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ABSTRACT

A NEW POST-PROCESSING PARADIGM? IMPROVING HIGH-IMPACT WEATHER FORECASTS WITH

MACHINE LEARNING

High-impact weather comes in many different shapes, sizes, environments, and storm types, but

all pose threats to human life, property, and the economy. Because of the significant societal hazards

inflicted by these events, having skillful forecasts of the risks with sufficient lead time to make appropri-

ate precautions is critical. In order to occur, these extreme events require a special conglomeration of

unusual meteorological conditions. Consequently, effective forecasting of such events often requires

different perspectives and tools than routine forecasts. A number of other factors make advance fore-

casts of rare, high-impact weather events particularly challenging, including the lack of sufficient res-

olution to adequately simulate the phenomena dynamically in a forecast model; model biases in rep-

resenting storms, and which often become increasingly pronounced in extreme scenarios; and even

difficulty in defining and verifying the high-impact event. This dissertation systematically addresses

these recurring challenges for several types of high-impact weather: flash flooding and extreme rain-

fall, tornadoes, severe hail, and strong convective winds. For each listed phenomenon, research to

more concretely define the current state of the science in analyzing, verifying, and forecasting the phe-

nomenon. From there, in order to address the aforementioned persistent limitations with forecasting

extreme weather events, machine learning-based post-processing models are developed to generate

skillful, calibrated probabilistic forecasts for high-impact weather risk across the United States.

Flash flooding is a notoriously challenging forecast problem. But the challenge is rooted even more

fundamentally with difficulties in assessing and verifying flash flooding from observations due to the

complex combination of hydrometeorological factors affecting flash flood occurrence and intensity.

The first study in this dissertation investigates the multi-faceted flash flood analysis problem from

a simplified framework considering only quantitative precipitation estimates (QPEs) to assess flash

flood risk. Many different QPE-to-flash flood potential frameworks and QPE sources are considered

over a multi-year evaluation period and QPE exceedances are compared against flash flood observa-

tions and warnings. No conclusive “best” flash flood analysis framework is clearly identified, though
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specific strengths and weaknesses of different approaches and QPE sources are identified in addition

to regional differences in optimal correspondence with observations.

The next two-part study accompanies the flash flood analysis investigation by approaching fore-

casting challenges associated with extreme precipitation. In particular, more than a decade of forecasts

from a convection-parameterized global ensemble, the National Oceanic and Atmospheric Adminis-

tration’s Second Generation Global Ensemble Forecast System Reforecast (GEFS/R) model, are used

to develop machine learning (ML) models for probabilistic prediction of extreme rainfall across the

conterminous United States (CONUS) at Days 2 and 3. Both random forests (RFs) and logistic regres-

sion models (LR) are developed, with separate models trained for each lead time and for eight different

CONUS regions. Models use the spatiotemporal evolution of a host of different atmospheric fields as

predictors in addition to select geographic and climatological predictors. The models are evaluated

over four years of withheld forecasts. The models, and particularly the RFs, are found to compare very

favorably with both raw GEFS/R ensemble forecasts and those from a superior global ensemble pro-

duced by the European Centre for Medium-Range Weather Forecasts (ECMWF) both in terms of fore-

cast skill and reliability. The trained models are also inspected to discern what statistical findings are

identified through ML. Many of the findings quantify anecdotal knowledge that is already recognized

regarding the forecast problem, such as the relative skill of simulated precipitation in areas where ex-

treme precipitation events are associated with large-scale processes well resolved by the GEFS/R com-

pared with areas where extreme precipitation predominantly occurs in association with convection in

the warm-season. But more subtle spatiotemporal biases are also diagnosed, including a northern dis-

placement bias in the placement of convective systems and a southern displacement bias in placing

landfalling atmospheric rivers.

The final extended study shifts weather phenomenon focus from extreme rainfall to severe weather:

tornadoes, large hail, and severe convective winds. While both high-impact, the two classes of weather

hazards share some commonalities and contrasts. While rainfall is directly forecast by dynamical weather

models, most severe weather occurs on too small of spatial scales to be directly simulated by the same

models. Consequently, unlike with extreme precipitation, when developing post-processed severe

weather forecasts, there is no obvious benchmark for objectively determining whether and how much

improvement the post-processing is yielding. A natural alternative, albeit much more stringent, bench-

mark is operational forecasts produced by human forecasters. Operational severe weather forecasts are
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produced by the Storm Prediction Center (SPC), but there is limited published verification of their out-

looks quantifying their probabilistic skill. In the first part of this study, an extended record SPC severe

weather outlooks were evaluated to quantitatively assess the state of operational severe weather fore-

casting, including strengths and weaknesses. SPC convective outlooks were found to decrease in skill

with increased forecast lead time, and were most skillful for severe winds, with the worst performance

for tornado outlooks. Many seasonal and regional variations were also observed, with performance

generally best in the North and East and worst in the South and especially West. The second part of the

study follows similar methodology to the extreme precipitation models, developing RF-based proba-

bilistic forecast models forced from the GEFS/R for Days 1–3 across CONUS, analogous to the format in

which SPC produces its convective outlooks. RF properties are inspected to investigate the statistical

relationships identified between GEFS/R fields and severe weather occurrence. Like with the extreme

precipitation model, RF severe weather forecasts are generated and evaluated from several years of

withheld validation cases. These forecasts are compared alongside SPC outlooks and also blended with

them to produce a combined forecast. Overall, by statistically quantifying relationships between the

synoptic-scale environment and severe weather in a manner consistent with the community’s physical

understanding of the forecast problems, the RF models are able to demonstrate skill over SPC outlooks

at Days 2 and 3, and can be blended with SPC outlooks to enhance skill at Day 1.

Overall, multiple high-impact weather phenomena—extreme precipitation and severe weather—

are investigated from verification, analysis, and forecasting standpoints. On verification and analysis,

foundations have been laid both to improve existing operational products as well as better frame and

contextualize future studies. ML post-processing models developed were highly successful in advanc-

ing forecast skill and reliability for these hazardous weather phenomena despite being developed from

predictors of a coarse, dated dynamical model in the GEFS/R. The findings also suggest adaptability

across a wide array of forecast problems, types of predictor inputs, and lead times, raising the possibil-

ity of broader applicability of these methods in operational numerical weather prediction.
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and the right column using training data which aggregates data from seven of the eight

original regions into three regions, as described in the text. Panel (d) as a function of

model algorithm for different forecast days and regions as indicated in the figure legend.

From left to right, columns correspond to results of the CTL_NPCA model, CTL_PCA

model, CTL_LR model, and a weighted combination of models as described in the

paper text. For all panels, error bars correspond to 90% confidence bounds obtained by

bootstrapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Fig. 3.5 Final RPSS results obtained over the four year test period spanning September

2013–August 2017, broken out by region. Red bars correspond to the results of the

final forecast models trained in this study, while gray bars depict results from the raw

GEFS/R QPF probabilities derived from the full ensemble. Dark bars illustrate Day 2

performance results, while lighter colors show results for Day 3. Error bars correspond

to 90% confidence bounds obtained by bootstrapping. . . . . . . . . . . . . . . . . . . . . . . . . 69

Fig. 3.6 Reliability diagrams for Day 2 forecasts generated from raw QPFs of the full GEFS/R

and ECMWF ensembles. Colored opaque lines with circular points indicate observed

relative frequency as a function of forecast probability; the dashed black line is the

one-to-one line, indicating perfect reliability. Colors correspond to the performance

of the forecasts over different regions, as indicated in the legend in the lower-right

of each panel. Inset panels indicate the total proportion of forecasts falling in each

forecast probability bin, using the logarithmic scale on the left hand side of each panel;

lines are again colored by region in accordance with the legend. Panel (a) shows 1-year

exceedance forecast from GEFS/R, (b) to 1-year exceedance forecasts from ECMWF, (c)

to 10-year from GEFS/R, and panel (d) to 10-year from ECMWF. All axes are logarithmic

as labeled. Colored dotted lines indicate the climatological event probability for each

region for the ARI level of the corresponding panel, while the dash-dotted lines indicate
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no skill lines for the color-corresponding region. The curves continue off the left end of

each panel towards the ORF of forecasts in the zero forecast probability bin. . . . . . . . . 70

Fig. 3.7 Reliability diagrams for Day 2 forecasts of 1-year ARI exceedances for different statistical

algorithms. Panel characteristics as in Figure 7, except note that axes have been

modified to include more of the low probability tail due to increased resolution in the

plotted forecast sets. Panel (a) corresponds to forecasts from the CTL_NPCA model,

panel (b) to the CTL_PCA model, and panel (c) to the CTL_LR model. Bin right edges

correspond to forecast probabilities of 0, 1e-10, 1e-7, 1e-4, 1e-3, 0.01, 0.02, 0.03, 0.04,

0.05, 0.07, 0.09, 0.11, 0.14, 0.17, 0.21, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.675,

0.75, 0.85, and 1.0, except that first five probability bins have been aggregated into a

single frequency-weighted probability bin for plotting on the figure. . . . . . . . . . . . . . . 72

Fig. 3.8 Reliability diagrams for the final forecast model, with panel attributes as in Figure 8.

Panel (a) shows Day 2 forecast results for 1-year ARI exceedance forecasts, (b) to Day 2

10-year ARI exceedance forecasts, (c) to Day 3 1-year exceedance forecasts, and panel

(d) to Day 3 10-year ARI exceedance forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Fig. 3.9 Modified Murphy (1973) decomposition results, following equation 3.7 in text. Panel

(a) depicts the equation 3.7 “resolution” term for all models and regions for Day 2

forecasts at the 1-year severity level, panel (b) depicts the “reliability” term results for

the same forecasts and severity level. Panels (c) and (d) are analogous to panels (a)
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Fig. 3.11 Case study depicting forecasts from the final ML model and both reference ensembles

for the 24-hour period ending 1200 UTC 20 May 2015. (a) 24-hour Stage IV QPE ending

at 1200 UTC 20 May 2015 and (b) corresponding ARI exceedances of 1-year and 10-year

thresholds. (c) ECMWF ensemble neighborhood ARI exceedance probabilities in the

filled (1-year) and unfilled (10-year) contours for the 36–60 hour forecast initialized

0000 UTC 18 May 2015 and (d) for the 60–84 hour forecast initialized 0000 UTC 17 May

2015. Panels (e) and (f) depict analogous fields as panels (c) and (d), respectively, except

for forecasts from the raw GEFS/R QPFs. Panels (g) and (h) similarly show respectively
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negative and positive loadings for 0900 UTC during the forecast period (forecast hour

57). Darker colors indicate larger values, and accordingly a stronger relationship with
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Fig. 4.5 Information about principal components for the CTL_PCA model for the ROCK region,

and their joint relationships to ARI exceedances. PCs shown are according to the axis
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example for the Day 1 tornado probabilities valid 1300 UTC 1 May 2016. (a,d,g) show

the ArcGIS depiction of the native SPC forecast probability polygons with the colors

matching the standard SPC graphic. (b,e,h) depict the contours derived from the
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function, where the line colors also correspond to the colors used in the standard SPC

graphic. (c,f,i) depict the final gridded output from the INTERP (c,f) and CONSTANT (i)
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to significant tornado probabilities, (c) and (d) respectively for Day 1 hail and significant
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probabilities for Days 2 and 3, respectively. The “mean” BSS (unity minus ratio of sum

of Brier scores at all grid points for the given variable divided by sum of climatological

Brier scores at all grid points for the same variable) is depicted in the bottom left of each

variable’s panel. A 120-km standard deviation Gaussian smoother was applied prior to

plotting for panels (a), (c), (e), (g), and (h), while a larger 180-km smoother was applied

for the significant severe variables in panels (b), (d), and (f) owing to the smaller sample
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areas towards the mean score. Note that the contour interval and color scale, shown at

figure bottom, is nonlinear. Stippling depicts areas where the sign of the indicated skill

score is statistically significant with 95% confidence using a bootstrapping procedure

as described in the chapter text. Light smoothing of the significance contours has been

performed to enhance readability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Fig. 5.3 Brier Skill Scores for each forecast set as a function of year of forecast issuance for (a)

tornadoes and significant tornadoes, (b) severe hail and significant-severe hail, (c) severe

wind and significant-severe wind, and (d) Day 2 and 3 forecasts of any severe weather

using the Traditional verification framework. Brier scores and climatological BSs have

been summed over space to produce the skill scores shown in (a)–(d). Transparent
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shading around lines indicate 95% confidence intervals on the BSS obtained via

bootstrapping as described in the text. Note that the y-axes vary between panels. . . . . 139
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Fig. 5.5 BSS as a function of the prevailing MLCAPE and DSHEAR at the forecast point for (a)

Day 1 Tornado, (b) Day 1 Hail, and (c) Day 1 Wind forecasts verified from 1 January

2009–21 August 2014 using the Traditional verification framework. Panel (d) indicates

the raw frequencies of points falling into each bin, separated by 250 J kg−1 in MLCAPE

space and 2.5 m s−1 in DSHEAR space, over the verification period. Values have been

lightly smoothed with a 187.5 J kg−1, 1.875 m s−1 Gaussian smoother for increased

clarity. Stippling denotes regions of the parameter space where the sign of the indicated

skill score is known with 95% confidence. Note that both the red/blue and magenta

scales are nonlinear, particularly the latter one. Both the red/blue and green/purple
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Fig. 5.6 Reliability and sharpness diagrams using the Traditional verification framework. Panels

(a), (b): colored lines with circular points indicate observed relative frequency as a

function of forecast probability; the solid black line is the one-to-one line, indicating

perfect reliability. Colors correspond to forecast sets of different parameters and lead

times as indicated in the panel legend. Panel (a) portrays the entire reliability diagram,

while panel (b) is a zoom of panel (a), restricted to only probabilities of 0.15 or lower.

Probability bins correspond to the full range of discrete probabilities that SPC can
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scale shown on the y-axis and using the same color encoding used in panels (a) and (b).

X-axes of (c) and (d) correspond with those of (a) and (b), respectively. . . . . . . . . . . . . 144

Fig. 5.7 Same as Figure 5.2, except for the Interpolation verification framework. . . . . . . . . . . . 146

Fig. 5.8 As in Figure 5.3, except using the Interpolation verification framework. Additionally,

the corresponding climatological Brier scores to panels (a)–(d) appear in panel (e) on a

logarithmic axis using the same color coding as indicated in the figure legend. . . . . . . 147

Fig. 5.9 Same as Figure 5.8, but by month of forecast issuance. . . . . . . . . . . . . . . . . . . . . . . . . 149

Fig. 5.10 Same as Figure 5.5, but for the Interpolation verification framework. . . . . . . . . . . . . . . 150

Fig. 5.11 As in Figure 5.6, except for the Interpolation framework and zoom in panels (b) and (d)

is to 0.1 rather than 0.15. Probability bins are delineated by 2%, 3.5%, 5%, 7.5%, 10%,

12.5%, 15%, 17.5%, 20%, 25%, and 30% thresholds for Day 1 tornado forecasts, and by

5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%, 27.5%, 30%, 35%, 40%, 45%, 50%,

55%, and 60% for all other forecast sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Fig. 5.12 Difference of verification results from the Interpolation framework minus results

from the Traditional framework as a function of (a) forecast year and (b) forecast

month for each forecast variable as indicated in the figure legend. Transparent

shading corresponds to 95% confidence bounds on the difference obtained through
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Fig. 6.2 FIs aggregated by atmospheric field for the Day 1 models in the WEST, CENTRAL, and

EAST regions in panels (a)–(c), respectively. Red bars correspond to FIs for the tornado

predictive model, green bars to the hail predictive model, and blue bars to the wind

predictive model for each region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
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Fig. 6.4 Normalized FIs aggregated as a function of forecast hour for the Day 1 models. The top,

middle, and bottom rows depict FIs for the tornado, hail, and wind models, respectively,

while the left, center, and right columns respectively depict FIs for the WEST, CENTRAL,

and EAST regions. Severe phenomenon diurnal climatologies are depicted for each
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region in black. These and the total FIs, colored as indicated in the panel legend,

are normalized so that the curve integrates to unity. FI time series broken down by

thermodynamic and kinematic variables are also included, with lines as colored in the

panel legend and using the variable partitioning depicted in Table 6.1. . . . . . . . . . . . . 171

Fig. 6.5 Similar to Figure 6.4, except for the Day 2 and 3 models, which are combined onto single
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CIN, shear, and all variables combined are shown for each forecast region, colored as
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Fig. 6.6 FIs summed according to the corresponding predictor’s position in point-relative space

for the WEST, CENTRAL, and EAST regions respectively in the left, center, and right

columns. Tornado model FIs are depicted in the top row, followed by hail, wind, Day

2, and finally the Day 3 model on the bottom row. Yellows indicate high importance

of information at the point, while magentas indicate lesser importance. The forecast

point is shown with a black cross; latitude and longitude are presented using the region

centroid, and are shown merely to provide improved sense of spatial scale. . . . . . . . . . 174

Fig. 6.7 Feature importances by space and atmospheric field for the Day 1 tornado, hail, and

wind models in the WEST region. Rings enclose regions where the FI for the variable

and time exceeds 1.5 standard deviations above the spatial mean FI for that variable

and time. Ring colors vary according to the predictand of the model, with oranges and

reds corresponding to FIs associated with predicting tornadoes, greens to predicting

hail, and blues to predicting wind. Within these, colors darken and transition from
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(a)–(o) correspond respectively to FIs for the CAPE, T2M, RH2M, CIN, Q2M, ZLCL,
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Fig. 6.10 Brier skill scores (filled contours) in space evaluated over the 12 April 2012–31 December
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CHAPTER 1

INTRODUCTION

A serene sunrise. A dreary drizzle. An obfuscating fog. A violent cyclone. Weather has been a

subject of awe, fascination, and bewilderment for millennia and beyond. Weather assumes many dis-

positions, is ever-evolving, and is never quite the same twice. It affects almost every aspect of society

in some capacity, from the minutiae of daily life—what to wear, scheduling and activity planning, per-

sonal mood and productivity—to the economy, from agriculture to energy to health to transportation.

However, it is not the quiescent conditions but rather the intense and unusual weather that brings

the greatest societal impacts. High-impact weather can manifest in almost any location, and at any

time of year, and in a multitude of different forms including: winter storms—snowstorms, ice storms,

blizzards; flooding, including river floods and flash floods; severe weather—tornadoes, large hail, and

strong winds; and windstorms, from tropical cyclones to downslope events. In 2017 alone, flash flood-

ing was responsible for over 100 fatalities and almost $60B in the United States, while severe weather

was responsible for 81 fatalities and over $2.5B in additional damages (NWS 2018).

Because of the immense societal impacts imposed by inclement weather, there have been efforts

to forecast weather since before the times of Aristotle (Taub 2004). Early efforts were rather primitive,

with forecasts made based on astronomy and pattern recognition from observing the skies. However,

forecasting methods have become increasingly sophisticated with technological innovations. The in-

vention of the telegraph in the mid-19th century allowed weather reports to be transmitted much more

quickly than was done previously. These reports, which could now travel faster than the weather itself,

allowed for weather forecasts to be legitimately based on real-time data for the first time, and to be

made with some skill farther in advance. Realizing the potential utility in this information, concur-

rent with the expansion of the telegraph network came more concerted efforts to organize, decipher,

and communicate weather reports and information (Willis and Hooke 2006). For example, beginning

in 1871 Cleveland Abbe headed what is now the National Weather Service (NWS) (Willis and Hooke

2006). Alongside leading major efforts to collect and disseminate weather observations for improved

forecasting, Abbe also argued for more effective numerical weather prediction (NWP) by coupling those

observations with known governing physics of the atmosphere to derive predictions mathematically

(Abbe 1901). Through all of these advancements, one thread—pattern recognition—has held constant

throughout all weather forecasting efforts.
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In tandem with these observation-based weather forecasting improvements came significant ad-

vancements to our physical understanding of the atmosphere and geophysical fluid dynamics more

broadly. It was noted, both by Abbe and others, that knowing the laws governing the evolution of the

atmosphere in conjunction with its present state would enable computation of future atmospheric

states. Notably, Lewis Fry Richardson made among the first documented attempts at weather pre-

diction from direct computation. During World War I, discretizing in space and time, Richardson at-

tempted to use governing properties of geophysical fluid dynamics to predict pressure tendency six

hours into the future. With significant manual labor, he eventually completed this forecast, predicting

a 145 hPa pressure rise at his forecast location (Lynch 2008). Despite what might perhaps be character-

ized as a wildly unsuccessful attempt at atmospheric prediction, Richardson, Abbe, and others set the

framework and foundation for a new paradigm for forecasting weather, now termed numerical weather

prediction (NWP).

With innovations in computing technology over the subsequent decades came efforts to develop

explicit models to simulate the atmosphere. Since the mid-20th century when the first automated nu-

merical simulation of the atmosphere was successfully completed (Lynch 2008), there have been rapid,

steady increases in computer power, and alongside these computing advances, increasingly sophisti-

cated, skillful, and detailed dynamical weather models have been developed. More of the physics has

been represented, model resolution has increased, and numerics have been improved to use resources

more effectively and minimize numerical error. However, even with ever increasing sophistication,

these models will never consistently produce close to perfect forecasts.

There are a multitude of sources of uncertainty in a dynamical model simulation and in turn result

in forecast error. Analysis error—having an incorrect or incomplete representation of the current at-

mospheric state—is one major source of uncertainty. Given the infinitesimal scale on which the world

and thus atmosphere operate, it is a practical impossibility to devise a perfect representation of the

system state at any time past or present. Observations are not collected on this scale outside a labo-

ratory setting, and all observations on any scale have some degree of error and uncertainty. Even with

perfectly sampled representations of every particle, current dynamical models do not simulate on this

scale; instead, simplifications are made to allow for efficient computation. Consequently, additional

analysis error is inevitable in the process of translating real-world observations into the correspond-

ing representation in a model. Initial conditions are one major source of uncertainty, but boundary

conditions can yield erred representations of the atmospheric state as well. In limited area models,
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the error associated with lateral boundary conditions can introduce error to the model solution even

in the absence of analysis error. Additionally, in all models, top and bottom boundaries exist, and the

representation of these boundaries can introduce additional error. On the bottom level, resolution of

topography, soil type and properties in a discretized model all represent possible sources of uncer-

tainty. Similarly, improper representation of the upper boundary can introduce additional uncertainty

(e.g. Kalnay 2003).

Even in the absence of any analysis error, an imperfect model will still produce small errors in the

model’s representation of the future atmosphere, and continued non-linear error growth due to chaos

will continue to increase the departure of the model solution from reality (e.g. Lorenz 1963). Models are

imperfect in a number of ways, starting with model numerics. Floating point operations on modern

computers have finite precision, resulting in truncation error both from a storage of numerical values

and on operations between numbers. This exact source of error first led to the discovery of non-linear

error growth in modeling atmospheric flows (Lorenz 1963). Further, many equations governing the

atmosphere involve operations in continuous space, such as integrals and derivatives, which require

simplifications to compute numerically in discrete space (Durran 2010). Relatedly, the resolution of

numerical models also prevents accurate representation and simulation of many small-scale physical

processes. Lack of proper and complete physical understanding of all atmospheric processes further

compounds model error and uncertainty (Kalnay 2003). For all these reasons, even as they continue

to improve, numerical weather models have always had and will continue to have error modes, biases,

and other deficiencies.

Nevertheless, there is skillful predictive information from these dynamical models. Broadly, the ob-

jective in weather forecasting is and has always been to use all information available—climatologies,

historical records, current observations, and model forecasts—to make the “best” weather forecast

possible. Humans have been doing this since long before NWP, whether they conceptualize their ac-

tions this way or not. This process of digesting all of these pieces of information and producing a final

forecast, referred to as post-processing1, is in many senses the primary role of the human forecaster.

However, humans are inherently limited in the rate in which they can ingest and assimilate data, and in

the number of computations able to be performed within a prescribed time. In a process known as sta-

tistical post-processing (SPP), modern computers offer the potential to assist with the post-processing

1The process of assimilating current observations and running a dynamical model being the ‘initial’ processing.
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process by ingesting more data and making more quantitative corrections than is possible by a human

forecaster in the same amount of time.

There is a long history of successful application of SPP to dynamical model output (e.g. Klein et al.

1959; Glahn and Lowry 1972) and using statistics to forecast based on observations (e.g. Hope and Neu-

mann 1970; Neumann 1972; Jarvinen and Neumann 1979). Model Output Statistics (MOS; e.g. Glahn

and Lowry 1972), is a simple, effective multivariate linear regression technique relating a set of dynam-

ical model predictors to sensible weather predictands such as minimum and maximum temperature,

wind speeds, and precipitation probability. This basic technique has long demonstrated skill over both

the underlying models and even human forecasters (e.g. Jacks et al. 1990; Vislocky and Fritsch 1997;

Hamill et al. 2004; Baars and Mass 2005), but is inherently limited by the linear assumptions underly-

ing the method. SPP techniques have also been successfully applied to precipitation forecasts, from

early linear approaches (e.g. Bermowitz 1975; Antolik 2000) to more contemporary techniques that can

exploit more complex variable relationships, including neural networks (e.g. Hall et al. 1999), refore-

cast analogs (e.g. Hamill and Whitaker 2006; Hamill et al. 2015), logistic regression (e.g. Applequist et al.

2002), random forests (e.g. Gagne et al. 2014; Ahijevych et al. 2016), and other parametric techniques

(e.g Scheuerer and Hamill 2015). For other meteorological applications, other machine learning algo-

rithms, such as support vector machines (e.g Zeng and Qiao 2011; Herman and Schumacher 2016b) and

boosting (e.g. Herman and Schumacher 2016b; Hong et al. 2016) have been applied. Related techniques

have also been applied to forecasting related high-impact phenomena, such as severe hail (Brimelow

et al. 2006; Gagne et al. 2015) and tornadoes (Alvarez 2014).

Most existing SPP methodology to date has focused on minimizing forecast error in a bulk sense.

However, as noted above, societal impacts of weather are not evenly distributed among all days; in-

stead, the highest impacts are felt from rare, intense events that by definition deviate significantly from

the climatology of the location. Though governed by the same fundamental physics, these events are

necessarily less tested and familiar, and small model errors under quiescent conditions are often ex-

acerbated. Consequently, the tools used for skillful forecasting of routine conditions are not always

effective for the rare, high-impact scenarios; instead, tailored tools designed to assess the situation

from a different perspective are often required.

In developing these tools, this dissertation seeks to raise the bar for real-time high-impact weather

forecasts, and in particular for extreme precipitation and severe weather, through a series of systematic

investigations outlined as follows. For each broad class of weather phenomena, the dissertation begins
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with an investigation to better identify and contextualize the state of the forecast problem. From there,

follow-on research implements machine learning-based post-processing to develop probabilistic fore-

cast models in an attempt to explore the statistics and dynamics of each forecast problem and produce

more skillful and reliable forecast guidance compared with existing products. It is hoped that by assess-

ing more data and imposing fewer assumptions on the relationships within these data, these new tools

will add value over existing tools available in forecast operations. Chapter 2 provides a comprehensive

and systematic investigation comparing different ways of objectively assessing flash flooding from the

perspective of QPE exceedances. This study is intended to identify strengths and weaknesses of us-

ing different frameworks and data sources to forecast and analyze extreme rainfall and flash flooding.

It also serves as a springboard to Chapter 3, in which the development and evaluation of a machine

learning-based probabilistic extreme precipitation forecast model for Days 2 and 3 across CONUS is

described. Chapter 4 continues this work with more detailed analysis of the machine learning models

and what they reveal about the dynamics and statistics of the extreme precipitation forecast problem

for different CONUS regions. Chapters 5 and 6 investigate the extrapolability of this methodology to

other high-impact weather phenomena by applying similar tools and algorithms towards the proba-

bilistic forecasting of severe weather at Days 1–3 across CONUS. Chapter 5 evaluates the current state of

operational severe weather forecasts by verifying an extended record of probabilistic Day 1–3 convec-

tive outlooks issued by the Storm Prediction Center (SPC). Chapter 6 follows on the work of Chapters

3–5 by developing machine learning-based models for issuing probabilistic forecasts of tornadoes, se-

vere hail, and severe convective winds across CONUS in an analogous way to SPC in their convective

outlooks. ML-based outlooks are evaluated alongside and combined with existing SPC outlooks to di-

rectly assess the utility of the ML-guidance in the operational pipeline. Chapters 3, 4, and 6 all develop

forecast models based on dynamical model predictors from a somewhat antiquated, low-resolution,

convection-parameterized global model known as the Global Ensemble Forecast System Reforecast

Version 2 (GEFS/R), described in much more detail in Chapter 3. Chapter 7 synthesizes the findings of

the dissertation, offers some overarching conclusions, and suggests future research and development

directions for statistical forecasting and numerical weather prediction more broadly.

Dissertation research is presented in a topically-consistent progression, and is not always chrono-

logically consistent with the order in which research was conducted. As such, there may be instances

where experiment setup and design choices may appear inferior to possible alternatives based on re-

search findings presented earlier in the dissertation. Such decisions were often made before those
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study outcomes had been realized. Chapters 2 (Herman and Schumacher 2018b), 3 (Herman and Schu-

macher 2018c), 4 (Herman and Schumacher 2018a), 5 (Herman et al. 2018), and 6 (Herman 2018) corre-

spond to peer-reviewed publications in American Meteorological Society (AMS) journals Weather and

Forecasting, Monthly Weather Review, and Journal of Hydrometeorology. The content of these chapters

largely aligns with the material presented in the corresponding manuscripts. However, the format-

ting has been modified to produce a cohesive dissertation, and additional supplementary research has

been provided in select places to provide research detail beyond that which is already provided in those

manuscripts.
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CHAPTER 2

FLASH FLOOD VERIFICATION: PONDERING PRECIPITATION PROXIES

2.1 INTRODUCTION

Flash flooding is both a highly complex and immensely important forecast problem, being one of

the leading causes of weather-related fatalities over the past several decades in addition to causing bil-

lions of dollars in economic damages in the annual mean (e.g. NWS 2017c). Part of the complexity

compared with other weather hazards derives from the addition of hydrologic considerations along-

side the purely meteorological ones. Antecedent soil conditions and the current levels of rivers and

streams have a considerable influence on the proportion of rainfall that becomes surface runoff (e.g.

Wood 1976; Castillo et al. 2003; Brocca et al. 2008). Land type and land use can also play a critical

role (e.g. Ogden et al. 2000; Hapuarachchi et al. 2011), spanning the gamut from extremely absorbent

sands to pavement, which can effectively saturate with very little rainfall. Urban effects such as pave-

ment curvature and storm drain networks can also affect whether a flash flood is observed (e.g. Smith

et al. 2005; Meierdiercks et al. 2010; Wolff 2013). Particularly in areas of complex terrain, the hydro-

logic response may also be highly sensitive to the precise spatiotemporal distribution of the precipita-

tion; slight spatial displacements or differences in storm intensity may change whether a flash flood

is observed. (e.g. Yatheendradas et al. 2008; Versini et al. 2010). Beyond the challenges from the hy-

drologic perspective, meteorologically, a complex combination of ingredients must come together to

generate and sustain rainfall rates sufficient to produce flash flooding (e.g. Doswell et al. 1996; Davis

2001; Schumacher 2017). Flash-flood producing precipitation, which predominantly originates from

warm-season moist convection over most of the contiguous United States (CONUS; e.g. Schumacher

and Johnson 2005, 2006; Stevenson and Schumacher 2014; Herman and Schumacher 2016a), is conse-

quently one of the most challenging and poorly forecasted sensible weather elements in contemporary

numerical weather prediction (NWP; e.g. Fritsch and Carbone 2004; Novak et al. 2014).

Further exacerbating the flash flood forecast problem is the considerable difficulty in verifying flash

flood events (e.g. Welles et al. 2007; Gourley et al. 2012; Barthold et al. 2015), an essential component to

forecasting any phenomenon. There is no observation source with sufficient accuracy and density to

determine whether a flash flood has occurred at every location across CONUS (e.g. Gourley et al. 2012,

2013; Barthold et al. 2015). Stream gauge measurements are useful, but they inherently cannot capture

urban and other types of flash floods and are much too sparse even on streams and rivers to provide
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adequate spatial resolution (e.g. Gourley et al. 2013). Flash flood reports (FFRs) from human observa-

tions are subject to population bias, with report databases often missing transient floods in very rural

areas or at night (e.g. Pielke et al. 2002), and also to varying reporting and report encoding practices

in different regions of the United States (e.g. Ashley and Ashley 2008; Calianno et al. 2013). Flash flood

warnings (FFWs) have similar inconsistencies associated with differing warning philosophies across

weather forecast offices (WFOs; e.g. Barthold et al. 2015; Marjerison et al. 2016; Schroeder et al. 2016),

different proclivities to warn rural areas (e.g. Marjerison et al. 2016), and the fact that they correspond

to anticipated—rather than observed—impacts.

Nevertheless, because of the societal threat posed by excessive rainfall and flash flooding, there is

immense utility in having accurate flood and flash flood analyses and forecasts. Given the sensitiv-

ities and complications associated with calculating the hydrologic response to precipitation and the

importance and urgency of disseminating updated flash flood information, it is often attractive in op-

erational flash flood analysis and very near-term forecasting to simplify the problem down to a matter

of only QPE. In this simplified framework, the question becomes: is the precipitation a given location

has received or is receiving over some duration, as estimated by the QPE, sufficient to induce a flash

flood? This essentially amounts to a binary exceedance question of whether the QPE over time T is in

excess of some unknown threshold ΘT above which flash flooding will occur and below which it will

not. Even in this simplified framework, there are many challenges, which can be classified into two

broad areas: 1) the discrepancy between true precipitation and QPE, and 2) the determination of T

and ΘT . On the former class of complications, current QPEs struggle with accurately quantifying ex-

treme precipitation amounts (e.g. AghaKouchak et al. 2011; Hou et al. 2014; Zhang et al. 2016). Gauge

observations have insufficient spatial resolution and density, while radar observation accuracy suffers

from coarse and range-dependent vertical resolution, as well as having only indirect measurements

of precipitation rate. Resultantly, QPE products are inherently too coarse to adequately capture local

maxima corresponding to flash flooding. Even the highest-resolution products have substantial defi-

ciencies (e.g. Nelson et al. 2016), which are also examined in this study.

Optimal threshold and interval determination is a complex, multi-layered challenge as well. One

approach that attempts to do just this is the Flash Flood Guidance (FFG) product issued routinely by

NWS River Forecast Centers (RFCs; Sweeney 1992). Based on the antecedent conditions and charac-

teristics of the basin, dynamic estimates of ΘT are issued on a subdaily basis for T = 1, 3, and 6 hours.

However, these are not a panacea; because CONUS is so hydrometeorologically diverse and there is no
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agreed single best methodology to compute these thresholds, different RFCs apply different method-

ologies to calculate FFG thresholds (e.g. Sweeney 1992; Ntelekos et al. 2006; Schmidt et al. 2007; Villarini

et al. 2010; Clark et al. 2014), which can often produce highly different estimates and large nonphysical

discontinuities across RFC boundaries (e.g. Clark et al. 2014; Barthold et al. 2015). Other approaches

simplify the ΘT estimation question and avoid these nonphysical political discrepancies by consider-

ing QPE exceedances of static thresholds, themselves derived across CONUS in a consistent manner. In

particular, a fixed threshold (e.g. 2 in. hr.−1) can be used as a proxy for flash flooding, as has been used

in numerous previous studies (e.g. Brooks and Stensrud 2000; Hitchens et al. 2013; Novak et al. 2014).

Exceedances of thresholds defined relative to the local precipitation climatology, such as average recur-

rence intervals (ARIs) can serve asΘT estimates as well. An ARI defines a fixed frequency relative to the

hydrometeorological climatology of the region; in particular, it corresponds to the expected duration,

given the local climatology, between exceedances of a given threshold. For example, the 1-year ARI for

24-hour precipitation accumulations describes the accumulation amount for which one would expect

the mean duration between exceedances of said amount to be one year. Past research has shown that

a fixed-frequency ARI-based framework can have better correspondence with heavy precipitation im-

pacts than the use of any fixed threshold across the hydrometeorologically diverse regions of CONUS

(e.g. Reed et al. 2007).

There are two primary objectives for this chapter. First, it seeks to evaluate the characteristics, defi-

ciencies, and differences for existing QPE products and other tools and frameworks used in flash flood

forecasting and analysis. Second, comparative evaluation of correspondence between QPE threshold

exceedances and flash flood observations is performed to ascertain the merits of different QPE sources

and the most effective ways to use QPE information for flash flood analysis and forecasting on both re-

gional and national scales. Improved understanding of these properties can lead to more effective use

of existing information in the short term, and identify revisions that may be adopted to existing prod-

ucts and algorithms to remove these undesirable properties in the longer term, resulting in more useful

products for flash flood forecasting and analysis across a range of time and spatial scales. This study

investigates issues surrounding these two important classes of challenges by first examining the clima-

tological characteristics of heavy precipitation in several popular QPE sources. The issue of threshold

quantification and application in flash flood analysis and forecasting is investigated with extensive

comparison between different QPE threshold exceedances and flash flood observations. Chapter 2.2

describes the numerous datasets used in the study, and Chapter 2.3 describes the analysis methods
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employed therefrom. Chapter 2.4 presents characteristics of the various QPE threshold exceedances

and other sources employed in this study, and Chapter 2.5 assesses the correspondence between QPE

exceedances and flash flood observations on regional and national scales. Chapter 2.6 summarizes the

findings, describes the most important implications, and provides suggestions for future work.

2.2 DATASETS

Flash flood reports (FFRs) in this study come from NWS local storm reports (LSRs) so encoded as

flash floods. Archived LSRs are obtained from Iowa State University’s Iowa Environmental Mesonet

(IEM) Geographic Information System (GIS) archive (available online at

https://mesonet.agron.iastate.edu/request/gis/). NWS flash flood warnings (FFWs) were also obtained

from the IEM GIS archive. FFWs have been storm-based rather than county-based since 2008 (e.g. Wa-

ters et al. 2005; Ferree et al. 2006). Both warning type and report encoding are conducted for a given

county warning area (CWA) by a governing WFO. Alternative report encoding options include “flood”

and “heavy rain”, while alternate weather warning and advisory options include flood warnings, flood

advisories, and areal and small stream flood advisories. Practices on warning type, report encoding,

and proclivity to issue warnings at all vary based on local WFO philosophy and practices (e.g. Barthold

et al. 2015; Nielsen et al. 2015). Both FFRs and FFWs are available with temporal resolution to the

minute.

There are several different gridded QPE sources currently in use in operational analysis and fore-

casting. Three leading sources are the National Centers for Environmental Prediction (NCEP) Stage

IV Precipitation Analysis product (ST4; Lin and Mitchell 2005), the Climatology-Calibrated Precipita-

tion Analysis (CCPA; Hou et al. 2014), and the Multi-Radar Multi-Sensor QPE product (MRMS; Zhang

et al. 2016). ST4 provides QPEs across CONUS on a ∼4 km grid for 1-, 6-, and 24-hour accumulations

centered about 1200 UTC–1200 UTC meteorological days. It uses both rain gauge observations and

radar-derived rainfall estimates to generate an analysis, and is further quality controlled via RFCs, par-

ticularly for 6- and 24-hour QPEs, to remove stray radar artifacts and other spurious anomalies (Lin and

Mitchell 2005). ST4 products are generated by each RFC, and each center applies somewhat different

treatments in generating the products. Most importantly, 1-hr QPE is not in general provided by the

Northwest RFC, and has not been routinely generated by the California Nevada RFC since early 2016.

When provided, 1-hr QPEs in this region are generally a simple disaggregation of 6-hr QPE into 1-hr
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intervals. CCPA is derived from two QPE sources, the ST4 QPE and Climate Prediction Center’s uni-

fied global daily gauge analysis. In particular, due to more rigorous and uniform quality control, the

CPC-based QPE product is thought to have more accurate estimates than ST4, but has lower spatial

and temporal resolution, at 1/8◦ and 24-hours, respectively. A linear regression technique is applied

to upscaled and aggregated 6-hour ST4 QPE to correct its distribution towards the more robust CPC-

based estimates, and then downscaled back to the native resolution to derive more accurate estimates

while maintaining the spatiotemporal resolution of ST4. However, due to the limitations of linear re-

gression, extremes not in the original ST4 cannot be introduced in the calibration process employed in

CCPA, and extremes in ST4 are inherently regressed to some extent towards more typical values in the

local precipitation climatology (Hou et al. 2014). Both ST4 and CCPA have up to a full day of latency in

generation and publication of the QPE products. Lastly, MRMS, which became operational in Septem-

ber 2014, employs approximately 180 operational radars to create CONUS-wide radar mosaics every

two minutes on a 1-km grid. In conjunction with gauge, satellite, and other environmental data, these

radar mosaics are used to create CONUS-wide QPE at very high spatial and temporal resolution (Zhang

et al. 2016). An initial radar only product is produced with 2 minute latency. The MRMS QPE used in

this study has an additional gauge correction step, whereby gauges are ingested and undergo quality

control, after which they are compared against the collocated radar-only estimates—incorporating as-

pects such as gauge network density and distance from estimate location—to develop a bias grid that is

subtracted from the radar-only estimates. This gauge-corrected MRMS QPE has approximately 1 hour

of latency, still much less than ST4 and CCPA (Zhang et al. 2016), leading to more operational applica-

bility in operational forecast settings. In this study, we compare how the high precipitation tail of each

of these QPE sources compare with each other and with FFRs.

In addition to each of these QPE sources, two other factors are considered as well: accumulation

interval (AI) length, and threshold source. Regarding AIs, threshold exceedances for 1-hour, 3-hour,

6-hour, and 24-hour QPEs are considered as flash flood proxies. All of these AIs are considered for ST4

and MRMS QPEs; only 6- and 24-hour QPEs are available from CCPA. Three different sources for flash

flood thresholds are considered as well: 1) a fixed threshold (FT) across CONUS, 2) exceedances of

ARI thresholds, and 3) exceedances of FFG. Each of these methods is explained further below; FT and

ARI exceedances are available for all AIs, while FFG exceedances are available for 1-, 3-, and 6-hour

accumulations. A full summary of the threshold exceedance comparisons made for each QPE source

is provided in Table 2.1 for reference.
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TABLE 2.1. Threshold sources examined as a function of AI and QPE source, using the symbology

of the chapter text.

1-Hour 3-Hour 6-Hour 24-hour

MRMS FT,ARI,FFG FT,ARI,FFG FT,ARI,FFG FT,ARI

ST4 FT,ARI,FFG FT,ARI,FFG FT,ARI,FFG FT,ARI

CCPA FT,ARI FT,ARI

TABLE 2.2. FT thresholds examined as a function of AI. ‘X’ indicates that the given threshold, AI

combination is examined.

1" 1.5" 2" 2.5" 3" 3.5" 4" 5" 6"

1-Hour X X X X X X X

3-Hour X X X X X X X

6-Hour X X X X X X X

24-Hour X X X X X X X

FT grids are extraordinarily simple, as they are constant across CONUS. A variety of different thresh-

olds are considered to assess the relationship between precipitation severity and flash flooding. Ap-

plying more stringent thresholds will result in fewer false alarms but more misses, while more lenient

thresholds will induce the opposite result; it is expected that an optimal balance exists between these

extremes. Of course, precipitation sufficient to produce flash flooding when falling within an hour

likely will not produce flash flooding when distributed across a longer period. Therefore, the exact

thresholds considered must necessarily depend on the AI; the full set of thresholds evaluated are indi-

cated in Table 2.2.

The ARI thresholds are generated using very similar methodology to Herman and Schumacher

(2016a), where CONUS-wide thresholds are produced by stitching thresholds from several sources.

NOAA’s Atlas 14 thresholds (Bonnin et al. 2004, 2006; Perica et al. 2011, 2013, 2015), an update from

older work and currently under development, are used wherever they were available at the time this

research began. For five northwestern states—Washington, Oregon, Idaho, Montana, and Wyoming—

updated thresholds are not available, and derived Atlas 2 threshold estimates are used instead (Miller

et al. 1973; Herman and Schumacher 2016a). In Texas, which currently has Atlas 14 threshold estimate

updates in progress but no finalized thresholds available, Technical Paper 40 (TP-40; Hershfield 1961)
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estimates are used. Everywhere else uses the Atlas 14 ARI threshold estimates. All of these threshold

estimates are based on many decades of gauge data based on the availability and density of historical

data in the region. While sophisticated spatial statistics are applied to derive the estimates and down-

scale to ungauged locations, particularly in the case of Atlas 14 (e.g. Bonnin et al. 2004; Perica et al.

2011), it is possible that undersampling from use of exclusively gauges can result in uncertain or erro-

neous estimates, particularly in historically rural areas, in areas of complex terrain, and areas without

updated thresholds. Threshold uncertainty is quantified in Atlas 14, and increases with increasing ARI;

this study uses only the best estimate values provided for the 1-, 2-, 5-, 10-, 25-, 50-, and 100-year ARI

thresholds for each different AI. Atlas 14 provides estimates for each of these AIs. TP-40 provides esti-

mates for each of these ARIs, but only for 6- and 24-hour AIs. Furthermore, NOAA Atlas 2 has available

in digitized form only 6- and 24-hour ARI thresholds for the 2- and 100-year ARIs. Herman and Schu-

macher (2016a) derived thresholds for those AIs for the other ARIs. For Texas, Washington, Oregon,

Idaho, Montana, and Wyoming, 1-hour and 3-hour threshold estimates are thus not natively available,

and had to be derived.

In NOAA Atlas 14, a generalized extreme value distribution is fit to an annual maximum series for

each duration independently; the results are related to the extent that the underlying data are the same

(e.g. a 3-hour accumulation is comprised of 1-hour accumulations), but ARI thresholds for different

AIs are not directly computed in tandem (e.g. Bonnin et al. 2004). Here however, where Atlas 14 esti-

mates have not yet been officially generated and the original underlying data had insufficient temporal

resolution, a relationship must be derived between the threshold estimates that are available and the

desired, unknown thresholds at shorter durations. Accordingly, an analytic equation is derived to re-

late the 6-hour and 24-hour thresholds for a given ARI to 3- and 1-hour estimates. The formula is com-

posed of two components. One term is designed to exactly obey desired mathematical properties; the

second, tunable term alters the formula to match the known relationships—where Atlas 14 estimates

are available for all AIs—as well as possible whilst obeying the mathematical properties to the extent

possible. Desired mathematical properties include: 1) threshold estimates go to zero in the limit as

AI goes to zero; 2) threshold estimates go to infinity in the limit as AI goes to infinity; 3) the formula is

valid for any positive AI; 4) the rate of change of threshold magnitude with increasing AI decreases with

increasing AI; 5) when the ratio of known threshold estimates for two different AIs is exactly equal the

ratio of those AIs, the threshold estimate for an AI with an equal ratio with one of the AIs with a known

threshold should exactly preserve the same ratio with the threshold estimate corresponding to that AI
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(e.g. if a 6-hour estimate is 10 and 24-hour estimate is 20, a 1.5-hour estimate should be 5); 6) using

the formula to derive thresholds for one of the two known AIs being used returns those same threshold

estimates; 7) the formula is reversible: it can be used to derive a third “known” estimate, and the use

of any two can then be used to exactly recover the third; and 8) an arbitrary number of intermediate

threshold estimates can be derived without altering the estimate for a given AI (e.g. deriving a 3-hour

estimate from 6-hour and 24-hour estimates, and then using 3- and 6-hour estimates to derive a 1-hour

estimate will produce the same result as deriving 1-hour estimates from the 6- and 24-hour values). It

can be easily shown that for shorter AI S and longer AI L with known threshold estimates ΘS and ΘL ,

an equation for deriving an unknown estimate ΘN for AI N that satisfies all of these properties is:

ΘN =ΘS
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for tunable parameter α. That term is further decomposed into:

α=β
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Tuning in areas where Atlas 14 estimates are available and thus “truth” is known yielded:

β =
4

3

�

1− log10 AR I
�

;κS = 1.7;κL = 0.6 (2.4)

The above expressions are used to derive estimates in locations where native estimates are currently

unavailable, and stitched with the Atlas 14 estimates to produce the CONUS-wide threshold grids of

Figure 2.1 (see also Fig. S1 in Herman and Schumacher (2018b)). The grids present a stark contrast to

the spatially uniform FT grids, with values spanning near an order of magnitude across CONUS. Cli-

matologically drier areas such as the Intermountain West have lower thresholds, while wetter regions

such as the Gulf Coast have higher thresholds. As expected, thresholds are lowest for the smallest AIs

and ARIs and become larger with increasing duration and rarity. However, the extent of change as a

function of AI in particular is not spatially uniform, and instead reflects the climatological character-

istics of the types of precipitation systems associated with locally extreme precipitation in the given

14



region. This is seen to some extent when comparing the left and right columns of Figure 2.1, but es-

pecially when comparing those of Figure 1 with those of S1. For example, while thresholds for the

24-hour AI are comparable between the Gulf Coast and Pacific coastal mountains, the former region

has much higher thresholds at the 1-hour AI (e.g. ∼125 mm vs. ∼45 mm for the 100-year ARI in Fig.

2.1m). Further, locations much farther north and more distant from an ocean, such as over Iowa and

Minnesota, have appreciably lower thresholds than the Pacific mountains for 24-hour accumulations,

but are also much higher for 1-hour AIs. Over the Pacific Coast, extreme precipitation events are typ-

ically associated with long duration atmospheric river events, which can produce moderate to heavy

rain for an extended duration (e.g. Rutz et al. 2014; Herman and Schumacher 2016a). In contrast, over

the Southeast and Great Plains, most extreme precipitation is associated with smaller-scale convective

systems, which can produce higher rain rates than their West Coast counterparts, but last for a shorter

duration at any given point (e.g. Herman and Schumacher 2016a). The Gulf Coast region sustains high

thresholds across the spectrum of AIs; at shorter AIs, this is predominantly associated with small-scale

convective storms, while high thresholds at longer durations are predominantly supported by tropical

cyclone rainfall (e.g. Kunkel et al. 2012).

FFG estimates the average precipitation amount required over an area in a prescribed amount

of time to initiate flooding of small streams in that area (Sweeney 1992). FFG is calculated individ-

ually by each RFC, with each office maintaining independent code and algorithms for FFG calculation

(Sweeney 1992; Barthold et al. 2015). RFC-generated FFG may be assembled to form a national grid

covering all of CONUS, with the exception of Washington and Oregon west of the Cascades; the North-

west RFC does not calculate FFG for this small region of CONUS. FFG values are based on threshold-

runoff calculations, which specify the minimum amount of runoff (not precipitation) into a stream or

basin over a prescribed 1-, 3-, or 6-hour duration necessary to produce bank-full conditions (Sweeney

1992; Ntelekos et al. 2006). This is done offline for thousands of small basins and is independent of

present conditions. These basin-specific threshold-runoff calculations are interpolated onto a ∼4 km

grid to provide a unified analysis. A hydrologic model, such as the Sacramento Soil Moisture Account-

ing Model (e.g. Carpenter et al. 1999) or Antecedent Precipitation Index models (e.g. Brocca et al. 2008),

are then used in conjunction with current conditions to relate rainfall amounts to runoff amounts. The

minimum rainfall to yield a runoff in the hydrologic model in excess of the gridded threshold-runoff

values then constitute the gridded FFG values (Ntelekos et al. 2006).
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FIG. 2.1. ARI threshold estimates for 1- (left column) and 3-hour (right column) precipitation ac-

cumulations for 1-, 2-, 5-, 10-, 25-, 50-, and 100-year ARIs in panels (a)–(b), (c)–(d), (e)–(f), (g)–(h),

(i)–(j), (k)–(l), and (m)–(n), respectively. Threshold estimates come primarily from NOAA Atlas 14,

but are supplemented from other sources as described in the text.

Unlike ARI thresholds, FFG thresholds vary dynamically based on the antecedent conditions. While

this makes it impossible to plot a single static plot depicting the FFG thresholds across the entire period
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of record, the distribution of issued values can be considered. The median FFGs across the period of

record (Fig. 2.2a–c) vary in a similar fashion to the tail of the precipitation climatologies as quantified

by the ARI thresholds (Fig. 2.1), with very low values over the Intermountain West increasing progres-

sively to very high values over the Gulf Coast and particularly Florida. However, while ARI thresholds

reflect only the precipitation climatology and do not directly address the hydrologic component of flash

flooding, FFG does account for these factors. This can result in large gradients in FFG climatologies in

regions of rapid change in soil type or land use; one prominent example is in the Nebraska Sand Hills

(e.g. Fig. 2.2a,b). Also evident is the large spatial discontinuities that occur even in the median across

RFC boundaries. One glaring example in the 6-hour median FFG (Fig. 2.2c) is the border between the

Northwest RFC and California-Nevada RFC near the southern borders of Oregon and Idaho. The same

general findings exist on the high-risk tail of the FFG climatology, as evidenced by the tenth percentile

FFGs (Fig. 2.2g–i). In general the difference between the fiftieth and tenth percentiles over the west-

ern RFC domains (cf. Fig. 2.2b,h) is small, while thresholds for the tenth percentile are appreciably—

although not uniformly—lower across central and eastern CONUS. In particular, the Middle Atlantic

RFC appears to be more responsive to antecedent conditions than its neighbors, resulting in locally

lower thresholds in their domain and large spatial discontinuities in the tenth percentile FFGs at their

RFC boundaries; this is especially pronounced for 1-hour FFG (Fig. 2.2g).

Both ARI and FFG exhibit strong and clearly apparent contrasts with FT methodology, but are quite

different from each other as well. Median FFGs are, according to ARI thresholds (Figs. 2.2d–f), most

commonly exceeded over the Great Plains and Mississippi Valley regions. There, ARI equivalents for

median FFGs can be as low as 1-year in Iowa for 3-hour FFGs (Fig. 2.2e), and are between 2 and 5 years

across most of the region. In contrast, median FFGs near and along the Atlantic Coast are generally

appreciably higher, with values of 10–25 years. Higher still are typical thresholds in the West, with ARI

equivalents mostly ranging from 25 to over 100 years. In the West, large differences in ARI equivalence

are found depending on the AI used. In the northern Intermountain West, including Idaho, equiva-

lent ARIs to the median 6-hour FFGs (Fig. 2.2f) are only 2–5 years, while being mostly 10–25 years in

those same areas for 1-hour FFGs (Fig. 2.2d). The opposite, and even stronger, contrast is seen in the

Arid Southwest, particularly Arizona. The ARI equivalent for the median 6-hour FFG (Fig. 2.2f) is at

least 100 years, while it is 2–5 years over much of the state for 1-hour FFG (Fig. 2.2d), and is even as

low as a 1-year ARI across the southeast portion of the state. These AI-dependent contrasts suggest,

for example, that most floods in the Southwest are associated with short-lived rain events, and that
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FIG. 2.2. Median (panels (a)–(f)) and tenth percentile (panels (g)–(l)) FFG estimates over the 2.5

year period of record. The left column (panels a,d,g,j) corresponds to 1-hour FFG values, center

column (panels b,e,h,k) to 3-hour FFGs, and right column (panels c,f,i,l) to 6-hour FFGs. Panels

(a)–(c) and (g)–(i) correspond to the actual threshold estimates, while (d)–(f) and (j)–(l) correspond

to the equivalent ARIs to those thresholds for the particular grid point.

for 1- and 6-hour rain events of equal rarity in the Southwest, the 1-hour event rates to have greater

hydrometeorological impact. All the same general findings are also found comparing the ARI frame-

work with the tenth percentile FFG thresholds, just with lower ARI equivalent thresholds. The one very
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prominent difference is again in the Middle Atlantic RFC; here, tenth percentile 1-hour FFGs are below

the 1-year ARI across much of their domain (Fig. 2.2j), while the tenth percentile FFGs in neighboring

areas largely correspond to 5–10 year ARIs.

2.3 ANALYSIS METHODOLOGY

All grids are first regridded if necessary onto the ST4 Hydrologic Rainfall Analysis Project (HRAP;

Fulton et al. 1998)∼4 km grid. ST4 and CCPA QPE is already provided on this grid; MRMS QPE is regrid-

ded onto this grid using a first-order conservative scheme (Ramshaw 1985). ARI and FFG thresholds

are regridded bilinearly onto this grid. FFRs and FFWs are not gridded products at all, the former being

points in space and the latter polygons in space. FFRs are remapped onto the HRAP grid using a 40km

radius of influence, projecting a single report onto numerous points on the grid. Events are defined for

24-hour 1200–1200 UTC “meteorological days”, similar to current operational practice at the Weather

Prediction Center and Storm Prediction Center (e.g. Edwards et al. 2015; NWS 2017a, , and discussed

more in Chapter 5). As such, despite both having 1-minute resolution, an FFR “event” for the purpose

of this study is defined as one or more reports within 40 km of the point occurring anytime within the

meteorological day. An FFW event is similarly defined as any FFW enclosing the given HRAP grid point

valid at any time during the meteorological day.

Once this is performed and all fields are assembled on a uniform grid, slight additional quality

control is performed following Herman and Schumacher (2016a) to remove QPEs that are clearly non-

physical, and then binary comparison between QPE and selected thresholds is made. Comparisons

are first made on the ST4 HRAP grid to generate binary exceedance grids. For sub-daily AIs, there are

multiple grids with valid times falling within a given 1200–1200 UTC period. In these instances, the

maximum of all grids with the same AI and corresponding meteorological day is taken to form a sin-

gle daily exceedance grid for the series; all subsequent analysis uses these aggregated daily grids. In

this way, daily grids for sub-daily AIs correspond to one or more of the given type of QPE exceedance

occurring at that point during the meteorological day, regardless of the exact number of exceedances.

Tolerance to small spatial displacements is provided by using a maximum nearest neighbor upscaling

from the HRAP grid to a 0.5◦×0.5◦ grid. For each day, all HRAP grid points are mapped to their nearest

point on the 0.5◦ grid; at each grid point on this coarser grid, an event is recorded if any of their mapped

HRAP points indicated an exceedance event for that meteorological day. QPEs are only considered for

periods centered about the meteorological day, and are not considered for any interval spanning across
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meteorological days (e.g. 24-hour 0000-0000 UTC accumulations). Based on data availability, a 2.5 year

period of record spanning 2 January 2015–23 June 2017 is used for most verification in this study, with

slightly truncated period beginning 19 March 2015 for MRMS QPE comparisons, again limited by data

availability.

After exceedance grids have been computed, they are compared to assess how the characteristics

vary as a function of threshold source, accumulation interval, threshold magnitude, and QPE source.

Despite the aforementioned limitations of FFRs and FFWs, evaluation is made using each of these

sources as a reference truth. Although these are not believed to completely embody “true” occur-

rences and non-occurrences of flash floods, it is performed in order to provide a common framework

for comparison between different QPE exceedances. In this framework, the reference—either FFRs or

FFWs—serves as a deterministic truth, and the QPE exceedances serve as deterministic predictions.

The analysis framework employed here, namely deterministic binary predictions and binary obser-

vations, lends itself well to the use of contingency table statistics (Wilks 2011). Given the number of

different thresholds, intervals, and sources considered, it is convenient to represent the comparison

statistics succinctly in a single plot. One popular way to present the full dimensionality of the contin-

gency table verification for many different forecast sets in a single plot is through the so-called per-

formance diagram (PD; Roebber 2009). The PD succinctly places a forecast set in the context of these

verification statistics on one plot, with success ratio (SR) increasing on the x-axis, probability of de-

tection (POD) increasing on the y-axis, frequency bias (FB) increasing from 0 at the lower right corner

to infinity at the upper left, and critical success index (CSI) increasing from 0 at the lower left corner

to unity—a perfect score—at the upper right. In addition to PDs, spatial maps of CSI are assessed to

provide context of where correspondence between the QPE exceedances and reference truth are better

and worse across CONUS. Finally, a single geometric mean equitable threat score (ETS) is computed

between the comparisons with the two reference datasets, and is so chosen over CSI to alleviate con-

cerns that the latter exhibits with varying underlying event frequencies (Gandin and Murphy 1992;

Marzban 1998) and produce a skill metric more independent of the event climatology (e.g. Jolliffe and

Stephenson 2003). A geometric mean is chosen over a conventional one to more strongly penalize lack

of correspondence with either observation set.
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2.4 RESULTS: EXCEEDANCE CLIMATOLOGIES

Examination of simple exceedance, report, or warning counts, as the case may be, over the period

of record in Figure 2.3 illuminates several interesting contrasts between the datasets. A heat map of

FFRs over the period (Fig. 2.3a) illustrate several of the aforementioned limitations of reports as rep-

resentations of true flash floods. The population bias is clearly evident in some regions of the country.

For example, in Texas, far more reports are observed in the Houston, Dallas, Austin, and San Antonio

metro areas than in surrounding areas despite them having similar rainfall climatologies (e.g. Fig. 2.1).

Some of this is likely a legitimate reflection of urban environments flooding more easily than rural ones

due to land use and other factors, but extracting the component of legitimate spatial variation from a

population-based reporting bias is challenging. Spatial variations attributable to human factors can

be discerned as well, with discontinuities in report counts across CWA boundaries in places, particu-

larly entering Florida and Michigan and to a lesser extent in Georgia and Alabama (Fig. 2.3a). These

political effects from WFO tendencies are even more prominent in FFW issuances (Fig. 2.3b) in those

same locations. Additionally, there are several local “hot spots”, such as Las Vegas, wherein one WFO

issues far more FFWs than its neighbors. Again, some of this is certainly meteorological due to dif-

ferent climatological flood susceptibility of neighboring CWAs and from limited sampling due to the

finite period of record. For example, FFWs and especially FFRs (Fig. 2.3a) are more concentrated in the

Southern Plains and Midwest, with far fewer events over the Northern Plains and farther west over the

Rocky Mountains and Pacific Coast. These large-scale spatial variations accord with previous studies of

flash flooding (e.g. Brooks and Stensrud 2000; Hitchens et al. 2013; Schumacher and Johnson 2006), and

are likely legitimate rather than an artifact of the datasets. The magnitude of the differences suggest,

however, that at least some contribution to these local spatial variations across CWA boundaries is po-

litical rather than purely hydrometeorological. FT exceedances, in contrast, do not exhibit any of these

spatial discontinuities at political boundaries. For 1-hour accumulations (e.g. Fig. 2.3e), they instead

exhibit a prominent, relatively smooth gradient from almost no exceedances of 1.5 in. hr.−1 occuring

over northwestern CONUS, to being extremely common over southeastern CONUS near the Gulf Coast.

The spatial distribution of events over central and eastern CONUS remain similar with increasing AI

(cf. Fig. 2.3e, 2.3h), but the number of exceedances along the Pacific Coast increases dramatically, with

almost no exceedances for 1-hour accumulations (e.g. Fig. 2.3e), and as many exceedances as the Gulf

Coast for 24-hour accumulations (e.g. Fig. 2.3h). This largely accords with the ARI thresholds, which
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FIG. 2.3. Heat maps for FT exceedances, FFRs, and FFWs during the relevant period of record (see

text). Panels (a) and (b) correspond respectively to FFRs and FFWs reported and issued during the

period of record, gridded as described in the chapter text. Panels (e)–(h) depict MRMS QPE FT

exceedances, where columns from left to right correspond to 1-, 3-, 6-, and 24-hour precipitation

accumulations and 1.5, 2.0, 2.0, and 2.5 in. (38, 51, 51, 64 mm). Panels (c) and (d) are also for 24-

hour 2.5 in. exceedances as in panel (h), but for ST4 and CCPA, respectively. Thick black outlines

depict CWA boundaries; blue lines indicate RFC domain boundaries, and green circles indicate

locations of NEXRAD radar sites.

are similar in these two regions for 24-hour thresholds (Herman and Schumacher 2016a) and much

higher over the Gulf Coast for 1- and 3-hour accumulations (Fig. 2.1).

Politically-attributable exceedance count discontinuities are also evident in FFG exceedance heat

maps (Fig. 2.4), in this case primarily across RFC boundaries. For 1-hour FFGs (Fig. 2.4a), this is most

readily apparent with respect to the Middle Atlantic RFC; there are far more exceedances in their do-

main than either their Northeast or Southeast RFC neighbors. For 3- and 6-hour FFGs (Fig. 2.4e,f), a

very large discontinuity is seen between the Colorado Basin RFC and its neighbors to the north and

east, including the Northwest, Missouri Basin, and West Gulf RFCs, with almost no exceedances of

3- or 6-hour FFGs in the Colorado Basin domain but numerous exceedances immediately adjacent in

other RFC domains. These discrepancies are consistent with the FFG threshold climatologies (Fig. 2.2).

There are also far fewer total FFG exceedances across CONUS than exceedances of the FT thresholds

presented in Figure 2.3, with a prominent exception of 1-hour MRMS QPE FFG exceedances in Arizona

(Fig. 2.4a). There is also in general far less spatial gradient in exceedance counts of FFG compared

with the FT exceedances. In places, such as the Southeast and particularly Florida, the anomalously

low number of reports (Fig. 2.3i) and warnings (Fig. 2.3j) in the area compared with its surroundings is

corroborated by a relatively low number of FFG exceedances (e.g. Fig. 2.4d), while in other areas, such

as Michigan (e.g. Fig. 2.4c), it is not.
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FIG. 2.4. Heat maps for FFG exceedances across CONUS during the relevant period of record (see

text). Panels (a)–(c) correspond to exceedances of FFG based on MRMS, (d)–(f) to ST4 QPE ex-

ceedances for 1-hour, 3-hour, and 6-hour FFGs in panels (a) and (d), (b) and (e), and (c) and (f),

respectively. Thick black outlines depict CWA boundaries; blue lines indicate RFC domain bound-

aries, and green circles indicate locations of NEXRAD radar sites.

Aside from sampling noise associated with using a finite and relatively short period of record, ARI

threshold exceedance heat maps (Fig. 2.5) should definitionally be uniform across the entire spatial

domain. Departures from uniformity must then be attributable to either 1) sampling noise, 2) inac-

curate ARI threshold estimates, or 3) systematic error in the QPE source. Comparison across different

QPE sources and threshold sources can help identify root causes. Some notable spatial variations can

be seen—some are consistent across QPE sources, while others are particular to one. For example,

MRMS QPE (Fig. 2.5a–b,2.5e–f) exhibits a glaring anomaly in exceedance counts in the West: there

are far more ARI exceedances observed in the immediate vicinity of radar sites compared with their

surroundings. While this is evident for all AIs and across different levels of severity, it is especially ap-

parent for shorter intervals (e.g. Fig. 2.5a,b). This phenomenon, which is also seen in the FT (e.g. Fig.

2.3e) and FFG (e.g. Fig. 2.4a) exceedances, is considerably alleviated or even entirely eliminated to the

east of the Rocky Mountains. ST4 QPE ARI exceedances (Fig. 2.5c–d,2.5g–h) exhibit two sharp local

maxima far above any other location: one in Wyoming and the other in New Mexico. This is especially

prominent for the 24-hour AI (Fig. 2.5h); it is seen to a lesser extent with MRMS QPE (Fig. 2.5f) as well.

Interestingly, the discontinuity in FFG exceedance counts across the Colorado Basin RFC boundary is

replicated in the ARI exceedances—especially prominent in ST4 but evident in all QPE sources. This

suggests that the discontinuity may be largely attributable to artifacts of the native QPE rather than
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politically-based discontinuities in FFG thresholds. ST4 exceedances at short 1- and 3-hour AIs (e.g.

Fig. 2.5c,d) have a substantial reduction in ARI exceedances in the West due to the aforementioned

limited productionof 1-hr ST4 QPE in the western RFCs. Lastly, for CCPA QPE (Fig. 2.5i–j), the maxi-

mum in Wyoming remains clearly apparent, but the maximum in New Mexico is greatly muted. The

consistency of overexceedances in Wyoming suggests that the ARI threshold estimates, which are now

several decades old, may be too low in this area. That the New Mexico maximum is largely removed

with the bias correction applied by CCPA suggests that the New Mexico issue may be more attributable

to deficiencies with ST4 and MRMS QPE in complex terrain, with small areas of large radar estimated

values unable to be properly corrected due to insufficient gauge data in the region.

2.5 RESULTS: FLASH FLOOD CORRESPONDENCE SKILL

PDs for CONUS-wide verification for the complete set of QPE to observation reference compari-

son verification in Figure 2.6 illustrate that, for a given QPE source, AI, and threshold method, a curve

sweeps from the top left corner of the PD to the bottom right corner with increasing threshold mag-

nitude. The lowest thresholds jointly exhibit a high POD, high FB, and low SR, while high thresholds

possess the opposite characteristics. The curve is not, however, parallel with the curved skill (CSI) lines

in the PD, and instead attains a maximum CSI for some middle threshold magnitude. Surpisingingly,

out of all the different QPE comparisons against FFRs (Fig. 2.6), maximum CSI values are obtained

for 2.0 in. (50.8 mm) 6 hr−1, 2.5 in. (63.5 mm) day−1, and 3.0 in. (76.2 mm) day−1—all FT threshold

sources (warm-colored interior symbols). The maximum CSI obtained using ST4 (blue outlined sym-

bols) and CCPA-based (green outlined symbols) QPE comparisons exceed that reached using MRMS

QPE exceedances (red outlined symbols), though the CSI differences are small, with maximum values

all around 0.23. Across the range of threshold comparisons considered, the highest FBs extend over

5, and the lowest are well under 0.1; SRs range from 0.1–0.65, and PODs range from almost 0 to near

0.85. FBs for FFG exceedances are all near or below unity, consistent with the findings of Clark et al.

(2014) which also found raw FFG to be too stringent and found better correspondence using fractional

FFG. For a given threshold method, magnitude, and AI, there are similar common differences between

QPE source comparisons. CCPA QPE consistently exhibits a lower FB, higher SR, and lower POD than

ST4 or MRMS; MRMS usually exhibits the highest FB, highest POD, and lowest SR of the three. When

compared against FFWs (Fig. 2.7), the general scatter of QPE exceedance verifications in the PD phase

space remain the same, but CSIs are generally somewhat higher and differences in the specifics emerge.
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FIG. 2.5. Heat maps for ARI exceedances for different ARIs, AIs, and QPE sources across the period

of record. Panels (a) and (b) correspond respectively to MRMS QPE exccedances of 1-year 1- and

3-hour ARIs; panels (c) and (d) are the same as (a) and (b), respectively, except for from ST4 QPE.

Panels (e) and (f) illustrate MRMS QPE exceedances of the 1-year ARI for 6- and 24-hour accumu-

lations, respectively; (g) and (h) show ST4 exceedances and (i) and (j) CCPA, both respectively for

6- and 24-hour accumulations. Symbology otherwise as in Figure 2.3.

Specifically, while the highest CSI values are obtained for ST4 and CCPA QPEs with FFRs, correspon-

dence with FFWs is maximized using MRMS QPE exceedances. Consistent with using FFRs for truth,
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FIG. 2.6. Performance Diagrams as per Roebber (2009) evaluated over the entire period of record

and across all of CONUS. Verification made with respect to FFRs for many different QPE thresh-

old exceedances. The symbol shape corresponds to the threshold magnitude, as indicated in the

top table of the panel legend. All FFG exceedances use a circular symbol. The inner color to each

symbol indicates the accumulation interval associated with the comparison, as indicated in the

middle table of the figure legend. Outer edge colors indicate the QPE source of the marker, with

blue corresponding to ST4, green to CCPA, and red to MRMS as indicated at the bottom of the

figure legend. The black circle depicts the verification of FFWs with respect to FFRs. Further de-

scription to aid with interpretation of PDs is included in the chapter text.

the 2.5 in. day−1 threshold provides the maximum CSI among the various QPE exceedance compar-

isons evaluated.

The PD view also allows for straightforward identification of some flaws and deficiencies in the

QPE products. For example, as noted above, 3-hour ST4 QPE, which is acquired by summing 1-hour

ST4 QPE, has less quality control and thus more spurious high values than compared with 6-hour ST4

QPE, which is a separate, independent grid and not necessarily equal to the sum of the six 1-hour QPEs

that fall within the six hour period. This is evident in Figure 2.6, for example when comparing 3-hour

FT exceedances with the same magnitude 6-hour FT exceedances. For the same QPE source and period

of record, there should necessarily be as many or more exceedances of a given precipitation amount

occurring over a six hour period than a three hour one. However, the orange circle surrounded by
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FIG. 2.7. Same as Figure 2.6, except for using FFWs as reference “truth”.

blue, denoting ST4 QPE exceedances of 1.5 in. (38.1 mm) 3 hr.−1 or higher, has a higher FB than the

red circle surrounded by blue, denoting exceedances of the same threshold over a six hour period.

Other deficiencies and limitations of QPE sources exist on a regional basis as well, some of which are

discussed below.

Maps of CSI (Fig. 2.8) reveal considerable spatial variability in correspondence between different

QPE exceedances and FFRs. FFWs (Fig. 2.8g) have much better correspondences with FFRs than any

QPE threshold exceedance—as evidenced by the black dot of Figure 6—including FFG exceedances

(Fig. 2.8a–f). Highest FFR-FFW CSI is found across much of CONUS east of the Rocky Mountains. Ex-

ceptions include central North Dakota, southern Florida, and Michigan, where there is an overall lack

of reports (Fig. 2.3a). The number of reports is similarly scarce over much of the northern Intermoun-

tain West, resulting in low CSI scores there as well; in the extreme of no reports over a grid point, the
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CSI is necessarily 0, since it is impossible to hit. In the West, scores are higher than surrounding ar-

eas in southern California and Nevada, where there are both more reports (Fig. 2.3a) and many more

warnings (Fig. 2.3b) than in adjacent locations. FFG exceedances all exhibit somewhat similar CSI spa-

tial distributions. 1-hour MRMS QPE exceedances of FFG (Fig. 2.8a) appear to perform the best of the

six over the West, particularly in the southern Nevada and California vicinity. Correspondence with

FFRs is generally highest over the Midwest and Southern Great Plains, with maximum correspondence

for longer AIs (e.g. 6-hour, Fig. 2.8c,f) and with ST4 QPE providing better correspondence compared

with MRMS (cf. Fig. 2.8b,e). CONUS-wide FFG-based CSIs, 0.1–0.2 depending on various choices, are

quantitatively consistent with past findings over different study periods (Clark et al. 2014).

Comparing QPE exceedances of FFG (Fig. 2.8) with a sample of evaluated FT (Fig. 2.9) and ARI

(Fig. 2.10) thresholds yields several interesting findings. Overall, largely because the base QPEs are the

same and the only difference is the threshold discriminator between flash flood and non-event, the

spatial character of correspondence between QPE exceedances and FFRs is broadly similar for each

set of exceedances. MRMS QPE exceedances consistently yield the best correspondence with FFRs in

the Southwest in southern California and Nevada, and the highest CSI appears to be achieved for 1-

year 24-hour ARI exceedances (Fig. 2.10d) in that local area. ST4 QPE exceedances, particularly for

longer AIs such as the 2.5 in. day−1 exceedances (Fig. 2.9h), appear to achieve the highest CSI across

the broader Western region. Longer AIs, particularly in the ARI framework (Fig. 2.10), appear to exhibit

improved correspondence compared with 1- and 3-hour QPEs across central and eastern CONUS as

well (cf. Fig. 2.10i,l). The lower 1-year ARIs demonstrate superior correspondence with FFRs across

CONUS compared with more extreme 10-year thresholds, with the one exception of 10-year 1-hour

MRMS QPE exceedances, which provide optimum correspondence in the aforementioned small region

surrounding Las Vegas and vicinity (Fig. 2.9e).

CSI maps illustrate that conclusions from aggregate nation-scale statistics do not always hold when

zoomed to regional scales; PDs subsetted to particular regions allow for more quantitative analysis

across the full spectrum of threshold comparisons. For example, using the region definitions shown

in Fig. 2.11, the Northeast (NE; Fig. 2.12a) and Southeast (SE; Fig. 2.12b) regions exhibit appreciably

different verification results to the national total. In particular, in both of these regions, ARIs clearly

outperform the use of either FT or FFG thresholds, and ST4 outperforms MRMS and to a lesser extent

CCPA, as evidenced by the blue interior and exterior symbols, respectively placed farther towards the

upper right corner of each panel. However, the exact thresholds that obtain optimal skill vary between
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FIG. 2.8. CONUS-wide maps of CSI for comparisons between several sources with FFRs used as

reference for “truth”. Panels (a)–(f) correspond to exceedances of FFG based on MRMS (panels (a)–

(c)) and ST4 (panels (d)–(f)) QPE for 1-hour, 3-hour, and 6-hour FFGs in panels (a) and (d), (b) and

(e), and (c) and (f), respectively. Panel (g) depicts correspondence between NWS FFWs and FFRs

over the period of record, again based on CSI. The top number in the bottom right of each panel

shows the CSI for the corresponding threshold comparison when all observations contribute to a

single set of hits, misses, and false alarms. The bottom number instead shows aggregate perfor-

mance when the aggregate scores over the period of record are calculated individually for each

grid point, and then averaged between all grid points.

the two regions; in the NE (Fig. 2.12a), the 2-year ARI achieves optimum CSI, while in the SE region (Fig.

2.12b), the 1-year ARI produces better results, with the 2-year exceedances being negatively biased.

Moreover, while 6-hour AI exceedances produce maximum skill in comparison with FFRs across the

NE, 24-hour accumulations are more predictive across the SE region. In the SE region, the 1-year 24-

hour ARI exceedances are nearly equally skillful using ST4 and CCPA QPE, but ST4 is positively biased

while CCPA is negatively biased. In both regions, FFWs correspond very well to FFRs, with CSIs of 0.76

and 0.63 in the NE (Fig. 2.12a) and SE (Fig. 2.12b) regions, respectively.
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FIG. 2.9. Maps of CSI for comparisons between several QPE FT exceedances with FFRs used as

reference for “truth”. The top row (panels (a)–(d)) correspond to MRMS-based FT exceedances,

the center row (panels (e)–(h)) depicts ST4-based FT exceedances, and the bottom row (panels

(i)–(j)) compares CCPA-based FT exceedances with FFRs. Columns from left to right correspond

to 1-, 3-, 6-, and 24-hour precipitation accumulations and 1.5, 2.0, 2.0, and 2.5 in. (38, 51, 51, 64

mm).

Over the Great Plains regions, NGP (Fig. 2.13a) and SGP (Fig. 2.13b), some mixed signals are found.

In NGP, the 2.5 in. (63.5 mm) day−1 threshold using CCPA QPE attains the highest CSI score of all of the

QPE threshold exceedance comparisons using FFRs as a reference. However, this scores very similar

to 3.0 in. (76.2 mm) day−1 and 2.5 in. (63.5 mm) 6 hr−1 thresholds for ST4 QPE, with the 2.5 in. day−1

threshold suffering from too many false alarms. While the 2-year ARI produces the best results among

the ARI thresholds considered, all ARI comparisons lag the best FT CSI values. FFG exceedances, while

more competitive than in the eastern regions (Fig. 2.12), still lag FT exceedances in NGP (Fig. 2.13a). In

SGP (Fig. 2.13b), the 1-year 24-hour ARI exceedances using CCPA QPE attain the higest CSI of any QPE

comparison. 3.5 in. (88.9 mm) day−1 with ST4 QPE performs almost equally well—a higher threshold

than in NGP owing to the wetter precipitation climatology in the region (e.g. Fig. 2.1). FFG is again

somewhat competitive, especially for 6-hour accumulations, but lags the other methods.

The SW region (Fig. 2.11) displays very different verification characteristics (Fig. 2.14) to both the

CONUS-wide perspective and the other individual regions examined above. Correspondence between
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FIG. 2.10. Maps of CSI for comparisons between several QPE ARI exceedances with FFRs used as

reference for “truth”. The top two rows correspond to MRMS-based ARI exceedances, the bottom

row depicts CCPA-based ARI exceedances, and the remaining two rows are associated with ST4-

based ARI exceedances. Panels (a)–(d), (i)–(l), and (q)–(r) correspond to 1-year ARI exceedances,

while (e)–(h), (m)–(p), and (s)–(t) are for 10-year exceedances. Columns from left to right corre-

spond to 1-, 3-, 6-, and 24-hour precipitation accumulations, except for panels (q) and (r), which

correspond to 6- and 24-hour accumulations, respectively.

all QPE exceedances and the reference truth are much worse than across the nation as a whole with

both FFWs (Fig. 2.14b) and especially FFRs (Fig. 2.14a) serving as reference. The correspondence be-

tween the two reference truths is also particularly poor (Fig. 2.14a), with a CSI of only 0.3. The relative

31



FIG. 2.11. Map depicting the regional partitioning of CONUS used in this study, and the labels

ascribed to each region.

verification of the QPE exceedances also contrasts sharply with the results of other regions. Unlike over

the East and Great Plains, MRMS QPE provides much better correspondence with both FFRs and FFWs

than ST4 or CCPA QPE. Like in the East (Fig. 2.12), the ARI exceedances demonstrably outperform the

FT and FFG exceedances in correspondence with both FFRs and FFWs (Fig. 2.14). But unlike other re-

gions, especially for correspondence with FFRs (Fig. 2.14a), maximum CSI is attained for much shorter

1-hour AIs, and also for much higher ARIs, with maximum correspondence for the 10-year 1-hour ARI

exceedances. Correspondence with FFWs (Fig. 2.14b) is higher across all comparisons. Furthermore,

3- and 6-hour exceedances attain similar CSI scores with 1-hour exceedances, and the highest CSI value

is achieved with a much lower 2-year ARI. Much of this is attributable to the fact that there are many

more—nearly three times as many (Fig. 2.14a)—FFWs than reports in this region, with a frequency bias
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FIG. 2.12. Same as Figure 2.6, but with verification restricted to the NE region (panel (a)), and SE

region (panel (b)), with region definitions as depicted in Figure 2.11.

of near 3 (Fig. 2.14a). Overall, each region exhibits unique verification characteristics, with optimum

QPE sources, AIs, and threshold levels all varying by region.

Synthesizing every comparison into a single ETS for each QPE exceedance set (Fig. 2.15) yields

concrete quantitative conclusions largely consistent with the CONUS-wide findings discussed above.
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FIG. 2.13. Same as Figure 2.6, but with verification restricted to the NGP region (panel (a)), and

SGP region (panel (b)), with region definitions as depicted in Figure 2.11.

Higher ETSs are found for longer 6-hour and 24-hour AIs for ST4 and MRMS QPE. The highest score

using a fixed threshold attains a higher ETS than the maximum comparison with ARIs, which in turn

outperforms the best corresponding FFG exceedance set with the reference truths. Overall, despite
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FIG. 2.14. Same as Figure 2.6 (panel a) and 2.7 (panel b), but with verification restricted to the SW

region as defined in Figure 2.11.

very different characteristics, when averaged across CONUS, each of the three QPE sources evalu-

ated achieved similar overall verification scores, all achieving a maximum ETS of almost 0.24. ST4

and MRMS achieved maximum ETS for a 2.5 in. day−1 threshold, while CCPA’s maximum ETS was
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FIG. 2.15. Mean Equitable Threat Scores for each QPE exceedance method compared against both

FFRs and FFWs, calculated as described in the chapter text. Panels (a)–(c) depict scores for FT QPE

exceedance verifications for the MRMS, ST4, and CCPA QPE sources, respectively. Like accumu-

lation intervals are organized by column, while thresholds are organized by row. For panels (a)

and (b), the top number of each row label corresponds to the threshold for the 1-hour QPE ex-

ceedances, the middle number applies to the 3- and 6-hour accumulation comparisons, and the

bottom number to the 24-hour QPEs. In panel (c), the top number corresponds to 6-hour QPEs

and the bottom number to 24-hour QPEs. Panels (d)–(f) depict scores for QPE exceedances of ARI

thresholds again respectively for the MRMS, ST4, and CCPA sources. Rows of these tables have

a common ARI value, labeled in years; columns are again organized by accumulation interval.

Panel (g) shows scores for FFG exceedances, with 1-, 3-, and 6-hour FFGs in the leftmost, center,

and right columns, respectively, and comparisons with MRMS and ST4 QPEs respectively in the

top and bottom rows.

for 2.0 in. 6 hour−1 exceedances. Among ARIs, best correspondence was obtained for 1-year 24-hour

exceedances for MRMS and ST4 QPEs, and 1-year 6-hour exceedances for CCPA QPEs.
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2.6 SUMMARY AND CONCLUSIONS

This study performed an expansive comparison using different QPE-based threshold exceedances

as a proxy for flash flooding, as quantified through flash flood reports and NWS flash flood warnings.

Comparisons were conducted across CONUS for an evaluation period spanning January 2015 through

mid June 2017. Many different factors were considered, including the QPE accumulation interval, with

1, 3, 6, and 24-hour accumulations evaluated; the QPE source, with three leading QPE sources—ST4,

MRMS, and CCPA—each compared; and the method for deriving local QPE thresholds. In addition

to considering FT exceedances, exceedances of ARIs ranging from 1–100 years are considered, as well

as exceedances of NWS RFC-generated FFG. For each of these binary observation sets, climatologies

based on the study period were constructed, and skill in correspondence between the threshold ex-

ceedances and FFRs and/or FFWs was assessed on both national and regional scales. Ultimately, the

study investigates the characteristics of the high tail of the probability distribution of QPEs, and the

relation these QPEs have with observed flash flood impacts across CONUS.

Some of the findings from the study confirm prior knowledge of the hydrometeorological commu-

nity, while in other areas, they introduce surprising and somewhat counterintuitive results. Even in

the former case, the this study gives concrete, quantitative numbers to some of these differences pre-

viously known or quantified only qualitatively. The principal findings of this study can be summarized

as follows:

• The question of whether a flash flood has occurred is much more involved than a simple binary com-

parison between local QPE and a flash flood threshold. No QPE threshold exceedance corresponded

well with either FFRs or FFWs.

• While the aggregate skill statistics across CONUS were similar for each QPE source, significant re-

gional differences emerged, with diminishing correspondence from east to west across CONUS.

MRMS does outperform ST4 and CCPA in FFR and FFW correspondence in the Southwest, while ST4

performs best in the East and CCPA the best over central CONUS. With significant regional depen-

dence, identification of existing deficiencies and areas for future product improvements can require

regional, rather than purely national, analysis.

• Each QPE source has recurring deficiencies and biases. ST4 systematically reports heavy QPEs too

frequently over much of the Intermountain West, but particularly in New Mexico and Wyoming,

much more than other precipitation climatologies such as ARIs would indicate. It also suffers from

numerous spurious very large values in its 1-hour QPEs that are not removed during quality control,
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occurring especially but not exclusively in the West. CCPA corrects for many of these issues, but in its

linear calibration, resultantly removes many legitimate extreme events. It consequently has a much

lower frequency bias than either ST4 or MRMS for a given QPE threshold set. MRMS also experiences

many of the biases observed with ST4 in the West, but to a lesser degree. However, it additionally ex-

hibits a strong sensitivity to radar location in that region, with many more QPE exceedance events

occurring near radar sites compared with more distant locations.

• Regardless of the threshold framework, very high thresholds often employed in extreme rainfall stud-

ies and analyses are too stringent to provide optimal correspondence with FFRs or FFWs owing to

too many missed flash flood events. In general, the least severe thresholds examined had among the

best correspondence with the reference records.

• Contrary to expectations given the definition of a flash flood, correspondence between QPE

exceedances and the reference records tended to improve with increased accumulation interval.

Minimum correspondence was generally obtained for threshold exceedances of 1-hour QPEs, and

maximum correspondence for 24-hour QPE exceedances. On a regional basis, there were exceptions

where shorter accumulations provided more skillful predictions, particularly in the Arid Southwest.

• Also surprisingly, FT exceedances provided slightly superior correspondence to FFRs and FFWs com-

pared with FFG or ARI exceedances when a uniform threshold method was applied across CONUS.

Overall, 2.5 in. day−1 provided the best correspondence with FFRs and FFWs of any threshold QPE

exceedance examined, although 2.0 in. 6 hr−1 and others provided nearly equal ETS.

• In some regions of CONUS, FFG and/or ARI exceedances outperformed any FT exceedance, but the

optimal ARI varied between 1- and 5-years, and occasionally higher for certain subregions, such as

Florida and New Mexico.

• Among ARIs, the 1-year ARI provided the best predictions of FFRs across CONUS. For ST4 and MRMS,

24-hour accumulations performed best; for CCPA, 6-hour accumulations performed better. Among

FFGs, 6-hour FFGs provided the best correspondence, but agreement was appreciably worse than

with ARIs, which were in turn worse than the FT exceedances when applied uniformly across CONUS.

• Via their warnings, the NWS is able to add substantial value over automated QPE exceedances in

projecting where heavy rain will produce reported flash flooding.

There are several limitations worthy of reemphasizing. Ultimately, this study has examined how well

different QPE threshold exceedances correspond with flash flood reports (or warnings), and not true

flash floods. FFRs have numerous non-physical reporting biases, including a tendency to underreport

38



flash floods in rural areas and at night. FFR frequency also varies by encoding practices of local WFOs,

with some preferring to encode as a flood what another office may encode as a flash flood. A perfect

“truth” does not exist, a fact which also serves as much of the motivation for conducting this compar-

ative analysis. Compared with true incidences of flash flooding, FFRs likely underrepresent the true

flash flooding climatology due to the aforementioned reporting and encoding practices. In particular,

FFRs likely have few false alarms—most reports are indeed true events—but have numerous missed

events. As a result, while verification is traditionally treated symmetrically, as it is also in this study,

there is reason to believe those comparisons when evaluated against FFRs with frequency biases above

unity likely have better correspondence with true flash flooding than those with biases below unity for

the same CSI or ETS. It may be desirable in future work to incorporate the uncertainty of observations

in the evaluation framework, penalizing non-hits in densely populated areas more than those in rural

ones where “truth” is more uncertain, similar to that suggested in Weijs and Van De Giesen (2011) and

elsewhere. Relatedly, some of the improved correspondence to FFRs illustrated by the FFWs over QPE

threshold exceedances is likely artificial. WFOs have different proclivities to warn flash floods, and can

for example choose to not warn storms that are likely to produce unrepported flash flooding, such as

those confined to highly remote areas. They can also adopt different practices on encoding reports,

and adopt different verification practices for warned and unwarned events (e.g. Barnes et al. 2007).

Nevertheless, there are several important implications from this analysis. Several prominent de-

ficiencies are observed for each QPE source—some deficiencies are found in common between data

sources, while others are unique to a particular source. In particular, all sources struggle with QPEs

in the West. ST4 suffers from spurious very high values in areas of complex terrain, particularly in its

1-hour QPEs. This is especially prominent in the complex terrain of New Mexico. This phenomenon is

seen, albeit to a lesser extent, across the rest of CONUS as well. MRMS has the same spurious high val-

ues over New Mexico, most prominently seen with ARI exceedances. While the root issues likely share

commonalities with the ST4 deficiencies, MRMS appears to suffer from another major issue. Across

the West, extreme QPEs occur with much larger frequency near radar sites compared with more dis-

tant locations—surely an artifact of the QPE derivation rather than a true spatially varying climatology

given the number of sites exhibiting this behavior and the extent of correspondence. CCPA alleviates

many of these problems, but removes many extreme events correctly identified by both ST4 and MRMS.

This deficiency is prominent across all of CONUS. The lack of 1-hour CCPA QPEs also limit its utility in

identifying flash flood scenarios in the SW and other regions where the best QPE-FFR correspondence
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was identified for shorter accumulation intervals. Developers of QPE products may wish to further

investigate some of these identified issues and adopt methods to alleviate them in order to generate

more accurate and operationally useful products. A number of measures may assist with this, includ-

ing improved quality control, particularly in the West, and statistical corrections tailored specifically for

extremes, perhaps as a function of radar distance for MRMS, and to counteract the linear corrections

made that necessarily and undesirably regress towards the climatological mean in the case of CCPA.

Lastly, the verification in this study was limited to daily 1200–1200 UTC timescales. While this does

not directly harm the verification performance of shorter AI exceedances compared with longer ones,

the verification framework does not account for the fact that shorter AI QPE exceedances may provide

additional information about the timing of flash flooding that the longer AI QPE exceedances cannot.

Flash flood timing can be an important component of flash flood analysis, and gives the shorter AI QPE

exceedances an advantage unaccounted for in this study’s verification framework.

The analysis also lends some insight into current deficiencies with the ARIs. For example, there

being nearly an order of magnitude more ARI exceedances in all three QPE sources over Wyoming and

to a lesser extent in Montana, when ostensibly they should be the same everywhere over an infinitely

long period of record, indicates that the ARI threshold estimates from the old NOAA Atlas 2 are likely too

low in this region. Many of these places are very rural—and even moreso prior to Miller et al. (1973)—

and the threshold estimates were likely inaccurate and highly uncertain in these areas at the time the

threshold estimates were derived due to lack of sufficient robust observational data in these areas. It is

expected that updated estimates through the NOAA Atlas 14 project will likely increase over the prior

NOAA Atlas 2 estimates in these areas. In contrast, CCPA did not exhibit the high bias in New Mexico

seen with MRMS and ST4 QPEs and were also seen for other thresholds sources, suggesting that the

issues encountered in that region are more likely attributable to QPE limitations in those two sources

rather than a fundamental ARI threshold estimate issue in this area.

The low frequency biases observed comparing FFG exceedances with FFRs seen across much of

CONUS suggests that FFGs may be too high in many situations. It may be advisable to consider FFG

calculation practices and evaluate whether any revisions can be made to increase spatial homogeneity

across RFC boundaries and lower thresholds when appropriate to improve bias characteristics with

respect to reported flash floods, similar to recommendations made in recent decades (Sweeney 1992;

Carpenter et al. 1999). The findings of this study also raise implications about operational flash flood

forecasting across a range of time scales. On longer time scales for example, the Weather Prediction
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Center issues Excessive Rainfall Outlooks providing probabilistic guidance across CONUS for the cur-

rent day out to two days ahead that sufficiently heavy rainfall will occur to produce flash flooding.

Currently, forecast probabilities are defined with respect to exceedances of FFG. This provides a con-

crete framework for evaluating their outlooks and avoids many of the pitfalls associated with directly

using FFRs or similar observational sources. The findings of this study suggest that, contrary to con-

ventional wisdom, the product may have more utility in relating directly to precipitation impacts if in-

stead one defines the outlook with respect to longer accumulation intervals, such as 6 or 24 hour QPE

exceedances compared with the 1- and 3-hour FFG exceedances used in operations, and perhaps even

using a homogeneous threshold, such as 2.5 in. (63.5 mm) day−1. At shorter time scales, the findings

further suggest that in assessing flash flood potential from a warning perspective, operational forecast-

ers may wish to rely more heavily on one QPE source than another depending on their location. In the

East, forecasters may wish to employ ST4 QPE more heavily, while relying more on MRMS QPE in the

West and CCPA QPE across the Great Plains. Lastly, the findings shed insight into how QPF verification

(e.g. Herman and Schumacher 2016a) and heavy precipitation forecast product development—such

as those discussed in Chapters 3 and 4—may be conducted to be more physically relevant towards the

impacts of heavy rainfall.

New flash flood analysis tools such as those described in Gourley et al. (2017), which use hydro-

logic models to provide additional insights, are becoming available in forecast operations. These tools

have the potential to instill hydrometeorological insights beyond what can be gleaned from a simple

inspection of QPE with respect to a threshold or thresholds. However, even in this framework, hydro-

logic guidance is only useful to the extent that its QPE input is accurate. It is hoped that the findings

from this study helped to identify specific issues and areas the QPE products can be improved to al-

leviate recurring errors and biases, resulting in more representative outputs from analysis tools based

on QPEs. In the meantime, knowledge and quantification of these deficiencies can improve human

interpretation of derived analysis products by increasing (decreasing) confidence in areas that QPE is

(not) skillful and damping (raising) perceived risk in areas that systematically have QPEs that are too

high (low).

More investigation is required to further validate and constrain these findings. In addition, this

work has not attempted to combine information from different sources to provide better correspon-

dence between QPE exceedances and flash flood observations. Future work should examine these joint

distributions to ascertain whether the full suite of QPE information can be used more effectively for
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flash flood forecasting and analysis. This study also did not attempt to recalibrate QPEs with the spe-

cific focus of removing apparent systematic biases and improving their overall accuracy in heavy pre-

cipitation scenarios. Producing a CCPA-like correction to ST4 QPE, but employing different method-

ology geared towards the tail of the QPE distribution rather than the entire distribution would likely be

a worthwhile and fruitful endeavor.
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CHAPTER 3

MONEY DOESN’T GROW ON TREES, BUT FORECASTS DO: FORECASTING EXTREME PRECIPITATION WITH

RANDOM FORESTS

3.1 INTRODUCTION

Locally extreme precipitation can cause a variety of costly, disruptive, and endangering impacts,

including flooding, flash flooding, and landslides. In 2016 alone, these hazards combined caused more

than 120 fatalities and $10 billion in damages over the United States (NWS 2017c). The prediction of

flash floods is a notoriously challenging forecast problem, requiring not only accurate prediction of

heavy rainfall magnitudes, but also of the spatiotemporal distribution of that rainfall; the hydrologic

interactions between precipitation, terrain, and the land surface; and also of antecedent precipitation

and its effects on soil conditions. Forecasting precipitation processes responsible for most observed

extreme rainfall over the contiguous United States (CONUS) is often considered among the most chal-

lenging problems in contemporary numerical weather prediction (NWP; e.g. Fritsch and Carbone 2004;

Novak et al. 2014). Given that the rainfall forecast alone presents such a considerable challenge, the ad-

ditional hydrologic considerations in the flash flood forecast problem present an even more daunting

task. While recent advances in heavy rainfall and flash flood forecasting have been made (e.g. Ha-

puarachchi et al. 2011; Novak et al. 2014; Barthold et al. 2015), forecasts still struggle in many situations

(e.g. Delrieu et al. 2005; Lackmann 2013; Schumacher et al. 2013; Gochis et al. 2015; Nielsen and Schu-

macher 2016, among many others) and substantial progress remains to be made.

Contemporary operational dynamical forecast models often struggle to simulate accurately the

physical processes responsible for extreme precipitation production. For example, models with pa-

rameterized convection often have a variety of persistent errors and biases associated with their de-

piction of convective systems, which are responsible for the majority of flooding rains over much of

CONUS (e.g. Schumacher and Johnson 2006; Stevenson and Schumacher 2014; Herman and Schu-

macher 2016a). These include a tendency to underpredict total rainfall from convective systems (e.g.

Schumacher and Johnson 2008; Herman and Schumacher 2016a); produce systems displaced too far

to the north and west from where they are observed (e.g. Grams et al. 2006; Wang et al. 2009; Clark et al.

2010); initiate convection too early (e.g. Davis et al. 2003; Wilson and Roberts 2006; Clark et al. 2007);

generate systems with too large an areal extent (e.g. Wilson and Roberts 2006); and propagate them

incorrectly, too slowly, or not at all (e.g. Davis et al. 2003; Pinto et al. 2015). While convection-allowing
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models (CAMs) can better resolve the physical processes responsible for heavy rainfall generation (e.g.

Kain et al. 2006; Weisman et al. 2008; Duda and Gallus 2013), they too can suffer from many of these

biases (e.g. Kain et al. 2006; Lean et al. 2008; Kain et al. 2008; Weisman et al. 2008; Herman and Schu-

macher 2016a). Furthermore, although there is a plethora of CAM guidance out to the day-ahead time

frame (out to 36 hours to perhaps 48 hours after initialization), due to current computational con-

straints, there is almost no operational CAM guidance running out to two days ahead, and nothing

operational that runs to three days ahead or beyond. Instead, global ensembles with parameterized

convection serve as the primary source of forecast information and uncertainty quantification at these

lead times. Nevertheless, there is considerable utility in skillful extreme precipitation forecasts at these

longer lead times, since many mitigative actions that may not be feasible to execute in a matter of hours,

but easily accomplished with a day or more of warning. Statistical post-processing of global ensem-

ble output can potentially alleviate many of these dynamical model deficiencies and provide skillful

extreme precipitation guidance at medium-range time scales. A specific focus on the Day 2–3 period

is warranted due to the increased existing operational emphasis on these lead times compared with

even longer ones, such as the Excessive Rainfall Outlooks produced by the Weather Prediction Center

(Barthold et al. 2015) which forecast locally excessive rainfall across CONUS for Days 1–3.

There is a long history of successful application of statistical post-processing to dynamical model

output (e.g. Klein et al. 1959; Glahn and Lowry 1972). Model Output Statistics (MOS; e.g. Glahn and

Lowry 1972), is a simple, effective multivariate linear regression technique relating a set of dynamical

model predictors to sensible weather predictands such as minimum and maximum temperature, wind

speeds, and precipitation probability. This basic technique has long demonstrated skill over both the

underlying models and even human forecasters (e.g. Jacks et al. 1990; Vislocky and Fritsch 1997; Hamill

et al. 2004; Baars and Mass 2005), but is inherently limited by the linear assumptions underlying the

method. Statistical post-processing techniques have also been successfully applied to QPFs, from early

linear approaches (e.g. Bermowitz 1975; Antolik 2000) to more contemporary techniques that can ex-

ploit more complex variable relationships, including neural networks (e.g. Hall et al. 1999), reforecast

analogs (e.g. Hamill and Whitaker 2006; Hamill et al. 2015), logistic regression (LR; e.g. Applequist et al.

2002; Whan and Schmeits 2018), random forests (RF; e.g. Gagne et al. 2014; Ahijevych et al. 2016; Gagne

et al. 2017; Whan and Schmeits 2018), and other parametric techniques (e.g. Scheuerer and Hamill

2015; Whan and Schmeits 2018). For other meteorological applications, other machine learning algo-

rithms, such as support vector machines (e.g. Zeng and Qiao 2011; Herman and Schumacher 2016b)
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and boosting (e.g. Herman and Schumacher 2016b; Hong et al. 2016) have also been successfully ap-

plied. Related techniques have also been applied to forecasting related high-impact phenomena, such

as severe hail (Brimelow et al. 2006; Gagne et al. 2015) and tornadoes (Alvarez 2014). One of the most

powerful aspects of machine learning algorithms—and RFs in particular—is finding patterns and non-

linear interactions in the supplied training data (e.g. Breiman 2001). Depending on the extent and

diversity of the data supplied in these experiments, trained RFs pose the theoretical capability of diag-

nosing and automatically correcting for various kinds of model biases, including context-dependent

quantitative biases, such as QPF being systematically too high or too low; spatial displacement biases in

the placement of extreme precipitation features; and, to some extent, temporal biases in the initiation

or progression of extreme precipitation features.

This study makes a comprehensive investigation of using a global reforecast dataset to produce

skillful and reliable probabilistic forecasts of locally extreme precipitation using the RF statistical post-

processing technique in the medium-range. The following section provides further background and

rigorously describes the data and methods used, algorithms employed, models trained, and experi-

ments performed. Section 3 presents results of the sensitivity experiments conducted, while Section

4 presents the final results of the trained models and provides two brief case studies illustrating the

process. Section 5 summarizes the findings of this study, outlines complementary analysis of these

models, identifies avenues for further research, and discusses the broader implications of the results

on numerical weather prediction and post-processing.

3.2 DATA AND METHODS

There are several successive steps applied in creating the final forecasts evaluated in this study. A

schematic overview of the forecast pipeline for the models trained in this study is depicted in Figure

3.1. Many types of hydrometeorological information are first taken, then assembled in a methodical

manner, further pre-processed for subsequent analysis, analyzed using a statistical machine learning

algorithm, and finally, extreme precipitation forecast guidance is produced and evaluated. This section

details each of these setps in the model development and evaluation process.

3.2.1 Datasets

Dynamical model data used for training the RF models in this study comes from NOAA’s Second-

Generation Global Ensemble Forecast System Reforecast (GEFS/R; Hamill et al. 2013) dataset. The
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FIG. 3.1. Schematic representation of the forecast process for this study. GEFS/R forecasts are

taken, assembled across fields, space, and time to form a training matrix, and past observations

are used to associate a label with each forecast initialization, forecast day, forecast point triplet.

The training matrix optionally undergoes pre-preocessing through principal component analy-

sis, and then is input to one or more machine learning algorithms. From here, probabilistic ARI

exceedance forecasts may be readily generated.

GEFS/R is a global 11-member ensemble with parameterized convection and T254L42 resolution—

which corresponds to an effective horizontal grid spacing of ∼55 km at 40◦ latitude— initialized once

daily at 0000 UTC back to December 1984. Perturbations are applied only to the initial conditions,

and are made using the ensemble transform with rescaling technique (Wei et al. 2008). The ensemble

system used to generate these reforecasts is nearly static throughout its 30+ year period of coverage,

though updates to the operational data assimilation system over time have resulted in some changes

in the bias characteristics of its forecasts over the period of record (Hamill 2017). Some forecast fields

are preserved on the native Gaussian grid (∼ 0.5◦ spacing), while others are available only on a 1◦ × 1◦

grid. Temporally, forecast fields are archived every three hours out to 72 hours past initialization, and

are available every six hours beyond that. This study employs an almost 11-year period of record to

explore this forecast problem, using daily initializations from January 2003 through August 2013.

In creating probabilistic extreme precipitation forecast guidance, the predictand must first be con-

cretely specified and a robust, consistent verification framework established. One of the many chal-

lenges in heavy rainfall and flash flood forecasting is the considerable difficulty in verifying events (e.g.
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Welles et al. 2007; Gourley et al. 2012; Barthold et al. 2015), as every approach has its deficiencies and

limitations. It is attractive to consider the problem from a simple perspective of quantitative precipi-

tation estimate (QPE) exceedances of some temporally static threshold. In particular, a fixed threshold

(e.g. 50 mm hr−1) can be used as a proxy for flash flooding (e.g. Brooks and Stensrud 2000; Hitchens

et al. 2013), as can exceedances of thresholds defined relative to the local precipitation climatology (e.g.

Schumacher and Johnson 2006; Stevenson and Schumacher 2014; Herman and Schumacher 2016a),

such as average recurrence intervals (ARIs). An ARI defines a fixed frequency relative to the hydrom-

eteorological climatology of the region; in particular, it corresponds to the expected duration, given

the local climatology, between exceedances of a given threshold. For example, the 1-year ARI for 24-

hour precipitation accumulations describes the accumulation amount for which one would expect

the mean duration between exceedances of said amount to be one year. Past research has shown that

a fixed-frequency ARI-based framework has better correspondence with heavy precipitation impacts

than the use of any fixed threshold across the hydrometeorologically diverse regions of CONUS (e.g.

Reed et al. 2007). From the perspective of forecast verification, defining extreme precipitation with

respect to a fixed threshold exceedance raises challenges when applied uniformly across CONUS. For

example, skill differences observed between regions may simply be an artifact of a regionally varying

event climatology rather than “true” regional differences in forecast skill (e.g. Hamill and Juras 2006).

The ARI framework avoids this issue and provides reasonable correspondence with precipitation im-

pacts while avoiding the additional complications such as antecedent conditions, local hydrology, and

urban effects (e.g. Herman and Schumacher 2016a) and is consequently used to quantify extreme rain-

fall for this study.

Specifically, forecast probabilities are issued for 24-hour ARI exceedances at each GEFS/R archive

grid point on its native Gaussian grid at all points across CONUS, using a predictand with three cate-

gories: 1) No 1-year ARI exceedance at any point within the grid point domain, 2) At least one 1-year

ARI exceedance, but no 10-year ARI exceedances within the grid point domain, and 3) At least one 10-

year ARI exceedance within the grid point domain. For evaluation, probabilities from the middle and

most severe categories are often aggregated to produce a 1-year ARI exceedance probability. This ap-

proach has the advantage of retaining aspects of the anticipated event severity as would be retained

in a regression context but is largely lost when performing single category classification. While there

can be some additional complications especially with respect to calibration, formulating the predic-

tion problem as a single multicategory classification task rather than multiple distinct binary category
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models also ensures mathematical consistency of the exceedance probabilities within the generated

probability mass functions in a way that the latter approach would not.

In aggregating multiple QPE-to-ARI threshold grid point comparisons in a single predictand, the

forecasts issued correspond to neighborhood event probabilities, an increasingly popular method of

communicating probabilistic high-impact weather information in forecast operations (e.g. Barthold

et al. 2015; NWS 2017b). Counting any one of several possible point exceedances as an “event” results

in the event having a higher observed relative frequency relative to that of any of the individual point

exceedances; the event frequency in this framework thus exceeds the purported frequency suggested

by the ARI. However, the fixed-frequency property, and thus many of the aforementioned desirable

properties of the framework, are approximately retained. For this study, focus is placed exclusively on

two 24-hour forecast periods: the 1200–1200 UTC period corresponding to forecast hours 36–60 from

the GEFS/R forecast fields and the subsequent 24-hour period encompassing forecast hours 60–84,

denoted respectively as Days 2 and 3. At these times, there is typically some knowledge to characterize

the environmental conditions in which precipitation may form, but it is beyond the current range of

operational CAM guidance.

Verification comes from the National Centers for Environmental Prediction (NCEP) Stage IV Pre-

cipitation Analysis (Lin and Mitchell 2005) QPE product, created operationally since December 2001.

Stage IV provides 24-hour analyses over the CONUS on a ∼4.75 km grid. It uses both rain gauge obser-

vations and radar-derived rainfall estimates to generate an analysis, and is further quality controlled

via NWS River Forecast Centers (RFCs) to ensure stray radar artifacts and other spurious anomalies do

not appear in the final product. Despite some limitations (Herman and Schumacher 2016a; Nelson

et al. 2016), its analysis quality; resolution, allowing better ability to capture precipitation extremes

compared with other QPE products (e.g. Hou et al. 2014); and data record length make it preferable to

analogous products.

The ARI thresholds associated with the 1- and 10-year ARIs for 24-hour precipitation accumula-

tions are generated using the same methodology as Herman and Schumacher (2016a), where CONUS-

wide thresholds are produced by stitching thresholds from several sources. NOAA’s Atlas 14 thresh-

olds (Bonnin et al. 2004, 2006; Perica et al. 2011, 2013), an update from older work and currently un-

der development, are used wherever they were available at the commencement of this study. For five

northwestern states—Washington, Oregon, Idaho, Montana, and Wyoming—updated thresholds are
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not available, and derived NOAA Atlas 2 threshold estimates are used instead (Miller et al. 1973). Ad-

ditionally, in Texas and the Northeast—New York, Vermont, New Hampshire, Maine, Massachusetts,

Connecticut, and Rhode Island—Technical Paper 40 (TP-40; Hershfield 1961) thresholds are used1;

everywhere else uses the Atlas 14 threshold estimates. The 10-year ARI thresholds (Fig. 3.2b) show a

similar spatial pattern to the 1-year ARI thresholds (Fig. 3.2a), but are substantially higher everywhere.

More significantly, it is apparent that at both severity levels, there are large regional disparities in the

threshold magnitudes. Over climatologically wet regions of CONUS, such as the Pacific coastal moun-

tains and immediately along the Gulf Coast, thresholds are as high as 100–150 mm and 250–300 mm

for 1-year and 10-year ARIs, respectively. Over central and eastern CONUS, thresholds tend to decrease

smoothly with increasing latitude and distance from major bodies of water. Sharper variations are seen

in areas of complex terrain over western CONUS. In the driest parts of the Arid Southwest and Inter-

mountain West, thresholds can be as low as 10–15 mm and 25–30 mm for the two ARI levels—a full

order of magnitude difference from the largest thresholds at the same intensity level.

Forecast models in this study are trained separately for eight distinct, yet cohesive and internally

fairly hydrometeorologically homogeneous regions of CONUS, using the delineation indicated in Fig-

ure 2.11. Observed 1- and 10-year ARI exceedance events that occurred during the period of record (Fig.

3.2c,d) highlight important regional differences in the seasonal climatology of ARI exceedances across

CONUS. In the Pacific Coast (PCST) region, the vast majority of exceedances at both the 1-year and

10-year severity levels occur in the cool-season, and occur largely from atmospheric river events with

large moisture transport impinging on coastal topography (e.g. Rutz et al. 2014; Herman and Schu-

macher 2016a). This seasonality holds to a lesser extent in the neighboring Southwest (SW) region,

with some signal carrying over to the Rockies (ROCK) region as well. In the central and eastern regions,

the majority of events occur during the warm-season from more scattered convective-scale processes,

particularly in the months of May, June, and July (e.g. Schumacher and Johnson 2006; Herman and

Schumacher 2016a). Tropical cyclones can cause widespread and very significant rainfall, and com-

prise a substantial portion of the extreme precipitation climatology, especially in the Northeast (NE)

and Southeast (SE) regions. Due to the spatial extent of their impacts and immense rainfall totals they

can produce, they form a much larger fraction of the climatology of 10-year ARI exceedances (Fig. 3.2d)

than 1-year events (Fig. 3.2c). Additionally, the numbers are lower than would be expected; by the

explicit exceedance frequencies associated with the thresholds, one would expect an average of one

1The northeastern states did receive updated Atlas 14 estimates in October 2015, but TP-40 thresholds were retained for

consistency with prior work.
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FIG. 3.2. ARI thresholds at the (a) 1-year and (b) 10-year ARI levels over CONUS for a 24-hour accu-

mulation interval. Climatology of observed exceedances of the (c) 1-year, 24-hour ARI thresholds

and (d) 10-year, 24-hour ARI thresholds between January 2003 and August 2013 based on Stage

IV Precipitation Analysis. Pie charts indicate the monthly distribution of event occurrence within

each study region as shown in Figure 3. Numbers above the pie charts indicate the mean number

of exceedances per point per year within the region (a priori 1 and 0.1 for 1-year and 10-year ARIs,

respectively).

exceedance per point per year over the period of record for the 1-year events (Fig. 3.2c) and 0.1 ex-

ceedances for 10-year events (Fig. 3.2d); in reality, event counts are only approximately half of that.

This is consistent with previous findings (e.g. Herman and Schumacher 2016a), and likely in part at-

tributable to limitations in the Stage IV product to capture extremes (e.g. Nelson et al. 2016). There

is also quite a bit of region-to-region variability in event counts, particularly for 10-year exceedances,

much of which is attributable to statistical variability from having a short data record in relation to the

event frequency.
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TABLE 3.1. Summary of dynamical model fields examined in this study, including the abbreviated

symbol to which each variable is referred throughout the paper, a description of each variable, the

predictor group with which the field is associated in the chapter text, and the highest resolution

for which the field can be obtained from the GEFS/R.

Symbol Description Predictor Group Grid

APCP Precipitation accumulation in past (3) 6 hours Core Native Gaussian

CAPE Surface-based convective available potential energy Core Native Gaussian

CIN Suface-based convective inhibition Core Native Gaussian

MSLP Mean sea level pressure Core Native Gaussian

PWAT Total precipitable water Core Native Gaussian

Q2M Specific humidity two meters above ground Core Native Gaussian

T2M Air temperature two meters above ground Core Native Gaussian

U10 Zonal-component of 10-meter wind Core Native Gaussian

V10 Meridional-component of 10-meter wind Core Native Gaussian

Q300 Specific humidity at 300 hPa Upper-Air Extra 1◦×1◦

Q500 Specific humidity at 500 hPa Upper-Air Core 1◦×1◦

Q700 Specific humidity at 700 hPa Upper-Air Extra 1◦×1◦

Q850 Specific humidity at 850 hPa Upper-Air Core 1◦×1◦

T250 Temperature at 250 hPa Upper-Air Extra 1◦×1◦

T500 Temperature at 500 hPa Upper-Air Core 1◦×1◦

T700 Temperature at 700 hPa Upper-Air Extra 1◦×1◦

T850 Temperature at 850 hPa Upper-Air Core 1◦×1◦

U250 Zonal-component of 250 hPa wind Upper-Air Extra 1◦×1◦

U500 Zonal-component of 500 hPa wind Upper-Air Core 1◦×1◦

U700 Zonal-component of 700 hPa wind Upper-Air Extra 1◦×1◦

U850 Zonal-component of 850 hPa wind Upper-Air Core 1◦×1◦

V250 Meridional-component of 250 hPa wind Upper-Air Extra 1◦x1◦

V500 Meridional-component of 500 hPa wind Upper-Air Core 1◦x1◦

V700 Meridional-component of 700 hPa wind Upper-Air Extra 1◦x1◦

V850 Meridional-component of 850 hPa wind Upper-Air Core 1◦x1◦

W850 Vertical velocity (omega) at 850 hPa Upper-Air Core 1◦x1◦

3.2.2 Predictor Assembly

Input predictors, or features, to the random forests can be partitioned into two categories: model

predictors and background predictors; the former constitute the vast majority of inputs. Model predic-

tors come from atmospheric fields forecast in the GEFS/R which bear a known physical relationship

with extreme precipitation. A core set of f=9 fields used in this study are: accumulated precipitation

(APCP), convective available potential energy (CAPE), convective inhibition (CIN), precipitable water

(PWAT), surface temperature (T2M) and specific humidity (Q2M), surface zonal (U10) and meridional

winds (V10), and mean sea level pressure (MSLP). Sensitivity experiments explore the use of additional

upper-air atmospheric fields; a full list of fields used in this study, their associated symbols used in this

chapter, and the grids on which they are each archived is included in Table 3.1. The spatiotemporal

51



TABLE 3.2. List of background predictors used in this study, and their associated symbols and de-

scriptions.

Symbol Description

ARI1_LOCAL_MEDIAN Median of 1-year ARIs whose closest GEFS/R grid point is the forecast point.

ARI1_LOCAL_MIN Minimum of 1-year ARIs whose closest GEFS/R grid point is the forecast point.

ARI1_LOCAL_MAX Maximum of 1-year ARIs whose closest GEFS/R grid point is the forecast point.

ARI10_LOCAL_MEDIAN Median of 10-year ARIs whose closest GEFS/R grid point is the forecast point.

ARI10_LOCAL_MIN Minimum of 10-year ARIs whose closest GEFS/R grid point is the forecast point.

ARI10_LOCAL_MAX Maximum of 10-year ARIs whose closest GEFS/R grid point is the forecast point.

ARI1_REGIONAL_MEDIAN Median of 1-year ARIs that lie within the domain from which model predictors are drawn.

ARI1_REGIONAL_MIN Minimum of 1-year ARIs that lie within the domain from which model predictors are drawn.

ARI1_REGIONAL_MAX Maximum of 1-year ARIs that lie within the domain from which model predictors are drawn.

ARI10_REGIONAL_MEDIAN Median of 10-year ARIs that lie within the domain from which model predictors are drawn.

ARI10_REGIONAL_MIN Minimum of 10-year ARIs that lie within the domain from which model predictors are drawn.

ARI10_REGIONAL_MAX Maximum of 10-year ARIs that lie within the domain from which model predictors are drawn.

LAT Latitude of forecast point.

LON Longitude of forecast point.

variations in these fields are considered as well. Spatially, predictors are structured in a forecast-point

relative sense. In the control model, GEFS/R forecast values up to r=4 grid boxes (∼ 2◦) latitudinally

or longitudinally displaced in any direction relative to the forecast point are considered. Temporally,

simulated fields are considered at each archive time during the forecast interval, which corresponds to

every three hours during the Day 2 period and every six hours during the Day 3 period, for a total of

t=9 and t=5 forecast periods for the Day 2 and 3 periods, respectively. All told, this yields t f (2r + 1)2

model predictors, which yields respectively M=6,561 and M=3,645 model predictors for the Day Two

and Day Three control models. The other category of predictors, background predictors (Table 3.2),

are those which are solely associated with the forecast point, and have no relation to the present me-

teorology. These include the location of the point, as well as the ARI characteristics of the point and in

the surrounding area.

3.2.3 Dimensionality Reduction

There are a large number of model predictors, and they are also highly correlated—spatially, tem-

porally, and across variables. With millions of training examples and thousands of features, the forecast

problem can become computationally intractable. Further, having many highly correlated features can

readily result in model overfitting—making predictions based on noise affecting an individual native

feature rather than the underlying signal—a phenomenon commonly termed the “curse of dimension-

ality” (e.g. Friedman 1997). There are numerous ways these concerns can be addressed; broadly speak-

ing, the most common approaches are either feature selection or feature extraction. In feature selec-

tion, a subset of initial predictors are chosen that collectively bear the strongest predictive relationship

with the predictand, whereas in feature extraction, a smaller set of new predictors are derived from the
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original set. Both of these procedures can be performed subjectively through manual means or objec-

tively through automated means. In this case, all of the input predictors are believed to have a physical

relationship with extreme precipitation, and choosing only the most predictive fields (e.g. model QPF)

and discarding the rest risks removing valuable predictive information not contained in the retained

predictor set. The primary issue with the input predictors in this case is not that many may not have

any physical bearing on the predictand, but rather that each predictor represents a value at a different

point of a continuous field, or a different property at the same point, and are thus necessarily highly

correlated to one another. Furthermore, while one could conceivably extract features using field aver-

ages or some other pre-determined method, this may not be optimal. For example, it may be better

to weight values closer to the forecast point more heavily, while still retaining some information from

the far-field predictors. Given the uncertainty in optimally constructing features by manual means, it

is more convenient and repeatable to instead extract features objectively. Though it has some limita-

tions (e.g. Shlens 2014), principal components analysis (PCA; Ross et al. 2008; Pedregosa et al. 2011)

is a robust and frequently utilized approach for dimensionality reduction. This creates a small set of

uncorrelated predictors that explain the signal in the forecast data and gives insight into the regional

modes of atmospheric variability as depicted in the GEFS/R model (explored in more depth in Chap-

ter 4), while leaving the noise in lower-order principal components (PCs), acting in principle to both

alleviate overfitting and manage computational requirements.

3.2.4 Machine Learning Algorithms and Sensitivity Experiments

The primary statistical algorithm used in this study is random forests (RFs; Breiman 2001). RFs are

in essence an ensemble of decision trees, where traditionally each tree individually makes a determinis-

tic prediction about the outcome of the predictand; the relative frequencies of each possible predictand

outcome in the ensemble of trees are then used to make a probabilistic forecast. Much further detail

on tree and RF construction and mechanics can be found in Chapter 3.2.5 as well as McGovern et al.

(2017) and other sources. There are also several parameters which can be tuned to the particular fore-

cast problem in order to maximize model performance. Four-fold cross-validation is used for model

development in this study, whereby each model configuration examined is trained four times, once

each on three-quarters of the training data, and then evaluated on the final withheld quarter. To avoid

issues of sample independence and approximately mimic information that would be available in an
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operational context, 974 consecutive initializations are used for each quarter of training data. All pa-

rameter settings and sensitivity experiments are evaluated in this framework. The set of RF parameters

tuned is described in Chapter 3.2.5, and the results presented in Chapter 3.2.6.

In this study, there are a great deal of dynamical model data considered as input information on

which the RF can base a prediction. A suite of sensitivity experiments are conducted, as summarized

in Table 3.3, in order to investigate which aspects of forecast information contribute most to forecast

skill. Experiments include exploring:

• Sensitivity to the inclusion of horizontal variations in atmospheric fields by varying the previ-

ously described predictor radius parameter R from 0 to 4.

• Sensitivity to the inclusion of additional upper-air atmospheric fields by comparing the inclu-

sion and exclusion of two sets of fields as noted explicitly in Table 3.1. The first incorporates

temperature, specific humidity, zonal and meridional winds at 850 and 500 hPa, and 850 hPa

vertical velocity in the so-called Upper-Air Core predictor group, while an additional experi-

ment further includes those same fields at 700 and 250 hPa.

• Sensitivity of predictor temporal resolution. Predictor density is three-hourly for Day 2 guid-

ance and six-hourly for Day 3 guidance; models are additionally trained with predictors at

twelve-hourly temporal density for both lead times and six-hourly temporal density for the

Day 2 forecast model and compared against the control versions.

• Sensitivity to and type the extent of use of ensemble information, a question which has im-

plications for how operational centers allocate their computational resources. Using forecast

information from only the GEFS/R’s control member in model training (CTRL) is compared

with using the ensemble median from the full ensemble (MEDIAN), and then further with the

use of the ensemble second-lowest and second-highest values for each atmospheric field in

conjunction with the median (CNFDB) to evaluate the impact of this dimension of forecast

information, following the findings of Herman and Schumacher (2016b), which found rela-

tively little sensitivity in performance with respect to how ensemble information is used, but

using the near-minimum, median, and near-maximum values outperformed using the mean

and spread.

• Sensitivity to predictor pre-processing methodology. Models are trained with and without

the aforementioned PCA pre-processing step, and an assessment of the effect of this pre-

processing step on model skill is made by comparing the two.
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TABLE 3.3. Summary of the models trained in this study, and the corresponding names designated

to the models. ‘X’ indicates the process is performed or the information is used; a lack of one

indicates the opposite. MEDIAN corresponds to the ensemble median, CTRL corresponds to the

ensemble control member’s fields, and CNFDB uses the median in addition to the second-from-

lowest and second-from-highest member values for each field. Horizontal radius is listed in grid

boxes from forecast point; timestep denotes the number of hours between GEFS/R forecast field

predictors. Slashes indicate the first number applies to the Day 2 version of the model, while the

latter number applies to the Day 3 version. Letters enclosed by parentheses indicate sub-versions

of models, with one parameter changed to the value adjacent to the letter. Asterisks indicate a

model applies only to Day 2, and not Day 3. Otherwise, models apply to all eight forecast regions

and have both Day 2 and Day 3 versions. Those models with bolded names are incorporated into

the weighted blend of the final model configuration.

Model Name CTL_NPCA CTL_PCA UAC_PCA UAF_PCA CORE_CNFDB CORE_CTRL CORE_LSPACE CORE_LTIME CTL_LR

Algorithm RF RF RF RF RF RF RF RF LR

PCA Pre-Processed X X X X X

Uses Core Fields X X X X X X X X X

Uses UAC Fields X X

Uses UAE Fields X

Ensemble Information MEDIAN MEDIAN MEDIAN MEDIAN CNFDB CTRL MEDIAN MEDIAN MEDIAN

Horizontal Radius 4 4 4 4 4 4 0 (a), 1 (b), 2 (c), 3 (d) 4 4

Timestep 3/6 3/6 3/6 3/6 3/6 3/6 3/6 12 (a), 6 (b*) 3/6

• The effect of region size on forecast skill, hypothesizing models trained for larger regions may

exhibit higher skill due to more available training data. This is performed by aggregating the

ROCK and SW regions into a new WEST one, combining the Southern Great Plains (SGP),

Northern Great Plains (NGP), and Midwest (MDWST) regions into a CENTRAL region, and

collecting SE and NE regions into a single EAST region, while leaving PCST—with its unique

extreme precipitation climatology—unperturbed.

• Sensitivity of model performance as a function of model algorithm, specifically by comparing

with logistic regression (LR), a common and comparatively simpler alternative to statistically

deriving forecast probabilities. Further discussion of LR and other machine learning alterna-

tives to the RF algorithm is included in the next section.

3.2.5 Algorithm Descriptions

3.2.5.1 RANDOM FORESTS

As noted in the main text, RFs are simply an ensemble of decision trees. Decision trees consist of a

network of two types of nodes: decision nodes and leaf nodes. Decision nodes each have exactly two

children, which may be either decision nodes or leaf nodes, with a binary split based on the numeric

value of a single input predictor determining whether to traverse to the left or right child. A leaf node

has no children and instead makes a categorical prediction of the outcome of the input example based

on the leaf’s relationship to its ancestor nodes. For a given forecast, one begins at a decision tree’s root,
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traversing through its children based on the relative value of the forecast’s predictors to each decision

node’s threshold critical value for the predictor associated with the node. This process is repeated until

a leaf node is reached; its value corresponding to the leaf becomes the tree’s deterministic prediction.

Decision trees can be a powerful approach for a wide array of applications, but they also have sev-

eral significant drawbacks. In particular, they are very prone to overfitting (e.g. Brodley and Utgoff

1995), fitting to the noise of the training data rather than just the underlying relationships. They also

don’t convey any information about forecast uncertainty, as would be the case in a probabilistic frame-

work. RFs are used instead to alleviate these concerns by producing a probabilistic forecast in a way

that can significantly decrease error from overfitting the supplied training error with only a slight in-

crease to error from oversimplistic model assumptions, provided the trees are sufficiently uncorrelated.

The difficulty then revolves around generating a large set (forest) of skillful decision trees that are not

strongly correlated. The decision tree generating procedure described above is deterministic: a given

set of training data will always produce the same decision tree. A forest of identical decision trees, of

course, adds no value over using a single decision tree. Two additional proccesses—tree bagging and

feature bagging—are employed to produce unique trees. Tree bagging produces unique trees through

a straightforward bootstrapping procedure. Specifically, a forest of size B is formed from the n train-

ing examples by creating B samples of size n, with replacement, from the original training data, and

running the decision tree algorithm on each sample. Overfitting due to correlated trees can still occur

under this approach, particularly if a small subset of the original features are much more robust pre-

dictors of the verifying category than the rest (Breiman 2001; Murphy 2012). To overcome this problem,

feature bagging is also employed, whereby only a random subset of the m original input predictors are

considered at each decision node; the size of the random subset is denoted here as S; 1≤S≤m. This

combination can result in a set of B largely uncorrelated trees, each of which is individually fairly skill-

ful.

With any machine learning algorithm, there are numerous considerations in the actual model con-

struction, which manifest themselves in tunable parameters. Compared with other machine learning

algorithms, such as gradient boosting or support vector machines, RFs are often praised for their rela-

tive insensitivity to their parameters with respect to model performance, but it is nevertheless impor-

tant to explore the parameter space in order to realize the full utility of the algorithm. The forest size

B is perhaps the most obvious parameter. The general relationship between model performance and

B is well known and consistent across all prediction problems; it starts quite low at very low B, initially
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increases rapidly with increasing B, and then slowly asymptotes to some threshold performance limit

as the relationships between input features have been fully explored by the forest and the inclusion of

new trees becomes redundant. Larger forest sizes require more computational expense, so the goal is

to select B such that it is small enough to be computationally tractable but large enough to be near the

performance limit. Another parameter noted above is S, the number of features to consider at each

node split. If this number is too small, model performance may suffer from only considering irrele-

vant or otherwise unpredictive features in the context of the node; if S is too large, performance will

also suffer because of underdispersive trees producing an overfit forest solution. Another frequently

explored parameter is the splitting criterion evaluation function. Most commonly used are either the

Gini impurity or the information gain; past studies have shown that this choice is not important for

many forecast problems. Information gain is used in this study; it can be expressed for a training set T,

candidate splitting feature xa and candidate split value va as:

I G (T , xa , va ) =H (T )−H (T |xa < va ) (3.1)

where H(T) is the so-called entropy of a tree, defined for each of the K verifying categories, with each

category i having forecast probability pi , as:

H (T ) =−
K∑

i=1

pi log2 pi (3.2)

The chosen splitting feature and split value are selected among those considered which maximize

Equation 3.1 (e.g. Quinlan 1986; Murphy 2012). However, there are two other parameters that have

the most substantial influence on model performance. The first, denoted Z, is the minimum number

of training examples required to split a node. Traditionally, RFs create a leaf only once a node is ‘pure’,

that is, all the remaining training examples associated with that node have the same labels (event out-

comes). In this way, each tree makes a categorical prediction of the predictand outcome, and proba-

bilities are generated only in counting the proportion of trees in the forest making a particular forecast.

However, this can make predictions from an individual tree very susceptible to the outcome of a par-

ticular historical case, and in some cases result in substantial overfitting. Instead, by increasing Z, an

RF can be allowed to make ‘impure’ leaves; at these nodes, an individual tree makes a probabilistic

prediction based on the proportion of remaining training examples exhibiting each event class rather

than continuing to split based on the remaining training data. Making S too large, however, can re-

sult in underfitting—lumping data as indistinguishable when there are in fact underlying discernible
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distinctions between remaining training examples with different labels. The last parameter, denoted

P, is not actually an RF algorithm parameter at all. When PCA is performed, there is always a ques-

tion about the number of components to retain. Though there are some heuristics (e.g. North et al.

1982), there is no definitive method to know a priori how many retained components P will produce

the most skillful forecasts (Wilks 2011). If P is too small, valuable forecast data is discarded and predic-

tive performance consequently suffers. However, if it is too large, the retained PCs eventually become

essentially just noise, and the RF, by fitting to these predictor values in the training data, will yield an

overfit model that does not generalize to unseen data. Experiments that will not be discussed herein

revealed that using information gain to determine splits and letting B=1000 produced skill near that of

an infinitely large forest, and skill was insensitive to modifications of these settings, including modest

increases in the forest size beyond this point. However, the Z-S-P parameter space are explored for the

models trained and those results are presented in the next section.

One final consideration concerns the handling of rare event scenarios. For rare event problems,

one necessarily has many more examples of the common event class in comparison to the rare class,

leaving the rare class somewhat underrepresented in the learning problem, and model fitting that is

done with respect to the rare class is often too dependent on a small number of examples. An approach

that has been applied with some success in past studies (e.g. Ahijevych et al. 2016) is to sample training

data disproportionately from the rarer classes, so that the number of training example associated with

each event class are approximately equal. A comparison between this so called “balanced” sampling

and unmodified “unbalanced” sampling is also made and the results presented in Chapter 3.2.6.

3.2.5.2 LOGISTIC REGRESSION

One sensitivity experiment compares model performance as a function of the model algorithm by

comparing skill of forecasts produced by RFs with those produced with logistic regression (LR). LR is

in many senses a simpler model than an RF, since the structural form of the relationship between the

predictors and the predictand is predefined before training. RFs, in contrast, make few assumptions

about the relationships between the predictors and the predictand, allowing more diverse diagnoses

of underlying relationships. However, this lack of assumptions can result in overfitting. As an appli-

cation of the generalized linear model, LR assumes a linear predictors-predictand relationship via the

logit function. In LR, a single regression equation, or K equations for a multicategory problem with K
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categories, is computed to represent the probability of the outcome being category k given the set of

input predictors x. In particular, verifying probabilities are computed using the softmax function:

P (y = k |x) =
e xTwk

∑K
j=1 e xTwk

(3.3)

In training a LR model, the goal is to determine the optimal weights wk associated with each predic-

tor in order to yield the most accurate predictions for each event class. As with RF models, LR can be

prone to overfitting if unconstrained. For RFs, one aforementioned approach to alleviate this prob-

lem is to increase the above-termed Z parameter, which stops node splitting earlier on and makes the

model less tailored to the specific training data supplied to it. Complexity in LR can be thought of as

being analogously represented by large weights, or regression coefficients. In order to ensure better

generalizability of the trained regression equations, it is often good practice to penalize large weights

through a process known as regularization. When this is done, the computation of optimal weights

can be represented as a minimization problem with two terms. For 1) a matrix Y with binary elements

that are non-zero if and only if training example i has associated verifying category k and 2) a model

outputting a probability matrix P for each training example and category, the multinomial loss J to be

minimized can be computed as:

J (Y, P(w)) =
1

2
wTw−

1

C N

N∑

i=1

K∑

k=1

Yi ,k l o g (Pi ,k ) (3.4)

where C represents the extent of regularization, with smaller values indicating that large weights are pe-

nalized more than with larger values of C. Alternative approaches to regularization exist (e.g. Pedregosa

et al. 2011; Murphy 2012), and are explored to some degree in sensitivity experiments of Chapter 3.2.6.

3.2.5.3 COMPUTATIONAL CONSIDERATIONS

Other machine learning algorithms do not scale well to the high dimensionality of the forecast

problem explored here. While time to train a model is not of primary concern for operational fore-

casting since it is performed only once (or periodically) offline, there are nevertheless some practical

considerations; models that take months or longer to train would be unlikely to be realistic choices, for

example. The “online” forecasting component, that is, the time required to take a new forecast, input

it into a trained model and receive a forecast, is of operational concern, but all of the forecast tech-

niques considered here can produce forecasts in a matter of minutes, and the small differences are not

considered to be of practical concern. Using the random forest classification heuristic of considering
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the square root of the total number of features at each node split (Geurts et al. 2006), the computa-

tional complexity of training an RF of size B from N training examples with F features (N > F) may be

expressed as O (B
p

F N log(N )), and may be readily parallelized across trees or within trees. Some algo-

rithms are quadratic or even cubic (e.g. Cortes and Vapnik 1995) in the number of training examples,

and do not parallelize as readily. LR is linear in the number of training examples, but requires matrix

multiplication, a process that yields a computational complexity of O (N F 2). PCA pre-processing, and

dimensionality reduction more generally, acts both to make learning algorithms more computationally

tractable and also reducing overfitting by alleviating the so-called “curse of dimensionality”.

3.2.6 Parameter Tuning

RF model parameters were tuned for each region and lead time separately through the 4-fold cross-

validation procedure employed throughout the study. Overall, the optimal parameters were found not

to vary with the two different lead times, but did vary for two of the parameters as a function of forecast

region, at least to an extent; the full results appear in Table 3.4. For the S parameter—the number of

predictors considered for each node split, the default heuristic of the square root of the total number

of features was found to maximize RPSS for all regions and lead times. In all instances where both were

tested, unbalanced sampling from the event classes in proportion to their true observed frequencies

outperformed balanced equal sampling from each event class, in contrast to Ahijevych et al. (2016)

and others; the finding appeared to be attributable to biased probabilities produced from the balanced

sampling technique. For the Z parameter, the minimum number of remaining training examples in an

impure parameter subspace required to perform a further node split, was generally found to be around

120. Lesser values maximized skill in the western regions, with values of 30 maximizing skill in the SW

and ROCK regions, and Z=4 producing the best skill over PCST. A couple of the larger regions of the

east, SE and MDWST, maximized RPSS with a value of 240, although the sensitivity between Z=120

and Z=240 was small for all regions. For P in the CTL_PCA models, skill was generally maximized with

P=30, that is, retaining the 30 PCs which explain the most variance of the entire GEFS/R predictor set.

For most regions, there was very limited sensitivity in the P=30–40 interval—although there was larger

sensitivity outside this interval—and P=40 was found to produce slightly better skill in the NGP region.

The PCST region was again the main exception, where P=60 was found to maximize cross-validation

RPSS.

LR model parameters were tuned using an identical framework to ascertain the type of regulariza-

tion, either based on a L1 norm which penalizes non-zero weights, or L2 norm—described in Chapter
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TABLE 3.4. Optimal RF parameters obtained in cross-validation for the Z-S-P parameter space.

SQRT indicates the square root of the total number of predictors; symbols are otherwise as de-

scribed in the chapter text. Evaluated values were 1, 2, 4, 8, 16, 30, 60, 120, 240, 480 for Z, and 20,

25, 30, 40, 50, 60, 70, 80, 90, 100 for P.

Region S Parameter Z Parameter P Parameter

ROCK SQRT 30 30

NGP SQRT 120 40

MDWST SQRT 240 30

NE SQRT 120 30

PCST SQRT 4 60

SW SQRT 30 30

SGP SQRT 120 30

SE SQRT 240 30

3.2.5—which penalizes large magnitude weights. L2 regularization was consistently found to produce

superior results, perhaps because the number of retained PCs was already taken from the P parameter

in the RF experiments, acting to nullify many potential non-zero weights of higher numbered PCs. Un-

like the RF experiments, there were occasionally some large differences in the obtained optimal regu-

larization parameter value C between lead times within the same region. Generally, models performed

better with more regularized solutions, but there were some notable exceptions, with the Day 2 NGP

model and Day 3 NE model obtaining optimal C parameter values on the other end of the spectrum.

3.2.7 Model Evaluation

Based on the parameter tuning and sensitivity experiment results, final model configurations are

selected. The final model is run over a completely withheld 4-year evaluation period spanning Septem-

ber 2013–August 2017. The forecasts gerenated from the final model are compared with those from the

full ensemble of raw GEFS/R QPFs, as well as the full 50-member ECMWF global ensemble, accessed

from TIGGE (Molteni et al. 1996; Bougeault et al. 2010). The comparison with the former provides

an assessment of what improvement, if any, these models yield compared with the raw guidance from

which their forecasts are derived when evaluated in a real-time setting. The latter, meanwhile, provides
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TABLE 3.5. Optimal LR parameters obtained in cross-validation for the C parameter and regular-

ization type for all lead times and regions. Evaluated for C were 0.0001, 0.0008, 0.0060, 0.0464,

0.359, 2.78, 21.54, 167.8, 1291, and 10000.

Region Regularization C Parameter, Day 2 C Parameter, Day 3

ROCK L2 0.0001 0.0001

NGP L2 10000 0.0008

MDWST L2 0.0001 0.0464

NE L2 2.78 10000

PCST L2 0.0001 0.0001

SW L2 0.359 0.0001

SGP L2 0.0008 0.0464

SE L2 21.54 0.0008

an assessment for how these forecasts compare with state-of-the-science operational ensemble guid-

ance available at these lead times. To make these comparisons, the QPF from each ensemble member

of the two ensembles is regridded onto the ∼4.75km Stage IV HRAP grid on which the Atlas thresholds

lie using a first-order conservative scheme (Ramshaw 1985). These regridded QPFs are then compared

with the 1-year and 10-year ARI thresholds to create deterministic exceedance forecasts with respect

to the two thresholds for each ensemble member. These binary grids are then upscaled to the GEFS/R

grid using the same procedure as the verification upscaling: any exceedance in the downscaled grid

corresponds to an exceedance at the nearest GEFS/R point in the upscaled grid. Since the predictand

categories are necessarily mutually exclusive, the 1-year ARI exceedance grids are modified so that any

member forecasting a 10-year ARI exceedance at a point is not forecasting a between 1-and-10-year

exceedance at that same point and time period. The prevailing operational method of generating fore-

cast probabilities from a dynamical ensemble—democratic voting, whereby the fraction of ensemble

members forecasting the event is used as the forecast probability (e.g. Buizza et al. 1999; Eckel 2003)—is

applied to each ensemble to generate the exceedance probabilities for the reference forecasts.

Skill, both in the final assessment of model performance as well as in all aforementioned sensitivity

experiments, is quantified by means of the Rank Probability Skill Score (RPSS) with a climatological

reference:

R P SS = 1.0−
Σ

D
d=1
(ΣP

p=1(Σ
K
m=1(Σ

m
j=1Pj p d −Oj p d )

2))

Σ
D
d=1
(ΣP

p=1(Σ
K
m=1(Σ

m
j=1Pc l i m j

−Oj p d )2))
(3.5)
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with D forecast days; P forecast points; K predictand categories; Pj p d and Oj p d corresponding respec-

tively to the forecast probability and observance of predictand category j on day d and at point p; and

Pc l i m corresponding to the climatological frequency of occurrence, as defined by the respective ARIs

of the predictand. A score of 1.0 indicates a perfect forecast, and a score of 0.0 indicates model perfor-

mance equivalent to forecasting climatology. Final assessment also includes analysis of reliability, both

subjectively through reliability diagrams, and quantitatively via the Murphy (1973) decomposition of

the Brier score (BS) for category j ∗:

BSj ∗ =Σ
N
n=1(PN j ∗ −ON j ∗ )

2 =
1

N
Σ

C
c=1Nc j ∗ (Pc j ∗ −Oc j ∗ )

2−
1

N
Σ

C
c=1Nc j ∗ (Oj ∗ −Oc j ∗ )

2+Oj ∗ (1−Oj ∗ ) (3.6)

where there are N =D P total forecasts, broken into C discrete probability bins with Nc forecasts being

issued for each bin c. Oj ∗ denotes the climatological (based on the period of record) frequency of ob-

serving event category j ∗ and Oc j ∗ denotes the proportion of forecasts in probability bin c observing

event category j ∗, where j ∗ is the aggregation of event categories of at least j in the RPSS framework.

Oj ∗ (1−Oj ∗ ), the so-called “uncertainty” term, also represents the BS of a climatological forecast. Con-

verting to a Brier skill score (BSS) framework by dividing out by this term:

BSSj ∗ = 1.0−
BSj ∗

BSc l i m j ∗
=

1
N

∑C
c=1 Nc j ∗ (Oj ∗ −Oc j ∗ )

2

Oj ∗ (1−Oj ∗ )
︸ ︷︷ ︸

“Resolution”

−
1
N

∑C
c=1 Nc j ∗ (Pc j ∗ −Oc j ∗ )

2

Oj ∗ (1−Oj ∗ )
︸ ︷︷ ︸

“Reliability”

(3.7)

This analysis is conducted for both the 1- and 10-year thresholds.

Skill calculations and comparisons are made for the host of sensitivity experiments and for each

region, lead time, and model configuration. For each comparison, statistical significance is assessed by

bootstrapping to obtain identical sets of cases for each of the two forecast sets being compared. Skill

scores are derived from the subsample of each forecast set, and a skill difference is computed. This

process is repeated 1000 times to generate a distribution of skill differences, and statistical significance

is ascertained with respect to whether the 0.5t h and 99.5t h percentile skill score difference values from

the bootstrap trials overlap zero. This 99% confidence bound is used in contrast to 90% or 95% bounds

to compensate for concerns arising from conducting statistical significance analysis on numerous dif-

ferent comparisons. While some uncertainty analysis is included in the figures presented, much of the

statistical significance difference results discussed in-text are omitted for the sake of concision.

63



3.3 RESULTS: SENSITIVITY EXPERIMENTS

Examining forecast skill as a function of time step between atmospheric field predictors (i.e. the

CORE_LTIME models of Table 3.3; Fig. 3.3a), two striking findings concern 1) the large variations in

forecast skill across regions and 2) the evidently low sensitivity of forecast skill to time step length within

any given region. For the 3-hour time step, predictors are gathered from a total of 9 forecast times; with

the 6-hour step, 5 forecast times are used; and with the 12-hour time step, a total of 3 forecast times

are used. The 12-hour time step therefore has one-third the total number of predictors as the model

with the 3-hour time step, but still yields nearly identical forecast skill results. In most regions and

forecast periods, there is a slight degradation in performance going from the 6- to 12-hour time step,

but the difference is not generally statistically significant by a 99% bootstrap skill score difference test

(not shown). The one exception to this is in the PCST region, which has much higher skill overall than

the other regions for both forecast periods, and exhibits somewhat higher sensitivity to the predictor

time step than the other regions, particularly in going from 6-hours to 12-hours, with RPSS differences

of approximately 6%.

Similar to the temporal resolution findings, there is a general lack of sensitivity as a function of pre-

dictor spatial extent (Fig. 3.3b). This finding comes in stark contrast to that of Herman and Schumacher

(2016b), which found great sensitivity of predictor spatial extent in forecasting airport flight rule condi-

tions. Albeit weak, a slight improvement in skill for most forecast period, region combinations can be

noted with increasing predictor radius, often to the extent that the skill difference between 0 and 4 grid

box radii is statistically significant (not shown). Two regions in particular, the NE and PCST, exhibit by

far the most sensitivity to predictor spatial extent, with differences of roughly 0.02 observed over the

evaluated interval. Also of note is that a radius of 4 grid boxes—the highest number evaluated—did not

always yield the best performance results; most notably, the Day 2 model for the NE region maximized

skill at a radius of 2, with a slight deterioration of forecast skill with increasing radius thereafter. In those

regions where the GEFS/R cannot explicitly resolve the processes responsible for producing extreme

precipitation, the RF is ultimately making forecasts more on environmental factors; these do not vary

drastically in time or space, and thus a single number or small set of numbers at or immediately sur-

rounding the forecast point are sufficient to characterize the basic properties of the environment. This

is all that the RF is really using for much of its predictions (discussed more in Chapter 4). However, in

regions impacted more readily by larger scale systems where the dynamical model can more directly
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FIG. 3.3. Sensitivity experiment RPSS results for (a) the CORE_LTIME models, as a function

of the timestep between incorporation of new atmospheric field forecast values, and (b) the

CORE_LSPACE models, as a function of the radius of predictor information incorporated, each

including both Day 2 and Day 3 versions of the model and for each region studied. Lines corre-

spond to a particular day, region pair as indicated in the respective panel legends. Error bars in

both panels correspond to 90% confidence bounds obtained by bootstrapping.

simulate the precipitation processes such as PCST and the NE, the spatial variations in atmospheric

fields carry more signal rather than noise and thus contribute more predictive value.
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Like varying spatial and temporal density, there is relatively little sensitivity to the inclusion of more

atmospheric fields (Fig. 3.4a). Slight but consistent improvement is observed in adding the core upper-

air fields as predictors, but adding further levels beyond the core group was found to not improve pre-

dictive skill, and actually resulted in a decrease in skill for the PCST, NE, ROCK, and SE regions—those

which are most affected by larger scale precipitation systems. Though still rather small, somewhat

more distinct sensitivity to type of ensemble information included (Fig. 3.4b) can be seen here across

all regions, with improvements seen using predictor information from the GEFS/R ensemble median

versus using only the control member, and slight further improvement using the ensemble second-

from-minimum and second-from-maximum in addition to the ensemble median. The largest differ-

ences in magnitude are again for the PCST region, but in this experiment, clear and statistically signifi-

cant (not shown) improvements are also seen for low skill, convectively active regions such as MDWST.
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FIG. 3.4. Sensitivity experiment RPSS results. Panel (a) as a function of the atmospheric fields in-

cluded as input to the RF algorithm, for Day 3 forecast and broken out by region. From left to right,

the columns correspond to results using: 1) just the ‘Core’ atmospheric field group, 2) both the

‘Core’ and ‘Upper Air Core’ groups, 3) the ‘Core’, ‘Upper Air Core’, and ‘Upper Air Extra’ groups. For

more information on which fields are included in each predictor group, consult Table 3.1. Panel

(b) as a function of the type of GEFS/R information used as input predictors to the RF algorithm,

for Day 3 forecasts and broken out by region. From left to right, the columns correspond to results

using: 1) just the forecast fields from the GEFS/R control member, 2) the ensemble median fore-

cast values from the full ensemble, 3) the ensemble median, 2nd-from-minimum, and 2nd-from-

maximum forecast values from the full ensemble. Panel (c) as a function of region aggregation,

with the left column using the eight regions depicted in Figure 2.11, and the right column using

training data which aggregates data from seven of the eight original regions into three regions, as

described in the text. Panel (d) as a function of model algorithm for different forecast days and

regions as indicated in the figure legend. From left to right, columns correspond to results of the

CTL_NPCA model, CTL_PCA model, CTL_LR model, and a weighted combination of models as

described in the paper text. For all panels, error bars correspond to 90% confidence bounds ob-

tained by bootstrapping.

Aggregating regions (Fig. 3.4c) results in a slight degradation in forecast skill. In principle, it is pos-

sible for a decision tree to automatically forecast for specific regions by splitting first on the latitude

and longitude predictors, and then further partitioning based on meteorological variables thereafter.

However, these findings demonstrate that there is some—albeit limited—utility in manually partition-

ing training data with distinct hydrometeorological relationships, rather than relying on the machine

learning algorithm to discern the distinction automatically. Comparing the impact of applying PCA

pre-processing to the RF (Fig. 3.4d, leftmost two columns), performing PCA tends to either improve

performance, as is the case for the PCST, NE, SW, and MDWST regions, or make little difference, as seen

in the ROCK, NGP, SGP, and SE regions. The positive differences tend to be larger in magnitude, both

in relative and absolute senses, for Day 2 model versions compared with Day 3. Forecasts produced

through LR tend to be substantially worse than those generated by RFs (Fig. 3.4d, center columns).

However, the exact magnitude to which this is the case varies by region; substantial differences in skill

are seen between RF and LR forecasts for the SW, ROCK, and SGP regions, while there is almost no skill

difference between the Day 3 forecasts in the PCST region. This may suggest the linear assumptions

inherent to the LR algorithm perform better in larger scale systems than in the more convectively ac-

tive ones in which the responsible processes are highly nonlinear, but this causality is not entirely clear.

Finally, a weighted average of RF and LR forecasts outperforms its component members for all regions

and forecast periods. The extent of overperformance is strongly tied to the skill difference between the
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RF and LR models; when the skill difference is small, the value of the weighted average is compara-

tively large to when the RF performs much better than LR (cf. Fig. 3.4d PCST and SW lines). Since

these weighted averages performed the best in cross-validation, a weighted average using each of the

CTL_NPCA, CTL_PCA, and CTL_LR models was chosen for the final model configuration.

3.4 RESULTS: FINAL MODEL PERFORMANCE

For both the final ML models and the forecasts from the raw QPFs of both the GEFS/R and ECMWF

(Fig. 3.5), a usually statistically significant deterioration in forecast skill from Day 2 to Day 3 is evident

in each CONUS region over the four year test period. Forecast skill is significantly higher in regions

with extreme precipitation associated partially or primarily with synoptic scale precipitation episodes,

such as PCST, SW, and ROCK, rather than smaller-scale convective systems that characterize extreme

precipitation as in the NGP, SGP, and MDWST regions. At an extreme, the NGP and SGP GEFS/R raw

QPFs exhibit no skill in predicting ARI exceedances at these lead times. Especially for the ML models,

the bigger Day 2 vs. Day 3 skill differences are also seen where the skill is higher, again suggesting the

direct forecasting of the precipitation as opposed to forecasts more reflecting the forecast environment,

either dynamically via parameterized convection in the case of raw QPFs, or directly in the case of the

ML model forecasts. Furthermore, the ML models exhibit a larger skill deterioration between Days 2

and 3 than either of the raw ensemble forecast sets.

Comparing the forecast systems, the ECMWF forecasts consistently and statistically significantly

outperform the GEFS/R forecasts at all lead times except in the SE region (Fig. 3.5). Encouragingly, the

ML model forecasts are statistically significantly more skillful for all eight regions and both lead times

compared with the GEFS/R forecasts from which they are based. The post-processing is thus clearly ac-

complishing its purpose of improving forecast skill. But it is also apparent that the GEFS/R is not a state

of the science model for extreme QPF prediction given its lower skill compared with the ECMWF. The

real test of the ML model then is how it compares with current best operational guidance for these lead

times, represented here with the ECMWF ensemble. The comparison (Fig. 3.5) is generally quite favor-

able, with the Day 3 ML forecasts outperforming even the Day 2 ECMWF forecasts across all regions

except ROCK and PCST. In the non-western regions, the extent of overperformance is quite consider-

able when comparing equal lead times, with skill score improvements of factors of two to three seen

in many comparisons. In the ROCK and PCST regions, the ML and ECMWF forecasts performed about

equally at Day 2, and ECMWF performed slightly better at Day 3. Overall, the ML models demonstrated
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FIG. 3.5. Final RPSS results obtained over the four year test period spanning September 2013–

August 2017, broken out by region. Red bars correspond to the results of the final forecast models

trained in this study, while gray bars depict results from the raw GEFS/R QPF probabilities derived

from the full ensemble. Dark bars illustrate Day 2 performance results, while lighter colors show

results for Day 3. Error bars correspond to 90% confidence bounds obtained by bootstrapping.

ability to consistently outperform current operational model guidance, especially in convectively ac-

tive regions where there is no operational guidance that can dynamically resolve the physical processes

producing extreme precipitation at these lead times.

Reliability diagrams of Day 2 raw GEFS/R and ECMWF forecasts (Fig. 3.6) reveal highly overcon-

fident probabilistic exceedance forecasts for all regions, both severity levels, and both ensembles as

evidenced by the shallow slope relative to the one-to-one line in each panel. The raw GEFS/R fore-

casts (Fig. 3.6a,b) are relatively sharp, with more than 0.01% of forecasts falling into each probability

bin above 10%, and a vast majority of zero probability forecasts (not shown). For all regions, there are

cases where every ensemble member has simultaneously predicted a 1-year exceedance (Fig. 3.6a),
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FIG. 3.6. Reliability diagrams for Day 2 forecasts generated from raw QPFs of the full GEFS/R

and ECMWF ensembles. Colored opaque lines with circular points indicate observed relative fre-

quency as a function of forecast probability; the dashed black line is the one-to-one line, indicating

perfect reliability. Colors correspond to the performance of the forecasts over different regions, as

indicated in the legend in the lower-right of each panel. Inset panels indicate the total propor-

tion of forecasts falling in each forecast probability bin, using the logarithmic scale on the left

hand side of each panel; lines are again colored by region in accordance with the legend. Panel (a)

shows 1-year exceedance forecast from GEFS/R, (b) to 1-year exceedance forecasts from ECMWF,

(c) to 10-year from GEFS/R, and panel (d) to 10-year from ECMWF. All axes are logarithmic as la-

beled. Colored dotted lines indicate the climatological event probability for each region for the

ARI level of the corresponding panel, while the dash-dotted lines indicate no skill lines for the

color-corresponding region. The curves continue off the left end of each panel towards the ORF

of forecasts in the zero forecast probability bin.

but the same is not true for 10-year exceedance predictions in the northeastern regions: NE, NGP, and

MDWST (Fig. 3.6b). The ECMWF (Fig. 3.6b,d) is also overconfident, but we see that it is also negatively

biased for all cases. Its degree of overconfidence is dampened compared with the GEFS/R, and it is

not as sharp, with fewer very occurrences of very high forecast probabilities except in the westernmost
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regions of ROCK and PCST (Fig. 3.6b, inset panels). With 50 members rather than 11, there is also sub-

stantially more resolution across the probability spectrum in the ECMWF forecasts. By the very nature

of how these forecasts are generated, quite a bit of sharpness is inherent at the cost of reliability, since

it is not possible for probabilities near the climatological event frequency to be issued for either raw

ensemble, but particularly for the GEFS/R.

The Day 2 reliability diagrams for 1-year exceedance forecasts from the different components of the

final model—CTL_NPCA, CTL_PCA, and CTL_LR—are shown in Figure 3.7. The CTL_NPCA (Fig. 3.7a)

shows markedly different characteristics than either of the raw ensembles. In particular, all of the re-

gions exhibit an underconfidence signal, with low probability events below about 2% for 1-year events

(Fig. 3.7a) occurring with observed relative frequencies below the forecast probabilities. The relative

event frequencies are conversely appreciably higher than the forecast probabilities would indicate for

probabilities above 5%. Among the regions, the PCST probabilities are the most negatively biased,

while NE probabilities are the most positively biased. Overall, reliability is much better than for either

raw ensemble, but this comes at the expense of sharpness. Less than 1 in 10,000 forecasts are above

about 20% for (Fig. 3.7a, inset panels), and maximum probabilities are in the 30–80% range depending

on the lead time and region, compared with 100% for all lead times and regions in the raw ensembles.

The CTL_PCA model (Fig. 3.7b) exhibits very similar reliability characteristics to the CTL_NPCA model,

including the underconfidence, reduced sharpness compared with the raw ensembles, and different

regional probability bias characteristics. It tends to be more negatively biased than CTL_NPCA at low

and high probabilities (cf. Fig. 3.7a,b), correctly so at high probabilities and undesirably so at low ones.

The CTL_LR model (Fig. 3.7c) exhibits some similarities and some differences with the RF-based mod-

els. PCST forecasts are consistently the most negatively biased, followed by ROCK and the SE, with

NE region forecasts being the least negatively biased. However, unlike the RF-based forecasts, the LR

model issues more high probabilities; for example, forecasts in the highest probability bin were issued

for most regions (Fig. 3.7c). At the highest probabilities, the forecasts revert to being positively biased,

as they are for events with probabilities issued in the 0.01–1% range. At very low probabilities , LR-based

forecasts are substantially more negatively biased than for RF-based forecasts, leading to considerable

overconfidence overall when considering that the vast majority of forecasts issued occur on this low

probability end of the spectrum. While LR (and regression in general) is effective at removing bias in
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FIG. 3.7. Reliability diagrams for Day 2 forecasts of 1-year ARI exceedances for different statisti-

cal algorithms. Panel characteristics as in Figure 7, except note that axes have been modified to

include more of the low probability tail due to increased resolution in the plotted forecast sets.

Panel (a) corresponds to forecasts from the CTL_NPCA model, panel (b) to the CTL_PCA model,

and panel (c) to the CTL_LR model. Bin right edges correspond to forecast probabilities of 0, 1e-

10, 1e-7, 1e-4, 1e-3, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.09, 0.11, 0.14, 0.17, 0.21, 0.25, 0.30, 0.35, 0.40,

0.45, 0.50, 0.55, 0.60, 0.675, 0.75, 0.85, and 1.0, except that first five probability bins have been

aggregated into a single frequency-weighted probability bin for plotting on the figure.

a global sense, since a single regression equation must necessarily apply globally to all forecasts, it in-

herently cannot perform more localized, context-depend forms of bias correction, leading to forecast

probability-dependent model biases.
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FIG. 3.8. Reliability diagrams for the final forecast model, with panel attributes as in Figure 8.

Panel (a) shows Day 2 forecast results for 1-year ARI exceedance forecasts, (b) to Day 2 10-year

ARI exceedance forecasts, (c) to Day 3 1-year exceedance forecasts, and panel (d) to Day 3 10-year

ARI exceedance forecasts.

The final ML model reliability (Fig. 3.8) unsurprisingly reflects a blend of the component mem-

bers, retaining some of the underconfidence of the RF-based models while adding a bit of sharpness

from the CTL_LR model in regions where it verified skillfully enough in cross-validation (e.g. PCST, Fig.

3.4d) to garner much weight. The probability distribution for 1-year exceedance events is not markedly

different between the Day 2 and Day 3 forecasts (cf. Fig. 3.8a,c), but the relatively higher probabilities

issued for 10-year exceedances in Day 2 do not occur at the Day 3 lead times (cf. Fig. 3.8b,d). This is

consistent with increasing confidence in very extreme events with decreasing lead time—something

seen very pronounced in the final model, but to a much lesser extent in the raw ensemble forecasts.
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FIG. 3.9. Modified Murphy (1973) decomposition results, following equation 3.7 in text. Panel

(a) depicts the equation 3.7 “resolution” term for all models and regions for Day 2 forecasts at

the 1-year severity level, panel (b) depicts the “reliability” term results for the same forecasts and

severity level. Panels (c) and (d) are analogous to panels (a) and (b), but for 10-year ARI exceedance

forecasts. Numeric values indicate the value of the corresponding term of the table, as indicated

by the model label (row) and region (column).

The relationship between the reliability analysis and skill via the Brier score decomposition (Mur-

phy 1973) quantitatively solidifies many of the general observations discerned by inspection of the

reliability diagrams. Though sharper than competing forecasts, the raw GEFS/R forecasts consistently

exhibit the worst resolution component contribution to forecast skill for all regions and severity levels,

both for Day 2 forecasts (Fig. 3.9a,c) and Day 3 forecasts (Fig. 3.10a,c) due to an inability to actually

distinguish events from non-events by resolving the responsible physical mechanisms. The final ML

models exhibit better resolution term skill contributions than the ECMWF ensemble forecasts, with the
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exception of the ROCK and NGP regions for 1-year events (Fig. 3.9a, 3.10a). Between the component

models, resolution term skill tended to best for CTL_NPCA forecasts over the test period, particularly

at the 10-year severity level (e.g. Fig. 3.9c) but the extent of the difference tended to be relatively small

and there were numerous instances where PCA-based models exhibited more resolution. The weighted

average consistently exhibited higher resolution than any of the component members. With respect

to the reliability contribution to skill (Fig. 3.9b,d Day 2; Fig. 3.10b,d Day 3), ECMWF forecasts were,

perhaps surprisingly given the lack of explicit calibration, the most reliable forecast set for all regions

and lead times, while in many cases the ML models had a more negative contribution to the total skill

than the raw GEFS/R, likely resulting from the underconfidence. The resolution term is at largest one

and at least zero in this decomposition, while the reliability term is at most zero. The magnitude of the

resolution terms is consistently several factors larger than the reliability term for all forecast sets, and

the differences in that term generally have a larger absolute impact on the overall Brier skill scores.

Lastly, while by no means a comprehensive characterization of the system, a sample of real cases

over the test period are presented to illustrate some of the strengths and weaknesses of the system. On

the evening of 19 May 2015 and morning of 20 May 2015, a vigorous mesoscale convective system de-

veloped over southern Oklahoma and northern Texas, producing very heavy rainfall that contributed

to historic flooding in the region during May 2015 (e.g. Wolter et al. 2016). Stage IV analysis (Fig. 3.11a)

reveals that the 24-hour precipitation totals exceeded 1-year ARI thresholds within much of an E/W

band encompassing the region, with embedded areas of 10-year exceedances along the state border

region (Fig. 3.11b). While the ECMWF ensemble forecasts indicate some possibility of extreme pre-

cipitation in that region during this time frame at Day 3 (Fig. 3.11d), the probabilities are displaced

too far to the south and west, and the probabilities of 10-year exceedances are very low. There is some

improvement in positioning with the Day 2 forecast (Fig. 3.11c), but it remains too far west and with

probabilities still quite low, particularly at the 10-year ARI level. Raw GEFS/R forecasts at Day 3 (Fig.

3.11f) indicate quite high risk for a 1-year exceedance over a fairly narrow area, better positioned than

the ECMWF ensemble at the same lead time but still too far to the west. Outside of this area, the GEFS/R

indicates almost no risk of an extreme rainfall event, and also indicates no risk of a 10-year exceedance

anywhere in the domain. The Day 2 forecast (Fig. 3.11e) looks similar to the Day 3 outlook, except

that the probabilities are reduced somewhat in the target area, which also has incorrectly displaced

further to the south and west. The ML model depicts a much different picture. It exudes much less
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FIG. 3.10. Same as Figure 3.9, but for Day 3 forecasts.

confidence, with lower maximum probabilities compared with either raw ensemble, but non-zero ex-

ceedance probabilities of both 1- and 10-year exceedances across much of the domain for both Days

3 (Fig. 3.11h) and Day 2 (Fig. 3.11g). Importantly, the model elevated probabilities compared with the

raw guidance in the place that extreme precipitation was actually observed (to the east of where it was

forecast in the GEFS/R). In fact, at Day 2 (Fig. 3.11g), the probability maximum is located right where

the heaviest precipitation actually occurred, displaced well to the north and east of where it was fore-

cast in the GEFS/R (Fig. 3.11e). Additionally, while still low, the 10-year event probabilities are much

higher over the verifying area when compared with either raw ensemble, with maximum Day 2 proba-

bilities of around 30% and 3% for 1-year and 10-year exceedances, respectively. Finally, in contrast to
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the raw guidance, the ML model became increasingly confident in an event occurring with decreasing

lead time (cf. Fig. 3.11g,h).

A different mesoscale precipitation produced extreme precipitation over southwestern Wisconsin,

southeastern Minnesota, and northeastern Iowa during the evening and overnight hours of 21 Sep-

tember and 22 September 2016, respectively. Based on ST4 QPE (Fig. 3.12a), much of the area experi-

enced 1-year ARI exceedances for the 24-hour period ending 1200 UTC 22 September 2016, and within

the 1-year exceedance area, there were many embedded cells that produced 10-year ARI exceedances
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FIG. 3.11. Case study depicting forecasts from the final ML model and both reference ensembles

for the 24-hour period ending 1200 UTC 20 May 2015. (a) 24-hour Stage IV QPE ending at 1200

UTC 20 May 2015 and (b) corresponding ARI exceedances of 1-year and 10-year thresholds. (c)

ECMWF ensemble neighborhood ARI exceedance probabilities in the filled (1-year) and unfilled

(10-year) contours for the 36–60 hour forecast initialized 0000 UTC 18 May 2015 and (d) for the

60–84 hour forecast initialized 0000 UTC 17 May 2015. Panels (e) and (f) depict analogous fields

as panels (c) and (d), respectively, except for forecasts from the raw GEFS/R QPFs. Panels (g) and

(h) similarly show respectively 36–60 and 60–84 hour forecasts, except for from the final version of

the ML model trained in this study. Contours for 10-year events are 0.005, 0.01, 0.03, 0.05, 0.075,

0.10, 0.125, 0.15, 0.175, 0.20, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, and 1.0.

(Fig. 3.12b). ECMWF forecasts at Day 3 indicated risk of extreme rainfall, even at the 10-year severity

level (Fig. 3.12d), but the location was poor, with exceedance probabilities high in eastern Minnesota

and northern Wisconsin where extreme rainfall was not observed, and very low probabilities in north-

eastern Iowa and southeastern Wisconsin where it was. Both the positioning and risk of very extreme

precipitation improved for the Day 2 forecst issuance (Fig. 3.12c), but probabilities still remained too

far to the north. The GEFS/R at Day 3 (Fig. 3.12f) indicated very little risk of extreme precipitation in

the area, with just one member correctly predicting a 1-year exceedance in southeastern Minnesota.

The risk of an event occurring within the domain increased for the Day 2 issuance, but the locations

got worse, with maximum risk indicated in eastern Nebraska, western Iowa, and northeastern Wiscon-

sin, with the only 10-year prediction occurring in the latter location. Somewhat like the raw GEFS/R,

the ML model had only some indication of extreme precipitation risk at Day 3 (Fig. 3.12h). However,

it both had the higher probabilities (near 10% in both cases) distributed over a much larger area, and

indicated some risk of a 10-year event, with probability maxima near 1.5%. Additionally, it had the

maximum probability axis nearly collocated with where heaveist precipitation occurred, well to the

south of the ECMWF probabilities, albeit still slightly too far to the north. The Day 2 forecast issuance

(Fig. 3.12g) was largely similar. The two main changes are a correctly increased risk in the area where

the event actually verified, and an incorrectly increased risk of heavy precipitation in eastern Nebraska

where the raw GEFS/R had heavy precipitation on Day 2 (Fig. 3.12e).

3.5 DISCUSSION AND CONCLUSIONS

An ML model based on RFs and LR is used to generate CONUS-wide probabilistic forecasts for the

exceedance of 1- and 10-year ARI thresholds for 24-hour precipitation accumulations during the Day

2 and Day 3 periods. Approximately eleven years of GEFS/R forecasts, in particular the ensemble me-

dian, are used to train these models, and forecasts are made using numerous simulated atmospheric
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FIG. 3.12. Same as Figure 3.11, but for the 24-hour period ending 1200 UTC 22 September 2016.
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fields (Table 3.1) varying in both space and time, in addition to a variety of geographic and climatologi-

cal forecast predictors (Table 3.2). Separate models are trained for each of the two 24-hour periods and

for each of eight different regions of CONUS, as depicted in Figure 2.11. A variety of sensitivity exper-

iments are performed, as outlined in Table 3.3, to ascertain the utility of different aspects of forecast

information in predicting locally extreme precipitation. Finally, the final forecast models were eval-

uated, and compared with forecasts based only on the ensemble of raw QPFs from the GEFS/R and

ECMWF. The ML models trained in this study demonstrably outperformed the raw GEFS/R forecasts

for all regions and forecast lead times (Fig. 3.5), often more than doubling the forecast skill and adding

substantially more than 24-hours lead time improvement in forecast skill. With the exception of the

PCST and ROCK regions, the same held for comparison of the ML model forecasts with ECMWF en-

semble forecasts as well. Both raw ensembles tended to be negatively biased and higly overconfident in

predicting extreme QPFs (Fig. 3.6), particularly at the 10-year ARI for central CONUS regions; this was

reversed in the final ML model forecasts, which were more reliable at higher probabilities, but generally

underconfident (Fig. 3.8).

In general, unlike past studies (e.g. Herman and Schumacher 2016b), in most regions, the tempo-

ral resolution and extent of spatially displaced predictors from the forecast point considered had little

to no impact on forecast skill (Fig. 3.3), in addition to the use of upper-level information and addi-

tional ensemble information (Fig. 3.4). These results are suggestive of two findings. First, most of the

relevant information about predictors displaced spatiotemporally from the forecast point, other at-

mospheric fields, or other ensemble member information, can be derived with at least moderate accu-

racy using just the information from the ensemble median from a group of core set of fields collocated

and concurrent with the forecast; that is, these additional predictors contain only limited independent

forecast information, at least for this coarse dynamical model and this underdispersive ensemble con-

figuration. It also suggests that, for the most part, the predictive ability is coming primarily through a

characterization of the overall environment, which can be reasonably summarized with only a subset

of predictors, rather than the simulated spatiotemporal variability and full 3-D characterization of the

atmospheric evolution in the underlying dynamical model. This finding comes in contrast to similar

studies of other forecast problems using the GEFS/R, such as the Herman and Schumacher (2016b)

study which investigated using the GEFS/R to create ML-based probabilistic forecasts of cloud ceiling

and visibility at different airports and found considerable value in the inclusion of spatially displaced

predictors. However, there is at least one major exception; none of this really held for the PCST region;
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here, more complex models with more predictors did notably improve forecast skill. This is perhaps in

part because the physical processes associated with extreme precipitation are much better resolved in

the GEFS/R in this region compared with the others, and so the added information adds usable fore-

cast utility beyond simply duplicatively characterizing the atmospheric environment for the forecast.

The largest skill difference of the sensitivity experiments came for most regions in changing algorith-

mic assumptions and processes (Fig. 3.4d); the simpler linear assumptions of LR tended to degrade

forecast skill compared with the more limited assumptions underlying the RF models.

The results of this study reveal that the application of more sophisticated statistical methods and

ML algorithms such as RFs can demonstrably improve forecasts of extreme precipitation and poten-

tially other rare, high-impact weather events in the medium range when compared with the methods

and techniques that are most prevalent in forecast operations today. One unique aspect here is the

scope of this model; while most past studies which employed these techniques for numerical weather

prediction have focused on a small domain, or just a sampling of points, the models trained here

demonstrate an ability to generate skillful, reliable forecasts year-round for all of CONUS and a range of

lead times. There are many forecast problems that remain to be explored, but the results of this study

and others strongly suggest that further development and application of these data-intensive statistical

techniques could substantially improve our forecasts over the current state of the art, even compared

with using more sophisticated dynamical models. To that end, implementation of this methodology for

operational use to assist Weather Prediction Center forecasters with the development of their excessive

rainfall outlooks is currently underway.

This forecast technique presents some advantages over purely dynamical approaches, as dynam-

ical models are inherently limited by two factors by which these statistical techniques are not. First,

dynamical models require ever increasing computational resources for increasing model resolution;

constraints on computing power prevent sufficient resolution to directly resolve many small-scale pro-

cesses, many of which are observed in the highest impact weather phenomena. Second, dynamical

models are limited by our physical understanding of the processes we are attempting to simulate or

forecast. Machine learning algorithms, in contrast, can detect predictive patterns in the available in-

formation even in places where we do not know or understand the physical connection between the

information and the phenomenon which we wish to predict. While they are also limited in complexity

by computational and data resources, the strict limits on resolvability are not there: physical resolution

can often be gained through post-processing of larger scale information. There is thus ample reason
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to believe that further investigation of these techniques for NWP is a worthwhile venture, and eventual

implementation into forecast operations could help forecasters with their tasks by skillfully synthesiz-

ing many different sources of forecast information to help alleviate their often time-pressed schedules.

This in turn can aid end-user preparedness and, in the case of high-impact events, hopefully help to

protect lives and property.

One of the main advantages of the methods explored in this study compared with other popular

machine learning methods, in addition to their computational tractability, is the ability to visualize

their output and gain insights into detecting and quantifying specific biases in the underlying GEFS/R

model, and physical insights into the most valuable forecast information for predicting locally extreme

precipitation. This is the focus of the following chapter.

Some limitations of this work are worthy of note. Stage IV precipitation is used as truth for this

study; though there is not a clearly better verification source available, it does have its drawbacks. It

does have some spurious quality control issues, and often stuggles in areas of complex terrain due

to radar beam blockage, interference, and limited gauge coverage (Herman and Schumacher 2016a;

Nelson et al. 2016). Since the model is trained to forecast Stage IV QPE exceedances, this can lead to

some idiosyncrasies and other anomalies associated with the biases observed in the Stage IV product.

One such anomaly is the persistent presence of very small areas of exceedances in some regions of

complex terrain during times of favorable convective conditions. This can be removed by quality con-

trol procedures to some extent, but some artifacts do remain. This happens most prominently in the

terrain of western New Mexico; a small region there has many more instances of ARI exceedances over

both the training and test periods than any other part of CONUS. The ML-based models recognize this,

and for the SW region consistently issue much higher probabilities in this region. In one sense, this is

correct—it is correctly predicting what it was trained to predict—but is still undesriable behavior due

to a disparity between “truth” in the study and the true extreme rainfall risk. Solutions to this issue and

related issues in other parts of the country must be explored in order to maximize operational utility.

Additionally, while the choice of using the ARI framework was an intentional decision and provides

numerous benefits, it is not an end-all for predicting heavy precipitation impacts. While ARIs often

have better correspondence with impacts than a fixed threshold, there are still regional discrepancies

in which ARIs have optimal association with impacts, and the framework employed here does not ac-

count for antecedent conditions, which can be critical for assessing flash flood risk. More investigation
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into the relationship between QPE exceedances and rainfall impacts should be performed to maximize

the practical significance of the model predictand.

Additionally, the predictors for this study come from a very coarse and otherwise rather antiquated

global model. The GEFS/R was used for this study because, unlike almost any other dynamical model,

it has been nearly static for a very long period of record and has nearly stationary bias characteristics—

an essential property for performing this kind of analysis. However, the models trained herein are not

working off of the ‘state of the art’ of flash flood predictors. The longer range Day 2 and Day 3 lead times

were chosen for this study in part because the discrepancy between GEFS/R forecast quality and ‘state

of the art’ is smaller at these longer lead times due to less convection-allowing guidance being available,

and higher-resolution models degrading in utility with increasing forecast lead time (e.g. Zhang et al.

2003, 2007).

There are also some complications that must be considered for real-time implementation. As one

example, the regional models are trained completely independently of one another, with different

training data and different solutions. Consequently, they can occasionally give rather different pre-

dictions on nearly identical inputs, resulting in undesirable probability discontinuities across region

boundaries. Appropriate methods for removing probability discontinuities in space must be further

explored.

Future work will seek to alleviate these limitations in a variety of ways. Exploration of using differ-

ent predictands, likely combining hydrometeorological information from a variety of sources, will be

made for more explicit flash flood prediction. This may involve a regionally varying predictand defini-

tion, with some ARI thresholds better corresponding to flash flood impacts in some regions compared

with others. Additionally, although a large number of predictors were explored in this study, there are

many additional choices for predictors that could ostensibly further improve forecast skill. While at-

mospheric fields are represented here in absolute terms, it may be beneficial to instead represent some

fields relative to the local climatology of the forecast point in terms of standardized anomalies. This

is particularly true for fields like PWAT, where standardized anomalies have often shown better corre-

spondence with precipitation impacts across varied regions than absolute values (e.g. Junker et al. 2009;

Graham and Grumm 2010; Nielsen et al. 2015). More exploration of derived fields of physical relevance

to extreme precipitation processes should also be explored. Some possible examples include upslope

flow to gauge forcing for ascent by the horizontal wind, column mean wind to ascertain potential for

slow-moving storms, and deep-layer shear as a metric for supercell potential.
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This study also focused on a rather specific time interval and took all dynamical predictors from

a single, somewhat antiquated ensemble system. Future expansion both to the 12–36 hour Day 1 pe-

riod and beyond the Day 3 period will be explored, including predictors from more contemporary CAM

guidance and potentially including observations as well for the shorter lead time forecasts. Operational

models also tend to undergo periodic upgrades and thus do not remain static like the ensemble system

used here. The sensitivity of ML model performance to changes in dynamical model bias characterics

that result from these upgrades is a question of considerable operational relevance and an additional

factor worthy of future investigation. It was also seen that the ML models suffered to varying degrees

from underconfidence and, in some instances, negative bias. Methods of probability calibration of the

ML model probabilities as a final post-processing step (e.g. Hagedorn et al. 2008; Hamill et al. 2008;

Bentzien and Friederichs 2012; Herman and Schumacher 2016b) should be explored in future work,

and parameter choices reconsidered in light of this additional calibration. Finally, this study only ex-

plored a subset of available machine learning algorithms. Other choices, including adaptive learning

algorithms, may be able to better exploit predictor-predictand relationships, appropriately update to

reflect changes in an underlying dynamical model, and produce superior forecasts for the locally ex-

treme precipitation and flash flood forecast problem (e.g. Liu et al. 2001; Roebber 2015; Pelosi et al.

2017).
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CHAPTER 4

“DENDROLOGY” IN NUMERICAL WEATHER PREDICTION: WHAT RANDOM FORESTS AND LOGISTIC

REGRESSION TELL US ABOUT FORECASTING EXTREME PRECIPITATION

4.1 INTRODUCTION

Machine learning algorithms have demonstrated considerable utility in many scientific disciplines,

including computer vision (e.g. Rosten and Drummond 2006), natural language processing (e.g. Col-

lobert et al. 2011), and bioinformatics (e.g. Larranaga et al. 2006). Machine learning has also been used

with considerable success in a wide range of future prediction scenarios, from financial market analy-

sis (e.g. Cao and Tay 2003), to election forecasting (e.g. Bermingham and Smeaton 2011), to numerical

weather prediction (NWP; e.g. Hall et al. 1999; Roebber 2013; Rozas-Larraondo et al. 2014; McGovern

et al. 2017). Recently, these techniques have been receiving increasing attention and application in

NWP; many of these preliminary forays have demonstrated considerable utility of these techniques

over historical competitors (e.g. Herman and Schumacher 2016b), with occasional exception (e.g. Ap-

plequist et al. 2002).

One frequently noted criticism of machine learning forecast models is their lack of interpretability

and neglect of underlying physics and dynamics of the forecast problem, rendering additional inter-

pretation and analysis of their output difficult or impossible. These critiques did not first appear with

the emergence of machine learning; in fact, these qualms with statistical forecast models have been

expressed since early days of NWP (e.g. Lorenz 1956). And there is legitimate reason for these con-

cerns; given the chaotic nature of the atmosphere system, any model—statistical or dynamical—will

necessarily have formulaic limitations, systematic biases, and failure modes regardless of the level of

care exercised during model construction. When the model’s processes are opaque, it can be diffi-

cult to rationally diagnose these circumstances, and the ability of the forecaster to add value over the

raw guidance is inhibited. Thus, even when, for example, a statistical model exhibits better objective

performance compared with a competing dynamical model, if a human forecaster understands the

underpinnings and characteristics of the dynamical model but not the statistical model, he or she may

still be able to provide better final forecasts using the dynamical guidance over the statistical guidance.

The “understanding” referenced here does not require a complete and comprehensive mathematical

understanding sufficient to exactly reproduce the result by hand; even using a very simple dynamical
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model, it is extraordinarily difficult to reproduce an accurate forecast by manual means (e.g. Richard-

son 2007), and seldom are interpreters of model guidance familiar with numerical specifics, dynamical

core particulars, or parameterization details. Rather, there is a well-understood overarching process of

using data assimilation to produce an analysis and initialize a model which embodies the primitive

equations governing the atmosphere in some capacity, and then integrating the model forward in time

to produce a forecast. Additionally, the intermediate steps—output from hours after initialization but

before forecast valid time—are fully inspectable and comprehensible. In contrast, to many, statistical

models and especially those employing machine learning seem comparatively opaque; a host of pre-

dictors are ingested, and a forecast(s) is produced, with little if any information provided on how the

model got from the predictors it used to the answer it generated. While a small part of this is perhaps

inherent to statistical forecasting, with improved visualization of statistical models developed for NWP,

physical insights into how the predictors used relate to the forecasted phenomenon may be gained, and

ability to deduce likely biases based on the present meteorology may be acquired.

Among statistical forecast algorithms, regression models have the longest and most extensive use

in operational NWP (e.g. Glahn and Lowry 1972) and are perhaps the most easily and directly inter-

pretable through their regression coefficients. Using the regression coefficients, operational regres-

sion models such as the Statistical Hurricane Intensity Prediction Scheme (SHIPS; DeMaria and Ka-

plan 1994) can display the individual effect of each element of the present meteorology on the final

prediction. With care, this also allows interpretation of the relative utility of different pieces of meteo-

rological information in predicting the forecast phenomenon of interest, in this case tropical cyclone

intensity (e.g. Jones et al. 2006). Direct inspection of the parameters is equally insightful for other types

of regression, such as in multivariate logistic regression (LR) for probabilistic forecasts (e.g. Bremnes

2004). While direct interpretability is an attractive quality of regression models, the parametric nature

of them and like algorithms imposes assumptions on the relationship between the predictors and the

predictand or between predictors themselves when such relationships may not be accurate or even

known or physically understood (Wilks 2011). Linear and logistic regression, for example, both impose

a fundamentally linear predictor-predictand relationship and treat predictors independently, not di-

rectly accounting for the covariance between multiple predictors and their joint relationship with the

predictand. While imposing these restrictions can actually be helpful when they are physically valid,

predictive performance degrades when these imposed assumptions are invalid.
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Especially when the physical relationships are not known or well quantified, it is often attractive

to employ an algorithm which does not impose such assumptions. One such example is the random

forest technique (RF; Breiman 2001). RFs have been used for many different applications in NWP in-

cluding but not limited to prediction of storm-type classification, turbulence, cloud ceiling and visibil-

ity, convective initiation, and hail size (e.g. Williams 2014; Herman and Schumacher 2016b; Ahijevych

et al. 2016; Gagne et al. 2017; McGovern et al. 2017). Though the algorithm is more general, the inner-

workings of an RF may be diagnosed, like with regression coefficients for LR, primarily by means of

feature importances (FIs) to be used and discussed in more detail in this study. While these have al-

ready been used to assess RF NWP models in some past studies (e.g. Gagne et al. 2014; Herman and

Schumacher 2016b), in using locally extreme precipitation forecasting as an example, we will demon-

strate here that they can be used to understand spatiotemporal relationships as well as relationships

across atmospheric fields in predicting the phenomenon of interest, even when the number of pre-

dictors grows large, the event becomes rare, and algorithmic steps that complicate the relationship

between the predictor inputs and reality are performed.

Chapter 3 expanded upon these prior studies using machine learning for NWP in a variety of ways.

While there have been limited prior studies using machine learning to explicitly investigate very rare

events (e.g. Marzban and Stumpf 1996; Marzban and Witt 2001), and some prior studies construct-

ing statistical models for QPF (e.g. Hall et al. 1999; Sloughter et al. 2007; Whan and Schmeits 2018),

there has been little published work to date combining both facets. The work in Chapter 3 was among

the first to do so, training statistical models to forecast locally extreme precipitation across CONUS in

the medium-range. The CONUS-wide gridded scope of the models trained therein is also uncommon

among machine learning models, which are often trained for points (e.g. Herman and Schumacher

2016b) or over a limited domain (e.g. Gneiting et al. 2005). Furthermore, the scope of predictors was

very large, with thousands of predictors capturing the spatiotemporal environmental characteristics of

the forecast point during the accumulation period. Many different sensitivity experiments were per-

formed, and the performance of the model forecasts was evaluated in detail from both the perspective

of forecast skill and reliability. Overall, forecasts were found to add both considerable skill and reliabil-

ity across all of CONUS compared with both climatology and the raw forecasts of the global ensemble

from which the model predictors were derived. However, the study did not investigate the internals

of these models: how to visualize what they’re doing to get from their input to their output, and what

these algorithms and models reveal about the prediction of locally extreme precipitation events overall.
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Using the regression and tree-based models of Chapter 3, this “dendrological” study investigates

the details of the fitted trees, as well as the regression models. We illustrate how models based on seem-

ingly abstract and complex algorithms and techniques can, with modest effort, be readily interpreted

and understood. It is shown that, not only can these models yield more skillfully verifying forecasts than

raw dynamical model output or forecasts derived from simpler, more traditional post-processing ap-

proaches, but they can also provide both statistical and physical insights into why they behave as they

do, as well as insight into the deficiencies, errors, and limitations of the dynamical model predictors

on which they are based. In this study, examination of the Chapter 3 models sheds insights onto how

a global, convection-parameterized dynamical ensemble behaves in forecasting extreme precipitation

events across the hydrometeorologically diverse regions of the contiguous United States (CONUS), and

on what statistical corrections can be made to improve forecasts thereof. Section 2 briefly summarizes

the methods of Chapter 3 to describe the underpinnings of the models evaluated in this study and how

they were derived. Section 3 describes how the models will be visualized and interpreted in this study.

Sections 4, 5, and 6 present results respectively for PCA diagnostics, RF models, and LR models. Section

7 concludes with a synthesis of the findings and a discussion of their implications.

4.2 DATA AND METHODS SUMMARY

What follows is an abbreviated description of the full data and methods of Chapter 3, highlighting

the aspects that are critical for proper interpretation of the results presented herein. The interested

reader is encouraged to review the full methods of that study for a more complete discussion of the

mathematical underpinnings of the algorithms, justification of choices made, and the sensitivity ex-

periments performed therein.

The models evaluated in this study are trained to forecast locally extreme precipitation across

CONUS for 24-hour precipitation accumulations, quantified with respect to average recurrence inter-

val (ARI) exceedances. In particular, models are trained to issue probabilistic forecasts for exceedances

of 1-year and 10-year ARIs within a ∼ 0.5◦ × 0.5◦ spatial domain during a 24-hour 1200 UTC–1200

UTC accumulation interval. Forecasts are made for two different forecast lead times comprising the

36–60 and 60–84 hour periods—denoted respectively Day Two and Day Three—with separate models

trained for each period. Unique models are also trained for each of eight different geographic regions

of CONUS, as depicted in Figure 2.11. Here, CONUS has been partitioned to produce cohesive regions

with some hydrometeorological homogeneity with particular regard to similar magnitudes of extreme
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precipitation, similar diurnal and seasonal precipitation climatologies, and similar storm types and

precipitation processes associated with extreme precipitation.

Dynamical model data used for training the statistical models in this study comes from NOAA’s

Second-Generation Global Ensemble Forecast System Reforecast (GEFS/R; Hamill et al. 2013) dataset.

The GEFS/R is an 11-member ensemble with T254L42 resolution—which corresponds to an effective

horizontal grid spacing of∼55 km at 40◦ latitude— initialized once daily at 0000 UTC back to December

1984. Forecast fields evaluated in this study are archived on a grid with ∼ 0.5◦ horizontal spacing. For

Day 2 models, forecast fields use 3-hour temporal resolution, while 6-hour resolution is used for Day 3

models. Trained models discussed in this study are based on the ensemble median of a core set of nine

atmospheric fields: accumulated precipitation (APCP), surface-based convective available potential

energy (CAPE) and convective inhibition (CIN), precipitable water (PWAT), surface temperature (T2M)

and specific humidity (Q2M), surface zonal (U10) and meridional winds (V10), and mean sea level

pressure (MSLP). Models are trained using daily forecasts spanning from January 2003 through August

2013.

The National Centers for Environmental Prediction (NCEP) Stage IV Precipitation Analysis product

(Lin and Mitchell 2005) has been created daily in an operational capacity since December 2001. Stage

IV provides 24-hour analyses over CONUS on a∼4.75 km grid. It uses both rain gauge observations and

radar-derived rainfall estimates to generate an analysis, and is further quality controlled via NWS River

Forecast Centers (RFCs) to ensure stray radar artifacts and other spurious anomalies do not appear in

the final product. Despite some limitations (Herman and Schumacher 2016a), its analysis quality; res-

olution, allowing relatively accurate quantification of very heavy precipitation; and data record length

make it preferable to other precipitation analysis products, and is therefore used as the precipitation

‘truth’ for this study.

The thresholds associated with the 1- and 10-year ARIs are generated using the same methodology

of Herman and Schumacher (2016a), where CONUS-wide thresholds are produced by stitching thresh-

olds from several sources. NOAA’s Atlas 14 thresholds (Bonnin et al. 2004, 2006; Perica et al. 2011, 2013),

an update from older work and currently under development, are used wherever they were available at

the time this research began. For five northwestern states—Washington, Oregon, Idaho, Montana, and

Wyoming—updated thresholds are not available, and derived Atlas 2 threshold estimates are used in-

stead (Miller et al. 1973; Herman and Schumacher 2016a). In the Northeast—New York, Vermont, New

Hampshire, Maine, Massachusetts, Connecticut, and Rhode Island—and Texas, both of which did not
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have Atlas 14 threshold estimates at the time research commenced but have either since received an

update or have an update in progress, Technical Paper 40 (TP-40; Hershfield 1961) estimates are used.

Everywhere else uses the Atlas 14 threshold estimates.

Generating predictors by taking GEFS/R forecast values from 9 different fields every 3 or 6 hours

over a 24-hour forecast period at every grid point within ∼ 2◦ of the forecast point yields thousands of

model predictors. In addition to the large quantity, they are also highly correlated—spatially, tempo-

rally, and across variables. With millions of training examples and thousands of predictors, the forecast

problem can become computationally intractable and the correlated variables can result in overfitting.

To address these issues, use of a pre-processing step whereby the model predictors undergo dimension-

ality reduction via principal components analysis (PCA) is explored. This creates a small set of uncor-

related predictors that explain the signal in the forecast data and gives insight into the regional modes

of atmospheric variability as depicted in the GEFS/R model, while leaving the noise in withheld lower-

order principal components (PCs). While PCA has been most applied in the atmospheric sciences for

identifying spatial patterns at the largest scales (e.g. Thompson and Wallace 1998; Wheeler and Hen-

don 2004), flavors of PCA have been successfully applied to identify smaller synoptic and mesoscale

features as well (e.g. Mercer et al. 2012; Peters and Schumacher 2014).

Chapter 3 performed a wide array of sensitivity experiments, exploring model predictive perfor-

mance as a function of predictor temporal resolution, spatial extent, inclusion or exclusion of different

atmospheric fields, use of ensemble information, algorithmic parameters, and choice of model algo-

rithm. To manage the scope of this study’s analysis, only results as a function of the last of these is pre-

sented. Much like the skill results presented in Chapter 3, general physical findings are found not to

vary appreciably as a function of any of these unshown dimensions of variability. Three specific Chap-

ter 3 models are evaluated in depth in this study: 1) the CTL_NPCA model using random forests and no

PCA dimensionality reduction; 2) the CTL_PCA model using random forests with pre-processing using

PCA dimensionality reduction; and 3) the CTL_LR model using logistic regression and also using PCA

pre-processing. Table 4.1 provides a summary comparison of these three models for reference.

Random forests (Breiman 2001) are in essence an ensemble of decision trees, whereby each tree of

the forest makes an individual prediction of the predictand outcome; the relative frequencies of each

possible outcome in the ensemble of trees are then used to make a single probabilistic forecast. Deci-

sion trees are explained in mathematical depth in Chapter 3; an alternative way to conceptualize them

begins with a many dimensional predictor phase space, where each predictor has a unique dimension.

90



TABLE 4.1. Summary of the models trained in this study, and the corresponding names designated

to the models. ’X’ indicates the process is performed or the information is used; a lack of one

indicates the opposite. MEDIAN corresponds to the ensemble median. Horizontal radius is listed

in grid boxes from forecast point; timestep denotes the number of hours between GEFS/R forecast

field predictors. Slashes indicate the first number applies to the Day 2 version of the model, while

the latter number applies to the Day 3 version. Models apply to all eight forecast regions and have

both Day 2 and Day 3 versions.

Model Name CTL_NPCA CTL_PCA CTL_LR

Algorithm RF RF LR

PCA Pre-Processed X X

Ensemble Information MEDIAN MEDIAN MEDIAN

Horizontal Radius 4 4 4

Timestep 3/6 3/6 3/6

Beginning with an unpartitioned phase space (tree root), a decision tree makes successive splits along

axes of this space partitioning it into increasingly many smaller subspaces (splits), and then assigning

predictions to each subspace (leaves). An RF creates many different similarly plausible partitions of

the subspace, and a forecast is determined by the subspace labels associated with the given point in

predictor space.

Logistic regression is an implementation of the generalized linear model, designed for binary pre-

dictions and classification more generally where the predictand is constrained to be either one out-

come or another, rather than over a continuous space as with linear regression (Wilks 2011). Like with

linear regression, logistic regression uses as its input a linear combination of the predictors. The differ-

ence arises in the use of the link function. For linear regression, the link is the identity function; that is,

the prediction is the aforementioned linear combination of the predictors. In the case of logistic regres-

sion, the predictor-predictand link is made through use of the logit function instead (Wilks 2011). In

particular, the model output in multinomial logistic regression—the probability of each event class—is

given by use of a generalization of the logistic function:

P (y = k |x) =
e xTwk

∑K
j=1 e xTwk

(4.1)

where k is the event class, x is the predictor vector, and w is the vector of regression coefficients. Note

that separate coefficient vectors are computed for each event class.
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4.3 METHODS: MODEL PROPERTIES AND ASSESSMENT

One of the most powerful aspects of machine learning algorithms—and RFs in particular—is find-

ing patterns in the supplied training data. Because of the extent and diversity of the data supplied

in these experiments, the RFs trained for this study have the theoretical capability of diagnosing and

automatically correcting for various kinds of GEFS/R model biases. In particular, context-dependent

quantitative biases, such as GEFS/R QPF being systematically too high or too low, may be diagnosed;

spatial displacement biases in the placement of extreme precipitation features may be diagnosed; and

temporal biases in the initiation or progression of extreme precipitation features may also be diag-

nosed to some extent. These can be at least partially visualized through RF Feature Importances (FIs).

The most intuitive way to conceptualize their quantitative significance is by the number of splits based

on the feature summed over the forest, with each split weighted in proportion to the number of train-

ing samples encountering the split so that a split at the root node is considered much more important

than a split deep into a tree (Friedman 2001). Values are normalized so that the sum of all importances

is one; an importance of one then indicates that all decision nodes in every tree of the forest split on

the corresponding feature, while an importance of zero indicates that no decision node splits based on

that feature. Importances are produced for each input feature; without PCA pre-processing, this means

that an individual importance value is produced for each forecast point-relative location, forecast time,

atmospheric field combination. In many cases, it is convenient to present importances summed over

one or more of these dimensions for a summary perspective of the model output. When PCA pre-

processing is performed, the model output is instead importances of individual PCs in predicting ARI

exceedances. FIs calculated in this way—often termed the “Gini importance”—are only one method

of providing a summary representation of an RF (Strobl et al. 2007). In the leading alternative method,

the so-called “permutation accuracy importance” approach (Strobl et al. 2008), for each predictive fea-

ture, the feature value for each sample used to construct a given tree is permuted to a different sample’s

value. Importance is calculated as the decline in predictive performance between the model when the

permuted values of the feature are supplied from when the true values are used. This is calculated

individually for each tree and then averaged over the entire forest. While this approach has some ad-

vantages over other approaches (e.g. Breiman 2001; Strobl et al. 2007, 2008), the “Gini importance”

measure is used for this study for consistency with past studies in the field (e.g. Herman and Schu-

macher 2016b; Gagne et al. 2017; Whan and Schmeits 2018) and computational simplicity (Pedregosa

et al. 2011).
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One of the main advantages of LR is its interpretability; through the regression coefficients, there

is a direct, concrete connection between the predictors and the forecast predictand. And although

the regression in the CTL_LR model is performed on the principal components and not the native

atmospheric variables, the relationship to the native features may be readily backed out through the

PCA loadings matrix L:

xTwk =wk ,1P C 1+wk ,2P C 2+wk ,3P C 3+ ...+wk ,R P C R

=wk ,1(

M∑

m=1

L1,m Fm ) +wk ,2(

M∑

m=1

L2,m Fm ) +wk ,3(

M∑

m=1

L3,m Fm ) + ...+wk ,R (

M∑

m=1
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(4.3)

where R is the number of retained PCs, M is the number of native features, k is the event class, F is the

vector of native features, and w is the vector of regression coefficients.

Both algorithms have their advantages, disadvantages, and caveats in interpretation. As noted

above, LR has the advantage of a direct quantitative link between any given predictor of interest and

the predictand. RF FIs, in contrast, give only an “importance” number, which gives no indication of the

sign or magnitude of the predictor in order to correspond with event observance. The task of manually

inspecting the value of every node split based on the predictor, while it can be executed, is cumbersome

and it’s difficult to draw general conclusions due to the deeply layered subspaces involved. However,

RFs do have major advantages over LR in interpretation as well. As a linear model, LR coefficients are

constrained to apply globally, but this is often not an appropriate constraint. Some predictors may

only become important when other conditions are satisfied—for example, CAPE might only be impor-

tant when there is a lifting mechanism to release the instability—rendering them insignificant in most

cases but very important under select circumstances. In LR, where the coefficient applies uniformly

regardless of the circumstances, the coefficient would necessarily be small, while the RF FI for the same

predictor could be relatively large by taking advantage of the importance of a the variable in a partic-

ular subspace(s) of the larger predictor space. RFs also handle correlated predictors better than LR. In
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regression problems, when one predictor is highly correlated with another, one is liable to have a sit-

uation whereby the “weight” is disproportionately allocated to one predictor over the other, giving the

false appearance that one variable is highly predictive while the other is not. In RFs, with two highly

correlated predictors that are thus approximately equally predictive, node splits will occur essentially

randomly between one or the other, and the RF FIs thus have a tendency to balance approximately

evenly (Gagne 2016). This problem of LR is greatly alleviated in the CTL_LR model by using PCs as

the predictors, which are necessarily constructed to be orthogonal to one another. However, analyzing

these different algorithmic formulations in tandem enables capturing a more complete picture of the

extreme precipitation forecast problem.

4.4 RESULTS: GEFS/R PRINCIPAL COMPONENTS ANALYSIS

Inspection of the leading mode of atmospheric variability—PC1, the component that explains the

most variance between different days, or model initializations—in Figures 4.1 and 4.2 for the NGP and

PCST regions, respectively, and for the remaining regions in an online supplement reveals that the

leading mode in each region quite apparently relates to the seasonal cycle. However, the precise na-

ture of that seasonal cycle varies by region. Like colors across subpanels in these figures indicate that

atmoshperic fields covary together for the region’s displayed PC, while contrasting colors indicate one

variable is anomalously high while the other low. Deeper reds associate positively with the PC, with

blues associating negatively; lighter colors indicate that the given predictor does not relate as strongly

with the PC. Spatial color inhomogeneities within a subpanel suggest the PC is associated with a spatial

gradient in the field, while loadings changing throughout the forecast period—shown via comparison

of the unfilled contours—is indicative of some degree of regime change. By happenstance, positive

values of PC1 in all regions is compared with a summer signal, while negative values are associated

with a winter signal. In all regions, the summer signal is associated at all times of day with high surface

temperature and moisture (e.g. Fig. 4.1d,e), higher PWAT and CAPE (e.g. Fig. 4.1g,h), and lower MSLP

and CIN (e.g. Fig. 4.1b,i). In almost every region, the warm-season signal (positive PC1) is weakly as-

sociated with anomalous precipitation (APCP) for the region (e.g. Fig. 4.1a); in other words, this states

that the warm-season is also the wet-season in most regions of CONUS. However, in the Pacific Coast

(PCST) region, precipitation is predominantly received during the cool-season (Herman and Schu-

macher 2016a), and this is reflected by negative loadings for the APCP field seen in Figure 4.2a. The

primary regional differences between the seasonal cycle, and reflected in the PC1 loadings, is seen in
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FIG. 4.1. PC1 loadings for the NGP region. Panels (a)–(i) correspond respectively for loadings as-

sociated with the APCP, MSLP, U10, Q2M, T2M, V10, PWAT, CAPE, and CIN fields. Filled contours

depicts loadings for forecast values at 0000 UTC during the forecast period (forecast hour 48) with

reds indicating positive loadings and blues negative loadings; magenta and yellow contours in-

dicate negative and positive loadings, respectively, for 1500 UTC during the period (forecast hour

39), while brown and beige contours depict negative and positive loadings for 0900 UTC during the

forecast period (forecast hour 57). Darker colors indicate larger values, and accordingly a stronger

relationship with the principal component as indicated in the figure colorbar.

the wind fields (Fig. 4.1 and 4.2, panels c,f). In most regions, including NGP, the warm-season is as-

soicated with anomalous southeasterly flow at low levels, as evidenced by positive V10 loadings (Fig.

4.1f) and negative U10 loadings (Fig. 4.1c). However, this is not true of the western regions; PCST, like

with APCP, exhibits the opposite behavior to the eastern regions in the wind fields, with a warm-season
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characterized by anomalous northwesterly flow (Fig. 4.2c,f). The strength of association with PC1 also

varies between atmospheric fields. The seasonal cycle, at least as reflected in PC1, is predominantly

a thermodynamic and moisture signal; this is seen by observing larger loading magnitudes with fields

such as Q2M, T2M, and PWAT compared with APCP and other fields (cf. Fig. 4.1d,e,g with 4.1a–c,f,i).

In one sense, the seasonal cycle and thus PC1 is rather trivial—it is already largely known and un-

derstood. It would be possible to train these models with deseasonalized predictors and an additional

predictor(s) to represent location in the seasonal cycle, and this prospect is worthy of further investiga-

tion in future work. But this could appreciably harm predictive performance of the model; in many in-

stances, a certain quantity of a precipitation ingredient such as precipitable water or CAPE (e.g. 35 mm

or 1500 J kg−1, respectively) are necessary to generate locally extreme precipitation-producing storms;

by instead supplying deseasonalized predictors, these physical thresholds, which may be climatologi-

cally much more likely in one season than another, are severed from the numerical values of the model

predictors. This forces the model to in essence relearn the seasonal cycle via a combination of the

seasonal indicator predictor and deseasonalized atmospheric predictors, in addition to all of the other

relationships it must diagnose, placing an extra burden in model training. This would likely sacrifice

predictive accuracy of the trained models, perhaps with the gain of a more physically insightful PC1.

PC2—the leading mode of atmospheric variability at a point aside from the seasonal cycle—is de-

picted for the NGP and PCST regions in Figures 4.3 and 4.4; PC2 loadings for other regions may be

found in the online supplement of Herman and Schumacher (2018a). While PC1s were largely similar

between the regions, there are substantial regional differences between the PC2 loadings. Generally,

while PC1 is predominantly a thermodynamic signal, many PC2s are predominantly a kinematic signal,

with the largest loading magnitudes typically seen in U10 and V10. Furthermore, while PC1 loadings

had little temporal dependence, for PC2 and beyond, loadings changing sign or magnitude across the

forecast period is commonplace (e.g. Fig. 4.3a,b,i). One notable commonality is that in many regions,

PC2 shares at least some characteristics one might expect associated with frontal passage, including

rapid changes in meridional winds (e.g. SE, SW, NE regions—see online supplement), pressure falls

(e.g. Fig. 4.3b), precipitation and moisture changes (e.g. Fig. 4.3d,g), and even instability “advection”

(e.g. SGP). In the PCST region (Fig. 4.4), where fronts are thermodynamically weak compared with

other regions, they govern a smaller portion of atmospheric variability in the region and are not associ-

ated with PC2. The signal looks somewhat atmospheric river-like, with heavy precipitation (Fig. 4.4a),

column-integrated moisture advecting in from the southwest with strong low-level southerly flow (Fig.
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FIG. 4.2. Same as Figure 4.1, except for the PCST region.

4.4f,g), and low pressure and temperature (Fig. 4.4b,e), at least when compared with the warm-season.

Again though, some loadings do not appear entirely consistent with this interpretation (e.g. Fig 4.4c).

None of the PC2 loadings appear to have a direct physical interpretation that clearly matches with every
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FIG. 4.3. Same as Figure 4.1, except for PC2.

aspect portrayed by the PC, a known drawback imposed by the combined orthogonality and maximum

variance limitations imposed in the PCA formulation (e.g. Richman 1986).
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FIG. 4.4. Same as Figure 4.2, except for PC2.

The principal components themselves speak only about general regional atmospheric variability

at a point as portrayed by the GEFS/R; they do not themselves relate at all to any predictand of study, in

this case extreme precipitation. However, to gain understanding on how the GEFS/R forecast data pro-

jected into the rather abstract PC space relates to extreme precipitation, visualization of exceedances
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and non-exceedances in various 2-D PC subspaces can be made. For brevity, this is performed in a

subset of regions for both forecast periods, beginning with ROCK in Figure 4.5. Since there are tens or

hundreds of retained PCs, the number of 2-D subspaces is very large; shown in each of these figures are

only those subspaces containing two of the five PCs identified as most predictive of extreme precipi-

tation in that region for the given forecast period, based on RF FIs presented in Section 5. PC1, which

as is seen in Figures 4.1 and 4.2 represents the seasonal cycle for both days, has some ability to dis-

criminate events from non-events. The blue, cyan, and magenta pixels, indicating ARI exceedances,

are found predominantly on the far positive end of the PC1 axis (the right side of Figures 4.5f,k,p,u;

the top of Figures 4.5b-e), indicating that most ARI exceedances occur during the warm-season in the

ROCK region. The intermingled yellows, oranges, greens, and pixels of other colors throughout a panel,

somewhat akin to that of Figure 4.5l, indicates poor distinction between events and non-events in that

PC subspace. ROCK Day 2 PC2, summarized in Figure 4.5f2, is characterized mostly by winds becom-

ing increasingly westerly and decreasingly southerly throughout the period, and appears to have little

discriminative ability in the plotted PC subspaces, although events tend to be found mostly at larger

PC2 absolute values. Based on Figures 4.5p,q,r,x, it is apparent that ARI exceedances occur predomi-

nantly during times of high PC4 values. From Figure 4.5s2, PC4 is characterized by northwesterly flow

throughout the period, high CAPE and APCP, and low CIN and T2M. Events also occur predominantly

in the high PC5 subregions of the corresponding subspaces, another high APCP PC also characterized

by southeasterly flow, high CIN, and low CAPE. It is also of note that, in general, there is better discrim-

ination between events and non-events than somewhat and quite extreme events, as evidence by the

abundance of yellow and blue pixels in the subspaces and relative scarcity of cyan and magenta pixels.

With regards to the Day 3 subspaces, some interesting apparent correspondences between the lead-

ing PCs can be noted; at high PC1 values (warm-season), values of PC2, 3, and 4 tend to also be high,

while PC6 values tend to be low. Some distinction between levels of event severity can be seen; for ex-

ample, in Figure 4.5d, in the high PC1, low PC4 subregion of the subspace, 1-10 year ARI exceedances

are common relative to the 10+ year ones, while in the high PC1, high PC4 subregion, more extreme

events are more common. Some of the best 2-D subspace distinctions are actually seen in the lower

PC subspaces, particularly in the PC3, PC4 subsapce of Figure 4.5n, and the PC4, PC6 subspace shown

in Figure 4.5t. For Day 3, non-events dominate the negative areas of PC4, while almost all events are

found in the positive PC4 subspace. Physically, comparing Figure 4.5s1 with 4.5s2, one observes that
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PC4 has a very similar signature in the native space in the Day 2 and Day 3 versions of the model. In Fig-

ure 4.5t, a sharp distinction between exceedance events and non-events is apparent, with non-events

seen on the negative side of a diagonal separating the high PC4, high PC 6 subregion from the low PC4,

low PC6 part. ROCK Day 3 PC6 (Fig. 4.5y1) is characterized by high precipitation and moisture, but low

temperature and CAPE.

For extreme precipitation events in the NGP region (Fig. 4.6), the seasonal cycle as represented in

PC1 is even more predictive of preponderance of ARI exceedance events than in the ROCK region, with

blue and magenta tiles dominating the positive PC1 subregions of the subspaces and yellow and orange

tiling covering the negative PC1 subregions for both the Day 2 and Day 3 models in Figures 4.6f,k,q,u

and b-e, respectively. All the remaining PCs appear much less predictive, with many intermingled tile

colors seen throughout the subspaces. There is some tendency for exceedance events at Day 3 to be

found in negative areas of PC5, which is itself characterized by low APCP throughout, a shift from west-

erly to easterly winds, and a shift from southerly to northerly wind (Fig. 4.6m1). There are also some
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FIG. 4.5. Information about principal components for the CTL_PCA model for the ROCK region,

and their joint relationships to ARI exceedances. PCs shown are according to the axis labels, where

the number corresponds to the rank, in descending order, in terms of fraction of variance ex-

plained between forecast-point relative time series progressions in the atmospheric variables of

the CORE predictor group. The fraction of variance explained by each principal component is in-

dicated along the axis labels. PCs displayed are a subset of the total number used; those shown

are the PCs identified as most predictive in the RF FIs, shown in Figure 4.15. The panels below

the diagonal—panels (f), (k), (l), (p), (q), (r), (u), (v), (w), and (x)—show distributions of ARI ex-

ceedance events and non-events in the various 2-D PC subspaces, as indicated by the outer axis

labels, for the Day 2 version of the model, while panels above the diagonal—panels (b), (c), (d),

(e), (h), (i), (j), (n), (o), and (t)—show distributions in the subspaces for the Day 3 version. Within

each of these panels, pixel color is used to indicate the distribution of events within the respec-

tive subregion of the subspace. Pure yellow indicates that only non-events (no 1 or more year ARI

exceedances) occurred in the pixel’s subregion over the period of record; pure cyan indicates that

nothing but 10+ year ARI exceedances occur in the pixel’s domain, and pure magenta indicates

that all forecasts in the subregion over the period of record had associated observed 1-year ARI

exceedances, with no forecasts in the subregion lacking a 1-year ARI exceedance or containing a

10-year ARI exceedance. Other colors indicate a blend of event observances, with those primary

colors ‘mixed’ in accordance with the relative proportions; blues, for example, indicate a mix of

1-year exceedances and 10-year exceedances, while red indicates a mix of 1-year exceedances and

non-exceedances. Pixels are also darkened according to the number of events within the subre-

gion; dark colors indicate many events within the subregion, while light colors indicate few. Event

classes are weighted so that pixel color is determined relative to the proportion of the total oc-

currences of the event class found in the pixel subdomain, rather than absolute event counts of

the different event classes. Panels along the diagonal—panels (a), (g), (m), (s), and (y)—show the

spatially averaged PC loadings time series across the forecast period for the various atmospheric

fields used in the PCA process. The top of each of these panels—subpanels (a1), (g1), (m1), (s1),

and (y1)—show the loadings time series for the Day 3 model, while the bottom half of each panel—

(a2), (g2), (m2), (s2), and (y2), show loadings time series for the Day 2 version. For panels (a), (g),

(m), and (s), the time series shown correspond with the PCs associated with the column labels and

row labels of the corresponding pixel plots for the Day 2 and Day 3 model versions, respectively,

while panel (y) displays the loadings of the associated labeled row and column for the Day 2 and

Day 3 model versions, respectively. In these panels, solid lines correspond to the spatial mean

loadings for the variable associated with the line color, as indicated in the panel legend, at the cor-

responding time, while the like-colored dashed lines show the spatial standard deviations for the

same variable at the given time.

interesting nonlinear relationships in the subspaces; for example, in Figure 5w, exceedance events are

found at relatively “extreme” combinations of values of PC9 and PC14, with non-events characterizing

the more typical PC value subregion.

There is excellent correspondence between the five most predictive PCs in the PCST region (Fig.

4.7a,g,m,s,y) between the two forecast periods, with the immaterial exception of the PC2 sign flip (Fig.
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FIG. 4.6. Same as Figure 4.5, except for the NGP region.

4.7a). PC2, seen also in Figure 4.4, shows high APCP throughout the period corresponding with south-

easterly surface wind, column moisture, instability, and low pressure and surface temperature. No-

tably, this PC is able to distinguish between 1- and 10-year events better than any of the subspaces

from ROCK or NGP, particularly at Day 2 as evidenced by the large number of magenta pixels in Figure

6f. As suggested also in Chapter 3, this ability to discriminate between extreme precipitation sever-

ity levels may partially explain the higher forecast skill for the PCST region compared with the others;

there is a smoother transition from non-events to severe extreme events from the low PC2, low PC3 to

high PC2, high PC3 region of the subspace (Fig. 4.7f). For both periods, PC3/4 (Fig. 4.7g) is somewhat

similar to PC2, with higher APCP going with low pressure and temperature, especially during the day.

However, the kinematic fields are reversed, corresponding instead strongly to surface westerly flow.

PC4/5 (Fig. 4.7m), somewhat surprisingly considering the region, is essentially just a an instability sig-

nal, with high values corresponding to high CAPE and low CIN. Inspecting the relevant panels of Figure
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FIG. 4.7. Same as Figure 4.5, except for the PCST region.

6, it does not discriminate especially well in any of the subspaces compare with the prior two PCs, or

with PC6 (Fig. 4.7s), which corresponds strongly with precipitation in northwesterly low-level flow, and

low daytime temperatures coupled with relatively warmer nighttime surface temperatures. However,

unlike the first two leading PCs presented (Fig. 4.7a,g), it is not associated with low pressure. The final

PC examined, PC9 (Fig. 4.7y), has large spatial variability as evidence by large standard deviations in

many of the fields—particularly surface winds—with positive values associated with a cold and dry sig-

nal, especially during the day, coupled with increasing stability and northeasterly low-level flow during

the forecast period. Compared with the others, PC9 is not especially discriminative either, though most

events occur with negative PC9 values coupled with high PC2 and PC6 values (Figs. 4.7e,t,u,x).
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4.5 RESULTS: RF DIAGNOSTICS

Associated with an RF is a single FI for each predictor. When no dimensionality reduction is per-

formed in advance, there are thousands of GEFS/R predictors, each predictor associated with a par-

ticular atmospheric field, forecast hour, latitude, and longitude. In addition, there is a unique RF for

each of the eight regions and each of the two forecast periods. Effectively visualizing and interpreting

all of these FIs can be difficult. In order to manage the visualization task, RF FIs are first presented by

considering only one dimension of predictor variability at a time. For example, FIs are considered as

a function of the atmospheric field associated with the predictor, without regard to the hour or fore-

cast point-relative location of the predictor. FIs are then considered by grouping all predictors with the

same forecast hour, and lastly by grouping predictors with the same forecast point-relative location.

This allows tractable visualization of a summary of the FI output of the GEFS/R, and helps identify ar-

eas for more detailed analysis of a subset of “raw” (single predictor) FIs presented in the second half

of this section. For the interested reader, the full set of RF FIs are included in an online supplement to

this paper.

GEFS/R QPF, or APCP, is reliably identified as one of the most predictive atmospheric fields for

observed extreme precipitation based on RF FIs summed over space and time for each region of the

Day 2 version of the CTL_NPCA model (Fig. 4.8). This indicates that the dynamical model, in this

case the GEFS/R, has some skill in directly simulating extreme precipitation. However, the extent of

model APCP being predictive over other ingredients-based fields varies substantially by region. In the

PCST region, where extreme precipitation events are predominantly driven by atmospheric rivers and

other large scale systems advecting moisture over orography (e.g. Rutz et al. 2014; Herman and Schu-

macher 2016a), a convection-parameterized model such as the GEFS/R is able to adequately simulate

the largely stratiform precipitation processes. This is reflected in the RF FIs shown in Figure 6e; the

model APCP, which adequately captures the processes involved in producing most precipitation events

in the region, has a total FI of approximately 50% of the total, more than five times that of any other

field. In other regions which feature a mix of synoptic and convective events, such as ROCK, NE, and

SE (respectively Fig. 4.8a,d,h), APCP is still by far the most important atmospheric field in predicting

observed APCP, but to a much smaller degree than in the PCST region with values in the 0.25–0.4 range.

In the regions where extreme precipitation events are most driven by convective scale processes unre-

solvable by the GEFS/R and which correspondingly have the poorest verifying raw QPFs in predicting

extremes (Herman and Schumacher 2016a), such as NGP and MDWST (Fig. 4.8b,c), model APCP is not
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FIG. 4.8. Regional comparison of the summed RF FIs for the different atmospheric fields used in

the CTL_NPCA model, summed over the time and two spatial dimensions. The blue bars corre-

spond to the mean summed feature importances of the four models trained via cross-validation

for the Day 2 version of the model; red bars correspond to the Day 3 model version. Error bars

indicate the minimum and maximum cross-validation summed FIs. Panels (a)–(h) correspond

respectively to ROCK, NGP, MDWST, NE, PCST, SW, SGP, and SE regions.

even the most important atmospheric field in predicting ARI exceedances. While still somewhat im-

portant, with aggregate RF FIs of approximately 0.18, APCP is identified as less predictive than PWAT

in these two regions, with PWAT FIs in the 0.25–0.35 range. One physical explanation is that where the

GEFS/R is poor at predicting extreme precipitation events by virtue of an inability to resolve the re-

sponsible processes, ingredients such as column-integrated moisture become more useful predictive

tools. PWAT remains a valuable predictor in other regions as well, with greater importances also ob-

served in the ROCK, NE, SGP, and SE regions (Fig. 4.8a,d,g,h). In one region, the SW (Fig. 4.8f), surface

moisture (Q2M) was considered more predictive than column-integrated moisture (PWAT), but this

was not generally the case. In most cases, CAPE and CIN were the least predictive fields among those

examined, but the SW region (Fig. 4.8f) was again a considerable anomaly, with CAPE and CIN being

respectively the second and third most important fields, and CAPE FIs nearly equal to those of APCP.

Regional RF FIs at Day 3 look largely similar to the Day 2 RF FIs, but some minor differences can be dis-

cerned. The APCP RF FIs are slightly lower in many of the regions, particularly in the eastern regions

(Fig. 4.8d,h). In general, “ingredients”—fields other than the direct APCP from the GEFS/R—are relied

on somewhat more at Day 3 compared with Day 2.
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Time series of RF FIs shed insight into which times forecast guidance provides the most useful

predictive information for the quantity of interest, in this case ARI exceedances, and can help iden-

tify systematic biases in the parent model’s diurnal climatology of relevant processes such convective

initiation. They can also provide insight into when particular information is of value—whether the in-

formation is useful as a precursor or concurrent with the actual precipitation. Every region exhibits

broadly similar FI time series when aggregated over all variables (Fig. 4.9, red and blue lines), with

importance minima at both 1200 UTC times—the beginning and end of the forecast period—and a

maximum during the middle of the day. A combination of two reasons likely explain this pattern. First,

the middle of the day, in the afternoon and evening hours, is typically the most convectively active and

the period in which precipitation and heavy precipitation are most frequently observed (e.g. Stevenson

and Schumacher 2014; Herman and Schumacher 2016a). Second, it is also, somewhat coincidentally,

the middle of the forecast period, and thus forecast values at this time can be more representative of the

period as a whole. In most regions, the difference between the minimum and maximum importance

values for a given forecast time spans approximately a factor of two. There is also more variability in the

time-dependent FIs, comparing for example the relative width of the red and cyan shaded regions in

the panels of Figure 4.9 with the error bars of Figure 4.8. Perhaps the most important finding is that the

FI time series partially reflect the diurnal climatology of extreme precipitation events in each region.

FIs are higher later in the forecast period in regions where extreme precipitation events tend to occur in

the evening and overnight, such as the MDWST and SGP (Fig. 4.9b,c,g) while regions where events tend

to be more in the afternoon hours, such as the NE and SE (Fig. 4.9d,h) have a peak at 0000 UTC and a

significant drop off in importance by 0600 UTC. While this is seen in the time series with all fields ag-

gregated, it is especially pronounced when considering only the APCP FIs (Fig. 4.9, purple and maroon

lines). While the APCP FIs follow the diurnal precipitation climatology specific to the forecast region,

PWAT FIs maximize prior to the maximum APCP FIs, particularly in regions where PWAT is found to

be predictive (e.g. Fig. 4.9b,c,g), sensibly indicating that the column moisture of the environments in

which storms form is an important property for predicting locally extreme precipitation.

Compared with the time series of Figure 4.9, more stark regional contrasts are observed for FIs com-

pared in space (Fig. 4.10). As would be naively assumed, some regions have an importance maximum

near the forecast point, with decreasing importance with increasing distance from the forecast loca-

tion. This is broadly true of the ROCK, PCST, SW, SGP, and SE regions (Fig. 4.10a,e,f,g,h). The other three

regions—NGP, MDWST, and NE (Fig. 4.10b,c,d)—have an importance maximum well downstream
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FIG. 4.9. Regional comparison of the summed RF FI time series in the CTL_NPCA model. Blue

and red lines depict respectively the Day 2 and 3 versions of the model, summed over both spatial

dimensions and all atmospheric fields. Values have been renormalized based on the number of

time periods for the version of the model so that the a priori expected importance for each time

is unity. The purple and maroon lines depict the Day 2 and Day 3 FI time series for only the APCP

predictors, summed over the two spatial dimensions. Green and yellow lines are as with the purple

and maroon lines, respectively, except for the PWAT FIs. The same normalization is applied to

these time series as well, leaving a priori expected summed FIs of unity divided by the number

of atmospheric fields (9). Shading about each line indicates the range of values obtained through

the four folds of cross-validation, with the lines themselves representing mean values of the four

folds. Panels (a)–(h) correspond respectively to ROCK, NGP, MDWST, NE, PCST, SW, SGP, and SE

regions.

of the forecast point. This summary view does not provide insight into the precise physical reasons

why this may be the case; possible causes include a combination of precipitation features moving too

quickly, progged systems developing too far downstream, or that the downstream environment is sim-

ply better predicted than the environment in which the extreme precipitation events occur, and thus

serves as a better predictor than the fields collocated with the forecast point. More investigation into

possible reasons will be discussed below. Several other interesting regional differences may be noted.

Some regions, such as PCST and SW (Fig. 4.10e,f) have a highly concentrated spatial maximum—with

differences in importances between forecast points spanning nearly an order of magnitude—meaning

that information from a particular location is much more predictive than surrounding areas. This likely

indicates both increased persistence and consistency of model biases in these regions, and enhanced

predictability overall as well, consistent with the higher forecast skill in these regions shown in Chapter

3. It also suggests that the RF is likely tracking specific simulated GEFS/R precipitation features in these

regions, as opposed to just predicting based on a general characterization of the environment in which
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FIG. 4.10. Regional comparison of the summed RF FIs for the Day 2 version of the CTL_NPCA

model, summed over variable and time in the filled contours to give importances as a function of

forecast point-relative location. Values presented correspond to the mean value obtained through

four folds of cross-validation. Panels (a)–(h) correspond respectively to ROCK, NGP, MDWST, NE,

PCST, SW, SGP, and SE regions. The intersection of thick black lines indicates the location of the

forecast point within each panel; other locations correspond to displaced forecast point-relative

locaitons. Maps are drawn with the region centroid at the center of each panel, with state outlines

in black underlying the panel to provide quantitative sense of spatial scale. Uniform scales are

used for each panel as indicated by the figure colorbars.

storms might form, which would yield more spatially homogeneous FIs. The five aforementioned re-

gions with a maximum FI point near the forecast point also do not all have these two points exactly

collocated. In the PCST region (Fig. 4.10e), the point of maximum importance is displaced slightly

to the south and west of the forecast point. This is true to some degree in the SW and SE regions as

well (Fig. 4.10f,h). Meanwhile, a slight north and particularly west displacement is seen in the SGP

region (Fig. 4.10g). These displacements may indicate persistent biases in the portrayal of extreme

precipitation elements and/or the ingredients responsible for them. In the ROCK, SGP, and SE regions,

a secondary maximum well downstream of the forecast point is observed, in a pattern resembling that

of the other northern regions. In the regions that do have a downstream maximum, either primary or

secondary, the more western regions—ROCK, NGP, and SGP—have the maximum also displaced well

to the north (and east), while the regions farther east such as MDWST and NE have the maximum to

the south.
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Raw FIs for the APCP field in the Day 2 version of the CTL_NPCA model (Fig. 4.11) reveal that,

consistent with Figure 4.9, APCP importances increase to a daytime or evening maximum with impor-

tance minima at 1200 UTC, with the strength of the cycle varying by region. Because the accumulation

interval lies outside the forecast period for the front end 1200 UTC time, the importance is identified

as the lowest there, compared even with the 0600–1200 UTC QPF at the end of the forecast period.

Correspondingly, in some regions (e.g. Fig. 4.11b1,c1) there is a lack of a clear, cohesive precipitation

feature—as represented by an importance maximum—at the beginning of the forecast period. How-

ever, at this time or subsequent to it, a clear importance maximum in the precipitation field emerges

in each region and can be seen to track from west to east across the forecast point-relative domain

throughout the forecast period, tracking the typical progression of precipitation systems with the mean

upper-level flow. At the beginning of the forecast period, FI maxima (Fig. 4.11, column 1) are located

1–2 grid points west of the forecast point, while by the end (column 5), they are located anywhere from

0–3 grid points displaced to the east, with meridional alignment in the PCST region (Fig. 4.11a) and far

eastern displacement on the five easternmost regions (e.g. Fig. 4.11b–d). This may be diagnosing re-

gional climatological differences in the progression speed of extreme precipitation-producing systems,

which may remain relatively stationary over the complex terrain of PCST, while moving quickly over the

flatter terrain farther east. But another important factor that it may be identifying are model biases in

the progression of extreme precipitation systems; it may be noting that GEFS/R systematically moves

systems in the east too quickly, and systems in PCST perhaps too slowly, resulting in APCP well down-

stream of the forecast point being predictive of extreme precipitation in the eastern regions in a way

that it is not in the western regions. More investigation is required to diagnose the extent to which each

of these factors is in play in yielding this end diagnosis. Of further interest is the different progressions

of FI maxima across different regions. In the five regions east of the Rocky Mountains—NGP, MDWST,

NE, SGP, SE (e.g. Fig. 4.11b–d)—a clear southwest to northeast progression is seen, and is particularly

pronounced in the SGP region. The regions meridionally aligned with the Rocky Mountains, ROCK

and SW, have little latitudinal variation with time, though a slight southwest to northeast is observed in

ROCK and slight northwest to southeast observed in SW (see online supplement). PCST, in contrast to

most of the other regions, has a clear northwest to southeast temporal FI progression (cf. Fig. 4.11a1,

4.11a5). These progressions are consistent with the typical synoptic flow of locally extreme precipi-

tation environments of these regions. The southward progression of post-landfall atmospheric rivers

warrants further investigation, but is consistent with some previous studies (e.g. Ralph et al. 2010),
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FIG. 4.11. Regional comparison of RF FIs for the APCP field spatially relative to the forecast point

at different forecast times in the Day 2 CTL_NPCA model. Rows (a)–(d) correspond respectively to

PCST, NGP, SGP, and SE regions. Columns (1)–(5) correspond respectively to forecast integration

hours of 36 (1200 UTC), 42 (1800 UTC), 48 (0000 UTC), 54 (0600 UTC), and 60 (1200 UTC). Values

depict the mean FIs obtained through the four folds of cross-validation. Note that the scale varies

between panels; increments between colors are uniform for each colorbar.

and the southwest-northeast progression in the northeast is consistent with both tropical cyclones,

which are almost always progressing poleward after landfall, as well as synoptically-driven mesoscale

systems.

Of additional note are the latitudinal displacements of FI maxima. Some regions, such as NGP

and particularly SGP (Fig. 4.11b,c), have a persistent northward displacement of FI maxima relative to

the forecast point; this is likely associated with the well-documented northward displacement bias of

mesoscale convective systems in convection-parameterized models (e.g. Grams et al. 2006; Wang et al.

2009), including the GEFS/R, which are also responsible for many of the ARI threshold exceedance

events in these regions. In contrast, a persistent southward FI displacement is seen in the PCST and to

a lesser extent in the SW (Fig. 4.11a and Herman and Schumacher (2018a) supplement). This could per-

haps be associated with a less documented displacement bias of atmospheric rivers and other agents

responsible for extreme precipitation in these regions (e.g. Wick et al. 2013). The FIs for the Day 2 and
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FIG. 4.12. Same as Figure 4.11, except for the Day 3 model version.

Day 3 versions of the model are largely quite similar (cf. Fig. 4.11 and 4.12). Many of the biases and/or

displacements noted in the Day 2 RF FIs remain to varying degrees in the Day 3 FIs. Some differences

appear to become slightly more pronounced, such as the west-east progression differences among the

regions, with the PCST (Fig. 4.12e) shifting slightly farther west and SGP and others farther northeast,

particularly at the end of the forecast period (e.g. Fig. 4.12g). The most pronounced difference is the

general broadening of FI maxima, likely in association with increasing error and uncertainty associated

with larger forecast lead times. This is suggestive of a gradual transition in trained RFs with increas-

ing forecast lead time from bias-correcting a cohesive precipitation system simulated by the GEFS/R

to predicting based on a more general characterization of the mean environment. This can be more

concretely confirmed in future work by examining a wider spectrum of forecast lead times.

Interestingly and somewhat surprisingly, the PWAT FIs, shown in Figure 4.13, exhibit a much dif-

ferent signature than the APCP FIs. In many regions such as NGP and SGP (Fig. 4.13b,c), the highest

PWAT FIs are located well downstream of the forecast point throughout the period. In some of these

regions, such as the NE and SW (online supplement), there is an emphasis to the east and southeast of

the forecast point, whereas in others, like NGP and SGP (Fig. 4.13b,c), the northeast corner is favored.
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FIG. 4.13. Same as Figure 4.11, except for the PWAT field.

In some cases, the highlighted more important portion of the domain appears to correspond to the fa-

vored moisture source for precipitation systems in the region, such as the Atlantic Ocean in NE or the

Gulf of Mexico for the SW. This is also the case for PCST (Fig. 4.13a), which has a persistent emphasis

of importance well to the south of the forecast point; here, atmospheric rivers advect tropical moisture

from the south and west. A couple of regions, in particular the SE (Fig. 4.13d), have a PWAT FI west-east

progression like is seen for the APCP FIs in those regions. However, the PWAT FI maxima remain well

to the south of the APCP FI maxima (cf. Fig. 4.11d, Fig. 4.13d), again likely capturing the source from

which extreme precipitation producing systems develop.

For the CTL_PCA model, this sort of analysis is not possible due to the transformation from feature

extraction during pre-processing. However, analogous interpretation can be made through collective

diagnosis of the PCs (e.g. Figs. 4.1–4), the relationship between the PCs and the predictand, and the FIs

of the PCs themselves (Fig. 4.14). FI tends to decrease with increasing PC number, suggesting a corre-

spondence between the proportion of variance in the native dataset explained by the given PC—which

in turn determines its number—and the predictive ability of the PC. However, this is not uniformly the

case. Every region, with the partial exception of the NGP region (Fig. 4.14b), has “spikes” in FI whereby

a particular PC is identified as considerably more predictive than surrounding PCs that explain similar
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FIG. 4.14. Regional comparison of raw RF FIs for the Day 2 version of the CTL_PCA model, shown

in descending order of PC variance explained for the 30 leading PCs. Importances of background

predictors exist, but are omitted from this figure. Panels (a)–(h) correspond respectively to ROCK,

NGP, MDWST, NE, PCST, SW, SGP, and SE regions. The scale is uniform between panels.

underlying variance. These FI maxima occur at different PC numbers depending on the region, typi-

cally somewhere between PC2 and PC15. In some regions, the first PC, which embodies the seasonal

cycle (e.g. Fig. 4.1,4.2), is by far the most predictive PC (e.g. Fig. 4.14b,c). On the other side of the

specturm, in PCST (Fig. 4.14e), the leading PC is no more predictive than much higher-numbered PCs.

In other regions still such as ROCK, NE, and SE (Fig. 4.14a,d,h), PC1 is among the most predictive, but

there is at least one other PC that is more predictive despite explaining less variance of the underlying

forecast data. One such example is PC4 for the SE region (Fig. 4.14h), depicted in Figure 13. It is asso-

ciated strongly with precipitation throughout the period (Fig. 4.15a), anomalous moisture, especially

aloft (Fig. 4.15g), large CIN throughout the period (Fig. 4.15i), and low temperature and pressure (Fig.

4.15b,e). It is also associated with changing surface winds, from southeasterly winds at the beginning

of the period to northwesterly by the end of it, with strong spatial gradients in wind (Fig. 4.15c,f). As

with PC2 in some regions, this again exhibits some properties consistent with frontal passage, such as

drying and a switch to northerly flow advecting in from the northwest (e.g. Fig. 4.15f,g), and being a

cool-season phenomenon (Fig. 4.15e), but other elements seem inconsistent, such as the lack of signif-

icant changes in temperature or pressure anomalies over the course of the period (Fig. 4.15b,e). With

many different PCs, it can be difficult to consider all the native predictor–PC and PC–predictand rela-

tionships comprehensively, but inspection of the FIs of Figure 12 can help target which relationships
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FIG. 4.15. Same as Figure 4.1, but for PC4 of the SE region.

are most useful to investigate. This also allows for improved understanding of how the RF algorithm

operates.
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4.6 RESULTS: LR DIAGNOSTICS

In many cases, the CTL_LR identifies the same general findings as the RF-based models, just in

a different capacity. One advantage of LR regression coefficients is that unlike RF FIs, they carry sign

information in addition to just magnitude. Further, one can inspect coefficients for different event

classes, in this case 1-year vs. 10-year ARI exceedances, separately. Though there are limitations to the

quantitative interpretation of the transformed regression equations, such as those for the NGP region

in Figure 4.16, they do still identify some important features. For the APCP field (Fig. 4.16a), positive

coefficients unsurprisingly dominate throughout both space and time, with the one exception of the

upstream side of the domain at the front end 1200 UTC (Fig. 4.16a1), which actually corresponds to

the 0600–1200 UTC QPF from before the start of the forecast period. But two other aspects are worthy

of note. First, the coefficient maxima track the expected precipitation from the upstream to down-

stream side during the period, and the most positive coefficients are—like the FIs for the CTL_NPCA

model—found displaced to the north of the forecast point; this is particularly evident at 0000 and 0600

UTC (Fig. 4.16a3,a4). Second, the coefficients are largest for the accumulations from 0000-1200 UTC,

corresponding to the climatological peak of the diurnal cycle of extreme precipitation events in NGP

(e.g. Stevenson and Schumacher 2014). Additionally, the same downstream PWAT FI maximum for the

CTL_NPCA model (Fig. 4.13b) is reflected also in the CTL_LR model with positive coefficient maxima

downstream of the forecast point throughout the forecast period (Fig. 4.16d); a similar phenomenon is

observed with surface moisture (Fig. 4.16f). It is apparent also that anomalous southeasterly flow, par-

ticularly around 0000 UTC, increases the probability of extreme precipitation events (Fig. 4.16g3,h3).

Anomalous surface easterlies promotes slower storm motion, and anomalous surface southerlies tends

to yield continued moisture advection and enhanced storm maintenance (e.g. Doswell et al. 1996). Ex-

treme precipitation event probabilities also increase with low pressure at the beginning of the period

(Fig. 4.16i1) increasing to anomalous high pressure by the end of it (Fig. 4.16i5). Many extreme pre-

cipitation events in the NGP region are associated with mesoscale convective systems or other training

convection. Composites of these scenarios (e.g. Peters and Schumacher 2014) have shown synoptic low

pressure, particularly to the south and west of the eventual MCS, in the pre-convective environment

that moves out of the area or decays by the post-convective environment; this finding in the LR re-

gression coefficients is consistent with those composites. Lastly, the regression coefficients somewhat

counterintuitively indicate that 10-year 24-hour ARI exceedances in the NGP region are more likely

with low daytime CAPE and high daytime CIN (Fig. 4.16b2,c2); this trend reverses by the end of the
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forecast period (Fig. 4.16b5,c5). This perhaps suggests that highly extreme events can occur best when

instability is not exhausted from isolated diurnal convection and is instead maintained for nocturnal

mesoscale convective systems that are responsible for the majority of 10-year 24-hour ARI exceedances

in NGP (e.g. Schumacher and Johnson 2006).

The coefficients for the SGP region (Fig. 4.17) are very similar, with 10-year exceedances associated

with anomalous southeasterly surface flow (Fig. 15g3,h3), low increasing to high MSLP (Fig. 4.17i),

and high surface and column moisture especially to the east and southeast of the forecast point (Fig.

4.17d,f). The APCP coefficients (Fig. 4.17a) are more spatially-uniform than in NGP and have their

maxima more to the south of the forecast point rather than north. The relationship with CAPE is very

weak (Fig. 4.17b), but high CIN (Fig. 4.17c) to the north of the forecast point is found to correspond

with SGP extreme precipitation events. These latter three variables collectively tell a similar story to

NGP coefficients, but there is a redistribution of coefficient values among the fields.

Some interesting coefficient differences are observed to the east in the SE region (Fig. 4.18). Anoma-

lous easterly surface flow (Fig. 4.18g) over the domain is again found to be conducive to extreme pre-

cipitation events; this holds to an extent with anomalous surface southerlies as well, but the coefficient

values (Fig. 4.18h) are very small. High moisture across the forecast point domain, both throughout the

surface and especially throughout the column (Fig. 4.18d,h) are again found to correspond to extreme

precipitation events in the region. Low pressure (Fig. 4.18i) and temperature (Fig. 4.18e) tend to be

positive indicators of locally extreme precipitation events. Unlike the Great Plains regions, the CAPE

and CIN relationships (Fig. 4.18b,c) are more as expected in association with a more diurnally-tied pre-

cipitation climatology in the SE region, with forecasted high CAPE and low CIN during the afternoon

increasing the likelihood of an extreme precipitation event. Interestingly, though high APCP corre-

sponds with increased event probability (Fig. 4.18a), there is little temporal continuity of the spatial

structure. What does appear to be one or the most significant indicators, as evidenced by the magni-

tude of the regression coefficients, is APCP to the north of the forecast point the night prior to the start

of the forecast period (Fig. 4.18a1), which also leaves high CIN to the north of the forecast point to

start the period (Fig. 4.18c1). This may perhaps act to favorably precondition the environment at the

forecast point.

The PCST region regression coefficients (Fig. 4.19) yield some unusual and interesting findings

that may warrant further investigation. Unlike other regions, many fields exhibit complex coefficient

spatial structures, with numerous changes in sign and other smaller features. As the CTL_NPCA model
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FIG. 4.16. Regression coefficients for the 10-year ARI exceedance equation for the NGP region ob-

tained through logistic regression in the Day 3 version of the CTL_LR model, projected back into

native variable space by means of the principal component loadings. Panels (a)–(i) (the rows)

correspond respectively to the APCP, CAPE, CIN, PWAT, T2M, Q2M, U10, V10, and MSLP forecast

fields. Subpanels (1)–(5) (the columns) correspond to coefficients at the following forecast times:

1200 UTC at the beginning of the forecast period, 1800 UTC during the period, 0000 UTC, 0600

UTC, and 1200 UTC at the conclusion of the forecast period. Green values indicate the anoma-

lously positive values of the indicated field contribute positively to the forecast probability of an

ARI exceedance, while browns indicate a negative contribution. The intersection of the thick black

lines indicate the location of the forecast point in each panel, with other locations depicting coef-

ficients at spatially displaced locations.

identified (Fig. 4.8e), the CTL_LR model also identifies GEFS/R APCP as by far the most predictive field

of PCST extreme precipitation events, as evidenced by the largest regression coefficients in the model
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FIG. 4.17. Same as Figure 4.16, except for the SGP region.

occurring in Figures 4.18a2 and a3. Also like the CTL_NPCA model, which found maximum APCP FIs

to the south of the forecast point (e.g. Fig. 4.11a4), the same is seen in the CTL_LR coefficients (Fig.

4.19a2,a3). Much of the rest of the signal may be somewhat muddled because events occur most fre-

quently in association with atmospheric river events, and these bring anomalously warm and moist

conditions during the cold-season. These tend to offset, leading to weaker coefficients in thermody-

namic fields. But for many of these fields (e.g. Fig. 4.19d,e,f), to the extent these coefficients may be
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FIG. 4.18. Same as Figure 4.16, except for the SE region.

directly interpreted, low temperature and moisture at the forecast point in a surrounding environment

of higher temperature and moisture tend to positively associate with extreme precipitation events in

the region. This may seem rather counter-intuitive, but there is some physical basis for these coef-

ficients. In the far-field, the coefficients are consistent with large-scale advection of warm, moist air

over the domain, as evidenced by the increasingly positive temperature and moisture coefficients in

Figures 4.19d, e, and f, and particularly PWAT (Fig. 4.19d). That column-integrated moisture is most
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strongly influenced is consistent with an atmospheric river signature, where moisture is transported

at mid and upper levels and not just near the surface. But near the forecast point, where it is precip-

itating in the model (e.g. Fig. 4.19a3), there is a local minimum in temperature and moisture (Fig.

4.19d3,e3), consistent with column moisture condensing and precipitating out of the column; surface

temperatures are likewise inhibited by a lack of radiational heating and perhaps diabatic cooling as

well. Unlike the other regions, extreme events are also associated with anomalous westerly surface

flow throughout the period (Fig. 4.19g) in this region. In other regions, easterly flow promotes slower

storm motions; here, the westerly flow promotes upslope flow. Meridionally (Fig. 4.19h), events are as-

sociated with southerly flow transitioning to northerly flow during the forecast period, consistent with

cyclone passage. Overall, some of the details of these findings may be somewhat surprising; given that,

unlike most regions, the CTL_LR model had almost equal performance to the RF-based models, this

may invite deeper investigation into these properties of the coefficients.

For the interested reader, coefficients associated with the Day 2 model, for unshown regions, and

also for the 1-year ARI exceedance equations have been included in the online supplement to Herman

and Schumacher (2018a).

4.7 SUMMARY AND CONCLUSIONS

Three models of different formulation from Chapter 3, each trained to forecast locally extreme

precipitation across CONUS, are analyzed in depth to assess their internal operations and ascertain

what insights, if any, they reveal about forecasting extreme precipitation from the GEFS/R model. One

model, the CTL_NPCA model, uses raw GEFS/R fields as input to a random forest algorithm to gener-

ate its predictions. The second, CTL_PCA, also uses an RF, but performs dimensionality reduction via

principal component analysis on the raw GEFS/R fields and supplies a reduced predictor set consisting

of just a subset of retained leading PCs in lieu of the raw fields themselves. The last, CTL_LR, also per-

forms the PCA pre-processing step, but rather than supply the retained PCs to an RF, they are instead

supplied to a regularized logistic regression algorithm. It is shown that all of these models, many of

which may appear highly abstract, can be readily visualized in different ways in order to understand

their internal operations. Both the act of creating derived predictors in pre-processing via PCA and

using non-parametric techniques such as RFs add layers of abstraction that make visualization and

interpretation more challenging.
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FIG. 4.19. Same as Figure 4.16, except for the PCST region.

Numerous aspects about forecasting locally extreme precipitation with global,

convection-parameterized model output have been confirmed, while some new discoveries warrant

potential further investigation. Both LR and RFs are able to identify what a human forecaster would

expect to be the most predictive variables for extreme precipitation, with the largest regression coef-

ficients and FIs generally identified for model QPFs—the direct prediction of the predictand from the

GEFS/R. Moreover, the models further validate the findings of Herman and Schumacher (2016a) and
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other studies that found the GEFS/R and like models with parameterized convection and relatively

large horizontal grid spacing have better forecasts of extreme precipitation—and in fact better QPFs

all-around—over the Pacific Coast of CONUS and the worst performance over the Great Plains and

central CONUS. This is seen to an extent in comparing the APCP regression coefficients for the CTL_LR

model, but is especially true of the FIs in the CTL_NPCA model, which exhibit by far the highest APCP

FIs in the PCST region, and the lowest FIs in the NGP and MDWST regions. In fact, in the regions where

extreme precipitation is most dominated by small-scale convective processes, such as NGP and MD-

WST (e.g. Schumacher and Johnson 2005, 2006), model QPF isn’t even identified as the most predictive

atmospheric field from the GEFS/R, with PWAT instead exhibiting the highest FIs. Similarly, while in

most regions CAPE as portrayed in the GEFS/R is not identified to be a very predictive quantity for

predicting locally excessive 24-hour precipitation, in one region, SW, where many extreme events are

associated with isolated diurnally and orographically forced precipitation within monsoonal moisture,

it was found to be almost equally predictive to the QPF itself. This framework and these models thus act

to dynamically discern an appropriate “weighting” based on the hydrometeorology of the given region

and the characteristics of the dynamical model from which the predictors are derived.

In time, the models again follow processes and focus examination dynamically depending on the

region in ways consistent with how a human forecaster might approach the forecast problem. The

APCP FIs follow the diurnal precipitation climatology in each region, with maxima late in the forecast

period over the Great Plains and Midwest, and earlier peaks over the coasts. Environmental conditions

such as PWAT maximize in importance prior to the APCP FI maxima, diagnosing the relevance of these

environmental properties as antecedent storm conditions. In space, the algorithm tracks precipitation

features through time and space from the west edge of the predictor domain at the beginning of the

period to the east edge at the end of the forecast period. Some persistent displacement biases are also

noted, with a northern displacement of the maximum APCP FIs relative to the forecast point in con-

vectively active regions usch as NGP, SGP, and MDWST, in accordance with prior findings of mesoscale

convective system displacement biases from convection-parameterized models (e.g. Grams et al. 2006;

Wang et al. 2009; Clark et al. 2010), and a southern displacement in the PCST region, suggestive of

a systematic southward displacement bias of atmospheric river events which dominate the extreme

precipitation signal in the region. In aggregate, FIs are usually highest near the forecast point, though,

especially in northern states west of the Rockies (NGP, MDWST, NE), the highest mean FIs are found
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downstream of the forecast point. This is particularly true in the PWAT field, and the precise reasons

for this identification require further investigation.

In the design of statistical forecast models, it is important to consider not necessarily just the skill of

the raw model output, but the potential skill of forecasts issued by an experienced forecaster after con-

sidering the statistical model’s output. If a forecast model is a complete “black-box”, a forecaster will

inherently be unable to use knowledge of likely errors in the inputs to improve the estimate of the out-

come or relate the current forecast to past scenarios where both the forecast and outcome are known,

among other techniques frequently adopted by human forecasters to produce a forecast more skill-

ful than that generated by automated guidance. With a more transparent and comprehensible model

forecast process, however, a forecaster may be able to improve upon the guidance in some situations

using these sorts of corrections. Of course, if a “black-box” statistical model produces demonstrably

and substantially superior forecasts to any competing guidance, it may well still outperform other less

skillful models where the forecaster is able to add more value. However, as has been demonstrated

in this study, machine learning algorithms including but not limited to RFs can provide forecasting

insights that allow improved interpretability both of the output from the statistical model, but also re-

veal insights about the dynamical model that allow improved interpretation of the dynamical model

guidance even absent any machine learning-based model guidance. Although machine learning can

identify novel properties and relationships, it should be emphasized that it is not a panacea. The di-

agnostics presented herein do not directly identify physical reasons for its findings; while some may

be readily apparent, others require further investigation to fully understand the identified patterns in

these machine learning models. That said, with existing machine learning models demonstrating con-

siderable skill in forecasting locally extreme precipitation as well as a host of other sensible weather

phenomena, it is recommended that expected future forays into NWP with machine learning consider

not only the properties of the raw forecasts that the developed models produce, but also the visualiz-

ability of the model construction and what physical insights and understanding may be gleaned from

such visualization.

There are various concrete ways that these diagnostics may assist human forecasters, as well as

help guide future research. Even absent using the statistical model output, these diagnostics can help

a human forecaster better interpret raw dynamical guidance from the parent model—the GEFS/R in

this case. For example, the diagnostics suggest that a forecaster should shift his or her area of highest

excessive precipitation risk to the south of where the heaviest precipitation is portrayed over the Great
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Plains and eastern regions of CONUS, while shifting to the north along the Pacific Coast. It also suggests

that convective systems portrayed in the GEFS/R may be systematically too progressive, particularly in

the NGP and MDWST regions—something that likely warrants further investigation. The diagnostics

also help point forecasters at which fields to devote the most attention towards; in PCST, the GEFS/R’s

QPFs should be given considerable credence, while in NGP and MDWST, more attention should be paid

to the GEFS/R PWAT field in trying to determine risk of locally extreme precipitation. The diagnostics

presented in this paper provide some ability to modifying the statistical model output based on exter-

nal assessments as well. For example, if a forecaster judges that the GEFS/R is much too dry aloft in a

region, he or she may consult the regression coefficients and adjust probabilities accordingly depend-

ing on the sign of the PWAT regression coefficients for the region. For RFs, if PWAT FIs are very low,

the forecaster can maintain confidence in the forecast, while if they are quite high, the forecaster may

choose to discount the output from the machine learning model. Additional corrections may be iden-

tifiable by performing a detailed meteorology-dependent verification of the machine learning-based

forecasts over an extended historical record. A start to this type of analysis was performed in Chapter

3; future work should further break down model performance by meteorological regime, analysis of

which would provide even further aid to the human forecaster.

It is imperative for statistical modelers to investigate the internals of trained models to the extent

possible. When performance is not appreciably degraded—and it certainly can be—it may in some

instances be preferable to employ algorithms that are more easily interpretable, such as RFs in lieu

of algorithms whose output is more difficult to visualize such as support vector machines or neural

networks (e.g. Rozas-Larraondo et al. 2014). Additionally, while traditional PCA was applied because

the orthogonality and maximum variance constraints were believed to be beneficial for model skill

and yield desirable independence properties, their potential for less physically grounded components

suggests applying more directly interpretable pre-processing instead, such as sparse PCA (Zou et al.

2006) or rotated PCA (e.g. Richman 1986; Mercer et al. 2012; Peters and Schumacher 2014) could yield

more directly and easily interpretable statistical model results. Future work will seek to both further

explore the comparison of machine learning algorithms for NWP in additional settings in addition to

working to invent or apply improved methods for understanding what the machine learning informs

us about the phenomenon of study.
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CHAPTER 5

PROBABILISTIC VERIFICATION OF STORM PREDICTION CENTER CONVECTIVE OUTLOOKS

5.1 INTRODUCTION

Severe weather—defined as the presence of one or more tornadoes of any intensity, convectively

induced wind gusts of at least 58 mph (93 km h−1), or thunderstorms producing 1 in (2.54 cm) or larger

hail—poses a substantial threat to life and property over much of the United States, and is collectively

responsible for an annual mean of 137 fatalities and $4.69 billion in damages (NWS 2017c) over the

past eight years. Outlooks and other forecasts from the Storm Prediction Center (SPC) are one of the

leading sources of severe weather forecast information for National Weather Service (NWS) meteorolo-

gists, broadcast meteorologists, emergency managers, and the public. The SPC routinely produces and

updates numerous products from nowcasts to forecasts with 8 days of lead time, and these forecasts

are publicly archived—some as far back as 2003 (SPC cited 2017a). However, despite the substantial

viewership and reliance of end-user communities on SPC products, the specificity and concreteness

of their forecast predictands, their standing as a “gold standard" for severe-weather forecasting (e.g.

Stough et al. 2010), and SPC’s transparency in making available both their contemporary and historical

forecasts, much remains unknown about the quality of their outlook products due to gaps in published

verification of SPC outlooks. This study seeks to rectify this by performing quantitative verification of

their forecast products and in particular their probabilistic convective outlooks.

As alluded above, SPC is responsible for the routine issuance of a wide variety of products, includ-

ing their convective outlooks which are the focus of this study. Convective outlooks are produced for

Day 1–Day 8, where the valid period for a forecast day spans 1200 UTC–1159 UTC, but the outlook

specifics vary as a function of forecast lead time. For Day 1, each of the three severe weather elements—

tornadoes, hail, and wind—are treated separately, while for Day 2 and beyond, all three are instead

treated collectively. Outlooks include both categorical and probabilistic components; the latter use

neighborhood probabilities whereby contours are drawn to define lines of constant probability of ob-

serving the given severe weather predictand within approximately 25 miles (40 km) of a point. For

Days 1–3, categorical outlooks are also provided but are simply a strict function of those neighborhood

probabilities. Day 1 tornado forecasts include 2%, 5%, 10%, 15%, 30%, 45%, and 60% neighborhood

probability contours; Day 1 hail, Day 1 wind, and Day 2 and Day 3 aggregate severe forecasts employ a
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different contour set: 5%, 15%, 30%, 45%, and 60%. Furthermore, for all Day 1–3 forecasts, a higher in-

tensity level, “significant severe”—defined as a tornado of rating at least EF2, thunderstorms producing

hail with diameters of≥ 2 in (5 cm), or convective wind gusts≥ 75 mph (65 kt, 33 m s−1; Hales 1988)—is

considered, and an additional “significant severe” contour is drawn for 25 mile neighborhood proba-

bilities of significant severe weather ≥ 10%. Days 4–8 probability forecasts, also made collectively for

any severe weather, use only two contours, 15% and 30%, and do not directly consider the elevated

significant severe criteria. Day 1 forecasts are routinely produced at 0600, 1300, 1630, 2000, and 0100

UTC, with the 0600 UTC outlook being the first Day 1 outlook to cover a given valid period. Day 2 and

3 forecasts are disseminated respectively at 0100 and 0230 CT (with the UTC time varying based on

daylight saving time); Day 2 receives an additional update at 1730 UTC (Hitchens and Brooks 2014;

Edwards et al. 2015).

The majority of previous published severe-weather verification has focused on severe thunder-

storm or tornado watch (e.g. Doswell et al. 1990; Anthony and Leftwich 1992; Doswell et al. 1993; Vescio

and Thompson 2001; Schneider and Dean 2008) or warning (e.g. Polger et al. 1994; Bieringer and Ray

1996; Simmons and Sutter 2005; Barnes et al. 2007; Simmons and Sutter 2008; Brotzge et al. 2011;

Anderson-Frey et al. 2016) verification. However, there has been some limited verification of convective

outlooks in the literature. In particular, Hitchens and Brooks (2012) and Hitchens and Brooks (2014)

verified Day 1 convective outlooks, the latter also verifying Day 2 and 3 outlooks. The primary purpose

of these studies was to evaluate skill of SPC outlooks over a very long period of record—decades—to as-

certain temporal trends in performance and the effects of changes in SPC forecasting philosophies on

forecast skill over time. However, both of these studies only deterministically considered the verifica-

tion of the categorical versions of the convective outlooks via contingency table statistics, and did not

quantitatively consider the probabilistic verification of the SPC probability contours. Additionally, the

choice to verify categorical outlook contours rather than probabilistic ones made it impossible to per-

form verification broken out individually by severe-weather predictand for Day 1 outlooks, since the

categorical outlooks are objectively determined as a combination of the individual severe weather pre-

dictand probabilities—even if probabilities may be subjectively modified to match forecaster concep-

tions of categorical severity levels—and, historically, were not broken out by phenomenon at all. There

has been some very limited published work on verification of probabilistic SPC convective forecasts

(e.g. Kay and Brooks 2000), but it is quite dated, preceding the introduction of operational convection-

allowing model guidance (e.g. Kain et al. 2006), and substantial changes to both SPC outlook products
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and available operational guidance in the forecast process have been introduced in the intervening

years (Edwards et al. 2015). Recently, Hitchens and Brooks (2017) have begun to investigate verifica-

tion of probabilistic SPC convective outlooks. However, while substantially advancing the literature in

this area, the verification presented still employs deterministic contingency table-based frameworks,

and thus largely neglects the specific quantitative information associated with the probability contours

being evaluated.

In this paper, we seek to quantify probabilistic verification properties of SPC severe weather out-

looks for Days 1–3, in particular forecast reliability and forecast skill. The following section describes

the methods performed to conduct this verification, and outlines two different verification frameworks

employed in the study: a so-called “Traditional” framework and an “Interpolation” one. Section 3

presents verification results using the Traditional analysis approach, while section 4 describes the In-

terpolation framework results and provides a comparison between the two. The paper concludes with

a synthesis of the findings and a discussion of broader applications and implications of this work.

5.2 DATA AND METHODS

Forecast data for this study comes from the shapefiles in the public SPC outlook archive (SPC cited

2017a). SPC has changed various aspects of both their product definitions and their archive over the

past 10–15 years. Importantly and consequentially, the NWS changed the definition of severe hail from

a minimum hail diameter of 0.75 in (1.9 cm) to 1 in (2.54 cm) beginning on 5 January 2010 (Ferree 2009),

considerably reducing the number of annual severe hail reports after that date. Verification in this study

is performed relative to the effective severe hail criteria at the forecast issuance time. Their categorical

convective outlooks were also substantially innovated in October 2014, adding “Marginal” and “En-

hanced” categories to the existing classes of “Slight”, “Moderate”, and “High” (Jacks 2014). However,

these changes only affected how severe weather probability contours mapped to categorical risk defi-

nitions, and did not directly affect any of the probabilistic forecast contours. The public online forecast

archive dates back to 23 January 2003, but forecasts are not available in shapefile format at that time.

Shapefiles become available for Day 1 beginning 1 January 2009 and for Days 2 and 3 from around 11

April 2012. File format is consistent for all Day 1 shapefiles from the beginning of their archival, but

a significant format change is incurred in the Day 2 and Day 3 shapefiles on approximately 13 Sep-

tember 2012. For these reasons, the period of record for forecast verification spans 1 January 2009–31

December 2016 (2,922 total outlooks) for Day 1 forecasts and 13 September 2012–31 December 2016 for
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Day 2 and 3 forecasts (1,569 and 1,568 total outlooks, respectively). In order to maximize the period of

record length, limit forecasts already affected by ongoing convection from the day of forecast issuance,

and keep the issuance lead time separation—especially for Days 2 and 3—as close as possible, verifi-

cation in this study is based on the 1300 UTC probabilistic convective outlooks for Day 1, the 0100 CT

probabilistic convective outlooks for Day 2, and the 0230 CT outlooks for Day 3.

Archived forecast shapefiles store a list of points defining each polygon issued in the given prob-

abilistic forecast. The verification for this study seeks to compute CONUS-wide verification statistics

making use of the quantitative forecast probabilities in a consistent, repeatable manner for each fore-

cast day throughout the period of record. These objectives are by far the most easily equitably achieved

using probability forecasts on a uniform grid for each forecast day. This thus requires the conversion

of the contour definitions provided in the SPC shapefiles to probability grids.

Verification in this study is performed using two distinct, but complementary approaches. The

first approach closely follows the verification performed internally at SPC (R. Edwards 2017, personal

communication). Probabilities are gridded onto a CONUS-wide grid with 80-km grid spacing. Prob-

abilities on this grid simply correspond to the value of the innermost probability contour enclosing

the grid point, or are zero if no such contour exists. No interpolation is performed between probability

contours in this verification scheme, and the forecast grids instead reflect a discrete number of possible

forecast probabilities as determined by the allowed contour levels for the given predictand. This ver-

ification is performed to correspond with the current state of the science and for a direct comparison

with internal statistics historically computed at SPC.

Recognizing however that appropriate verification is determined by the predictand definition(s)

in conjunction with the forecast objectives and not on historical practice alone, a second, parallel

verification approach is performed with the aim of advancing the state of the science in probabilis-

tic severe-weather forecast verification and obtaining consistency with public interpretation and use

of SPC outlooks. Ultimately, verification of neighborhood-based predictands such as those used in

SPC’s probabilistic convective outlooks occurs in continuous—rather than gridded or discrete—space.

A severe weather observation occurs at an arbitrary physical point in space, and of course is not con-

strained to occur on any grid of finite size; the circle defining 40 km centered about that point is sim-

ilarly unconstrained to any particular grid. This argues against the use of grids at all, since their use

only distorts the “true” relationship between the forecast and the observations; the distortion extent
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is proportional to the grid spacing, with no noise added over the “true” relationship in the case of in-

finitesimal grid spacing. Grids are used to provide a common and convenient quantitative analysis

framework for comparing forecasts and observations, but in order to best represent the true relation-

ship between these fields, it is desirable to have as small of a grid spacing as is computationally feasible,

and it is certainly desirable to have a grid spacing appreciably smaller than the neighborhood radius of

the predictand. Additionally, although SPC forecasters may only issue forecast probabilities at a given

point corresponding to discrete levels defined by the allowable contours, some end-users may reach

the interpretation that within a region bounded by two contours, the verification probability is higher

at a point directly adjacent to the higher probability contour when compared with a point adjacent

to the lower probability one. Regardless of forecaster interpretation and intent, this is consistent with

how the public and broader meteorological community may interpret plots of other continuous fields

with a discrete number of contours (e.g. Lackmann 2011; NWS 2017b), and it is important to evaluate

forecasts in a manner consistent with how forecasts are perceived by an educated end-user. To this

end, in addition to performing verification on an 80-km grid without probability interpolation in the

so-called “Traditional” approach, verification is also performed on a finer resolution grid with interpo-

lated probabilities in the “Interpolation” approach described below.

For the Interpolation approach, ArcGIS was used to process the SPC shapefiles into probability

grids using a dynamic workflow divided into three different methods based upon the characteristics of

the probabilities issued on a specific day. The first of these methods (hereafter referred to as INTERP)

interpolates between the SPC probability contours when more than one contour is present in the daily

convective outlook and outputs the results on the specified probability grid. The second method (here-

after referred to as CONSTANT) does no interpolation and is used when one contour level is present

in the daily convective outlook since the lack of a defined probability gradient leaves the interpola-

tion problem unconstrained. The third method (hereafter referred to as NODATA) is used when no

contours are present in the daily convective outlook and outputs a constant grid of zero values over

a CONUS-wide analysis domain that extends so far as the center of the neighborhood is over CONUS

land. Open contours that end due to intersection with a CONUS boundary are closed using the CONUS

edge as the remaining contour boundary such that all of that area is enclosed. Due to differences be-

tween the Day 1, 2, and 3 outlook shapefiles, the workflow was carried about at horizontal resolutions
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of 0.03227◦×0.03227◦, 0.05◦×0.05◦, and 0.1◦×0.1◦, respectively. However, for consistency, the interpo-

lated Day 2 and Day 3 outlooks were regridded bilinearly onto the 0.03227◦×0.03227◦ used for the Day

1 forecasts. All subsequent verification for the Interpolation approach is performed on this grid.

Being a grid with a fixed degree increment in latitude and longitude, the physical area spanned

varies with latitude. While the difference in physical distance of a fixed degree increment in the lati-

tudinal dimension varies negligibly as a function of latitude, the physical distance in the longitudinal

dimension does vary appreciably over the domain. One degree of longitude is approximately 73 km at

the northern border of CONUS, while the same increment corresponds to near 100 km at the south-

ern extremities. Consequently, area in northern CONUS is weighted slightly more—a factor of around

1.35 more in the extremes—than in southern CONUS in the calculation of bulk verification statistics.

However, with CONUS broadly being confined to the mid-latitudes, this effect has only a small quanti-

tative effect and is not believed to appreciably impact any conclusions drawn from the analysis. Each

method within the dynamic workflow is described in detail below.

The INTERP method first converts the native SPC shapefile polygons (e.g. Fig. 5.1a,d) to contours

(e.g. Fig. 5.1b,e) that maintain the probability values of the original forecast. These contours are then

used as input to the ArcGIS Topo-to-Raster function (Childs 2004) and the output is then extracted only

over the spatial extent that was in union with the original SPC probabilities (visually depicted in the fill

in Fig. 5.1c,f). Trial and error revealed that the output from the Topo-to-Raster function of the native

probabilities tended to be lower than the initial contoured input: along an explicit intermediate con-

tour, interpolated values tended to be approximately half of a probability bin lower than the value of

that contour. This is mainly attributed to the interpolation problem becoming more unconstrained as

fewer contours are present to be analyzed by the function. In order to correct for this, a second step was

added to the INTERP process where another raster was created using the Topo-to-Raster function, but

this time, using the SPC probabilities for the same day that were incremented up approximately one

probability bin. With a half-bin negative bias in the interpolation procedure, the resulting values from

the interpolation on the native probabilities were approximately half of a probability bin too low, and

when adjusted upward by one probability bin, the resultant field was approximately half of a proba-

bility bin too high. The arithmetic mean of the two separate interpolated rasters (i.e. one from the

original forecast probabilities and one from the probabilities incremented up one interval) therefore

serves as an unbiased interpolated representation of the probability field. This mean thus serves as the

output of the INTERP method (e.g. Fig. 5.1c,d). The only time this did not hold was when there was
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an increase in the contour interval with increasing probability; then the bias tended to be smaller at

approximately one third of a probability interval, requiring less upward adjustment to produce an un-

biased derived interpolated field. For example, in the case of a Day 1 convective outlook that contained

tornado probabilities of 2%, 5%, 10%, 15%, and 30% (e.g. Fig. 5.1b), the corresponding probabilities

that where incremented up in the second Topo-to-Raster run are 3%, 10%, 15%, 20%, and 45%. The

output of the INTERP method creates a raster that maintains a representative depiction of the SPC

contours (cf. Fig 5.1b,e to Fig. 5.1c,f), but interpolates in a manner that produces a smooth gradient

between the contours and increases the maximum probabilities within the highest contour. There are

still instances where the highest probability contour is slightly distorted compared to the original (cf.

30% in Fig. 5.1b,c and 15% in Fig. 5.1e,f); however, the differences in these regions are rarely larger

than 1%.

The CONSTANT method, similar to the INTERP method, converts the native SPC shapefile poly-

gons (e.g. Fig. 5.1g) to a constant raster (e.g. Fig. 5.1i) using the ArcGIS Feature-to-Raster tool. Since

there is only one contour in the cases that the CONSTANT method is used (see above), no attempt is

made to interpolate. As in the INTERP method, the CONSTANT method then outputs the probability

raster onto the analysis domain at the resolution corresponding to the convective outlook lead time.

The NODATA method simply outputs a constant grid of zero values over the analysis domain, again,

at the corresponding resolution for the analyzed convective outlook. The probabilities for each threat

(i.e., Tornado, Wind, and Hail) and outlook lead time (i.e. Day 1, 2, and 3) are run through this dynamic

workflow to create the analyzed grids that are used for the verification undertaken in this chapter.

The Traditional framework, in contrast, compares the effect the INTERP part of the dynamic work-

flow plays on the probabilistic verification when compared with the Interpolation method. In the Tra-

ditional approach, all of the threat and lead time combinations are run through a simplified workflow

that contains only the CONSTANT and NODATA methods and outputs to a lower resolution grid with

80 km grid spacing.

Once all outlooks have been gridded, the same verification methods are employed in each verifi-

cation framework to assess the quality of these outlooks. These include several commonly used prob-

abilistic verification tools. Specifically, forecast reliability, the extent to which forecasts verify at the
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FIG. 5.1. Step-by-step examples of the regridding process performed on the SPC probabilities. (a–

c) show the INTERP method example for the Day 1 tornado probabilities valid on 1300 UTC 27 April

2011, (d–f) show the INTERP method example for the Day 1 hail probabilities valid 1300 UTC 21

October 2012, and (g–i) shows the CONSTANT method example for the Day 1 tornado probabilities

valid 1300 UTC 1 May 2016. (a,d,g) show the ArcGIS depiction of the native SPC forecast probability

polygons with the colors matching the standard SPC graphic. (b,e,h) depict the contours derived

from the native SPC forecast probability polygons that are used for input into the Topo-to-Raster

function, where the line colors also correspond to the colors used in the standard SPC graphic.

(c,f,i) depict the final gridded output from the INTERP (c,f) and CONSTANT (i) methods of the

dynamic workflow, where the colored contours represent the location of the constant probability

contours in the gridded output to compare to the original input in (b,e,h).

same frequency as indicated by the forecast probability, is assessed by inspection of reliability dia-

grams (Murphy and Winkler 1977; Bröcker and Smith 2007; Wilks 2011). Forecast skill is quantified

using Brier Skill Scores (BSS; Brier 1950), defined as:

BSS = 1.0−
BS

BSc l i m

= 1.0−
∑

c (pc −oc )
2

∑

c (pc l i mc
−oc )2

, (5.1)
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where pc denotes the forecast probability of a case, pc l i mc
denotes the climatological forecast proba-

bility for the case, and oc is a binary variable indicating whether the forecast predictand was observed

for the given case. Forecasts—defined by forecast day, latitude, longitude triplets on the prescribed

analysis grid—are aggregated several different ways to ascertain various properties of SPC outlooks. In

particular, they are aggregated spatially in order to determine the regional distribution of forecast skill

for the different severe weather predictands, temporally both by month and year to ascertain whether

there is any persistent seasonality to forecast skill and whether forecasts are generally improving or

degrading year-to-year over the period of record, and meteorologically based on the conditions of the

forecast point to deduce whether there is any relationship between the forecast environment and SPC

severe-weather forecast skill, which may also speak to the larger predictability of severe weather under

different meteorological conditions.

Despite their limitations to be discussed in more detail below (e.g. Trapp et al. 2006), verification

uses storm reports as archived in SPC’s Severe Weather Database (SPC cited 2017b), and these reports

are taken to be “truth” whereby reports are taken to be certain events and non-reports are taken to be

certain non-events. All verification is performed on the CONUS-wide 0.03227◦ × 0.03227◦ grid and 80

km×80 km grid in the Interpolation and Traditional frameworks, respectively. In particular, for each

severe weather predictand, all points on this grid within 40 km of a severe report from the database

are encoded as an observed event for the 24-hour forecast day corresponding to the report; all other

points in this spacetime matrix are encoded as non-events. Calculating skill scores as described above

uses a climatological reference forecast; these are calculated identically to the official SPC severe cli-

matologies (Kay and Brooks 2000; SPC cited 2017c), except on a finer grid in the case of the reference

in the Interpolation framework. Raw verification grids are calculated as described above for 1982–2011

to match the period of the severe-weather climatologies published on SPC’s website at the time of this

study. The 30 annual verification grids are then collectively employed to derive raw frequency grids

for each day of year, latitude, longitude triplet for each of the severe weather predictands. These raw

frequencies are then smoothed over time using a Gaussian filter with a 15-day standard deviation and

using a “wrap” filter mode to handle treatment with respect to year-beginning and year-end. Finally,

these are followed by smoothing over the two spatial dimensions with a 120-km standard deviation

Gaussian filter with a “reflect” mode treatment for domain edges; the resulting grids are said to be the

climatological event probabilities (Kay and Brooks 2000).
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In addition to space and time, severe-weather forecasts are often viewed with respect to the prevail-

ing environmental conditions for the forecast, and especially the CAPE-versus-shear parameter space

(e.g. Schneider and Dean 2008). Verification with respect to this meteorological regime-based param-

eter space can provide useful forecast insights into environments of greater and lesser forecast skill.

This does however require the use of an external data source to quantify the forecast environment for

each forecast. While RAP/RUC analyses are frequently employed in this sort of context (e.g. Bothwell

et al. 2002; Dean et al. 2009), the transition from the RAP to RUC in May 2012 (NWS 2012) provides

an undesirable potential source of inconsistency in the middle of the study period, and both received

smaller changes to their data assimilation systems throughout which may also result in changes to the

analysis creation. In order to use a data source that is created in a consistent manner throughout the

analysis period, this study uses the North American Regional Reanalysis (NARR; Mesinger et al. 2006)

to determine the local meteorology at a point for a given forecast period. The NARR also has been

used in analysis of severe weather environments in past studies (e.g. Gensini and Ashley 2011; Nielsen

et al. 2015; Vaughan et al. 2017), and while there are some quantitative differences, errors, and regional

biases—particularly in the thermodynamics (e.g. Gensini et al. 2014)—compared with other analysis

and reanalysis products, the use in this study is largely to classify the general regime of the environment

and not to exactly quantify the CAPE or shear at a particular point. To this extent, the NARR has been

found to be qualitatively consistent with other analysis products (e.g. Vaughan et al. 2017). The NARR

has 3-hour temporal and 0.25◦ spatial resolution and includes an assortment of fields at various ver-

tical levels from subsurface to 100 hPa. Mean Layer Convective Available Potential Energy (MLCAPE)

used for this study comes directly from the NARR and performs averaging over the layer encompassing

the lowest 180 hPa of the atmosphere. Deep-layer shear (DSHEAR), another important severe-weather

parameter (e.g., Doswell et al. 1993; Gallus et al. 2008; Markowski and Richardson 2010), is often ex-

pressed as the bulk wind difference between surface (10 m) wind and 6 km above ground level. This is

not available in the NARR; instead, surface to 450-hPa wind difference is used for this study, and this

value is rescaled based on the geopotential height at 450 hPa to approximate the value of the 0–6 km

shear. All days are classified based on the maximum 3-hourly value over the 24-hour 1200–1200 UTC

period for each parameter.

In order to better ascertain the robustness of the various findings, uncertainty analysis is performed

for each phase of verification. A bootstrapping procedure is employed to generate confidence intervals

for BSS analysis. For BSS over space and time, forecasts are resampled randomly with replacement from
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each analyzed grid point and time period studied—both year and month—to ascertain the uncertainty

in the skill score for the given subspace. A similar method is employed for parameter space, subsam-

pling instead for each 250 J kg−1× 2.5 m s−1 subregion of CAPE vs. deep-layer shear parameter space.

For all of this analysis, due to the small spatial scales of storms most commonly associated with severe

weather and the spatiotemporally scattered nature of observed reports, points with non-overlapping

40-km radius neighborhoods and all forecasts on separate days are considered to be independent from

one another, while forecasts on the same day with overlapping neighborhoods are, necessarily, consid-

ered to be non-independent. Reliability uncertainty is also assessed using the methods of Agresti and

Coull (1998) as described also in Wilks (2011).

5.3 RESULTS: TRADITIONAL FRAMEWORK

In the Traditional verification framework, highest BSS values for all spatial fields are generally seen

in the eastern and especially central United States, with lower skill observed in the West (Fig. 5.2).

More generally, spatially, the highest skill is often observed where the climatological event frequency

is higher, as evidenced by higher climatological BSs in Figure 2. This holds comparing across the Day

1 outlooks for the individual severe phenomena as well. Severe winds (Fig. 5.2e), for example, have

the highest BSS over all of CONUS at 0.093, followed by severe hail at 0.076 and tornadoes—the rarest

phenomenon—coming in last of the three with a score of 0.049. The same does not hold true, however,

for the “significant” severe phenomena. While the skill for all three phenomena (Fig. 5.2b,d,f) is lower

at the significant criteria compared with the outlooks for the same phenomena that include events of

lesser severity (Fig. 5.2a,c,e), significant-tornado outlooks (Fig. 2b) are the most skillful in aggregate

of the three significant-severe outlooks with an aggregate BSS of 0.028. Significant hail (Fig. 5.2d) lags

substantially with an aggregate score of just 0.008, and significant wind events (Fig. 5.2f) have approxi-

mately no skill at all over climatology with an aggregate score of -0.001. Positive skill in significant wind

events is largely confined to the Ohio River Valley and middle Mississippi River Valley areas, and this

skill is not statistically significant. Due to a small sample size, the negative skill in much of the West,

and particularly the Arid Southwest, is not found to be statistically significant either. This holds even

for significant-hail (Fig. 5.2d) events, where very negative climatology-relative skill is observed in those

regions. Given the relative rarity of significant-severe events, just a few events with higher (lower) pre-

dictability and large spatial coverage can drive a large degree of positive (negative) skill in a given region.

The one parameter with areas of statistically significant negative skill occurs also with significant-wind
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events, where weak but statistically significant climatology-relative skill is exhibited along a strip of

the Atlantic Coast from the Florida Panhandle through central New York, and secondarily in a region

from the Nebraska Panhandle south through the Texas Panhandle. In the West, where larger negative

BSS values are obtained, the sample size is insufficient to produce statistical significance. In no other

regions is the sign of the obtained skill score, positive or negative, found to be statistically significant

for significant-severe forecasts. Statistically significant positive skill is seen for the regular severe con-

vective outlooks, however. While in tornado outlooks (Fig. 5.2a) the statistical significance is confined

to the regions such as the Tennessee River Valley region and parts of the Central Plains where highest

climatological event frequencies overlap highest skill scores, for severe hail (Fig. 5.2c), most of central

and southeastern CONUS excluding the immediate Gulf Coast area exhibits significantly positive skill,

in addition to parts of New England. These are also, unsurprisingly, where the skill scores and event fre-

quencies are highest for this phenomenon. With three exceptions, statistically significant positive skill

is observed over all of CONUS east of the continental divide for severe-wind forecasts (Fig. 5.2e). The

first two exceptions, in south Texas and the Florida Peninsula, skill scores are lower than in neighbor-

ing regions, whereas in the far northern Great Plains states, the event frequency is somewhat lower as

evidenced by smaller climatological BSs in that region. In these three areas, conditions are insufficient

to garner statistical significance in the BSS. Despite different verification frameworks, these findings

agree with those of Hitchens and Brooks (2017). For significant-severe events, they similarly found

the lowest skill among wind outlooks and the highest skill for tornadoes. Also like in this study, they

found substantial skill improvement when considering outlooks pertaining to all weather exceeding

the minimum severe criteria rather than the outlooks for only the significant-severe events.

The same general tendencies are observed for the outlooks of all severe weather for Days 2 and 3

(Fig. 5.2g,h) with highest skill over the central US and lower skill over the West. Of note, the Southeast

region including the Carolinas, Georgia, and Florida has degraded skill compared to the Day 1 outlooks

and is largely slightly negative. Due to considerable variability in success of the longer lead time fore-

casts, none of the skill—positive or negative—was found locally to be of statistically significant sign.

With domain-total skill scores of 0.055 and 0.028 for Days 2 and 3, respectively, there is a clear deterio-

ration in forecast skill with increasing forecast lead time from Day 1 through Day 3.

Comparing the verification results across the period of record (Fig. 5.3), no clear trend in skill scores

is seen from the beginning of the period to the end. The verification period of this study is admittedly

much shorter than that of Hitchens and Brooks (2012, 2014) when a marked improvement in forecasts
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FIG. 5.2. BSS spatial distributions for each of the forecast sets in this study using the Traditional

verification framework. Panel (a) plots results of Day 1 tornado probability forecasts, (b) to signif-

icant tornado probabilities, (c) and (d) respectively for Day 1 hail and significant hail, (e) and (f)

for Day 1 wind and significant severe wind, and (g) and (h) for any severe probabilities for Days 2

and 3, respectively. The “mean” BSS (unity minus ratio of sum of Brier scores at all grid points for

the given variable divided by sum of climatological Brier scores at all grid points for the same vari-

able) is depicted in the bottom left of each variable’s panel. A 120-km standard deviation Gaussian

smoother was applied prior to plotting for panels (a), (c), (e), (g), and (h), while a larger 180-km

smoother was applied for the significant severe variables in panels (b), (d), and (f) owing to the

smaller sample sizes. Unfilled color contours depict the climatological Brier scores for the veri-

fication location; larger numbers indicate locations of more frequent events and more impactful

areas towards the mean score. Note that the contour interval and color scale, shown at figure bot-

tom, is nonlinear. Stippling depicts areas where the sign of the indicated skill score is statistically

significant with 95% confidence using a bootstrapping procedure as described in the chapter text.

Light smoothing of the significance contours has been performed to enhance readability.

was observed over the decades of SPC outlooks analyzed. In general, like with the spatial results where

areas of higher event occurrence exhibited more skill, skill tends to be somewhat higher on more-active
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FIG. 5.3. Brier Skill Scores for each forecast set as a function of year of forecast issuance for (a) tor-

nadoes and significant tornadoes, (b) severe hail and significant-severe hail, (c) severe wind and

significant-severe wind, and (d) Day 2 and 3 forecasts of any severe weather using the Traditional

verification framework. Brier scores and climatological BSs have been summed over space to pro-

duce the skill scores shown in (a)–(d). Transparent shading around lines indicate 95% confidence

intervals on the BSS obtained via bootstrapping as described in the text. Note that the y-axes vary

between panels.

years compared with less-active ones. This is especially true for tornadoes (Fig. 5.3a), where the highest

skill—both for all tornadoes and for just significant ones—is seen in the historically active 2011 season;

this holds to a lesser extent with hail and wind as well. As a result, and given a particularly low skill 2009,

an increase in skill is seen in the 2009–2011 period, with a gradual decline in skill thereafter likely attrib-

utable to annual fluctuations in severe weather frequency, especially those associated with relatively

high-predictability synoptic-scale regimes. Statistically significant positive skill is seen for all of torna-

does, hail, and wind for all years. For each phenomenon, skill is consistently better year-to-year for

the regular severe criteria compared with forecasts of significant-severe events. Compared with their

less stringent counterparts, confidence intervals are larger for significant tornadoes and smaller for
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FIG. 5.4. Same as Figure 5.3, except for by month of forecast issuance.

significant-wind events, but with a couple of exceptions, no statistically significant skill of either sign is

observed for significant-severe events throughout the period of record. For Day 2 and Day 3 outlooks

(Fig. 5.3d), Day 2 forecasts consistently verify slightly better than Day 3 forecasts year-to-year despite

slight fluctuations in skill overall. Confidence intervals are large compared to the Day 1 forecasts for

specific phenomena, largely due to large forecast-to-forecast variability in the successfulness of indi-

vidual outlooks, in addition to an overall shorter period of record. The intervals are particularly large

in 2012 because only approximately one third of the year falls into the period of record, resulting in a

significantly reduced sample size.

Fairly substantial amplitude seasonal cycles of forecast skill in Day 1 outlooks (Fig. 5.4a,b,c) were

discovered from this verification. Tornadoes, both for outlooks of any tornado and for only significant

ones, exhibit two peaks, one in the spring and a particularly sharp one in the late autumn, maximiz-

ing in November. Between the two, there is a broad skill minimum throughout the summer and early

140



autumn, consistent with prior studies (e.g. Hart and Cohen 2016). In fact, tornado outlooks suffer a

skill degradation sufficiently large such that in August, tornado outlooks of both severity levels verify

about equally. Confidence bounds are also much tighter in this minimum, and the seasonal differ-

ences for the EF0+ outlooks are found to be statistically significant. A somewhat similar trend is seen

for hail forecasts (Fig. 5.4b), however the springtime maximum peaks slightly earlier, in March rather

than April, and is significantly larger than either of the skill spikes in the tornado outlooks. In addi-

tion, the skill maximum in the autumn still exists, but is of a much smaller magnitude and is no higher

than the winter months. While a summer local minimum of skill is observed, the primary minimum

is seen in December, where appreciably negative aggregate skill is in fact observed during outlooks

from that month. The monthly differences between these minima and maxima in forecast skill are

found to be statistically significant. Significant hail events, in contrast, are found to have a substan-

tially muted seasonal cycle, with a slight increase in skill during the spring found to be the primary

feature. Wind events (Fig. 5.4c) follow a somewhat similar pattern to tornadoes, with a clear mini-

mum in skill reaching its lowest point in August, and a maximum in skill in November, but there is no

real secondary springtime peak and instead a gradual degradation in skill throughout the winter and

spring months. This cold-season skill maximum coincides with a period whereby a higher proportion

of severe weather events are from synoptically-forced systems than in the warm-season, and thus likely

have higher predictability, particularly at the extended range, than those with weaker or smaller-scale

processes primarily responsible (e.g. Surcel et al. 2016; Nielsen and Schumacher 2016; Herman and

Schumacher 2016a). Significant-wind events, like significant hail, feature a muted seasonal cycle with

a slight maximum observed during the late autumn and early winter. Significant-severe wind events

also verify significantly worse than other severe-wind events throughout the entire year. Lastly, Day 2

and 3 convective outlooks (Fig. 5.4d) show relatively little seasonal cycle in forecast skill, except with a

slight enhancement of skill in November as seen in many of the Day 1 outlooks. Confidence intervals

are generally very large, but shrink considerably in size in the warm-season where sample size is much

larger. With one slight exception in October, Day 2 forecasts continue to perform slightly better than

Day 3 forecasts from month-to-month; the magnitude of this difference tends to be smallest in the late

summer to early autumn and largest in late winter to early spring.

Skill verification in the CAPE-versus-shear parameter space (Fig. 5.5) depicts positive skill through-

out much of the parameter space for each of the different severe phenomena forecasted in Day 1 con-

vective outlooks, as one would expect given the positive aggregate skill (Fig. 5.3a,c,e), with two primary
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FIG. 5.5. BSS as a function of the prevailing MLCAPE and DSHEAR at the forecast point for (a) Day

1 Tornado, (b) Day 1 Hail, and (c) Day 1 Wind forecasts verified from 1 January 2009–21 August

2014 using the Traditional verification framework. Panel (d) indicates the raw frequencies of points

falling into each bin, separated by 250 J kg−1 in MLCAPE space and 2.5 m s−1 in DSHEAR space, over

the verification period. Values have been lightly smoothed with a 187.5 J kg−1, 1.875 m s−1 Gaussian

smoother for increased clarity. Stippling denotes regions of the parameter space where the sign of

the indicated skill score is known with 95% confidence. Note that both the red/blue and magenta

scales are nonlinear, particularly the latter one. Both the red/blue and green/purple scales depict

the same BSS field, but the explicit contours in green/purple are included for quantitative clarity.

regions of exception. First, low climatology-relative skill is seen in much of the parameter space with

very weak deep-layer shear. For hail (Fig. 5.5b), this is true throughout the weak shear region of the

parameter space. In contrast, for tornadoes (Fig. 5.5a), this is especially emphasized in the low-shear,
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high-CAPE region of the parameter space while for wind (Fig. 5.5c), the opposite is true, with the most

negative scores found in the low-shear, low-CAPE environments. The second region of deflated skill is

in the low-CAPE, high-shear region of the parameter space, an area frequently noted as a particularly

challenging forecast region in the phase space (e.g. Evans and Doswell 2001; Davis and Parker 2014;

Sherburn and Parker 2014; Sherburn et al. 2016); this degradation in skill is evident for all variables,

but particularly pronounced for tornadoes (Fig. 5.5a) and least apparent for wind (Fig. 5.5c). Despite

both of these environments being quite rare (Fig. 5.5d), the signs of the skill score in these subregions

of parameter space are found to be statistically significant. Much of the positive skill regions are also

found to be statistically significant. For hail and wind (Fig. 5.5b,c), the main exception is portions of

the high-shear, high-CAPE regions of parameter space, where the sample size is too small (Fig. 5.5d)

to obtain significance. For tornadoes, some of the more common lower-shear, lower-CAPE environ-

ments also fail to acquire statistical significance, in these subregions owing to deflated skill scores (Fig.

5.2a) compared with hail and wind. These results on outlook verification largely agree with findings

of Anderson-Frey et al. (2016) and others on tornado warning verification, which similarly found best

performance when both ingredients were highest, and the worst outcomes when one ingredient or

the other was lacking while the other remained relatively large. These findings are with respect to a

climatological baseline, and other qualitative findings may emerge with comparison with respect to a

different reference forecast.

Lastly, with regards to the attributes diagrams characterizing these forecast sets (Fig. 5.6), one can

note that the vast majority of forecasts of all variables have probability zero, with forecasts becoming

increasingly rare with increasing probability. This is especially true of tornadoes, which have at at least

an order of magnitude fewer forecasts than other variables at probability thresholds at and above 5%.

At the extreme, 60% probabilities have been issued for wind during each variable’s period of record, and

have only been issued for approximately 1 in 100,000 forecast points. Tornado forecasts in the Tradi-

tional framework appear to be quite negatively biased—observed relative frequencies are substantially

higher than their corresponding forecast probabilities for probabilities at and above 5%. This is also

true for Day 2 and Day 3 convective outlooks. At forecast probabilities of 5%, the observed relative fre-

quency is over 10% for each variable (Fig. 5.6b). This improves slightly at higher probabilities, but the

extension of negative bias extends there as well. At the highest observed forecast probabilities during

the Day 2/Day 3 period of record (Fig. 5.6a), 45%, Day 3 forecasts verify with approximately that fre-

quency, but Day 2 forecasts remain statistically significantly negatively biased. Wind and hail forecasts
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FIG. 5.6. Reliability and sharpness diagrams using the Traditional verification framework. Pan-

els (a), (b): colored lines with circular points indicate observed relative frequency as a function of

forecast probability; the solid black line is the one-to-one line, indicating perfect reliability. Col-

ors correspond to forecast sets of different parameters and lead times as indicated in the panel

legend. Panel (a) portrays the entire reliability diagram, while panel (b) is a zoom of panel (a), re-

stricted to only probabilities of 0.15 or lower. Probability bins correspond to the full range of dis-

crete probabilities that SPC can issue for the given forecast variable. Horizontal and vertical dotted

lines denote the “no resolution” lines and correspond to the bulk climatological frequency of the

given predictand. The tilted dashed lines depict the “no skill” line following the decomposition of

the Brier score. Error bars correspond to 95% reliability confidence intervals using the method of

Agresti and Coull (1998), where non-overlapping neighborhoods are assumed to be independent.

Panels (c), (d): sharpness curves, whereby lines indicate the total proportion of forecasts falling in

each forecast probability bin, using the logarithmic scale shown on the y-axis and using the same

color encoding used in panels (a) and (b). X-axes of (c) and (d) correspond with those of (a) and

(b), respectively.

at Day 1 are reasonably well calibrated, except for wind forecasts at the 60% probability thresholds,

which are actually statistically significantly positively biased despite the small sample size and large

associated uncertainty.
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5.4 RESULTS: INTERPOLATION FRAMEWORK

The overall findings of the spatial distributions of the BSSs in the Interpolation verification frame-

work, shown in Figure 5.7, are similar to those in the Traditional framework (Fig. 5.2), but there are

some important and interesting differences in the details. Overall, skill scores in aggregate are slightly

higher in the Interpolation framework compared to the Traditional framework for multi-contour fore-

cast variables. Aggregate BSS values for tornado forecasts (Fig. 5.7a) are 0.059 in the Interpolation con-

text compared with 0.049 in the Traditional one (Fig. 5.2a), 0.096 vs. 0.076 for hail (cf. Figs. 5.7c, 5.2c),

and 0.130 vs. 0.093 for wind (cf. Figs. 5.7e, 5.2e). Similarly for the Day 2 and 3 outlooks, Interpolation

scores are 0.066 and 0.040 respectively compared with 0.055 and 0.028 in the Traditional verification

framework. All of these differences are found to be statistically significant at a 95% significance level.

In contrast, for the significant-severe forecasts (Fig. 5.7b,d,f) which use only a single 10% probability

contour and the only difference stems from the choice of analysis grid (i.e. 80 km in Traditional and

0.03227◦ in Interpolation), the aggregate BSS differences are all 0.001 or smaller. These results strongly

suggest that the act of smoothly interpolating between drawn probability isopleths has merit and re-

sults in superiorly verifying forecasts, with expected skill improvement on the order of 10% to 40% in

the case of severe winds.

With regards to the effects on particular regions, the overall results are fairly similar, with higher

scores over the central and eastern states and lower scores in the West, but there are some notable dif-

ferences. In particular, there is a tendency for forecasts to degrade across the South and improve across

the North, and this effect is especially pronounced in the severe hail and wind outlooks (Fig. 5.7c,e).

South Texas is especially negatively impacted in the severe hail and wind outlooks, while the Atlantic

Southeast including the Carolinas is especially negatively impacted for longer lead time outlooks (Fig.

5.7g,h). Interpolation can make an especially large difference for hail and wind, as 5% and 15% con-

tours are comparatively frequent, and between these contours, probability ratios between frameworks

of two to three are common. This effect appears to a lesser extent between higher probability isopleths.

If outlooks exhibit an underforecast bias in the North and an overforecast bias in the South within the

Traditional framework, perhaps due to terrain and coastal effects inhibiting predictability over south-

ern CONUS, anticipated framework differences in forecast skill would be consistent with what is ob-

served here. This effect affects statistical significance as well, with worse forecasts and less coverage of

statistical significance of positive skill over the central and southern Great Plains, with more coverage

of significantly skillful forecasts in the northern Great Plains and northern Rockies. For other variables,
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FIG. 5.7. Same as Figure 5.2, except for the Interpolation verification framework.

the spatial patterns of skill and statistical significance are more or less the same as the Traditional ap-

proach.

The annual time series of forecast skill in the Interpolation framework (Fig. 5.8) exhibit generally

similar trends to the Traditional framework verification results. The climatological BSs by year (Fig.

5.8e) further validate that the higher skill scores tend to occur in more-active years, which have corre-

spondingly higher climatological BSs. By far the most active year of the verification period, 2011 (Fig.

5.8e), also featured the most skillful forecasts, consistent with the spatial findings of Figure 5.7 and in

accordance with one would typically expect forecasting very rare events (e.g. Baldwin and Kain 2006;
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FIG. 5.8. As in Figure 5.3, except using the Interpolation verification framework. Additionally, the

corresponding climatological Brier scores to panels (a)–(d) appear in panel (e) on a logarithmic

axis using the same color coding as indicated in the figure legend.

Stephenson et al. 2008; Wilks 2011). Severe hail events were more common in 2009 owing to the lower

threshold definition valid at that time, and skill was also correspondingly somewhat higher during that

year compared to most other years in the period. The seasonal cycles of skill (Fig. 5.9), in contrast, por-

tray both some similarities and some notable differences compared to the Traditional approach results.

Tornado forecasts exhibit almost the exact same seasonal cycle of skill in both analysis frameworks (cf.
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Fig. 5.4a, 5.9a), with a broad spring peak, a sharp peak in late autumn, and a skill minimum in the late

summer and early autumn. However, notable differences appear in the severe hail forecasts (Fig. 5.9b).

While the large pattern is generally the same as seen in the Traditional approach, the late autumn peak

is more muted and, more importantly, there is a substantial performance spike in July and to a lesser

extent in surrounding months that is entirely absent from the Traditional results. This same spike also

appears in the severe wind forecasts (Fig. 5.9c) and is absent from those Traditional verification results

as well. Like with tornadoes, Day 2 and 3 forecasts (Fig. 5.9d) exhibit very similar skill seasonal cycles

in both frameworks. Unlike with years and space, there is not in general a correspondence by month

between event frequency, depicted most explicitly with the climatological BSs in Fig. 5.9e, and forecast

skill. Tornadoes have a primary peak in the spring and a coincident maximum in skill during that time,

but the variables maximize in frequency in the late spring and early summer, and skill is largely quite

low there except for the July skill spike in the interpolation framework. Severe weather environments

often feature fewer higher predictability, synoptic-scale forcing scenarios such as strong fronts during

this period, and this may be at least partly responsible for this apparent discrepancy (e.g., Hart and

Cohen 2016).

The verification results in the CAPE-versus-shear parameter space are also largely similar in the

Interpolation framework (Fig. 5.10) compared with the Traditional framework (Fig. 5.5). The primary

difference, in addition to more regions of statistical significance, is the improvement in skill in the

low-CAPE, high-shear region of the parameter space. The negative skill region is much smaller for

tornado outlooks (Fig. 5.10a) and completely vanishes for the wind outlooks (Fig. 5.10c). Improvement

is also seen, although the sign of skill remains the same, across much of the moderate-to-high shear

and moderate-to-high CAPE regions of the parameter space. The region of negative skill in the very

low shear (< 10 m s−1) region of the parameter space, remains, however, and perhaps even amplifies

to an extent.

Perhaps the biggest difference between the verification regimes emerges in the analysis of forecast

reliability. First and most obviously, interpolation acts to distribute the probability between different

explicit probability contours and create a continuous probability field rather than a stepwise discrete

one. This results in more probability bins for the attributes diagrams in the Interpolation framework

(Fig. 5.11). But perhaps more significantly, the “redistribution” of probability is not symmetric per

se in that the total probability of the forecast is not conserved. The drawn contours define isopleths

of constant forecast probability of value equal to the contour label. In the Traditional framework, all
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FIG. 5.9. Same as Figure 5.8, but by month of forecast issuance.

points within a given contour have an associated forecast probability in accordance with that contour

label until a new interior contour is drawn. In the Interpolation framework, however, the probabil-

ity values are at least that large and may be larger—up to the value of the next explicit contour level,
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FIG. 5.10. Same as Figure 5.5, but for the Interpolation verification framework.

whether that contour was drawn or not. This essentially acts to strictly increase (or maintain) prob-

abilities compared with the Traditional framework and never to decrease them. This has substantial

implications on the reliability of the forecast sets, and reflects in the attributes diagrams by rotating all

reliability lines clockwise. For negatively biased forecasts in the Traditional framework (Fig. 5.6) such

as tornado Day 1 outlooks and the Day 2 and 3 outlooks, this acts to better calibrate the probabilities

by bringing them closer to the one-to-one line, even though a slight negative bias is still evident at

the higher probabilities. Tornadoes, however, become slightly positively biased at lower probabilities,

and as a result tornado outlooks may be characterized as underconfident. The Day 1 hail and wind
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outlooks, in contrast, which were better calibrated in the Traditional framework, are now positively bi-

ased except at the highest probabilities where a drastic increase in observed relative frequency with

increasing forecast probability occurs above probabilities of approximately 0.5. For probabilities be-

tween 0.05 and 0.3, both hail and wind forecasts fall along or near the no skill line. One does see (Fig.

5.11a) that within explicit probability contours, observed relative frequency does tend to increase for

points closer to higher numbered contours and in the center of closed contours where interpolated

probabilities are higher than near contour edges, though some exceptions can be seen, particularly at

lower forecast probabilities (Fig. 5.11b). Overall, these reliability findings in both the Traditional and

Interpolation frameworks do contrast some with those of Hitchens and Brooks (2017), which noted

positive frequency biases for essentially all forecast sets, but this discrepancy is likely attributable to

differences in how that study treated the probability contours as categorical predictions as opposed to

the more probabilistic treatment employed here.

Explicitly comparing skill in the two frameworks as a function of time (Fig. 5.12), one sees that In-

terpolations scores are consistently higher than Traditional scores from year to year (Fig. 5.12a) with

the one minor exception of tornado forecasts in 2013. Both the magnitude of the differences within

years and the uncertainty in the difference is largest for wind, with the smallest uncertainty in the dif-

ference for Day 2 and 3 outlooks. Statistically significantly positive differences for all variables occur

for all forecast sets in at least one year, and no significant negative difference occurs for any variable

in any year. In the seasonal cycle comparison (Fig. 5.12b), the interpolation adds very substantial and

significant skill during the summer months for the hail and wind outlooks, maximizing with BSS en-

hancements of over 0.1 in July. The rest of the year, however, there is little difference, and in the case of

hail, even a slight decrease in performance using interpolated forecasts. The other variables have much

less dependence on forecast month in the skill difference, but generally have the largest improvement

in forecasts in the late autumn and winter months, particularly November, with tornado forecasts also

having a significant peak in skill difference in June.

5.5 DISCUSSION AND CONCLUSIONS

Up to 8 years of probabilistic SPC convective outlooks for Days 1–3 were gridded onto CONUS-

wide grids and evaluated using two different analysis frameworks. The first, the so-called Traditional

framework, uses a grid with 80-km grid spacing and does not interpolate between drawn probability

contours, representing the forecast probability fields as stepwise discrete with discontinuities along
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FIG. 5.11. As in Figure 5.6, except for the Interpolation framework and zoom in panels (b) and (d)

is to 0.1 rather than 0.15. Probability bins are delineated by 2%, 3.5%, 5%, 7.5%, 10%, 12.5%, 15%,

17.5%, 20%, 25%, and 30% thresholds for Day 1 tornado forecasts, and by 5%, 7.5%, 10%, 12.5%,

15%, 17.5%, 20%, 22.5%, 25%, 27.5%, 30%, 35%, 40%, 45%, 50%, 55%, and 60% for all other forecast

sets.

contour edges. This is performed to match historical internal verification practice at SPC and allow

direct comparison with past findings. A second approach, the so-called Interpolation framework, uses

a higher-resolution grid with 0.03227◦ spacing and instead interpolates between probability contours

when two or more contour levels are depicted. Below the lowest allowable contour level for the forecast

variable or when only one contour level is drawn, no interpolation is performed. The analysis period

spans January 2009 through December 2016 for Day 1 forecasts and begins in September 2012 with

the same end date for Day 2 and 3 outlooks. The gridded outlooks were then verified using BSSs and

reliability diagrams.
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FIG. 5.12. Difference of verification results from the Interpolation framework minus results from

the Traditional framework as a function of (a) forecast year and (b) forecast month for each forecast

variable as indicated in the figure legend. Transparent shading corresponds to 95% confidence

bounds on the difference obtained through bootstrapping and explained in greater depth in the

chapter text.

In general, skill verification was best when and where events were most common, and when fore-

cast lead time was shortest. Among Day 1 forecasts, severe winds are the most skillfully forecast by SPC

in both the Traditional (BSS = 0.093) and Interpolation (BSS = 0.130) frameworks, followed by severe

hail (BSS = 0.076 Traditional; 0.096 Interpolation) and then tornadoes (BSS = 0.049 Traditional; 0.059

Interpolation). The opposite trend, however, was observed at the significant-severe threshold, with

significant tornadoes (BSS = 0.027) being the best forecast, and significant-severe winds (BSS = 0.00)

being the worst. Forecasts were generally best in the north and eastern parts of the country and worst

in the southern and western parts of the country. Little trend was seen in the skill of SPC outlooks over

the analysis period, with the most skillful forecast years coinciding with the years of highest event to-

tals. Considerable month-to-month variability was found both between adjacent months and between

variables was found in SPC outlook forecast skill; highest skill was typically found in the spring and late

autumn. For Days 2 and 3, forecast skill was also high during winter. Forecasts were also evaluated in

the CAPE-versus-shear parameter space using classifications derived from the NARR; skillful forecasts

were found over the vast majority of the parameter space. Exceptionally, forecasts in the entire very

low-shear end of parameter space were found generally not to be skillful relative to climatology for all

severe weather elements. Additionally, the very high-shear, very low-CAPE region of parameter space

was found to be a secondary environment of forecast struggles, particularly for tornadoes and hail. In
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aggregate, Interpolation framework forecasts consistently yielded higher forecast skill than analogous

sets in the Traditional framework, suggesting that the intuitive practice of interpolating between the

finite number of allowable contours yields superior forecast probabilities compared with simply using

the probability associated with the nearest contour enclosing the point.

Forecasts were further analyzed to ascertain reliability; results contrasted based on the verification

framework. For Traditional forecasts, Day 1 tornado outlooks in addition to Day 2 and 3 forecasts ex-

hibited an underforecast bias while Day 1 hail in wind outlooks were relatively well calibrated along

the spectrum. In the Interpolation framework, in contrast, hail and wind forecasts have a moderate

to strong overforecast bias, while Day 2 and Day 3 forecasts have a mild underforecast bias that is al-

leviated compared with their Traditional counterparts; tornadoes were found to have what could be

considered a mild underconfidence bias, but again to a lesser extent than in the Traditional framework.

There are several limitations or shortcomings of this work that should be noted. SPC outlooks,

while being treated as probability grids for the purpose of this study and have grids generated internal

to SPC in a similar manner, are not publicly disseminated or archived in grid format; instead, what is

publicly available are equivalent to finite sets of probability contour outlines. This makes the quan-

titative SPC outlooks somewhat unconstrained everywhere not immediately on or directly adjacent

to a drawn probability contour. Two sets of assumptions were made to convert these fixed contours

to gridded probabilities, but one could certainly argue that—at least under some circumstances—the

methodologies employed in this study would produce a grid from the contours that is appreciably dif-

ferent from what the human forecaster would have made had they produced a grid directly. Particularly

consequential is that the fact that no interpolation could be performed outside the lowest probability

contour due to the unconstrained nature of the problem, resulting in event probabilities being uni-

formly zero outside of SPC contours. In tandem with the fact that the lowest probability contours are

generally many times larger than the climatological event frequency, this inherently inhibits SPC from

gaining resolution in the lower end of the probability spectrum near the climatological frequencies.

The climatological reference, in contrast, has considerable resolution in this subdomain of the prob-

ability space, and at times this can result in an uneven comparison between the SPC outlooks and

the climatological reference. This effect is particularly pronounced for the significant-severe forecasts,

since the climatological frequencies are so low and the forecast process effectively constrains forecast-

ers to issue forecast probabilities of either 0 or 0.1 for any given point. This is also seen, albeit to a
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lesser degree, in the verification of other fields. In particular, while forecasters draw 2% and 10% prob-

ability contours for tornado forecasts, these contours are not drawn for the remaining multi-contour

probabilistic forecasts, which begin at 5% and skip to 15%. Tornado forecasts therefore have some

enhanced native precision; this is apparent in Figure 5.12, where the probability interpolation is able

to add substantially more to forecast skill in variables other than tornado forecasts owing to their in-

creased comparative contour granularity. These effects all work in the mean to harm the verification

of SPC outlooks relative to what they would likely be if a forecaster were to adopt the operationally im-

practical approach of issuing continuous, subjective forecast probabilities on a point-by-point basis.

More contours, particularly at the lower ends of the probability spectrum, would allow a more quan-

titative interpretation of the forecast probabilities by end-users and would also result in more repre-

sentative probability grids for verification. One way this could plausibly be addressed is by using the

general thunderstorm contour from the categorical version of the convective outlooks as a 0% prob-

ability contour and interpolate between that and the lowest probability contour. Given that the gen-

eral thunderstorm contour encompasses regions where non-thunderstorm-induced severe weather is

considered possible, areas outside the general thunderstorm contour can be reasonably considered to

have forecast a 0% severe probability, and so this is a reasonable attempt to gain resolution on the low

probability end of the forecast spectrum. However, since this study is focused on the verification of

the probabilistic convective outlooks and this contour is not included in those outlooks, applying this

reinterpretation of the categorical thunderstorm line and merging it with the probabilistic convective

outlooks is beyond the scope of the present study. It is, however, a worthwhile endeavor to explore in

future work to attempt to address this important limitation within the confines of existing practices.

While several years of convective outlooks have been used in this study in an attempt to obtain ro-

bust verification results, one must still recognize that severe weather is a rare phenomenon, particularly

during certain times of year and for particular regions of CONUS. Consequently, despite this large tem-

poral sample, the event sample, especially in certain subclasses, is still rather small and some caution

should be exercised in generating conclusions from the findings. Formal uncertainty analysis and sig-

nificance testing has been performed to attempt to ascertain a realistic range of true possibilities given

the data sample analyzed and ascertain which conclusions may be robustly made. This revealed, for

example, that low skill scores in the West may be just an artifact of the sample owing to the small size

and large variability, while comparably smaller magnitude scores to the east are significant owing to

the higher climatological event frequency. An important and related, but distinct, point concerns the
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pitfalls of skill calculation for a phenomenon with varying climatological frequency (Hamill and Juras

2006). As a result, added care must be exercised when comparing skill scores across variables, regions,

or times where the frequency of occurrence may vary substantially. Concerns are lessened comparing

across verification frameworks or between Day 2 and Day 3 outlooks when the references are identical.

Furthermore, all of this analysis uses SPC storm reports as “truth”. This is a sensible choice given its

continuous coverage—it is generally recognized as the best dataset for severe weather reports except

for on a case-by-case basis when more thorough analysis has been conducted (e.g. Hitchens and Brooks

2012, 2014, 2017). However, this dataset has numerous limitations. Human reports of course require

physical observation of either the phenomenon or lasting damage it produces. Events can occur and

go unreported in rural areas where few or no people are impacted (e.g. Anderson et al. 2007). Nocturnal

events, and events in heavily forested areas or areas of complex terrain also pose reporting challenges,

particularly for tornadoes, due to the difficulty in visual observation of the event (e.g. Anderson et al.

2007). For a multitude of reasons, including but not limited to the increasing population density (e.g.

Verbout et al. 2006), increases in radar coverage (e.g. Agee and Childs 2014), and improved spotter net-

works and reporting practices (e.g. Trapp et al. 2006; Doswell 2007), there have also been numerous

changes over time in report frequency and density. Fortunately, from a climatological perspective, the

period of record employed by this paper is rather short, and most of these report trend considerations

are not significant concerns. The unreliability and inconsistency in EF0 tornado reports (e.g. Anderson

et al. 2007), the change in severe hail criteria (Ferree 2009), and particularly reporting issues associated

with severe convective winds (e.g. Trapp et al. 2006; Edwards and Carbin 2016), all present additional

concerns that can harm the reliability of the database and adversely impact the validity of the verifica-

tion results such as those presented herein. An additional, but related, limitation concerns the actual

treatment of the reports in this study. Here, reports have been used to form binary grids of event obser-

vance, which doesn’t account for the density of reports within a verification grid box like a practically

perfect approach (e.g. Hitchens and Brooks 2014) would. However, given the high resolution nature of

the verification grid, this is not considered to be a substantial concern in the end results.

Despite these limitations, this analysis can provide utility in a variety of ways. It can help end-users

determine under which situations SPC outlooks exhibit more or less skill to the extent this may assist

with uncertainty assessment and decision making. As a “gold standard" of severe-weather forecasting,

these results can also help direct both operational forecasters and researchers into which particular
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areas could use further attention, both in the forecast process and in modeling and physical under-

standing. The results, and particularly the reliability findings, may invoke changes in forecasting phi-

losophy that are of benefit to end users (Hitchens and Brooks 2012). For example, the reliability results

suggest that, at least under some circumstances, SPC forecasters may benefit from increased conser-

vatism with their Day 1 hail and wind contours, and more liberal usage of probability contours for their

Day 2 and Day 3 forecasts. This analysis also provides robust, quantitative benchmarks for comparison

of newly developed severe weather forecast guidance. In isolation, a skill score—other than 0 or 1—

doesn’t have much quantitative physical meaning. A positive value less than one indicates non-perfect

forecasts that nevertheless have skill over the reference, of course, but the interpretation of a specific

number—0.2, for example—depends both on the quality of the reference forecast and the feasibility of

perfect forecasts. Having benchmarks against a robust, respected standard such as the SPC outlooks is

particularly important in the severe-weather forecast problem since, unlike other forecast predictands,

operational models are not able to simulate or forecast most severe weather phenomena directly, fur-

ther reducing the possibility to compare new methods with existing guidance and contextualize the

results. There have been numerous forays into improving aspects of severe-weather forecast guidance

in recent years, some already in operational use (e.g. Brimelow et al. 2006; Sobash et al. 2011) and oth-

ers more recent work under development (e.g. McGovern et al. 2014; Sobash et al. 2016a,b; McGovern

et al. 2017; Gagne et al. 2017); having these results will help better place their results and future like

studies in the context of existing forecasts.

Future verification work will seek to perform similar analysis for flash flooding using Excessive

Rainfall Outlooks issued by the Weather Prediction Center and explore other issues in flood and flash

flood verification (e.g. Drobot and Parker 2007; Gourley et al. 2013; Schroeder et al. 2016; Herman and

Schumacher 2016a, among others). From there, we will also explore the overlaps and intersections

of probabilistic forecasts for different weather hazards to glean additional operational insight on fore-

casting performance and challenges in predicting these elevated threat scenarios, such as concurrent

and collocated tornado and flash flood hazards (Nielsen et al. 2015). Other work will seek to provide

improved gridded probabilistic forecast guidance for these high-impact weather hazards to help yield

improvement in future verification of these operational forecasts.
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CHAPTER 6

FORECASTING SEVERE WEATHER WITH RANDOM FORESTS

6.1 INTRODUCTION

Severe weather is comprised of three distinct phenomena: 1) the presence of one or more torna-

does of any intensity, 2) the presence of 1 in. (2.54 cm) or larger hail, or 3) convectively-induced wind

gusts of at least 58 mph (93 km h−1). Beyond this, tornadoes of F2 or EF2 strength or greater, hail 2 in

(5.08 cm) or larger in diameter, or wind gusts of at least 74 mph (119 km h−1), pose particularly elevated

threats to life and property and are considered supplementarily in a “significant severe” weather class

(Hales 1988; Edwards et al. 2015). Collectively, these hazards have inflicted more than 1100 fatalities

and $36.4B in damages across the contiguous United States (CONUS) in 2010–2018 (NWS 2018). While

inherently dangerous and damaging phenomena, accurate severe weather forecasts can increase pre-

paredness and help mitigate inclement weather losses.

The hazards associated with severe weather are further encumbered by the challenge in accurately

forecasting the phenomena. Due to the very small spatial scales associated with severe weather, it is

often exceedingly difficult to model dynamically with operational weather models. Production of large

hail involves a plethora of very small-scale microphysical processes which are necessarily parameter-

ized in numerical models. The microphysical simplifications involved to hasten production of oper-

ational model output, including bulk rather than bin schemes (e.g. Khain et al. 2015), single moment

microphysics (e.g. Igel et al. 2015), and in some cases, not having an explicit category for hail at all

(e.g. Hong and Lim 2006), all make direct prediction of severe hail from operational dynamical model

output a perilous task. Tornadoes are in some respect even more difficult to simulate; while numeri-

cal tornado simulations have been conducted in a research setting (e.g. Orf et al. 2017), they occur on

much too small of spatial scales to be resolved by any operational model. In forecasting severe weather,

it is therefore necessary to relate simulated environmental factors across various scales, from storm-

scale up to the synoptic scale, to severe weather risk. This is routinely performed in the human severe

weather forecast process (e.g. Johns and Doswell 1992; Doswell III 2004; Doswell III and Schultz 2006),

but in terms of producing automated guidance, statistical in addition to dynamical approaches are

necessary for this important forecast problem.
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CONUS-wide operational severe weather forecasts are issued routinely by the Storm Prediction

Center (SPC) for Days 1–8 via their convective outlooks (Edwards et al. 2015). In these products, fore-

casts are issued for 24-hour 1200–1200 UTC periods, and are given as probabilities of observing the

corresponding severe weather phenomenon within 40 km of the forecast point during the period. An

additional categorical risk outlook is provided for Days 1–3, defined based on the probabilistic outlook

values. For Day 1, SPC issues separate probabilistic outlooks for each of the three severe weather pre-

dictands; for Day 2 and beyond, they are treated collectively in a single outlook. In the forecast process,

the forecaster draws from a discrete set of allowable probability isopleths, where applicable. For Day 1

hail and wind outlooks, and Day 2 and 3 outlooks, permitted isopleths are 5%, 15%, 30%, 45%, and 60%;

Day 1 tornado outlooks include 2% and 10% probability contours as well. For Day 4 and beyond, only

15% and 30% contours are issued, and for signifcant severe risk, only a single 10% contour is drawn.

Chapter 5 gives more information on SPC’s forecasting process, including historical changes to severe

weather and product definitions; more information can also be found in Hitchens and Brooks (2014),

Edwards et al. (2015).

A limited number of published studies have quantified the skill of these convective outlooks and

examined their strengths and weaknesses. Hitchens and Brooks (2012) investigated the skill of Day 1

categorical outlooks, and this effort was expanded to include evaluation of Days 2 and 3—among other

additions—in Hitchens and Brooks (2014). Early published efforts to verify SPC’s convective outlooks

probabilistically (e.g. Kay and Brooks 2000) have received renewed attention in Hitchens and Brooks

(2017) and more formally in Chapter 5. Collectively, these studies have demonstrated improving skill in

short-to-medium range severe weather forecasts in association with improved numerical weather pre-

diction (NWP; e.g. Hitchens and Brooks 2012, 2014), though advances have been stagnating somewhat

in recent years. As demonstrated also in Chapter 5, forecast skill is highest at the shortest lead times and

gets progressively lower with increasing lead time (e.g. Hitchens and Brooks 2014). In general, wind is

the most skillfully predicted severe weather phenomenon with tornado outlooks exhibiting the lowest

skill, but this is reversed for significant severe events (Hitchens and Brooks 2017). Additionally, skill was

found to be maximum over the Midwest and Great Plains, and lowest over the South and West. Out-

looks are generally most skillful in the winter and spring, and least skillful in the late summer into early

autumn. Furthermore, skill is high when at least moderate amounts of both CAPE and wind shear are

present, but struggle when CAPE is limited and shear is large, or vice versa (e.g. Sherburn and Parker
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2014, , as shown also in Chapter 5). As noted above, SPC’s convective outlooks are based on only a fi-

nite set of probability contours, producing discontinuous jumps in gridded probability fields. Chapter

5 demonstrated that forecast skill is improved, albeit not uniformly, when probabilities are interpreted

as interpolated between confining human-drawn probability contours. In these interpolated outlooks,

hail and wind forecasts exhibit an overforecast bias, while tornado and Day 2 and 3 outlooks exhibit a

slight underforecast bias. Moreover, the evaluation of Chapter 5 provides quantitative benchmarks for

placing newly developed statistical guidance in the place of existing operational performance.

There have been numerous forays into statistical prediction of severe weather in existing literature.

These include applications for statistical prediction of tornadoes (e.g. Marzban and Stumpf 1996; Al-

varez 2014; Sobash et al. 2016a; Gallo et al. 2018), hail (e.g. Marzban and Witt 2001; Brimelow et al. 2006;

Adams-Selin and Ziegler 2016; Gagne et al. 2017), wind (e.g. Marzban and Stumpf 1998; Lagerquist et al.

2017), and severe weather more broadly (e.g. Gagne et al. 2009; Sobash et al. 2011; Gagne et al. 2012;

Sobash et al. 2016b). Many of these studies have applied machine learning (ML) to the prediction task;

in general, ML techniques have demonstrated great promise in applications to high-impact weather

prediction (e.g. McGovern et al. 2017). In addition to severe weather, ML has demonstrated success in

forecasting heavy precipitation (e.g. Gagne et al. 2014; Whan and Schmeits 2018, , in addition to Chap-

ters 3 and 4), cloud ceiling and visibility (e.g. Herman and Schumacher 2016b; Verlinden and Bright

2017), and tropical cyclones (Loridan et al. 2017; Alessandrini et al. 2018). Furthermore, automated

probabilistic guidance, including ML algorithms, have been identified as a priority area for integrat-

ing with the operational forecast pipeline (e.g. Rothfusz et al. 2014; Karstens et al. 2018). However,

many past applications have focused on either much shorter timescales, such as nowcast settings (e.g.

Marzban and Stumpf 1996; Lagerquist et al. 2017), or on much longer timescales (e.g. Tippett et al.

2012; Elsner and Widen 2014; Baggett et al. 2018), with lesser emphasis on the day-ahead time frame

and very little model development in the medium-range (e.g. Alvarez 2014). Furthermore, many stud-

ies have operated over only a regional domain (e.g. Elsner and Widen 2014) and no study to date has

exactly replicated the operational predictands of SPC’s convective outlooks, making it difficult to make

one-to-one comparisons between ML study outcomes and operational performance.

One such ML algorithm that has demonstrated success in numerous previous high-impact weather

forecasting applications (e.g. McGovern et al. 2011; Ahijevych et al. 2016; Herman and Schumacher

2016b; Gagne et al. 2017; Whan and Schmeits 2018) is the Random Forest (RF; Breiman 2001). This
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study seeks to apply RF methodology to the generation of calibrated probabilistic CONUS-wide fore-

casts of severe weather with predictands analogous to those of SPC convective outlooks in the hope

that the guidance produced can be used to improve operational severe weather forecasting. Section

2 provides further background and describes the data sources used and methodologies employed to

create and evaluate these forecasts. Section 3 investigates the RF-derived severe weather forecasting

insights gleaned from the trained models. Section 4 evaluates the RF forecasts produced and places the

results in the context of existing operational forecasts. Section 5 concludes the paper with a synthesis

of the findings and a discussion of their implications.

6.2 DATA AND METHODS

6.2.1 Overview

Chapters 3 and 4 extensively explored the utility of applying RFs and other machine learning al-

gorithms towards post-processing global ensemble output to forecast locally extreme precipitation

events across CONUS at Days 2–3. This study follows analogous methodology. For the sake of brevity,

several of the RF model configuration choices selected in this study are motivated by the findings of

Chapter 3 rather than reperforming all the same experiments for this forecast problem. Informal repli-

cations of those experiments with the severe weather predictands used in this study produced similar

findings (not shown).

An RF (Breiman 2001) is an ensemble of unique, weakly-correlated decision trees. A decision tree

makes successive splits into branches, with each split based on the value of a single input predictor. The

splitting predictor and the value associated with each branch is determined by the combination that

best separates severe weather events from non-events in the supplied model training data. This process

then continues for progressively smaller branched subsets based on only the training data that satifies

the previous branching conditions. This process continues until a termination criterion is satisfied,

either because all of the remaining training examples are either all events or all non-events, or because

there are too few remaining training examples to continue splitting. At this point, a “leaf” is produced

which makes a forecast according to the proportion of remaining training examples associated with

each event class. In real-time forecasting, the new inputs are supplied and the tree is traversed from its

root according to the input values until a leaf is reached, which becomes the real-time prediction of the

tree. An RF produces numerous unique decision trees by considering different subsets of training data
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FIG. 6.1. Map depicting the training regions of CONUS for the statistical models used in this study.

and input features, or predictors, for each tree generation process. An RF’s forecast is simply calculated

as the mean probabilistic forecast issued by the trees within the forest (e.g. Breiman 2001).

Based on different diurnal and seasonal climatologies (e.g. Brooks et al. 2003; Nielsen et al. 2015;

Krocak and Brooks 2018), and due to differing regimes and storm systems primarily responsible for

severe weather across CONUS (e.g. Smith et al. 2012), the country is partitioned into three regions as

shown in Figure 6.1. This study develops separate RFs for each of the three regions of CONUS, with

unique forests trained also for each of the five predictand, lead time combinations: 1) Tornado Day 1, 2)

Hail Day 1, 3) Wind Day 1, 4) Severe Day 2, and 5) Severe Day 3. For the Day 1 models, the severity levels

of the category are retained using a 3-category predictand (none, non-“significant” severe, “significant”

severe), while the severity levels are aggregated for longer lead times. Each of the 15 forests is trained

using a nine year historical record spanning 12 April 2003–11 April 2012. As noted above, the focus of

this study is on the model evaluation rather than on involved sensitivity experiments and parameter
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tuning. Models were evaluated using Python’s Scikit-Learn library (Pedregosa et al. 2011) as in Chapters

3 and 4; deviations from defaults for this study were made based on a combination of performance

considerations and computational constraints. The only parameters varied were the forest size B and

minimum number of training examples required to split an impure node in a decision tree, Z. For the

interested reader, the final values used are furnished in Table 6.2.

RF predictor information comes from the GEFS/R dataset (Hamill et al. 2013). The GEFS/R is a

global, convection-parameterized 11-member ensemble with T254L42 resolution—which corresponds

to an effective horizontal grid spacing of∼55 km at 40◦ latitude—initialized once daily at 0000 UTC be-

ginning in December 1984. Perturbations are applied only to the initial conditions, and are made using

the ensemble transform with rescaling technique (Wei et al. 2008). The ensemble system used to gen-

erate these reforecasts is nearly static throughout its 30+ year period of coverage, though updates to the

operational data assimilation system over time have resulted in some changes in the bias characteris-

tics of its forecasts over the period of record (Hamill 2017). Most surface (or column-integrated) fields

are preserved on the native Gaussian grid (∼ 0.5◦ spacing), while upper-level and some other fields are

available only on a 1◦×1◦ grid. Based on findings from Chapter 3, this study derives predictors from the

GEFS/R ensemble median. Model training employs a 9-year training period, using daily initializations

from 12 April 2003–11 April 2012. Temporally, forecast fields are archived every three hours out to 72

hours past initialization, and are available every six hours beyond that. Accordingly, the RFs trained in

this study use 3-hourly predictors for Day 1 and 2 forecasts, and 6-hourly temporal resolution for Day

3.

Several different GEFS/R simulated atmospheric fields with known or postulated physical relation-

ships with severe weather are used as RF predictors (Table 6.1), referred to interchangeably as “fea-

tures”. These include surface-based CAPE and CIN, 10-meter winds (U10, V10, UV10); surface tem-

perature and specific humidity (T2M, Q2M), precipitable water (PWAT), accumulated precipitation

(APCP), wind shear from the surface to 850 and 500 hPa (MSHR, DSHR), and mean sea level pressure

(MSLP). For Day 1, three additional predictors are supplied: surface relative humidity (RH2M), lift-

ing condensation level height above ground (ZLCL), and surface–850 hPa storm relative helicity (SRH),

approximated following Ramsay and Doswell (2005) as described in the Appendix. Some of these vari-

ables are archived natively by the GEFS/R, while others are derived based on stored fields that are avail-

able. The full list of fields, their class, whether they are natively archived or derived, and the grid from

which they are sampled is included in Table 6.1. Descriptions of how derived variables are calculated
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is provided in Chapter 6.2.2. For each field, in addition to sampling the temporal variation of the fields

throughout the forecast period as noted above, spatial variations in the simulated fields are included as

inputs to the RF. Specifically, predictors are constructed in a forecast point-relative sense, with predic-

tors up to three grid boxes (1.5◦ or 3◦, depending on the predictor) displaced in any horizontal direction

relative to the forecast point. Forecasts are made on the Gaussian grid; for predictors on the 1◦ grid, the

nearest point to the Gaussian point is used as the central point on that grid. In addition to this suite

of meteorological predictors, forecast point latitude, longitude, and the Julian day associated with the

forecast are included as predictors as well.

6.2.2 Derived Variables

6.2.2.1 RELATIVE HUMIDITY

Relative humidity is calculated as a function of specific humidity q, temperature T, and pressure

P, all of which are natively archived. The surface pressure is assumed to be negligibly different from

the air pressure two meters above ground. The variables are related through Clausius-Clapeyron, as

employed in Bolton (1980) and elsewhere:

R H =
0.263 ∗P ∗q

e
17.67(T−T0)

T−29.65

(6.1)

for temperature in K and pressure in Pa, where a reference temperature T0 of 273.15 K is used. RH is

calculated on the 1◦ grid, since surface pressure is only archived on this grid.

6.2.2.2 LIFTING CONDENSATION LEVEL HEIGHT

An exact formula for the LCL height as a function of temperature, pressure, and relative humidity

was described in Romps (2017), and that formulation is employed here. Relative humidity is

not natively archived and is supplied to this formulation as calculated in the previous subsection.

6.2.2.3 WIND SHEAR

SHEAR850 and SHEAR500—bulk wind differences between two vertical levels—are calculated

straightforwardly:

SH E AR 850=
Æ

(U850−U10m )2+ (V850−V10m )2 (6.2)

SH E AR 500=
Æ

(U500−U10m )2+ (V500−V10m )2 (6.3)

Winds were used on the 1◦ grid for both levels.
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6.2.2.4 STORM RELATIVE HELICITY

Limited information is available from which to calculate SRH, but given its demonstrated impor-

tance in severe environments (e.g. Kuchera and Parker 2006; Parker 2014), the forecast information is

used to generate as accurate of SRH estimates as possible. Low-level vertical winds on pressure levels

are provided at only 1000, 925, 850, and 700 hPa—quite insufficient for use in an SRH calculation. In

height, winds are provided at only 10 and 80 meters above ground level—again, insufficient. Hybrid

levels provide some resolution in the low-levels, with winds archived on the 0.996, 0.987, 0.977, and

0.965 sigma levels; geopotential heights are provided for these levels as well. Thus, for calculating SRH

from the surface to 850 hPa, five layers are used: 1) 10m–0.996σ, 2) 0.996σ–0.987σ, 3) 0.987σ–0.977σ,

4) 0.977σ–0.965σ, and 5) 0.965σ-850 hPa. Storm motion is estimated as 75% and 30◦ to the right of the

mean wind, a common heuristic employed in Ramsay and Doswell (2005) and others. The mean wind

is estimated as the average of the wind at 850, 500, and 200 hPa:

U =
U850+U500+U200

3
; V =

V850+V500+V200

3
(6.4)

Accordingly:

SR H 850=

5∑

l=1

max(0,SR Hl ) (6.5)

where

SR Hl = (Zl −Zl−1)

�

(Vl −Vs t )
Ul −Ul−1

Zl −Zl−1

− (Ul −Us t )
Vl −Vl−1

Zl −Zl−1

�

(6.6)

with

Ul =
Ul +Ul−1

2
; Vl =

Vl +Vl−1

2
(6.7)

and

Us t =
p

0.75 ∗ (U cos(−30◦)−V sin(−30◦)) (6.8)

Vs t =
p

0.75 ∗ (U sin(−30◦) +V cos(−30◦)) (6.9)

6.2.3 Evaluation Framework

Trained RFs are evaluated in two distinct ways. First, in Section 3, the statistical relationships di-

agnosed by the RFs are investigated to determine the insights gleaned about the forecast problem and

assess whether the models are making predictions in ways consistent with our external understanding

of the forecast problem. Due to the number and size of trees in a forest, it is not practical to investigate
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the complete structure of each tree in the forest; instead, summary statistics are used to capture the ex-

tent of use of different aspects of supplied forecast information in generating a final prediction. In par-

ticular, this is done by means of feature importances (FIs). Though there are several ways that FIs can

be quantified (e.g. Strobl et al. 2007, 2008), this study uses the so-called “Gini importance” metric for

consistency with prior ML research in the community (e.g. Pedregosa et al. 2011; Whan and Schmeits

2018). A single FI is attributed to each input feature, and may be conceptualized as the number of splits

based on the given feature, weighted in proportion to the number of training examples encountering

the split (Friedman 2001). This is summed over each split in the tree for each tree in the forest, and then

normalized so that the sum of all FIs is unity. FIs thus range between zero and one, with larger values

indicating that the associated predictor has more influence on the prediction values. In the extremes,

an FI of zero means that the predictor has no influence on the prediction made by the RF, while a value

of one indicates that the value of the associated predictor uniquely specifies the predictand. As noted

above, input predictors to the RF vary in associated simulated forecast field, forecast time, and in space

relative to the forecast point. In many cases, it is convenient to present FIs summed over one or more

of these dimensions to provide a summary aspect of which fields, times, and locations are being most

and least used in generating predictions for different severe weather phenomena.

Second, in Chapter 6.4, the probabilistic performance of the models is evaluated. The trained RFs

are used to generate probabilistic convective outlooks over 4.5 years of withheld model data spanning

12 April 2012–31 December 2016. Model skill is evaluated through the Brier Skill Score (BSS; Brier 1950),

using an informed climatological reference as described in Chapter 5, while forecast calibration is as-

sessed via reliability diagrams (Murphy and Winkler 1977; Bröcker and Smith 2007; Wilks 2011). While

forecasts are evaluated in aggregate, they are also assessed both spatially and seasonally in order to

assess the times and locations where the RFs perform most and least skillfully. Additionally, following

Chapter 5, outlook skill is evaluated based on the large-scale environmental conditions associated with

the forecast, as quantified based on CAPE and deep-layer bulk wind difference (hereafter referred to as

shear) in the North American Regional Reanalysis (NARR; Mesinger et al. 2006). Findings are contex-

tualized by comparing the RF performance against SPC convective outlooks for the same predictands

issued with comparable lead times. Consistent with Chapter 5, Day 1 outlooks evaluated in this study

come from the 1300 UTC forecast issuance, while Day 2 and 3 outlooks come from the 0100 CT (0600 or

0700 UTC) and 0230 CT (0730 or 0830 UTC) forecast issuances, respectively. Because the interpolated

probability grids verified more skillfully than the uninterpolated outlooks (demonstrated in Chapter 5),
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the interpolated grids are used as the benchmark for comparison in this study. In most cases, the entire

evaluation period is used for the comparison; due to data availability constraints, a slightly shorter 13

September 2012–31 December 2016 period is used for Day 2 and 3 verification, while 12 April 2012–

31 December 2014 is used for the evaluation in the CAPE-versus-shear parameter space. As a final

evaluation of the operational utility of the ML-based forecast guidance provided by the trained RFs, a

weighted blend of the SPC and RF-based convective outlooks is evaluated over the same period; the

level of skill improvement, if any, quantifies the value added by the addition of the ML guidance to the

operational forecast pipeline. Weights are supplied based on the BSS of the two component outlooks

using three temporally-contiguous quarters of the evaluation period that excludes the forecast being

weighted, based on the following formula:

WSP C =

1
1−BSSSP C

1
1−BSSSP C

+ 1
1−BSSR F

; WR F = 1−WSP C (6.10)

In the event that one BSS is negative, the weight associated with that forecast is set to zero with the

other set to one. In this way, if either forecast set has no climatology-relative skill on the portion of the

evaluation period used to generate the weights, it does not contribute to the blended forecasts, while if

either forecast set is perfect, it completely determines the blended forecast. Statistical significance of

both the absolute climatology-relative skill and comparisons between forecast sets are assessed using

bootstrapping whereby random samples of forecast days are sampled with replacement among the

evaluation period to produce a realistic range of Brier and climatological Brier Scores for each evaluated

forecast set or forecast set comparison. Other uncertainty analysis follows the methods of Chapters 3

and 5; more details may be found there.

6.3 RESULTS: MODEL INTERNALS

Predictive utility of different simulated atmospheric fields (Fig. 6.2) is found to vary somewhat by

forecast region and severe predictand. Under almost all circumstances, CAPE is found to be the most

predictive severe weather predictor by a fair margin, particularly for predicting hail and wind. CIN is

generally identified as far less predictive, but still more so than other fields. The West is an exception,

with CIN identified as quite predictive of hail and especially severe wind, with CIN actually having

higher FIs than CAPE for wind (Fig. 6.2a). All fields contribute some to the output of each model, with

a relatively balanced distribution outside of the more predictive fields. In addition to CAPE and CIN,

DSHR is found to be fairly predictive as well, and this is most evident for hail (Fig. 6.2). For tornadoes,
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FIG. 6.2. FIs aggregated by atmospheric field for the Day 1 models in the WEST, CENTRAL, and

EAST regions in panels (a)–(c), respectively. Red bars correspond to FIs for the tornado predictive

model, green bars to the hail predictive model, and blue bars to the wind predictive model for each

region.

shear over a shallower layer in MSHR is found to be equally (e.g. Fig. 6.2b) or more (Fig. 6.2c) predictive

than DSHR, and one of the more predictive variables overall. Other variables with high RF FIs for torna-

does include APCP, MSLP, and SRH. The high FI attributed to model APCP in predicting tornadoes may

be surprising, but heavy precipitation is often found to be associated with low-level rotation (e.g. Smith
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et al. 2001; Hitchens and Brooks 2013; Nielsen and Schumacher 2018). MSLP serves to characterize the

synoptic environment and help distinguish favorable from unfavorable environmental conditions for

tornadoes. SRH has often been noted as a predictive variable for determining tornado potential (e.g.

Davies and Johns 1993; Thompson et al. 2007), and is found to be the most predictive field in the East

(Fig. 6.2c). Overall, the RFs are largely following conventional wisdom about human forecasting of

severe weather: CAPE and shear are some of the most important fields to consider, shear should be

considered over a deeper layer for hail and wind to ascertain supercell potential and over a shallow

layer and in conjunction with helicity for tornado prediction in order to ascertain potential for low-

level rotation, and the kinematics play a more significant role overall for tornadoes than for severe hail

and wind. The RFs have simply learned these facts objectively and empirically based on analysis of

many historical cases, and have provided a quantitative assessment of their findings.

In predicting any severe weather beyond Day 1 (Fig. 6.3), the trends largely follow the findings for

hail and wind in their respective regions. Considering that the vast majority of severe observations are

either hail or wind, that the FIs track those of hail and wind more closely than tornadoes is not surpris-

ing. CAPE and CIN are about equally predictive of severe weather at Days 2 and 3 in the West (Fig. 3a),

with DSHR the next most predictive. The relative ranking mostly holds for the Central and East regions

(Fig. 6.3b,c), although CAPE is much more predictive than CIN, especially in the Central region. MSHR

becomes increasingly important with longitude, and is interestingly identified as more indicative of

severe weather in the East region at these longer lead times. Importances are mostly similar between

days, though CAPE importance tends to decline slightly from Day 2 to 3 (Fig. 6.3) and is distributed

among the other fields. This is perhaps attributable to the noisy and highly sensitive nature of the

CAPE field yielding less predictive utility with increasing forecast lead time and associated increasing

uncertainty.

FI time series (Fig. 6.4) reveal a clear diurnal peak in importance of model information throughout

the forecast period, although in all cases the peak is much more uniformly distributed relative to the

diurnal event climatology in the region. In the extreme, tornadoes in the West (Fig. 6.4a), there is

little peak at all. In some cases, notably in the East (Fig. 6.4c,f,i), the importance peak is aligned with

the climatological event maximum, while in other situations, it leads (e.g. Fig. 6.4h) or lags (e.g. Fig

6.4d,e,g) it. In some cases, this could be an initiation bias—particularly in the lagging cases—while it

could also be attributable to the forecasted pre- (or post-) event environment being more predictive

than the simulated evolution at event time. Breakdowns into thermodynamic and kinematic variables
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FIG. 6.3. Same as Figure 6.2, but for the Day 2 and 3 models. Day 2 and 3 FIs are indicated in red

and blue bars, respectively.

(Table 6.1) reveals that the thermodynamic variables are much more predictive of hail and wind than

the kinematics, while the two classes are about equally predictive for tornadoes. Furthermore, while

the thermodynamics have a sharp diurnal peak, the importance of the kinematic variables has little

temporal dependence throughout the forecast period (Fig. 6.4).
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FIG. 6.4. Normalized FIs aggregated as a function of forecast hour for the Day 1 models. The top,

middle, and bottom rows depict FIs for the tornado, hail, and wind models, respectively, while the

left, center, and right columns respectively depict FIs for the WEST, CENTRAL, and EAST regions.

Severe phenomenon diurnal climatologies are depicted for each region in black. These and the

total FIs, colored as indicated in the panel legend, are normalized so that the curve integrates to

unity. FI time series broken down by thermodynamic and kinematic variables are also included,

with lines as colored in the panel legend and using the variable partitioning depicted in Table 6.1.

RF FI time series for Day 2 and 3 models (Fig. 6.5) again share similarities with their Day 1 coun-

terparts. Like with the Day 1 models, importance peaks come earliest in the East (Fig. 6.5c) and latest

in the West (Fig. 6.5a), ranging from 2100–0300 UTC. Interestingly, there is a shift in peak importance

between Day 2 and 3 models towards earlier times, especially pronounced in the West and Central re-

gions (Fig. 6.5a,b). This may simply be attributable to the degradation in temporal resolution between

the two models, but it is possible that there is some lead time dependence on the diurnal climatology

and biases in the GEFS/R. As was seen for kinematic variables overall in Day 1 (Fig. 6.4), the predictive
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FIG. 6.5. Similar to Figure 6.4, except for the Day 2 and 3 models, which are combined onto single

panels for the (a) WEST, (b) CENTRAL, and (c) EAST regions. FI time series of CAPE, CIN, shear,

and all variables combined are shown for each forecast region, colored as indicated in the panel

legend.

utility of simulated shear is nearly constant at all times throughout the forecast period for both fore-

cast lead times (Fig. 6.5). CAPE and CIN both have more pronounced diurnal signatures, but they are

different from one another (e.g. Fig. 6.5a). CAPE FIs peak in association with the maximum in clima-

tological event time frequency, while CIN has a primary peak after this and, in many circumstances
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(e.g. Fig 6.5a,c), a secondary peak before it. The secondary peak is perhaps the more intuitive of the

two; the environmental CIN in the pre-event environment determines how much of a cap storms must

overcome, and the potential for instability to build or storms to be prevented from initiating entirely.

The primary peak may speak to the degree of stabilization associated with cold pool strength, insta-

bility release, anvil shading, and other factors as portrayed in the convection-parameterized GEFS/R,

and the severe weather potential associated with these factors. However, more investigation into the

causes of this peak may prove fruitful.

In space (Fig. 6.6), RF FIs are typically highest near the forecast point and decrease with increasing

distance from the point, but there are some notably anomalies. FIs are generally most spatially uniform

for tornado prediction and have the sharpest peak in predicting severe hail; this is especially true in the

West (cf. Fig. 6.4a,d). In the West, while FI importance maxima are collocated with the forecast point

for tornadoes and wind, information to the east of the forecast point is more predictive of conditions

at that point than the collocated simulated forecast values for hail and the medium-range forecasts. A

variety of factors could be attributable to this observation, including a displacement or initiation bias

in the model’s placement of storms in the region, or the lopsided event climatology in the region, with

most events occurring on the eastern fringes with the primary storm ingredients just to the east over

the Great Plains. Especially because this appears prominently in the hail signature but not in other

fields, the interface between the simulated fields over the Great Plains and events over the far eastern

Intermountain West appears a likely source, with more usefully predicted values over the Great Plains,

but more investigation is required to validate that hypothesis. In the Central region, FIs are highest from

the forecast point south, with downstream maxima for every predictand except severe winds, which

has an identified maximum in predictive utility just upstream of the forecast point (Fig. 6.6h). The

southern displacement in importance appears to become more pronounced with increasing forecast

lead time, and is especially evident at Day 3 (Fig. 6.6n). FI maxima also become less pronounced with

increasing forecast lead time (Fig. 6.6j–o), consistent with past studies such as Chapter 4. In the East,

importances for all severe weather models maximize near the forecast point and extend to the south

and west.

The so-called ring plots of Figures 6.7–6.9 provide a more complete representation of the models’

diagnoses and how the summary statistics of Figures 6.2, 6.4, and especially 6.6 were obtained. In the

West (Fig. 6.7), the most predictive fields, CAPE and CIN (Fig. 6.2) are seen clearly for all three predic-

tands. In general the importance maxima for these fields occur near the forecast point, though CAPE
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FIG. 6.6. FIs summed according to the corresponding predictor’s position in point-relative space

for the WEST, CENTRAL, and EAST regions respectively in the left, center, and right columns. Tor-

nado model FIs are depicted in the top row, followed by hail, wind, Day 2, and finally the Day 3

model on the bottom row. Yellows indicate high importance of information at the point, while

magentas indicate lesser importance. The forecast point is shown with a black cross; latitude and

longitude are presented using the region centroid, and are shown merely to provide improved

sense of spatial scale.

FI maxima are displaced farther north relative to the forecast point in predicting tornadoes compared

with hail and wind (Fig. 6.7a). For CIN (Fig. 6.7d), importances maximize downstream of the forecast
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point, particularly for wind. DSHR is predictive for both hail and wind (Fig. 6.2a, 6.7m), but is max-

imized on the upstream side of the forecast point for wind and downstream side for hail. A different

moisture variable is found to be most predictive of for each severe weather predictand: APCP, Q2M,

and PWAT for tornadoes, hail, and wind, respectively (Fig. 6.7h,e,g). In all cases, the spatial maximum

in importance is found displaced to the north of the forecast point, likely associated with biases in the

GEFS/R’s positioning of precipitation systems (e.g. as noted in Chapter 6.4), also seen in other models

with parameterized convection (e.g. Clark et al. 2010).

The RF FI maxima and spatial placement thereof displays some similarities and some differences

between the West (Fig. 6.7) and Central (Fig. 6.8) regions. In the Central region, CAPE FI (Fig. 6.8a) are

still of course paramount for all predictands (per Fig. 6.2), but unlike in the West region, the maxima

are found to the south of the forecast point. This southern displacement is even more pronounced in

CIN (Fig. 6.8d), particularly for forecasting severe hail. In the moisture variables, there is a shift from

the West to Central region, with APCP becoming the preferred moisture variable for each predictand.

Interestingly, APCP FI importance is consistently maximized late in the period to the northeast of the

forecast point, perhaps noting with its late and eastward-displaced elevated FIs that many tornadoes

occur during the afternoon hours with discrete supercell activity and during the upscale growth phase

leading up to vigorous evening mesoscale convective systems which are common during the warm-

season in this region (e.g. Nielsen et al. 2015). The northern displacement is again consistent with the

documented displacement bias in the positioning of convective systems in convection-parameterized

models such as the GEFS/R (e.g. Wang et al. 2009). DSHR’s FI maxima (Fig. 6.8m) are again centered

near the forecast point, although MSHR (Fig. 6.8j) and SRH (Fig. 6.8l), which are particularly predictive

for tornadoes, have maximum predictive utility to the southeast of the forecast point. Finally, MSLP is

also found to a useful severe weather predictor (Fig. 6.8i), and one observes its importances track from

west to east across the forecast point domain throughout the forecast period.

The East region FIs (Fig. 6.9) display very similar spatial patterns in CAPE (Fig. 6.9a) and CIN (Fig.

6.9d) as seen in the Central region. In both cases, it appears that these thermodynamic indicators

forecasted in the source region of moisture and instability are more predictive than at the point it-

self, particularly for CIN. A similar pattern is also seen in APCP (Fig. 6.9h), including the northward

displacement. However, the late maximum in the northeast corner is entirely removed, as nocturnal

mesoscale convective systems are not climatologically frequent over much of this region, and the syn-

optic conditions associated with tornadoes are often different between the regions (e.g. Smith et al.
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2012). Shear is again most important nearly collocated with the forecast point (Fig. 6.9j,m) with MSHR

(Fig. 6.9j)—especially late in the period—being more predictive for tornadoes and wind, while DSHR

(Fig. 6.9m) is the dominant shear variable for predicting hail. In predicting tornadoes, meridional
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FIG. 6.7. Feature importances by space and atmospheric field for the Day 1 tornado, hail, and wind

models in the WEST region. Rings enclose regions where the FI for the variable and time exceeds

1.5 standard deviations above the spatial mean FI for that variable and time. Ring colors vary ac-

cording to the predictand of the model, with oranges and reds corresponding to FIs associated

with predicting tornadoes, greens to predicting hail, and blues to predicting wind. Within these,

colors darken and transition from orange (tornado), green-yellow (hail), and purple-blue (wind)

to solid red, green, and blue with time throughout the forecast period, from the front-end 1200

UTC (forecast hour 12) to the back-end 1200 UTC (forecast hour 36). Line thickness is determined

by the FI threshold associated with the ring, with thicker lines indicating higher FI and rings asso-

ciated with below average thresholds (based on the+1.5 standard deviation exceedance given the

predictand, predictor field, and time) are excluded entirely. Panels (a)–(o) correspond respectively

to FIs for the CAPE, T2M, RH2M, CIN, Q2M, ZLCL, PWAT, APCP, MSLP, MSHR, U10, SRH, DSHR,

V10, and UV10 fields.

winds (Fig. 6.9n) to the south of the forecast point and MSLP (Fig. 6.9i) upstream of the forecast point

are found to be good discriminators of tornado events and non-tornado events, speaking to both the

degree of advection of convective ingredients from the south and the level of synoptic-scale forcing for

ascent advecting into the region. SRH (Fig. 6.9l) is found to be predictive of tornadoes throughout the

period, with FI maxima generally tracking west to east to the immediate south of the forecast point dur-

ing the period. One other major difference between the East region and other regions is the importance

of nighttime T2M (Fig. 6.9b) in predicting hail in the East; the exact reasoning for this identification is

not obvious.

In summary, the RFs trained in this study appear to be making statistical deductions that are in

strong agreement with our physical understanding of severe weather processes, and identify values to

inspect—such as CAPE and shear near the forecast point and APCP to its north, and inspecting DSHR

for hail but MSHR for tornadoes—that agree with conventional operational severe weather forecast

practices (e.g. Johns and Doswell 1992). However, the RF provides an automated, objective, and quan-

titative synthesis of these many important factors that contribute to a skillful severe weather forecast,

in addition to identifying some factors, such as the southward CIN FI maxima displacement, that may

be less well-documented but still contribute to a skillful forecast. The following section investigates

the predictive performance of these models.
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FIG. 6.8. Same as Figure 6.7, but for the CENTRAL region.
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FIG. 6.9. Same as Figure 6.7, but for the EAST region.
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6.4 RESULTS: MODEL PERFORMANCE

The RFs show ability to skillfully predict all severe weather predictands (Fig. 6.10), though there are

some differences in the details. Prediction of tornadoes (Fig. 6.10a) produced the most mixed verifi-

cation results, with statistically significant positive skill over the Central Great Plains, Mississippi Val-

ley, Ohio River Valley, and parts of the Mid-Atlantic region and Floridian Peninsula. However, BSSs are

lower and in many cases less skillful than climatology—albeit not statistically significantly so—over the

West, Northeast, Upper Midwest, far northern and southern Plains, and the Carolinas. These same gen-

eral findings extend for significant tornadoes (Fig. 6.10b) but with lower skill overall, with CONUS-wide

skill decreasing from 0.029 for tornadoes to 0.013 for significant torrnadoes. The large area of extremely

negative skill over the West is simply reflective of the fact that no significant tornadoes were observed

over this region during the verification period, and the model had above climatological probabilities

for some events. Due to the small or even non-existent sample, the negative skill observed here is not

statistically significant. Hail (Fig. 6.10c), wind (Fig. 6.10e), and the Day 2 and 3 (Fig. 6.10g,h) models

all exhibit very similar spatial patterns of forecast skill, with near uniform and statistically significant

positive skill over much of CONUS east of the Rocky Mountains. Somewhat degraded skill is seen over

Southern Texas, Florida, and pockets of the Upper Midwest; these spatial variations are particularly

pronounced in the hail verification (Fig. 6.10c). In the West, fewer of the results are found to be statis-

tically significant due to the reduced event frequency. Nevertheless, positive skill is still noted for these

predictands over much of the West, with the exceptions of a pocket of southwestern Colorado and sur-

roundings and the Pacific Coast. As with SPC convective outlooks (see Chapter 5), Day 1 forecast skill

is highest for severe winds at 0.105, with hail in the middle at 0.079. Skill unsurprisingly decreases with

increasing forecast lead time, and CONUS-wide BSSs of 0.108 and 0.089 are observed for Day 2 and Day

3 RF outlooks, respectively (Fig. 6.10g,h). Like with tornadoes, the spatial patterns are similar between

hail and wind and their significant severe counterparts (Fig. 6.10d,f), except with lower skill magni-

tudes with CONUS-wide numbers of 0.023 and 0.022 for significant hail and wind. The highest (and

statistically significant) skill is seen over the Central Plains for these variables; positive but insignificant

skill is observed in the East, and skill near climatology observed over much of the West.

Relative to SPC (Fig. 6.11), the RF outlooks verify quite competitively. On Day 1, where human

forecasters have access to more skillful convection-allowing guidance and more updated observations

and simulations, SPC outlooks are generally more skillful than the RF, with aggregate skill score dif-

ferences of 0.007 for hail (Fig. 11c) increasing to 0.013 for tornadoes (Fig. 6.11a) and 0.024 for severe
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FIG. 6.10. Brier skill scores (filled contours) in space evaluated over the 12 April 2012–31 Decem-

ber 2016 verification period for each of the ML models trained in this study. Panels (a)–(h) cor-

respond respectively to the performance of the tornado, significant tornado, hail, significant hail,

severe wind, significant severe wind, Day 2, and Day 3 outlooks. Unfilled contours depict the Brier

score of climatology at the point over the verification period; higher values indicate more common

events. Stippling indicates areas where the sign of the skill score is statistically significant at 95%

obtained from bootstrapping as described in the text.
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wind forecasts (Fig. 6.11e). However, the CONUS-wide summary gives an incomplete picture, as there

are significant regional variations in skill differences. Unlike the RF outlooks, which exhibited fairly

uniform skill in hail and wind across the eastern two-thirds of CONUS (Fig. 6.10c,e), SPC interpolated

convective outlooks exhibited a strong latitudinal gradient in BSS, with higher skill to the north (Chap-

ter 5). This is reflected in the skill comparison, with SPC outlooks substantially outperforming the RF

outlooks over far northern CONUS in predicting severe hail and wind (Fig. 6.11c,e). However, over the

southern two-thirds of CONUS, the RF outlooks outperform the SPC outlooks in these fields. There is

much more spatial inhomogeneity in the tornado outlooks (Fig. 6.11a). The magnitudes of the skill dif-

ferences at a point are usually much smaller than in the hail and wind outlooks, but SPC outlooks still

outperform the RF forecasts the most in the northern tier of states. The mixed spatial skill comparisons

for tornadoes extend to verification of significant tornadoes (Fig. 6.11b) as well, but the comparison

is much different for significant hail (Fig. 6.11d) and wind (Fig. 6.11f) events. Here, RF outlooks are

actually found to exhibit higher probabilistic skill overall than the SPC outlooks, with skill differences

of 0.012 and 0.020 respectively for the significant severe hail and wind outlooks. The gains are largest

over the Central region.

For Day 2 and 3 outlooks (Fig. 6.11g,h), the RF outlooks exhibit substantially higher probabilistic

skill than the analogous SPC convective outlooks, with aggregate CONUS-wide skill differences of 0.043

and 0.045 respectively for the Day 2 and 3 outlooks. RF outlooks demonstrate higher skill over almost

all parts of CONUS, the primary exceptions being the Pacific Coast and western Colorado where the RFs

had lower absolute skill (e.g. Fig. 6.10g), and over Louisiana and Arkansas. The biggest skill differences

over SPC are in the East region domain, particularly the Mid-Atlantic and southern New England. The

general finding that the RF outlook skill becomes increasingly skillful relative to SPC outlooks with

increasing forecast lead time is consistent with there being less information beyond global, convection-

parameterized ensemble guidance on which to base a skillful forecast with increasing lead time, with

the biggest jump between Days 1 and 2.

Except for hail (Fig. 6.12b), which exhibits a springtime maximum in skill, all RF outlooks exhibit

a climatology-relative peak in skill during the cold-season (Fig. 6.12a,c,d). In fact, hail exhibits essen-

tially an inverted seasonal cycle in forecast skill compared with the other variables, since hail outlooks

verify worst in the winter and other variables verify worst in March. Tornadoes and wind also exhibit

a skill minimum in late summer–early autumn, consistent with SPC outlooks verified in Chapter 5.
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FIG. 6.11. Same as Figure 6.10, except depicts the difference in BSS between ML outlooks and the

analogous outlooks issued by SPC. Greens indicate ML forecasts outperform SPC; browns suggest

the opposite. Due to data availability, a slightly shorter 13 September 2012–31 December 2016

period is used for the Day 2 and 3 outlook verification comparison.

For all severe weather predictands, the severe and significant severe events have nearly identical sea-

sonal cycles in forecast skill (Fig. 6.12). Comparing against SPC, while there does not appear to be a

clear seasonal or monthly signal in the skill difference for tornado outlooks (Fig. 6.12a), the primary
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FIG. 6.12. BSSs by month and comparison between ML and SPC outlooks for (a) tornado and sig-

nificant tornado, (b) hail and significant hail, (c) wind and significant wind, and (d) Day 2 and

3 outlooks. Lines are colored as indicated in the panel legend; shading about the line indicates

95% confidence bounds obtained by bootstrapping. Differences are ML-SPC, positive numbers

indicating ML outperforms SPC. Note that the y-axis varies between panels.

advantage for SPC outlooks over the RF counterparts in hail and wind appears to come in the month

of July, where SPC outlooks performed very well (Chapter 5) and substantially outperform the RF out-

looks. In contrast, in the Day 2 and Day 3 comparison, RF outlooks outperform SPC by the most during

the summer, maximizing in July. These differences are all consistent with the SPC being able to ef-

fectively harness the advantages of convection-allowing guidance for their Day 1 convective outlooks

over the warm-season, where the responsible physical processes are predominantly smaller-scale and

more weakly forced than cold-season events. At Day 2 and 3, where convection-allowing guidance is
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FIG. 6.13. Attributes diagrams for ML-based outlooks. Colored opaque lines with circular points

indicate observed relative frequency as a function of forecast probability; the solid black line is

the one-to-one line, indicating perfect reliability. Colors correspond to different severe predic-

tands and lead times as indicated in the panel legend. Semi-transparent lines indicate the total

proportion of forecasts falling in each forecast probability bin, using the logarithmic scale on the

right hand side of the figure. Probability bins are delineated by 2.5%, 3.5%, 5%, 7.5%, 10%, 12.5%,

15%, 17.5%, 20%, 25%, and 30% thresholds for Day 1 tornado forecasts, and by 5.5%, 7.5%, 10%,

12.5%, 15%, 17.5%, 20%, 22.5%, 25%, 27.5%, 30%, 35%, 40%, 45%, 50%, 55%, and 60% for all other

forecast sets. Horizontal and vertical dotted lines denote the “no resolution” lines and correspond

to the bulk climatological frequency of the given predictand. The tilted dashed lines depict the

“no skill” line following the decomposition of the Brier score. Error bars correspond to 95% relia-

bility confidence intervals using the method of Agresti and Coull (1998), where non-overlapping

neighborhoods are assumed to be independent.

largely unavailable, SPC outlooks suffer from biased guidance that cannot come close to resolving the

responsible physical processes. These biases are largest in the convectively-active warm-season; the

RF outlooks, using years of historical data, are able to robustly identify and correct for many of these

biases, leading to the largest improvements in skill when the model biases are largest and the least

skillful external guidance is available to the human forecaster.
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Reliability diagrams for the RF outlooks (Fig. 6.13) demonstrate quite calibrated forecasts along

the spectrum of the probability distribution. A slight underconfidence bias is observed for most pre-

dictands, but otherwise calibration remains quite good until the highest probability bins, where sample

size is very small. Maximum forecast probabilities get as high as approximately 30% for tornadoes, into

the lower 50% range for hail and wind, and into the lower 60s for any severe at Days 2 and 3. The main

exception to calibration is the tornado forecasts, which are characterized by a slight overforecast bias.

This may be attributable to large differences in the event frequency between the training sample, which

featured many highly active tornadic years, and the test period, which as discussed in Chapter 5, was

relatively quiescent.

The weighted blend of SPC and RF outlooks described in Chapter 6.2 (Fig. 6.14) unsurprisingly

demonstrates forecast skill spatial characteristics of both the interpolated SPC Chapter 5 and RF (Fig.

6.10) outlooks. Most prominently, the high skill in the northern states in the SPC outlooks is reintro-

duced to the blend in the hail and wind outlooks (cf. Fig. 6.10c,6.14c; 6.10e,6.14e). For predictands in

which the skill difference is large between the two outlook sources, such as for significant wind (Fig.

6.14f) and the medium-range outlooks (Fig. 6.14g,h), the blended outlooks verify very similarly to the

more skillful component, in part simply because the weights direct the blend heavily towards that com-

ponent. Across the board, the SPC RF blend verifies as or more skillfully than the SPC outlooks alone—

both in space (Fig. 6.15) and when aggregated across CONUS (Fig. 6.16)—a testament to the utility

of the RF guidance in improving operational severe weather forecasts. Even at Day 1, where SPC out-

looks outperform the raw RF guidance (Fig. 6.16), the blended forecasts outperform both the raw SPC

and raw RF outlooks. In the case of hail and wind, the margin of improvement is considerable, with

BSS improvements of 0.061 and 0.053 respectively (Fig. 6.15c,e). At Day 2 and 3, while the blend is

not able to improve skill over the RF outlooks (Fig. 6.16), that difference is already considerable when

compared with the SPC outlooks at 0.044 and 0.048 (Fig. 6.15g,h). Consequently, the blended forecast

exhibits much improved skill compared with the raw SPC outlooks for all eight forecast predictands

evaluated (Fig. 6.16). Even more encouragingly, the skill improvements are seen across all regions of

CONUS (Fig. 6.15) with fairly uniform distribution. For hail, wind, and the medium-range outlooks,

the skill differences are statistically significant over all except for pockets of western CONUS where the

climatological event frequencies are insufficient to produce a robust sample. Hail outlooks ae most

improved over the Mississippi Valley region into the Midwest, while wind outlooks are most improved
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FIG. 6.14. Same as Figure 6.10, except for the weighted blend of SPC and ML outlooks.
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FIG. 6.15. Same as Figure 6.11, except for the weighted blend of SPC and ML outlooks.

over the southern Plains, and the medium-range outlooks most improved over the East Coast urban

corridor.
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One additional instructive skill decomposition inspects forecast verification in the CAPE vs. shear

parameter space. The raw RF hail (Fig. 6.17d) and wind (Fig. 6.17g) forecasts exhibit high skill through-

out much of the parameter space. Wind forecasts are skillful throughout essentially the entire space,

with a skill minimum in the low CAPE, low shear corner of the parameter space. Hail (Fig. 6.17g) ex-

hibits a local BSS minimum in this region as well, but has primary skill minima in the high CAPE, low

shear and especially the low CAPE, high shear corners of the parameter space. Tornado forecast (Fig.

6.17a) verification results are more mixed. Like hail, forecast skill suffers in scenarios with ample supply

of CAPE or shear, but little of the other. Skill is significantly positive when sufficient amounts of both in-

gredients are in place, but outlooks are not always skillful relative to climatology with less pronounced

convective ingredients, as evidenced by the interior pockets of blue in Figure 6.17a. The addition of the

weighted average with SPC outlooks (Fig. 6.17b,e,h) improve outlook skill across the parameter space

while leaving the character of the skill distribution much the same. Skill improvement is especially ev-

ident in low CAPE scenarios with low to moderate wind shear (e.g. Fig. 6.17e); skill improvement is

minimal in the high CAPE, low shear and low CAPE, high shear corners of the parameter space, where

as shown in Chapter 5, SPC outlooks also struggle. In comparison to the raw SPC outlooks, the blend

of the RF-based ML forecasts with the SPC outlooks yields skill improvements across the parameter

space for hail (Fig. 6.17f) and wind (Fig. 6.17i) forecasts, and across much of the domain for tornadoes

(Fig. 6.17c). The skill improvements are largest in the low shear end of the parameter space, especially

with high CAPE. Moderate to high wind shear is a necessary ingredient for supercell activity, processes

which can be much better resolved by convection-allowing models than parameterized guidance like

the GEFS/R. Benefit of employing these RF outlooks can likely be maximized on the low shear end of

the parameter space because the benefits from the statistical learning are more offset by an inferior

representation of the underlying dynamics in the GEFS/R in high wind shear scenarios.

Finally, a brief case study example is provided in order to illustrate the real-time character of the

ML model forecasts. Across many cases, the spatial character of the ML-based outlooks are often very

similar to those produced by SPC. This is seen for the outlooks valid 1200 UTC May 9 2016–1200 UTC

May 10 2016 (Fig. 6.18), a period in the middle of a moderate-severity multi-day outbreak which spread

from the Colorado Plains out to Appalachia. This 24-hour period, while not the most intense outbreak

of the evaluation period, garnered a considerable number of reports for each severe weather phenom-

enon in different areas, including significant severe observations for each. Tornadoes (Fig. 6.18a,b)

occurred primarily in two groups. One cluster centered about southern and southeastern Oklahoma,
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FIG. 6.16. CONUS-total BSS for each of the eight verified predictands for the SPC outlooks (yellow

bars), ML forecasts (blue bars), and weighted average of the two (green bars). Error bars indicate

95% BSS confidence bounds obtained via bootstrapping.

with scattered reports up into central Oklahoma and south and east into Arkansas and far northeastern

Texas. The second cluster was more broadly spread out from southern Nebraska and northern Kansas

east across Iowa and Missouri into western Illinois. Both had at least one significant tornado embed-

ded. Hail observations (Fig. 6.18c,d) were more focused in a north-south oriented region extending

from the Oklahoma-Texas border into far northern and northeastern Nebraska, with significant ob-

servations seen throughout this region. Wind observations (Fig. 6.18e,f), in contrast, were observed

only in two regions: a tightly clustered region in south central Kansas, and a broader region from the

Texas/Oklahoma/Arkansas triple point extending northeast across Arkansas into southeastern Mis-

souri. SPC’s Day 1 tornado outlook (Fig. 6.18b) highlighted the southern domain reasonably well, with

a 10% risk contour, but was generally too far southeast with many tornadoes occurring on the edge

of the 2% probability contour, and most of the northern cluster was missed entirely. They identified
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FIG. 6.17. BSS evaluation broken by CAPE versus shear parameter space for tornado, hail, and

wind outlooks in panels (a)–(c), (d)–(f), and (g)–(i) as partitioned in Herman et al. (2018) and de-

scribed in the chapter text. Unfilled contours replicate the filled contours at the -0.3, -0.2, -0.1,

0.1, 0.2, and 0.3 levels and are included for quantitative clarity. The left column depicts verifica-

tion of the ML forecasts, the center column to the evaluation of the weighted blend of SPC and

ML outlooks, and the right column presents the skill score difference between the blend and the

raw interpolated SPC outlooks, with greens indicating an improvement over the SPC outlooks and

browns representing loss of skill. Stippling indicates regions where the sign of the BSS or BSS dif-

ference is statistically significant with α=0.05 based on bootstrap resampling.

hail (Fig. 6.18d) as the primary risk of the day, with a 30% risk contour in addition to a significant hail

contour over eastern Oklahoma, western Arkansas, and far northeastern Texas. Their wind outlook

had essentially an identical outline to the severe hail one, except topping out with approximately 15%

event probabilities and no significant wind contour.
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The ML Day 1 outlooks did several desirable changes compared with the SPC outlooks. The tor-

nado outlook (Fig. 6.18a) both indicates higher risk, with a maximum tornado probability over 15%;

displaces the maximum to the northwest where more events were observed; and extends the proba-

bilities farther north to at least indicate some appreciable risk in the northern cluster, albeit still lower

than in the southern region. The hail (Fig. 6.18c) and wind (Fig. 6.18e) outlooks are more distinct,

with higher hail probabilities to the north and west over Oklahoma, Kansas, and Nebraska and lower

probabilities to the east; these changes again better collocate the high event probabilities with the ob-

servations. Compared with hail, wind probabilities maximize to the southeast over eastern Oklahoma

and Arkansas. The models also had better spatial placement in the medium-range, even indicating

the two primary risk areas at Day 2 (Fig. 6.18g), and encompassing the western severe weather obser-

vations when the operational outlook (Fig. 18h) did not. This was further magnified at Day 3 when

only a 15% severe probability was indicated and many severe weather over the Central Plains were not

encompassed by the 5% marginal contour in the operational outlook (Fig. 6.18j), while nearly every

observation was encompassed by a marginal contour at Day 3 in the ML outlook (Fig. 6.18i) and se-

vere probabilities maximized over 30%. While not all cases demonstrate this degree of success, this

case study exemplifies many of the benefits consistently demonstrated by machine learning: relative

spatial placement of risks, approximate risk magnitudes, and rarely missing observed events entirely.

6.5 SUMMARY AND CONCLUSIONS

RFs have been trained to generate probabilistic predictions of severe weather for Days 1–3 across

CONUS with analogous predictands to SPC’s convective outlooks, with tornado, hail, and wind treated

separately at Day 1 and collectively for Days 2–3. Distinct RFs were trained for western, central, and

eastern CONUS as partitioned in Figure 1. Inputs to the RFs came from the GEFS/R ensemble me-

dian of 12 different atmospheric fields: APCP, CAPE, CIN, PWAT, U10, V10, UV10, T2M, Q2M, MSHR,

and DSHR. For the Day 1 models, three additional predictors were used: RH2M, ZLCL, and SRH. The

spatiotemporal evolution of each of these fields in the vicinity of the forecast point—up to 1.5◦ away

in any direction for some fields and up to 3◦ away in others, depending on the grid resolution (see

Table 1)—throughout the forecast period was included in the predictor set to provide a comprehen-

sive assessment of the simulated environmental conditions for each severe weather forecast. 3-hourly

temporal resolution is used for Day 1 and 2 models, and 6-hourly resolution was used for Day 3. Each

of the fifteen RFs—three regions, five predictands—was trained on nine years of forecasts spanning
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12 April 2003–11 April 2012. The identified relationships between simulated model variables and ob-

served severe weather during that period were assessed using RF FIs. The trained RFs were then run

over an extended withheld test period spanning 12 April 2012–31 December 2016 and the performance

of these forecasts assessed, both in isolation with a climatological reference and relative to SPC con-

vective outlooks issued during the same period.
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FIG. 6.18. Outlooks from the ML models and interpolated SPC contours valid for the 24-hour pe-

riod ending 1200 UTC 10 May 2016 in the left and right columns, respectively. Filled contours

depict severe probabilities as indicated by the corresponding colorbar on figure bottom; unfilled

contours indicate significant severe probabilities for the corresponding phenomenon as appli-

cable. Panels (a)–(b), (c)–(d), and (e)–(f) depict respectively Day 1 tornado, hail, and wind out-

looks, while panels (g)–(h) and (i)–(j) show Day 2 and Day 3 outlooks issued previously for the

same valid period. Severe weather reports for the period are shown with red, green, and blue cir-

cles for tornadoes, hail, and wind. Darker colored stars indicate significant severe reports for the

color-corresponding phenomenon.

The statistical relationships identified by the RFs bear considerable correspondence with known

physical relationships between atmospheric variables and severe weather, lending credence to the ve-

racity of the model solutions. For example, CAPE, CIN, and wind shear—some of the most commonly

used variables to characterize severe weather environments (e.g. Johns and Doswell 1992)—are consis-

tently identified as the most predictive variables for forecasting severe weather. More nuanced iden-

tifications are made as well, including more emphasis on kinematics in tornado prediction compared

with hail and wind, and additionally, wind difference over a shallower vertical layer being more predic-

tive for tornadoes than for hail and wind. Even spatiotemporal relationships that are identified accord

with physical intuition, such as meridional wind to the south of the forecast point speaking to the de-

gree of temperature and moisture advection into the region, and upstream pressure transitioning to be

over and eventually past the forecast point during the forecast period. Previously identified dynami-

cal model biases (e.g. Wang et al. 2009, , discussed also in Chapter 4) also emerge objectively from the

analysis, including the northward displacement bias of convective systems in the GEFS/R and other

convection-parameterized models.

The trained models produce real-time forecasts on unseen inputs that exhibit similar spatial and

quantitative character to their human-produced counterparts. In general, they produce somewhat

larger regions of marginal risk equivalence and fewer incidences of moderate and high risk-equivalent

outlooks. This behavior can be largely attributed to the ML-based outlooks being informed by less total

real-time information—a single ensemble rather than many different models coupled with

observations—and lower-resolution output than is available to the human forecaster, leading to lower

confidence and higher uncertainty. Nevertheless, ML outlooks do produce across the gamut of risk

categories for all lead times, and the differences in real-time forecast guidance are typically merely

quantitative, rather than highlighting completely different risk areas when compared with SPC out-

looks.
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In terms of aggregate performance, the outlooks demonstrate impressive probabilistic forecast

skill, significantly outperforming equivalent SPC outlooks at Days 2 and 3 as well as for significant se-

vere events at Day 1, while underperforming SPC outlooks somewhat in the standard categories at Day

1. However, a weighted blend of the two outlooks statistically significantly outperformed the SPC out-

looks for all phenomena and lead times, with the blend also significantly outperforming the raw ML-

based outlooks at Day 1. The largest improvements came for hail and wind, with less gain seen in the

tornado outlooks. Spatially, the skill gains of the blend were nearly spatial uniform, although the most

gain was generally seen in the Mississippi Valley at Day 1 and the East for Day 2 and 3 with the most

variability in the West owing to the low climatological frequency and small sample size. Seasonally, the

largest gains at Day 1 tended to occur during the winter and spring, with the largest medium-range

gains seen in the summer. Finally, the largest forecast skill improvements generally came when wind

shear was relatively low, but across the spectrum of environmental CAPE.

Some limitations of this analysis should be noted. Principally, due to a combination of logistical

and practical constraints, SPC outlooks are inherently limited in their probability contours, and so the

human forecaster cannot issue probabilities across the entire probability spectrum like ML-models

can. Some of this is partly overcome here by interpolating between SPC probability contours, which

in Chapter 5 was demonstrated to yield higher probabilistic skill compared with the uninterpolated

outlooks. However, some limitations remain. In particular, probabilities much above the highest risk

contour, 60%, cannot be produced even with interpolation. More significantly, risk contours below the

lowest risk contour—2% for tornadoes and 5% for everything else—cannot be produced at all without

imposing additional assumptions about probabilities in the vicinity of but outside risk contours. In-

stead, all forecast probabilities outside the lowest risk contour are assumed to be zero. The ML-based

outlooks frequently forecast event probabilities above 0 but below 2 or 5%, and can gain considerable

probabilistic skill simply by virtue of having higher resolution in this domain of the probability space.

This effect is further exacerbated for significant severe events. Here, SPC only issues a 10% risk con-

tour, and can thus only issue 0 or 0.1 event probabilities. Forecasts above 10% do occur, but are quite

rare in the ML-based outlooks, and the majority of the skill reaped in its outlooks occur from its above-

climatological event probabilities that are nevertheless below 10%.

Notwithstanding these limitations, the results of this study demonstrate great promise for the ap-

plication of machine learning to operational severe weather forecasting, particularly in the medium-

range. Moreover, when combined with the outcomes of other studies (e.g. Herman and Schumacher
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2016b, , Chapter 3), the favorable comparison with operational benchmarks across a wide range of ap-

plications suggests utility in analogous methods as a statistical post-processing tool across the broader

domain of high-impact weather prediction (e.g. McGovern et al. 2017). The approach taken here is

fairly simple, and based on relatively unskillful dynamical guidance compared with the current state of

operational dynamical NWP. Future work that investigates use of more sophisticated pre-processing;

additional physically-relevant predictors; use of additional data sources, including observations,

convection-allowing guidance, and other dynamical ensembles; and more detailed and individualized

treatments of the different severe weather predictands (e.g. Gagne et al. 2017) into a single synthesized

machine learning-based probabilistic forecast model may yield considerable additional skill compared

to what has been demonstrated here. Nevertheless, even this straightforward implementation has il-

lustrated considerable potential benefit for using machine learning in operational severe weather fore-

casting, and further research in this domain is certainly warranted.
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CHAPTER 7

CONCLUSIONS

This dissertation has conducted systematic efforts to better understand the best frameworks from

which to approach both extreme rainfall and severe weather, diagnosing strengths and biases in exist-

ing operational forecasts and analysis tools for each forecast domain. These studies, detailed in Chap-

ters 2 and 5, laid the foundation for subsequent studies, discussed in Chapters 3, 4, and 6, which make

a concerted effort to directly improve real-time forecast quality of these high-impact weather events

through ML-based SPP. Systematic investigations were conducted using over a decade of GEFS/R fore-

casts to train models to produce CONUS-wide probabilistic event forecasts at Days 1–3, closely mim-

icking existing operational products in WPC’s Excessive Rainfall Outlook and SPC’s Convective Out-

look. Numerous sensitivity experiments were conducted to explore optimal algorithmic configuration

and, more importantly, to investigate how different pieces of forecast information can be most effec-

tively used as predictors. Examination of the internal properties of the trained models was also made.

Overall, through a combination of quantitatively identifying known physical relationships and diag-

nosing both known and unknown recurring model biases, the post-processing models developed in

this dissertation were able to add value the current state-of-the-science. In the case of extreme rain-

fall, the developed ML models based on the GEFS/R significantly outperformed a much better, state-

of-the-science model in the ECMWF ensemble prediction system. Perhaps even more notably, for se-

vere weather forecasts, the GEFS/R-based RFs were found to significantly outperform SPC outlooks

at Days 2 and 3, and to help improve forecast skill even at Day 1. Considering the datedness of the

GEFS/R compared with its higher-resolution counterparts with updated physics and numerics, this is

a rather impressive feat. The relative simplicity of the approaches taken and the success across forecast

problems tackled both within and outside this dissertation suggest considerable unrealized potential

on other forecast problems and datasets across the gamut of weather forecasting applications. The

relative simplicity in training these models further indicates a path towards steady development and

implementation of these ML post-processing models in forecast operations over coming months and

years.

It is worth taking a moment to consider the future role of the forecaster. Seeing such strong re-

sults from the ML algorithms developed here, the question naturally arises: will there be utility in

continuing to have human weather forecasters as more of these kinds of products are developed and
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implemented? Despite the demonstrated success of these algorithms and potential for even greater

achievement, I would argue quite vigorously that there will, at least for the foreseeable future. Auto-

mated post-processing algorithms will always have limitations, allowing the human forecaster to add

value in a number of ways. In many cases, the automated product will not be based on all information

available to the human forecaster. In those circumstances, the human forecaster must be able to intel-

ligently synthesize the post-processed model output with the external information, and be able to rec-

oncile such input when it appears to be at odds with the statistical model forecast. Any post-processing

model also imposes certain assumptions. Even in the case of a very general algorithm that imposes al-

most new structural assumptions on how the predictors relate to one another or to the predictand,

there are still assumptions either that the training data was sufficient to provide adequate insight into

the model’s performance in all circumstances, or assumptions are imposed on how to extrapolate to

unseen conditions. In either case, such assumptions may be invalid, and the human forecaster may

add value by recognizing such circumstances and appropriately correcting for them. Third, a human

forecaster often has local knowledge that an algorithm does not. In some cases, this can be providing

resolution at the microclimate scale not well represented either by the dynamical or statistical model.

Even for a well calibrated model, biases can still emerge at very local scales and for combinations of lo-

cality, seasonality, and weather regime; the forecaster can look for, identify, and correct for such model

deficiencies where and when they do occur. A model is also only as good as it is formulated, and there

can be regional differences in the utility and interpretation of the model predictand. For example, for

flash flood forecasting, a model developed based on using a particular QPE source will have different

biases and correspondence with actual flash flood observations in different regions of CONUS; the fore-

caster can be cognizant of these variations and add interpretative value in deciphering the model out-

put. Lastly, forecast information is often highly complex, multi-faceted, and uncertain; this can make

it very difficult for end users to translate raw forecast information into effective decision-making. The

human forecaster plays and will continue to play a critical role in interpreting and appropriately com-

municating forecast information to a diverse array of end users in a way that will lead to the clearest

understanding and best decision-making by those parties.

The potential avenues for future research directions are so long and abundant so as to be (metaphor-

ically) capable of mapping a large city. The side streets and alleys are oriented in several directions.

There remain many possible different predictands on which to attempt applying the SPP methodology

implemented in this dissertation: different forecast problems, different datasets, different locations
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and lead times. But beyond that, even the research conducted is incomplete even for the weather phe-

nomena studied. New predictors, especially pertinent derived variables not native in model output,

remain to be evaluated. More sophisticated characterizations of spatiotemporal variability of simu-

lated fields and ensemble information remain to be explored. The pre-processing of predictors re-

mains an unpicked yet fruitful area of future research. Chapters 3 and 4 investigated one form of pre-

processing with PCA, but as noted there, PCA has structural limitations and there are many alternative

approaches which may prove more effective. A more comprehensive evaluation of alternative ML algo-

rithms presents another vast domain for future research. Like dynamical NWP models, ML algorithms

are becoming increasingly sophisticated each year—to such an extent that even the techniques em-

ployed herein may be considered somewhat antiquated to some in the ML community. For example,

neural networks and in particular “deep” neural networks containing many hidden layers to succes-

sively encode from the raw predictors to the final predictand afford the ability to learn optimal predic-

tor processing automatically rather than the model developer imposing their own perceptions of those

relationships directly into the algorithm by virtue of how they choose to process the raw predictors. So-

called “deep learning” research is still very young when applied to NWP, but early results within NWP

and in other fields suggest immense future potential continuing in this direction. This research repre-

sents an important and necessary first step in rapid advancement of NWP, but so much remains to be

accomplished.

The results presented herein suggest considerable breadth to the scope of potential applications of

ML methods towards effective post-processing. There are a few “highways”—areas where considerable

and highly valuable research innovations remain to be made. One such highway concerns the use of

intelligent post-processing to integrate disparate forecasts and tools. At present, there are a plethora of

different models used for a variety of scenarios and use cases. Spatially, dynamical models span from

global to continental to regional and in some cases even smaller scales. Temporally, some models are

used heavily for hour-ahead forecasts, others for the day-ahead time frame, more for the medium-

range, and different models still for subseasonal to seasonal forecasting. From the statistical modeling

standpoint, different products exist for certain sensible weather elements and weather regimes, and

as noted in Chapter 1, different products, methods, and tools exist for the relatively quiescent versus

rare, high-impact scenarios. In most cases, we have a host of models giving often conflicting guid-

ance, produced by different centers or just as independent simulations of the same model in the case

of an ensemble. This reality makes certain practical sense; after all, different forecasts warrant varied
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approaches to tackling the task, and a combination of computational constraints, chaos, and differ-

ent underlying governing processes result in the most practical, effective choices varying for different

forecast applications. Each approach also exhibits certain flaws and biases, and different approaches

can give a more accurate and complete perspective of the weather situation than the use of a single

“best” model. Nevertheless, space, time, magnitude—these are all continuous phenomena that have

been discretized many times. One of the advantages of SPP, and in particular ML methods such as

those employed here, is its ability to synthesize many different pieces of predictive information and

distill them into a single, cohesive product using a unified framework. This has been demonstrated

to some extent in this dissertation, with the developed models assimilating an ensemble of forecasts

with climatological information pertinent to the forecast task. But this barely scratches the surface of

the potential use of ML SPP in integrating NWP. It can be used to synthesize inputs from more models,

to link products at different spatial and temporal scales, and connect the benign with the extreme to

produce a more robust, streamlined, and interpretable analysis.

The benefits of conducting these additional explorations would not be simply limited to more con-

sistent, skillful, and manageable operational, but this can also be used as a powerful tool for scientific

inquiry. One justification for the abundance of different models in use is that each model has dif-

ferent strengths and weaknesses, and different kinds of information are more and less useful at vari-

ous timescales. Present observations—station reports, radar, satellite—may be very predictive of very

near-term forecasts but essentially useless for long-term prediction. Conversely, teleconnections and

related indicators may be useful for speaking to average conditions over a broad spatial and temporal

domain at seasonal time scales, but worthless at predicting the location of a severe storm two hours

ahead. Similarly, one microphysical parameterization can perform very well in certain weather regimes

while performing much inferior to the same model with a competing parameterization in other circum-

stances. ML post-processing can be leveraged to scientifically investigate both the predictive ability of

particular facets of forecast information specific to weather conditions or forecast task. But even more

innovatively, it can be used to examine the interaction of different sources of forecast information with

the predictand. What does it mean when the model forecast portrays certain conditions but the obser-

vations depict something different? When a dynamical simulations suggests one global flow pattern

but teleconnections indicate another? How about when the GFS depicts a storm in one location and

the ECMWF places it somewhere else? Or when the Morrison microphysics model produces a major
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rainstorm and the Thompson model does not? Every operational forecaster face these sorts of ques-

tions routinely, and must make determinations based on his or her knowledge and experiences. But

the role of joint information such as this has been explored only very preliminarily to date, and much

of it is limited to case studies as opposed to more comprehensive analysis. ML provides an objective,

methodical approach to investigate these important practical questions, which can in turn be used to

improve parameterizations and alleviate model biases.

Another highway concerns the interpretability of ML models. One of the biggest obstacles to the

proliferation of ML both in operational forecasting as well as scientific inquiry remains the perception

that these models are “black boxes”. One of the most powerful aspects of ML and related algorithms is

the ability to quickly and accurately analyze the massive datasets available in the meteorological com-

munity in a very general way, without imposing many assumptions about the underlying data. How-

ever, by the same token, this same flexibility afforded in analysis can make the process of understanding

the findings generated all the more difficult to distill. That does not by any means make human inter-

pretation and understanding impossible. Though by no means comprehensive, chapters 4 and 6 have

taken first steps in investigating how ML forecast models can be used to gain both statistical and dy-

namical insights about a forecast problem. However, there remains significant unexplored knowledge

encoded in the trained models, including how the model behaves in specific meteorological regimes

and how different predictors interact with one another. With additional effort, such valuable insights

may be reaped by scrutiny of these and other ML models. It should also be noted that some of the

motivation for selecting RFs for this work came from the relative ease of interpretation. Other ML algo-

rithms, such as neural networks and support vector machines, are even more challenging to interpret

and distill. For operational forecasting, this lack of interpretability leaves the human forecaster feeling

as if they cannot add any additional value beyond what is supplied by the ML model, unable to diagnose

what factors and to what extent each factor has been accounted for in the model prediction. Research

is ongoing to improve interpretation of ML and deep learning models; such gains could sharpen an

already powerful analysis tool while simultaneously producing more tractable, usable forecasts.

A third highway relates to the often neglected “post-post-processing” step of the forecast pipeline.

In this dissertation and many other parallel advancements, the NWP community is making consider-

able gains in the quality of automated forecast guidance through SPP. However, ultimately the most im-

portant outcome of weather forecasting is improved decision making, and one lagging area of research

relates to the science and mathematics of effective translation of forecast information into decisions.
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Decision making is a highly complex, multi-faceted, and multi-disciplinary process. It is very much

a psychological and sociological consideration; making advances in decision science will require par-

allel advances in understanding how decision makers, be they the broader public or a more targeted

audience, weigh various outcomes, priorities, and objectives to formulate an actionable decision. But

it is also a mathematical one, and decisions are ultimately an integration of the quantified full range of

possible weather outcomes (probability density function) coupled with the objective results of those

outcomes. The science in all facets of this area is still young, and much remains to be research on

producing, processing, and communicating forecast information in manners that result in the most

effective, actionable decisions.

The final highway lies on the shadier side of town, and warrants brief additional prefacing. There

are two primary, related limitations to ML-based SPP as employed in this dissertation. The first is

the difficulty in incorporating new data into the post-processing as it becomes available. Advances

and new information are constantly being introduced to the forecast process, including new models

and analysis datasets. It is certainly desirable to be able to incorporate this process into the forecast

pipeline, as is done in the human forecast process. However, current supervised learning practices use

a single, consistent predictor set for training an SPP model; this requires the predictor to be generable

not just for the present forecast, but through the entire training period. In the case of new predictive

information becoming available mid-training period, current methods generally require an unappeal-

ing choice between not using such information or truncating the training period. Algorithmic inno-

vations that would more directly and robustly handle missing predictors in the training set would be

enormously helpful in developing skillful, long-lasting post-processing models. The second, related

problem points to a prominent schism in the NWP community. One of the most persistent, recur-

ring challenges remains the conflict between dynamical model developers and the post-processing

community. The enormous advances have been made as a community over the last several decades,

much remains insufficiently understood about the physics of certain atmospheric processes. These

processes are being actively researched, and when new knowledge about how the system being mod-

eled behaves is acquired, it is natural to want to incorporate that knowledge into the model. Addition-

ally, as noted previously, many small-scale physical processes simply cannot be represented in current

operational forecast models due to insufficient model resolution. Advances in computation power

continue to permit increases in model resolution and changes to improve model numerics, reducing
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numeric errors and allowing more accurate representation of smaller-scale processes. It is natural to

want to incorporate these improvements as soon as they become practical possibilities.

However, such changes directly conflict with current best practices for effective SPP. Such changes

can fundamentally alter the performance and bias characteristics of the model. If a skillful

post-processing algorithm diagnoses a recurring model bias in its past history and develops an objec-

tive correction for it, applying the post-processing to that biased model will alleviate that bias. But

then when information is discovered to help explain why that bias is occurring, the model developer

may very reasonably be inclined to revise the model to alleviate that bias directly. The post-processing

algorithm is unaware, however, that this bias has been removed from the model and applies the same

corrections now to the detriment of the final forecast. With a frequently updated and revised model,

the bias characteristics of that model are also constantly changing. This makes it extremely difficult for

contemporary post-processing approaches to accurately identify biases of the current model version

from a historical record of the model; instead, the post-processing community benefits from the model

being left static for an extended period of time so that a post-processing algorithm has an opportunity

to learn the errors and biases of the model and make corrections itself. In some senses, the same is true

for the human forecaster: they know how to interpret and correct for deficiencies for models they’ve

been looking at for a long time, while they cannot apply their expertise and experience in the same way

when introduced to a new model.

This creates a fundamental disconnect between the optimal actions for the dynamical model de-

velopers versus those for a SPP model developer. Advances in forecast quality can surely come most

rapidly when the entire NWP community is working collaboratively rather than purely competitively.

The current paradigm is not particularly conducive to such a collaborative environment between the

communities. In current operational practice, one of three avenues is generally pursued, either by

design or happenstance. In the first, a model is updated frequently as more computation power be-

comes available, new parameterizations are developed, and biases are identified. Consequently, only

limited post-processing can be performed to correct the latest biases in the model. This is likely the

most common of the three; one prominent example following such a model is the High Resolution

Rapid Refresh (HRRR). In the second approach, the model remains static in the same configuration

for an extended period; the model becomes antiquated as newer models are introduced, but its biases

can be corrected for statistically through SPP. One notable historical example of this is the Nested Grid

Model (NGM), introduced in 1987; a MOS system was developed to post-process the NGM which was
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heavily used in forecast operations until 2009, despite the introduction of more modern models in the

Eta and AVN/MRF models in the 1990s and later the NAM and GFS, respectively, earlier in the 2000s.

The third approach gets the best of both worlds: introduce revisions to the dynamical model as they

are available, but provide a new record of reforecasts of historical cases each time such an upgrade is

made. This allows dynamical model developers to make improvements to the model, but also allows

for the development of robust SPP algorithms to be developed and tailored to the particular model.

The long record of reforecasts generated for the GEFS/R was necessary for the creation of the models

developed in this dissertation, and like approaches would likely not have been as effective with a con-

stantly updating model. For example, Herman and Schumacher (2016b) found substantially degraded

performance using only a 9 month training period compared with one spanning 3 years. This problem

becomes further amplified with increasingly extreme, high-impact events, as even more cases must be

collected in order to acquire an adequately large sampling of historical instances of the extreme event.

However, this approach has one major limitation: producing these reforecasts can be extraordinarily

computationally expensive and time consuming. Resources are often not afforded for this purpose,

making the generation of a reforecast dataset infeasible.

A paradigm shift may be necessary to mend this gap. One approach may be to move away from

the “offline” model framework used in this dissertation and commonly used in SPP more generally,

whereby a model is trained from a set of historical cases to produce a static model that generates pre-

dictions for new, unseen cases. In an alternative “online” framework, the model itself updates as new

forecasts are supplied and issued. Although not perfect, over time, the model will adapt to changes in

underlying bias characteristics of the supplied predictors. This approach offers some clear advantages,

but still either suffers from the effects resulting from predictors with inconsistent biases or from the ad-

verse consequences of a shortened training set. Taking the “online” approach one radical step farther,

another possibility is to incorporate ML directly into a dynamical model via the parameterizations or

even the dynamical core. Many aspects about dynamical model formulation remain uncertain, either

because of insufficient knowledge about a physical process, a tradeoff in numerical errors from simpli-

fication or truncation, or a combination. Recognizing this, there has been a proliferation of stochastic

physics schemes in recent years, using random plausible values rather than a single, arbitrarily decreed

one. However, this could be taken a step farther. The forecasts produced given certain combinations

of values for uncertain parameters could be recorded, with the forecast outcomes documented as well.

Using ML, the model could learn over time which combination of parameter values verify best under
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different meteorological regimes, in essence adapting parameterization and other structural simpli-

fications to be the least damaging for the specific present meteorological conditions. By continually

updating the distribution of parameter values from which to sample as new forecasts are produced, the

model can dynamically correct for biases as the model encounters new or different weather regimes,

but also adapt organically to other model changes as those are made, without any abrupt changes in

performances characteristics.

The path is long. The possibilities are many. The future is bright.
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APPENDIX

Acronym Full Name

AI Accumulation interval

AMS American meteorological society

APCP Accumulated precipitation

ARI Average recurrence interval

BS Brier score

BSS Brier skill score

CAPE Convective available potential energy

CCPA Climatology Calibrated Precipitation Analysis

CIN Convective inhibition

CONUS Conterminous United States

CSI Critical success index

CWA County warning area

ECMWF European Centre for Medium-Range Weather Forecasts

ETS Equitable threat score

FB Frequency bias

FFG Flash flood guidance

FFR Flash flood report

FFW Flash flood warning

FT Fixed threshold

GEFS/R Second Generation Global Ensemble Forecast System Reforecast

GIS Geographic information system

HRAP Hydrologic Rainfall Analysis Project

IEM Iowa Environmental Mesonet

LCL Lifted condensation level

LR Logistic regression

LSR Local storm report

ML Machine learning

MRMS Multi-Radar Multi-Sensor QPE Analysis
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MSLP Mean sea-level pressure

NCEP National Centers for Environmental Prediction

NWP Numerical weather prediction

NWS National Weather Service

PC Principal component

PCA Principal component analysis

PD Performance diagram

POD Probability of detection

PWAT Precipitable water

Q Specific humidity

QPE Quantitative precipitation estimate

QPF Quantitative precipitation forecast

RF Random Forest

RFC River forecast center

RH Relative humidity

RPSS Rank probability skill score

RP SPC Storm Prediction Center

SPP Statistical post-processing

SR Success ratio

SRH Storm relative helicity

ST4 Stage IV Precipitation Analysis

T Temperature

U Zonal component of wind

V Meridional component of wind

WFO Weather forecast office

WPC Weather Prediction Center

TABLE A1. List of all acronyms or abbreviations used in this dissertation and their spelled out

meanings.
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