using springs. Chiang [61] modeled a small 

segment of the cable length to optimize the geometry and investigate the impact of factors like the 

radius of the core, the radius of wires, helical angle, and boundary conditions. These models used 

what is called volumic finite elements where the interwire mechanical behavior cannot be 
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investigated, and as known, it is required to have larger elements number to have accurate analysis 

[62]. For the simple straight strand. Nawrocki [63] done an analysis using a one-dimensional 

curved beam element. It should be mentioned that some of the finite element method studies have 

investigated the local phenomena, as it was mentioned that the inclusion of the internal contact 

surface and Poisson effect increased the complexity of mechanical formulation which increased 

the need of using advanced numerical solutions such finite element method. For the simple straight 

strand Jiang et al. [64] presented a concise finite element using three-dimensional solid brick 

elements, the model took advantage of the cable loading symmetry and accounted for tension, 

shear, bending, torsion, contact, friction, as well as local plastic yielding under axial load. This 

model showed excellent agreement with Costello and Phillips [15] model and Utting and Jones 

[23,24] experiment work. For a three-layered straight strand Jiang et al. [65] extended the previous 

work; however, this model cannot work for the bending case or where very complex loading cases 

are assigned. These models showed that interwire pivoting and interwire sliding govern the global 

response for cable for axial and bending loads, respectively [17]. Nawrocki and Labrosse [66] used 

Nawrocki [63]’s element to investigate the motion between the core and wires. Wehking and 

Zieglen [67] devoted his work to compute the rope stress. Similarly, Messager and Cartraud [68] 

found a homogenization procedure, by applying the rigorous asymptotic development theory, a 

segment of the strand can be studied using the three-dimensional finite element model free of 

displacement assumption. For statically indeterminate contact problem when the wire is under 

axial load, Jiang et al. [69], investigated this problem and stated that the contact can occur at all 

possible contact points when wire is under tension and restrained against rotation. Since all this 

previous work is done under axial load Jiang [70] used the same extraction modal approach 

however under pure bending, as for global behavior of cable, bending moment verses bending 
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curvature, the finite element results showed a good agreement with the analytical elastic cable of 

Costello [20], this modal also predicted the nonlinear plastic behavior. 

 For single helix configuration critical reviews of the models have been provided by Cardou 

and Jolicoeur [71], Xiang [45], and Liu et al. [72]. Using three-dimension finite element modeling 

Ghoreishi et al. [17] did excellent work in comparing the validity domain: Hruska [8,9], 

McConnell and Zemke [11], Machida and Durelli [13], Knapp [14], Kumar and Cochran [22], 

Ramsey [29,30], Sathikh et al. [31], Costello [20], and Labrosse [27] models. They have done that 

to address the problem that there are limited experimental results reported in the literature. This 

work was done on straight single layered stand subjected to axial load. The results for lay angles 

below 20 degrees showed that the finite element model gave a satisfactory estimating of the elastic 

stiffness constants. However, the study showed that the analytical models are limited due to 

different assumptions. Alkharisi and Heyliger [73] used the three dimensional elastic theory to 

exam the same range of twist angles from 0 degrees to 30 degrees of trapezoidal cable and twisted-

pair cable that are subjected to pure deformation and pure twist to determine the stiffness 

coefficients which were used to describe the force-displacement relationship.   

2.3  Cable Dynamics 

Dynamics of cables has a long and very rich history which been documented in the classic 

paper of Irvine [74]. Starting from the first half of the eighteenth century, Taylor, D’Alembert, 

Euler, Bernoulli, and Lagrange presented the theory of vibration of a taut and sagged string that 

was fixed at both ends with concentrated masses, the transverse vibration was studied, with the 

development of the theory partial differential equations. In 1820, a huge contribution was made by 

Possion, where the general Cartesian partial differential equations of motion of cable element 

under a general force system action was derived. After that, Rohrs [75] introduced the symmetric 
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vertical vibration of a uniform suspended cable with small ratio of sag to span, he arrived to an 

approximate solution using a form of the equations introduced by Possion. Similarly, Routh [76] 

found a closed form solution for the symmetric vertical vibrations as well as the longitudinal 

motion of the uniform cable. After that, for a long period of time this topic was set aside, in the 

middle of the twentieth century; there was a renewal of the interest for the dynamics of cable topic 

which is after the collapse of the Tacoma Narrow Bridge late in1940. Pugsley [77] solved the first 

three in-plane modes of a uniform suspended cable using a semi-empirical theory, different range 

of sag to span ratio from 1:10 to 1:4 was used. Saxon and Cahn [78] derived the fourth order 

differential equation which govern the small amplitude, then they got the results which effectively 

reduced the inextensible cables with small sag to span ratio model, asymptotic solution gave very 

good results for large ratio to span. It should be noted that Pugsley [77] and Saxon and Cahn [78] 

solutions failed to reproduce the classical spectrum for the taut string when the sag value is zero. 

Until 1970s there was neither theoretical nor experimental work done to deal with the remarkable 

discrepancy between the theories known by then: when reducing the sag to zero the frequencies 

and the symmetric in plane mode of cable have inextensible sag do not equal the result of the 

corresponding natural frequency of a taut string [79].  

Irvine and Caughey [80] did a remarkable work developing a novel linear theory for the 

free vibration of a uniform suspended untwisted (uncoupling) cable with ratio of sag to span about 

1:8, or less assuming a parabolic profile. In addition, they used a basic and simple assumption 

which was that the dynamic cable tension is a function of time alone, meaning that the elastic 

deformation is set to be quasistatic [79]. This work, considered both out-of-plane and in-plane 

motion, and the analysis results showed that the symmetric in-plane modes depend on only a 

parameter allowing for the effect of cable geometry and elasticity, and showed its importance in 
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the solutions. They studied the equations that account for the modal crossover phenomenon in the 

frequency. The frequency of the symmetric in-plane modes showed that it vary with the introduced 

parameter which resulted to the existent of the cross over points when the frequencies of the 

symmetric in-plane modes are equal to those of neighbor antisymmetric in-plane modes [81]. They 

also conducted experiments, and reported the validly of the theory using the results of a simple 

taut horizontal chord cable which was exited to demonstrate the modal crossover phenomena. 

Irvine and Griffin [82] done more work on cable response analysis due to dynamic loading as it 

occurs in case of support acceleration. It can be seen that these early models were limited due to 

difficulty in using the mathematical tools to find solutions [83]. 

 Irvine [84] extend the work and applied the introduced linear theory of horizontal cable 

on inclined cables, where the supports are not at same level. The addition was simply using a 

coordinate transformation to the cable chord. However, in this work he ignored the weight 

component which is parallel to the cable chord. More work into finding solution for the free 

vibration of an inclined extensile sagged cable was by Triantafyllou [85], in his work weight 

component and spatial variability of dynamic tension were taking into account. In addition, he 

showed that the inclined cables differ than the horizontal cables regarding properties, stating that 

it cannot be obtained by simply extending the horizontal cable results. Nevertheless, the Irvine’s 

theory was validate by confirming for a range of parameters. In addition, the weight component 

from other point of views was studied by many scholars; Triantafyllou and Grinfogel [86] where 

they extended Triantafullou’s work and drive a simple approximate formulas for the inclined 

cables. Burgess and Triantafyllou [87] used an asymptotic solution to explore the properties details 

of the out-of-plane modes for horizontal and inclined cables of small sag. Zhou et al. [81] stated 

that all the models dealt with inclined cable showed that the natural frequencies did not cross over 



21 

 

because of the inclination the modes become hybrid modes, a mix of symmetric and antisymmetric 

shapes, with an effect on the dynamic tension, and this phenomenon is accompanied by the 

variation of the curvature along the catenary profile in the static state when the cable is inclined 

which would not occur is the parabolic assumption is adopted. 

For the study of the interaction between transversal, vertical, and torsional motions for 

untwisted sagged cable, it started with the focus on investigation of the cable galloping 

phenomena. Galloping is a low frequency, high amplitude vibration that occur on iced cables in a 

steady-side wind [88]. For that, many simplified theories are introduced, Nigol and Power [89] 

and Desai et al. [90] described the coupling between vertical and torsion, Jones [91] studied the 

coupled vertical and horizontal motion, Yu et al. [92,93] proposed an analysis for the horizontal, 

vertical, and torsional coupling. Yu et al. stated that the previous investigations on that resolved to 

be not satisfactorily, and the reason for this shortcoming is that there is no simple model available 

that capture the coupling between the cable motions. In addition, it is noted that the problem in the 

proposed theories may be simplified because it did not account for nonlinearity of the geometry 

and accommodate the various of interactions between the motions [94]. The dynamic interaction 

between other system elements and cables require studying the boundary induce cable vibrations. 

Davenport and Steels [95] have investigated this problem. More work have been done on that by 

Veletsos and Darbre [96], Starossek [97,98] have completed a linear theory of damped cable of 

boundary induced vibration. 

As a result, the use of finite element method or finite difference will easily enable 

embedding these effect in the cable model. For finite element modeling, a range of different 

elements types were used, from simple two-nodes to a higher order element to analysis the dynamic 

response. Among which have been reviewed in Desai et al. [99], where they developed a three-
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node isoperimetric cable element  to perform a geometric nonlinear, static analysis of single cable 

structure experiencing only translational deformations. Desai et al. [94] enhanced the three-node 

element model to include the torsion and analyze the galloping of a multi-span transmission line.  

As it has been long recognized that due to the twist in the cable, in another words the helical 

geometry, an axial load not only produces an extension but also rotation and a torque load produces 

a torsion along with extension. There are number of failure mechanisms associated with the 

extensional-torsional characteristics of which are hocking, kinking, and birdcaging [100]. When 

including the bending stiffness effect, the bending and torsional angels can be used to describe the 

cable motion, this formulation is referred to as the Kirchhoff-Love rod theory by Love [12]. Most 

of these models introduced previously studied the axial loading with ignoring the torsional 

associated when solving the dynamic of taut lines. Samras et al. [101] initiated the investigating 

and emphasis on the importance of taking the couple extensional-torsional behavior into account 

of cable under dynamic loading. Samras et al. studied the couple extensional torsional problem on 

a straight twisted cable stretching for ocean floor to the surface with one end subjected to sinusoidal 

forcing function to represent the oceanic wave and found the equations of motion and derived a 

closed form solutions to solve the frequency under four different boundary conditions while 

ignoring the internal and external damping. The frequency results were compared with the result 

in the case if only extensional deformation is considered. It showed that the results of the coupled 

frequencies have lower results that the one with extensional theory, and they stated that the 

torsional behavior of the cable needs more exploring, considering the importance of cable 

structures.  

Samras et al. [101] also examine the coupling coefficients and stated that the axial-torsional 

stiffness coefficient is approximately equal to the torsional-axial stiffness coefficient [102]. In 
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another related paper, Skop and Samras [103] analyzed two different types of cables one torque 

balanced and the other is not, although the previous classic theories viewpoint treated only the 

extensional vibration which gave a similar results for both cable construction, inclusion of coupled 

extensional-torsional vibration showed a significant different between their responses [100]. On 

both papers for their dynamic analysis, they found the stiffness matrix of steel cables 

experimentally. In addition, the experiment found that the axial-torsional stiffness coefficient is 

approximately equal to the torsional-axial stiffness coefficient. Jiang et al. [104] pointed that 

helical springs under same loading exhibits similar axial-torsional coupling effect, and that has 

considerable amount of attention in the literature. So, for springs system Jiang et al. [104] derived 

a closed form analytical solution of the coupled behavior where the system is under dynamic load 

and that was a continuation of their previous work, Jiang et al. [105], the presented results was 

only for helical spring which have finite length. Their method could be applied on cables under 

similar type of forces.  

Raoof et al. [106] work showed the relation of spiral strand which is under impact loading, 

and developed a closed-form solution that predict the extensional wave speed and displacement 

for spiral strand loaded axially and experiencing specific forms of impact loading at one end while 

the other end is fixed. Furthermore, there are many studies that studied the response of a coupled 

behavior cable under specific forms of impact loading. Phillips and Cosfello [107] preformed a 

preliminary investigation on the response of a single layer strand with no core cable to impact 

loading with negligent the friction in the model. Leech and Overington [108] extended the work 

done by Phillips and Cosfello [107] however a different method was used to solve the derived 

basic equations, they also conducted experiments on the single layer cable and supported their 

theory. 



24 

 

Apart from the explicit analytical approaches, the finite element analysis is widely used to 

solved the static and dynamic problems of cables structure, which is based on approximate 

interpolation function, because the accordingly and versatility amount of work devoted to develop 

the finite cable elements. Many researchers; Kwan [109], Mitsugi [110], Stefanou et al. [111], 

Vilnay & Rogers [112]; developed straight linear elements where these elements resulted in a 

proper response when having a small sag with high pretension. The multi-node elements which 

have higher order interpellation polynomials also were used to model cable with large sages, it is 

seen that finite element analysis has the ability to solve such a problem with no limitation. 

However, the main problem of using finite element analysis is that it is difficult to determine the 

accurate coordinates of the internal nodes of the cable corresponding to the cable catenary 

configuration when having large sag, to overcome this problem, a family of isogeometric analysis 

have been introduced by Hughes et al. [113] as an efficient approach in the engineering and science 

disciplines, the main idea of it to bridge the gap between the computer-aided design and finite 

element analysis [83]. Thai et al. [83] used this method to determine the natural frequencies and 

exact geometries of mode shapes for cable structures. Hashemi and Roach [114] derived a dynamic 

finite element for the coupled extension-torsional vibration analysis of a uniform cable and found 

the coupled frequencies. Alkharisi and Heyliger [73] found the effective mass and stiffness 

component for coupled cables using constants that are driven from three-dimensional model. 

Moreover, using that the vibration behavior of a typical cable segment was studied using these 

properties with both analytical and finite element models, that was applied and discussed for 

homogenous and composite cable geometries for three representative types of cables. 

Other studies focused more into the nonlinear interaction which increase in the finite-

amplitude dynamic of elastic suspended cable such in Henghold et al. [115] where they did a three-
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dimensional analysis for the free vibration of a single span cable by employing a nonlinear finite 

element technique. Many other researchers have been working on the matter if nonlinear free and 

forced vibration of cables to formulate theories and analyze the behavior. And, recently, by Rega 

[116,117] discuss the main features and problems associated with the nonlinear vibration analysis 

of suspended cables as well as other researchers as Perkins [118], Srinil and Rega [119], Wang 

and Zhao [120], Lacarbonara and Pacitti [121], and Lacarbonara [122]. Lacarbonara and Pacitti 

[123] and Arena et al. [123] studied the nonlinear response of cables that are elastic including the 

flexural stiffness or flexural-torsional stiffness. These studies are essential to understand the large 

amplitude mechanism in the cables vibration analysis. Thai and Kim  [124] solved the nonlinear 

dynamic problems of cable structure using the catenary cable element for the Newton-Raphson 

and Newmark direct integration methods. It stated that the cable with the cure configuration is 

model using a single two-node catenary element without adding internal nodes, by applying this 

approach less number of degree of freedom is required, however as a result, it is not easy to obtain 

a realistic vibrational mode of shapes of cable because the lack of the internal nodes, in addition, 

it is impossible to model the prefect vertical cable because of the mathematical error occurring 

when the projected lengths of catenary cable is used [83]. In addition, Lepidi and Gattulli [125] 

studied the effect of the temperature on the static as well as the dynamic behavior of suspended 

inclined cable using continuous mono-dimensional model which considers the nonlinearly in the 

geometry, a closed-form solution was presented including the properties featuring the dynamics, 

however they were narrowed to the isolated shallow parabolic cables with low frequency range. 
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CHAPTER 3: FREQUENCY ORDER AND MODAL SHIFTS IN SAGGED CABLES  

3.1  Summary 

The free vibration of uniform isotropic cables has wide application in various engineering 

fields. In this study, the natural frequencies and modes shapes of vibration of sagged cables fixed 

at the same level are investigated using both numerical models and experimental results. The axial 

and torsional characteristics of the cable element are fully considered and a generalized cable finite 

element with six degrees of freedom model is formulated to describe the dynamic motion of cable 

line in which longitudinal, vertical, and transverse translations and rotations included. The finite 

element model is applied to two cables that are replicated by experimental work. Results from the 

proposed finite element model are compared to the analytical solution of Irvine and Caughey [80]. 

Special focus is given to the influence of the non-dimensional parameter λ2, which defines the 

combination of geometric and material properties that influences frequency order. Excellent 

agreement found with experimental results that indicate significant levels of modal coupling that 

do not appear in analytical solutions. 

3.2  Introduction 

The use of cables as structural elements has increased since they are capable of taking large 

axial loads and have a relatively high strength to weight ratio. Their mechanical and dynamical 

behavior heavily depends on their geometry, material properties, and other combined effects. 

Much of the recent literature on cables focuses primarily on static linear behavior. However, the 

emphasis here is on the dynamic response of sagged cables whose endpoints are supported at the 

same level where the cable cross-section is assumed to be circular and isotropic. The special focus 

of this study is to examine how the frequencies change order and study how the modal 

displacements in the out-of-plane, in-plane, axial, and torsional directions interact.   
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The dynamics of uniform cables has a long and rich history starting from the first half of 

the eighteenth century. Taylor, D’Alembert, Euler, Bernoulli, and Lagrange (see [76]) presented 

the theory of vibration of a taut and sagged string that was fixed at each end with concentrated 

masses. Rohrs [75] later developed an approximate solution for the symmetric vertical vibration 

of a uniform suspended cable with small ratio of sag to span. After this development, interest in 

this topic waned until the collapse of the Tacoma Narrow’s Bridge late in 1940. A significant 

advance was documented in the classic paper of Irvine and Caughey [80]. In their comprehensive 

work, they developed a novel linear theory for the free vibration of a uniformly suspended 

untwisted cable, with both out-of-plane and in-plane motion considered. Their results showed that 

the symmetric in-plane modes depended on a single parameter that incorporated the combined 

effects of cable geometry and elasticity. They also conducted experiments and reported the validity 

of the theory using a simple taut horizontal cable that was excited to demonstrate the modal cross-

over phenomena, which occurred between the symmetric and anti-symmetric in-plane frequencies 

and mode shapes.  

The study of the interaction between transverse (out-of-plane) and vertical (in-plane) 

translations, and longitudinal rotation motions for sagged cables began with the investigation of 

the cable galloping phenomena. For this type of problem, many simplified theories have been 

introduced such as that of the Nigol and Power [89] model to describe the coupling between 

vertical translation and longitudinal rotations. With an increase in the complexity of cable 

geometry, a great number of unknown variables were involved that required differing 

approximations and assumptions to consider an extremely challenging problem. Apart from 

explicit analytical approaches, the finite element method has been widely used to solve both the 

static and dynamic problems of cable structures. Many researchers including Vilnay and Rogers 
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[112], Stefanou et al. [111], Mitsugi [110], and Kwan [109] have developed straight linear 

elements resulting in an accurate response when the cable possesses small sag with a high 

pretension.  

A range of different finite element cable models have been used, from simple two-node 

approximations to a higher order element, to analyze static and dynamic cable response. Desai et 

al. [99] developed a three-node isoparametric cable element  to perform a geometric nonlinear 

static analysis of single cable structure experiencing only translational deformations. For the 

dynamic problem, Desai et al. [90] described coupling between vertical translation and 

longitudinal rotations. Starossek [98] studied the vertical vibration behavior of sagged cables using 

a dynamic stiffness matrix where the viscous damping due to external fluid was considered where 

only motion within the vertical cable plane was considered. Jones [91] studied the coupled vertical 

and longitudinal translation motion of cables, while Yu et al. [92,93]  proposed methods to study 

the longitudinal and vertical translations and longitudinal rotation coupling, where they stated that 

previous investigations on galloping had not yet been resolved. The primary reason for this 

shortcoming was that there was no simple model available that captured all of the coupling that 

can exist as the cable displaces. Desai et al. [94] enhanced the three-node element model to include 

the longitudinal rotation with the longitudinal, vertical, transverse translation motion (4 degrees of 

freedom) and analyzed the galloping of a multi-span transmission line. 

Other recent studies focused more on the nonlinear interactions that can occur in the finite-

amplitude dynamics of elastic cables. Rega [116,117] discussed the main features and problems 

associated with this behavior. Multi-node elements that possess higher order interpolation 

polynomials were also used to model cables with large sag. The main problem of using finite 

element analysis for this class of problem is that it is difficult to determine the accurate coordinates 



29 

 

of the internal nodes of the cable corresponding to the cable catenary configuration when having 

large sag. To overcome this problem, a family of isogeometric analyses were introduced by 

Hughes and co-worders [113] and Thai and co-workers [19]. Thai and Kim [124] solved the 

nonlinear problem of cable structure using the catenary cable element subjected to static and 

dynamic loading. The incremental iteration solution which are based on the Newton-Raphson and 

Newmark direct integration methods were used for solving the nonlinear equations. Thai [83] 

continued using this method to determine the in-plane natural frequencies and exact geometries of 

mode shapes for cable structures. However, modal coupling was not discussed.  

Many previous studies of cable vibration have somewhat limited application because of 

the restrictive geometries and boundary conditions used. In addition, many commercial finite 

element programs cannot be readily used when modeling and analyzing cable structures since they 

frequently lack the cable elements that are able to model actual displacements that include coupling 

and torsional stiffness [126]. In this paper, a three-dimensional finite element model is used to 

study the free vibration characteristics of the three-dimensional cable after a geometrically 

nonlinear deformation from the cable weight, taking advantage of this method to deal with the 

sagged cables and effectively show the influence of various parameters of the cable system. Axial 

and torsion coupling terms resulting from a twisted in the cable is not included in this study. The 

results of two examples are compared and assessed against a series of cable vibration experiments 

and the well-established analytical model from the literature. Several conclusions are drawn from 

the comparisons and some important new results are discussed.  

3.3  Theory 

The numerical method used here is based on representing the sagged cable line as a series 

of one-dimensional finite elements that have isotropic and linear elastic properties and are assumed 
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to have n  nodal points; each node has six degrees of freedom along the directions of the three 

axes. The element's stiffnesses and mass matrices and the nodal translations and rotations are given 

in terms of the global coordinate system. The equation of motion is derived and is based on small 

dynamic perturbations about the deformed equilibrium state caused by the cable weight. The static 

configuration prior to vibration includes the initial sag of the cable and the appropriate boundary 

conditions. The equation of motion takes the usual form 

       tM q K q F   (3.1) 

Here  M and  tK are the N N  global mass and stiffness matrices of the cable structure, 

respectively, and formed after employing the regular assembly procedure over all the discretized 

elements, where N is the total number of degrees of freedom. The  q vector contains the global 

translations and rotations and  F is the external dynamic load specified to be zero to study the 

free vibration. The dot superscript denotes differentiation with respect to time t . In the parametric 

study presented in this paper, Eq. (3.1) is used to find the natural frequencies and corresponding 

mode shapes, which are obtained by solving the standard eigenvalue problem, obtained after 

imposing the assumption of harmonic motion. This appears in the usual form: 

      2

tK q M q   (3.2) 

Damping effects, though very important, are not included in this study. The elastic, geometric, and 

mass matrices and the load vector are derived for a cable element in the following subsections. 

Details of material, span, and supports are also given for the two examples. In this work, the 

frequency order for the out-of-plane, symmetric in-plane, anti-symmetric in-plane, axial, and 
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torsional modes are studied for a range of different sag values, and the nature of these modes are 

thoroughly discussed.  

3.3.1  The Two-Node Cable Element  
 

The static configuration of the cable line is subjected initially to its gravity load. The initial 

vertical position of the cable is given by the parabola using [82] 

2
X X

Y 4d
L L

      
   

  (3.3) 

Here L  is the span and d  is the sag value of the cable structure.  

 Several approaches to analyze the static behavior of sagged cable structures have been 

reviewed by Desai et al. [99]. Some are based on the discretization of the equilibrium expressions 

followed by an iterative solution of the resulting non-linear algebraic equation. This method has 

been largely used and applied here using straight-line elements that possess all nodal translations 

and rotations based on the primary axial and torsional stiffnesses possessed by the cable. All other 

stiffness contributions, such as those related to bending, are assumed to be small relative to these 

primary stiffness contributions and can be neglected.   

The cable line is first discretized over its length using two-node isoparametric elements. 

Each element is referred to the global X,Y,Z axes and the initial intrinsic coordinate S . The three 

translations are denoted as U , which is the longitudinal in-plane motion (parallel to the X axis), 

V  , which is the vertical in-plane motion (parallel to the Y  axis), and W  as the transverse out-

of-plane motion (parallel to Z axis). The rotations are denoted as X Y Z, ,   , in the X,Y,Z  



32 

 

directions, respectively. A schematic of these parameters is shown in Fig. 3.1. The nodal 

displacement vector for each element is therefore defined as 

   Te

1 1 1 X1 Y1 Z1 2 2 2 X2 Y2 Z2q U V W U V W        (3.4) 

Here the T  superscript denotes the transpose and the numbers 1 and 2 refer to the left and right 

endpoints. For all problems studied, a pin-pin conditions is applied at the endpoints where all 

three translations are specified to be zero and the rotations are unrestrained.  

 

Fig. 3.1 Characteristics of the cable element: (a) global coordinate system and displacements (b) the two nodes cable 

elements in two-dimensions 

 

3.3.2  Stiffness Matrix of Cable Element  
 

The total element stiffness matrix is derived in the global coordinate system directly and is 

defined as 

  e g

tK K K          (3.5) 

Here 
eK    is the elastic stiffness matrix and gK    is the geometric stiffness matrix. The elastic 

stiffness is merely the modified form of the conventional symmetric spatial truss stiffness matrix, 
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along with torsion about the longitudinal axis that is included with the extension of the cable. The 

local elastic stiffness expressed as 
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Here E is the modulus of elasticity, A  is the cross-sectional area, G is the shear modulus, J  is the 

polar moment of inertia, and h  is the element length which can be found using 

2 2 2

e b e b e bh (X X ) (Y Y ) (Z Z )        (3.7) 

The locations eX ,
eY ,and 

eZ , and bX ,
bY , and 

bZ  donate the global coordinate of the nodes to 

which element ends b  and e , respectively.  

 The geometric stiffness matrix is associated with the forces employed by the stressed 

element due to the direction changes of the element when displaced. This matrix can be described 

in the local coordinate system as 
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 (3.8) 

Where aF  is the axial force at the beginning of each incremental step and I  is a 3 3 identity 

matrix.  

3.3.3  Mass Matrix of the Cable Element   

  
The kinetic energy terms represented in the mass matrix for predicting the axial and 

torsional behavior can be easily determined by pre-integrating the mass using  

uu

V

m dV      (3.9) 

x x

2

V

m r dV     (3.10) 

These terms depend on the pointwise mass density  , r  is the distance from the polar origin to 

any arbitrary location in the cable cross-section, and V is the total volume. The consistent mass 

in matrix form is then given as 

  x x x x

x x x x

uu uu

uu uu

2m I O m I O

O 2m I O m Ih
m

m I O 2m I O6

O m I O 2m I

   

   

 
 
   
 
  

 (11) 

Here O  is a 3 3 null matrix. 

3.3.4  Finite Element Solution  
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To solve the vibration problem for the cable system, the matrices introduced previously 

need to be transformed from the local to global coordinate system. The transformation matrix T  

for a cable element can be derived using similar procedures for other structural members and is 

not repeated here. The three-dimensional cable element orientation is defined by the angles 

between the local coordinate system axes and the global coordinate system axes. Considering the 

end forces from global to the local coordinate system at b  and e  (Fig. 3.1(b)), the cable elements 

local forces are equal to the sum of the components of the forces in the global system in the 

direction of local axes. Similarly, the local moments at both ends are expressed in terms of global 

counterparts. The transformation relationship can be found between the cable local end forces and 

global end force vectors in compact form as 

 

c O O O

O c O O
T

O O c O

O O O c

 
 
 
 
 
 

  (3.12) 

Here c  is the cable element rotation matrix and is given as 

 
xX xY xZ

xY xX xZ

xZ xY xX

c c c

c c c c

c c c

 
   
   

  (3.13) 

The direction cosines contained in this matrix are given as 

xX xXc cos   

xY xYc cos   

xZ xZc cos    (3.14) 
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The transformation matrix plays a crucial role in the three-dimensional analysis of cable structures 

by representing all element translations and rotations in a single coordinate system. It will enable 

identifying the finite member’s orientation in a convenient method.   

The shape associated with the original sag of the cable is idealized. In practice, the cable is 

arranged according to its parabolic shape without any loading applied. The difficult issue is that 

the final equilibrium position of the cable cannot be determined before the self-weight of the cable 

has been applied. Hence after beginning the analysis with the cable in ideal parabolic form, the 

uniform load is then applied from the self-weight of the cable (applied as a concentrated point load 

at each node). The load was then applied incrementally and the geometry and forces were updated 

iteratively. The initial sag value was specified as d 17.13 cm . This distance increased because 

of the cable weight and axial stretching as shown in Fig 3.2. This step is usually ignored in the 

previous classic analysis because the finite element model needs to generate the internal axial force 

as a function of total cable stretch and applied load. After the equilibrium position of the stretched 

cable has been obtained, the eigenvalue problem was then solved to find the frequencies and 

corresponding mode shapes. 

In all cases, convergence of the frequencies were tested using meshes of 4, 8, 16, 32, and 64 

elements. There was little difference between 32 and 64 element results, indicating that 32 

elements were sufficient for most of the analyses considered.  
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Fig. 3.2 Cable configuration before and after applying load 

 

3.4  Experimental Model  

An experimental study investigating the frequency spectrum of two uniform cables 

undergoing forced support motion was conducted to buttress results from the numerical models. 

The cable length was chosen based on the facility capacity as L 7.7089 m . A MTS’s 243.20 

hydraulic actuator [127] was used to excite a single end of the cable under harmonic support 

motion. The focus was on the out-of-plane, symmetric in-plane, and anti-symmetric in-plane 

vibrational modes. The experimental setup overview is shown in Fig 3.3, where the sagged cables 

are hanging fixed from both supports at the same vertical level.  

The experiments were used to investigate the behavior of an extensible sagged cable (

d 17.13 cm ). Each test was repeated 20 times for each frequency. The protocol was to subject 

one end of the cable to a harmonically time-varying support motion in the vertical direction using 

the actuator driven via a power control unit (MTS’s 407 controller [128]). MetaTracker sensors 

[129] were used to obtain the vibration data for the cables. These sensors include an accelerometer 

that gives the acceleration records in all three directions, including acceleration time history signal 

for W  which is the transverse out-of-plane motion , V  as the vertical in-plane motion, and U as 

the longitudinal in-plane motion. Two trackers were used for the first and second application points 

on the cables at one quarter and one half distances of the cable span.  
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For each cable configuration, a series of tests were carried out by varying the frequency at 

the support to force the cable to vibrate at the excitation frequency. If the exciting frequency 

coincides with the natural frequency of the cable, resonance is encountered, and the oscillation 

results are collected. The acquisition duration for each reading ranged from 15 to 30 seconds, and 

the sampling frequency for the measured accelerations was 12.5 Hz. For each in-plane and out-of-

plane vibrational mode and each cable configuration, a total of six data sets were collected. The 

natural frequencies of the two cables considered in this paper were obtained by recording the 

frequency when a response peak was observed being driven by support motion of the cable.  

 

Fig. 3.3 Experimental setup for the sagged cables study with the actuator at one end and a fixed support at 

the far end 
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3.5  Analytical Solutions 

The finite element model generates predictions of the natural frequencies and  mode shapes 

of the out-of-plane, symmetric in-plane, and anti-symmetric in-plane modes that can be compared 

with the experimental results and the analytical solution Irvine and Caughey [80]. These latter 

frequencies are given by  

o
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  (3.15) 
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Here of ,
antif , and 

sf are the corresponding out-of-plane, anti-symmetric in-plane, and symmetric 

in-plane frequencies where the second out-of-plane frequency is equal to the first anti-symmetric 

frequency. The parameter H  is the horizontal component of the cable tension specified by Irvine 

and Caughey [80] as 

2mgL
H

8d
  (3.18) 

And it is the determination of this value and its relationship with the sag d that requires additional 

effort in the finite element model. Here m  is the mass per unit length of the cable and g is the 

acceleration of gravity. The il  value follows from the transcendental equation 

3
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Where  
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2

e
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    
 

 (3.21) 

The non-dimensional parameter 
2  accounts for the geometric and elastic properties of the cable 

and its value allows for significant insight into the behavior of the vibrational modes of the cable. 

Irvine and Caughey [80] extensively studied a cross-over phenomena that occurred between the 

symmetric and the anti-symmetric frequencies and mode shapes. They found that when 
2 24  

, the first symmetric in-plane frequency is greater than the first anti-symmetric in-plane frequency. 

In addition, the first symmetric in-plane mode has two internal nodes along the span. In contrast, 

when 
2 24   , the first symmetric in-plane frequency is lower than the first anti-symmetric in-

plane frequency, and the mode shape has no internal node. When 
2 24    the two frequencies are 

equal and the mode shape takes the static profile of the cable shape with no internal node. These 

cases are all explored in this study.  

The axial and torsional frequencies and mode shapes were not considered by Irvine and 

Caughey [80] since they were outside the bounds of the frequencies of interest. However, these 

are still of interest and the analytical solution for the axial and twisting modes of a straight bar 

provide values for these frequencies given by [130] 
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3.6  Application 

To verify the applicability and performance of the finite element model, the solutions were 

compared with the results obtained from the experimental model and those obtained using the 

analytical models available in the literature and replicated here.  

Unless stated otherwise, the cables under investigation here have the following material 

and physical parameters. Cable 1 is an Aluminum Conductor Steel Reinforced cable (ACSR) with 

mass density m 0.35 kg / m , a modulus of elasticity of E 74.2 GPa , shear modulus 

G 37.1 GPa ,  and cross-section area of 
2A 91.3 mm . Cable 2, is a circular plastic tube with a 

mass density of m 0.2 kg / m , a modulus of elasticity of E 8.27 GPa , shear modulus 

G 4.135 GPa , and cross-section area
2A 0.576 mm . For both specimens a cable length of 

L 7.7089 m  value was used. The configuration of the cables varied from a relatively small 

amount of sag ( d 2 cm ) to relatively large sag ( d 20 cm ). The values of the non-dimensional 

parameter 
2  changed both with the sag value d  , and the static cable tension component  H .  

3.7  Results and Dissection  

The natural frequencies and mode shapes for the two representative uniform sagged cables 

are presented in this section. The finite element results are compared to the experimental and 

analytical results. The results include the interactions observed between the longitudinal 

transversal and vertical translations and rotations, which occur in the out-of-plane, symmetric in-

plane, anti-symmetric in-plane, axial, and torsional frequencies. The effect of sag variation on the 

cable dynamics is also considered.  
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A convergence study for the finite element model for Cable 1 is presented in Table 3.1. 

The results show excellent convergence when there are more than eight elements used to model 

the cable with a relatively large value of sag ( d 17.13 cm ).The results show that all frequencies 

resulting from 64 elements have less than 0.1% error from the analytical solutions. This indicates 

that the present finite element approximation with 64 elements used is sufficient in calculating the 

modal frequencies of the uniform sagged cable. 

Table 3.1 Convergence of natural frequencies for Cable 1 (d=17.137 cm) 

 

 

Frequency f (Hz)  

Irvine 
Circular 

Bar 

Finite Element Model Elements in Selected Span 

4 8 16 32 64 

Out-of-Plane 

 
1.329 - 1.363 1.337 1.331 1.329 1.329 

In-plane symmetric 

 
3.791 - 4.624 4.020 3.852 3.811 3.801 

In-plane anti-

symmetric 
2.658 - 2.929 2.726 2.675 2.662 2.659 

Axial 

 
- 280.051 287.221 281.809 280.471 280.144 280.067 

Torsional - 198.026 203.322 199.390 198.412 198.169 198.108 

 

The frequency spectrum for both cables was then found experimentally. At two points on 

the cable span (mid and quarter span), the trackers captured the acceleration values with each 

signal processed using the Fast Fourier Transform algorithm function. The primary focus of these 

experiment was to confirm the values of the out-of-plane, symmetric in-plane, and anti-symmetric 

in-plane frequencies but also determine the appearance and level of coupling between the types of 

vibrational modes. Table 3.2 summarizes the frequency results for both cables. The experimental 

frequencies are in excellent agreement with those obtained using the finite element model. For 
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both cables, the finite element model yields frequencies that are larger by 0.55%, 0.63%, and 

1.23% for the out-of-plane, symmetric in-plane, and anti-symmetric in-plane frequencies, 

respectively.   

Table 3.2 Finite element and experimental natural frequencies results (d=17.13 cm) 

 Frequency f (Hz)  

 Cable 1 Cable 2 

 
Experiment 

(Median) 

Present Finite 

Element Model 

 

Experiment 

(Median) 

 

Present Finite 

Element Model 

Out-of-Plane 1.329 1.329 0.830 0.835 

In-plane 

symmetric 
3.825 3.801 1.500 1.503 

In-plane anti-

symmetric 
2.662 2.659 1.612 1.639 

 

The non-dimensional parameter 
2  was then studied numerically for both cables using a 

total of 11 different sag values, starting from d=0 (no-sag) until d=20 cm. Fig. 3.4 shows the 

relationship between these parameters, with the vertical line indicating that the value of 
2 24  

is reached when the sag value is approximately 4 cm. Hence it is expected that Cable 1 will change 

its behavior (as indicated by the cross-over of modal shapes) at this value of sag. For Cable 2, the 

parameter 
2  is always less than 

24 and hence the lowest in-plane symmetric mode is always less 

than the lowest anti-symmetric frequency. 

Using the finite element model developed in this work, the frequencies and the 

corresponding mode shapes were found for all sag values studied for the two cables. The 

frequencies are listed in Tables 3.3 and 3.4 for Cable 1 and 2, respectively. The present model 

successfully replicates the cross-over phenomena on the frequency spectrum studied by Irvine and 
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Caughey [80] analytically and experimentally and other researchers, and also gives the axial and 

torsional frequencies for different values of sag.  

 

Fig. 3.4 Non-dimensional parameter versus sag value for Cables 1 and 2 

 

For Cable 1, it can be seen from Table 3.3 that the out-of-plane frequencies decrease to 

53% of their d=0 value when reaching the maximum sag value (20cm). Starting from 
2 24   the 

symmetric in-plane frequency becomes larger than the anti-symmetric in-plane frequency. This is 

consistent with the Irvine and Caughey [80] theory (the eigenvalue here is strongly non-linear with 

respect to this parameter for higher modes). The axial frequencies only slightly decrease and then 

increase when 
2 24   . But this frequency changes only 0.02% for the case with no sag to the 

maximum sag. Similarly, the torsional frequency decreases only by 0.03%. Hence the axial and 

torsional modes are only negligibly impacted by sag and are far higher than other frequencies of 
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vibration. This is in part why these frequencies have seen little discussion in the literature when 

the cables are isotropic and do not possess axial-torsional coupling.  

Since 
2 24   for Cable 2 for all values of sag, the frequencies are consistently increasing 

or decreasing as shown in Table 3.4. The out-of-plane frequencies decrease about 4% from no sag 

to the maximum value of sag. The symmetric in-plane frequencies are always less than the anti-

symmetric in-plane frequencies, and then increase by 3.4% from no sag to d=20 cm. The same 

percentage decrease is found for the anti-symmetric in-plane frequencies. For the axial and 

torsional frequencies, the same percentages of decrease were calculated for Cable 1 that were also 

found for Cable 2.  
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Table 3.3 The natural frequencies for Cable 1 using different sag values 

 Frequency  f (Hz)  

Sag Value (cm) 
No 

Sag 
2 4 6 8 10 12 14 16 18 20 

Out-of-Plane 2.629 2.544 2.336 2.097 1.886 1.714 1.577 1.466 1.374 1.297 1.231 

In-plane 

symmetric 
4.473 4.608 5.012 5.379 5.204 4.831 4.479 4.180 3.927 3.712 3.527 

In-plane anti-

symmetric 
5.260 5.090 4.674 4.196 3.773 3.430 3.156 2.934 2.750 2.596 2.464 

Axial 
280.02

9 

280.02

7 

280.02

4 

280.02

3 

280.02

4 

280.02

9 

280.03

7 

280.04

7 

280.05

9 

280.07

3 

280.08

9 

Torsional 
198.06

7 

198.06

6 

198.06

6 

198.06

6 

198.06

9 

198.07

4 

198.08

1 

198.09

0 

198.10

1 

198.11

3 

198.12

7 
 

Table 3.4 The natural frequencies for Cable 2 using different sag values 

 Frequency  f (Hz)  

Sag Value (cm) No Sag 2 4 6 8 10 12 14 16 18 20 

Out-of-Plane 0.860 0.859 0.858 0.856 0.854 0.851 0.847 0.843 0.838 0.833 0.827 

In-plane symmetric 1.466 1.466 1.468 1.470 1.474 1.478 1.484 1.491 1.498 1.507 1.517 

In-plane anti-symmetric 1.691 1.690 1.688 1.684 1.679 1.672 1.665 1.655 1.645 1.634 1.621 

Axial 10.141 10.141 10.141 10.140 10.139 10.138 10.136 10.134 10.131 10.12 10.123 

Torsional 7.087 7.085 7.076 7.062 7.043 7.018 6.988 6.953 6.913 6.870 6.822 
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The corresponding mode shapes for Cable 1 and 2 were also studied numerically and 

experimentally specifically to show the interaction between modes. This subject has received 

relatively little attention in prior studies and is of significant interest. The objective here was to 

also explore the sag variation effect (where the cross-over phenomena was observed for this 

specific cable). The means of obtaining all experimental values for this part of the work was to 

take the obtained acceleration data from the experimental tests and integrate the peak quantities to 

obtain the three translation displacements at their peak. For example, the U displacement can be 

found using 

data

2

U
U sin( t)  


    (3.23) 

Similarity for the displacement components V  and W ,  the peak displacement motions from both 

sensor locations on the cable (mid and quarter span) can also be obtained.  

Figure 3.5 shows the displacements for the lowest out-of-plane mode in the X , Y , and Z

directions for Cable 1. The displacements are normalized with respect to the peak transverse 

translation W (the displacement out-of-plane). There are simultaneous translation displacements 

in the other two directions when the cable undergoes primarily transversal motion. The out-of-

plane mode consists of a well-known symmetric transverse component that is the dominant modal 

displacement but also contains a symmetric longitudinal and vertical component that was captured 

both in the experimental and finite element results. The results from finite element model show 

that the maximum amplitude (at mid span) increases 120% and 78.72% in U and V as the sag 

value increases from 0 to 20 cm. Even when the initial sag is zero, there are small but non-zero 

displacements in Y and Z directions because of the small sag resulting from the static analysis 

where the cable weight was considered. The experimental results show generally a good agreement 
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with the finite element results and are given in all Figures as single data points at the ¼ and ½ span 

length locations. For the primary motion ( W ), the experimental results were 4.10% higher at the 

¼ span sensor location, and lower by 25% for U  and higher by 35.3% for V at the mid-span 

location. The maximum amplitude magnitudes in these two directions are very small (0.0009 and 

0.057) compared to the peak value at mid-span. Nevertheless, these values are non-zero and are 

consistent in both magnitude and modal behavior between finite element and experimental 

evidence.  

 

Fig. 3.5 The out-of-plane modal shapes displacements for Cable 1 versus sag values 
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The effect of sag is significant for the symmetric in-plane modes and it is shown in Fig. 3.6 

and Fig. 3.7 for Cable 1 and Cable 2, respectively. When 
2 is less than, almost equal to, and larger 

than
24 , the cable changes its modal shape as shown in Fig. 3.6. Eq. (3.20) as defined by Irvine 

and Caughey [80] is of fundamental importance in cable vibration. Using the finite element model, 

and the case of 
2 24   (specifically no sag and 4 cm sag), the primary vertical motion ( V ) has 

no internal nodes along the cable span. When 
2 is nearly equal to 

24 , the modal shape also has 

no internal nodes as in the previous case but in addition to this behavior the frequency identifies 

the cross-over point in modal behavior (Table 3.2). In this case the modal component is tangent to 

the static profile of the cable at each support. When 
2 24    the vertical modal plot along the 

cable length has two internal nodes. This behavior coincided with Irvine and Caughey’s theory of 

vibration where they found that the vertical and longitudinal modal shape change behavior with 

the non-dimensional parameter 
2 .  

In addition, here using the finite element model, it is found that the transversal components modal 

shapes also changing behavior. The experimental results support the finite element results in the 

case where d 17.13 cm  and show that there are two internal nodes in both the vertical and 

transverse directions (
2 24   ). In addition, it was found both experimentally and numerically 

that these displacement magnitudes are small when comparing with the primary motion, where the 

maximum amplitudes are 0.026 and 0.0093 scaled displacement units in the longitudinal and 

transverse directions, respectively.  

As the non-dimensional parameter 
2  verses the selected sag values is always less than 

24 for 

Cable 2 (Fig. 3.3), the primary modal shape is consistent for all sag values between 0 and 20 cm. 

And have no integral nodes along the cable span. The coupled longitudinal and transversal 
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components have anti-symmetrical and symmetrical shape. Their displacements magnitude are 

small comparing to the vertical mode results. And results found experimentally are higher by 

approximately 64.74% at quarter-span of the cable.   

 

Fig. 3.6 The symmetric in-plane frequency’s modal shapes displacements for Cable 1 versus sag values 
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Fig. 3.7 The symmetric in-plane frequency’s modal shapes displacements for Cable 2 versus sag values 

 

The anti-symmetric in-plane modes consist of primarily anti-symmetric vertical 

components, symmetric longitudinal components, and anti-symmetric transversal components as 

shown in Fig. 3.8 for Cable 1. The finite element results show that the coupled components in U  

and W  become small as the cables sag values decrease. Conversely, the longitudinal displacement 

increases in magnitude by 79% from 0 to 20 cm. The maximum transverse displacement occurs at 

the quarter span while it is a minimum at mid-span, with an increase of 72% from no sag to 20 cm. 
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It was also found experimentally that the transverse displacement ( W ) is 0.46 for this mode and 

using the finite element model is between 0.077 to 0.372 unit displacements (depending on the 

value of sag). This large level of interaction exists because that the second out-of-plane frequency 

is very close to the first anti-symmetric frequency value, or 2.660 and 2.659 Hz, respectively.     

 

Fig. 3.8 The anti-symmetric in-plane modal shapes displacements for Cable 1 versus sag values 
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The axial modal shapes are shown in Fig. 3.9 for Cable 1. The primarily symmetric 

longitudinal component has an anti-symmetric vertical component and symmetric transverse 

component where the slopes and displacements are zero at the cable mid-span. Both V  and W  

increase with the sag value while W  is two orders of magnitude smaller than U . The frequency 

spectrum changes only slightly with sag. The vertical translation displacement is at a maximum at 

approximately 0.15 and 0.85 of the cable span, where the peak 0.091 displacement was found 

relative to the primary longitudinal displacement occurring at the mid span.  

 

Fig. 3.9 The axial modal shapes displacements for Cable 1 versus sag values 
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For Cable 1 the torsional mode shapes in Fig. 3.10 show that the rotational displacements 

are at a maximum at the support locations in all three directions. The coupled motions in the 

vertical and transversal increases with the sag values. The vertical rotation displacement magnitude 

Y  is higher than the transversal rotation 
Z , with symmetric and anti-symmetric components, 

respectively. It was found that rotation displacements at the cable supports increase in the vertical 

direction by 78% and 92% for the transversal direction. 

 

Fig. 3.10 The torsional modal shapes displacements for Cable 1 versus sag values 
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3.8  Conclusion  

The dynamic motion of uniform sagged cable line supported at the same level model is 

described in three-dimensional showing the interaction between longitudinal, transversal, and 

vertical translations and rotations. The finite element model considered the torsion effect and sag 

configuration using six degrees of freedom. Based on the results of this work and supported by 

results from large scale experimental tests, the preliminary conclusions can be listed as: 

1. The analytical solution used to find the natural frequencies is limited, where only the 

axial characteristic is considered, and the full coupling interactions between different 

cable coordinate directions are not described. The finite element model proposed here 

has the advantage of calculating the axial and torsional besides the out-of-plane, 

symmetric in-plane, and anti-symmetric in-plane frequencies, in addition to find the 

modal shapes of each showing the coupling interactions between the translation and 

rotation displacements in the three-dimensions.  

2. For cable 1 and 2 used in this work, the out-of-plane, symmetric in-plane, and anti-

symmetric in-plane frequencies predicted using the three-dimensional finite element 

model are within an excellent agreement (less than 0.1%)  with the results of the 

analytical solution and the results obtained experimentally where the tests repeated 

multiple times for each configuration using accelerations trackers at two points on the 

cable span.  

3. The non-dimensional parameter 
2 effect was studied using a range of sag values and 

showed that it greatly impacted the symmetric in-plane mode shapes. The cross-over 

phenomena in the frequencies were observed using the finite element model. In 

addition, the modal shape nature changes when 
2  is less, almost equal, and larger than 



56 

 

24  not only in the vertical and the longitudinal modes (similar to modes found using 

the analytical solution) but also in the transversal modes. The experimental for the 

symmetric in-plane modes for cable with 
2 24     agree fairly well with the 

normalized ratio predicted using the finite element model where the two nodal points 

were recorded.  

4. The modal shapes were also studied using the finite element model for the out-of-plane 

and anti-symmetric motion. And it showed that besides the primary motion (transversal 

or vertical) there is coupling motion in the other two translation directions which has 

been ignored in the literature. The experimental results obtained for the out-of-plane 

mode showed that the coupled displacements are small compare to the primary 

transversal motion, 0.0009 and 0.057 unit displacements for U  and V . However, it 

was verified that there was an interaction even for tight cable (no sag) due to the very 

small sag generated after the static solution.   

5. The large interaction were observed in the anti-symmetric mode. Where numerically 

and experimentally the transversal displacement W  was approximately 30-46% of the 

primary ant-symmetric vertical motion because it was found that the second out-of-

plane frequency is very close to the first anti-symmetric frequency.   

6. The axial and torsional frequencies values were consistent with sag variation. However, 

the modal shapes were influenced by increasing the sag values. The symmetric 

longitudinal translation mode is coupled with the anti-symmetric vertical and 

transversal components. The rotation longitudinal torsional mode is coupled with 

symmetric vertical and anti-symmetric transversal components that are maximum at 
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the supports. For both axial and torsional, the associated coupled motions increased 

with sag increasing.  

It can be said that the results arising from the models having six degrees of freedom suggest 

that it is essential to employ the three-dimensional model to have a more reliable prediction of the 

dynamic behavior. More importantly, the proposed finite element model can be used as a useful 

design tool because of its good computational efficiency.  
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CHAPTER 4: EXPERIMENTAL INVESTIGATION OF CABLE VIBRATION DAMPING   

4.1  Summary 

Cables are flexible structures that are prone to vibration because of their low inherent 

damping characteristics. In order to mitigate their vibrations, an understanding of the internal 

damping and influence of support type is a must. The dynamics of axially loaded horizontal sagged 

cables is studied experimentally. First the dynamic behavior of cables in undamped free vibration 

is investigated. The main mechanical characteristics, natural frequencies and damping ratios are 

quantified and identified using the time histories recorded by a sensor mounted on two types of 

cables, twisted metal and untwisted plastic. The results are obtained using large scale-experiments 

where harmonic time-varying support is employed. Two boundary conditions are tested, a rigid 

support and damper that is horizontally oriented. Overall, the experimental results highlight the 

fundamental characteristics of cable damping and energy dispassion using different boundary 

conditions. Results showed that the installation of damper in the support reduces the in-plane cable 

vibration. 

4.2  Introduction 

Cables are widely used structural elements in many engineering applications. 

Understanding the cable dynamic behavior and characterization of damping is still attract the 

scientific community. This kind of structure is subjected to many environmental excitations, for 

example, wind, rain, and ice. And since it is flexible and has low inherent internal damping, it is 

susceptible to vibrate easily. These can result in premature cable or connections failure and/or 

break, correction, and cable life reduction. In addition, cable vibrations have an effect on public 

confidence in the cable structure's safety. Specifically, the transmission line showed a significant 
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vibration problem which caused by vortex shedding, wake-induced vibration, and galloping [131]. 

Therefore, energy dissipation is very important when considering the dynamic cable behavior.   

As damping properties, understanding and measuring are very significant and critical for 

such a flexible structure. It is incorporated in many existing and new models in various ways. That 

reflects the numerous physical mechanisms that is associated with damping, contributing to the 

energy dissipation of cables. In 1949, Yu [132] started the investigation on internal damping. He 

noted the hysterics characteristic of internal damping of cables and defined paths as the space 

curves of the cable. The results indicated that only 5% of the energy dissipation was caused by the 

solid internal friction and the rest is caused by the friction between the wires. The experiment 

results showed that an increase in damping is correlated with using a shorter lay length. This model 

had no sag, constant bending stiffness assumptions, and friction due only to linear proportional to 

tension, and constant damping independent of tension both are due to the interaction between wires 

[133]. This model provided an excellent starting point in cable damping investigation for small 

amplitude.  

Many earlier models included damping analytically or using closed form solutions by 

employing several simple assumptions. The most complex assumption is the interwire friction 

occurring at the interface of cable wires. In order to simplify it, researchers analyzed the model 

either with no-slip friction or fully-slip friction. Machida and Durelli [13], Knapp [14], and Kumar 

and Cochran [22] neglected interwire friction in studying cable damping. Claren and Diana 

[134,135] investigated the internal friction of strands by introducing a slippage coefficient. No 

further work in formulating the this coefficient and internal damping of cables was provided [136]. 

The energy dissipation in multi-layered strand was studied by Hobbs and Raoof [38], where the 

cable assumed to have layers of orthotropic cylindrical sheets. The integration of cable damping 
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contact forces is challenging, to overcome this issue, one type of contact is used; core-outer wire 

contact is considered and friction is either neglected or assumed as constant. For an instant, Sathikh 

[31] studied the six-stranded cables’ interwire friction and only considered the core-wire contact.  

 As the huge increase in cables use in 1990’s, the interest in damping mechanisms 

investigation increased with a desire to find ways for vibration mitigation. Otrin and Boltežar [137] 

stated that air resistance, internal material damping, and friction caused by the interwar motion 

were all the mechanism which caused the loss in the energy of cable vibrations. Viscous and 

structural damping modes were used to quantify these losses. The linear proportional damping 

models were and are used due to their simplicity, where the damping is proportional to the rate 

change of the displacement. These models can be used when modeling the air resistance when the 

cable is vibrating in air. However, the internal damping, as well as the friction effects, are not 

included and captured in the analysis.  

 As the purpose of damping models is to determine and quantify the loss in energy 

physically, it is essential to understand the factors that cause these losses. The available damping 

models can be categorized to three major categories depending in their mechanisms; friction 

between the individual wires which modeled using interwire friction, changes in geometry and 

properties of the cable which modeled as bending stiffness variable, and internal friction within 

the wires which modeled with internal damping [133]. Usually, the damping value is reported as 

log decrement, energy dissipated ratio to energy stored, or as a percent of critical damping called 

damping ratio.  

Further, many researchers have studies applying different assumptions and factors and 

studying their effect on cable damping using analytical, experiment, or simulation using finite 
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element method. Hard and Holben [138] studied the internal damping (self-damping) of tensioned 

cable, and found that the cable length has no effect on the cable damping, however, the tension 

effect on the cable is significant; damping decreases as the tension increases [136]. Huang and 

Vinogradov [139] presented a modal where the inter-wire slip and its influence is taken into 

consideration in the dynamic behavior analysis. Yamaguchi and Adhikari [140] analytically 

studied the modal damping characteristics of single structure cable. The energy-based of modal 

damping was used as the ratio of the modal strain energy to the total potential energy. Michel et 

al. [66] studied the frictional damping properties of the simple straight strand under axial load 

using the finite element method. Wei et al.  [141,142] used resonance technique to calculate the 

optical fiber cables damping, their conclusion was that the cable damping first decreases as length 

increase and then reach a stable value at a certain point. For the free and forced response of 

untwisted cable the dynamic characteristics were analyzed by Yamaguchi et al. [143], their system 

had two identical structural sagged cable in parallel connected by another sagged cross cable, for 

that the damping was characterized using an energy-based method.  

Barbieri et al. [144] established a procedure to identify the damping of untwisted cables in 

order to estimate in a simple way the system damping matrix. This procedure is based on 

experimental and simulated data. Barbieri [145] designed a noncontact testing for cable vibration, 

their results stated that cable damping decreases as length and tension increases [136]. Using the 

wavelet transform approach Casciati et al. [146] found the natural frequencies and damping by 

introducing a nonlinear finite element model for steel cable wrapped with shape memory alloy 

wires. Faravelli et al. [147] investigated the mitigation of cable vibration using shape memory 

alloy and used open-loop actuation and investigate the nonlinear damping of a shape memory 

alloy, they were able to avoid the nuances and closed-loop control complexity. Maji and Qiu [148] 
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provide results for several tests done on steel and carbon fiber cable under tensile forced, the 

natural frequency and modal damping ratio were determined. It should be mentioned that these 

tests were done for straight tight cables with a very small cross-section. In addition, strand cable 

was analyzed by Jiang et al. [64] using a concise finite element model where local contact, friction, 

plasticity of the material, as well as load combination effects were taken into account.  

Maji and Qiu [136] studied the damping properties of straight carbon fiber cable using 

simple experiments and a basic finite element model and stated that even though that many 

researchers have studied cable damping, the internal damping mechanism of cable still has not 

been fully understood. In addition, all this work enriched the behavior understanding of cable 

damping, however, the apparent contradiction indicates that it still needs more study. Some of 

them provided different conclusions on the cable length dependency for cable damping, and that 

might be the result of using different testing purposes and conditions [136].  

A recent survey done by Spak et al. [133] on cable dynamics stated that to capture the 

realistic behavior of helical cables; damping through the inclusion of friction forces, viscoelastic 

shear effect, or damping stiffness should be included in cable curvature and wire properties as a 

function. In addition, in practice, when the internal damping is insufficient to reduce the levels of 

vibration, Stockbridge-type vibration absorbers are commonly used. In the transmission lines case, 

Stockbridge dampers dissipate the mechanical energy in wire cables. Therefore, Barbieri et al. 

[149] done an experiment to study the dynamic of new cables with and without using Stockbridge 

dampers and compare it with one-dimensional linear and nonlinear finite element model.  

In order to reduce the problematic vibration in cables, dampers are usually used near the 

fixed supports. Many studies have been conducted to understand the dynamics behavior with the 
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use of different types of dampers and mostly on taut cables. Lazar et al. [150] stated that there are 

limitation to the effectiveness of the use if dampers (such as Stockbridge) as they are mounted on 

the cables due to the installation is restricted to be close to the end of the cable.  

Many of the previous experimental studies for cable damping are limited due to the simple 

setup or small scale testes, cable geometry, or boundary conditions. Moreover, it was shown that 

changing the cables design is not expected to significantly improve its damping [66]. In this work, 

the authors use a large-scale experimental work is in order to identify the internal damping of two 

types of horizontal cables and their motion under using different types of support, with and without 

damper. The study is applied into two cables, one is a twisted metal cable and, the other is 

untwisted isotropic plastic cable. Several conclusions are drawn from the time history data 

obtained using sensors at mid-span of cables experimentally. 

4.3  Experimental Model Setup 

The main objective of this work is to analyze the dynamic behavior of two types of cables 

focusing on finding the damping characteristics and the different associated motions. That is done 

in order to understand the behavior of cables undergoing vibrations which is essential to 

comprehend how the cables will respond to other more excitation. To achieve that, a procedure is 

used based on experimental work obtained by dynamic tests. In designing the experimental 

apparatus, a number of challenging tasks had to be resolved which results in having a reliable 

investigation system for such a flexible structure. The overview of the experimental setup is 

presented in Fig. 4.1. The large two beams give the system stability where the two columns are 

fixed vertically.  
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The basic components of the cable testing system are schematically displayed in Fig. 4.2 

with end support details. The two-column supports are at the same level and used to pass the ends 

of the cable and then clamped using a c-clamp. Each cable, first, fixed to the left clamp above the 

actuator and then the right support clamp where it is initially not tightened (until reaching the sag 

value and tension force required). Two conditions are used in the right support, one, the cable 

passes the rigid column and then tightened. The second, when the cable is fixed to the c-clamp that 

is attached to the air dashpot in Fig. 4.3 [151]. The dashpot is oriented horizontally. These are used 

to maintain the applied tension force through the tests.  

 

Fig. 4.1 Experimental setup where cable is hanging horizontally 
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Fig. 4.2 Schematic view of the set with support details 

 

 

 

Fig. 4.3 Air dashpot (damper) used showing attached c-clamp where the cable pass and then tightened 
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It is known when a system is subjected to harmonic excitation, it is forced to vibrate at the 

same frequency as of that excitation. Using this idea the cables of interest are forced to vibrate to 

reach to the resonance and get the largest amplitudes, and then find the damping and motions that 

will be studied. For that, the left end of the cable is supported by A MTS’s 243.20 hydraulic 

actuator [127] in Fig. 4.4 that has a stroke length of 25.4 cm. It is used to apply and simulate a 

harmonically time-varying support motion during the tests that is moving vertically. The actuator 

is driven by a power control unit (MTS 407 controller [128]) as shown in Fig. 4.5 , and this has a 

function generator with a controllable frequency capable of sending the simplest form of periodic 

motion. The other fixed support (column) is a 7.7 m away from the actuator, which is fixed to a 

rigid structure (beam) with precisely the same height.  

 

Fig. 4.4 MTS’s 243.20 hydraulic actuator used 
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Fig. 4.5 MTS 407 controller 

For each configuration, MetaTracker sensor [129] Fig. 4.6 is mounted to the cable at the 

mid-span. The sensor weight is 5.57g, and its dimensions are length 30mm x width: 25mm x 

height: 5mm. And, all the recorded data are sent from the tracker using Bluetooth. This device 

gives the acceleration and angular velocity records in three-dimensions. Before using the 

MetaTrcker to capture the cable motion, it was tested by doing a simple pendulum experiment to 

verify the sensors' results and the data analysis processing with the known analytical method. 
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Fig. 4.6 Sensor mountain on the cable which contains accelerometer and gyroscope [129] 

 

Cable samples used in the experimental work are twisted metal: six-stranded Aluminum 

Conductor Steel Reinforced (ACSR) Fig. 4.7, and a section of clear plastic hollow circular tubing 

and it is untwisted Fig. 4.8. The assumption was made that material are theoretically to be 

homogenous and linearly elastic, a summary of the cables geometry and mechanical properties are 

listed in Table 4.1.  

 

 

Table 4.1 Cable 1 and 2 properties 

Item Cable 1 Cable 2 

Core Cable Radius cR (mm)   2.25 - 

Outer Cable Radius 
wR (mm)  2 - 

Total Area A  2(mm )  91.30 0.576  

Unit Mass m  (kg / m)  0.35 0.20  

Modulus of Elasticity E  (GPa)  74.2 8.27  

Shear Modulus G (GPa)  37.1 4.135 
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Length L (m)  7.7 7.7 

sag d (cm)  17.4 17.4  

 

 

Fig. 4.7 Cable 4.1, Aluminum Conductor Steel Reinforced cable (ACSR) 

 

 

Fig. 4.8 Cable 2, a circular plastic tube 
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4.4  System Identification/Experimental Procedure 

The cables were excited to vibrate using the actuator at one end. The investigation includes 

studying the damping ratios and motions under different scenarios. Therefore, tests were 

conducted under two different boundary conditions for each cable tested.   

The actuator is set to excite the system; using the controller, a set of frequencies is tested 

to force the cable to vibrate at the excitation frequency. If the exciting frequency coincides with 

the natural frequency of the cable resonance, the results are then collected.    

First, the cable is hanging fixed between the rigid support and other support where it is 

fixed to the actuator. For each cable, the out-of-plane and in-plane natural frequency of the cable 

were obtained by recording the frequency from the controller when the peak response was 

observed. The tracker will then record the harmonic vibration of the cables. Then for the same 

frequencies, the same procedure is repeated where the air dashpot is used.  

Second, for the same frequencies used, using the controller, the actuator motion will then 

be suspended, and the sensor records the decay data of the cables.   

Damper are often used near the supports to suppress the problematic vibrations. Even 

through, the mechanics which cause the vibrations are not fully understood, the effectiveness of 

attaching damper close to the supports showed a reduction in the vibration amplitude [152]. 

Therefore, third, left support (actuator) gives a single sine-wave excitation of a fixed amplitude 

(frequency of the first and second scenario). For this, only in-plane displacements is found. Results 

are obtained with and without air dashpot attached. 
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For all scenarios, the acquisition duration for each reading ranges from 10 to 50 seconds, 

and the sampling frequencies for the measured acceleration are
s accelerationf 12.5   Hz and 

s angular velocityf 20    Hz for the angular velocity. For each cable configuration, a set of tests are 

carried out. When only rigid support is used, the tests are repeated 20 times.  

4.5  Data Processing 

The responses data recorded obtained from the MetaTracker are in the form of harmonic 

signals that are digitized to an analog output signal that are sent to a phone using Bluetooth, and 

are post-processed by means of MATLAB. The accuracy of the data gained depends on many 

factors, including imperfection of maintaining the cable tension, disturbance, and trackers 

positioning and other arrangements. These effects are minimized by repeating the tests several 

times which led to the final results presented.  

To facilitate the results, the frequency of each single has to be computed. To do so, the Fast 

Fourier Transform algorithm can be used, which is a fast version of the Discrete Fourier Transform 

by the mathematician J. Fourier (1768-1839), where he showed that periodic motion can be 

represented using a series of sines and cosines [153]. This method transforms the signal, which is 

in the time domain, to frequency domain representation. MATLAB has FFT function which is a 

very effective tool and minimizes the computation time that computes the Discrete Fourier 

Transform for any given signal. The FFT is symmetric when the region between 0 and sampling 

frequencies  s accelerationf   and 
s angular velocityf    are examined, and that adds redundant information. So, 

data between 0.5 s accelerationf  and s accelerationf   as well as 0.5
s angular velocityf   and 

s angular velocityf   is a mirror 

image of data between the first half, so it will be deleted. The maximum frequency found will be 

used in the next step of the analysis. 
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As known, the harmonic motion is represented as a projection on a straight line of a moving 

point on a circle with constant speed, and that can be represented from the results of the 

acceleration from the data obtained by the MetaTracker and then integrate to get the velocity and 

the displacement, and all of which are harmonic using same frequency: 

dataW W sin( t)      (4.1) 

dataW
W cos( t)  


     (4.2) 

data

2

W
W sin( t)  


     (4.3) 

A similar methodology was used for the other dimension in getting the V displacement values.  

MATLAB post-processing code was also used by applying the logarithmic decrement 

method to determine the internal damping ratio of the obtained history signals, the damped free 

oscillation and the internal damping ratios for the considered cables ( 1.0  ), for both the out-of-

plane motion and in-plane symmetric motion. 

4.6  Experimental Results and Discussion  

At the measuring point (mid-span), the spectrum of the signal and time-history responses 

is obtained. Since the process is repeated 20 times for both cables tested for either out-of-plane 

and in-plane motions, for illustration, Fig. 4.9 shows one result example obtained by the sensor for 

a symmetric in-plane motion (the results are normalized to the peak motion). The vertical dash line 

represents where the actuator motion was suspended. From that, the frequency is found using FFT 

(from motion before the line), and the damping ratio found using the logarithmic decrement 

method (from motion after the line) using the given harmonic motion.  
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Fig. 4.9 Cables non-dimensional displacements at mid-span before and after actuator motion 

 

Cable 1 and 2 out-of-plane and in-plane frequencies are shown in Table 4.2, that is denoted 

as   and found as f
2





 , are compared with finite element model results from ABAQUS. And, 

the well-known analytical model for sagged cables given by Irvine and Caughey [80] and can be 

computed using  

o

1 H
f

2 m



  (4.4) 

2

i
s

H
f

m


   (4.5) 

Where of is the out-of-plane frequency, 
sf  is the symmetric in-plane frequency, H is the horizontal 

component of the cable tension, m  is the mass per unit length, and i  value can be found from a 

transcendental equation [80]. From that, the natural frequencies found experimentally have an 

excellent agreement with the ABAQUS and analytical results. The out-of-plane and the symmetric 
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in-plane frequencies are within approximately 0.95% and 1.95% error, respectively, for both 

cables.  

Table 4.2 The natural frequencies for Cable 1 and 2 using different approaches 

 Cable 1 Cable 2 

 

Irvine 

and 

Caughey 

ABAQUS 

 

Experiment 

(Median) 

 

Irvine 

and 

Caughey 

ABAQUS 

 

Experiment 

(Median) 

 

Out-of-

Plane 

of (Hz)  
1.329 1.328 1.329 0.838 0.837 0.830 

Symmetric 

In-plane 

sf (Hz)  
3.791 3.750 3.825 1.505 1.495 1.500 

 

 For both cables, the logarithmic decrement method was used to analyze the signal history 

results obtained using the sensor. The damping ratios for out-of-plan and symmetric in-plane 

motion for 20 tests for cable 1 and 2 are shown in Fig. 4.10 and Fig. 4.11. From that, the median 

of the samples is used and presented in Table 4.3. From that, the damping ratio for cable 1 is 

smaller by 61.7% and 77% for the out-of-plane and symmetric in-plane motion of cable 2. This 

large percentage is present due to the difference in materials and geometry of the cables tested.  
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Fig. 4.10 Damping ratios for Cable 1 and 2 undergo out-of-plane motion 

 

Fig. 4.11 Damping ratios for Cable 1 and 2 undergo symmetric in-plane motion 

 

Table 4.3 The damping ratios median values for Cable 1 and 2 found experimentally 
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 Cable 1 Cable 2 

Out-of-Plane   0.0086 0.0225 

Symmetric In-Plane   0.0132 0.0576 

 

 Using these frequencies and damping ratios results, for illustration, the free vibration 

responses (out-of-plane and symmetric in-plane) of Cable 1 and 2 are presented in Fig. 4.12 and 

Fig. 4.13. For simplification, the underdamped vibration (since 1.0  ), one-degree of freedom 

equation is used [130] 

of t o 0
0 o d o d

o d

f W
W(t) e (W cos(f t) sin(f t)

f


 




    (4.6) 

Where o df  is the out-of-plane damped frequency, and the initial transversal is 
0W  , and it was 

given a value of one. Similarly, the vertical displacements V  were also found. 

 

Fig. 4.12 Underdamped transverse free vibration of Cable 1 and 2 
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Fig. 4.13 Underdamped vertical free vibration of Cable 1 and 2 

 

The symmetric in-plane motion was captured for Cable 1 and 2 using a single sine wave 

excitation with and without the horizontal air dashpot damper. Figure 4.14 and 4.15 shows the 

motions, and it can be seen that the peak value decreases by 27% and 20% when the damper is 

used for cable 1 and 2, respectively. As expected, Cable 2 displacements quickly dissipated since 

the damping value is large comparing to Cable 1 (Table 4.3).  



78 

 

 

Fig. 4.14 Comparison of the peak motion results from single sing wave for Cable 1 with and without using air 

dashpot damper 

 

Fig. 4.15 Comparison of the peak motion results from single sing wave for Cable 2 with and without using air 

dashpot damper 

4.7  Conclusion   

The free vibration and mitigation of horizontal sagged cables have been investigated 

experimentally using large-scale dynamic tests. Different boundary conditions were examined to 

study the cable motion response. Time history data obtained using a sensor showed that the internal 
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damping ratio for out-of-plane and in-plane heavily deepened on the geometry and material of the 

cable.  The experimental tests captured the cable vibration with and without an air dashpot damper. 

Results demonstrated that the installation of the damper in the cable support decreases cable 

motion. For instant, the reduction in the in-plane displacements motion was found to be 27% when 

the damper was used.  
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CHAPTER 5: MODAL DYNAMICS OF TWISTED CABLES  

5.1  Summary 

Understanding the dynamic behavior of twisted cables is of great interest became of the 

wide increase in their uses in various applications. In this work, an efficient numerical procedure 

is presented to generate the primary elastic stiffness coefficients using elasticity theory where the 

three-dimensional cable is reduced to a one-dimensional model. The cables are then subjected to 

axial loads in three-dimensional space. The model gives stiffness coefficients that are in good 

agreement with seven known analytical models for angles below the maximum lay angle of the 

cable. The free vibration behavior of these cables is then analyzed using a finite element model, 

where the ends of the sagged cable are fixed at the same level. The natural frequencies and modal 

shapes are also found using extensive experimental tests. The frequency spectrum and the six 

translations and rotations are analyzed and compared with existing analytical solutions and 

commercial finite element results. Three practical examples are used to demonstrate the validity 

and applicability of the finite element and experimental models, for twisted and untwisted cables. 

The results show that cable elasticity, twist coupling and initial sag play a considerable role in the 

modal coupling behavior. The results also suggest that some simplified models may not be 

adequate to fully understand the dynamic behavior of twisted cables.  

5.2  Introduction  

Cable structures have been widely used in a large variety of tensile structures including 

cable-supported bridges, large-span roofs, marine and offshore structures, guy lines for towers, 

and power supply lines. This is in large part a use of their capability of transmitting force, carrying 

payloads, and conducting signals as well as their aesthetic appearance. An increased interest in 

cables has required a more thorough and detailed investigation of cable mechanics. One significant 
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characteristic of twisted cables is that their static response is coupled. This means that when a cable 

has a twist along its length, it exhibits coupled extensional-torsional behavior. When an axial load 

is in action the cable undergoes simultaneous extensional and rotational displacements. Similarly 

when torque is applied, both rotational and extensional displacements exist. This behavior has a 

critical impact on the cable's dynamic response but it has received relatively little attention. The 

full effect of twist on the coupling between extensional-torsional behavior on longitudinal, vertical, 

and transverse motion has to be fully studied. In general, six types of waves will propagate through 

the cable. Three characterize the extensional-compressive deformation and the other describe 

primary torsional deformation. However, the interaction and superposition of these modal 

deformations will make the overall cable dynamics quite complicated. 

Many reports in the literature have been devoted to working on characterizing the helical 

nature of cable and the static response to different loading scenarios. The analysis has frequently 

been performed by modeling the cable as a perfectly flexible element, primarily reacting only to 

axial forces. However, it is becoming increasingly necessary to consider additional stiffness 

contributions to totally represent the cable’s important features. Cable analysis can be subdivided 

into mechanical models that describe the wires inside the cable into either discrete which is based 

on modeling wires individually as thin rod or curved beams, or semi-homogenization formulations 

which is a method based on replacing the wire layers with equivalent elastic continuum which 

presented as a thin orthotropic cylinder. The early theoretical work on the mechanical behavior of 

cable appeared in the 1950s by  Hruska [8,9]. Machida and Durelli [13] investigated the bending 

and torsional effect on the stiffness matrix of the outer wires. The bending and twisting effects 

were included but the symmetry of the stiffness matrix derived was lost. Knapp [10] extended the 
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Hruska [8,9] model for a rigid core and McConnell and Zemke [11] included the torsion stiffness 

effect of the outer wires.  

More sophisticated analytical models have been based on beam theory, including different 

assumptions about geometry and wire contact. Costello and Phillips [15] and Huang [16] presented 

basic strand models along with Velinsky [18] and Phillips and Costello [19] where the internal 

wire rope was included. Costello [20] presented a linear theory that included the effect of curvature 

and twist. Kumar and Cochran [22] extended this theory that resulted in a closed-form expression 

for the stiffness matrix terms, but stiffness matrix symmetry was again lost. Jolicoeur and Cardou 

[26] compared the results of the mechanical response for a single straight rope which was 

predicated by the Costello and Phillips [15] model with the simple model provided by Hruska 

[8,9], This comparison showed that the fiber model was not appropriate and that both twisting 

moment and angle have to be taken into account. Costello and Phillips [15] showed a good 

prediction with the experimental results of Utting and Jones [23,24], who introduced a model that 

included contact deformation (which also called wire flattening) and friction effects. Labrosse [27] 

presented an analytical method that predicted the overall behavior of a simple straight wire 

subjected to tension, bending and torsion. This model excluded the Poisson’s ratio and included 

the motion between the core and the wires where the latter were considered as curved beams. Using 

discrete thin rod theory, additional studies were completed by Sathikh et al. [154], and more 

recently by Argatov [32] proposing a better formulation that considered the contraction between 

the outer wires and the core wire.  

A second class of method, which is usually called homogenization, was used and 

introduced a semi-continuous model. Hobbs and Raoof [38] used this approach for multilayered 

cables where each layer was modeled as an equivalent orthotropic sheet. This methodology was 
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extended and expanded by Hobbs and Raoof [38], Raoof [39], [40], Raoof [41], Raoof and 

Kraincanic [42], and Mohammed and Ivana [43]. Raoof and Kraincanic [106] stated after 

comparing the semi-continuous models and the thin rod models analysis of cable that the thin rod 

theory was more reliable when the wire strand diameter was small or for one or few layers of 

external wires. Semi-continuous models are especially advantageous when the cable is made with 

a large number of wires [45]. 

Many previous formulations take changes in cable geometry into account by stating the 

mechanical problem in a non-linear geometric framing and then linearizing the results. However, 

this usually results in a non-symmetric stiffness matrix that violates Betti’s reciprocal theorem. 

Karathanasopoulos and Kress [35] addressed this and found a symmetric matrix by proposing a 

model to study the response of helical rods under axial-torsional loads where radial contraction 

was included. In this model the formulation of the radial strain was considered as an external load 

(Poisson and flattening effects were not induced). Karathanasopoulos et al. [36] used this model 

to study the effect of thermal loads on braided conductors. Foti and Martinelli [155] developed a 

model to evaluate the axial-torsional response of a single layered strand considering the 

deformability of the internal contact surfaces and derived a symmetric stiffness matrix. 

In studying the vibration of cables, the literature has demonstrated that as more complex 

theories of cable stuffiness take more factors into consideration to derive the governing equations 

of motion, these become more complex and obtaining exact analytical solutions can be 

challenging. The use of numerical methods allows a more feasible calculation of natural 

frequencies and mode shapes. The interesting problem of how extension, torsion, and bending 

deformations interacting in twisted cables, as well as the problem of how resonance occurs, 

remains largely unsolved [156]. The dynamics of untwisted cables has a long and very rich history, 
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which has been documented by Irvine and Caughey [80], who also did remarkable work in 

developing a novel linear theory for the free vibration of uniform untwisted cables in both out-of-

plane and in-plane motion. Many early models including Irvine and Caughey studied only axial 

loading and ignored the torsional displacements associated with cable dynamics.  

Samras et al. [101] initiated  studies of coupling and emphasized the importance of taking 

the coupled extensional-torsional behavior into account. The interaction between transversal (out-

of-plane), vertical (in-plane), and torsional motions for sagged cables has been studied for 

untwisted cables using a number of simplified theories. Nigol and Power [89] and Desai et al. [90] 

described the coupling between vertical motion and torsion. Jones [91] studied the coupled vertical 

and horizontal motion, and Yu [88,93] proposed analysis methods for the longitudinal, vertical, 

and torsional coupling. Rega [116,117] and Thai and Kim [124] discussed the main features and 

problems associated with the nonlinear vibration analysis suspended cables. Alkharisi and 

Heyliger [157] found the effective mass and stiffness components for coupled cables using 

constants that are derived from three-dimensional elasticity. These were used to study vibration 

behavior with both analytical and finite element models for homogenous and composite cable 

geometries. 

Dynamic experiments on horizontal sagged cables (untwisted) subjected to harmonic time-

varying support are limited in the literature besides the large amount of the numerical 

investigations. Among these experiments, Perkins [118] model, who stated that the investigations 

of nonlinear dynamics of cables are largely unsubstantiated by experimental results, therefore, 

presented a two-degrees of freedom analytical model that agreed with experimental results for 

which varying support motion amplitude lead to non-planar internal resonance. Koh and Rong 

[158] accounted for three translation displacement motions where a quantitative agreement for 
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numerical and experimental results are found as regards the dynamic tension of non-resonant 

cable. 

Although twisted cables have been used as structural members for a long time, the 

theoretical and experimental work completed to analyze and understand their dynamic behavior 

has fallen behind their applications when comparing with other studies on commonly used 

members. In this work, a finite element cable model using stiffness coefficients derived from 

elastic theory is presented and compared with experimental results. Several dynamic tests were 

completed to accurately predict and measure the dynamic motion and resonances considering the 

free vibration analysis with a focus on the coupled extensional and torsional actions in the three-

dimensions. In addition, the coupling levels are quantified for three different types of twisted and 

untwisted cables and the effects of lay angles and sag variation on the cable dynamics are studied.  

5.3  Mechanics of Twisted Cables  

Attention in this paper is confined to finding the natural frequencies and corresponding 

mode shapes of twisted cables, both numerically and experimentally, that are mainly a function of 

the mass and the stiffness of the cable. The mechanics of the twisted cables will be incorporated 

thoroughly to represent an accurate model of the underlying physics. Because the primary source 

of nonlinear behavior of the cable is the initial geometric stretch prior to dynamic analysis and 

other combined effects, the helical geometry and sag of the twisted cable make the problem more 

complicated. The cable can be a complex geometrical structure composed of many individual 

wires, and the goal of this model is to capture the dominant behavior without making the model 

unnecessary complex. 

5.3.1  Geometry  
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For twisted cables, the focus here will be to investigate so-called six-stranded cables, which 

usually have a straight core wire surrounded by a layer of similar outer wires. These wires are laid 

at an angle which is known as the lay angle  . These angles are used to quantify the amount of 

twist that the layered cables possess around the core (defined using Cartesian basis) as shown in 

Fig. 5.1. The discrete model is better suited for simple geometries than the homogenous models 

and used during the analysis of the present study.  

 

Fig. 5.1 Geometry of the strand with a single layer 

The wire geometry in Fig 5.2 can be described using a curvilinear system shown to 

characterize the vector R(s)  defined using Cartesian basis X,Y,Z  (following Lee [3]) as: 

h

h

R cos

R(s) R cos

b

 
   
  

        (5.1) 

Where, 
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s
 


 , 

2 2a b    , b a tan        (5.2) 

 

Fig. 5.2 Helix geometry of an individual wire 

In the equations above, hR  represents the helix radius, b  is the helix rise along the central 

Cartesian axis X , and   is the helix curvilinear length per unit angular . In Eq. (5.2), b is related 

to the helix radius through the tangent of the angle , where the core helix cross-section radius is 

wR . The helix curvature   and tortuosity   are defined as:  

h

2

R
 


 , 

2

b
 


       (5.3) 
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The length of the curvilinear helix s of non-unit angular evolution   and its projection on the X

axis, defined as h , are both related to hR  and   by the relations:  

h ssin   , 
hR scos       (5.4) 

The pitch length, which is denoted by P when the six-stranded cable is straight (with no sag), can 

be found using the expression 

h2 R
P

tan





       (5.5) 

Where 

h c wR R R       (5.6) 

The wires centerline is a helical curve of radius hR , where cR is the core radius, and 
wR is the 

radius of the wire.   

It is essential to know the maximum lay angles of the cables used in this study since this value will 

influence overall cable behavior. This can be found using [155]:  

2

w
max 01 2

0 c

tan ( )
2R2 6arccos , 1

(1 ) 1 2R

  
 

     
  

 
 

    (5.7) 

The next step in this analysis is to represent the kinematic response of a cable cross-section 

in a three-dimensional elasticity context to find the effective one-dimensional stiffness 

coefficients. A small length of the twisted cable is described by a single layer of three-dimensional 

continuum elements, where the element length h  is chosen so that it is always 10% less than the 
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cable's pitch length. Once the cable domain is cut at a certain length, the front face local coordinates 

(i.e., how this face rotates around its center) must be calculated using the geometries properties of 

the twisting cable, these nodes now at the cut have different angle than the original lay angle, 

therefore identifying where the nodes located is essential for applying boundary conditions. To 

compute this transformed lay angle, the following equation can be used 

e

360

P
( )
h

   (5.8) 

additional details about cables construction and topology can be found in Feyrer [7], while insight 

into the geometries modeling of the helical assemblies has been provided by Lee [3].  

5.3.2  Finite Element Modeling Basis  
 

The governing differential equations of equilibrium in a Cartesian coordinate system of 

plan elasticity for a hexahedron shapes. It can be expressed in indicial form as: 

ij, j if 0     (5.9) 

Where 
ij, j are the component of stress, and if  are the body force vector components in X , Y , 

and Z  directions. For small displacements, the strain-displacements relations are represented as: 

ij i, j j,i

1
(u u )

2
     (5.10) 

The generalized Hooke’s law can be used as the constitutive relation using the elastic stiffness 

tensor 
ijklC  components (function of the properties of individual wires) in Eq. (5.11): 

ij ijkl klC    (5.11) 
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Regardless of how many layers or shapes are considered, the design of helical, straight 

cables includes coupling between extensional and torsional forces and displacements. This 

relationship can be represented, in matrix form, while undergoing static axial deformation as:  

                      
X,XX

X,XX

uk kF

k kM

 

 

   
          

  (5.12) 

Here 
XF is the axial force, XM is the axial twisting moment, 

X,Xu is the axial strain, 
X,X is the twist 

per unit length, k  is the axial stiffness, k  and k  are the coupling stiffnesses (these are equal to 

zero in case of the untwisted cable) and k is the torsional stiffness. These are all effective one-

dimensional relations, and these must be a transition between the three-dimensional behavior of 

the cable and the effective one-dimensional relation shown in Eq. (5.12). 

Linear three-dimensional elasticity elements represented as hexahedral solids are used in 

the finite element analysis to predict the mechanical behavior of six-stranded straight wire. Each 

node in the hexahedron element has three degrees of freedom in the X , Y , and Z  directions as 

displacements ( u ), ( v ), and ( w ), respectively. To find the overall mechanical behavior of six-

stranded cables represented in the stiffness coefficients in Eq. (5.12), two sets of boundary 

conditions are sequentially imposed: 1) at one end, all nodal displacements in X , Y , and Z  

directions are prescribed to be zero, meaning this face is fully clamped. At the other end of the 

control segment, a unit displacement is imposed in the axial direction ( u 1 ), which all other 

displacements are set to zero. From this condition, k   and k  can be computed from the total 

forces and moments required to hold this deformation. Then, 2) at one end, all node displacements 

are set to be zero, and on the other face nodal displacements in the Y  and Z  directions, are 

imposed to represent a unit rotation while the displacement in the X  direction is set to zero. From 
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this configuration, k   and k  are found from the total forces and moments. The coupling terms 

in the stiffness matrix should be symmetric to satisfy the Maxwell Betti reciprocal theorem. In 

many of the methods used to derive these measures, unequal values are obtained and are then 

averaged. In this work, using this method, the discrepancies in the coupled terms were found less 

than 4% different. 

The mass matrix for the one-dimensional model, where the kinetic energy terms are 

represented, can be expressed as the 2 2  matrix  

 
m m

M
m m

 

 

 
  
 

  (5.13) 

Where  

 

V

m dV      (5.14) 

2

V

m r dV     (5.15) 

   

These terms depend on the pointwise mass density  , r  is the distance from the polar origin of 

the six-stranded wire to any arbitrary location in the cable cross-section, and V is the total volume 

of the control volume segment of the cable. The off-diagonal elements of the mass matrix are zero.  

To evaluate the validity of the present approach, the stiffness coefficients and their 

numerical convergence for the twisted cable were compared with analytical models available. The 

models of Hruska [8,9], Machida and Durelli [13], Knapp [10], McConnell and Zemke [11], 

Kumar and Cochran  [22], Labrosse [27], and Sathikh et al. [154] were each applied to the present 
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geometry and compared with the three-dimensional elasticity approach proposed here. The 

comparisons are very good and are shown in a later section.  

5.4  Free Vibration Analysis  

Four approaches are used in this paper to find the natural frequencies and the corresponding 

modal shapes for untwisted and twisted sagged cables where the supports are fixed at the same 

level. The first involves the one-dimensional finite element model that uses the effective mass and 

stiffness described in the previous section. The second approach uses the standard commercial 

finite element program ABAQUS [159]. The third approach uses the limited analytical solutions 

available in the literature. The fourth is a sequence of experimental tests. Each of these are 

described below.    

5.4.1  Finite Element Model  
 

The sagged cable is represented using n  nodal points. Each node has six degrees of 

freedom in the three-dimension as shown in Fig 5.3. The stiffnesses and mass coefficients derived 

in section 5.3 are represented in the global coordinate system domain. The equation of motion is 

derived from the static configuration first determined about the geometrically nonlinear 

equilibrium state using the initial sag value d  and applying the boundary conditions at the ends. 

Since the sag to span is small, the equilibrium shape can be approximated by a parabola [158]. The 

gravity load of the cable is considered in its initial parabola profile configuration. The equilibrium 

expression is discretized over its length using an assembly two-node one-dimensional elements. 

Each element is referred to the global X,Y,Z  axes and the initial intrinsic coordinates, S , as 

presented in Fig. 5.3. The equilibrium state from self-weight is found by iterative solution of the 

resulting nonlinear equations. When the total stiffness is updated and the cable reaches its 
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equilibrium shape, the free vibration analysis is initiated. The natural frequency and modal shapes 

are found by solving the standard linear eigenproblem about the deformed equilibrium state. 

   

X

Y

Z2

t

X

Y

Z

U

U

U
( K M ) 0

 
 
 
     
 
 
  

 (5.16) 

 

Here  tK and  M are the N N  global stiffness and mass matrices of the cable structure, 

respectively, this is formed after employing the standard assembly procedure over all discretized 

elements. The eigenvalue is the natural frequency and denoted as   and found as f
2





 in Hz , 

where 
XU , 

YU , and 
ZU  are the global translations, and 

X , 
Y , and 

Z  are the global rotation 

displacements in the X , Y , and Z  directions, respectively. The external dynamic load has been 

specified to be zero to study the free vibration behavior. The endpoints of the cable correspond to 

pinned-pinned boundary conditions.  
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Fig. 5.3 Characteristics of the cable element: (a) two nodes parabolic and (b) reference cross-section 

The total element stiffness matrix is derived in the global coordinate system directly as 

  e g

tK K K         (5.17) 

Here eK    is the elastic stiffness matrix and gK    is the initial stress (geometric) matrix. The 

elastic stiffness is the modified form of the conventional symmetric truss stiffness matrix that 

includes axial/torsional coupling, where the stiffness coefficients derived in section 5.3 are used. 

The local elastic stiffness contains only the axial, torsional, and coupling stiffness and are defined 

in the local system as 



95 

 

e e e e

e e e e

e

e e e e

e e e e

k k k k
0 0 0 0 0 0 0 0

L L L L

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

k k k k
0 0 0 0 0 0 0 0

L L L L

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
k

k k k k
0 0 0 0 0 0 0 0

L L L L

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

k k k k
0 0 0 0 0 0 0 0

L L L L

0

   

   

   

   

 

 

   
 

 

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (5.18) 

Here
eL  is the new element length after the initial nonlinear static deformation and can be found 

using 

2 2 2

e 2 1 2 1 2 1L (X X ) (Y Y ) (Z Z )       (5.19) 

Here 2X ,
2Y ,and 

2Z , and 
1X , 1Y , and 1Z  are the global coordinates of the nodes at the element 

endpoints.  

 The initial stress stiffness matrix is associated with the forces employed by the stressed 

element associated with the direction changes of the element when displaced into its equilibrium 

state. This can be described in the local coordinate system as 



96 

 

g a

e

I O I O

O O O OF
k

I O I OL

O O O O

 
 
      
 
 

 (5.20) 

Where aF  is the axial force at the beginning of each incremental step reaching its final value at the 

static equilibrium position, and I  is a 3 3 unit matrix and O  is a 3 3 null matrix.  

 Similarly, the mass matrix is discretized over the cable length. The mass terms defined in 

Eq. (14) and (15) and are used and the element mass matrix becomes 

  e

2m I O m I O

O 2m I O m IL
m

m I O 2m I O6

O m I O 2m I

 

 

 

 

 
 
 
 
 
 

  (5.21) 

All matrices defined in this section are then mapped to the global coordinate system using a 

transformation matrix using a procedure similar to typical structural elements. The cable element 

is then oriented in three-dimension using the angles between the local and global coordinate 

system. The undamped free vibration problem in Eq. (5.16) is then solved. 

5.4.2  ABAQUS  
 

All cables studied here were also modeled using a commercial finite element program, 

ABAQUS [159]. The cables were given their initial configuration in the X,Y  plane; however, 

after adding one more node using truss elements to stabilize it (using imaginary elements that have 

very small stiffness value), and solving the nonlinear geometry of the deformed cable, the model 

is shown in Fig. 5.4 as in the case of the finite element model developed in the previous section. 

The sag value under the nonlinear analysis increases due to considering its own weight and the 
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effect of axial stretching The cable will then be in equilibrium in a parabolic shape for solving the 

vibration problem. Only the translation displacements are fixed at the supports since the cable 

element in ABAQUS can only consider axial motion and has lack of ability to model either twist 

or axial-torsional coupling. In this model the cable is assumed to have circular cross-section.  

 

Fig. 5.4 Two-dimensional cable model initial configuration in ABAQUS 

 

5.4.3  Analytical Solutions  
 

Irvine and Caughey [80] have solved for the out-of-plane, symmetric in-plane, and anti-

symmetric in-plane frequencies using  

o

1 H
f

2 m



  (5.22) 

an

2 H
f

2 m



 (5.23) 

2

i
s

H
f

m


   (5.24) 

Here the horizontal component of the cable tension is H , m  is the mass per unit length, and i  

value can be found from a transcendental equation [80].  
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The non-dimensional parameter 
2  has been introduced by Irvine and Caughey [80] in their linear 

theory for cable vibration and is of great used when classifying the type of cable vibration, and can 

be computed using Eq. (5.25) 

 
2 8d L

L Hl / EA

    
 

 (5.25) 

 Here E is the modulus of elasticity, A is the cross-sectional area, and L  is the cable length. And 

l  can be computed using 

2d
l L 1 8( )

L

   
 

 (5.26) 

This non-dimensional parameter 
2  accounts for the geometric and elastic properties of the cable. 

When 
2  is less, equal, and greater than 

24 the symmetric in-plane frequency is lower, equal, and 

higher than the anti-symmetric in-plane frequency, respectively. In this work the sag used is 

d 17.136 cm  which resulted in 
2 24   . It was also been found by Irvine and Caughey [80] 

that when this parameter is large, the symmetric in-plane mode shape will have two internal nodes. 

The axial and torsional frequencies of the proposed finite element model are compared 

with the analytical solution of a straight and solid circular section under axial or torsional vibration 

given by 

a

1 E
f

2L



 (5.27) 

t

1 G
f

2L



  (5.28) 
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Here G is the shear modulus. These frequencies expressions are very special cases of no sag, which 

are outside of the scope of the present work but are given here for comparison.  

5.4.4  Experimental Model  
 

A series of experiments were used to measure the natural frequencies and corresponding 

modal shapes of untwisted and twisted cables. The cable length was fixed at L 7.709 m . An 

MTS 243.20 hydraulic actuator [127] (with a stroke length of 25.4 cm ) has the ability to simulate 

a harmonically time-varying support motion in the vertical direction driven via a power control 

unit (MTS 407 controller [128]). The focus of these tests was on the out-of-plane, symmetric in-

plane, and anti-symmetric in-plane frequencies. The overview of the experimental setup is shown 

in Fig 5.5. The sagged cable is hanging with both ends at the same level.  

For each cable configuration and expected resonant frequency, a total of 20 tests were 

conducted. A MetaTracker sensor [129] was used to obtain the vibration data. This is a mountable 

device that gives the acceleration records, including the acceleration time history signal for 
XU ,

YU , and 
ZU  which are longitudinal, vertical, and transverse motions that are parallel to X,Y,Z

axes, respectively. It also includes a gyroscope which gives the angular velocity time history signal 

in the three-axis 
X ,

Y , and 
Z . Sensors were located at mid-span and the quarter span of the 

cable length for all tests. For finding the out-of-plane, symmetric in-plane, and anti-symmetric in-

plane modes, A total of 180 tests was completed for the three cables tested. For each test, twelve 

data sets were collected (six acceleration and six angular velocity data files retrieved) from the two 

tracker used on the cable. 
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Fig. 5.5 Experimental setup for the sagged untwisted and twisted cables study 

 

For the twisted cables, the actual lay angles actual  used to compare with the numerical 

model given P  were found using  

h
actual

2 R
arctan( )

P


    (5.29) 
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5.5  Applications  

Numerical examples of both untwisted and twisted cables were used to facilitate 

experiments and compare with the developed finite element formulations. Identical material and 

geometrical properties were used for both experiments and simulations. Table 5.1 shows the 

properties for Aluminum Conductor Steel Reinforced (ACSR) and Aluminum Conductor 

Aluminum Reinforced (ACAR) cables denoted as Cables 1E  and 
2E . A section of clear plastic 

hollow circular tubing was used as the sole case of an untwisted cable, and is denoted as 
3E . 

Table 5.1 Twisted and untwisted cables properties 

 Twisted Untwisted 

Item Cable 1E  Cable 
2E  Cable 

3E  

Core Cable radius cR (mm)  2.25 1.25 - 

Outer Cable Radius 
wR (mm)  2 1 - 

Total Area A  2(mm )  91.30 23.75 0.576 

Unit Mass m  (kg / m)  0.35 0.06 0.20 

Modulus of Elasticity E  (GPa)  74.2 69 8.27 

Shear Modulus G (GPa)  37.1 34.5 4.135 

 

5.6  Results and Discussion  

5.6.1  Cable Stiffness  
 

A lay angle of varying value was chosen for all twisted cables. And, the stiffness 

coefficients obtained using the three-dimensional elasticity finite element model for the 

straight twisted cable were examine with the seven one-dimensional analytical solutions 

available. The stiffness coefficients are can be expressed in non-dimensional form as  

2

h

k
k

E R


  
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 (5.30) 

The elastic stiffness matrix coefficient were obtained for each lay angle between 0 and 30 degrees, 

which spaces the usual practical range for cables 1E  and 
2E .   

The axial stiffness k  versus lay angle   for each model of cable 1E  are shown in Fig. 

5.6. The stiffnesses found using the present model possesses the same general trend in decreasing 

as the lay angles increases. Without exception, the present model gives stiffnesses lower than the 

simplified models by between 2-28%. The total magnitude decrease between 0 and 30 degrees is 

about 47%. The maximum lay angle for this particular cable is 22.5 degrees. Results from the one-

dimensional analytical models are nearly coincident except the results from the model of Knapp 

[10], where the compressibility is included, and those of Kumar and Cochran  [22], which is the 

only one-dimensional analytical model that considers Poisson effect.  
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Fig. 5.6 Axial stiffness k for cable 1E (ACSR) versus lay angle   for the present 3D FEM and comparative 

one-dimensional analytical models 

 

The variation of the non-dimensional coupling terms k and k  with lay angle are detailed 

in Fig. 5.7 and Fig. 5.8, respectively. The present model gives results that are slightly higher than 

those provided by most of the one-dimensional models. Among the analytical models, only Hruska 

[8,9], Sathikh et al. [154], and Labrosse [27] lead to a symmetric matrix form. The agreement for 

the present finite element model for lay angles less than 20 degrees is very good with most of the 

different one-dimensional analytical models. The coupling stiffnesses k and k  are within 

approximately 4% of each other for all the lay angles studied in the elasticity model.  
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Fig. 5.7 Coupling stiffness k for cable 1E (ACSR) versus lay angle  for the present 3D FEM and 

comparative one-dimensional analytical models 

 

 

Fig. 5.8 Coupling stiffness k for cable 1E (ACSR) versus lay angle  for the present 3D FEM and 

comparative one-dimensional analytical models 
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 Fig. 5.9 shows the non-dimensional torsional term k  versus lay angle. The original model 

of Hruska [8,9] model gives appreciably lower value than all other models. This is because in 

torsional stiffness the outer wires is neglected in this model. Other than Hruska [8,9] model, the 

present three-dimensional finite element model is within the bounds of the remaining simple one-

dimensional models. In addition, an increase in the lay angle increases the torsional stiffness. For 

the present finite element model, the torsional stiffness magnitude increase by approximately 80% 

between 0 to 30 degrees.  

 

Fig. 5.9 Torsional stiffness k  for cable 1E  (ACSR) versus lay angle  for the present 3D FEM and 

comparative one-dimensional analytical models 

 

 For the twisted cable 
2E  similar trends were found using the present three-dimensional 

finite element model in comparison with the analytical models, with smaller magnitudes of 

stiffness in general compared to cable 1E  because of to its small cross-sectional area and material 
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properties. Table 5.2 shows the non-dimensional axial, coupling, and torsional terms versus lay 

angles between 0 and 30 degrees. For cable 
3E , 4.76E 03 kNk  , 22.19Ek 04 N m   , 

and k k  are zero (the cable deformations are uncoupled).  

Table 5.2 Non-dimensional stiffness coefficients for cable 
2E   

Lay Angle 

(degrees) 
k  k k   k  

0 1.4754 0 0.0501 

5 1.4526 0.0971 0.0601 

10 1.3849 0.1922 0.0848 

15 1.2750 0.2831 0.1228 

20 1.1282 0.3669 0.1722 

25 0.9544 0.4398 0.2283 

30 0.7707 0.4966 0.2888 

 

5.6.2  Cable Dynamics  
 

Using the elements of effective mass and stiffness, the finite element method model and 

experimental approaches were used to find the natural frequency and modal shapes for the fixed-

fixed cable where both the twisted and sag value are included and compared with known results 

for the special case of the untwisted cable. In addition, the undamped free vibration problem was 

also solved for the same cables described in Table 5.1 using both ABAQUS and Irvine and 

Caughey [80] model and straight circular section analytical solutions. Out-of-plane, symmetric in-

plane, anti-symmetric in-plane, axial, and torsional motions were all considered. In addition, the 

actual lay angles actual  for cables 1E  and 
2E were found using Eq. (5.29). For given pitch lengths 

of P  measured of 190 and 110 mm (see Fig. 5.10 for cable 
2E  pitch length), from that the actual 

angles are found to be 8 and 7.32 degrees for cables 1E  and 
2E , respectively.  
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Fig. 5.10 Cable 
2E  (ACAR) pitch length found to be 110 mm from the outer wire takes a full turn around the 

circular core wire 

The computational finite element model was used first to solve the static problem given an 

initial sag ( d 17.136cm ), and was then used to solve the undamped free vibration problem in 

three-dimensions using the final cable configuration where axial stretching and cable weight are 

included. Likewise, in the ABAQUS model, the nonlinear geometry were found first, followed by 

the solution of the vibration problem where torsional stiffness and coupling was not included. The 

eigenproblem for the natural frequencies and corresponding mode shapes were calculated using 

the two-nodded element approximation. Convergence of 4, 8, and 16 elements were tested for 

cables 
3E  (untwisted) with the analytical results, 16 element model showed less than 0.5% error 

(study details are not shown here), therefore, a total of 16 elements were used throughout the 

present finite element model. 

The present finite element frequencies were compared with the analytical solutions, the 

ABAQUS model, and the results obtained experimentally. These comparison are shown in Table 
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5.3 for cable 1E  . The natural frequencies found using the present model have an excellent 

agreement when the 16 elements are used to the cable model. There are differences between the 

finite element and the analytical models solutions for the axial and torsional frequencies, because 

of the actual lay angle of cable 1E  (8 degrees). When the lay angle is equal to zero the axial 

frequency from the finite element results is almost equal to the analytical results, and the torsional 

frequency from the finite element model is 12% lower due to the Poisson ratio effect when 

calculating the torsional stiffness (the 0  results presented later in this section).  

Table 5.3 The natural frequencies for Cable 1E using different approaches 

 Frequency f (Hz)  

 Irvine 
Circular 

Section 
ABAQUS 

 

Experiment 

(Median) 

 

Present Finite 

Element Model 

Out-of-Plane 1.329 - 1.328 1.329 1.330 

In-plane symmetric 3.791 - 3.750 3.825 3.847 

In-plane anti-

symmetric 
2.658 - 2.643 2.662 2.674 

Axial - 280.051 - - 235.197 

Torsional - 198.026 - - 197.764 

 

The accuracy of the data gained from the experimental tests depends on many factors these 

include 1) the imperfection of initiating and maintaining the cable tension, 2) disturbances and 

positing of the trackers. These effects are minimized by repeating the tests several times for each 

frequency and cable, which leads to the results presented. As an illustration, Fig 5.11 shows the 

frequency results found for cable 1E  experimentally in box plot, where 20 tests have been 

conducted for each frequency, the horizontal line across the box is the median which is used in the 

comparison.   
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Fig. 5.11 Cable 1E frequencies obtained experimentally and presented in boxplot, specifically give the median 

value which is represented by the line across in the interquartile range, it is used in the comparison with other 

approaches 

 

The present finite element frequencies were also compared with the experimental work for 

the remaining twisted and untwisted cables studied here and are presented in Table 5.4. The actual 

lay angle and sag value were used in this comparison.  

Table 5.4 The natural frequencies for Cables
2E  and

3E  

 Frequency f (Hz)  

 Cable 
2E  Cable 

3E  

 
Experiment 

(Median) 

Present Finite 

Element Model 

 

Experiment 

(Median) 

 

Present Finite 

Element Model 

Out-of-Plane 1.331 1.332 0.830 0.835 

In-plane 

symmetric 
3.832 3.857 1.500 1.503 

In-plane anti-

symmetric 
2.660 2.678 1.612 1.639 

Axial - 280.011 - 10.129 

Torsional - 225.089 - 6.981 
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For twisted cables 1E  and 
2E , the effect of lay angle on the dynamic cable behavior was 

also assessed. For angles between 0 to 30 degrees, Table 5.5 shows the frequency spectrum for 

cable 1E  with the angle changes. The out-of-plane frequencies slightly decrease with lay angle 

increase, but the change is only 0.35% from 0 to 30 degrees. The in-plane symmetric frequencies 

possesses the same trend in decreasing as the lay angles increases (0.63%). In addition, the in-

plane anti-symmetric frequencies also decrease. However, as the cables approach the maximum 

lay angle, the frequencies begin to slightly increase. The axial frequencies generally decrease with 

a slight increase as   approaches max . The torsional frequencies consistently and linearly 

increase with lay angle.  

Table 5.5 The natural frequencies for Cable 1E with lay angle between 0 to 30 degrees 

 Frequency f (Hz)  

Lay Angle 

(degrees) 
0 5 10 

 

15 

 

20 25 30 

Out-of-

Plane 
1.331 1.330 1.329 1.325 1.321 1.323 1.326 

In-plane 

symmetric 
3.852 3.850 3.844 3.827 3.815 3.819 3.828 

In-plane 

anti-

symmetric 

2.675 2.675 2.673 2.663 2.656 2.659 2.666 

Axial 280.471 255.641 225.973 210.795 203.230 201.484 202.815 

Torsional 174.044 184.084 209.026 241.009 274.695 307.563 337.749 

 

 For the same cable ( 1E ), the corresponding modal shapes for the out-of-plane, symmetric 

in-plane, anti-symmetric in-plane, axial, and torsional frequencies are shown in Fig. 5.12-Fig. 5.16 

for lay angles between 0 and 30 degrees. The translational and rotational displacements denoted 
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as 
XU ,

YU , 
ZU  , 

X ,
Y , and 

Z  and show the interaction for each type of motion. All modal 

plots are normalized with respect to the peak translation or rotation displacement.  

The results from the experimental tests are also included, where the mid and quarter 

maximum acceleration and angular velocity records were obtained and processed by integrating 

to get the translations and rotation displacements. For example, in the longitudinal direction: 

data

2

U
U sin( t)  


  (5.31) 

X data
X sin( t)
   


  (5.32) 

Similar operation are used in the other two directions. From that the peak of displacements value 

of 20 tests were found, and the median of the data is then used in the modal shape comparison.  

Figure 5.12 shows the amplitudes for the out-of-plane frequencies. These are normalized 

to the primary motion which is the symmetric (out-of-plane) transverse translation 
ZU . When the 

cable is uncoupled (0 degrees), all rotations are all equal to zero. For lay angles between 5-30 

degrees, the amplitudes of all the translations and rotations coincide using the three-dimensional 

finite element model. Because of the twist in the cable, there are non-zero translation and rotation 

values in all directions. The maximum rotation is in the longitudinal direction where it is 0.72 per 

unit translation at the quarter span of the cable. The peak experimental value 8   degrees is 0.55, 

where in both cases the mode has a symmetrical shape about mid-span. The maximum rotation 

displacement in the other two directions occur at the mid span with smaller magnitudes compared 

to the longitudinal rotation. The vertical and transverse rotation results from the finite element 

model are lower and higher than the experimental results by 25.5 and 36.41%, respectively. 
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Fig. 5.12 The out-of-plane modal shapes for cable 1E for the finite element model (FE) with lay angles 0 

(uncoupled) and 5-30 (coupled) degrees and experimental results (Exp) for a cable with lay angle of 8 degrees. 
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 In addition, rotations at the cable supports were observed when coupling is exist. The peak 

rotation was in the X direction and was lower by 35% of the displacement magnitude at the mid 

span. The coupled translation displacements have very small magnitude comparing with the 

transversal translation displacement, the peak values are 0.0012 and 0.043 per unit translation for 

the longitudinal and vertical displacements. These results were validated experimentally with 

about 27% different between finite element and experimental results.  

The symmetric in-plane modal shape is shown in Fig. 5.13. The non-dimensional parameter 

2 for this cable is greater than 
24 . Therefore, the frequency for all lay angles is larger than the 

anti-symmetric in-plane frequency (as shown in Table 5.5). It was found that the symmetric in-

plane mode (
YU ) has two internal nodes, which replicated the linear vibration theory defined by 

Irvine and Caughey [80]. It was also noted in this work that the transversal translation, vertical 

rotation, and transversal rotation have two internal nodes. each of these behavior was confirmed 

using the obtained experimental results.  

 The coupled rotations appear when lay angle is non-zero. The longitudinal rotation 
X  is 

the maximum and increases 50% of its peak value at the support as the lay angle increases from 5 

to 30 degrees. The rotation 
X  for a cable with lay angle 10 degrees at quarter span from the finite 

element model is significantly lower than the experimental value (66%). The maximum values for 

the vertical and transverse displacements at mid span are 0.27 and 0.008 per unit translation. These 

are 33% and 32% higher and lower than the experimental results. Further, the coupled translation 

displacements 
XU and 

ZU  were also found and are very small but reasonably scaled compared to 

the primary vertical translation displacement.  
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Fig. 5.13 The symmetric in-plane modal shapes for cable 1E  for the finite element model (FE) with lay angles 

0 (uncoupled) and 5-30 (coupled) degrees and experimental results (Exp) for a cable with lay angle of 8 degrees. 
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The anti-symmetric modal shapes for lay angles 5 to 30 degrees are very similar in nature 

and are shown in Fig. 5.14. The results are normalized to the primary cable motion, which is the 

vertical translation 
YU . The maximum rotation 

X  is also in the longitudinal direction where it 

peaks at the cable supports. The mid-span rotation value 
X  is compared with the experimental 

results (1.31 per unit translation displacement) and it is found that the finite element model results 

was 50% lower. Using the finite element model and experiments, the coupled vertical and 

transverse rotations have an anti-symmetric shape. And, it is found using the present model that 

the vertical rotations are being 78% larger in magnitude than the transverse rotations.  

Coupling displacements are also observed in the X and Z  axes. Where the transverse 

translation 
ZU is relatively large. The peak displacement occurs at the quarter span and its 31% of 

the primary motion 
YU . However, the longitudinal displacements 

XU  is the smallest in magnitude 

of the two with symmetrical shape. The three-dimensional finite element model results showed 

that the lay angle variation effect is negligible for this modal shape.  
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Fig. 5.14 The anti-symmetric in-plane modal shapes for cable 1E for the finite element model (FE) with lay 

angles 0 (uncoupled) and 5-30 (coupled) degrees and experimental results (Exp) for a cable with lay angle of 8 

degrees. 
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The axial frequencies are shown in Fig. 5.15 and they are normalized to the longitudinal 

translation 
XU . For the uncoupled (0 degrees) case the rotations 

X ,
Y , and 

Z are all equal to 

zero. For the coupled case (lay angle 5-30 degrees), the translation amplitudes are generally 

coincided (different is less than 5% from 0 to 30 degrees), and the rotation values vary with lay 

angles. The maximum rotation magnitude is in the X  direction, with a magnitude that increase 

with lay angle. The same behavior occurs for the 
Y  and 

Z  at the supports. The vertical rotation 

displacement are larger than transversal by 90%. The coupled translation displacements
YU  and 

ZU  are very small comparing to the primary motion with the peak values of those are occurring 

closer to the supports than mid-span. The maximum values of the displacements are 0.08 and 0.005 

unit translation for the vertical and transversal translation displacements, respectively.   

The torsional frequencies are represented in Fig. 5.16 and are normalized to the primary 

longitudinal rotation 
X . For the uncoupled (0 degrees) case the translations in the X , Y , and Z  

directions are all equal to zero. The rotations displacements vary with lay angles. The 
X ,

X , and 

X  peaks increases with the lay. Lower rotations are found for the 
Y  and 

Z  where the peak 

value found at the support is 91% lower than the transversal rotation mode. The translations in the 

three directions are very small in magnitude and these increase with lay angles. The maximum is 

in the longitudinal direction, where the peak at the quarter span has a value of 0.00144 unit 

translation when the lay angle is 30 degrees.  
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Fig. 5.15 The axial modal shapes displacements for cable 1E for lay angles 0 (uncoupled) and 5-30 (coupled) 

degrees. 
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Fig. 5.16 The torsional modal shapes displacements for cable 1E  for lay angles 0 (uncoupled) and 5-30 

(coupled) degrees. 
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5.7  Conclusion   

The effective stiffness and mass matrix were calculated using a three-dimensional elasticity 

method for two twisted cables. These were used to measure the nature of the dynamic motion and 

resonances considering the free vibrational analysis of cables supported at the same level, using a 

three-dimension finite element model where the sag is considered, the twisted and the untwisted 

cables were examined. The finite element model was validated with large experimental work as 

well as using commercial finite element software and available analytically solution. The lay angle 

variation effect was tested using the model to study the frequency spectrum and modal shapes. The 

study showed that the proposed finite element model gives an excellent prediction of the dynamic 

response for twisted cables, to results in enhancing a safe design and reliable system. In addition, 

the primary conclusions are:  

1. The axial stiffness coefficients for lay angles between 5 to 30 degrees using the 

elasticity-based approach are slightly lower (4 percent) than those on the one-

dimensional models for the actual lay angle of the studied cables. The coupling and the 

torsional stiffness are generally within the bounds of the simple one-dimensional 

models.  

2. The frequency spectrum, including out-of-plane, symmetric in-plane, anti-symmetric 

in-plane, axial and torsional frequencies, for twisted and untwisted cables studied are 

within excellent agreement with the experimental results (the difference is less than 0.5 

percent) where actual lay angle was used.  

3. Lay angles has a very small (within under 0.4 percent) influence for lower frequency 

spectrum (out-of-plane, symmetric and anti-symmetric in-plane). In contrary, they have 

a large (40 percent) influence for axial and torsional models. The axial frequencies are 
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decreasing linearly with 8 percent rate until the maximum angle of the cable is reached, 

and it starts to change the behavior. The torsional frequencies are steady linear increase 

with lay angles. 

4. The translation modal shapes are almost completely unaffected by lay angle for the 

lower frequency spectrum. In addition, the anti-symmetric modal shape have the 

maximum longitudinal rotation is in this mode (1.31 per unit translation displacement), 

the results from the finite element model are lower by approximately 50 percent from 

results obtained using the experiment. And, the rotational modal shape for the 

symmetric in-plane mode is strongly influenced by lay angle. The other two rotations 

are not.  

5. The translation mode shapes are minimally impacted by lay angle for the axial modes, 

but all three rotational mode shapes are strongly influenced. This behavior is reversed 

in the case of torsional modes.  
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CHAPTER 6: FREE VIBRATION OF AN INCLINED TWISTED CABLE  

6.1  Summary 

This paper is aimed at simulating and investigating the coupled translations and rotations 

vibrations occurring simultaneously in inclined sagged strands. The derived three-dimensional 

models of the single-layered six wires strand stiffness results from the elasticity-based finite 

element behavior analyses under axial tension and torsion loads is validated through a comparison 

with the one-dimensional analytical model results. Results found agreed well for the actual lay 

angle of the cable, and the angles below 20 degrees with the finite elements models where internal 

contact was not considered. To find the cable natural frequency and corresponding modal shapes 

the derived primary stiffness and mass matrices are discretized over the inclined sagged cable 

using a computational efficient finite element model where the two-node cable element have three 

translational and three rotational degrees of freedom. The phenomena is also studied using 

extensive experimental tests using same cable geometry and material. Besides to the experiments 

the finite element model accuracy was tested with a well-known analytical model available from 

the literature for horizontal cables, and the inclination angle variation are also investigated and 

compared with the computer finite element software ABAQUS for the same purpose. The results 

found confirm the correctness of the derived formulation, mathematical, and psychical importance 

of the six-degrees of freedom finite element model developed and the efficiency in evaluating the 

coupled cable dynamic behavior. It addition, it highlight the fundamental dynamics of inclined 

cables and the role of the inclination angle, sag, and weight of the cable.  

6.2  Introduction   

Cables is widely used in many fields for example as construction, bridge, port, and mining 

industry. As a results of preforming in high strength and good flexibility due to their remarkable 
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advantage of tensile property, low bending and torsion stiffness [70]. Dynamics of elastic cables 

have attracted many researchers as the interest in using cable has increased.  In many cases where 

cables play an important role, any failure of the cable may cause a serious accident such casualty 

and economic loss, showing that in-depth studies on the cable is of great significance. In general, 

the static response for single or multi-layered strands is coupled. In other words, when a cable has 

a twist along its length, it will have coupled axial-torsional behavior. When tension load is applied 

on the twisted cable, two displacements types will propagate, axial and torsional. And, when 

torsion load is applied axial and rotation displacements will be exist. These phenomena have great 

impact on the dynamic of cables. And it did not receive enough attention in the literature, where 

the static response is fully understood. The longitudinal, vertical and transversal translations and 

rotation motion interaction are effected by the coupling of the twist and make the cable dynamics 

very complicated. The emphasis in this study is on inclined twisted sagged cables, and the special 

case of horizontal cables is also investigated.  

The study of natural frequencies and mode shapes of cables has a long history. The 

derivation of the static and dynamic response of horizontal and inclined uniform (untwisted) cables 

can be found in Cable Structures [74]. In 1953, the fourth order differential equation was driven 

by Saxon and Cahn, which governed the small amplitude vibration of uniform cables supported at 

the same level (horizontal) for any sag value [78]. Moreover, other linear cable theories also failed 

to reconcile with the string theory when the sag set to be zero. In 1974, Irvine and Caughey 

introduced their linear theory for out-of-plane and in-plane free vibration for horizontal suspended 

elastic cables [80]. Explicit solutions were driven for the natural frequencies and modal shapes. In 

detail, they studied the modal cross-over phenomenon in the frequencies. In addition, they 

presented the non-dimensional parameter 
2  which accounts for the elasticity and geometry of the 
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cable. The symmetric in-plane frequencies and modes varied with this parameter, the existent of 

the cross-over points when the frequencies of the symmetric in-plane modes are equal to those of 

the neighbor antisymmetric in-plane modes. Their results agreed well with the results of simple 

experiments for uniform cables excited in a manner that it demonstrated the modal cross-over 

phenomena.  

Irvine [84] extend the work, and applied the introduced linear theory of horizontal cable 

on inclined cables. The addition was simply using a coordinate transformation to the cable chord. 

However, in this work he ignored the weight component which is parallel to the cable chord. 

Henghold et al. [115] analyzed the free vibration of a single span cable using three-dimensional 

nonlinear finite element technique. In their work they developed an empirical formula that gave 

an approximation to the lowest natural frequency. More work into finding solution for the free 

vibration of an inclined extensile sagged cable was by Triantafyllou [85], in his work weight 

component and spatial variability of dynamic tension were taking into account. In addition, he 

showed that the inclined cables differ than the horizontal cables regarding properties, stating that 

it cannot be obtained by simply extending the horizontal cable results. He concluded that inclined 

cables rather than having modal cross-over in the frequencies, an avoided crossing occurs due to 

the cable unsymmetrical configuration.  

Nevertheless, the Irvine’s theory was validate by confirming for a range of parameters. In 

addition, the weight component from other point of views was studied by many scholars; 

Triantafyllou and Grinfogel [86] where they extended Triantafullou’s work and drive a simple 

approximate formulas for the inclined cables. Perkins and Mote [160] provided three nonlinear 

equations of the cable vibration based on Hamilton principle for traveling cables. Galarekin 

method was used to linearize and discretized the governing equations. Burgess and Triantafyllou 
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[87] used an asymptotic solution to explore the properties details of the out-of-plane modes for 

horizontal and inclined cables of small sag. Experimentally, Russell and Lardner [161] found clear 

evidence of the avoided crossing phenomenon while determining the in-plane natural frequencies 

for uniform inclined cable.  

The coupled interaction between transversal, vertical, and torsional motions for uniform 

cables started with more emphasis on the cable galloping phenomena. Samras et al. [101] started 

the investigation and emphasized on the importance of including the couple extensional-torsional 

behavior when studying the cable dynamics. Many simplified theories are presented in the 

literature, such Nigol and Power [89] model, or using finite element modeling, where a range of 

different elements types were used, from simple two-nodes to a higher order element to analysis 

the dynamic response. Among which have been reviewed in Desai et al. [99], where they 

developed a three-node isoperimetric cable element to perform a geometric nonlinear, static 

analysis of single cable structure experiencing only translational deformations. And, Desai et al. 

[90] showed the vertical and torsion coupling, also, Jones [91] studied the coupled longitudinal 

and vertical motions. Yu et al. [88,93] proposed analysis for the longitudinal, vertical, and torsional 

coupling. Yu stated that the previous investigations on that resolved to be not satisfactorily, 

because there is no simple model available that captures the full coupling between the cable 

motions [93]. Using dynamic stiffness matrix: Starossek [98] studied the vibration behavior of 

sagged cables. The study is restricted to consider motion within the vertical cable plane only. Desai 

et al. [94] enhanced the three-node element model to include the torsion and analyzed the galloping 

of a multi-span transmission line. 

Recently, researchers focused more into the nonlinear interaction where it increase in the 

finite-amplitude dynamic of elastic cable. Rega [116,117] discussed the main features and 
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problems associated with the nonlinear vibration analysis of suspended cables. Wu et al. [162] 

proposed an explicit formula to show the avoided crossing phenomenon introduced by 

Triantafyllou [85]. Srinil et al. [163] studied the frequencies and modes of suspended cables 

considering the coupling between the longitudinal and vertical translation displacements. Thai and 

Kim [124] solved the nonlinear dynamic problems of cables by employing the catenary cable 

element for the Newton-Raphson and Newmark direct integration methods. Thai et al. [83] 

continue using the same method to find the natural frequencies and the geometries of modal shapes. 

Zhou et al. [81] stated that all the models dealt with inclined cable showed that the natural 

frequencies did not cross over because of the inclination the modes become hybrid modes, a mix 

of symmetric and antisymmetric shapes, with an effect on the dynamic tension, and this 

phenomenon is accompanied by the variation of the curvature along the catenary profile in the 

static state when the cable is inclined which would not occur when the parabolic assumption is 

adopted. 

As emphasized by Perkins [118] the experimental work done to study the nonlinear motion 

and/or verify the large amount of numerical method are very limited. For that, introduced a simple 

two-degrees of freedom analytical results and compare it to an experiments of horizontal untwisted 

cable, results showed lead to non-planar internal resonance. Also using harmonic time-varying 

support experimentally Koh and Rong [158] found the three dimensional translation displacements 

as regards the dynamic tension of non-resonant untwisted cable that is suspended horizontally. For 

inclined untwisted cables, Rega et al. [164] found the natural frequency and modal shapes 

numerically and experimentally and showed the out-of-plane and in-plane modes’ three-degrees 

of freedom interactions.  
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It should be noted that the models mentioned earlier here are limited due ignoring the actual 

cable geometry, including the twist (by assuming that the cable has a circular cross-section), and 

boundary conditions used. Many scholars in the literature have been studying the cable helical 

structures’ analytical characterization of the static response to different loading scenarios to 

describe its behavior. Mostly reacting to only axial forces; the analysis has been performed by 

modeling the cable as a perfectly flexible element. The analysis can be subdivided on mechanical 

models' base in describing the wires inside the cable into discrete and semi-homogenization 

formulations. More into finding the stiffness and cables geometry modeling can be found in the 

review paper by Spak et al. [133]. Recently, Foti and Martinelli [155] presented a model to find 

the axial-torsional response of a one layered strand that consider the deformability of the internal 

contact surfaces, and derived a symmetric stiffness matrix. 

Further, as for solving the vibration problem while including the actual geometry of the 

cable (twist). For horizontal tight cables, Alkharisi and Heyliger [157] calculated the effective 

mass and stiffness components for coupled cables using constants that are driven from the three-

dimensional elasticity model. Then, using that, a typical cable segment's vibration behavior was 

analyzed with both analytical and finite element models for homogenous and composite cable 

geometries for three different representative types of cables. 

In this paper, the three-dimensional cable geometry is included to study its vibration 

characteristics using a finite element model. After solving the nonlinear static behavior which 

considered the self-weight and sag of the cable. Identical properties are used for the cable tested 

experimentally to measure the frequencies and coupled displacements. Results for the inclined 

cable are assessed and compared with well-known analytical model and commercial finite element 
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software ABAQUS. New conclusions are drawn from the investigation and comparison and 

discussed in details.  

6.3  Strand Mechanics    

The focus of this paper on metallic strands which are made of a single layer of wires that 

have circular cross-section. The outer wires are helically twisted around a cylindrical core wire. 

The core wire is assumed to be a straight configuration and the number of outer wires is denoted 

as wn . It is common in engineering applications to used the 1/6 cable, characterized by six outer 

wires (i.e. wn 6 ) which are wrapped around a core wire. As the primary purpose of the present 

paper is to compute the natural frequency and modes shapes of an inclined cable, for that it is 

necessary to have accurate stiffness and mass matrices that represent the actual cable cross-section 

details and behavior. In this section, the cable geometry is defined, stiffness matrix derivation 

using elasticity method approach and mass matrix are represented, and to validate this approach a 

known one-dimensional analytical approach is used to find the cable stiffness.  

6.3.1  Strand Geometry    
 

For simplification, the 1/6 strand wire is considered in this study as shown in Fig. 6.1. In 

which the cable has a central straight core and 6 outer helical wires. The helical wire is 

characterized by the pitch (lay) length, P , and it is the reciprocal of twist per unit length. The lay 

angle denoted by  is measured with respect to the axis of the cable ( Z axis). The centerline of the 

helical wire is a helical curve of radius hR . And it relates to the outer wire radius, and the core wire 

radius cR  by 

h c wR R R       (6.1) 
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Costello [20] determined the pitch length of the strand by: 

h2 R
P

tan





       (6.2) 

 

Fig. 6.1 The six-stranded cable with a single layer (ACSR) 

From that the actual lay angle of the cable given the pitch length can be found using this equation  

2
arctan( )h

actual

R

P

    (6.3) 

And the maximum lay angle of the cable used in this research can be found using [155]:  

2

w w
max 01 2

0 c

tan ( )
2 n 2R

arccos , 1
(1 ) 1 2R

  
 

     
   
 
 

    (6.4) 
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A small length of the cable 
eL , where the twist is included, is described by single-layer of 

three-dimensional continuums element. To find the effective stiffness coefficients, the actual cable 

geometry is used in representing its kinematic response in a three-dimensional elasticity-based 

model. When the cable domain is cut at this length, the front fact nodes coordinate becomes 

unknown, to overcome that the transformed lay angle can be computed using  

e

e

360

P
( )
L

   (6.5) 

Feyrer [7] has more detialds on the cable constructions, and more insight into the geometry 

modeling cab be found in Lee [3].  

 In this work, the displacements and strains are assumed to be small, the cable has coupling 

behavior between axial and torsion. In addition, the lay angle variation is considered.  

6.3.2  Elasticity Method and Finite Element Model Base    

 

The differential equation of equilibrium is the governing equation in the Cartesian 

coordinate system of plan elasticity for shapes that are hexahedron. Which can be expressed in 

expanded form as 

XX YX ZX
Xf 0

X Y Z

  
   

  
 

XY YY ZY
Yf 0

X Y Z

  
   

  
 

XZ YZ ZZ
Zf 0

X Y Z

  
   

  
  (6.6) 
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Where   is the stress component and f  is the body force in the X,Y,Z  axes. The strain relation 

are then used while small displacement is assumed. Stress-strain relations is expressed by the 

generalized Hook’s law of elastic stiffness tensor denoted as 
ijklC as 

ij ijkl klC    (6.7) 

As discussed by many researchers ([41], [101],[103]), for any cross-section shape and 

single or multi-layered cable, the constitutive equations relating the strand tension and torque to 

the cable deformation may be postulated to be of the generalized linear matrix: 

X,XX

X,XX

uk kF

k kM

 

 

   
          

  (6.8) 

Where 
XF represent the axial force, XM  the axial twisting moment, 

X,Xu axial strain, 
X,X twist 

per unit length. And, k  is the axial stiffness, k  and k  are the coupling stiffnesses, they are 

equal to zero in case of the untwisted cable, and k is the torsional stiffness coefficients. These 

are all effective one-dimensional relations, and they depend on both the cable material and 

construction. Hence then must be a transition between the three-dimensional behavior of the cable 

and the effective one-dimensional relation. 

Experimental results by Samras et la. [101] verified that assumed the constitutive relation are in 

linear form and shown that within experimental accuracy 

k k   (6.9) 

Which is compatible with Maxwell’s reciprocal theorem for linear elastic structure. In many of the 

methods used to derive these measures in the literature, unequal values are typically averaged. In 
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this work, using this method, the coupling coefficients differences were found to be negligible 

(always less than 4%). 

Linear elasticity elements are in the form of hexahedron solids which are used in the finite 

element analysis to find the mechanical behavior of what so-called six-stranded straight wire. Each 

node has been given three degrees of freedom in the three directions as displacements ( U ), ( V ), 

and ( W ). To compute the stiffness terms represented in Eq. (8), two different sets of loading 

conditions are imposed: 1) at one end, all nodal displacements in all directions are fully clamped. 

The control volume other end has a unit displacement in the axial direction ( U 1 ), and other 

displacements are set to zero. From this set k   and k  are computed from the total forces and 

moments required to hold this displacement. Then, 2) at one end, all node displacements are fully 

clamped, and other face nodal displacements in the Y  and Z  directions, are having an equivalent 

amount of value to present a unit rotation, and the displacement in X  direction is set to zero. 

The one-dimensional model mass matrix where the kinetic energy terms are shown can be 

expressed as 

 
m m

M
m m

 

 

 
  
 

  (6.10) 

Where  

 

V

m dV       (6.11) 

2

V

m r dV     (6.12) 
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Here the terms are dependents on the pointwise mass density  , r  is the distance from the polar 

origin of the strand to any arbitrary location in the cable cross-section, and V represents the total 

volume. The off-diagonal terms of the mass matrix are zero.  

6.3.3  One-Dimensional Analytical Model    

 

The validity of the three-dimension elastic model presented is measured against an 

analytical formulation that evaluates the axial-torsional response of isotropic single-layered 

metical strands which has been presented by Foti and Martinelli [155]. This model fully accounts 

for the contraction of the helix radius of the external wires due to both the Poisson effect and the 

local deformation of the internal contact surface. Besides, the expressions for the terms of the 

stiffness matrix are compact and simple. They were shown to be accurate compared to 

experimental, analytical, and finite element results from the literature for only single-layered and 

circular cross-section cables. In this work, Foti and Martinelli's model has been replicated for 

identical six-stranded cable. Where the model presented in section 3.2 accounts for the Poisson 

effect and ignores the contact deformation. 

Foti and Martinelli’s cross-sectional stiffnesses of the strand are evaluated through a classic 

energetic approach. And, can be represented here as 

2

w w
c

n EA A
k EA

cos( )
  


  (6.13) 

w wn EA AB
k k

cos( )
  


  (6.14) 

3 2
2c w w w w
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k cos( )sin( ) n EI

1 1 cos( )



     

  
 (6.15) 
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Where E  is the modulus of elasticity, 
wA is the outer wire cross-section area, cA is the core wire 

cross-section area, 
cI is the moment of inertia of the core wire, wI is the moment of inertia of the 

outer wire, and  is the Poisson ratio. The coefficients A and B ’s resulting expressions are 

2
2

0

2 2 2 4

0 0 n0

2

0 0 0

sin( )
cos( )

1
A

sin( ) 2(1 ) C sin( )
1

1 (1 )(1 (1 sin( ) ))
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 

 


    
 

       

  (6.16) 
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 

      

  (6.17) 

Here 
n0C  is the value of the non-dimensional normal contact compliance and considered as a 

parameter of this model.  

6.4  Vibration Analysis    

For finding the dynamic behavior of inclined twisted cable, many methods are used in this 

study. First, it involves a computational routine that uses the finite element method. Second, 

analytical models from the literature are mainly used for horizontal cables. Third, using the 

standard finite element software ABAQUS [159]. Fourth, using large-scale experiments. These 

are used to study in detail the natural frequency and corresponding modal shapes and are described 

below.  

6.4.1  Finite Element Model    
 

The sagged twisted cable is represented as a series of one-dimension finite elements which 

have linear elastic properties. Each nodal point has six degrees of freedom. The stiffness, mass 
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matrices (from the previous section), the translation and rotation at each nodal point are given in 

terms of the global coordinate system. At this stage the inclination angle of the cable is introduced, 

and in this study the inclination denoted as   is between 10 and 60 degrees. The equation of 

motion is derived which is based on small dynamics perturbation about the deformed static 

equilibrium that is caused by the cable self-weight. Prior the free vibration the parabolic static 

configuration include initial sag of the cable and the boundary conditions as presented in Fig. 6.2. 

After the assembly the cable stiffness is updated and the sag at its final shape the standard linear 

eigenproblem is solved using 

   

X

Y

Z2

t

X

Y

Z

U

U

U
( K M ) 0

 
 
 
     
 
 
  

 (6.18) 

 

Where  tK and  M are the N N  assembled global stiffness and mass matrices of the cable 

structure. The stiffness matrix is the summation of the elastic stiffness matrix eK   and geometric 

matrix gK   . The natural frequency is denoted as   and as f  in Hz . The global translations 

displacements are 
XU , 

YU , and 
ZU , and rotations displacements are 

X , 
Y , and 

Z  in the X , 

Y , and Z  directions. The boundary conditions for the cable system, where one of its ends is higher 

than the other in the Y  direction, is corresponding to pinned-pinned condition.  
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Fig. 6.2 Inclined cable configuration before and after self-weight load given the inclination angle 

 

 The local elastic stiffness matrix which its coefficients are derived in section 6.3 is the 

modified version of the conventional symmetric truss member. Here the stiffness include the axial, 

torsional, and coupling terms and defined as 
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 (6.19) 

Where 
eL  is the updated element length after the initial nonlinear state deformation.  
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In this study, the case of uncoupled cable is also solved. For that, the axial stiffness is 

simply k EA  , the coupling stiffnesses  are k k 0     , and the torsional stiffness is 

k GJ  . 

The geometric stiffness matrix is related to the forces which are employed by the stressed 

element associated with the direction changes of the cable element when deformed. This stiffness 

can be described in the local coordinate system as 

g a

e

I O I O

O O O OF
k

I O I OL

O O O O

 
 
      
 
 

 (6.20) 

Here aF  is the axial force at the start of each incremental step and I  is a 3 3 unit matrix while O  

is a 3 3 null matrix.  

The mass matrix is also discretized over the cable domain. The mass terms defined earlier 

are then used. The local mass matrix is defined as 

  e
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 
 
 
 
 

  (6.21) 

All the defined matrices here are mapped to the global coordinate system using a 

transformation matrix similar to typical structural elements. The inclined cable elements involve 

cosines in the three local directions. The element is then oriented in the global three-dimensions 

using these angles. After that, the free vibration problem then solved using Eq. (6.18).  
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6.4.2  Analytical Model    
 

The finite element model accuracy and applicability is tested against the well-known Irvine 

and Caughey [80] linear vibration theory for horizontal cables ( 0  ). In their work, they 

calculated the out-of-plane, symmetric in-plane, and anti-symmetric in-plane frequencies using 

o

1 H
f

2 m



  (6.22) 

2

i
s

H
f

m


   (6.23) 

an

2 H
f

2 m



 (6.24) 

Where H is the horizontal component of the cable tension, and i  value can be calculated from a 

transcendental equation. 

The axial and torsional frequencies for the case of the cable is assumed to be straight and 

have a solid circular section under axial and torsional vibration and are also compared with the 

finite element model, and these are found using [130] 

a

1 E
f

2L



 (6.25) 

t

1 G
f

2L



  (6.26) 

6.4.3  ABAQUS    
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The inclined cable in this study is modeled using the commercial finite element program, 

ABAQUS [159]. The initial configuration is given in the X,Y  plane as in Fig. 6.2. To stabilize 

the cable, an additional node in the Y  direction was used and connected using truss elements. The 

additional elements are given a very small stiffness value. By applying the boundary condition 

where the translation displacements are fixed, the given initial small sag will increase under the 

nonlinear static analysis where the self-weight of the cable is considered. The cable will be in 

equilibrium, having a parabolic shape. The undamped free vibration will then be solved for the 

cable models where the inclination angle   varied between 10 and 60 degrees. In the ABAQUS 

model, the twist configurations are not included, and the cable cross-section is assumed to be 

circular. This software lacks the ability to include the torsional and axial-torsional coupling terms 

in the cable element.  

6.4.4  Experimental Model    
 

The frequency spectrum of inclined cable hanging where its endpoints are different in the 

Y  direction is studied using series of experiments. The focus of these tests is on the out-of-plane, 

symmetric in-plane, and anti-symmetric in-plane frequencies. The same length in the other 

approaches is also used to study the behavior. The experimental setup overview is shown in Fig. 

6.3. At one end, a MTS’s 243.20 hydraulic actuator [127] is used, which can simulate a 

harmonically time-varying support motion in the Y direction. This actuator has a stroke length of 

25.4 cm and is driven by a power control unit, which is MTS 407 controller [128], that is able to 

generate a repeated driving motion that is controllable by a frequency. The other end is used to fix 

the lower point of the inclined cable using a c-clamp.  
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Fig. 6.3 Experimental setup for the twisted inclined cable study with the actuator at the far end 

Each test (frequency) is repeated 20 times to minimize the errors. A MetaTracker sensor 

Fig. 6.4 [129] was used to obtain the dynamic data. This device contains an accelerometer and 

gyroscope that can give the acceleration time history signal 
XU ,

YU , and 
ZU  which are 

longitudinal, vertical, and transverse motions which are parallel to X,Y,Z axes, respectively. And, 

give the angular velocity time history signal in the three-axis as well: 
X ,

Y , and 
Z . Two points 

on the span were the interest,  mid-span and quarter span, for that, two sensors were used for all 

tests. 
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Fig. 6.4 Sensor mountain on the inclined cable 

 

The acquisition duration for each reading ranged from 20 to 45 seconds, and the sampling 

frequency for the measured accelerations is 
s accelerationf 12.5   Hz and 

s angular velocityf 20    Hz for the 

angular velocity. In dynamic experiments, acquisition rate plays an important role, if it is not fast 

enough the results may not results the correct dynamic response of the system tested [165]. The 

natural frequency of the inclined cable studied in this paper was obtained by recording the 

frequency when a response peak was observed. To use the data results, each history signal’s 

frequency was found using the Fast Fourier Transform algorithm function. The translation and 

rotation displacements are found by integrating, for instance, for the longitudinal direction: 

X data
X 2

U
U sin( t)  


 (6.27) 

X data
X sin( t)
   


  (6.28) 
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Similarity for 
YU , 

ZU , 
Y , and 

Z  for peak displacement motions 

6.5  Results and Discussion    

With the solution model that considered Poisson’s ratio and difference lay angles values, 

the six-stranded cable's stiffness matrix subjected to axial tension and torsion is studied. In addition 

to the mass matrix, which are the functions of finding the natural frequency and modal shapes of 

the inclined sagged cable. The parameters used for the cable, which is an Aluminum Conductor 

Steel Reinforced cable (ACSR) as follows: weight m 0.35 kg / m , a modulus of elasticity of 

E 74.2 GPa , shear modulus G 37.1 GPa , 
cR 2.25 mm , 

wR 2 mm  for a total cross-

section area of 
2A 91.3 mm , and Poisson ratio 0.3  [166]. The lay angle   is between 0 to 

30 degrees. And, the inclination angle   is between 10 to 60 degrees. Throughout the four 

approaches used here, the cable length is L 8.07 m , and the small sag value is d 2 cm . The 

results are presented in this section.  

6.5.1  Lay Angle Effect on Stiffness Matrix    

 

The stiffness coefficients obtained using the three-dimensional elasticity finite element 

model where the Poisson effect is included for straight twisted cable are compared to the one-

dimensional analytical model where in addition to the Poisson ratio, the internal contact 

deformation is included. The lay angle   varied in this work between 0 and 30 degrees for this 

twisted cable which is the practical range commonly used. These coefficients are important and 

reflect the mechanical performance of the strand that is subjected to axial loads. The strand can 

break if the stiffness is too small. However, the large stiffness does not efficiently suppress the 

oscillation caused by the impact force applied in the strand [33]. In this study, both methods used 
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to calculate the stiffnesses are obtained in which a small axial extensile strain and small axial 

torsional strain are respectively applied to the strand. The comparison between stiffness matrices 

obtained using the present model and those of Foti and Martinelli [155] are given in Fig. 6.6-Fig. 

6.8. And, non-dimensional values in the figures are defined as  
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 (6.29) 

The actual lay angle for this particular cable is 
actual 8   degrees, while the maximum 

angle it can reach given the pitch length ( P 190 mm , see Fig. 6.5) is 
max 22.5  degrees.  

 

Fig. 6.5 The cable pitch length found to be 190 mm from the outer wire which takes a full turn around the 

circular core wire 

The axial stiffness k  versus lay angle   for the three-dimensional elasticity finite 

element model and the one-dimensional analytical model for the considered twisted cable are 
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shown in Fig. 6.6. Both stiffnesses results decrease with lay angle increase. The present finite 

element results are slightly lower by approximately 1.45% when the lay angle is less than 20 

degrees. The results then coincide at this point. And, when the lay angle is larger than 20 degrees, 

the finite element results become slightly higher than those of Foti and Martinelli model by 2.92%.  

 

Fig. 6.6 Axial stiffness k for cable used (ACSR) versus lay angle  for the present 3D FEM and comparative 

one-dimensional analytical model of Foti and Martinelli [155] 

 

The non-dimensional coupling coefficients k and k  variation with the lay angles are 

presented in Fig. 6.7. The present model appeared to give excellent results with the one- 

dimensional model for lay angles below 15 degrees. It is approximately linearly increasing with 

about 18-25% rate for every 5 degrees. While the one-dimensional model approaches to stable 

value at a large lay angle (20 degrees) and which is close to the maximum lay angle, then start to 

decrease.  
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Fig. 6.7 Coupling stiffness k and k for cable used (ACSR) versus lay angle for the present 3D FEM and 

comparative one-dimensional analytical model of Foti and Martinelli [155] 

 

Figure 6.8 shows the non-dimensional torsional coefficients k  versus lay angle. The 

stiffnesses results increase with lay angle increase. The present three-dimensional finite element 

model is behaving similarly to the axial stiffness results. It is lower by about 8.4-15% than the one-

dimensional analytical model for angles below 20 degrees. While it is higher by 9.4-23.5% for 

angles after 20 degrees. The increasing rate in Foti and Martinelli model decreases after this point 

(20 degrees) from 23% to be 15%. 
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Fig. 6.8 Torsional stiffness k for cable used (ACSR) versus lay angle  for the present 3D FEM and 

comparative one-dimensional analytical model of Foti and Martinelli [155] 

 

The results showed that the three-dimensional elasticity finite element model is accurate in 

predicting the stiffness coefficients. The model gives excellent results for the actual lay angle (

actual 8   degrees) and generally good results near the maximum angle (
max 22.5  degrees) of 

the cable used. The significant difference between the two models is observed at large lay angles. 

This difference is attributed to the fact that the internal contact deformation can lead to a smaller 

cross-section and further weaken the stiffness terms of the strand.  

The vibration analysis was done for the same cable, where only the actual lay angle is used. In 

addition, Meng et al.  [33] stated that even though the deformation effect on the stiffness matrix 

depends on the lay angle, it can precisely evaluate a small lay angle strand while ignoring the 

contact deformation.  



147 

 

6.5.2  Inclination Angle Effect on Natural Frequency    

 

The finite element model used the derived effective stiffness and mass matrices to find the 

natural frequency of the inclined sagged cable that is in equilibrium state after the nonlinear static 

analysis done using the initial parabolic configuration (Eq. (6.18)). This model used the actual 

cross-section of the cable (twist) and is compared with the results obtained experimentally for the 

same cable material and geometry. In addition to the frequency spectrum found using the limited 

analytical solution as well as using ABAQUS. 

The actual lay angles actual  for cable is used (8 degrees) to describe the coupled cable in 

the finite element model, where 16 elements were utilized. To test the validity of the model, the 

inclination angle was first set to zero (horizontal cable) and the twisted of the cable was ignored 

(assumed circular cross-section) so the cable is uncoupled, and results are compared to the well-

known Irvine and Caughey [80] model and straight circular section analytical solutions.  

The frequencies results are shown in Table 6.1. The comparison showed that all the out-of-plane, 

symmetric in-plane, anti-symmetric in-plane, axial, and torsional frequencies have less 0.45% 

error. Which indicate that the present finite element model is very accurate and effective in finding 

the frequencies. 

Table 6.1 The natural frequencies using finite element model and analytical models for uncoupled cable 

 Frequency f (Hz)  

 Irvine and Caughey Circular Section 
Present Finite 

Element Model 

Out-of-Plane 2.514 - 2.515 

In-plane symmetric 4.232 - 4.242 

In-plane anti-symmetric 5.0350 - 5.020 

Axial - 267.520 267.902 

Torsional - 189.165 189.543 
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 The cable is then inclined, and the results from the present finite element model are then 

compared with those obtained experimentally from 20 tests (see Fig. 6.9), where the data were 

analyzed using box plot and from that the median values are used, and from the ABAQUS model, 

for cable with an inclination angle is 10   degrees. First, the finite element model results found 

for uncoupled and then coupled inclined cable case (where twisted and the Poisson ratio is 

considered). The comparison presented in Table 6.2 shows that for uncoupled case the results are 

within 1.22% error of the ABAQUS model where the twist was also not considered. However, the 

present finite element model has more advantages where it was able to find the axial and torsional 

frequencies. The frequencies for 10  degrees decrease by about 4% from when the cable is 

horizontal (from Table 6.1).  

 

Fig. 6.9 Frequencies obtained experimentally for cable with 10 degrees inclination angle 

Then the coupled finite element results are compared with the experimental results for the identical 

cable properties. It showed that the finite element frequencies results are higher by approximately 

2.68%. And when axial and torsional frequencies are tested against the uncoupled case (using the 
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finite element model), it showed that they are lower by 21.21% and 7.20%, respectively, due to 

using the actual cross-section confirmation and Poisson ratio.  

Table 6.2 The natural frequencies using finite element model, experimental model, and ABAQUS model 

for cable with 10 degrees inclination angle 

 Frequency f (Hz)  

 ABAQUS 
Present Finite Element 

Model (uncoupled) 

Experimental 

(median) 

Present Finite Element 

Model (coupled) 

Out-of-

Plane 
2.453 2.454 2.336 2.379 

In-plane 

symmetric 
4.176 4.169 3.888 3.969 

In-plane 

anti-

symmetric 

4.881 4.820 4.5789 4.706 

Axial - 263.731 - 211.067 

Torsional - 186.593 - 175.891 

 

Further, the effect of inclination angle   was also studied using the present finite element 

(for twisted cable) and ABAQUS models. The out-of-plane, symmetric in-plane, anti-symmetric 

in-plane, axial, and torsional frequencies variation were found for cables between 10 to 60 degrees 

inclination angle. The results are shown in Table 6.3. Both models give frequencies that decrease 

with the inclination angle increase, which showed that it dependents on the inclination angle and 

the cordwise static cable tension. The out-of-plane frequency gradually decreases with an 

approximate rate of 6.44% for each inclination angle; the difference in magnitude is 59.88% less 

between 10 and the maximum angle tested (60 degrees). Similar decreasing rate is for the 

symmetric and anti-symmetric in-plane frequencies. The axial and torsional frequencies have a 

decreasing rate of about 4.75% for each angle used. The ABAQUS gave the same percentages for 

the out-of-plane, symmetric, and anti-symmetric in-plane frequencies; however, the model is not 

able to retrieve the axial and torsional frequencies. 
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Table 6.3 The natural frequencies using the present finite element model (FE), and ABAQUS model for cable with inclination angle between 10 and 60 

Frequency f (Hz)  


(degrees) 

10 20 30 40 50 60 

 FE 
ABAQ

US 
FE 

ABAQ

US 
FE 

ABAQ

US 
FE 

ABAQ

US 
FE 

ABAQ

US 
FE 

ABAQ

US 

Out-of-

Plane 

2.37

9 
2.453 2.225 2.304 1.988 2.066 1.689 1.755 1.336 1.389 

0.95

4 
0.993 

In-plane 

symmetri

c 

3.96

9 
4.176 3.772 3.927 3.421 3.522 2.931 2.989 2.342 2.3656 

1.67

5 
1.692 

In-plane 

anti-

symmetri

c 

4.70

6 
4.881 4.418 4.585 3.975 4.112 3.388 3.493 2.679 2.7651 

1.92

3 
1.978 

Axial 
211.

067 
- 

201.0

25 
- 

184.1

02 
- 

159.7

49 
- 

128.0

61 
- 

91.7

56 
- 

Torsional 
175.

891 
- 

167.6

23 
- 

154.1

22 
- 

135.8

05 
- 

113.2

95 
- 

87.2

30 
- 
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6.5.3  Modal Shapes of the Inclined Cable    
 

To study the interaction between the modes, the out-of-plane, symmetric in-plane, anti-

symmetric in plane, axial, and torsional modals shapes were investigated using the finite element 

model and experiments data for sagged twisted inclined cable (coupled with lay angle 8 degrees, 

and have 10 degrees inclination angle). In addition, sagged untwisted horizontal cable (uncoupled 

and inclination angle is zero) is also solved using the finite element model and presented to have 

a base and observe the differences. The translational and rotation displacements that are denoted 

as 
XU ,

YU , 
ZU  , 

X ,
Y , and 

Z  show the coupled motion for each type. Each modal plot for 

both approaches is normalized to the primary peak translation or rotation displacement. The 

inclined cable’s ( 10  ) experimental results in the mid and quarter span of the cable are shown 

as the median of 20 tests done for each modal type. To analyze the data, a box plot was used to 

visualize the range, distribution, and central tendency of the distribution of the data, in order to 

show variability and concentration of the displacement values within a distribution (the median is 

indicated by a line across the box).  

Figure 6.10 shows the out-of-plane frequency amplitudes in the three directions. 

Comparing the finite element model results for the horizontal and inclined cable shows that when 

0   the rotation displacements are equal to zero because the cable is assumed to be untwisted. 

Moreover, the horizontal and inclined results showed that the coupled longitudinal and vertical 

translation displacements have small magnitude and are different in shape. The inclined 

experimental results from Fig. 6.11 (median) are following the general inclined finite element 

model modes trends. The maximum rotation displacement is in the X direction where the 

experimental result at quarter-span is higher by 50.78%, and it is largest at the lower end support. 
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The vertical and transversal rotation displacements results at mid-span are lower than the 

experimental results by approximately 25%, however, they are small in magnitude comparing with 

the longitudinal rotation. It should be noted that all the inclined cable coupled translation and 

rotation displacements are not symmetric about the mid-span.  

 

Fig. 6.10 The out-of-plane modal shapes displacements for horizontal cable (inclination angle zero), inclined 

cable (inclination angle 10) using the present finite element model (FE) and experimental results (EXP) for inclined 

cable (inclination angle 10)   
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Fig. 6.11 The out-of-plane translation and rotation displacements data distribution at mid and quarter span of the 

cable found experimentally for the inclined cable (results are normalized to the median value of the primary motion) 

 

The modal interactions of the symmetric in-plane frequency are showing in Fig. 6.12. The 

longitudinal and vertical translation displacements features of the horizontal cable are in 

accordance with the linear vibration theory presented by Irvine and Caughey [80]. However, the 

inclined cables results using the finite element model for these modes and the transversal 

translation have a symmetrical shape about the cable's mid-span. The longitudinal rotation 

displacement is maximum at the support, with 2.26 unit per a unit vertical translation, and the 
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experimental results at quarter-span are higher by 61.43% and are shown as the median values of 

Fig. 6.13. And, the vertical and transversal rotation displacements are lower in magnitude at the 

inclined cable's higher endpoint by 80.34% and 96.54% than the rotation in the X direction, 

respectively.  

 

Fig. 6.12 The symmetric in-plane modal shapes displacements for horizontal cable (inclination angle zero), 

inclined cable (inclination angle 10) using the present finite element model (FE) and experimental results (EXP) for 

inclined cable (inclination angle 10)   
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Figure 6.13 The symmetric in-plane translation and rotation displacements data distribution at mid and quarter 

span of the cable found experimentally for the inclined cable (results are normalized to the median value of the 

primary motion) 

 

The coupled displacement with the primary anti-symmetric in-plane is observed and shown 

in Fig. 6.14. The finite element model results showed that the inclined cable translation 

displacements differ in shape in the longitudinal direction with similar magnitude, while it is 

largest by 60% in the transversal direction where the cable has 10 degrees inclination angle. The 

experimental results obtained for that are inbound with the finite element model for inclined cable, 

see Fig. 6.15. In addition, the mode shapes in all directions are not symmetrical about the mid-

span of the inclined cable. The coupled rotation displacement is large in the X direction, and it is 
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higher than the experimental results by 61.72% at quarter-span. Moreover, the vertical and 

transversal rotation displacements has a anti-symmetrical shape with smaller magnitude 

comparing with the large rotation found.   

 

Fig. 6.14 The anti-symmetric in-plane modal shapes displacements for horizontal cable (inclination angle zero), 

inclined cable (inclination angle 10) using the present finite element model (FE) and experimental results (EXP) for 

inclined cable (inclination angle 10)   
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Fig. 6.15 The anti-symmetric in-plane translation and rotation displacements data distribution at mid and quarter 

span of the cable found experimentally for the inclined cable (results are normalized to the median value of the 

primary motion) 

 

The axial frequency modal shape is presented in Fig. 6.16. The modes here are computed 

using the finite element model and normalized to the longitudinal translation. It is observed that 

the rotation displacements for the uncoupled horizontal cable are all equal to zero. However, for 

both uncoupled and coupled cable, the interactions captured in the translations displacement are 

small in magnitude, and are having different shapes. For inclined cable the rotation displacements 

are unsymmetrical and the largest magnitude is in the longitudinal direction where it is maximum 

in the lower endpoint of the cable (156 unit per a unit longitudinal translation) and it is higher by 



158 
 

28.6% of the displacement at mid-span. The vertical and transversal rotation displacements at mid-

span is lower by 83.31% and 97.21% than the longitudinal rotation displacement, respectively.  

The modal shape for the torsional frequency is shown in Fig. 6.17, and the primary motion 

have the maximum displacement value at the support and it is symmetric about the mid-span of 

the cables. The coupled translation displacements in all direction are very small in magnitude, the 

largest value is in the longitudinal direction which is 0.00014 unit per a unit longitudinal rotation 

displacement at the quarter-span of the inclined cable, therefore it becomes unimportant. The 

corresponding translation displacements for the horizontal cable are equal to zero. The coupled 

rotation displacements shapes for the inclined cable differ than those of the horizontal cable and 

are not symmetric about the mid-span, and it takes the primary motion shape. However, they the 

maximum displacement, which occur at the supports, are also smaller in magnitude comparing 

with the longitudinal rotation displacement by 81% for the vertical and 96.4% transversal rotation 

displacements. 
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Fig. 6.16 The axial modal shapes displacements for horizontal cable (inclination angle zero), inclined cable 

(inclination angle 10) using the present finite element model (FE) 
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Fig. 6.17 The torsional modal shapes displacements for horizontal cable (inclination angle zero), inclined cable 

(inclination angle 10) using the present finite element model (FE) 

 

6.6  Conclusion    

In order to precisely model the complex vibration behavior of an inclined cable, the single-

layered helical six-strand cable actual geometry configuration, where lay angle varied between 0 
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to 30 degrees, modeled using three-dimensional elasticity model, the method are comparing to an 

analytical model where axial and torsional coupling is considered. The derived symmetric stiffness 

and mass matrix were discretized over the cable domain using finite element analysis where the 

self-weight of the cable is taking into account. The model frequencies and mode shapes, which 

have simultaneous translation and rotation displacements, were validated using a comparison with 

large experimental data. In addition to a well-know analytical model and ABAQUS model for 

different range of inclination angles. The main conclusions drawn are as follows: 

1. Using the three-dimensional elastic-based finite element model, the stiffness coefficients 

for the six-stranded cable studied (with lay angle 8 degrees) give excellent results compared 

to one-dimensional analytical results. It showed that for small lay angles, the internal 

contact deformation can be ignored. The axial and torsional stiffness finite element results 

were lower than the analytical model by approximately 1.5% and 14% for lay angles below 

20 degrees and then higher by 3% and 23%, respectively. The coupling stiffness 

coefficients results coincided with lay angles below 15 degrees.  

2. The natural frequency of cable that has an inclination angle of 10 degrees with the lay angle 

of 8 degrees was found using the present finite element model. The results are higher by 

2.68% when compared with frequencies values obtained experimentally. The model has 

more advantages than other available analytical models and commercial finite element 

programs. It can include the actual cable configuration, and also gives the axial and 

torsional frequencies. The inclination angle variation between 10 and 60 degrees was 

studied using the finite element model and ABAQUS, and results showed that due to the 

variation in the dynamic tension the out-of-plane, symmetric in-plane, anti-symmetric in-
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plane, axial, and torsional frequencies decrease with a 4-7% rate for each ten inclination 

angle.  

3. The corresponding modal shapes and the displacements interaction for the out-of-plane, 

symmetric in-plane, and anti-symmetric in-plane were found using the present finite 

element model and the experimental work for twisted inclined sagged cable ( 10  ). The 

comparison presented confirmed that the finite element model can give good predictions 

of the displacements for each type. For all mode types the highest coupled rotation motion 

is in the longitudinal direction and they are different by approximately 60% of the results 

obtained experimentally. It was observed that the rotation displacements in other two axes 

are smaller in magnitude. The translation displacements are small in magnitude comparting 

to the primary translation motions, the transversal translation displacement in the anti-

symmetric motion is being the exception where it is about 30% of the vertical motion 

magnitude.   

4. The modal interactions were also found for the axial and torsional in addition to the out-

of-plane and in-plane frequencies for a cable where axial and torsion coupling was 

neglected with inclination angle is set to zero. The results were compared to the model 

where the coupling and inclination angel is 10 is considered. It showed that the inclined 

cable mode shapes have translation and rotation displacements in the three-directions. The 

rotation displacements in the out-of-plane and in-plane modes are zeros for the horizontal 

cable. The inclined cable modes found to be unsymmetrical about the mid-span and differ 

from the shapes when inclination angle is zero. The coupled rotation displacements were 

signification at the supports endpoints in the primary axial modal shape. In the torsional 
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modal shape, the rotation displacements were found smaller in magnitude by 81% and 

96.4%. 

This present finite element model holds promise in solving more complex analysis of 

strands and ropes behavior. Future work can consider the application of the derived formulation in 

more complex problems.   
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CHAPTER 7: CONCLUSION   

This dissertation investigated the use of the finite element method and experiment 

apparatus to model the dynamic response of untwisted and twisted cables. The general concluding 

remarks and recommendations for future work are presented here for this research. 

7.1  Concluding Remarks   

In this work, the effective stiffness and mass matrix were found using a three-dimensional 

elasticity method for twisted cables for lay angles 5 to 30 degrees. These are then used to describe 

the nature of the dynamic motion and resonances considering the free vibration analysis for cables 

under axial loads that are supported at the same level and inclined cables (inclination angle 

between 10 to 60 degrees), using a finite element model where the sag, self-weight, and six degrees 

of freedom are considered. Sag variation (small to relatively large values) effects were also 

examined for uncoupled cables. The finite element model was validated with large experimental 

tests, commercial finite element software ABAQUS, and available analytically solutions. The 

study showed that the proposed finite element model gives an excellent prediction of the dynamic 

response for untwisted and twisted cables, which results in enhancing a safe design and reliable 

system. Very detailed conclusions are included in chapters 3-6. However, in here, the main 

dissertation conclusions drawn are as follows: 

1. An extensive review of the publications shows that cables' general dynamic behavior has 

been known for a long time; recently, an increasing interest in using cables in a wide variety 

of engineering applications required more understanding of the vibration of the cable. 

However, very little attention has been paid to studying the coupled translations and 

rotations interaction between various coordinates, either numerically or experimentally.  
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2. In order to accurately study the dynamic behavior of the cable, stiffness coefficients using 

a three-dimensional finite element elasticity-based method are introduced. The model 

provided the same general trend using replicated 8 one-dimensional analytical solutions 

from literature for the six-stranded cables examined. It gives a consistent determination 

method of the stiffness coefficients for twisted cables examined. The axial stiffness 

coefficients for lay angles between 5 to 30 degrees using the elasticity-based approach are 

slightly lower (4%) than those on the one-dimensional models for the studied cables' actual 

lay angle. The coupling and the torsional stiffness are generally within the bounds of the 

simple one-dimensional models. In addition, the model showed that for cable with a small 

lay angle, the internal contact can be ignored.  

3. The natural frequency spectrum, including out-of-plane, symmetric in-plane, anti-

symmetric in-plane, axial and torsional frequencies, for twisted and untwisted cables 

studied using the finite element model are within excellent agreement with the 

experimental results (the difference is less than 0.5% for horizontal cable and 2% for 

inclined cable), also analytical and ABAQUS models were used to validate the accuracy 

of the present model. The present finite element model has more advantages than the other 

approaches. It can include the actual configuration (twist and sag), the coupling and 

torsional stiffnesses, and the self-weight of the cable. In addition, the non-dimensional 

parameter 
2  effect was captured using the present model. The influence of sag, lay angle, 

and inclination angle variation on the frequency spectrum was also studied.   

4. The vibrational modal shapes of the cables were found using the finite element model, 

where the interaction between various axes was captured. For the five dynamic motions 

studied, the coupled six translation and rotation displacements were found. For instant, in 
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the out-of-plane mode, there are longitudinal and vertical translation components and 

longitudinal, vertical, and transverse rotation components coupled with the primarily 

transverse translation motion. The influence of sag variation, lay angle, and inclination 

angle were investigated. It was found that the sag value has a strong effect on the translation 

motions for the low-frequency spectrum, as well as on the axial frequency. The torsional 

frequency rotational modal shapes were also affected by the sag. The lay angle almost 

completely affects the translation mode shapes for the low frequencies (rotation mode 

shape for in-plane is strongly influenced). And, the lay angle has minimum impact on the 

axial frequency’s translation mode shapes, where it has the reverse behavior for the 

torsional frequency. The inclination angle effect on the cable was found to be significant 

comparing with the results of horizontal cable. In general, the results of the coupled 

interactions were confronted with results obtained experimentally, and the comparison 

showed that the finite element model can give a good prediction of the dynamic cable 

behavior. 

5. In order to study the cable vibration mitigation, the horizontal cables internal damping 

ratios were also found from the out-of-plane and in-plane motion. In addition, the effect of 

using viscous damper on the support on the cable vibration were tested. The results showed 

that the peak in-plane translation motion decreases by approximately 27% when the 

damper is used.  

7.2  Future Work  

The presented finite element model holds much promise in solving more complex problems 

of strands and ropes. It can be extended to study the dynamic behavior of multi-layered strands 

and ropes and other cables with complex cross-sections such as trapezoidal wires. In addition, the 
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sag (sag to span ratio more than 1:8) and inclination angle effect on twisted cables modal shape 

can also be studied. Other work may consider applying the finite element model to more complex 

problems, including post-elastic, bending effects, and fatigue analysis of strands and ropes.  

The model presented in this dissertation can also be extended to include the effect of 

damping and its effect on the coupling between the various coordinate vibrations. The Rayleigh 

method can be used to find the system damping matrix; then, the quadratic eigenproblem can be 

then solved. The effect created by damping related terms on the frequency spectrum and mode 

shapes can then be investigated. In addition, as it is known the vibration mitigation is a must on 

such a structure. Therefore, more experimental work using viscous dampers near or on the supports 

is required to understand their effectiveness on the coupled displacements.  
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