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ABSTRACT

ECOPHYSIOLOGICAL AND BEHAVIORAL DETERMINANTS OF NICHE RANGE IN

HIBERNATING BATS AFFECTED BY WHITE NOSE SYNDROME

The restrictions of a fundamental niche range, physiological conditions under which an organ-

ism can persist, becomes increasingly important as populations are subjected to extreme climatic

conditions. Hibernating animals are annually subjected to such extremes. For example, insec-

tivorous bats will survive months without caloric intake in winter by lowering body temperature

to near freezing to mitigate loss of energy through heat transfer and water through evaporation.

However, there is strong overlap between the fundamental niche of hibernating bats and that of

the keratinolytic fungus, Pseudogymnoascus destructans (Pd). As a result of Pd growth disrupting

wing membranes, hibernating bats are forced to enact frequent energetically costly arousals that

can result in starvation and mortality. The resulting disease, white nose syndrome (WNS), has re-

sulted in mass die offs of millions of hibernating bats across North America since Pd introduction.

However, there is significant inter- and intraspecific variation in host responses, and the realized

niche for bat hibernation may be wider and more variable than previously theorized, making host

responses difficult to predict. Ecophysiological models predict torpor arousal and hibernation sur-

vival with WNS as a function of microclimates, but they are largely dependent on laboratory-based

experiments measuring metabolic parameters like metabolic rate and evaporative water loss that

are likely subject to intraspecific local variation. We require a better understanding of the phys-

iological, environmental, and behavioral drivers of successful bat hibernation in natural systems

with and without Pd so we can improve risk assessment and guide management strategies for pop-

ulations affected by WNS. To better understand how torpor arousal is dependent on experienced

microclimates, we attached temperature and humidity data loggers to free-ranging Eptesicus fuscus

to record microclimates and arousal frequency throughout hibernation. Fitting this data to ecophys-
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iological models describing torpor, we found that while ecophysiological models provide adequate

boundaries to biological capabilities for arousal, stochasticity inherent in natural systems can lead

to earlier and more frequent arousal than models suggest. To determine how hibernation roosting

niche is constrained in spatiotemporally variable hibernacula, we measured microclimates through-

out a hibernaculum where Myotis lucifugus populations have thrived despite regional WNS-related

mass mortality. Using hierarchical modeling to predict spatiotemporal underground microclimates

based on above-ground conditions, we find that hibernation roosts are likely established early in

the hibernation season at microsites that are locally stable within a given hibernaculum chamber,

but not necessarily the most stable across the hibernaculum. This suggests that M. lucifugus are ca-

pable of a more flexible niche space than previously theorized, which may assist in WNS survival.

Lastly, we use approximate Bayesian computation to test different hypotheses for how bats survive

WNS in this hibernaculum, using ecophysiological models and longitudinal microclimate data

to compare local adaptation, microclimate selection, clustering, and grooming strategies. While

grooming removal of Pd load appears to be essential to describe observed population survival, we

find evidence of all four hypotheses contributing to biologically realistic survival. Ultimately, the

indirect fundamental niche range contraction due to Pd disrupting physiological host processes

is mitigated by a combination of adaptation and conspecific facilitation expanding realized niche

range. Our work represents advancements in novel technological and modeling advancements that

allow evaluation of niche range in free-living populations. The results of this study suggest that

there are populations with exaptations that facilitate WNS survival, but that alteration of environ-

mental conditions in other hibernacula could lead to a change in niche space outside the range for

which residents are locally adapted. Our findings help to inform and guide assessment of at-risk

species and inform potential management strategies by considering the significant individual- and

population-level variation in local adaptation and microclimate use that can impact WNS survival.
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Chapter 1

Introduction

We generally regard an organism’s niche as being comprised of physiological requirements

for survival (fundamental niche) and biotic interactions changing niche range (realized niche)

(Hutchinson, 1957). The realized niche concept was famously demonstrated by experiments in-

volving interspecific competition excluding species growth in areas where they would otherwise

thrive (Connell, 1961). Less commonly do we consider biotic interactions that could potentially

expand niche range (Bruno et al., 2003). When niche range is constrained by external stressors,

it is worth considering how populations persist by maintaining or expanding their niche range to

overcome potential extirpation. The concepts of niche range constriction and expansion can be

difficult to demonstrate in natural systems due to an overwhelming number of potential niche axes

and inherent stochasticity. However, we can limit this overwhelming dimensionality by examin-

ing natural systems wherein external influences are limited and stability is more the rule than the

exception, such as subterranean systems (Perry, 2013; Mammola et al., 2019b). Due to limited

influences external to the system, the issue of white nose syndrome (WNS), a disease caused by

the fungus Pseudogymnoascus destructans (Pd) infecting insectivorous bats (Blehert et al., 2009;

Frick et al., 2010), is an ideal scenario for us to examine how host niche range can exist outside of

overlapping pathogen niche to improve survival outcomes.

WNS emerged in 2006, causing mass mortality in a hibernaculum in upstate New York, and has

since spread across North America (Blehert et al., 2009). Pd was likely introduced from continen-

tal Eurasia and spread at least in part by anthropogenic activity (Reynolds & Barton, 2013; Drees

et al., 2017). Inhabiting cavern walls and persisting for years, Pd is often assumed to be pervasive

throughout a hibernaculum when it is introduced (Verant et al., 2012). There is significant variation

in inter- and intra-specific host response to Pd, but depending on the population, mortality rates

can be as high as 100% in some hibernacula (Frick et al., 2010). As a result, millions of bats have

died, and species like Myotis lucifugus, once one of the most widespread and populace mammals in
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North America, are now experiencing local extirpation and looming endangerment (O’Shea et al.,

2016; Cheng et al., 2021). This is a problem not only because Pd’s generality allows infections

of dozens of different bat species, but also because these bats provide important ecosystem ser-

vices. Estimates suggest that insectivorous bats save United States agricultural practices billions

of dollars worth of pest removal by consuming common crop pests (Boyles et al., 2011). The

interlaced impacts on animals, ecosystems, and humans make WNS a One Health issue (Zinsstag

et al., 2011), suggesting the need for an integrated multidisciplinary approach to establish holistic

management solutions.

To develop effective management solutions, we need to better understand the biotic and abiotic

factors that lead to variation in host responses and outcomes. More simply put: why do some

bats die while others appears unaffected? Studies suggest that WNS is largely a problem of niche

overlap between Pd and bat hosts (Langwig et al., 2012; Hayman et al., 2016). Pd is a psycrophilic

keratinolytic fungus, growing on skin and digesting proteins in relatively cold temperatures (Verant

et al., 2012). Then, when bats lower body metabolism in torpor and body temperature drops to

near ambient temperature (Twente, 1955; Davis & Reite, 1967), bat hosts essentially become petri

dishes for Pd growth (Lorch et al., 2011). As such, if bats hibernate in temperature and humidity

(henceforth “microclimates") that are ideal for Pd growth, the more likely they are to succumb to

WNS. When bats are badly affected, the disease manifests as increased arousal from hibernation

(Reeder et al., 2012). These arousals are energetically costly; one study suggests that M. lucifugus

arousal from torpor may cost as much energy as 67 days spent in torpor (Thomas et al., 1990). As

a result, when bats arouse too frequently, they die of starvation or cold exposure as they leave the

hibernaculum midwinter to seek out insect food sources that are seasonally absent (Reeder et al.,

2012).

There are multiple hypotheses for why bats arouse from torpor, but two prominent mechanis-

tic models parsimoniously describe arousal frequency both with and without Pd as functions of

ambient temperature and humidity (Hayman et al., 2016; Haase et al., 2019a). They suggest that

arousal is triggered when limits to energy or water loss are reached, processes that are accelerated
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by Pd disruption of skin membranes, and that mortality is likely when bat physiological require-

ments for hibernation strongly overlap with Pd’s physiological requirements for growth (Hayman

et al., 2016). While these models have success in describing WNS mortality patterns in a limited

number of populations, there are limits to their widespread application for risk assessment and

management purposes.

First, most of what we know about torpor physiology has been developed under experimental

laboratory measurements (Hock, 1951; Hanus, 1959; Speakman et al., 1991; Haase et al., 2019a).

The physiological traits that these models portray as parameters are not easily measured, requir-

ing advanced equipment and significant time to develop accurate results and enclosing bats in

controlled environments to make precise measurements (Lighton & Halsey, 2011). This removes

the processes from important environmental context, diminishing relevance to natural systems,

and trying to reproduce such experiments for the many species of interest while accounting for

population-specific variation in traits is intractable. We require means to feasibly estimate im-

portant physiological parameters within their environmental context in a way that is specific to

populations of interest.

Second, these models have been applied and tested under the common assumption that hiber-

nating bats seek out “optimal" stable conditions for hibernation (Elliott & Clawson, 2001; Tuttle

& Kennedy, 2011), such that averages of temperature and humidity are sufficient to describe expe-

rienced microclimates (Clawson et al., 1980; Nagel & Nagel, 1991; Langwig et al., 2012). While

these assumptions may hold true for some bat populations (Haase et al., 2019a), other recent stud-

ies show significant microclimate variation in roosting sites used for hibernation (Boyles et al.,

2017; Ryan et al., 2019). Longitudinal hibernation microclimate data throughout hibernacula are

difficult to gather due to electrical equipment malfunction from prolonged exposure to high humid-

ity (Kurta et al., 1990; Verant et al., 2012; Boyles et al., 2017), but it may be important to capture

mid-hibernation microclimate shifts and extremes that could significantly alter energetic expenses

and WNS outcomes. Thus, we require a better understanding of the conditions under which hiber-

nation roosts are established, and how those conditions can change over time and impact survival.
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Third, we need to begin incorporating these hypotheses into a broader environmental context

that accounts for natural system complexity. By testing these hypotheses in conjunction with other

hypotheses that may contribute to WNS survival, we can compare the driving forces that impact

outcomes. In addition to microclimate use (Hayman et al., 2016; Haase et al., 2019a), other be-

haviors, such as clustering (Langwig et al., 2012; Hayman et al., 2017) and grooming (Brownlee-

Bouboulis & Reeder, 2013) have been implicated in affecting WNS outcomes individually, but not

in combination. Given that these behaviors all could have implications in physiological processes,

it makes sense to examine them within a common framework.

In this dissertation, I aim to define the hibernating bat niche space that is relevant to populations

at risk of WNS. To do so, I integrate unprecedentedly detailed microclimate data and novel mod-

eling approaches to isolate biologically relevant processes and interactions in a complex natural

system (Restif et al., 2012) without invasive handling or disturbance of hibernacula during ener-

getically critical periods (Speakman et al., 1991). Each chapter helps to define bat niche space by

developing our understanding of ecophysiological interactions between bat hosts and their detailed

hibernation microclimate environments. In Chapter 2, I study a population of Eptesicus fuscus that

has not yet been exposed to Pd to develop baseline understandings of the limits to normal torpor.

In Chapters 3 and 4, I consider a New York hibernaculum that has become a refuge for M. lucifugus

hibernation. Despite regional population die offs, this hibernaculum has not experienced signif-

icant WNS-related mortality, which makes it an excellent case study for how bats use available

microclimates to survive WNS.

Chapter 2 establishes the importance of variance in torpor behavior and metabolic traits in

free-ranging individuals as compared to experimentally-derived observations. I use unique data of

microclimates used paired with torpor bout lengths for the entire hibernation period in E. fuscus.

By using these data to inform a Bayesian hierarchical ensemble model, I am able to simultane-

ously determine which environmental cues are driving arousal frequency and estimate metabolic

trait values. By limiting our niche investigation to the individual’s experienced environmental con-
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ditions, I can evaluate how expected arousal frequency can change with environmental use and

how natural system stochasticity affects hibernation niche space.

In Chapter 3 I consider the driving factors for roost establishment in a hibernaculum with

spatiotemporally variable microclimates. By examining an enclosed subterranean system in its

entirety, I am able to infer conditions that draw bats to common hibernation microsites, as well

as the conditions that drive bats away from unused sites. Hibernaculum microclimate availabil-

ity is sure to change over time as climate change results in warmer surface temperatures, so I

developed a hierarchical model wherein surface temperature is used to predict underground tem-

peratures throughout the hibernaculum, which is in turn used to inform roost establishment. In so

doing, I develop a predictive model of spatial hibernation niche as a function of climatic changes

influencing microclimate availability.

While Chapter 3 establishes the spatial niche of experienced microclimates, Chapter 4 inves-

tigates how those microclimates interconnect with other potential behavioral and physiological

drivers of WNS survival. While Pd constricts host niche space, hosts may be able to counter-

act this by using niche space outside of Pd niche range, Pd mitigation to retain niche space,

or conspecfic facilitation to expand niche space. In order to learn how bat hosts are interacting

physiologically with their environment to allow survival, I develop a suite of models representing

different combinations of behavioral and physiological hypotheses for why this population is so

robust. Comparing these, I find evidence that no one mechanism can represent the system in a bi-

ologically realistic way, but due to physiological interactions between mechanisms, a combination

can represent natural system observations.

In summary, we build our representation of free-ranging hibernating bat niche space by devel-

oping our expectations of physiological consequences of environment on bat torpor in sequentially

larger capacities. First, we relate the microclimates that individuals experience to torpor length ex-

pectations (Chapter 2). Then, we examine the larger hibernaculum space to compare microclimates

that bats do and do not use for hibernation, as well as how these microclimates can change with

climatic shifts (Chapter 3). Following this, we examine the interactions between environment, host
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physiology, pathogen physiology, and host behavior within the context of the larger hibernaculum

(Chapter 4). In so doing, we further advance our understanding of how niche space can come to

be defined in free-ranging populations, how pathogens can exploit this niche space, and how hosts

can counteract that exploitation.
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Chapter 2

Ecophysiological models describe biological limits to

hibernating bat behavior

2.1 Introduction

Torpor, the lowering of metabolic rate to reduce energy expenditure, is a common life history

strategy found in a wide diversity of mammalian and avian clades (Ruf & Geiser, 2015). Torpor

is sometimes seen as a strategy of survival; populations capable of mitigating energy requirements

during extreme conditions of stress or scarcity may be more capable of avoiding extirpation (Geiser

& Turbill, 2009; Nowack et al., 2017). Whether to bypass times of scarcity or to avoid time periods

of active predation, some animals are capable of lowering energy use to an impressively scant one

percent of euthermic basal metabolic rate (Geiser & Ruf, 1995). Torpor strategies generally fall into

two distinct categories: daily torpor, which represents often periodic shifts in metabolic rate within

a twenty-four hour period, and hibernation, which is marked by a series of elongated torpor bouts

that can last as long as days, weeks, or even months under the right conditions (Geiser, 2004).

Because of the greater physiological demands of longer torpor, seasonal hibernators may be at

increased risk of extirpation due to anthropogenic changes, such as range constriction associated

with climate change or mortality from human-introduced diseases (Humphries et al., 2002; Blehert

et al., 2009; Frick et al., 2010; Sherwin et al., 2013; Nowack et al., 2017). It is important that

we understand the physiological trade-offs of balancing energetic constraints with anthropogenic

pressures in elongated torpor (Humphries et al., 2003), so that we can improve our expectations of

population survival in the face of changing environments.

We can further examine how hibernation survival can be impacted by anthropogenic change

by considering hibernating bats. In temperate climates, many insectivorous bat species hibernate

through cold winter months to avoid food scarcity, rather than migrating to warmer temperatures
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(Humphries et al., 2002). These heterothermic endotherms practice astounding feats of metabolic

control. In bouts of torpor, they lower body temperature to be closer to ambient temperature,

with some species dropping to near freezing to mitigate energetic loss through heat exchange

(Davis & Reite, 1967). However, if ambient temperature drops below the lowest body temperature

that hibernators can maintain, energetic costs increase (Hock, 1951; Hanus, 1959), and even in

ideal conditions, animals cannot maintain torpor indefinitely. Whether to hunt scant winter insects

(Avery, 1985), replenish water stores (Thomas & Geiser, 1997), or in response to external stimuli

(Speakman et al., 1991) or an internal "biological alarm clock" (Twente & Twente, 1987), bats, like

many hibernating species, must arouse periodically mid-hibernation, increasing body temperature

to euthermic conditions that allow normal activity. One estimate for Myotis lucifugus suggests

several hours of arousal is equivalent to as much as 67 days of hibernation in terms of energy use

(Thomas et al., 1990). This is similar to non-bat extreme hibernators. Despite spending more

than 90% of hibernation in deep torpor, Urocitellus richardsonii spend only 17% of their total

hibernation energy budget on torpor, compared to 19% used for the act of arousal. (Wang, 1979).

Thus, arousal is a major source of energy store depletion during hibernation (Thomas, 1995).

Understanding why and how frequently hibernators arouse from torpor mid-hibernation can help

us predict the conditions under which a bat has enough energy to survive hibernation through

winter.

The need to characterize mechanisms driving bat torpor in particular has become urgent since

humans introduced the fungus Pseudogymnoascus destructans (Pd) to naive hibernating bat popu-

lations (Reynolds & Barton, 2013). The resulting disease, white-nose syndrome (WNS), can cause

up to 100% mortality in some affected populations (Frick et al., 2010; Cheng et al., 2021). In

response, researchers have developed multiple models to assess population mortality risk based

on torpor duration as a function of microclimates, local ambient environmental conditions (e.g.,

temperature or humidity), that can vary spatially and temporally throughout hibernacula (Langwig

et al., 2012; Hayman et al., 2016; Haase et al., 2019a). WNS is caused by the keratinolytic fungus

Pseudogymnoascus destructans (Pd) growing on hibernating bat skin in cool, wet microclimates
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(Blehert et al., 2009; Verant et al., 2012). Infection can increase arousal frequency, potentially

leading to starvation (Reeder et al., 2012), but the mechanism behind this increased frequency is

yet unknown. Proposed hypotheses include dehydration, energy loss, thermoregulatory disruption,

circulatory or respiratory disruption, and immunological responses (Cryan et al., 2010; Puech-

maille et al., 2011; Reeder et al., 2012; Cryan et al., 2013), though not all of these mechanisms

are relevant to describing torpor bout duration in absence of disease. Two prominent models de-

scribe separate parsimonious hypotheses for bat torpor bout duration both with and without WNS

(Hayman et al., 2016; Haase et al., 2019a). They represent the hypotheses using broadly relevant

mechanistic equations linking torpor arousal frequency with environmental conditions and host

and pathogen traits. The first model (henceforth the “energetics model") makes arousal frequency

dependent on temperature-driven metabolism, with the rate of energy loss driving arousal (Hayman

et al., 2016). The second model (henceforth the “hydration model") describes arousal frequency as

a function of evaporative water loss; when bats lose a certain percentage of body weight to evapo-

ration, they arouse to rehydrate (Haase et al., 2019a). In both, environmentally-dependent fungal

growth accelerates these processes, increasing arousal frequency. Bats hibernating in microcli-

mates where they survive uninfected but exhaust energy stores with Pd are using ‘ecogological

traps’ (Battin, 2004; Leach et al., 2016). Bats hibernating in microclimates that leave them with

excess available energy after hibernation are using ‘survival space.’ Both models hold promise for

predicting microclimate-based bat hibernation activity (Hayman et al., 2016; Haase et al., 2019a),

but neither have been validated using field data of natural torpor bouts in free-ranging bats. To

further develop predictions of torpor bout duration in natural systems, we require methodology

that accounts for multiple arousal mechanisms and data representing natural torpor behavior and

corresponding microclimates.

In order to gain better understanding of the physiological trade-offs present in extended tor-

por, we must bridge the gap between experimentally-derived information and natural observations,

which can be challenging. Most of what we understand about torpor bout duration has been devel-

oped under laboratory conditions in controlled environments (Hock, 1951; Hanus, 1959; Speak-
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man et al., 1991; Armitage et al., 2003; Armitage & Woods, 2003; Karpovich et al., 2009; Haase

et al., 2019a). Parameters controlling model expectations, such as thermal conductance, metabolic

rate, and evaporative water loss rate, are by necessity measured in enclosed spaces (e.g., respirom-

etry chambers) under standardized environmental conditions to improve measurement precision

(Lighton & Halsey, 2011). There have been few attempts to measure metabolic output in free-

ranging hibernators directly (Wang, 1979; Kurta et al., 1989a,b, 1990; Stenvinkel et al., 2013).

Controlled laboratory experiments improve our understanding of torpor physiology and are valu-

able in formulating and testing hypotheses (McGuire et al., 2017), but there are barriers to applying

these studies to natural systems and free-ranging animal behavior. For example, big brown bats

(Eptesicus fuscus) are one of the most widespread mammals in North America, and studies have

demonstrated significant gradients of morphological and natural history variation (Burnett, 1983;

Neubaum et al., 2007; Dunbar & Brigham, 2010; O’Shea et al., 2011). Estimated values for physi-

ological parameters derived from laboratory conditions do not account for population-specific vari-

ation in these parameters or individual-level variation in behavioral choices. Furthermore, natural

systems are stochastic, with changing external influences difficult to predict or simulate in artificial

settings. This stochasticity complicates direct inference from laboratory-developed model estima-

tions to naturally occurring field observations. Thus, when applying ecophysiological models to

field observations we should use methods that account for this increased variation in a meaningful

way (Restif et al., 2012).

Field-gathered observations of natural systems are often more limited than experimentally-

derived data. Challenges to collecting observations of natural torpor bout duration and microcli-

mate use make field validation of ecophysiological models difficult to achieve. For example, diffi-

culty of accessing hibernacula (Olson et al., 2011; Wainwright & Reynolds, 2013), intermittently

moving individuals (Whitaker Jr & Rissler, 1992), changing environmental conditions relevant

to ecophysiology (Boyles et al., 2017), and humid environments that degrade electronic equip-

ment (Kurta et al., 1990; Verant et al., 2018) all work against researchers studying free-ranging

animal behavior. Furthermore, direct observation of activities and environmental conditions mid-
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hibernation requires humans entering hibernacula, which can result in arousal and further depletion

of essential energy stores (Speakman et al., 1991), a major concern for WNS-susceptible popula-

tions. However, challenge breeds ingenuity, and bat researchers specifically have developed a

number of methods for studying bats that increasingly take these difficulties into account (Castle

et al., 2015). As a result of these scientific advances, we can attach miniaturized data loggers that

record environmental conditions to bats for entire hibernation seasons and longer, yielding data on

microclimate use and torpor bout duration in free-ranging bats.

Here we bridge the laboratory-field gap for understanding physiological trade-offs of hibernat-

ing species by reparameterizing models describing observed torpor bout duration in free-ranging

E. fuscus as a function of hibernation microclimates measured using novel technology. We use

parameter sensitivity analysis to guide parameter estimation via a Bayesian hierarchical ensemble

model that tests the relative importance of the energetics and hydration mechanisms under het-

erogeneous environmental conditions. With the reparameterized model, we predict torpor bout

duration in a more relevant way for free-ranging populations. We then recontextualize our findings

by applying our new parameters to the models investigating WNS mortality to inform risk assess-

ment of a population not yet exposed to Pd. Our approach creates a better understanding of the

limits of ecophysiological models’ predictive capabilities while significantly reducing prediction

variance by accounting for individual variation. Our findings inform us on how microclimates in-

fluence the mechanisms driving torpor behavior, and by extension survival of winter hibernation,

informing risk assessment of populations susceptible to anthropogenic changes like WNS.

2.2 Materials and Methods

2.2.1 Data collection and interpretation

We expand on previous studies that attached temperature data loggers to bats to approximate

hibernation activity (Jonasson & Willis, 2012; Reeder et al., 2012) by incorporating humidity, the

next most vital microclimate aspect suspected to drive arousal (Cryan et al., 2010; Willis et al.,
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2011; Cryan et al., 2013; McGuire et al., 2021b), and measuring microclimate through the entire

hibernation season. Data logger development and methodology is discussed further in Appendix

A.1. In short, we attached miniaturized data loggers recording hourly temperature and relative

humidity (RH) to bats using a mattress suture technique developed by Castle et al. (2015) (Figure

2.1.a). We used a monofilament absorbable suture such that suture would eventually degrade and

data loggers detach from unrecoverable bats.

We chose to study a summer colony of adult female E. fuscus because they are capable of robust

hibernation under a wide range of microclimates with or without WNS (Hayman et al., 2016). The

colony had no known Pd exposure. We captured bats in mist nets as they emerged from a human-

built structure in Goshen County, Wyoming, and stored them in cloth bags until we attached data

loggers under anesthesia on site. We recorded body mass, forearm length, sex, and reproductive

status, and a physical exam was performed by veterinarians prior to anesthesia. Following anes-

thesia, bats were released when flight-capable, typically within fifteen minutes. Initial captures

occurred in Summer 2018, and because hibernation location was unknown, recapture attempts oc-

curred at the same site in late Spring and Summer of 2019. We cancelled subsequent recapture

attempts due to the SARS-CoV-2 pandemic. We released 100 bats with data loggers in 2018 and

recaptured 3 bats in 2019. It is unknown whether low recapture rates were due to WNS-related

mortality, low annual roost fidelity, suture failure and device loss, or device-related mortality. How-

ever, there was no noted significant pathology for any recaptured individuals in this study or others

using similar methods (Castle et al., 2015). Upon recapture, we removed data loggers without

anesthesia. Bat handling and data logger attachment protocols were approved by the USGS Fort

Collins Science Center Institutional Animal Care and Use Committee (FORT-IACUC_2017-06)

and Wyoming Game and Fish Department (permits 33-1190_2018 and 33-1190_2019).

We interpreted data logger output to describe relevant microclimate measurements and define

periods of torpor and euthermia. Our data loggers recorded a combination of skin and ambi-

ent temperature, which we assume in torpor to be equal to ambient temperature (Ta). In small

mammals, skin temperature can be used to approximate body temperature (Tb) (Audet & Thomas,
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Figure 2.1: (a) Big brown bat (Eptesicus fuscus) with a temperature/humidity data logger attached using

a mattress suture. (b) Example of recorded temperature (top) and relative humidity (bottom) data from a

single bat. We mark examples of hibernation, torpor, and arousal as they pertain to our data interpretation.

The beginning and end of hibernation are marked by multiple consecutive days of consistently low body

temperature with no daily arousal to feed. Hibernation is split into distinct torpor bouts, extended periods of

low body temperature, by periods of arousal wherein body temperatures rise to euthermic levels, recorded

by our data loggers as a rise in skin temperature. Arousal results in an artificial sudden drop in recorded

relative humidity due to relative humidity being calculated by loggers as the percent ratio of measured water

vapor pressure over maximum potential saturated vapor pressure, which increases with temperature.
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1997; Barclay et al., 1996; Willis & Brigham, 2003). Thus, above the bat’s minimum maintained

body temperature (Ttor,min), we assume that in torpid bats, body temperature is equal to recorded

temperature is equal to ambient temperature, similar to previous validations of the energetics and

hydration models (Hayman et al., 2016; Haase et al., 2019a). When ambient temperature drops

below the Ttor,min threshold, bats expend energy to maintain body temperature at Ttor,min (Hay-

man et al., 2016; Haase et al., 2019a). We use sudden changes in recorded temperature to delineate

arousal, euthermia, cooling, and torpor (Figure 2.1.b) (Jonasson & Willis, 2012). Consistently low

temperatures over an extended period represent torpor; torpor bouts are interrupted by sudden in-

creases in temperature associated with increased skin temperature during arousal. When recorded

temperature increases suddenly by 5 or more degrees, we interpret this as a warming event and

mark the previous hour as the beginning of arousal (Jonasson & Willis, 2012). Similarly, we mark

the beginning of the cooling period as the hour before the last greater than five degree drop in tem-

perature occurs following euthermia. Euthermia is the time period between warming and cooling,

and torpor is the time period between cooling and warming.

Data loggers also recorded hourly RH, which we converted to water vapor pressure (WVP)

using ambient temperature to define saturated vapor pressure and multiplying by the percent RH

(Equation 2.1) (Campbell & Norman, 2012; Haase et al., 2019a). Sudden downward spikes in

RH coinciding with arousal periods (Figure 2.1.c) are data loggers spuriously converting increased

skin temperature and measured WVP to reported RH, so only values recorded during torpor were

used to reflect ambient WVP (WV Pa). Per the hydration model, we assume that bat skin WVP

is equal to saturated vapor pressure for the bat’s body temperature (Campbell & Norman, 2012;

Haase et al., 2019a). The WVP deficit (∆WV P ) is then calculated as skin WVP minus ambient

WVP. We used each torpor bout’s mean Ta and WV Pa as input for the energetics and hydration

models.

WV Pa = 0.611e
17.503∗T
T+240.97 ∗RH (2.1)
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2.2.2 Model structure and parameter estimation

Standard procedure for parameterizing an initial biological model is to use values derived from

relevant literature, e.g., Hayman et al. (2016). When we used the logger-recorded torpor micro-

climates as input for the energetics and hydration models, literature-based parameterizations did

not accurately describe E. fuscus torpor bout duration variation, with no significant correlation

between observed torpor bout durations and model predictions (see Appendix Figure A.1). Rec-

ognizing that the model structures were validated for different species and populations than our

study population, whereas regionally specific variation in metabolic functions exists (Dunbar &

Brigham, 2010), we fit the models while allowing for variation in parameters to which torpor bout

duration is sensitive. Thus, for each ecophysiological model, we performed partial rank correlation

coefficient (PRCC) parameter sensitivity analysis using Latin hypercube sampling (Marino et al.,

2008) with torpor bout duration as the dependent variable to determine which parameters to esti-

mate. Given that we were working with a complex non-linear model containing known correlation

between some parameters (e.g., body mass and metabolic rate (Kleiber et al., 1932)), we estimated

only the most sensitive parameters to avoid identifiability problems.

To estimate population- and individual-specific values and variation in these parameters, we

used a Bayesian hierarchical ensemble model (Figure 2) that calculates torpor bout duration for

both ecophysiological models (Equations 2.2 and 2.3 for the energetics and hydration models,

respectively, see Table 2.1). We used initial 2018 capture mass to represent body mass (Mbody).

To identify the relative importance of the energetics and hydration hypotheses under a range of

microclimates, we estimated time in torpor (ttorpor) as a weighted average of the energetics and

hydration models, where the percent contribution of each (π for energetics, 1 − π for hydration)

is dependent on environmental factors (Equation 2.4). Temperature data were centered and scaled

in Equation 2.4 for ease of fit. We add time to cool from euthermic to torpid body temperature

(tcool, Equation 2.5) and time to warm to euthermic temperature (twarm, Equation 2.6) (Haase

et al., 2019b) to ttorpor to estimate the maximum potential time for a bout of torpor in a given

microclimate (tlimit, Equation 2.7).
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Table 2.1: Parameters for the energetics and hydration models for big brown bats (Eptesicus fuscus), their

literature-based values, and distributions used for estimation.

Parameter Definition and units Value Prior Distribution Reference

Ttor,min Minimum body temper-

ature maintained in tor-

por (◦C)

3.5 Uniform(0.5, 5) (Hanus, 1959; Hayman

et al., 2016)

TMRmin Torpid metabolic rate

(ml O2 g−1 hour−1)

0.028 Gamma(µ =
0.03, σ = 0.05)

(Hanus, 1959; Hayman

et al., 2016)

Ct Torpid conductance (ml

O2 g−1 ◦C−1)

0.055 Uniform(0.01,

0.2)

(Hock, 1951; Hayman

et al., 2016)

Ceu Euthermic conductance

(ml O2 g−1 ◦C−1)

0.2 (Halsall et al., 2012;

Haase et al., 2019b)

S Tissue-specific heat

capacity (ml O2 g−1

◦C−1)

0.131 (Thomas et al., 1990;

Hayman et al., 2016)

Q10 Change in torpor

metabolism

1.6 +
0.26Ta −

0.006T 2
a

(Hock, 1951)

ttor,max Maximum torpor dura-

tion (hours)

792 Uniform(maximum

observed, 1000)

(Brack Jr & Twente,

1985)

Mbody Body mass (g) Measured in this study

SAbody Body surface area

(cm2)

10 ∗M
2/3
body (Gouma et al., 2012)

percentfat Percent of Mbody that is

fat tissue

0.3 (Hayman et al., 2016)

SAwing Wing surface area

(cm2)

SAbody ∗
19.68
39.36

Calculated as the

wing/body ratio re-

ported in (Haase et al.,

2019a)

rEWLbody Rate of cutaneous

evaporative water loss

from the body (mg hr−1

∆WVP−1 cm−2)

0.027 Gamma(µ =
0.1, σ = 0.1)

see Appendix A.2

(Klüg-Baerwald &

Brigham, 2017; Haase

et al., 2019a)

rEWLwingRate of cutaneous evap-

orative water loss from

the wings (mg hr−1

∆WVP−1 cm−2)

rEWLbody∗
0.1
0.33

Calculated as a simi-

lar wing/body ratio to

(Haase et al., 2019a)

Teu Euthermic body tem-

perature (◦C)

37 (Halsall et al., 2012)

WR Warming rate (◦C

hour−1)

90 (Halsall et al., 2012)
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ttor,energetics =











ttor,max/Q

(

Ta−Ttor,min

10

)

10 Ta > Ttor,min

ttor,max

1+(Ttor,min−Ta)∗
(

Ct
TMRmin

) Ta ≤ Ttor,min

(2.2)

EWLcutaneous = (SAbody ∗ rEWLbody + SAwing ∗ rEWLwing)∆WV P

ttor,WV P =
0.027 ∗Mbody(1− percentfat) ∗ 1000

EWLcutaneous +
TMRmin∗Mbody

0.2095∗0.3∗1000
∗

∆WV P
0.46152(273.15+Ta)

ttor,hydration = min(ttor,energetics, ttor,WV P )

(2.3)

βk ∼ Normal(0, 1)

π = logit−1(β0 + β1Ta,scaled + β2∆WV P + β3Ta,scaled∆WV P )

ttorpor = πttor,energetics + (1− π)ttor,hydration

(2.4)

tcool =
log(Teu − Ttor)

Ceu ∗M0.67
body ∗

log(Teu−Ta)
S∗Mbody

(2.5)

twarm = (Teu − Ta)/WR (2.6)

tlimit = tcool + ttorpor + twarm (2.7)

For parameter estimation, we used published literature estimates as informative priors and al-

lowed for biologically meaningful variation by confining values to within an order of magnitude of

the literature estimate (Table 2.1). We drew population values from uniform distributions, and then

used this population value as a mean for a Gamma distribution to estimate individual-specific val-

ues. This enhances our understanding of what regional variation might differentiate our population

from those previously sampled while also accounting for individual variation.
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Allowing variation in parameterization of the ecophysiological models, we still found that

fitting the models directly to torpor bout duration data yielded poor fits ignoring large portions of

variance in the observed data (see Appendix Figure A.2). Thus, we let ecophysiological models

define potential boundaries of behavior by using the model output from Equations 2.2-2.7 as an

upper limit to torpor bout duration. Actual torpor duration (tbout) was determined as a percentage

(ρ) of tlimit. For a given microclimate, ρ was drawn from a Beta distribution with a mean that is

partially dependent on environmental conditions, similar to π (Equation 2.8). We used a Gamma

distribution to define and predict tbout, matching mean and variance moments to the shape and rate

parameters (Equation 2.9). This prevents negative values for tbout and allows unexpectedly long

outlier bout lengths to exist above tlimit. Table 2.1 provides definitions, values, and resources for

all equation parameters.

µρ = γ0 + γ1Ta + γ2∆WV P + γ3Ta∆WV P

σρ ∼ Uniform(0, 0.5)

ρ ∼ Beta

(

µ2
ρ − µ3

ρ − µρσ
2
ρ

σ2
ρ

,
µρ − 2µ2

ρ + µ3
ρ − σ2

ρ + µρσ
2
ρ

σ2
ρ

)

(2.8)

σi ∼ Uniform(0, 50)

tbout,n,i ∼ Gamma

(

(ρ ∗ tlimit)
2

σ2
i

,
(ρ ∗ tlimit)

σ2
i

) (2.9)

2.2.3 Estimating hibernation time with and without Pd

Given the large amount of variation we could introduced by estimating tbout as a percentage

of tlimit, as well as the fact that torpor bouts are being modeled as independent events, we wanted

to ensure that the summation of our torpor bouts would result in reasonable approximations of

hibernation duration. Thus, we used our predictions to estimate total hibernation time in two ways:

first as a quality control by comparing predictions with observed hibernation for individual bats,
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second as a risk assessment to evaluate potential survival space. For quality control purposes, we

estimated hibernation time by summing the ith bat’s predicted ni bout lengths with ni+1 euthermic

period lengths drawn from a Gamma distribution with the same mean and standard deviation as

our measured euthermic periods (µeu = 1.6 hours, σeu = 2.1 hours). We can then compare to our

measured hibernation times for bats given their known hibernation microclimates and number of

bouts.

As a risk assessment to estimate the potential for mortality when Pd is introduced to this pop-

ulation, we evaluated the potential for hibernation across a range of microclimates. For a given

ambient temperature and RH, we estimated a bat’s expected potential hibernation time using the

same equations and process as the model(s) selected by our ensemble function, but substituting in

our population’s estimated parameters. We compared expected hibernation times without and with

Pd growth. We identified the microclimates that match with observed individual torpor bouts to

evaluate chosen microclimates for long-term hibernation use. We then estimated the percent loss

in survival space as ecological traps emerge, i.e. the percent of used microclimates where bats

survive uninfected but die when Pd is introduced.

All work was custom-coded in R (R Core Team, 2021) using the rjags (Plummer, 2021), tidy-

verse (Wickham et al., 2019), and lubridate (Grolemund & Wickham, 2011) packages. Sensitivity

analysis was performed using the lhs (Carnell, 2021), fitur (Roh, 2018), and sensitivity (Iooss

et al., 2021) packages. Images were prepared using the cowplot (Wilke, 2020), reshape2 (Wick-

ham, 2007), and ghibli (Henderson, 2020) packages. Data and reproducible code have been stored

in a public repository.

2.3 Results

We recaptured three bats with a total 66 independent torpor bouts: 26 from Bat 1, 21 from Bat

2, and 19 from Bat 3. We found via PRCC sensitivity analysis (Figure 2.2) that the most important

traits influencing bout duration are torpor conductance (Ct), rate of evaporative water loss from

the body (rEWLbody), torpid metabolic rate (TMRmin), the minimum body temperature the bat
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Teu

WR

rEWLwing

S

percent fat

Ceu

Mbody

ttor,max

rEWLbody

TMRmin

Ttor,min

RH

Ct

Ta

−5 0 5 10

Sensitivity

Model

Energetics

Hydration

Figure 2.2: Partial rank correlation coefficient parameter sensitivity analysis results for the energetics and

hydration models with torpor bout duration as the output. Sensitivity denotes a monotonic correlational

relationship between the given parameter and torpor bout duration, where directionality of sensitivity and

correlation are the same. Note that temperature (Ta) and relative humidity (RH) are covariates, not pa-

rameters, but they were included in analysis to ensure that we take into account the potential for parameter

sensitivity to change under different microclimates, as opposed to testing under one static microclimate.

will maintain in torpor (Ttor,min), and maximum possible torpor length (ttor,max). The first four

parameters relate to metabolic processes in torpor that have been estimated via experimental mea-

surements for populations of interest (Haase et al., 2019a). Using previously published values to

establish biologically relevant priors (Table 2.1), we estimate the five sensitive parameters (Fig-

ure 2.3.a). Parameter values are consistent across bats within the population, and literature-based

values were generally within the credible interval of our posterior estimations, but our population

likely differs from populations previously measured. Given the high sensitivity of the model to

these parameters, it is important that our estimates be specific for our population of interest. Thus,
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Figure 2.3: Bayesian hierarchical model output for (a) estimated parameters and (b) mean and variance

moment and hibernation duration. Error bars represent 95% credible intervals for model output and 95%

confidence interval for observed data.
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on average, our bats exhibit increased values of ttor,max and TMRmin and decreased values of Ct

compared to previous reports; these changes reflect a capability for increased torpor duration at

colder temperatures (Equation 2.2). We also find that our bats have a lower rate of evaporative wa-

ter loss than reported for M. lucifugus (Haase et al., 2019a), which we might expect given regional

variation allowing for low rates of evaporative water loss in dry locations like our study site (Cryan

et al., 2010; Klüg-Baerwald & Brigham, 2017).

Allowing variance in our population’s parameterization, we can define a population-specific

physiological limit that bounds bat behavior (Figure 2.4). Our reparameterization captures vari-

ance in torpor duration that is not described by the energetics or hydration models using published

parameters (black lines in Figure 2.4.a and 2.4.b, respectively) (see Appendix Figure A.2). There

is a large amount of variance in predicted bout length for conditions that allow longer hibernation,

which reflects the potential for a bat to wake up for unpredictable reasons prior to reaching its

physiological limits in torpor. We see that the originally parameterized temperature model is sim-

ilar to our model at higher temperatures, and could have worked similarly as an upper limit in its

own right. However, as ambient temperature drops below Ttor,min, bats are capable of considerably

longer torpor bouts than theorized under the original parameterization. These longer torpor bouts

at low temperatures reflect the maximum potential bout duration in the population-level parameter-

ization. Bat-specific individual parameterizations treat these data points with greater uncertainty,

suggesting that bats could potentially hold a torpor bout in cold temperatures for longer than our

subjects exhibit.

Our results strongly favor the energetics model, with π equal to near 1 above five degrees

(Figure 2.4.c). The hydration model is partially incorporated at lower temperatures, though the

temperature model is more than 50 percent favored even in the coldest microclimates observed.

Thus, we find support for the hypothesis that, at least in this healthy E. fuscus population, bat

torpor duration is driven more by temperature than humidity. This is likely a result of this study’s

bats hibernating in much drier conditions than what the hydration model would predict. Some of

the longest torpor bouts occur in 55 to 80% RH, while the hydration model favors longer torpor
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bouts in conditions of near saturated vapor pressure (Haase et al., 2019a). That the hydration

model only begins to be influential at lower temperatures is in keeping with previous findings that

evaporative water loss better predicts torpor duration at lower temperatures (Thomas & Cloutier,

1992).

As a result of fitting our model to a physiology-defined limit, we can capture the distribution

of torpor bout durations (Figure 2.3.b), but we have difficulty fitting the exact temporal sequence

of torpor bout durations. It is notable that our model’s prediction of torpor duration’s upper limits

accurately matches approximately a dozen observed torpor bouts wherein bats are presumably

in torpor until physiology dictates arousal (Figure 2.4.a,b). In addition, we captured important

general features of temporal progression. Given each bout’s environmental conditions, our model

was able to predict total hibernation duration for each bat (Figure 2.3.b). Having validated that

the distribution of microclimates used can predict overall hibernation outcomes, we can begin to

examine how microclimates help or hurt winter survival.

We use our population-specific parameterization to estimate changes in survival space with

Pd’s introduction. We estimate survival using the energetics model equations estimating grams of

fat used in hibernation (Hayman et al., 2016), inserting our parameters in place of published values.

In order to conceptualize survival space, we consider whether a bat with finite energy (grams of fat)

can survive hibernation through a 4780 hour winter (our shortest observed winter length) under a

given static microclimate. We calculate survival across ranges of temperature and RH, presenting

the 95% credible interval limits and mean time until a bat runs out of energy stores (Figure 2.5).

We overlay this with points that represent microclimates used for each bout duration measured,

reflecting survival potential if a bat were to hibernate in that microclimate repeatedly, with size

scaled by the actual length of torpor. As expected, in the absence of Pd, bats generally spend

the majority of their hibernation, including the longest torpor bouts, in microclimates promoting

survival to the end of hibernation (Figure 2.5). On the low end of the credible interval, we find only

a very narrow range of microclimates wherein our bats survive, suggesting that individuals unfit

for hibernation (e.g., low fat stores) will have difficulty surviving outside of precise conditions.
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Figure 2.5: Survival expectations across a range of microclimates indicating survival space and potential

ecological traps. For a given temperature and relative humidity, we use the population-level parameterization

to estimate the time until bats exhaust energy stores if hibernating in that microclimate indefinitely. We

compare this to hibernation expectations (approximate winter length = 4780 hours) and indicate for our

observed microclimates whether an average individual would survive (circle) or die of starvation (crossed

square) in the given microclimate. We deem microclimates where individuals could survive as survival

spaces. Microclimates where individuals could survive without Pd (top row) but die if Pd is introduced

(bottom row) are ecological traps. We perform this analysis across iterations of our Bayesian model chains to

generate a 95% credible interval for survival expectations. The first column is the credible interval low end,

the third column is the credible interval high end, and the middle column is the mean survival expectation.
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Conversely, on the high end of the credible interval, survival is expected in all microclimates

investigated, suggesting that particularly well-conditioned individuals should have little trouble

surviving winter.

With the introduction of Pd, there are frequently used microclimate ranges that would result

in likely mortality. E. fuscus that hibernate with Pd in greater than 90% RH are at significant

risk of developing WNS (Figure 2.5). There is also loss of survival space in lower humidity at

warmer temperatures, though bats that hibernate in lower humidity at colder temperatures appear

to be still capable of survival. Importantly, there are multiple long torpor bouts that occur within

microclimates that convert from survival to mortality with Pd introduction, suggesting a strong

potential for these otherwise favorable conditions to be ecological traps in the presence of Pd. On

average, 88% of observed torpor microclimates are suitable for long-term use without infection,

but when Pd is introduced, this reduces to 44%. Thus, half of the observed survival space used by

these bats is eliminated. Even in the best-case scenario at the upper end of the credible interval, we

observe a 28% loss of previously viable microclimates for hibernation, indicating that while we

do not expect population extirpation in a single hibernation season, significant population losses in

response to Pd introduction are likely in this population of E. fuscus.

Discussion

Torpor is a strategy employed by many species to survive cold weather by lowering metabolic

rate such that body temperature approaches environmental temperature, minimizing heat loss and

energy use. However, torpor cannot be maintained indefinitely, requiring periodic arousal mid-

hibernation. This can leave hibernators sensitive to anthropogenic disturbances, such as the pathogenic

fungus Pd, which significantly increases bat arousal frequency, leading to starvation (Reeder et al.,

2012). Since the emergence of WNS, the need to develop ecophysiological models that describe

hibernation behavior has become an urgent undertaking. Multiple mechanistic models of torpor

bout duration, each describing a distinct hypothesis for arousal timing, have been developed and

validated for a few of the many species affected by WNS (Hayman et al., 2016; Haase et al.,
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2019a). Given dozens of species exposed to Pd and significant intraspecific variation in morphol-

ogy, metabolism, and behavior relevant to hibernation (Burnett, 1983; Neubaum et al., 2007; Cryan

et al., 2010; Dunbar & Brigham, 2010; O’Shea et al., 2011; Hayman et al., 2017; Klüg-Baerwald

& Brigham, 2017), there is concern that models developed based on literature-derived parameteri-

zations or measured under laboratory conditions might not represent free-ranging populations. To

address this, we used sensitivity analysis to specify significant parameters for predicting torpor

bout duration and estimated these in a Bayesian hierarchical ensemble framework, while testing

two hypotheses for arousal frequency. We define population-specific parameterizations that inform

on natural history, redefine ecophysiological models as limits of torpor capability rather than direct

predictors of torpor behavior, and identify environmental conditions under which each hypothesis

influences torpor duration outcomes.

We find that E. fuscus is capable of longer torpor bouts at low temperatures than literature-

based models theorize (Figure 2.4.a). To accommodate these observations, our model estimated

torpor conductance (Ct) as low and minimum metabolic rate in torpor (TMRmin) high compared

to literature values (Figure 2.2). These covarying parameters are present in the temperature model

as a ratio that regulates the curve’s slope at temperatures less than Ttor,min. By estimating a smaller

conductance to metabolic rate ratio, we observe a flatter plateau rather than the sharp peak observed

in the temperature model’s published parameterization (Figure 2.4.a). This suggests that perhaps

our E. fuscus population is particularly good at mitigating heat loss or maintaining metabolic rate

in colder temperatures. Additionally, we find that the reparameterized rate of evaporative water

loss (rEWLbody) is decreased compared to literature values, suggesting an increased capacity for

water retention. There are demonstrated differences in capacity for water retention across E. fuscus

populations (Klüg-Baerwald & Brigham, 2017), so it makes sense that our population living in the

relatively dry plains of eastern Wyoming should be adapted to reduce evaporative water loss. By

allowing parameter variation to let the model adhere to our natural observations, we can make

inference on metabolic parameters without intensive experimentation. When more detailed risk

assessments are required (e.g., endangered species), we can reduce cost and intensive handling time
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by guiding measurement of parameters that are most likely to impact torpor duration expectations

(e.g., conductance, torpid metabolic rate).

We establish that ecophysiological models are more useful in describing potential limits to be-

havior than predicting behavior directly. Torpor duration in natural systems does not necessarily

equate to what is observed in a stable laboratory environment. There are a number of external

influences that can be difficult to account for in the lab, including but not limited to microclimate

heterogeneity, auditory disturbance from other animals in the environment, or tactile disturbance,

such as might be experienced when a neighboring bat arouses (Speakman et al., 1991). Any of

these disturbances, but especially tactile disturbance, could considerably shorten observed torpor

bout length in an unpredictable manner (Speakman et al., 1991). Therefore, ecophysiological

models of torpor bout length can describe the biological limits of which hibernators are capa-

ble, and that in a natural environment, disturbances may prevent them from achieving this limit.

Accounting for this source of natural variation can significantly change model outcomes and the

relative importance of different processes. Literature-based models attempting to describe ob-

served torpor durations generally overestimated torpor bout duration, particularly in microclimate

ranges favorable for long-term torpor (Figure 2.4.a,b). Overestimation of torpor duration results

in increased expectations for hibernation capability and survival potential, which could result in

misclassification of at-risk bat populations as safe from WNS. However, literature-based models

also underestimated torpor duration in cold and dry microclimates (Figure 2.4.a,b), which could

counterbalance overestimation. Care should be taken to ensure that model functional form adheres

to data presentation, and applying models as biological limits helps to eliminate these sources of

over- and underestimation.

To better understand the drivers of arousal from torpor, we used an ensemble modeling ap-

proach to test the weighted importance of two hypotheses under different microclimates. We

found that the energetics model was dominant in all observed microclimates used for hiberna-

tion, but the hydration model becomes increasingly influential as temperatures decrease below 5o

C (Figure 2.4.c). This suggests that ambient temperature is a stronger driver of arousal than am-
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bient humidity in natural systems, despite experimental evidence supporting humidity as a driver

of arousal (Ben-Hamo et al., 2012, 2013). Hayman et al. (2016) assert that the energetics model

phenomenologically considers evaporative water loss in that there is a correlation between tem-

perature and humidity. Efforts by Haase et al. (2019a) expand on the energetics model, explicitly

modeling evaporative water loss simultaneously as an alternative mechanism for arousal and taking

the minimum torpor duration of the two, resulting in the hydration model (Equation 2.3). Then,

the evaporative water loss portion of the hydration model takes effect when expected torpor from

hydration is shorter than that expected from energetics, which would increasingly occur in tem-

peratures below Ttor,min. This is because below this minimum threshold, skin WVP, defined as

saturation at body temperature, will consistently be higher than ambient WVP, which is limited by

ambient temperature (Equation 2.1), such that as temperature drops there is an increasing WVP

deficit even at 100% RH (Figure 2.4.c). Thus, we believe that the hydration hypothesis will be

increasingly important for populations with higher minimum body temperatures held in torpor

or small-bodied species with higher surface area-to-mass ratios, though this hypothesis requires

further experimentation to confirm.

Our analysis of the drivers and estimation of torpor duration has clear implications for bats fac-

ing WNS, with an average of 50% of survival space converting to ecological traps with the intro-

duction of Pd (Figure 2.5). While some mortality may be expected, there are a variety of potential

behavioral and evolutionary responses to mitigate WNS mortality. These may include changes in

increased sociality and coordination of arousal behavior (i.e., social thermoregulation) (Hayman

et al., 2017), shifts in hibernation microclimates used to ensure longer torpor bout length (John-

son et al., 2016), or increases in gathered fat stores to more easily last through the winter (Cheng

et al., 2019). Alternatively, populations may not have the adaptive capacity to escape ecological

traps (Hopkins et al., 2021). By observing the outbreak and spread of WNS in real time, there

has been opportunity to consider the evolutionary responses of bats and the impacts on population

survival (Maslo & Fefferman, 2015; Gignoux-Wolfsohn et al., 2021). We propose that changes in

survival space could be used to estimate strength of selection across a spatiotemporal landscape.
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Incorporating Pd selection strength with heritability of survival-related traits in a framework to

evaluate population survival via evolutionary rescue (Golas et al., 2021) could further improve risk

assessment of affected populations.

Our work represents a shift in understanding of how we can apply ecophysiological models

to natural disease systems. We demonstrate methods to derive insight on energetics without the

need for repeated intensive animal handling or disturbance of sensitive natural systems during

periods critical to survival. Using unprecedentedly complete microclimate data of full hibernation

from only three individuals, we are able to estimate population-specific metabolic parameters that

are more useful than previously established literature-based values. We believe we have learned

so much from so few individuals in this study by embracing the approach of model-guided field

work (Restif et al., 2012), which holds promise for garnering similarly important information from

endangered populations. With more robust recapture rates, perhaps in more accessible colonies in

both winter and summer to allow for potential collection of mortality-related information, we could

incorporate mark-recapture statistics to our hierarchical model to better evaluate overall population

survival. We hope that this work is the beginning of a line of investigation to improve survival

predictions and risk assessment across many species of bats threatened by WNS, as well as other

hibernators threatened by changing environments, and that in learning more about hibernation

dynamics we can develop novel methods to help conserve biodiversity.
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Chapter 3

Predicting hibernating bat roost establishment in

spatiotemporally complex hibernacula

3.1 Introduction

Realized niche space theory suggests that organisms exist within an “n-dimensional" space

that is restricted by biotic and abiotic interactions (Hutchinson, 1957). Controlled experiments

can demonstrate important drivers of niche partitioning (Connell, 1961), but the complexity and

stochastic variability of natural systems creates an extreme dimensionality that can make it difficult

to identify which drivers are significant. Naturally isolated ecosystems may create an opportunity

to more easily define niche space. For example, subterranean environments are generally relatively

stable, with limited temperature fluctuation and more often than not consistently saturated water

vapor pressure in the air (Mammola et al., 2019b). These underground ecosystems provide shelter

for a surprisingly wide range of biodiversity and adaptive strategies. The stable conditions and

general lack of outside influence results in unique locally adapted populations that can become

dependent on their particular environment (Sánchez-Fernández et al., 2021), representing a clear

example of adaptation to fit a particular niche space. However, this niche dependence can result in

inability to respond to sudden environmental changes, such as anthropogenic disturbances (Mam-

mola et al., 2019a; Pallarés et al., 2020; Castaño-Sánchez et al., 2020; Sánchez-Fernández et al.,

2021). One group of animals that are seasonally dependent on underground conditions and of

great interest to people for their widespread biodiversity and ecosystem services are insectivorous

hibernating bats (Boyles et al., 2011).

Hibernating bats are assumed to seek out ideal stable conditions for hibernation (Elliott &

Clawson, 2001; Tuttle & Kennedy, 2011), but roosting conditions within a single hibernaculum

can vary widely (Boyles et al., 2017). These bats may be physiologically limited to specific condi-

31



tions for hibernation, but underground temperature and humidity are notoriously difficult to mea-

sure over long periods due to costly equipment failure (Verant et al., 2012; Boyles et al., 2017),

and too-frequent disturbance of human intrusion can be detrimental to sensitive flora and fauna

(Thomas, 1995). We can use bats to explore the concept of niche dependency by characterizing

chosen hibernation conditions and identifying the drivers behind why bats roost where they do.

With data of hibernation conditions proving a limiting factor, we can benefit from predictive mod-

eling to describe underground conditions as a function of above-ground climatic changes. Doing

so can reduce reliance on difficult and costly measurements while simultaneously gaining un-

derstanding of how subterranean environments can change according to above-ground influences.

Thus, hibernating bats provide opportunity to define realized niche space in natural systems with

minimal intrusion, and predict how that niche space changes spatiotemporally due to outside in-

fluences. Investigating hibernating bat niche space has become increasingly important since the

emergence of white nose syndrome (WNS), a disease that has led to widespread bat mortality

(Blehert et al., 2009; Frick et al., 2010). Pseudogymnoascus destructans (Pd), the keratinolytic

fungus causing WNS, overlaps in niche space with bats in torpor, creating a new biotic niche di-

mension that restricts bat physiological capabilities, constraining their realized niche. To predict

bat survival capabilities in a hibernaculum, we need to better understand the dimensional axes that

constrain the hibernation roost niche in presence of Pd.

Defining these axes can be difficult because roost establishment of hibernating bats across un-

derground hibernacula with spatiotemporally variable local environmental conditions (e.g. temper-

ature and humidity, henceforth "microclimates") can be highly heterogeneous. Bat choice of spe-

cific within-hibernaculum locations (henceforth "microsites") for roosting likely results from some

combination of bat traits and available microclimates (Twente, 1955). This is because hibernating

cave-dwelling bats are heterothermic endotherms, lowering body metabolism to reduce body tem-

perature to more closely approximate colder ambient conditions. This reduces energetic costs of

maintaining warmth and mitigating fat depletion for months when insect food sources are unavail-

able (Davis & Reite, 1967; Humphries et al., 2002). Microclimates determine bat metabolism and
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evaporative water loss in hibernation, and a given microclimate can lead to survival or starvation

and dehydration depending on the individual’s physiological needs (Thomas et al., 1990; Thomas

& Cloutier, 1992). This combination of bat physiological traits and microclimate use is exploited

by Pd. When bats hibernate in niche space overlapping Pd’s physiological needs, it results in

fungal growth that increases the frequency of energetically costly bat arousal, potentially leading

to starvation and mortality (Reeder et al., 2012). Anthropogenic disturbance like climate change

affects hibernation microclimates (Humphries et al., 2002; Sherwin et al., 2013), which in turn

affects Pd growth and bat traits (Langwig et al., 2012; Hayman et al., 2016; Haase et al., 2019a).

In addition to physiological traits, we need to consider the social aspects of hibernatory behavior,

as bat clustering has the potential to influence hibernation roost choice as well as bat response

to Pd (Clawson et al., 1980; Langwig et al., 2012). Thus, we need a more basic science under-

standing of site selection and bat success under different microclimates to understand the natural

history of how bats survive hibernation in the wild as well as how they respond to Pd presence and

microclimate availability changing as a function of above-ground climate change.

A comprehensive understanding of changes to the realized niche, as defined through roost se-

lection, will combine knowledge of bat physiological traits, such as metabolic rate and evaporative

water loss, as they relate to microclimates to result in energetically successful hibernation (Hayman

et al., 2016; Haase et al., 2019a). For decades researchers have developed laboratory experiments

to measure physiological traits for populations of interest (Hock, 1951; Hanus, 1959; Speakman

et al., 1991; Haase et al., 2019a), and these efforts can be used in conjunction with field research

and mechanistic modeling to predict bat hibernation outcomes under a range of environmental

conditions (Hayman et al., 2016; Haase et al., 2019a; Golas et al., in review). However, hiber-

naculum microclimates are not always easily characterized, and attempts to measure variation in

available microclimates underground are often fraught with difficulty due to electrical equipment

malfunction and poor quality of retrieved data (Kurta et al., 1990; Verant et al., 2012; Boyles et al.,

2017). Many studies bypass detailed evaluation of spatiotemporal microclimate variation by rely-

ing on singular or averaged measurements to draw inference (Clawson et al., 1980; Nagel & Nagel,
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1991; Langwig et al., 2012), which may be a valid assumption in particularly stable environments

(Haase et al., 2019a). However, even in the most stable underground microclimates, temperature

is expected to correlate to mean annual surface temperature (MAST) (Perry, 2013; McClure et al.,

2020), which we expect to vary year to year, especially as climate change increases global tempera-

tures (Loarie et al., 2009). In addition, hibernaculum structure (e.g. size, shape, elevation, number

of entrances) can change airflow in ways that affect available microclimates for roosting (Perry,

2013). Very few studies attempt to characterize the available microclimates throughout the hiber-

naculum for the entire winter period, but those that do are able to draw important inference on bat

behavior related to microclimate variability (Elliott & Clawson, 2001; Boyles et al., 2017; Ryan

et al., 2019). However, at this time we are not aware of any studies that characterize the entirety

of hibernaculum microclimates available to bats, or describe those microclimates as a function of

above-ground changes. To demonstrate how bats select hibernaculum microsites under variable

conditions, we require methods that predict available underground microclimates and relate them

to changing external conditions. By describing spatiotemporal microclimate variation as a function

of above ground conditions rather than reducing our conceptualization of roost conditions to an-

nual average microclimates or maximally stable MAST conditions, we can make novel inference

in where and why bat roosts develop in addition to how changes above ground and anthropogenic

disturbances can affect underground roost suitability.

Because of assumptions of stable hibernation microsites, evaluations of bat physiology in re-

sponse to WNS often use climatic averages rather than longitudinal microclimate data (Hayman

et al., 2016). This results in simplified representations of niche space that may over-emphasize the

niche overlap between bats and Pd. There is significant variation in host response to WNS that

could be explained by bats maintaining a wider niche space through spatiotemporal microclimate

variation. For example, WNS can cause as much as 100% mortality in Myotis lucifugus hibernac-

ula, and resulted in mass die offs in the northeast United States when it was first introduced (Frick

et al., 2010; Cheng et al., 2021). However, one hibernaculum home to over 30,000 overwintering

M. lucifugus in New York is unique within this region in that through the epidemic emergence of
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Pd, the population overwintering there has not declined significantly (Cheng et al., 2019). This

may be a result of unique subterranean system structure resulting in microclimate profiles or vari-

ability of microclimates that give M. lucifugus range to hibernate safely outside of Pd niche space.

Given that bats have been consistently found roosting in the same locations without significant

population decline despite Pd presence, we propose that this hibernaculum is uniquely useful for

developing methods and investigating questions regarding hibernaculum roost establishment.

We aim to describe the realized niche of M. lucifugus in a complex spatiotemporally vari-

able hibernaculum in terms of microsite selection for hibernation. We recorded microclimates

throughout hibernation in roosting and non-roosting sites across the hibernaculum. We then used

a Bayesian hierarchical modeling approach to simultaneously predict underground microclimates

and within-hibernaculum site occupancy as a function of above ground conditions. Although hiber-

nation roost establishment is influenced by microclimate profiles, sociality, and microsite stability,

we find that sociality and early hibernation temperature profiles are primary drivers of hibernation

niche space. In so doing, we improve our understanding of the factors that drive bat behavior and

how an intricate underground environment can change with above-ground climate. We demon-

strate prediction of hibernation niche range under a climate change scenario and discuss how our

model can be further developed as a tool for conservation and management of an important refuge

for otherwise-devastated bat populations.

3.2 Materials and Methods

3.2.1 System and data description

Our study hibernaculum is a cavernous subterranean abandoned mine in New York state. The

exact name and location are not disclosed because in addition to common bat species like M. lu-

cifugus and Eptesicus fuscus, endangered Myotis leibii and Myotis sodalis overwinter there. The

hibernaculum is regularly monitored with midwinter surveys every other year to count its particu-

larly large and stable M. sodalis population, but our study focuses on M. lucifugus because they are

better studied in terms of their physiological traits and hibernation requirements (Thomas et al.,
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1990; Jonasson & Willis, 2012; Hayman et al., 2016; Haase et al., 2019a). In 1993 and 2013 the

hibernaculum’s M. lucifugus population was censused, representing pre- and post-Pd introduction,

which occurred in approximately 2009. These censuses did not reveal any significant decline in

M. lucifugus in response to Pd (Cheng et al., 2019). We assign our study microsites as being es-

tablished hibernation roosts or not based on midwinter survey observations. Each roost microsite

is found within one of three larger roosting areas in the hibernaculum.

Structurally, the hibernaculum can be divided into three distinct chambers: the large open

“Upper chamber" that is closest to surface level, the similarly expansive “Lower chamber" that

is connected to the Upper chamber by multiple tunnels through walls of stone, and the relatively

narrow “Side chamber" that branches off the Upper chamber with very minimal airflow (Figure

3.1). Each of these chambers contains a general area where M. lucifugus are commonly found

roosting during midwinter surveys and areas where they are not commonly found. While the

Upper chamber has multiple surface openings, there are two that appear significant to airflow

and available microclimates (Figure 3.1). The “warm entrance", which is higher in elevation,

allows warmer air in summer months to passively diffuse into the mine, cooling and sinking as

it contacts the walls until the local MAST-related analog is reached. The “cold entrance", lower

in elevation than the warm entrance but angled to be higher elevation than the mine chambers

within, allows cold air to flow into the mine in winter months. This cold air sinks below the

MAST-related temperature air, further cooling the mine when temperatures are cold outside. The

resulting airflow creates temperature and humidity gradients throughout the hibernaculum that

represent a combination of variable surface-level conditions and the more consistent hibernaculum

wall temperatures derived from MAST.

To characterize available microclimates throughout the hibernaculum, we deployed a total of

117 modified DS1923-F5# Hygrochron iButton temperature/relative humidity data loggers through-

out the hibernaculum. Prior to deployment, loggers were modified with intent to prevent humidity-

related equipment failure common with long-term deployment of electronics in underground ecosys-

tems (Kurta et al., 1990; Verant et al., 2012; Boyles et al., 2017). Modifications included remov-
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a

b

c

Figure 3.1: A schematic representation of this study’s subterranean system. We explicitly model microcli-

mates across three different chambers: Upper, Lower, and Side. Due to the system’s shape and changes in

elevation, airflow is expected to shift seasonally, with microsites near the warm entrance being most similar

to surface conditions in the summer, and microsites near the cold entrance being most similar to outside

conditions in the winter. As air flows through the system it is expected that cool air will sink and settle into

the lowest elevation areas while warm air will rise to higher elevations. Simultaneously, contact with rock

walls pulls air temperature closer to the mean annual surface temperature analog for the system, creating a

heat source or sink depending on air temperature.

ing the outer casing, solidifying microchip lead connections to the battery using conductive silver

epoxy, and painting the entire device save for the humidity sensor with waterproof epoxy sealant.

Before modifying all data loggers, proposed modifications were performed on approximately ten

loggers and tested under laboratory conditions for several months in a temperature-controlled re-

frigerated unit with built-in fan to allow for variable humidity, simulating underground conditions.

Loggers were hung from cavern walls and ceilings using drywall screws placed in rock crevices,

approximating areas where bats would be expected to roost when possible (Figure 3.2.a). Despite

laboratory success with modified logger survival under extended cave-like refrigerated conditions

with 100% relative humidity, 34 data loggers contained usable data when retrieved. These 34

loggers were relatively evenly distributed throughout the mine system, with a total of 12 loggers
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Figure 3.2: (a) Placement of a modified temperature/humidity data logger near a torpid bat within our

subterranean system. Data loggers recorded (b) temperature and (c) relative humidity every two hours.

Each line depicts the microclimate signature for a given data logger. For visualization purposes, we color

data loggers by elevation, with high elevations being closest to surface level and low elevations being the

deepest underground microsites of the system. There are clear spatial patterns within the data, with low

elevation microsites having some of the lowest temperature and highest relative humidity signatures.
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spanning the M. lucifugus hibernation roosting areas of the three chambers and 22 microsites where

M. lucifugus are not generally found during mid-winter surveys (Figure 3.3 main panel).

Data loggers took temperature and relative humidity readings every two hours from August

15th, 2017, to April 30th, 2018 (Figure 3.2.b and c, respectively). Temperature and relative humid-

ity traces contained clearly non-realistic reading errors (e.g. sporadic -40o temperature readings,

relative humidity traces greater than 100% and less than 0%). These were corrected by remov-

ing the errant values and replacing with the previous recording for temperature, and by assuming

100% relative humidity in warm months (see Appendix Figure B.1). These microclimate traces

of the hibernation season were used to generate summary statistics for initial model selection. We

used temperature to convert relative humidity readings into ambient water vapor pressure deficit

using the same method as Haase et al. (2019a), which is a more useful statistic in the context of bat

hydration and physiology (Kurta, 2014). Because we assume 100% relative humidity, and hence

saturated vapor pressure and a water vapor pressure deficit of 0 kPa, during warm months when

cool dry air is not flowing through the mine system, we only use the data set where this assumption

does not apply to generate summary statistics.

To pair microclimates with spatial location in the mine, we used survey maps from when

the mine was functioning to assign each data logger x and y coordinates and approximate el-

evation. Given that airflow within the mine is nonlinear, with walls, wide pillars, and curved

passages directing airflow, we developed a logger placement network (see Appendix Figure B.2),

such that data loggers without significant barriers between them are connected by an edge that

is the Euclidean distance in three dimensional space between those two points. Using this, we

measured the distances to warm and cold entrances as the shortest paths along this network,

approximating distance of airflow from respective entrances to reach the microsite. We also

measured the weighted “path to bats" as the sum of reciprocals of network path distance from

the microsite to the centroids of recorded M. lucifugus roosting microsites within each chamber

(Σ(1/dUpper centroid + 1/dLower centroid + 1/dSide centroid)). Then, the degree of positive correlation of
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Figure 3.3: Data logger placement throughout the subterranean system. Data loggers are relatively widely

distributed, covering both areas where bats are commonly found roosting during midwinter surveys (green

dots) and areas where they are not (tan dots). The three insets depict temperature recordings and hierarchical

model predictions of average daily temperature for representative samples of the [1] Upper, [2] Side, and

[3] Lower chambers. Insets depict longitudinal data and predictions for given microsites, with black dots

representing temperature recorded by data loggers and purple lines representing predicted average daily

temperature with a 95% credible interval. Note that temperatures are highest and most variable in the Upper

chamber, and most stable in the Side chamber. The Side chamber (inset 2) also depicts best how data loggers

lose resolution in measurement accuracy by recording 0.5 degree Celsius temperature increments that may

not capture minor daily variation in temperature predicted in the hierarchical model.
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path to bats with roosting probability was interpreted as the relative strength of influence for roost-

ing affinity, i.e. the degree to which bats roost in a site due to neighboring bat roosting activity.

Daily surface temperature data was gathered using the Coupled Model Intercomparison Project

(CMIP5) (Taylor et al., 2012). We used the surface temperature readings for the longitude and lat-

itude that closest approximated the study hibernaculum’s location. We used daily averages for the

2017-2018 and projected 2047-2048 (RCP 2.6 model) hibernation seasons, and used the previous

year’s worth of daily average temperature to calculate mean annual surface temperature each day.

3.2.2 Logistic roost occurrence model

To determine which factors were significantly correlated with bat hibernation roost occur-

rence, we performed a form of boosted logistic regression (Friedman et al., 2000) implemented

in Bayesian format to predict bat occupancy throughout the system. We aggregated a list of po-

tential covariates based on each microsite’s spatial location and microclimate output. Because

researchers often assume bats will seek out the most stable subterranean conditions for hiberna-

tion, we included spatial covariates that reflect the reduced influence of above ground forces and

increased influence of the more stable MAST, i.e. distances from the warm and cold entrances and

elevation. Summary statistics (i.e. mean, standard deviation, maximum, minimum, and median)

were included for microsite temperature and water vapor pressure deficit to represent microclimate

influence. We included interaction terms of spatial covariates to reflect the three-dimensional cav-

ern space, as well as interaction terms of mean temperature and water vapor pressure to reflect the

potential for bats to favor optimal peaks in temperature or water vapor pressure deficit, or for im-

portant interaction between the two closely related variables (Kurta, 2014). Because bats transition

from swarming activity to hibernation in the fall, we included mean and standard deviation in tem-

perature for September, October, and November, to test if particular periods of early hibernation

might be significant for hibernation roost establishment. Finally, to test the effects of sociality on

roost locations, we included the path to bats covariate. See Table B.1 in the Appendix for a list of

all covariates considered.
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When all covariates were gathered, we calculated Spearman’s rank correlation coefficient us-

ing the PerformanceAnalytics packages in R (Peterson et al., 2018) to identify variables that were

closely related enough to present identifiability issues in the model. When two variables had a

greater than 0.9 correlation coefficient, one was rejected, with the more data-inclusive variable

favored where applicable (e.g. mean hibernation temperature favored over mean November tem-

perature). The remaining covariates were then centered and scaled (cov = (obs − µobs)/σobs) for

comparison of coefficient strength and fed into a Bayesian logistic regression model, custom coded

and implemented in R (R Core Team, 2021) using the rjags package (Plummer, 2021). For each

known microsite occupancy there is a probability of roost occurrence (φ) that is a logit function of

the spatial and environmental covariates and their respective coefficients. Coefficients were initi-

ated with a Normal distribution and noninformative priors. Starting with the full model containing

all covariates that were not rejected for correlation, we performed backward model selection guided

by change in DIC to select a final reduced logistic model to use in our hierarchical model.

In-sample validation was performed by training the model on covariate data for all microsites

and comparing values of φ, the probability of roost occurrence, to observed occurrence. We also

performed out-of-sample prediction using k-fold cross validation, randomly removing three mi-

crosites from the data set and predicting φ for omitted microsites using covariates, repeated over

500 iterations. Logistic model Bayesian analyses included two chains with an adaptation period of

10,000 iterations, followed by model prediction over 40,000 iterations with a 20,000 iteration burn

in period.

3.2.3 Microclimate prediction model

In order to predict the factors that influence hibernation roost establishment, it is important

that we understand how microsite microclimates develop and change with the outside world. To

this end, we developed a model to predict underground temperature throughout our study environ-

ment based on surface-level conditions. This model’s structure was informed by expert knowledge

regarding this particular subterranean system and our microclimate observations throughout hiber-
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nation. As such, it was specific to our system but the general structure may apply to predicting

microclimates in other subterranean systems. We developed our model’s form by considering ba-

sic physical principles: warm air rises, and heat will transfer from warmer to colder objects. Then,

cavern walls that correlate consistently with MAST (Perry, 2013) acted as a heat source or sink de-

pending on whether air was cold or hot, respectively. Because we based our model on established

principles of natural systems, we were able to make inference to inform on expected microclimates

under predicted above-ground changes, such as climate change. Although the relationships of air-

flow and temperature throughout the system may appear complex, we used a relatively straightfor-

ward parsimonious model to describe the spatially-changing influences of above-ground airflow

and underground MAST temperature on within-cavern air temperature. We did not focus on pre-

diction of water vapor pressure because our covariate selection process to predict roosting sites

revealed that water vapor pressure was not an important predictor.

Our temperature prediction model built predictions along a time series, with each daily predic-

tion of mean average temperature in a given microsite being a function of the previous day’s tem-

perature plus some change in temperature dependent on microsite location and surface conditions.

We predicted microclimates on the initial day as a function of mine structure and system-specific

expectations. In our case, this meant delineating microsites into three general location groupings:

the Upper chamber, Lower chamber, and Side chamber (Figure 3.1). We expected in our sys-

tem that throughout the summer, warm air will settle into the mine, simultaneously warming any

super-cooled air from the previous winter and being cooled down to the local MAST-related ana-

log (henceforth simply “MAST analog"). We used the second half of August as our start point, as

the deepest microsites should have been sufficiently rewarmed to MAST analog conditions by this

time. We chose a peak in mean daily surface temperature as our start point so there is no potential

for microsites to be warmer than surface temperature as a result of lag effects from previous days.

Thus, microsite temperature was greater than or equal to MAST analog temperature and below

surface temperature.
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Average daily temperature for the ith microsite on the first day (µTemp,1,i) in each of the three

chambers was phenomenologically modeled as a function of decrease in temperature from the

primary entrance in the chamber down the elevation gradient, starting with surface temperature at

highest elevation down to the MAST analog at lowest elevation (See Appendix Equation B.1). With

average daily temperature at time t = 1 established for all microsites, subsequent average daily

temperature (µTemp,t,i) was modeled as a combination of temperature change due to airflow from

the surface and the pull of temperature toward the MAST analog, with the percent contribution (ν)

of each mediated by estimated airflow (Equation 3.1, see Appendix B.1). We assigned microsites

as having high, medium, or low airflow, based on system observations. High airflow indicated

microsites located in large open channels that connect directly to outside entrances. Medium air-

flow indicated microsites in relatively open but highly columnar space, so the air stream is easily

broken. Low airflow microsites were located in small nooks that are offset from larger chambers.

In equation 3.1, f(αi, Tout,t−3:t) indicates a regression on change in outside temperature over the

past three days mediated by the spatially-derived parameter α, and g(TMAST,t) refers to the change

of within-chamber air temperature toward the daily MAST analog (TMAST,t) due to contact with

cavern walls. We modeled three days of change in outside temperatures because preliminary cross-

correlation analysis between outside temperature and microsite temperature revealed that this was

the longest period over which lag effects of outside temperature affected any site underground (see

Appendix Figure B.3). Because airflow changed significantly in our system when surface tempera-

ture was lower than the MAST analog, we predicted model parameters separately for warm airflow

days (Tout,t > TMAST,t) and cold airflow days (Tout,t < TMAST,t), designated with subscript w or

c, respectively. All estimated parameters were initiated with noninformative priors. See Appendix

B.1 for further details.
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µTemp,t,i =











νi,wf(αi,w, Tout,t−3:t) + (1− νi,w)gw(TMAST,t) Tout,t ≥ TMAST,t

νi,cf(αi,c, Tout,t−3:t) + (1− νi,c)gc(TMAST,t) Tout,t < TMAST,t

Tt,i ∼ Normal(µTemp,t,i, σ
2
T )

(3.1)

We performed in-sample validation of the microclimate model output by comparing predicted

daily mean temperature to data logger observations for each microsite, and ensuring that daily

variance in temperature predictions did not significantly exceed data logger measurement variance.

The microclimate model is computationally slow due to a large amount of informing microclimate

data, so our Bayesian analysis included two chains with an adaptation period of 1,000 iterations,

followed by model prediction over 3,000 iterations with a 2,000 iteration burn in period.

3.2.4 Hierarchical model

In order to elevate our logistic roost occurrence model’s predictive capacity, we used the micro-

climate model to predict relevant environmental covariates that feed hierarchically into the logistic

roost occurrence model. The resulting hierarchical model is similarly computationally slow as the

microclimate model, so we used the same Bayesian analysis protocol for adaptation, burn in, and

prediction. We primarily used in-sample validation in the hierarchical model because the model’s

one week run-time makes repeated sampling intractable. In-sample validation included comparing

model predictions of relevant microclimate covariates and probability of roost occurrence (φ) to

system observations. We did perform an informal out-of-sample validation by predicting proba-

bility of roost occurrence in microsites where we did not have microclimate data to inform predic-

tions, but knew that bats were or were not present during midwinter surveys.

We also used our model to predict underground microclimates as a function of above-ground

conditions under climate change. To do so, we used estimated surface temperatures under an RCP

2.6 model projected 30 years in the future (2047-48 hibernation season) (Taylor et al., 2012). We

used our hierarchical model with estimated parameter values to calculate expected microclimate
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covariates and roosting occurrence probability under these projected environmental conditions. To

estimate model predictions of microclimate covariates and probability of roost occurrence through-

out the entire subterranean system, we use the akima package in R (Akima & Gebhardt, 2021) to

interpolate model expectations between and beyond data logger locations. This was performed for

both the 2017-18 predictions informed by data logger measurements and the 2047-48 predictions

under assumed climate change.

3.3 Results

Table 3.1 details the final results of our logistic roost occurrence model selection. We identified

Table 3.1: Selection of logistic roost occurrence model informed by measured microclimates. Models with

a difference in DIC greater than 100% of the full model’s penalized deviance were considered significantly

less descriptive, and were rejected.

Model Penalized

deviance

∆DIC

Full model 3.19 0

Selected model: Intercept + distance to

warm + September standard deviation in

temperature + mean hibernation tempera-

ture + path to bats

5.39 2.20

Selected −distance to warm 17.53 14.34

Selected −September standard deviation

in temperature

21.83 18.64

Selected −mean hibernation temperature 22.60 19.41

Selected −path to bats 38.09 34.9

distance from warm entrance, mean hibernation temperature, standard deviation of temperature in

September, and path to bats as significant covariates in determining roost occurrence. Distance

to warm entrance, mean temperature, and path to bats were positively correlated with roost oc-

currence, while September standard deviation in temperature was negatively correlated with roost

occurrence. Path to bats registered as most significant in both change in DIC and coefficient val-

ues, followed by mean hibernation temperature and September standard deviation in temperature.

Distance from warm entrance and path to bats are spatial covariates that do not change over time,
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but we were able to predict hibernation mean and September standard deviation in temperature

through our hierarchical microclimate model. Figure 3.3 depicts representative microclimate pre-

diction output from each of the three chambers. The predicted standard deviation of daily tem-

perature (σT ) was 0.64, which is comparable to the advertised +/- 0.5 degree Celsius resolution

inherent in data logger measurements.

For our microclimate predictions to hierarchically inform the logistic model, we calculated

mean hibernation temperature as the mean of predicted daily temperature (µTemp,t,i) over the mod-

eled time period and September standard deviation in temperature as the standard deviation of

predicted daily temperature throughout September (Figure 3.4, see Appendix B.4). Our model

captured mean hibernation temperature with impressive accuracy (observed vs. predicted Ad-

justed R2 = 0.93, p < 0.0001) (Figure 3.4.a,b). September standard deviation demonstrated a

clear relationship between observations and predictions, though goodness of fit was not as precise

(observed vs. predicted Adjusted R2 = 0.23, p = 0.002). This may be expected given that the

lack of resolution in data logger measurements is unable to capture minor temperature variation

in stable conditions (e.g. Figure 3.3 inset 2). However, importantly, our predictions did capture a

decrease in standard deviation in areas where midwinter roosts are found relative to areas where

they are not found (Figure 3.4.d). This was consistent with the logistic model, which predicted a

negative correlation between roost occurrence and September standard deviation in temperature.

The predicted values in Figure 3.4.b and d are covariates for inference in the logistic layer of

the hierarchical model. The result is an estimation of microsite roosting probability that is even

more precise than the already reasonably successful logistic model making direct inference with

data-based covariates (Figure 3.5.a,b). In fact, we can see that any microsites for which there

was a large uncertainty in roosting probability for either the out-of-sample or in-sample data-

informed logistic model, the uncertainty is greatly reduced by using the hierarchical model. As a

result, the hierarchical model is capable of accurately predicting all measured microsites as having

(φ > 50%) or not having roosts (φ < 50%) (Figure 3.5.a,b), with one exception that is particularly

close in proximity to a roost-present microsite. Interestingly, areas of high roosting probability
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Figure 3.4: Measured and predicted microclimate-related variables relevant to the selected logistic model.

(a) Observed and (c) predicted mean hibernation temperature show similar trends, with lower average tem-

peratures at lower elevations farther from the high elevation warm entrance. (b) Observed September stan-

dard deviation in temperature is lowest in the side chamber and highest closest to the warm entrance. While

there is some evidence that areas where bats commonly roost have lower standard deviation in tempera-

ture, these differences are more pronounced in (d) model predictions. Observations (a,b) are represented

as individual points for each data logger, while space between model predictions (c,d) was estimated using

interpolation (Akima & Gebhardt, 2021).
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Figure 3.5: Mean and 95% credible intervals of model predictions for probability of bat roosting for mi-

crosites (a) with and (b) without regularly observed M. lucifugus roosts. Hierarchical model predictions (or-

ange) have significantly reduced uncertainty in probability compared to either in-sample or out-of-sample

predictions using the logistic model informed by data logger measurements. (c) Hierarchical modeling of

microclimate prediction informing logistic roosting probability throughout the subterranean system. Areas

of high bat roosting probability are present in all three chambers, including pockets of the Side chamber

where M. lucifugus are regularly observed roosting but data logger measurements are not available.
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between the Lower and Side chambers appear contiguous, which may be possible due to small

connecting chambers not depicted in our rough visual approximation of tunnel boundaries or logger

network (see Appendix Figure B.2). In pockets of the Side chamber where several data loggers

malfunctioned there are areas of high roosting probability (Figure 3.5.c), which is consistent with

mid-winter survey observations of bats roosting. Additionally, we predicted that areas on the right

side of the Lower chamber (Figure 3.5.c) where data were largely not collected were unsuitable

for bat roosting, which is also consistent with midwinter survey observations. These microsites

act as an additional form of out-of-sample validation where microclimate data collection was not

possible.

To examine the potential effects of climate change on hibernaculum roosting potential, we

used projected global surface data from 2047-48 to inform our hierarchical model (Figure 3.6).

We find that under the RCP 2.6 climate change prediction model, mean hibernation temperature

throughout the hibernaculum is increased by approximately two degrees Celsius (Figure 3.6.a),

and while in general September standard deviation in temperature holds similar patterns of being

greater closer to mine entrances, the overall standard deviation is significantly lower throughout

the hibernaculum (Figure 3.6.b). This suggests that hibernaculum microsites overall could be both

warmer and more stable than current conditions. As a result, there is a significant increase in

predicted within-hibernaculum range of suitable roosting microsites (Figure 3.6.c).

3.4 Discussion

Subterranean environments provide opportunity to examine ecological niche space in relatively

undisturbed and stable natural systems (Mammola et al., 2019b). It is important that we define the

realized niche used by bat populations to survive hibernation so we can manage expectations when

anthropogenic disturbances occur. While bats are often regarded as seeking “optimal" microcli-

mates and stable conditions for hibernation (Elliott & Clawson, 2001; Tuttle & Kennedy, 2011),

attempts to characterize roost suitability in subterranean systems with variable microclimates show

that these assumptions may be an oversimplification (Boyles et al., 2017). The breadth of the M.
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Figure 3.6: Predicted (a) mean hibernation temperature, (b) September standard deviation in temperature,

and (c) bat roosting probability using daily temperature predicted using the GFDL-CM3 (NOAA, USA) RCP

2.6 model for the 2047-48 hibernation season. Compared to predicted 2017-18 values in Figure 3.4, mean

temperature is in general increased, and September standard deviation decreased, resulting in an expansion

of suitable roosting habitat in all hibernaculum chambers.
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lucifugus hibernation niche appears greater than expected, which may contribute to observed sur-

vival when Pd is introduced to the system. To our knowledge, our efforts are among the most thor-

ough and complete description of spatiotemporally variable microsites available for bat roosting

within a single hibernaculum. By assembling this complex data set, we were able to parameterize

a novel hierarchical modeling framework that accurately predicts both spatiotemporal changes in

microclimate as a function of above-ground conditions, and probability of bat roost occurrence

throughout the hibernaculum. In doing so, we describe the realized niche space for a population of

free-ranging M. lucifugus (Figure 3.5), as well as how that space changes with external influences

(Figure 3.6). The flexibility of our approach paves the way for forecasting microclimate availabil-

ity under different scenarios to evaluate risk associated with disturbances to the available niche

space.

To evaluate niche response to environmental disturbances, we first have to define the niche

boundaries of preferred hibernation microsites. In general, these M. lucifugus roost in deeper ar-

eas of the subterranean system, which is generally where the most stable conditions occur (Perry,

2013). This is in keeping with general assumptions that bats prefer more stable conditions (El-

liott & Clawson, 2001; Tuttle & Kennedy, 2011), but observed significant differences in variation

(Figure 3.3 insets 2,3) suggest that this population has a relatively wide realized niche where tem-

perature variation is concerned (Boyles et al., 2017). In this hibernaculum, there was a positive

correlation with overall hibernation temperature, suggesting that bats may be choosing roosting

microsites to avoid excessively cold temperatures. However, extremes like temperature minimum

and maximum were not significant in our logistic model. This may be because bats have ways

of mitigating the effects of brief energetically harmful shifts in microclimate, such as clustering

behavior, using neighbors as insulation to prevent energetic and evaporative water loss (Clawson

et al., 1980; Roverud & Chappell, 1991; Canals et al., 1997; Boratyński et al., 2015). The potential

impact of clustering or similar behavior is further supported by the importance of the path to bats

covariate in the logistic model, which suggests that there may be a strong social component to the

realized niche space. In our system, M. lucifugus are not found roosting in microsites with colder
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winter temperatures during mid-winter surveys, but it would be be worth examining longitudinal

microclimate data in conjunction with mid-hibernation bat movement to evaluate how changes in

microclimate over time may affect bat roost location preference (Ryan et al., 2019; Golas et al., in

review). Overall, we find evidence that hibernation roost occurrence is influenced by a combination

of microclimate profiles, microsite stability, and sociality.

In addition to these three factors, by connecting underground microclimates to above-ground

conditions, we demonstrate an important temporal component to the realized niche of hibernation

roost establishment. We suspect that roosts are established early in the hibernation season, po-

tentially by the first individuals to settle underground, given a strong negative correlation between

roosting preference and standard deviation in temperature in September specifically, as opposed

to later months (Table 3.1). This may explain why distance to the warm entrance, which is the

primary source of airflow and microclimate variability in warm Fall months, is significantly cor-

related with roost establishment, as opposed to the cold entrance. However, microclimates can

change seasonally, such that an optimal Fall microsite might be detrimental in Winter or Spring.

As such, it may be beneficial for a bat to have a wide range of roosting preferences rather than

optimizing for a singular temperature value (Boyles et al., 2017). By developing tolerance for a

variety of conditions, bats can wait out less ideal microclimates rather than arouse from torpor to

move locations (Ryan et al., 2019). The majority of hibernation energy expenditure comes from

arousal events rather than torpor itself (Thomas et al., 1990). Then, tolerance of variance in tem-

perature could be a life-saving benefit that prevents unnecessary arousal when conditions change,

even if those new conditions are not as physiologically ideal as the previous.

Non-ideal microclimate tolerance may have significant impact when we consider the impacts

of water vapor pressure and Pd on the bat hibernation niche. We do not yet incorporate water

vapor pressure into our microclimate predictions based on our logistic model selection results, but

evaporative water loss due to disrupted skin membranes is an important driver of WNS pathology

(Cryan et al., 2010; Willis et al., 2011; Cryan et al., 2013; McGuire et al., 2021a). We suspect

that water vapor pressure was not significantly correlated with roost occurrence in this hibernac-
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ulum because the entire subterranean system is essentially saturated (100% possible water vapor

pressure for a given ambient temperature) in the Fall months when roosts are being established.

However, water vapor pressure may be important for M. lucifugus survival in this system. Unlike

other hibernacula, where longitudinal measurements of roosting microclimates often reveal con-

stant saturation (Haase et al., 2019a), we find significant drops in relative humidity due to airflow

through the cold entrance (Figure 3.4.c). Pd generally requires high humidity environments, and

sudden drops in temperature and humidity could disrupt fungal growth (Verant et al., 2012). On the

other hand, low humidity environments can result in excessive evaporative water loss, making drier

microclimates outside the fundamental niche range for hibernating bats (Haase et al., 2019a). The

persistence of bats through drier periods suggests tolerance of variation in water vapor pressure

similar to temperature variation tolerance.

Importantly, our prediction modeling framework’s flexibility and parsimony makes it an ex-

cellent framework for further evaluating bat hibernation and survival under changing conditions.

While others have had impressive success reproducing subterranean microclimates in natural sys-

tems using complex model approaches (Jernigan & Swift, 2001), we provide a more universal

approach that requires only minor customization based on the system’s spatial characteristics. Be-

cause our model uses widely available surface-level data to predict underground microclimate

availability as it affects bat roost preference, we can easily make predictions, such as expected

suitable hibernation roost niches under climate change (Figure 3.6). Our predictions under this

climate change forecast suggest that warmer temperatures and reduced variance in September mi-

croclimates may drastically increase the spatial niche for M. lucifugus in this hibernaculum. How-

ever, given more stable conditions overall, this increase in warmer temperatures may be a reflection

of reduced cold dry airflow coming through the cold entrance in winter, resulting in consistently

high humidity. This could result in increased Pd growth, and subsequently increased WNS mor-

tality and reduced realized niche space (Hayman et al., 2016; Haase et al., 2019a). However, if

climatic change is gradual compared to bat reproductive life cycles, bats may be capable of evolv-

ing tolerance for Pd presence before microclimate-induced Pd overgrowth becomes overwhelming
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(DiRenzo et al., 2018; Gignoux-Wolfsohn et al., 2021; Golas et al., 2021). Thus, when consid-

ering prediction of ecophysiological host-pathogen dynamics under climate change scenarios, it

would be worth implementing within an evolutionary framework to account for potential adaptive

changes in niche space (Golas et al., 2021).

Considering WNS as shared niche space between the fungus Pd and hibernating bats, we re-

quire hibernation microclimate data to evaluate WNS risk, but these are difficult to obtain and

sometimes wholly unavailable. For example, the actual hibernation locations of western bats are

largely unknown (McClure et al., 2020), and in the east there are efforts to alter microclimates to

increase airflow and make them more suitable for bat survival (Turner et al., 2021). While initial

results have been promising (Turner et al., 2021), there is concern that such manipulations could

alter available microclimates in unexpected ways, potentially reducing niche space and survival

potential for some bat populations. Novel technological and modeling advancements can help to

address this data deficiency (Golas et al., in review). We can use our approach to consider the

potential results of theoretical new hibernaculum entrances. By estimating changes in temperature

variability in the early Fall and average hibernation temperature as a result of alterations, we can

predict whether bats would be attracted to roosting microsites prior to making irreversible changes

to sensitive hibernacula. A predictive approach to subterranean microclimate availability opens

the door for many new possibilities for evaluating bat roost potential and subsequent survival with

consequences for conservation and management action.
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Chapter 4

Behavioral and physiological adaptations interact to

allow white nose syndrome survival in hibernating

bats

4.1 Introduction

Niche space is a combination of physiological requirements for survival (fundamental niche)

and biotic interactions (realized niche) that define the space occupied by a population (Hutchin-

son, 1957). It can be difficult to identify drivers of niche in natural systems due to complexity and

stochasticity, though pairing behavioral observations with detailed environmental data can begin to

define realized niche space (Golas et al., in prep). We can further define a population’s fundamen-

tal niche using ecophysiological models that describe hard limits to the environmental conditions

in which an individual can survive (Hayman et al., 2016; Haase et al., 2019a). By combining

ecophysiological models alongside experienced environmental conditions largely determining sur-

vival, we can estimate population and individual traits that allow organisms to inhabit their niche

(Golas et al., in review). However, a population’s niche is capable of expanding or contracting

with changes in community interactions (Bruno et al., 2003). We often consider biotic interactions

changing niche space via direct interspecific interactions, such as predation or competetive inhibi-

tion (Connell, 1961; Williams & Martinez, 2000), but less frequently do we consider the indirect

effects that can occur in niche partitioning and evolution (Holt, 1996; Jachowski et al., 2014). For

example, in the case of white-nose syndrome (WNS) in bats, the keratinolytic fungus Pseudogym-

noascus destructans (Pd) disrupts susceptible bats’ skin membranes, changing how they interact

with their environments and restricting the physiological limits of their fundamental niches (Cryan

et al., 2010; Willis et al., 2011; Cryan et al., 2013; Hayman et al., 2016). As a result, environ-

mental conditions that used to be ‘survival space’ capable of maintaining healthy populations have
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become ecological traps (Schlaepfer et al., 2002; Leach et al., 2016; Golas et al., in review), re-

sulting in the deaths of millions of bats (Blehert et al., 2009; Frick et al., 2010; O’Shea et al.,

2016). Behavioral adaptations may be capable of mitigating disease processes (Clawson et al.,

1980; Brownlee-Bouboulis & Reeder, 2013; Boratyński et al., 2015), but these have not yet been

examined alongside ecophysiological models that relate WNS mortality to experienced environ-

mental conditions. To assess population viability of hibernating bats infected with Pd, we need to

consider a broader range of behavioral and physiological interactions between hosts, pathogen, and

environment that define the direct and indirect effects on fundamental and realized niche ranges.

Multiple hypotheses for behavioral and physiological survival mechanisms have arisen to de-

scribe inter- and intra-specific variation in host response to Pd. Mortality seems to be closely linked

to localized environmental conditions (microclimates) experienced during hibernation (Cryan et al.,

2010; Langwig et al., 2012; Cryan et al., 2013). Bats that succumb to WNS arouse more frequently,

leading to increased energetic loss and eventual starvation (Reeder et al., 2012). Studies suggest

that this arousal is a function of microclimate temperature and humidity, with Pd loads increasing

bat energy loss and water loss, triggering the lowered metabolism of torpor to rise back to euther-

mic levels (Hayman et al., 2016; Haase et al., 2019a). Pd growth is also a function of microclimate

(Verant et al., 2012), meaning that to survive infection hibernating bats must balance conditions

that satisfy their own physiological needs while preventing excessive Pd growth (Hayman et al.,

2016). Depending on metabolic parameters (e.g. metabolic rate, evaporative water loss rate), the

niche of microclimates in which an individual can survive hibernation may be very wide or nar-

row, and may overlap significantly with the Pd fundamental niche. While this theory of torpor

arousal has been validated in both laboratory and field settings (Haase et al., 2019a; Golas et al., in

review), anomalies of unexpectedly high population survival rates in an otherwise high mortality

species (Cheng et al., 2019; Golas et al., in prep) suggest that we require a better understanding

of variation in and interactions between bat physiology, environmental conditions, and behaviors

influencing host metabolism and Pd presence.
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To best assess how host interactions with their environment impact WNS outcomes, we need to

combine detailed longitudinal data to characterize experienced microclimates with host metabolic

traits and processes (Golas et al., in review). Microclimates available for hibernation change with

time; they are often highly dependent on mean annual surface temperature, but depending on hi-

bernaculum structure there can be significant microclimate variation associated with changes in

daily above ground conditions (Perry, 2013; McClure et al., 2020; Golas et al., in prep). Despite

common assertions that bats preferentially hibernate in stable microclimates (Elliott & Clawson,

2001; Tuttle & Kennedy, 2011), there can be significant variation in temperature and humidity at

hibernation microsites (Boyles et al., 2017; Golas et al., in prep). Variability in humidity may

be especially important to capture, as there is a growing body of evidence suggesting that hiber-

nating bat arousal patterns and WNS mortality are closely related to environmental water vapor

pressure (Cryan et al., 2010; Willis et al., 2011; Cryan et al., 2013; McGuire et al., 2021a). Micro-

climate extremes can be untolerable for Pd growth and more energetically taxing for hibernating

bats (Verant et al., 2012; Hayman et al., 2016). However, local exaptation for metabolic traits de-

termining bat response to microclimate may widen the hibernation niche range beyond Pd limits,

contributing to survival. Bat populations can exhibit significant intraspecific variability in these

traits (Burnett, 1983; Cryan et al., 2010). For example, big brown bats living in dry areas may

be adapted for reduced evaporative water loss (Klüg-Baerwald & Brigham, 2017), and along a

latitudinal gradient, bat populations experience differing temperature-dependent torpid metabolic

rates (Dunbar & Brigham, 2010). Prominent mechanistic models of hibernation survival with and

without Pd rely on metabolic parameters to determine arousal frequency (Hayman et al., 2016;

Haase et al., 2019a). However, these models have been parameterized using literature values or

experimental data from laboratory settings, sampling populations that might differ from the popu-

lation of interest. A recent study accounts for natural intraspecific and individual variation in bat

ecophysiological parameters by estimating them in a model fitting the relationship of measured tor-

por bout lengths to microclimates (Golas et al., in review). By pairing ecophysiological parameter

estimation with longitudinal microclimate data and spatial hibernation observations, we can simul-
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taneously estimate the metabolic trait profiles required to explain observed bat survival in a local

population and determine whether bats preferentially use energetically favorable microclimates

that preclude survival.

While microclimate use should have a strong effect on WNS survival (Hayman et al., 2016),

there are multiple other behavioral strategies that could help mitigate disease impact that are not in-

cluded in current ecophysiological models. Clustering of bats spatially has the potential to reduce

energetic loss, as is seen in other animals that rest in groups, reducing heat loss to the environment

by insulating exposed areas with other bodies (Clawson et al., 1980; Roverud & Chappell, 1991;

Canals et al., 1997). Clustering also has the potential to reduce evaporative water loss by covering

exposed skin membranes (Boratyński et al., 2015), which similarly has the potential to increase

torpor length and reduce arousal frequency (Haase et al., 2019a). However, clustering behavior

could also prove detrimental when disturbances such as disease of arousing neighbors might lead

to an increase in energetically costly arousal events (Thomas et al., 1990; Langwig et al., 2012;

Reeder et al., 2012). Another potential behavioral adaptation for survival is grooming to clear

fungus. Bats need to arouse from torpor periodically, and may exhibit active behaviors, such as

flying, drinking, and grooming, during these periods of euthermia. While some studies show that

experimentally infected bats reduce grooming behavior (Wilcox et al., 2014; Bohn et al., 2016),

others have shown a significant increase in grooming during arousal compared to uninfected bats

(Brownlee-Bouboulis & Reeder, 2013). Attempts to visualize clustering and grooming behaviors

in natural free-ranging populations can be difficult given the logistical constraints of recording

video underground in the dark without ready power supply (Hayman et al., 2017), and experi-

mental studies to estimate the potential benefits of these strategies require elaborate equipment

and removal of wild animals from natural environments that might impact outcomes (Boratyński

et al., 2015; Golas et al., in review). It is worth testing the potential for these behaviors to impact

survival outcomes, which we can do by amending ecophysiological models designed to explore

microclimate use hypotheses (Hayman et al., 2016; Haase et al., 2019b) with mathematical repre-

sentations of other survival-related behaviors. Thus, a robust evaluation of how bats interact with
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their environments to survive WNS will incorporate population variation in physiological traits,

longitudinal hibernaculum microclimate data, and a variety of behavioral mechanisms.

We aim to test the relative importance of four different factors affecting WNS survival in natural

settings: physiological adaptation, microclimate use, clustering behavior, and grooming behavior.

We will evaluate an important hibernaculum wherein the Myotis lucifugus population has thrived

with no indications of significant die-offs despite regional mass mortality (Cheng et al., 2019; Go-

las et al., in prep). To compare the impact of potential WNS survival factors, we plan to use a

combination of ecophysiological modeling and detailed hibernaculum microclimate data to esti-

mate survival as a function of energetic use, similar to Golas et al. (in review). This approach relies

on bat-specific torpor bout length measurements and conditions experienced by the individual, but

to evaluate microclimate choice as a survival-driving behavior, we need to be able to consider mi-

croclimates not used for hibernation in addition to those the bats experience. Thus, to evaluate

the suitability for hibernation survival of any given location within the hibernaculum (microsite),

we will have to adapt these methods to encompass longitudinal environmental data without ex-

plicit data on bat arousal activity. We convert ecophysiological models to estimate hourly energy

expenditure and arousal frequency, allowing us to test models under different metabolic parame-

terizations and accept or reject them based on biologically realistic survival and torpor bout length

outcomes. By amending ecophysiological models with mathematical terms representing cluster-

ing and grooming behaviors, we develop a suite of models that predict WNS outcomes based

on metabolic traits, microclimate use, and exhibited combinations of behaviors. Starting with

literature-based, biologically relevant priors, we use approximate Bayesian computation to simul-

taneously estimate metabolic parameters and identify behavioral models capable of describing

biologically realistic survival across this system. Then, we can examine parameter estimates for

deviance from literature-based values suggesting local physiological adaptation, and we can make

inference on important survival behaviors based on model feasibility. As a result, we improve our

understanding of how a population from a species in decline can use metabolic and behavioral

traits in variable environmental conditions to thrive in the face of a devastating disease.
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4.2 Materials and Methods

4.2.1 System description

For our study, we chose to investigate M. lucifugus because there are measured literature-

based estimates for parameters of interest in the metabolic equations (Hayman et al., 2016; Haase

et al., 2019a), and this once widely abundant species has experienced significant die offs since Pd

introduction (Cheng et al., 2019). Despite severe mortality events across eastern North America,

our study hibernaculum did not experience any significantly increased mortality in M. lucifugus

following Pd introduction Cheng et al. (2019). The hibernaculum is composed of three main

chambers (Upper, Lower, and Side), each with microsites where M. lucifugus have been observed

hibernating during midwinter surveys and areas where they have not been observed (Golas et al., in

prep). We used modified iButton data loggers to measure temperature and relative humidity every

two hours at hibernation and non-hibernation microsites throughout the hibernaculum (Golas et al.,

in prep) (see Appendix). We used microclimate data collected from October 1st, 2017, to April 15,

2018, for a total 197 days of hibernation, which was informed by regional surveys of Fall swarming

and Spring emergence. Microclimate data were used in this study as inputs for metabolic equations

to determine arousal frequency and energy use throughout hibernation. In order to estimate hourly

energy expenditure, we repeated the previous hour’s measurement for hours where measurements

were not taken. Erroneous measurements were adjusted as described by Golas et al. (in prep)

and relative humidity converted to water vapor pressure using the same methods as (Haase et al.,

2019a). Further details regarding the study hibernaculum and microclimate data collection can be

found in Golas et al. (in prep).

4.2.2 Model descriptions

To estimate energetic expenditure as a function of microclimate, we used the metabolic equa-

tions presented by Haase et al. (2019a). While there is evidence that actual torpor bout duration

may on average be shorter than model expectations due to stochasticity in natural systems (Go-

las et al., in review), we considered the equations as presented because they have been validated

61



using M. lucifugus torpor bouts directly, and we did not have microclimate-dependent torpor bout

lengths in natural systems available for this species. We implemented the metabolic equations that

describe torpor bouts sequentially, starting with a cooling phase (Haase et al., 2019b), then torpor,

arousal, euthermia, and back to cooling. We continued this cycle until hibernation was over, and

finished with a final arousal if the bat was not already euthermic. We used an average literature-

based length for euthermia, but the lengths of the three other phases were microclimate-dependent

(see Appendix). The length of cooling and arousal periods were calculated using the microclimate

when torpor began because these periods generally last less than 2 hours, and our microclimate

measurements were taken every two hours. Torpor bout length was calculated using a rolling esti-

mate. Each hour of torpor, we first calculated energy and water loss from the metabolic equations

based on the current hour’s microclimate. We then recalculated expected torpor bout length based

on the cumulative microclimates experienced from the torpor’s start to the current hour (Figure

4.1). Once the number of hours spent in torpor exceeded the microclimate-based torpor length es-
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Figure 4.1: A schematic representing the decision-making process of how simulations determine torpor

bout length and arousal frequency based on longitudinal microclimate data.
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timate, arousal was initiated. In simulations with Pd, fungal growth accumulated every hour based

on ambient water vapor pressure and bat skin temperature (Hayman et al., 2016). Torpor bout

duration decreases with increased Pd growth due to increased energy expenditure and evaporative

water loss (Hayman et al., 2016; Haase et al., 2019a).

We incorporated other behavioral adaptations for WNS survival as mathematical terms in the

metabolic equations. Clustering was estimated as the percent of energy used in torpor while clus-

tered within a large group of other individuals as compared to energy used while hibernating indi-

vidually (Canals et al., 1997). We multiplied this cluster factor times the denominators of torpor

length equations to extend maximum possible torpor length through reduced energy consumption

and evaporative water loss (see Appendix). We applied the cluster factor only to the torpid period,

not arousal or cooling, because to our knowledge M. lucifugus arouse individually, rather than in

groups (Hayman et al., 2017), so insulatory benefits of warming the self while surrounded by cold

individuals may be minimal. Similar to how fungal growth was estimated as square centimeters

accumulated per hour, we estimated grooming rate as square centimeters of fungus removed per

hour. Per previous studies, we allowed bats 22% of the euthermic period to remove fungus via

grooming (Brownlee-Bouboulis & Reeder, 2013). The maximum possible grooming rate estimate

(Table 4.1) suggests that M. lucifugus could groom fungus from the entire wing surface during a

single arousal, roughly 20 cm2 over 15 minutes (approximately 22% of 1.1 hours) (Haase et al.,

2019a). This was probably an over-estimation of bat capabilities, but it set a biologically-relevant

limit to guide our investigation.

Given these metabolic equations and additional mechanisms, we simulated six different sce-

narios for a bat hibernating in a given microclimate: solitary hibernation without Pd, solitary

hibernation with Pd, clustered hibernation without Pd, clustered hibernation with Pd, solitary hi-

bernation with Pd and grooming, and clustered hibernation with Pd and grooming. Using these

scenarios, we established four separate models representing different combinations of behavioral

mechanisms. Each model contains a hibernation scenario without Pd (solitary or clustered) and

a hibernation scenario with Pd (solitary, clustered, solitary grooming, or clustered grooming).
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Table 4.1: Parameters estimated via approximate Bayesian computation. Literature-based values were used

to develop distributions for latin hypercube sampling.

Parameter Definition and units Value Distribution Reference

Ttor,min Minimum body temper-

ature maintained in tor-

por (◦C)

2 Uniform(0.5, 5) (Hock, 1951; Hanus,

1959; Speakman et al.,

1991; Haase et al.,

2019a)

TMRmin Torpid metabolic rate

(ml O2 g−1 hour−1)

0.03 Uniform(0.003, 0.15) (Haase et al., 2019a)

Ct Torpid conductance (ml

O2 g−1 ◦C−1)

0.2 Uniform(0.02, 1) (McNab, 1980; Haase

et al., 2019a)

ttor,max Maximum torpor dura-

tion (hours)

1300 Uniform(650, 1950) (Brack Jr & Twente,

1985)

rEWLbody Rate of cutaneous

evaporative water loss

from the body (mg hr−1

∆WVP−1 cm−2)

0.1 Uniform(0.01, 0.5) (Haase et al., 2019a)

Mbody Body mass (grams) - Uniform(7.46, 10.51) (Cheng et al., 2019)

pfat Pre-hibernation fat

stores as percent of

body mass

- Uniform(0.152, 0.335) (Cheng et al., 2019)

clusterfacReduction in en-

ergy/water loss due to

clustering as a percent

of loss while solitary

(%)

- Uniform(50, 100) (Canals et al., 1997)

groom Rate of Pd removal by

grooming (cm2/hour)

- Uniform(0, 100) This study
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Because microclimate use was an inherent component of all simulations, we refer to the four mod-

els as: Microclimate, Microclimate + Clustering, Microclimate + Grooming, and Microclimate +

Clustering + Grooming, depending on which additional behavioral hypotheses were being tested in

the model. For each model, we tracked the cumulative energy consumption throughout hibernation

with and without Pd and compared to the individual’s fat stores. Individuals that did not consume

as much fat as they had stored were marked as surviving, while those that did not were marked

as dead. We also tracked the number of arousals through the hibernation period, and used this to

estimate average torpor bout length as hibernation length divided by total number of arousals.

4.3 Parameter estimation

To screen for potential interactions between behavioral and physiologically adaptive hypothe-

ses, we needed to identify which of the four models are relevant to our system and estimate pa-

rameters relevant to metabolic traits, but the complications of applying multiple complex models

to longitudinal microclimate data and simulating latent variables like irregularly-timed arousals

made likelihood evaluation infeasible. To bypass the need for likelihoods, we used approximate

Bayesian computation (ABC) parameter estimation (Toni et al., 2009; Beaumont, 2010) to test for

potential local physiological adaptation in metabolic traits that might differ from values measured

in other populations. We were then able to gain insight into behavioral adaptations that describe

WNS survival by excluding models for which we could not identify parameters sets that resulted

in biologically realistic outcomes.

We performed ABC parameter estimation in three steps: 1. Randomly draw a parameter set

from literature-based, biologically relevant prior distributions. 2. Simulate hibernation for each of

the six scenarios comprising the four models, for all thirty-four microsites with measured microcli-

mates. 3. Evaluate output for each model through a rejection algorithm, rejecting the parameter set

for the given model if the output does not meet biologically realistic criteria. Then, the parameter

sets passing the rejection algorithm are a form of posterior distribution for parameter estimation.

Parameters to estimate were chosen based on previous work by Golas et al. (in review) using
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partial rank correlation coefficient parameter sensitivity analysis (Marino et al., 2008) to identify

parameters to which torpor bout length is sensitive. We generated 200,000 unique, random param-

eters sets for simulation using a Latin hypercube sampling (LHS) matrix (McKay et al., 2000).

The parameters sampled in the LHS matrix were torpid thermal conductance, torpid minimum

metabolic rate, evaporative water loss, minimum body temperature defended while in torpor, max-

imum length of torpor, clustering factor, grooming rate, body size, and percent of body weight that

is fat. For the first three parameters, we defined the prior distributions by starting with literature-

based values measured from M. lucifugus populations (Haase et al., 2019a) and multiplying by 0.1

and 5 to define the minimum and maximum limits for Uniform distributions, respectively. Simi-

larly the Uniform distribution range of maximum length of torpor was determine by multiplying

a literature-derived estimate by 0.5 and 1.5. For minimum torpid body temperature, we used the

same biologically relevant range that Golas et al. (in review) used for parameter estimation. Clus-

tering factor was estimated in a range from 50% to 100% and grooming fungal removal rate from

0 to 100 cm2 per hour. Due to the lack of detailed investigation for these mechanisms in hiber-

nating bats, we used ranges representing values with no impact to extremes that push assumptions

of biological realism. Thus, all parameter prior distributions were based in biological realism but

allowed for significant variation that might result from local adaptation. The ranges for body mass

and percent fat were estimated using field data presented in previous studies from bats captured at

this hibernaculum (Cheng et al., 2019). Parameter prior distributions are detailed in Table 4.1.

We established our ABC rejection algorithm to realistically represent M. lucifugus hibernation

in our study hibernaculum. The algorithm stated that, for a parameter set under a given model to be

accepted, then for all microsites where M. lucifugus have been regularly observed hibernating: 1.

Bats must survive hibernation. 2. The bat’s average torpor length without fungus must fall within

9 to 31 days (Reeder et al., 2012). 3. The bat’s average torpor length with Pd must fall within 6.8

and 21.6 days (Reeder et al., 2012). Following parameter estimation, we evaluated parameter pos-

terior distributions for correlation using Spearman’s rank correlation coefficient calculated using

the ‘PerformanceAnalytics’ package in R (Peterson & Carl, 2020). We tested the microclimate use
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hypothesis that bats preferentially hibernate in physiologically favorable conditions by separately

averaging torpor bout lengths calculated using non-rejected parameter sets across microsites that

do and do not have hibernating M. lucifugus in each of the three hibernaculum chambers. We used

t-tests to compare average torpor bout length estimates between chambers and paired t-tests to

compare expected torpor bout lengths in microsites where M. lucifugus are regularly found versus

microsites where they are not.

All code was custom-written in R (R Core Team, 2021). The LHS matrix was generated using

the ‘lhs’ package, and simulations were run in parallel using the ‘doParallel’ package (Carnell,

2021; Corporation & Weston, 2020). Figures were generated using the ‘tidyverse’ and ‘ggplot2’

packages (Wickham et al., 2019; Wickham, 2016).

4.4 Results

Figure 4.2 depicts the estimated cumulative fat consumption through hibernation for the six

different simulations using the literature values (Table 4.1) at a microsite where bats commonly

hibernate. Without fungus, the solitary bat survived hibernation with remaining fat stores to spare.

However, when Pd was introduced, arousal frequency, and subsequently energy expenditure, in-

creased to the point where the bat exhausted all energy stores midwinter. In fact, despite no ob-

served mass mortality, literature-based parameters of the original microclimate model suggested

that, without additional behavioral mechanisms, bats die of WNS across all microsites where mi-

croclimate measurements were taken (see Appendix Figure C.2). We see in this example that

clustering reduced energy consumption both with and without Pd, but did not prevent Pd-induced

mortality. Grooming, however, eliminated enough fungal growth that even though fat consumed

was greater than without fungus, the individual still had ample stores come hibernation’s end.

While the literature parameterization provided a representative example of expected model per-

formance, torpor bout length outcomes were not biologically relevant for any of the four models

(see Appendix Figure C.2. The Microclimate and Microclimate + Clustering models are excluded

because bats are not predicted to survive Pd infection in a microsite where they are observed

67



Fat available

0

1

2

3

4

5

0 50 100 150 200

Time in hibernation (days)

F
a

t 
c
o

n
s
u

m
e

d
 (

g
ra

m
s
) Model

Microclimate

Microclimate +
Clustering

Microclimate + Pd

Microclimate +
Clustering + Pd
Microclimate +
Grooming + Pd
Microclimate +
Clustering *
Grooming + Pd

Figure 4.2: Example output of each of the six simulations using the same literature-based parameter set.

Body mass = 9g, percent fat = 24%, clustering factor = 60%, and grooming rate = 20cm2/hr, and all other

parameters are listed in Table 1. For this parameterization, the bat will survive hibernation with Pd if

grooming is an included mechanism, but without grooming, Pd infection causes bats to swiftly lose energy

stores mid-winter when hibernaculum humidity levels decline.

hibernating without mortality. The Microcliamte + Grooming and Microclimate + Clustering +

Grooming models passed the ABC rejection algorithm for this particularly energetically favorable

microsite, but were rejected by the algorithm at less energetically favorable microsites where bats

are still observed surviving hibernation. Thus, we needed to estimate parameters in order to de-

termine if the incorporation of local adaptation in metabolic traits allows for survival across all

hibernation microsites.

Across the 200,000 parameter sets evaluated through ABC, no parameter sets fit passed the

rejection algorithm for the Microclimate or Microclimate + Clustering models (Figure 4.3). No
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Figure 4.3: Schematic representation of approximate Bayesian computation parameter estimation under

four different models. In the ABC rejection algorithm, we reject parameter sets if they do not meet three

biologically relevant criteria. Note that each model contains two simulation scenarios, one with and one

without Pd. Only the Microclimate + Grooming and Microclimate + Clustering + Grooming models exhibit

parameter sets that passed all three criteria of the rejection algorithm, and are therefore biologically feasible.

Thus, the Microclimate and Microclimate + Clustering models are rejected.

matter how energetically favorable a given parameter set was, none were capable of generating

survival with Pd across all M. lucifugus hibernation microsites without additional behavioral adap-

tation beyond microclimate use. While clustering did allow for survival across all microsites used

for hibernation in 117 parameter sets, application of the torpor length criterion excluded all parame-

ter sets (Figure 4.3). Parameter sets where average torpor bout lengths were within literature-based

range for microsites with high energetic requirements (i.e. ’non-optimal’ microclimates) would re-

sult in bats unrealistically over-performing with average torpor bout lengths that are too long to be

realistic in hibernation microsites with low energetic requirements (i.e. ’optimal’ microclimates)

(see Appendix Figure C.2). In addition, these parameter sets were very heavily weighted toward

individuals that are particularly large with relatively high percentage of body fat, suggesting that

only more energetically prepared individuals could survive, which was contradictory to observa-
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tions in this hibernaculum (Cheng et al., 2019). In contrast, the Microclimate + Grooming model

resulted in 955 successful parameter sets, while the Microclimate + Clustering + Grooming model

resulted in 1,558 parameter sets (Figure 4.3). This suggests that removal of Pd or mitigation of Pd

growth were highly necessary adaptations for survival in the context of this hibernaculum. Thus,

we reject the Microclimate and Microclimate + Clustering models and accept the Microclimate +

Grooming and Microclimate + Clustering + Grooming models as being biologically feasible.

Several estimated posterior densities for metabolic traits were significantly off-set from literature-

based values (Figure 4.4). In particular, the minimum body temperature that bats hold in torpor

was significantly higher than literature estimates for the Microclimate + Clustering + Grooming

model, peaking around 3o Celsius (Figure 4.4.a). The evaporative water loss rate of the body was

significantly lower for the Microclimate + Grooming model but not the Microclimate + Clustering

+ Grooming model (Figure 4.4.b). However, in the Microclimate + Clustering + Grooming model,

there is strong negative correlation between evaporative water loss rate and the clustering factor

percentage (see Appendix Figure C.3). When we estimated effective evaporative water loss rate

by multiplying evaporative water loss rate by clustering factor, as in our metabolic equations, the

effective evaporative water loss rate was significantly lower for the Microclimate + Clustering +

Grooming model, with a strikingly similar distribution to the Microclimate + Grooming model

(Figure 4.4.c). While there was not a significant offset of conductance or minimum metabolic

rate in torpor posterior densities (Figure 4.4.d,e), the latter was heavily weighted toward higher

values. These parameters existed primarily as a ratio to each other in the metabolic equations, so

unsurprisingly there was a reasonable amount of correlation between the two in both Microcli-

mate + Grooming and Microclimate + Clustering + Grooming models (see Appendix Figure C.3).

When we observed the posterior density for conductance divided by torpid metabolic rate (Figure

4.4.f), we found that the parameter ratio credible interval was heavily weighted to be lower than the

literature-based ratio of prior parameters, though literature-based values were still within credible

intervals. Credible intervals included literature-based values in other parameters (see Appendix

Figure C.4). Pd removal rate via grooming was most significant at rates greater than 20 cm2/hr
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Figure 4.4: Posterior densities for parameters estimated via approximate Bayesian computation. Dashed

horizontal lines represent literature-based parameterizations (see Table 1 for parameter descriptions and

units). Colored violin plots represent posterior densities for their respective models. Circles represent the

estimated median, and error bars represent the 95% credible interval. (a) Minimum body temperature held in

torpor is similarly high for both models and significantly greater than literature values for the Microclimate

+ Clustering + Grooming model. (b) Evaporative water loss rate of the body is significantly lower than

literature values in the Microclimate + Grooming model, but not the Microclimate + Clustering + Grooming

model. However, multiplying evaporative water loss rate by the clustering factor (c) to estimate effective

evaporative water loss rate results in both models being significantly lower than the literature value. (d)

Torpor conductance and (e) minimum metabolic rate while torpid are not estimated as significantly different

from literature values. (f) The posterior density of the ratio of conductance divided by metabolic rate, as

present in metabolic equations, seems to converge on a value that is less than that expected by literature-

based parameters. However, despite being heavily weighted toward lower values, the literature-based ratio

is still within the credible intervals.
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(see Appendix). Importantly, the posterior distribution of body mass or hibernation fat percent-

age was such that individuals of all observed body sizes could have survived Pd infection in any

hibernation microsites (see Appendix Figure C.4).

Although microclimate use alone did not describe survival in all microsites, there was evidence

of bats choosing energetically favorable microclimates within the system. In each chamber, paired

t-tests indicated that for a given parameter set the estimated average torpor bout length at hiber-

nation microsites was greater than estimated average torpor bout length if M. lucifugus were to

hibernate at microsites where they are not found hibernating midwinter (p < 0.001 for each of

three chambers, Figure 4.5). However, the expected average torpor bout length was also differ-
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Figure 4.5: Box plots of the average torpor bout length of each parameterization in three different hiber-

naculum chambers for microsites with (light) and without (dark) hibernating M. lucifugus populations. *

= significant difference determined by t-test, p < 0.001. ** = significant difference determined by paired

t-test, p < 0.001.
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ent across chambers, with the Side chamber being most energetically favorable (supports longer

average torpor bouts) and the Lower chamber being least energetically favorable (Figure 4.5).

4.5 Discussion

Local adaptation (Gignoux-Wolfsohn et al., 2021; Golas et al., in review), microclimate use

(Hayman et al., 2016; Haase et al., 2019a), and clustering (Langwig et al., 2012; Hayman et al.,

2017) and grooming (Brownlee-Bouboulis & Reeder, 2013) behaviors have all been implicated in

WNS outcomes individually, but this is the first study to test multiple hypotheses simultaneously.

By comparing behavioral and physiological mechanisms using a unique approach of pairing fine-

scale spatial and temporal data with mechanistic modeling, we can evaluate the relative importance

of these factors in describing WNS survival in a natural system. Our models create biologically

realistic predictions of torpor arousal and energetic expenditure when we examine the output at

individual microsites (Figure 4.2). Periods of torpor result in a slow and steady fat consumption,

while periods of arousal result in sudden rapid consumption. Per our expectations given a sudden

reduction in water vapor pressure throughout the hibernaculum around day 100 (see Appendix

Figure C.1), there is an increase in arousal frequency as microclimate conditions are less ideal for

prolonged torpor. Accordingly, the steady build of Pd load in early hibernation results in many

sequential short-lived torpor events during this relatively dry period when Pd is present without

grooming. This seems to mimic the daily arousals experienced by bats succumbing to WNS as

observed by Reeder et al. (2012). Ultimately, we find evidence that grooming behavior and local

adaptation of metabolic traits are essential to describe observed patterns of survival, though the

most biologically realistic model incorporates all four hypotheses, with evidence of interactions

between them.

Microclimate use in hibernation has been repeatedly established as influential to hibernation

and WNS survival (Cryan et al., 2010; Willis et al., 2011; Langwig et al., 2012; Cryan et al., 2013;

Hayman et al., 2016). Despite long-held beliefs that bats hibernate in stable, physiologically opti-

mal conditions (Elliott & Clawson, 2001; Tuttle & Kennedy, 2011), we know now that the niche
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range of utilized hibernation microclimates is wider than previously theorized (Boyles et al., 2017;

Golas et al., in prep). By testing ecophysiological models against variable, longitudinal microcli-

mate data, we now have evidence that the microclimates used to survive WNS in this hibernaculum

are not all physiologically optimal (Figure 4.5), but they are physiologically survivable. The fact

that the range of physiologically survivable microclimates is wider than expected may help explain

why bats are not seeking out stable conditions as previously assumed. That said, while M. lucifu-

gus do not choose to hibernate in a single optimal microsite of the hibernaculum, they are choosing

the optimal locations within a given section of the hibernaculum (Figure 4.5). This is despite the

fact that, in terms of metabolic expectations, there exist microsites that are superior for energy con-

servation, particularly in the Side chamber (Figure 4.5). Thus, M. lucifugus in this hibernaculum

overwinter in physiologically beneficial microclimates, if not physiologically optimal. The flexi-

bility observed in M. lucifugus microclimate use may prove favorable in coming years as climate

change alters underground microclimate availability (McClure et al., 2020; Golas et al., in prep).

This could lead to necessary range shifts or extirpation events if bats cannot tolerate the changing

conditions (Humphries et al., 2002). Bat responses to projected changes will likely depend heavily

on the level of local physiological adaptation for consistently used hibernation microclimates.

The importance of physiological adaptation in this system becomes evident when we examine

the results of parameter estimation. For example, minimum metabolic rate in torpor is estimated

as high compared to literature-based values (Figure 4.4.a), which is consistent with M. lucifugus

in this hibernaculum preferring warmer microsites for hibernation (Golas et al., in prep). In par-

ticular, evaporative water loss is hypothesized as a primary driver of increased arousal leading to

mortality in bats with WNS (Cryan et al., 2010; Willis et al., 2011; Cryan et al., 2013) and has

been explored and validated experimentally (Ben-Hamo et al., 2013; McGuire et al., 2017) and

through modeling efforts (Haase et al., 2019a). Per our parameter estimation, the evaporative wa-

ter loss rate of the body is lower than the 0.1 mgH2O
hr∗∆WV P∗cm2 measured in Montana bats (Haase et al.,

2019a), with a mean of 0.055 for the Microclimate + Clustering + Grooming model, and 0.03 for

the Microclimate + Grooming model (Figure 4.4.b). The fact that this M. lucifugus population ex-
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hibits a lower estimated evaporative water loss rate than those measured in the Montana hibernac-

ulum is in keeping with expected population variation across humidity gradients (Klüg-Baerwald

& Brigham, 2017). We expect bats that hibernate consistently in drier microclimates to be locally

adapted to prevent evaporative water loss (Klüg-Baerwald & Brigham, 2017), and in winter this

hibernaculum exhibits significant drops in water vapor pressure across all microsites (Golas et al.,

in prep), compared to the microclimates in the Montana hibernaculum that were stable throughout

hibernation with no significant water vapor pressure deficit noted (Haase et al., 2019a). Thus, the

reason this hibernaculum’s M. lucifugus population did not exhibit significant declines in WNS

may be related not just to the fact that the microclimates in this hibernaculum are drier, but also

physiological exaptations of bat populations consistently using this hibernaculum. This has poten-

tial consequences for attempts to mitigate WNS impact by altering hibernaculum microclimates

(Turner et al., 2021). Bat populations may not be adapted to handle drastic changes in available

microclimates. We require more studies pairing metabolic traits with experienced microclimates

(Golas et al., in review) to better predict how populations might respond to such environmental

changes before they are employed widespread as a mitigation strategy. Such studies should also

carefully consider bat clustering behavior as well, as this appears to alter effective physiological

parameters.

At face value, clustering does not appear to be necessary for WNS survival in this system (Fig-

ure 4.3). However, when we consider the effective metabolic rates experienced by clustered bats,

it appears that clustering emerges as a latent mechanism in both models, as evidenced by reduced

effective evaporative water loss rate and conductance relative to metabolic rate (Figure 4.4.c,f).

As a result of this, the Microclimate + Grooming and Microclimate + Clustering + Grooming

models are functionally equivalent, and the differences in number of parameter sets fit could be a

function of the Microclimate + Clustering + Grooming model being more complex and therefore

more flexible in parameterization. Then, clustering could still be an essential part of how M. lu-

cifugus survive WNS in this hibernaculum. Literature-based parameters were generally measured

in individuals rather than clusters to make estimation of metabolic parameters more precise. To
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determine the full impact of clustering on hibernating bat physiology and realized niche range and

further validate our findings, it would be worthwhile to measure metabolic processes in groups

to better estimate the physiological benefits (Canals et al., 1997; Roverud & Chappell, 1991; Bo-

ratyński et al., 2015). Despite the apparent effects of clustering behavior, microclimate use, and

physiological adaptation on WNS survival, none of our models were able to recreate biologically

realistic WNS survival throughout the hibernaculum without the addition of grooming behavior as

well.

In our models, grooming to reduce Pd load is a necessary mechanism to allow WNS survival

throughout the hibernaculum. More specifically, our metabolic equations model the rate of Pd re-

moval, and we refer to it as grooming based on observed behaviors in Pd-infected bats (Brownlee-

Bouboulis & Reeder, 2013). Given that increased grooming is not a universal response to Pd

infection (Bohn et al., 2016), we might consider that other potential mechanisms for mitgation

or reduction of Pd growth exist, such as immune system activation (Field et al., 2015). There is

evidence for selection of immune function in WNS survivors in the northeast US region (Gignoux-

Wolfsohn et al., 2021), but the lack of mortality and absence of fat-related selection common to

high-mortality hibernacula (Cheng et al., 2019) suggests that the selective forces of WNS in this hi-

bernaculum are weak, and that mortality was prevent by a combination of environmental conditions

and exaptations. This is further supported by the fact that any bats with body mass and fat per-

centage in ranges sampled in this hibernaculum before Pd introduction (Cheng et al., 2019) could

survive winter in any hibernation microsite (see Appendix Figure C.4). Our functional form for

modeled grooming behavior suggests that bats will need to clean at least approximately 20 cm2 per

hour to effectively control Pd growth enough to allow survival at all hibernation microsites (Figure

C.4). Given a little under a quarter of the arousal period spent grooming (Brownlee-Bouboulis &

Reeder, 2013) and a little over an hour of time spent in arousal (Haase et al., 2019a), this equates to

approximately an area of 5 cm2 effectively groomed per arousal period. We suspect that this is bio-

logically feasible; further experimental studies such as those performed by Brownlee-Bouboulis &

Reeder (2013) may be able to further validate these grooming rates by measuring conidial growth
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pre- and post-arousal in experimentally infected bats. For now it remains that behavioral fungal

mitigation could be an important, oft-overlooked function of WNS survival.

Anthropogenic stressors like climate change and introduced disease increase our need to better

understand bat hibernation capabilities so that we can best predict at-risk populations and optimize

management strategies. In this study we have developed a novel method of estimating important

metabolic traits in natural settings with minimal invasion into the hibernaculum. This is increas-

ingly important in preventing unnecessary arousal and energy loss as more and more bat popu-

lations are threatened by WNS (Speakman et al., 1991; Cheng et al., 2021). When we consider

the niche of hibernating bats as the microclimates in which they can safely hibernate, there is an

indirect contraction of the fundamental niche when the parasitic Pd is introduced due to changes

in how hosts respond physiologically to hibernation microclimates (Hayman et al., 2016; Haase

et al., 2019a). Overlap in niche range with Pd results in microclimates that once served as survival

space becoming ecological traps (Golas et al., in review). However, survival spaces may be main-

tained despite Pd presence if other factors can mitigate disease impact. Here, we find evidence

of niche maintenance indirectly through hygienic behavior removing Pd affecting host physiology

and directly through conspecific facilitation (Bruno et al., 2003) of clustering behavior reducing

the impact of metabolic processes. These strategies are successful in the context of a population

that appears to have local metabolic adaptations to using physiologically beneficial microclimates,

resulting in exaptations for WNS survival. Overall, this perspective captures relevant detail of a

very complex system and allows us to isolate the impact of multiple mechanisms within their in-

teractions in order to separate out their relative importance. We believe that an approach similar to

that described here could prove useful in learning important natural history while providing impor-

tant information for population management with the benefit of not requiring intensive handling

and experimentation. Our study makes strong inference based on detailed hibernaculum measure-

ments and an understanding of system biology. Using field-gathered data to inform and enhance

modeling efforts (Restif et al., 2012), we demonstrate essential mechanisms that describe observed

survival in a natural system where previous methods were inadequate. In doing so, we are able to
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define processes that directly and indirectly affect M. lucifugus niche range. Through innovative

technology to collect vital field information combined with advanced modeling, we can further

enhance our efforts to conserve bat biodiversity.
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Chapter 5

Conclusions

In this dissertation, I have explored the environmental, physiological, and behavioral factors

that define the realized hibernation niche of hibernating bats affected by Pseudogymnoascus de-

structans (Pd) causing white nose syndrome (WNS). My goal was to further define how hosts

interact with their environments to survive infection with a deadly pathogen. In doing so, I aimed

to bridge the laboratory-field gap by using field data to parameterize mechanistic models that de-

scribe driving processes in complex natural systems. As a result, I am able to gain insight into

physiological traits that influence WNS outcomes without extensive handling of bats or potentially

harmful midwinter intrusion of hibernacula. Each chapter builds on these themes by advancing

our use of ecophysiological models and detailed microclimate data to describe bat behavioral ob-

servations.

In Chapter 2, I used unique microclimate and torpor bout length data from free-ranging Eptesi-

cus fuscus to identify the drivers of energetically costly arousal. I found that torpor bout length in

E. fuscus is physiologically limited by mostly temperature-related cues, but torpor bouts are often

cut short, with bats arousing before physiological limits are reached due to natural system stochas-

ticity. In doing so, I estimated important population variation in physiological traits, identifying

differences in evaporative water loss rate, conductance, and metabolic rate compared to literature-

based parameters. As a result, I was able to make population-specific predictions of expected

restrictions in niche range with Pd introduction.

In Chapter 3, I defined the niche axes that determine hibernation location for Myotis lucifugus

within a hibernaculum exhibiting spatiotemporally variable microclimates. I developed a hierar-

chical model that had two layers. In the first, I developed a predictive microclimate model, fit to a

detailed longitudinal data set of temperature and humidity measured at microsites with and without

hibernating bats, that used above-ground temperature to estimate the underground spatiotemporal

distribution of temperatures throughout the hibernaculum. In the second layer, these temperature
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predictions were used to estimate environmental covariates that fed into a logistic model predicting

the probability of hibernation roost occurrence throughout the hibernaculum. Through this, I iden-

tified that hibernation microsite choice is dependent on a combination of sociality, warmer average

temperatures, and microsite stability, though variability across hibernation microsites suggests that

M. lucifugus are capable of occupying a larger niche space than previously recognized. Given

its flexible and parsimonious nature, my predictive model is also capable of evaluating microsite

favorability under changing hibernaculum conditions, demonstrating a potential spatial niche ex-

pansion under climate change. However, this expansion is contingent upon potential further range

contraction that might occur as a result of improved conditions for Pd growth.

Thus, in Chapter 4, I expanded our understanding of how physiological adaptations interact

with available microclimates and other behavioral mechanisms to impact WNS survival in the

same hibernaculum as Chapter 3. I tested four different hypotheses for how M. lucifugus survive

Pd infection in this hibernaculum by using ecophysiological models informed by longitudinal mi-

croclimate data to estimate metabolic parameters and select behavioral models that are biologically

realistic. I found that survival is contingent on physiological exaptations to relatively dry microcli-

mates and grooming behavior to reduce Pd burden. In addition, bats appear to select hibernation

microsites that are physiologically favorable, and while the modeled clustering mechanism was not

essential to survival, there were latent effects of clustering permeating throughout selected mod-

els. Thus, because M. lucifugus and Pd niche ranges overlap so heavily, in order to survive, bats

reduce Pd load and subsequent influence, and they further expand niche range through relaxation

of physiological constraints by clustering.

Importantly, I find that there is an important oft overlooked temporal component to the hiber-

nation niche. While bats establish roosting microsites very early in the hibernation season (Chap-

ter 3), the microclimates experienced at these sites remain physiologically survivable throughout

hibernation, despite Pd presence and energetically unfavorable extremes (Chapter 4). In fact, tem-

porary extreme changes in temperature or humidity that are outside the niche range of Pd may

help bat survival of WNS, even if those changes are energetically unfavorable for bat hibernation.
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Studies that assume bats are using stable microclimates for hibernation, or average values over

the hibernation season, may be overlooking important system variation. That bats can use these

conditions successfully for hibernation is likely at least in part a result of behavioral adaptations to

mitigate metabolic losses (Chapter 4). This suggests that there should be further experimental in-

vestigation into the physiological benefits and potential consequences of behaviors like clustering

and grooming.

Future efforts to characterize WNS outcomes in the field should further integrate and expand

the technological and modeling innovation pioneered in these studies. Detailed descriptions of

temperature microclimate and humidity, paired with behavioral observations, can allow strong in-

ference into bat physiological properties (Chapter 2). But this inference is thus far based on bat

survival of WNS. To push these advances forward, we should consider performing similar work in

populations of known mortality outcomes, pairing ecophysiological models with mark-recapture

studies. This could improve evaluations of population risk assessment, while also allowing inves-

tigation of selection on traits that improve survival outcomes (Gignoux-Wolfsohn et al., 2021).

In addition, we should find ways to pair hibernation microclimate measurements and within-

hibernaculum bat movement (Ryan et al., 2019) to better evaluate how microclimate availability

and changes impact microclimate use and survival outcomes.

Ultimately, it appears as though the niche range of hibernating bats is wider than has previously

been assumed. Pd indirectly reduces the bat’s fundamental niche through physiological alterations,

leading to mass mortality in bats unable to escape niche overlap with Pd growth. However, some

bats appear capable of surviving WNS by mitigating niche restriction via Pd removal, increasing

niche range through clustering as conspecific facilitation, and utilizing niche space that does not

overlap with the Pd niche, even if it is temporarily unfavorable for hibernation. This suggests that,

at least in this hibernaculum, bats are surviving as a function of exaptations, rather than current

adaptation due to selection by Pd. My investigation reveals a series of important interactions

between behavior and physiology that can change under different environmental conditions.
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This is important to consider when developing WNS management strategies. Considering that

that WNS survival is heavily dependent on experienced microclimates (Hayman et al., 2016; Haase

et al., 2019a), there is a natural step from wanting to prevent WNS mortality to changing hiber-

naculum microclimates to better support survival (Turner et al., 2021). However, a suitable micro-

climate is not necessarily enough to prevent mass mortality (Chapter 4). Our parameter estimation

suggests that bats have physiological exaptations for survival microclimates that contribute to suc-

cessful hibernation despite Pd presence. Then, if hibernaculum alterations push microclimates

outside the niche range of resident populations, it could make the hibernaculum inhabitable or lead

to further mortality. Here I provide methods to evaluate important physiological traits such that we

can estimate hibernation success under a variety of hypothetical hibernaculum alteration scenarios.

These tools can be used to investigate the potential impacts of anthropogenic alterations prior to

implementation.

Perhaps more so than many diseases, WNS demonstrates the complexity inherent in natural

systems, with individual outcomes heavily dependent on environmental factors, physiological re-

sponses, host-pathogen interactions, and population-level activities. With so many driving forces

affecting individual and population outcomes of disease, it is important that we find ways to em-

brace this complexity. Laboratory-based experiments might be capable of measuring individual

factors with precision, but they do so at the expense of removing other interactive variables. Thus,

a robust approach to predicting WNS outcomes will integrate and test multiple hypotheses simul-

taneously, incorporating laboratory-based data while allowing flexibility for population variation.

I have adapted a suite of tools to help this type of investigation, including ensemble modeling of

multiple mechanistic models representing hypotheses, hierarchical models with complex natural

system representations underlying regressive covariate selection, and approximate Bayesian com-

putation allowing simultaneous parameter estimation and comparison of complex ecophysiologi-

cal models. To make inference on specific systems, I gathered necessary data through fieldwork,

which was itself informed by previous generations of models, representing a model-guided field-

work approach (Restif et al., 2012). Throughout my dissertation I have made inference to help
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guide management efforts and suggested further lines of investigation, highlighting the most rele-

vant paths to further understand WNS survival. I hope that this work represents the next iterative

step to conservation of the wide and magnificent biodiversity of bats.

83



Bibliography

Akima, H. & Gebhardt, A. (2021). akima: Interpolation of Irregularly and Regularly Spaced Data.

R package version 0.6-2.3.

Armitage, K.B., Blumstein, D.T. & Woods, B.C. (2003). Energetics of hibernating yellow-bellied

marmots (marmota flaviventris). Comparative Biochemistry and Physiology Part A: Molecular

& Integrative Physiology, 134, 101–114.

Armitage, K.B. & Woods, B.C. (2003). Group hibernation does not reduce energetic costs of

young yellow-bellied marmots. Physiological and Biochemical Zoology, 76, 888–898.

Audet, D. & Thomas, D. (1997). Facultative hypothermia as a thermoregulatory strategy in the

phyllostomid bats, carollia perspicillata and sturnira lilium. Journal of Comparative Physiology

B, 167, 146–152.

Avery, M. (1985). Winter activity of pipistrelle bats. The Journal of Animal Ecology, pp. 721–738.

Barclay, R.M., Kalcounis, M.C., Crampton, L.H., Stefan, C., Vonhof, M.J., Wilkinson, L. &

Brigham, R.M. (1996). Can external radiotransmitters be used to assess body temperature and

torpor in bats? Journal of Mammalogy, 77, 1102–1106.

Battin, J. (2004). When good animals love bad habitats: ecological traps and the conservation of

animal populations. Conservation Biology, 18, 1482–1491.

Beaumont, M.A. (2010). Approximate bayesian computation in evolution and ecology. Annual

review of ecology, evolution, and systematics, 41, 379–406.

Ben-Hamo, M., Muñoz-Garcia, A., Korine, C. & Pinshow, B. (2012). Hydration state of bats may

explain frequency of arousals from torpor.

84



Ben-Hamo, M., Muñoz-Garcia, A., Williams, J.B., Korine, C. & Pinshow, B. (2013). Waking to

drink: rates of evaporative water loss determine arousal frequency in hibernating bats. Journal

of Experimental Biology, 216, 573–577.

Blehert, D.S., Hicks, A.C., Behr, M., Meteyer, C.U., Berlowski-Zier, B.M., Buckles, E.L., Cole-

man, J.T., Darling, S.R., Gargas, A., Niver, R. et al. (2009). Bat white-nose syndrome: an

emerging fungal pathogen? Science, 323, 227–227.

Bohn, S.J., Turner, J.M., Warnecke, L., Mayo, C., McGuire, L., Misra, V., Bollinger, T.K. & Willis,

C.K. (2016). Evidence of ‘sickness behaviour’in bats with white-nose syndrome. Behaviour,

153, 981–1003.
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Appendix A

Chapter 2 supplemental materials

A.1 Data logger details

We contracted Phase IV Engineering (Boulder, CO) to develop miniature data loggers that

record ambient temperature and relative humidity each hour (Figure 1.a). Data loggers were wa-

terproofed by spraying water-proof epoxy over all surfaces except the humidity sensor, and sealed

in a water-permeable pouch to allow water vapor to reach the humidity sensor while preventing

condensation from forming over the sensor. In total, the materials sutured to bats did not exceed

0.5 grams. We only attached data loggers to study subjects that weighed at least 20 grams to avoid

adding mass that exceeded 5% of body mass. Loggers were tested in laboratory conditions prior to

deployment on bats. Further details regarding data loggers are available in an in prep manuscript

that can be made available upon request (pers. comm. Paul Cryan).

99



Figure A.1: Applying the energetics (red), hydration (blue), or scaled hydration model (green, see Appendix

A.2) with literature-based parameters does not result in any correlation between observed torpor bout dura-

tions (in hours) and model expectations.
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Figure A.2: Fitting the energetics and hydration models (teal) to torpor bout data (red points) directly rather

than as ecophysiological boundaries to potential behavior. Doing so results in poor fits that ignore longer

torpor bout durations in ranges of (a) temperature and (b) water vapor pressure deficit.
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Figure A.3: Directed Acyclic Graph of our Bayesian hierarchical ensemble model that inputs measured

values of ambient temperature (Ta), water vapor pressure (WV P ), and bat pre-hibernation mass (Mbody)

to predict torpor bout duration. There are two processes incorporated: 1. The ensemble process (π) is a

percentage dictating the weighted average of the energetics and hydration models. 2. In treating ecophysi-

ological model predictions as a biological limit to behavior, we predict that actual torpor bout duration will

be a percentage (ρ) of energetics and hydration model outputs. For one subset of parameters (φ), literature-

based estimates were applied directly as model inputs. For the others, literature-based estimate were used

as priors (µθ priors) to develop distributions for estimating population-level parameters (µθ), which were

then used to estimate individual-level parameters (θi). Dotted lines indicate that one estimated parameter

(Ttor,min) was used to calculate the water vapor pressure deficit, and therefore has a direct influence on the

estimation of ρ and π. Dashed lines indicate independent variables affecting the dependent variable.
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A.2 Estimating Eptesicus fuscus cutaneous evaporative water

loss rate

Because we do not have a measure of partioned evaporative water loss (i.e., rates of loss for

body, wings, and respiration) for E. fuscus as we do for M. lucifugus, we used published total

evaporative water loss rates to approximate a scaled measure for E. fuscus. Klüg-Baerwald &

Brigham (2017) report evaporative water loss rates under given environmental conditions. We use

the reported body mass, temperature, and relative humidity to estimate water vapor pressure deficit

and respiratory water vapor loss per Haase et al. (2019a). Then, we determine the evaporative water

loss that is cutaneous (total minus respiratory) and multiply cutaneous loss by a scalar parameter

(δ) to estimate E. fuscus cutaneous evaporative loss as a percentage of measured M. lucifugus

cutaneous evaporative water loss from Haase et al. (2019a). We find that based on these two

studies, the expected cutaneous evaporative water loss of E. fuscus is approximately 27% of M.

lucifugus. As expected per our parameter estimation (Figure 2.3.a), this rescaling suggests that

E. fuscus experience significantly lower rates of evaporative water loss than the population of M.

lucifugus measured by Haase et al. (2019a).
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Appendix B

Chapter 3 supplemental materials
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Figure B.1: Raw temperature and relative humidity readings prior to cleaning from data loggers. (a) Errant

temperature values are particularly easy to pick out as large sudden spikes. (b) There are periods of high

variability in readings during warm months that are likely erroneous given a large number of unrealistic

values. However, in cold months, all loggers converge on a similar pattern that we interpret as correct

readings.
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Figure B.2: Representation of logger connectivity network used to generate spatial covariates used in the

logistic model. Nodes represent individual data loggers (light red are microsites without roosting M. lucifu-

gus, light blue are microsites with roosting M. lucifugus), warm and cold entrances (green), roosting centroid

for each chamber (dark blue), and estimated midpoint between the Upper and Lower chambers (bright red).
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Table B.1: List of all spatial and environmental covariates considered for logistic regression of roost occur-

rence.

Covariate Eliminated

by cor-

relation

coefficient?

Eliminated

by ∆DIC?

Included

in selected

model

SPATIAL

Distance to warm entrance No No Yes

Distance to cold entrance No Yes -

Elevation No Yes -

Path to bats No No Yes

TEMPERATURE

Hibernation mean No No Yes

Hibernation standard deviation No Yes

Hibernation maximum Yes - -

Hibernation minimum No Yes -

Hibernation median Yes - -

September mean Yes - -

September standard deviation No No Yes

October mean Yes - -

October standard deviation Yes - -

November mean Yes - -

November standard deviation Yes - -

WATER VAPOR PRESSURE

Mean No Yes -

Standard deviation No Yes -

Maximum No Yes -

Minimum No Yes -

Median Yes - -

INTERACTION TERMS

Distance to warm * Elevation No Yes -

Distance to cold * Elevation No Yes -

Distance to warm * Distance to cold No Yes -

Distance to warm * Distance to cold

* Elevation

No Yes -

Mean hibernation temperature

squared

No Yes -

Water vapor pressure squared No Yes -

Mean hibernation temperature *

Water vapor pressure

No Yes -
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Figure B.3: Evidence of cross-correlational lag between above-ground temperature and a given microsite.

The maximum significant lag period across measured microsites was three days.
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B.1 Equations for microsite temperature prediction

Equation B.1 describes prediction of underground microclimates on the first day of the pre-

dicted time period. U , L, and S are equal to 1 if microsite i is in the Upper, Lower, or Side

chamber, respectively, and they are equal to 0 otherwise. Microsites in the Upper chamber fol-

low an exponential decay from mean daily temperature outside (Tout,t) through the warm en-

trance down to the system midpoint, wherein large un-mined walls create an airflow bottleneck.

Then the Lower chamber microsites are a more linear diffusion of temperature from the mid-

point (Tmid,t) down to the MAST analog (TMAST,t). The Side chamber is accessed by a dif-

ferent passage in the Upper chamber located at similar elevation as the Upper/Lower midpoint,

so it is modeled as an exponential decay in temperature from Tmid,1 down to the MAST ana-

log. Differences in airflow and openness between chambers result in different slopes in tem-

perature decrease along the elevation gradient. Microsite elevation is scaled between 0 and 1

(Elevi = (Elevation above sea floor − 1100)/1600) to facilitate parameter estimation. The cool-

ing rates (α) for each chamber use non-informative Gamma priors, and variance (σ2
T ) uses non-

informative Normal priors.

µT,1,i = (Ui)(1− Li)(1− Si)[(Tout,1 − Tmid,1)e
−αU (Elevout−Elevi) + Tmid]+

(1− Ui)(Li)(1− Si)[Tmid + αL(Elevi − Elevmid)]+

(1− Ui)(1− Li)(Si)[(Tmid,1 − TMAST,1)e
−αS(ElevS.entry−Elevi) + TMAST,1]

T1,i ∼ Normal(µT,1,i, σ
2
T )

(B.1)

Following day one, subsequent average daily temperatures are calculated as the combination

of a regression function of the change in outside daily temperature over the past three days caused

by airflow from above ground and exponential decay toward MAST analog caused by contact with

cavern walls (Equation B.2). We expect that effects of outside temperature will vary across spa-

tial location within the system, with deeper microsites with less airflow having more minimal and
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longer lag response compared to microsites closer to surface-level entrances (Boyles et al., 2017).

Thus, the site-specific coefficients for daily change in temperature (δi) are themselves functions

of distances to the warm entrance (dwarm,i) and cold entrance (dcold,i) and elevation, described

by (Equation B.4). In addition to δk-mediated regression of outside change in temperature, we in-

clude the main effects of each covariate with effect size γ. Opposing the impact of airflow from the

surface, subterranean air temperature is pulled toward cavern wall temperature (similar to MAST

analog) with a rate of λwall,w/c. The percent contributions of airflow regression versus cavern

wall contact are mediated by the factor ν that indicates low, medium, or high airflow at a given

microsite. ν distributions use noninformative Beta priors, λwall distributions use noninformative

Gamma priors, and δ and γ distributions use noninformative Normal priors.
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(ν1,wAirflowhigh + ν2,wAirflowmed + ν3,wAirflowlow)∗

(µT,t−1,i + δ1w,i(Tout,t − Tout,t−1) + δ2w,i(Tout,t−1 − Tout,t−2)+

δ3w,i(Tout,t−2 − Tout,t−3) + γ1wdwarm,i + γ2wdcold,i+ Tout,t ≥ TMAST,t

γ3wElevi + γ4wTout,t + γ5wTout,t−1 + γ6wTout,t−2 + γ7wTout,t−3)+

(1− ν1,wAirflowhigh − ν2,wAirflowmed − ν3,wAirflowlow)∗

((µT,t−1,i −MASTt)e
−λwall,w +MASTt)

(ν1,cAirflowhigh + ν2,cAirflowmed + ν3,cAirflowlow)∗

(µT,t−1,i + δ1c,i(Tout,t − Tout,t−1) + δ2c,i(Tout,t−1 − Tout,t−2)+

δ3c,i(Tout,t−2 − Tout,t−3) + γ1cdwarm,i + γ2cdcold,i+ Tout,t < TMAST,t

γ3cElevi + γ4cTout,t + γ5cTout,t−1 + γ6cTout,t−2 + γ7cTout,t−3)+

(1− ν1,cAirflowhigh − ν2,cAirflowmed − ν3,cAirflowlow)∗

((µT,t−1,i −MASTt)e
−λwall,c +MASTt)

(B.2)
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Tt,i ∼ Normal(µT,t,i, σ
2
T ) (B.3)

δk,w/c,i = λ0,k,w/c + λ1,k,w/cdwarm,i + λ2,k,w/cdcold,i+

λ3,k,w/cElevi + λ4,k,w/cdwarm,idcold,i + λ5,k,w/cdwarm,iElevi+

λ6,k,w/cdcold,iElevi + λ7,k,w/cdwarm,idcold,iElevi+

λ8,k,w/cUi + λ9,k,w/cLi + λ10,k,w/cSi

(B.4)
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Figure B.4: Regression between observed and predicted (a) mean hibernation temperature and (b) Septem-

ber standard deviation in temperature. The black line has a slope of 1 and intercept of 0. The blue line and

shaded area represent linear regression with a 95% confidence interval, the equation of which is inset in the

figure. Note that while there is significant deviation between observed and predicted September standard

deviation in temperture at some microsites, in general within-chamber relationships are maintained wherein

bat roosts have lower standard deviation than non-roost microsites.
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Appendix C

Chapter 4 supplemental materials
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Figure C.1: (a) Temperature and (b) relative humidity data used in ecophysiolgoical models to generate

torpor bout duration. Reprinted with permission from Golas et al. (in prep). Refer to Golas et al. (in prep)

for further details.
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C.1 Ecophysiological equation modifications

Our model uses the same equations to estimate time in torpor and energy consumed as Haase

et al. (2019a), with the addition of time in cooling period taken from Haase et al. (2019b). We

alter the equations to incorporate clustering by multiplying the denominator determining time in

torpor and the cutaneous evaporative water loss by a percentage representing the ratio of energy

lost clustered compared to energy lost as an individual (Canals et al., 1997).

ttor,energetics =











ttor,max/Q

(

Ta−Ttor,min

10

)

10 ∗ clusterfac Ta > Ttor,min

ttor,max

1+(Ttor,min−Ta)∗
(

Ct
TMRmin

)

∗clusterfac
Ta ≤ Ttor,min

(C.1)

CEWL = (SAbody ∗ rEWLbody + SAwing ∗ rEWLwing)∆WV P ∗ clusterfac (C.2)

For grooming, we simply subtract from the Pd reservoir on the bat based on time spent clearing

fungus at rate groom during the arousal period. Then, following arousal, that amount of Pd will

be as in Equation C.3. Parameter definitions and values are as described in Hayman et al. (2016).

Pdt+1 = Pdt+β1 ∗ (Teu−Tmin)∗ (1− e(β2∗(Teu−Tmax)))∗
µ1 ∗RHt

1 + µ2 ∗RHt

∗ teu− groom∗ teu ∗ 0.22

(C.3)

For further details regarding model structures, code used to generate simulations is available

at: https://github.com/bengolas/WNSSurvivalAdaptations
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Figure C.2: Example equation output of torpor bout length for each of the six scenarios across microsites

where M. lucifugus are found hibernating midwinter. Dotted lines indicate the approximate Bayesian com-

putation rejection algorithm criteria for boundaries of average torpor bout length throughout hibernation

without Pd. This literature-based parameter set would be excluded in the ABC process because in all four

models (see text), there are microsites where expected average torpor bout length is greater than rejection

algorithm criteria allow (microsites 27 and 31). The Microclimate and Microclimate + Clustering models

would be excluded due to predicted death (average torpor bout length of near 0) in many microsites when

Pd is introduced.
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Figure C.3: Correlation between parameters in posteriors from approximate Bayesian computation for the

(a) Microclimate + Grooming and (b) Microclimate + Clustering + Grooming models. Note the higher

correlation between conductance (C.t) and torpid metabolic rate (TMR.min) in both models, and between

evaporative water loss and clustering factor in the Microclimate + Clustering + Grooming model.
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Figure C.4: Posterior densities for all estimated parameters from approximate Bayesian computation. Ver-

tical dotted lines represent literature-based point estimates used to develop prior distributions.
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