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Abstract 

THE DRAG ON A SMOOTH FLAT PLATE WITH A FENCE 

by 

E. J. Plate 
Assistant Professor, Civil Engineering 

Fluid Dynamics and Diffusion Laboratory 
Colorado Statr University 

Fort Collins, Colorado 

A method is presented which permits the determination of the drag on 

a smooth flat plate when the boundary layer along it is disturbed by a two­

dimensional, sharp edged fence. 

This method depends on the knowledge of the drag coefficient of a fence 

immersed in a boundary layer, and on the friction along the smooth plate in 

the disturbed boundary layer. The drag coefficient for the fence is cal­

culated using arguments of free streamline theory. The friction along the 

smooth plate is determined approximately from experimental data. 

The results are applied to experimental findings of Wieghardt (1) and 

satisfactory agreement was found. 

List of Symbols 

C Drag coefficient of fence Dim. [-] 
c
1 

Reference drag for fence in boundary layer Dim. [-] 
D Drag per unit width 

Q Base pressure coefficient 

a Factor of proportionality 

c Friction factor of the plate 

Dim. P-bf/ft] 
Dim. 

~~ Dim. 

Dim. 

d Maximum distance of separation streamline from plate 

h Plate height 

n Exponent in velocity distribution law 

p Pressure 

Dim. i~~ 
Dim. n. 

Dim. f- l Dim. lbf/ft2
] 
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List of Symbols (cont'd) 

u 

y 

e(x.) 
J. 

0 

p 

Average pressure of front of fence 

Velocity 

Average velocity over y = h in undisturbed boundary 
layer 

Distance from wind tunnel entrance to point i 

Vertical distance from plate 

Momentum thickness at point i 

Boundary layer thickness 

Air density 

subscript a refers to wind tunnel free stream 

b refers to separation streamline 

f refers to fence 

2 

Dim. [1bf/ft2
] 

Dim. [ft/sec ] 

Dim. 

Dim. 

Dim. 

Dim. 

Dim. 

Dim. 

[ft/sec] 

f~-] 

~:~ 
[in .] 

[slugs/ft3
] 

n refers to difference between disturbed and undisturbed 
boundary layer 

o refers to ideal flow case 

p refers to plate with disturbed boundary layer 

po refers to plate with undisturbed boundary layer 

st refers to stagnation point 
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1. Introduction 

If the boundary layer flow along a smooth flat plate is disturbed by a 

roughness element, then the total drag on the plate is increased. Most real 

surfaces are not entirely smooth, therefore it would be useful if the contri­

bution of a roughness element to the drag of the plate could be calculated. 

This is not a simple task because the drag on a plate with a single roughness 

element depends on the characteristics of the boundary layer flow as well as 

on the geometry of the roughness element. 

In this paper an analysis is presented which permits the calculation of 

the drag on a smooth flat plate with a sharp edged fence as roughness element . 

The analysis depends on experimental data which are ta.ken to determine empirical 

coefficients. 

The choice of a sharp edged fence offers advantages for both analytical 

and experimental treatment. The flow is essentially two-dimensional . Also, 

the fence causes the flow to separate at all but the very lowest velocities, 

and the separation point is always located at the top of the fence . More 

complex roughness shapes might have separation points whose location depends on 

the flow velocity. The study of drag due to such roughness elements also 

benefits from the knowledge gained from the investigation of the sharp edged 

fence, provided modifications of the arguments, as re~uired by the shapes, 

are considered. 

The problem of drag induced by a single obstacle has been treated by 

Wieghardt (1) and Tillman (3). They measured the difference D between the n 
drag forces on the plate with and without an obstacle by means of a drag balance . 

'.:Cheir results were presented as curves of a drag coefficient (per unit width) 

C , defined by 
n 

C n 

D n (1) 

where p is the density of the fluid and ~v is the average velocity over the 

height h of the element, plotted against a dimensionless parameter describing 

the geometry of the roughness element. An example is shown in Fig . 1 . Figure 1 
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as well as all other figures presented by Wieghardt (1) , reveal that the body 

geometry alone is not sufficient to specify the value of C , because the n 
drag coefficient changes with the boundary layer thickness o Therefore, 

the results of Wieghardt and Tillman cannot be applied to flow conditions other 

than the ones used for their experiments . The effects of two dimensional 

roughness elements on boundary layer flows have been studied, (e.g . (4) ), but 

no further attempts had been made to improve Wieghardt's analysis . 

The method presented in this paper is designed to overcome the short­

comings of Wieghardt ' s empirical analysis by allowing for a variable boundary 

layer thickness, and a variable mean velocity . The experimental data of Wieghardt 

are used to check the validity of the proposed metboa. . 

2 . Evaluation of Drag 

The contribution of the fence to the total drag of the plate consists of 

two parts . The first part is the drag which is caused by the fence directly. 

This is the fence drag, Df , which is , for the fence considered in this paper , 

almost identical with the resultant of the pressures on the fence, The second 

part results from the viscous shear force on the plate itself . This part is 

called the plate drag , D , and is quite distinct from the drag on the plate p 
existing in the undisturbed boundary layer, (since it reflects the changes of 

the flow field caused by the fence) . The increase in drag D which is caused 
n 

by the fence can be written formally as: 

D = D + D - D n f p po (2) 

where D denotes the drag on the plate with undisturbed boundary layer . The po 
quantity D can be calculated, for a boundary layer without pressure gradient po 
from well established techniques (Schlichting (3)). No equivalent information 

exists for the drag on a fence Df or for the drag DP on the plate with 

fence . These two quantities must be determined by experiment . 

To .. determine D , Eq. (2), it is advantageous to sub -divide the distorted 
n 

boundary layer into five regions as shown in Fig . 2. The flow in each zone can 
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be described qualitatively by using results obtained by Rouse et al (5, 6), by 

the observations of Nagabhushanaiah (7) and by the results of the present study . 

In region 1, the boundary layer flow is not influenced by the presence of the 

fence, and considerations pertineot to boundary layers along smooth flat plates 

apply. The fence starts to change the flow in zone 2 . The motion near the plate 

is retarded, causing an increase in pressure . A maximum pressure is attained 

at the upstream face of the fence. At the edge of the fence the flow is strongly 

accelerated and separates from the edge. At the point of separation there is 

a decrease in pressure so that in region 3 the pressure in the boundary layer is 

below ambient . The low pressure along the separating streamline (or rather 

in the narrow zone of intense turbulence that contains portions of the fluid which 

comefrom the fence edge) is transmitted downward to the plate, since the slow 

eddying motion below the separating streamline can only sustain very small 

vertical pressure gradients . Along the separating streamline the pressure gradu­

ally increases and the velocity decreases. The resulting pressure gradient 

across the separating streamline causes a deflection of the streamline towards 

the plate , and at some distance downstream from the fence the separation stream­

line re-attaches to the plate. The re-attachment point marks the beginning of 

zone 4, the zone of redevelopment of the boundary layer . Ultimately, in zone 

5, the boundary layer again exhibits the features of the undisturbed boundary 

layer of zone 1, but with a different boundary layer thickness, reflecting the 

effect of the fence . 

The experimental data of Wieghardt (1) indicate that the difference in 

drag between the disturbed and the undisturbed boundary layer reaches a constant 

value, independent of the length of the drag plate, after the length exceeds a certain 

value. This implies that the friction coefficient of the redeveloped boundary 

Vlayer at any given point downstream from the fence has the same value as that 

of the undisturbed boundary layer at the same point. 

Therefore, the solution of Eq . (2) requires only the calculations of the 

drag contributions in the zones 2, 3 and 4. Zones 1 and 5 do not contribute to 

the increase in drag due to the fence . Contributions D and D are 
P po 

henceforth understood as pertaining only to zones 2 to 4. 
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In the subsequent sections, details of the solution for Eq. (2) are 

described, After a short description of the experimental equipment, the 

problem of the drag Df on a fence submerged in a boundary layer is treated. 

In section 4, the drag D on the plate is evaluated from experimental data. p 
The results are combined in section 5 to give a solution of Eq. (2) for the 

sharp edged fence, and the final result is compared with the experimental data 

of Wieghardt (1) shown in Fig, 1, 

3. Experimental Equipment and Procedure 

All experimental data were obtained in the large wind tunnel, located 

at Colorado State University. This tunnel has a cross sectional area of 6 x 

6 ft2 and a test section length of 88 ft. The ceiling of the tunnel was adjusted 

so that the pressure gradient in the tunnel test section was zero without fences, 

With fences, a pressure drop of less than 2 percent of the stagnation pressure 

developed at the ceiling, The fences consisted of steel plates with a machined 

sharp edge, Fence heights of 0,5, 1, 1,5 and 2 inches were used, with velocities 

from· 11 to 72 fps. Pressure taps with a hole of 1/16 in , diameter were provided 

at 1/4 in, intervals over the height of the plates. The ceiling had piezorneter 

openings ever:x; 8 ft along the center line, The velocities were determined with 

a pitot-static tube, The pressures were measured with an electronic manometer 

(Transonics Equibar Type 120), 

The drag coefficients of the fences were measured with plate heights of 

1, 1.5 and 2 in. The fences were fastened to the wind tunnel floor at different 

distances from the tunnel entrance. For measuring the velocity profiles in the 

zone of redevelopment, four fence heights were used. The fences were installed 

at a distance of 41 ft downstream from the test section entrance. For this part 

of the study only velocities of 14 and 20 fps were used. 

4. The Drag Coefficient of a Fence Submerged in a Boundary Layer 

The separation of the flow at the edge of the fence is the main factor 

that determines the drag on the fence. In this respect the flow about a fence 

submerged in a boundary layer is similar to the motion around a plate which 
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is placed perpendicular to a uniform flow. It is reasonable to expect that the 

considerations which permit the evaluation of the drag on the plate in the case 

of the free stream can also be applied to the drag on a fence in the boundary 

layer. The determination of the drag of the fence in a boundary layer shall 

therefore be based on results found for the plate in the free stream. 

The approach to a determination of the drag on a plate in a free stream 

is based on ideal fluid models. Ideal fluid models for the flow around a plate 

are shown in Fig. 3 . It is well known that the model of Fig. 3a yields a drag 

of zero. That is, the drag coefficient Cf is O , where Cf is defined by 

the eg_uation: 

= 
1/2 p u2 

0 
h 

(3) 

In this expression Df is the drag per unit width on the fence and h i s the 

fence height. The velocity u
0 

is the velocity at infinity. The free stream­

line model of Kirchhoff and Helmholtz (e .g. Birkhoff (8)) in Fig. 3b gives a 

drag coefficient C = 0.88 This value is considerably smaller than the 
0 

drag coefficient for viscous flow around the fence in the free stream of the 

wind tunnel. For this case, Fage and Johansen (9) found a value of about 2.0. 

Instead of u
0 

they used the velocity ua of the undisturbed stream in the 

core of the wind tunnel as reference velocity. 

The difference between Kirchhoff's model and experiments with real fluids 

is mainly the result of the drop in pressure behind the wall. Kirchhoff con­

sidered the pressure constant along the plate (the axis of symmetry of the ideal 

flow model) and eg_ual to the pressure at infinity. This assumption is not 

verified by experiments with real fluids , Therefore, in later analyses, a 

variable pressure pb behind the wall was introduced which is expressed by 

the pressure coefficient Q 

Q = 
po - Pb 
1/2 p u2 

0 

(4) 

The pressure pb has to be determined from other than free streamline con­

siderations. Models which extend Kirchhoff's results to flow with variable 
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downstream pressures have been proposed by Riabouchinski (cited in (8)), Gilbarg 

(cited in (8)) and Rcshko (10), Roshko's model appears to be the most realistic 

one for the air flow considered here. It is therefore included in Fig, 3c. 

This model assumes a wake pressure which is constant over a short distance behind 

the wall, and then gradually returns to the free stream pressure . The details 

of the drag calculations for this flow are discussed in Roshko's paper (12), 

For the case of the fence in a boundary layer, it is sufficient to know that 

the dependency of the drag coefficient on the pressure directly behind the plate 

in the free stream (or "base pressure"), can be expressed by the relation (given 

by Birkhoff (8)), 

= C (1 + Q) 
0 

where C is the Kirchhoff drag coefficient, which equals o.88. 
0 

(5) 

The meaning of Eq, (5) is apparent from consideration of Bernoulli's 

Equation along the separation streamline, For the separation streamline, 

1 u2 1 (6) Po + - p = Pb+ 2 p ~ 2 0 

It follows that 

Q + 1 ~ 
= u2 

and 0 

C 
Df 

(7) = 1/2 u2 0 p b h 

Equation (6) and (7) imply that the drag coefficient in the ideal flow 

case remains constant if the velocity 1\ along the streamline, rather than 

the velocity at infinity, is chosen as the reference velocity for the calculation 

of the drag coefficient . 

The usefulness of this conclusion extends even further. Valcovici (cited 

in Birkhoff (8)) shows that if the velocity 1\ is applied as a reference for 

the case of an ideal flow bounded by parallel walls (shown in Fig. 3d), then 
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the drag coefficient deviates insignificantly from the value C Hence, the 
0 

use of ¾ and C
0 

as computed from Eq. (6) serves the dual function of 

correcting for wall effects and for base pressure variations provided, of 

course, that viscous effects around the fence in the wind tunnel only influence 

the base pressure pb The wind tunnel data of Fage and Johansen (9) and 

Arie and Rouse (6) shown in Fig. 4 indicate that this is the case. The agreement 

of their experimental data with Eq. (5) (as well as with Roshko's calculated 

relation) is good. Equation (5) therefore applies to wakes where Karman vortices 

can form, and for wakes where the generation of periodic eddies is prevented 

artificially by a solid plane along the axis of symmetry of the wake. Thus, 

the drag coefficient for real flows in the free airstream of a wind tunnel 

can be determined from Eq. (5) if the base pressure coefficient Q is known . 

Unfortunately no methods other than experiments are available to calculate Q 

Equation (5) does not apply directly to experimental data if the fence 

is submerged in a boundary layer. A graph showing the dependence of our experi­

mental values of Cf on Q is shown in Fig. 4. The experimental points do 

not fall on the straight line given by Eq. (5). The deviation is explained by 

considering Eq. (6). Bernoulli's Equation in the form of Eq. (6) does not apply 

in a boundary layer . The separation streamline is identical to the stagnation 

streamline. For the fence submerged in the boundary layer, the stagnation 

pressure on the fence is not equal to the stagnation pressure in the free stream 

because, in the boundary layer, the Bernoulli sum varies from streamline to 

streamline. 

The present experiments and those of Nagabhushanaiah (7) show that the 

pressure distribution on the upstream face of the fence has a maximum value, 

which corresponds to the stagnation pressure. The location of the stagnation 

point depends on the degree of submergence of the fence in the boundary layer. 

No experimental data exist which permit an evaluation of the location of the 

stagnation point. Experimental data of Nagabhushanaiah (7) indicate that for a 

giv.en free stream velocity the distance of the stagnation point from the plate 

is proportional to the fence height provided that h/o > 0.1. The factor of 

proportionality for u = 9 to 12 fps lies between o.6 and 0.7. The present 
a 
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experiments confirm these results. However, it was found that the factor of 

proportionality depended qualitatively on the velocity of the ambient airstream. 

Experiments showed that the factor of proportionality decreased with decreasing 

velocity . 

A knowledge of the location of the stagnation point is of value only 

if it is possible to infer from it the magnitude of the stagnation pressure. 

Since this is not feasible, no attempts were made to determine the location 

exactly. However, since the distance from the horizontal plate to the point of 

maximum pressure is proportional to the fence height, the distance from t~e 

plate to the corresponding streamline at the end of the zone 1 is expressed 

also as the proportion, a , of the fence height h 

In the undisturbed boundary layer, the velocity distribution can be 

expressed by a power law of the form: 

u 
u 

a 
= 

1/n 
(l) 
8 

(8) 

This power law. relationship was used also by Wieghardt (1) with n = 7 

Furthermore, the pressure in the boundary layer is approximately equal to the 

ambient pressure Pa Consequently, the velocity along the streamline which 

becomes the stagnation streamline near the fence, is given by Eq. (8) with 

y = ah Hence, for the fence submerged in the boundary layer the relation 

which is equivalent to Eq. (6) is: 

1 u2 
ah 2/n 1 2 

pa + 2 p (-) = Pb + 2 p ~, a 8 

and 
2 

(~) 
ah 2/n 

(9) = Q + (-) 
u 8 a 

In analogy to Eq. (5), the expression for Cf becomes: 

= ( c~tn + " ) (10) 

In this equation, a is a factor which is smaller than one, and c1 is a 

reference drag coefficient, which should be independent of velocity and of Q . 
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The arguments leading to Eq. (10) depend on the assumption that a 

streamline is defined along which the contribution of the turbulence to the 

Bernoulli Equation can be neglected. Since the turbulence in the flow upstream 

of the fence has a much lower intensity than that near the separation point, 

along the separation stre~'tlline, this hypothesis might be questioned. However, 

along the separation streamline, the total turbulent energy,(i.e., energy influx 

by convection and generation and energy efflux by convection and dissipation into 

heat) is approximately zero . This was shown by Fage and Johansen (9) who found 

that Eq . (6) was valid for their data taken for a plate in the free stream of 

the wind tunnel. This was aJ.so confirmed by Rouse (5) for the case of a plate 

with splitter plate in the free stream. The reason for the agreement lies in 

the fact that above the separation streamline , energy is lost in the region of 

high turbulent shear created by the separation, while underneath the separation 

streamline the standing eddy requires continuous addition of energy to keep it 
moving. The energy can only be supplied across the separation streamline . And 

since there is no discontinuity in vertical energy distribution, a line nrust 

exist between the standing eddy and the high shear zone along which energy is 

neither gained nor lost. This line must be very close to, or identical to the 

separation streamline . Therefore, Eq. (10) can be accepted with confidence, 

provided that the numerical values of c1 , a , and of Q are known. 

The value of c1 reflects the non-uniformity of the pressure distribution 

over the fence. This beco~ clear if Eq. (3) is interpreted as the ratio of 

the average pressure pAv to the maximum resultant pressure, i.e., the stag-

nation pressure pst Similarly, C
0 

in Eq. (5) can be defined by 

C 
0 

= 
PAv - Pb 

(11) 

The same equation, with C
0 

replaced by c1 , expresses the reference drag 

of Eq. (10). The experimental distribution of pressures on a fence in a free 

stream show a shape similar to the theoretical distribution of Kirchhoff, and 
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a value of C = o.88 is reasonable. This is expressed in the curve of ?ig . 
0 

4 which shows the agreement of Eq_. (5) with measurements . For the fence s·.1bmerged 

in the boundary layer, the pressure distribution has a maximum near the top of 

the fence rather than on the bottom and the eq_uality, c
1 

= C
0 

would be 

coincidental. Instead, it has been found for all experimental data that c1 = 

0.95, with a variation of no more than+ 0.02. Here, c1 was calculated using 

Eq_. (11). 

The value of a could be determined either from the measured values 

of pt - p or from Eq_. (10) by using experimental values of Q However, s a 
a difficulty arises in defining Q because of the difficulties in determining 

the reference pressure pa If the wind tunnel is adjusted so that for a 

given velocity the pressure gradient along the test section without a fence is 

zero, then a pressure drop is caused by the fence, and p is different upstream 
a 

and downstream from the fence. Arie and Rouse (6) avoided the difficulty of 

correcting for the pressure drop by introducing a false ceiling which produced 

a pressure gradient of zero with the obstruction installed. Neither Nagabhushanaiah 

(7) nor the present data used such corrective measures . Instead, p was taken 
a 

as the static pressure in the upstream part of the wind tunnel test section 

where the pressure gradient was still zero. The value of Q which was obtained 

with this p has been used for Fig. 4. 
a 

From Fig . 4, an average relationship between CD and Q is obtai~ed by 

drawing a straight line through the data points. The equation of the straight 

line is: 

(12) 

Eq_uation (12) has a counterpart in the geometry of the wake. Birkhoff 

(8) q_uotes an analysis of Reichardt , who assumed that energy extracted from the 

flow by the fence drag is used to expand the wake to a maximum width, d 

This led to an approximate relation 

(13) 
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which was found to agree with experiments for low values of Q • Nagabhushanaiah 

(7) has demonstrated with his data the dependency of d on h His results 

are reproduced in Fig. 5. It is seen that for h/o values corresponding to 

Q < 0.5, a relationship 

d = 1.60 h (14) 

is a good approximation to the data. For values of Q larger than 0.5, Eqs . 

(12), (13) and (14) cease to apply. 

A solution of Cf in terms of known parameters, and at the same time 

a numerical value for a can be found by inserting Eq . (12) into Eq. (10 . 

If c1 = 0 . 95 is used, rearrangement yields: 

~2~ 
cf = 0.235 (5 ) • (15) 

~2~ 
The coefficient a is found by plotting (-) versus the measured C~ 

0 I 
The boundary layer thickness o was determined analytically from the law of 

the smooth flat plate for velocity distributions which obey the power law 

Eq. (8) with n = 7 (Schlichting (2) p. 537). The result is shown in Fig. 6. 
The experimental data are well represented by the relation: 

= (~) 

Comparison of Eqs . (15) and (16) shows that a= 0 .06 • Also, it is seen that 

Eq. (16) is valid for all experimental data, i.e . , it is valid over a wider 

range than Eq . (12) , and applies also to values of h/o < 0.1 below which a 

constant value of a could not have been expected. The velocities range 

from 11 to 72 fps, and no systematic deviation from Eq. (16) is observed with 

change in velocity. 

Equation (16) is a simple result obtained from arguments based on results 

of free streamline theory and experimental observations. It is valid only for 

the sharp edged fence . However, the basic reasoning should apply to other 

shapes provided that modifications are introduced which account for possible 

shifts of the separation point. 



14 

5. The Wall Friction of the Disturbed Boundary Layer 

Mean velocity data were used to evaluate the distribution of the wall 

friction coefficient in a boundary layer distorted by a fence. The mean 

velocity profiles were taken in the course of an investigation on diffusion 

in the reattached boundary layer (12). The low test velocity of 14 fps gave 

a flow which was not entirely stable in the reattached region. On different 

days, slightly different profiles were measured at the same distance downstream 

from the fence . The data, therefore, exhibit considerable scatter . However, 

they will suffice for the estimate of the difference in wall friction between 

the disturbed and undisturbed boundary layer. 

No experimental values of the friction coefficient in the standing eddy 

zone downstream of the fence are available. In this zone the velocity near the 

plate is directed upstream. Hence, the contribution to the plate drag is 

negative. On the other hand, downstream from the point where the separation 

streamline reattaches to the floor, the velocity is directed downstream, and a 

positive contribution to the drag results. Thus, there exists at some distance 

downstream from the fence a point x
2 

at which the total drag between it and 

the end point ~ of the undisturbed boundary layer of zone 1 is exactly equal 

to the drag of the fence Df Consequently, only the plate drag downstream 

from x
2 

contributes to the total drag of the plate with a fence submerged in 

the boundary layer. 

In view of the fact that only zones 2, 3 and 4 of the disturbed boundary 

layer contribute to the increase in drag, a point ~ can be defined which 

marks the end of zone 4, or more precisely, the end of the part of zone 4 where 

the plate friction coefficient c p is different from the friction coefficient 

for the undisturbed boundary layer, C po 
It will now be shown that the distance is proportional to the 

fence height h and that points x2 and ~ coincide approximately. For 

this purpose, the drag of the plate is evaluated from measured vertical velocity 

distributions by means of the momentum equation (Schlichting (2) p . 160) . It 

is assumed that no net pressure force exists. Then one obtains; 
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Df + D (x) = p u2 e(x) - e(x1 ) p a (17) 

where 

D (x) 
,-- x 

C dx 
1 u2 - I - p p -J p 2 a 

~ 

(18) 

is the friction drag on the plate between points x1 and x , and e(x ) and 

e(x
1

) are the momentum thicknesses at x and ~ respectively, where the 

momentum thickness is defined by 

Here, 

(with 

e(x) = ro u 
j u 

--' O a 
(1 - ::...) dy 

u 
a 

u is the local velocity parallel to the plate. 

u
0 

= ua), (17), and (18), it is found that: 

Combining Eqs . (3), 

e(x) - e(x
1

) = 
1 
2 

1 rx 
cf · h + 2 , c dx . 

.Jx P 
1 

(19) 

Equation (19) can be used for determining x
2 

and X, . By definition, 

= (20) 

Experimental data were used for finding x
2 

• For all data, the 

difference e(x) - ½ Cf h was determined and plotted vs. x/h in Fig, 6. 
For the computations, the drag coefficient was obtained from Eq. (16). The plot 

shows considerable scatter, But it can be inferred that the distance x
2 

is 

at about 30 to 35 h downstream from the fence where Eq. (20) is satisfied, 

In Eq. (19) the effect of the pressure gradient was neglected , There is 

no doubt that this effect causes a large error near the reattachment point. 

Therefore, near the reattachment point (which is, according to experimental data 

of Nagabhushanaiah (7), located at a distance of 12.5 h downstream from the 

fence regardless of velocity and fence height), the calculated momentum thickness 
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is much lower than expected from neglecting only the wall friction in the standing 

eddy zone , However, experimental results indicate that at 35 h, the pressure 

gradient is essentially zero again. For the calculation of the difference in 

drag, we assume that x
2 

= 35 h, regardless of the velocity, and any effects 

of a pressure drop are negligible , 

It remains to determine the friction coefficients for a distance larger 

than 35 h downstream from the fence , Several methods are available for 

determining the friction coefficient , Karman's momentum equation, for zero 

pressure gradient flow along a flat plate, holds only where the boundary layer 

approximations are valid, that is, in the region far downstream from the point 

of reattachment , In the zone of redevelopment of the boundary layer , an average 

value of = 0 ,0025 was found from the slope of the plot of momentum 

thickness vs . distance, 

A second method starts with the assumption that the "inner law" holds 

for the velocity distribution near the wall , This method is difficult to 

apply near the reattachment point, but further downstream it gave an approxi­

mately constant friction coefficient of 0,0025, 

The third method consists of the use of the Ludwieg-Tillman Equation 

(14) , which has been used successfully to determine friction coefficients 

near separation and in pressure gradient flows (see for example Sandborn and 

Kline (15)) . The results of the calculations are shown in Fig . 7. This figure 

shows that the friction coefficient increases rapidly downstream from the point 

of reattachment of the separation streamline . By X 

h = 35 a value of c 
p 

approximately equal to the final value of C = C = 0,0025 
P po 

is obtained. 

This implies that 

is: 

In equation (21) 

= Hence , with Eqs . (2) and (3) the final result 

= 

J
··x1 + 35 h 

= C (x) po 
xl 

1 
dx • 2 p u! , where C (x) po 

(21) 

= friction 

coefficient for the undisturbed boundary layer . One obtains with Eq. (16) 
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D n ----= 1 

h 2/7 
1.05 (-g) -

l r x1 + 35 h 
- C dx h po (22) 

In Eq. (22), c po 
ambient velocity 

and 

- p 2 u2 h 
a ,- ~ 

o pertain to the undi sturbed boundary layer . The 

u as well as the fence height h are known quantities . 
a 

Therefore , the additional drag due to a fence in a boundary layer can, in 

the first approximation, be calculated from Eq . (22) . 

6 . Calculation of the Drag on a Fence in a Brundary Layer 

A check of Eq. (22) against directly measured drag data can be obt ained 

from the data of Wieghardt (1) which are reproduced in Fig . 1 . In Fig . 1 , a 

sharp edged fence corresponds to t/h = 0. The average velocity ~v of 

Wieghardt was based on a 1/7 power law for the velocity distribution . It is 

given by 

u2 
Av = 

h 2/7 
(-) 
0 

Hence, one obtains from Eq. (22) and Eq. (1): 

1.35 - 1.29 
2/7 ,. X 

C = (~) ; 1 
n h h I 

Jxl 

+ 35 h 
C dx po 

For Wieghardt ' s data, 

to 0. 003 . Thus , 

C is po found to be approximately constant and equaJ. 

C = 1.35 - 0.135 n 
0 2/7 

(--) 
h 

Only the fence heights of Wieghardt of 22 mm and of 53 mm can be used, 

the validity of Eq. (22) for h/5 > 1 is not established. Then, for 

C is calculated to 1 . 20 and for h = 22 mm C becomes 1 . 16 . These 
n n 

are in agreement with Wieghardt I s results, as indicated in Fig . 1. 

7. Conclusions 

since 

h = 53 
vaJ.ues 

mm 

1. The determination of the drag coefficient of a fence sumberged in a 
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boundary layer can be reduced to the problem of determining the base pressure 

behind the fence. The base pressure is found by referring the drag coefficient 

to a theoretical velocity along the separation streamline downstream from the 

fence. This velocity can be computed from Bernoulli's Equation by assuming 

that the energy along the separation streamline is equal to the energy of a 

streamline in the undisturbed boundary Jayer located at a distance ah from 

the wall . The coefficient a was found to be approximately equal to 0.06. 

2. The wall friction on the smooth flat plate downstream from the fence 

consists of a negative part in the standing eddy zone and a positive part down­

stream from the reattachment point of the separation streamline . As shown by 

the experimental data, these two contributions cancel approximately over a 

distance of 35 h. Further downstream, the friction coefficient is approximately 

equal to that found at the same point for the undisturbed boundary layer . 

3 . The results for wall friction and fence drag can be used to predict 

the added drag which a plate suffers when a two dimensional fence obstructs 

the boundary layer . It is believed that the method can be extended to other 

shapes of obstructions if appropriate empirical relations are found for the 

drag coefficient and the equilibrium length for skin friction . 
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