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ABSTRACT

TOWARDS A SECURE AND EFFICIENT SEARCH OVER ENCRYPTED CLOUD

DATA

Cloud computing enables new types of services where the computational and network

resources are available online through the Internet. One of the most popular services of

cloud computing is data outsourcing. For reasons of cost and convenience, public as well as

private organizations can now outsource their large amounts of data to the cloud and enjoy

the benefits of remote storage and management. At the same time, confidentiality of remotely

stored data on untrusted cloud server is a big concern. In order to reduce these concerns,

sensitive data, such as, personal health records, emails, income tax and financial reports, are

usually outsourced in encrypted form using well-known cryptographic techniques. Although

encrypted data storage protects remote data from unauthorized access, it complicates some

basic, yet essential data utilization services such as plaintext keyword search. A simple

solution of downloading the data, decrypting and searching locally is clearly inefficient since

storing data in the cloud is meaningless unless it can be easily searched and utilized. Thus,

cloud services should enable efficient search on encrypted data to provide the benefits of a

first-class cloud computing environment.

This dissertation is concerned with developing novel searchable encryption techniques

that allow the cloud server to perform multi-keyword ranked search as well as substring search

incorporating position information. We present results that we have accomplished in this

area, including a comprehensive evaluation of existing solutions and searchable encryption

schemes for ranked search and substring position search.
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CHAPTER 1

Introduction

Cloud computing enables new types of services where the computational and network

resources are available online through the Internet. One of the most popular services of

cloud computing is data outsourcing. For reasons of cost and convenience, public as well as

private organizations can now outsource their large amounts of data to the cloud and enjoy

the benefits of remote storage. At the same time, confidentiality of remotely stored data on

untrusted cloud server is a big concern. In order to reduce these concerns, sensitive data, such

as, personal health records, emails, income tax and financial reports, etc. are usually out-

sourced in encrypted form using well-known cryptographic techniques. Although encrypted

data storage protects remote data from unauthorized access, it complicates some basic, yet

essential data utilization services such as plaintext keyword search. A simple solution of

downloading the data, decrypting and searching locally is clearly inefficient since storing

data in the cloud is meaningless unless it can be easily searched and utilized. Considering

the potentially large number of on-demand data users and huge amount of outsourced data

documents in the cloud, this problem is particularly challenging as it is extremely difficult

to meet at the same time the requirements of performance, system usability and scalability.

In order to enable search over encrypted data, many Searchable Encryption (SE) schemes

have been proposed in recent years [1–18]. Generally, SE solutions involve building an

searchable index such that its content is hidden from the remote cloud server, yet allowing

document search. The index is a data structure that keeps track of a stored document

collection while supporting efficient keyword search, i.e., given a keyword, the index returns

a pointer to the documents that contain the keyword. These solutions differ mostly in terms
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of whether they allow single keyword search or multi-keyword search and types of techniques

they use to build the search query. A few of them, most notably [8–11], allow the notion of

similarity search. The similarity search problem consists of a collection of data items that

are characterized by some features, a query that specifies a value for a particular feature, and

a similarity metric to measure the relevance between the query and data items. However,

these techniques either do not allow searching on multiple keywords and ranking retrieved

documents in terms of similarity scores, or are very computationally intensive. Moreover,

none of similarity search schemes are protected against an adaptive adversary[5], that takes

into consideration the history of cloud user’s queries and set of matching documents retrieved

back to the cloud user.

SE solutions differ in the level of efficiency and security guarantees they offer; however,

most of them support only exact keyword search. As a result, there is no tolerance of format

inconsistencies which are part of typical cloud user behavior; and they happen frequently.

It is quite common that the search queries do not exactly match the pre-set keywords due

to lack of exact knowledge about the data. SE solutions (for instance, Curtmola[5]) can be

adopted to allow the substring search over encrypted data. To do this, the solution requires

generating all possible substrings of each keyword extracted from the document collection

and storing these substrings as keywords in the searchable index. However, this approach

induces a very large storage requirement and thus makes solution impractical in the real

world cloud environment. The significant drawback of existing SE schemes underlines an

important need for new techniques that support search flexibility over encrypted documents.

2



Table 1.1. Comparison of Security Properties of Most Popular Cloud Storage
Platforms.

Security
Property

Google
Drive

Microsoft
OneDrive

Apple
iCloud

Dropbox

Minimum Password
Requirement

8 characters 8 characters 8 characters 6 characters

Two-step
Verification

Yes Yes Yes Yes

Transport
Security

2048-bit SSL 2048-bit SSL 2048-bit SSL 2048-bit SSL

Data
Encryption

256-bit AES 256-bit AES 128-bit AES 256-bit AES

Client-side
Encryption

No No No No

Searchable
Encryption

No No No No

1.1. Security of Existing Cloud Storage Platforms

Traditional cloud storage technology allows multiple people to take advantage of a set of

networked servers at a data center. In the past, if the user wanted to store the data at the

data center, he/she would have to spend a lot of money to rent a server from the data center

- meaning it wasn’t feasible for most people. The cloud storage changed this by allowing a

number of users to securely share a series of servers in the data center. Also, it allows a user

to access files from any compatible device, and can decrease the risks of hardware failure.

However, it is important to note the cloud storage adds risks. When the data is stored in

the cloud, the user does not have direct control over the data (or application). If an attacker

manages to find the way to hack in the cloud, all the data could be compromised. Today,

many large organizations are particularly vulnerable, as they store large amounts of sensitive

data using cloud based technology. If an attacker manages to find a security hole, it can

get the vast amounts of sensitive data, such as social security numbers, medical records and

credit card information.
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In Table 1.1 we compare the most popular cloud storage platforms using several security

metrics. Our cloud storage platforms include Google Drive[19], Microsoft OneDrive[20],

Apple iCloud[21] and Dropbox[22]. While Drive, OneDrive, iCloud are connected to the

their own application ecosystem, Dropbox is a lightweight, simple alternative for file storage.

We use a set of security requirements and appropriate measures to characterize each service

so it can be considered sufficiently secure for the usage.

Our comparison shows that selected cloud storage platforms provide the following se-

curity properties: a requirement to have a password that is at least 8 characters long for

new registration (except 6 characters in Dropbox), a support of two-step verification of the

password, a support of data transfer via SSL using 2048-bit keys and an option to encrypt

the stored data using AES encryption. However, our analysis shows that none of the plat-

forms support the client-side encryption (where the user creates its own key, encrypts the

data locally and stores encrypted files in the cloud), thus making user’s information insecure

because it remains easily accessible to the unauthorized person (i.e., attacker) in the cloud

or the cloud provider itself. Only Apple iCloud provide a key generation service that guar-

antees that the encryption keys are created locally (at the user’s device) and Apple can’t

access those keys. However, recent study[23] shows that Apple holds the master key and it

can potentially decrypt and access all data stored on iCloud servers. Finally, our analysis

shows that none of the existing cloud storage platforms support the search over encrypted

data.

4



1.2. Applications of Searchable Encryption

Searchable encryption can be used to support a large number of diverse applications.

For instance, in human resource management, one may want to look for a series of keywords

that assess the performance of an employee. In hospital record management, a doctor may

want to retrieve all records that match a given patient disease. At an educational institution

an instructor may want to search for student information based on keywords related to

the course performance. All of these applications share the common need of querying for

keywords that are not necessarily pre-known.

An important application of searchable encryption is in the area of searching a substring

within the large textual databases. For instance, a researcher may want to search a genome

sequence (substring) against a large genome sequence database. Such search can be used

in the analysis of genetic diseases, genetic fingerprinting or genetic genealogy, and requires

returning as result not only the matching genome but also the position of the sequence within

the genome. At the tax record service, a tax accountant may issue a search of “mcd”, which

describes multiple keywords such as “mcdaniel”, “mcdavid”, “mcdonald”, “mcdunn”, and

she wants to find a set of documents that match the substring as well as first occurrence

of the substring in each document. All the applications presented share common needs:

confidentiality of data, query privacy, and query result privacy. Thus, they are perfect for

the application of searchable encryption.

1.3. Overview of Results

This dissertation is concerned with developing novel searchable encryption techniques

that include (1) multi-keyword similarity searchable encryption scheme and (2) substring
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position searchable encryption scheme. Both solutions are designed in such way that they

allow a client to execute a search over encrypted documents outsourced to the cloud server.

Our first result is a novel secure and efficient multi-keyword similarity searchable en-

cryption scheme that returns matching documents in a ranked order. More specifically, we

develop scheme that allows multi-keyword query execution over an encrypted document cor-

pus and it retrieves relevant documents ranked based on a similarity score. We present a

construction that achieves an optimal search time. Unlike all previous schemes that are tied

to the linear search complexity, our search is sublinear to the total number of documents

that contain the queried set of keywords. We show that this type of searchable encryp-

tion scheme can be extremely efficient. We show that our construction is secure against an

adaptive adversary[24, 5].

Our second result is a substring position searchable encryption scheme that allows sub-

string queries over encrypted documents in the cloud. Cloud users can query remote un-

trusted server for a set of encrypted documents that contain a substring of characters. We

present a construction that is very efficient and does not require large ciphertext space. Sim-

ilarly to previous scheme, we define the security model and prove that our scheme is secure

against an adaptive adversary.

Our last result is a natural extension of both techniques, where an arbitrary group of

cloud users can submit their queries to search the encrypted document collection in the

cloud. Specifically, our result is a group multi-keyword similarity searchable encryption

scheme and a multi-user substring position searchable symmetric encryption scheme. Our

extension solves the problem of managing access privileges within the cloud environment

with multiple cloud users.

6



1.4. Dissertation Organization

The rest of this dissertation document is organized as follows. In Chapter 2 we give a brief

overview of cryptography. In Chapter 3 we give an overview of the searchable encryption.

We also present a systematic literature review and comparison on searchable encryption

techniques. In Chapter 4 is devoted for a multi-keyword similarity searchable encryption

solution. In Chapter 5 we present a group multi-keyword similarity searchable encryption

scheme. Chapter 6 presents a substring position searchable symmetric encryption scheme.

In Chapter 7 is devoted for a multi-user substring position searchable symmetric encryption.

We conclude in Chapter 8 by discussing future directions based on the results presented.
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CHAPTER 2

Background

2.1. Probability Theory

Probability theory plays a central role in cryptography. In fact, probability theory is

essential to start the discussion of information or lack of information. In this chapter we

represent the necessary probabilistic notations that are used throughout this dissertation.

We begin with the definition of negligible functions. Cryptography does not require that

the adversary will always fail, but rather the adversary will have successful outcome with

some small non-zero probability. We call this non-zero probability negligible. We define the

negligible functions as follows.

Definition 1. (Negligible Functions[25]). We call a function µ : N→ R negligible

if for every positive polynomial p(·) there exist an N such that for all n > N ,

(1) µ(n) < 1
p(n)

We now focus on probability distribution. We define the probability in terms of sample

space S, which elements are called elementary events. An event A is a subset of the sample

space S.

Definition 2. (Probability Distribution[26]). A probability distribution Pr[] on

a sample space S is a mapping from events of S to real number such that the following

probability axioms are satisfied:

• Pr[A] ≥ 0 for any event A.

• Pr[S] = 1.
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• Pr[A ∪ B] = Pr[A] + Pr[B] for any two events A and B. More generally, for any

sequence of events A1, A2,. . . that are pairwise mutually exclusive:

(2) Pr

[
⋃

i

Ai

]
=

∑

i

Pr[Ai].

P r[A] is defined as probability of the event A.

A random variable is a functionX : S → R, where S is a sample space. We now introduce

the notion of computation indistinguishability. Informally, two probability distributions are

computationally indistinguishable if no efficient algorithm can tell them apart (distinguish

them). We formalize it the definition in following way. Let D be some efficient algorithm,

or distinguisher. D is provided with a sample from the first distribution and second distri-

bution. We say that the distributions are computationally indistinguishable if every such

D outputs 1 with almost the same probability upon receiving a sample from the first or

second distribution. We define the computational indistinguishability using the notion of

probability ensembles.

Definition 3. (Probability Ensemble[27]). Let I be a countable index set. A prob-

ability ensemble indexed by I is a sequence of random variables indexed by I.

Usually, the set I will either be N or an efficiently computable subset of {0, 1}⋆. We will

refer to an ensemble X = {Xn}n∈N, where Xn ranges over strings of length poly(n). This

means that there is a single polynomial p(·) such that Xn ranges over string of length p(n),

for every n.

Definition 4. (Computational Indistinguishability[27]). Two probability ensem-

bles X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguishable, denoted X ≡ cY ,
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if for every probabilistic polynomial-time distinguisher D, every positive polynomial p(·) and

all sufficiently large n’s

(3) Pr[D(Xn, 1
n) = 1]− Pr[D(Yn, 1

n) = 1] <
1

p(n)

Given the definition of computational indistinguishability, it is easy to define the pseu-

dorandomness:

Definition 5. (Pseudorandom Ensembles[27]). An ensemble X = {Xn}n∈N is

called pseudorandom if there exist a polynomial l(n) such that X is computationally indis-

tinguishable from the uniform ensemble U = {Ul(n)}n∈N.

2.2. Cryptography

We formulate the notion of cryptography in following way:

Definition 6. (Cryptography [28]). Cryptography is the study of mathematical tech-

niques related to aspects of information security such as confidentiality, data integrity, entity

authentication, and data origin authentication. The fundamental goals of cryptography are

to adequately address the following four areas in both theory and practice:

• Confidentiality: is a service used to keep the content of information from all but

those authorized to have it.

• Data integrity: is a service which addresses the unauthorized alteration of data.

• Authentication: is a service related to identification.

• Non-repudiation: is a service which prevents an entity from denying previous com-

mitments or actions.
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Searchable encryption solutions rely heavily on several cryptography primitives. This

includes pseudorandom generators, pseudorandom functions, pseudorandom permutations,

symmetric and asymmetric encryption, and cryptographic hash functions. We refer the

reader [25, 24, 28, 27] for more detailed discussion.

2.2.1. Pseudorandom Primitives. We start with discussion on pseudorandom gen-

erator. Speaking informally, a pseudorandom generator (PRG) is an efficient deterministic

algorithm G that stretches a short random seed into a long pseudorandom string.

Definition 7. (Pseudorandom Generators[29]). A pseudorandom generator is a

deterministic polynomial-time algorithm G satisfying the following two conditions:

• Expansion: There exists a function l : N→ N such that l(n) > n for all n ∈ N, and

• Pseudorandomness: The ensemble {G(Un)}n∈N is pseudorandom.

Intuitively, a pseudorandom function (PRF) is one that cannot be distinguished from a

random one. However, this notion is non-trivial since it is not possible to hand a distinguisher

a function description and ask it to decide whether or not it is random. Therefore the

distinguisher is provided with oracle access to a function that is either random or one that

we have constructed. An efficient function f is pseudorandom if no distinguisher with an

oracle access can tell whether its oracle computes a truly random function or the function f .

F : {0, 1}k×{0, 1}n → {0, 1}l is a keyed pseudorandom function, where k,n, l > 1. Formally,

a pseudorandom function is defined as follows:

Definition 8. (Pseudorandom Function (PRF)[24]). A keyed function F :

{0, 1}k × {0, 1}n → {0, 1}l is pseudorandom if for any probabilistic polynomial-time dis-

tinguisher D, given oracle access to Fk = F (k, ·), there exists a negligible function, negl(n)

such that
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(4) |Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]| ≤ negl(n),

where K
R
←− {0, 1}k is chosen uniformly at random and f is chosen uniformly at random

from all functions that map {0, 1}n to {0, 1}l.

More specifically, notation Df(·)(·) means that the distinguisher D uses f as an oracle and

D able to query f a polynomial number of times.

If l = n then we get the pseudorandom permutation (PRP), as follows:

Definition 9. (Pseudorandom Permutation (PRP)[24]). Let F : {0, 1}k ×

{0, 1}n → {0, 1}n be an efficient, length-preserving keyed function. We say that F is a

pseudorandom permutation if for any probabilistic polynomial-time distinguisher D, there

exist a negligible function negl(n) such that

(5) |Pr[DFK(·)(1n) = 1]− Pr[Df(·)(1n) = 1]| ≤ negl(n),

where K
R
←− {0, 1}n is chosen uniformly at random and f is chosen uniformly at random

from the set of functions mapping {0, 1}n to {0, 1}n.

2.2.2. Encryption Schemes. In this section, we consider the problem of secure encryp-

tion. More specifically, we present the definitions of private-key and public-key encryption.

We also focus on essential definitions of semantic security.

We first begin with the notion of encryption scheme.

Definition 10. (Encryption Scheme[24]). An encryption scheme consist of a triple

of probabilistic polynomial-time algorithms (G, E, D) satisfying the following conditions:

12



• On input 1n, the key-generator algorithm G outputs a pair of keys (e, d).

• For every pair (e, d) in the range of G(1n) and for every α ∈ {0, 1}⋆, the encryption

and decryption algorithms E and D satisfy

(6) Pr[D(d, E(e, α)) = α] = 1

where the probability is taken over the internal coin tosses of algorithms E and D.

The integer n serves as the security parameter of the scheme. The key e is called the

encryption key and the key d is called the decryption key. The string α is the plaintext

and E(e, α) is the ciphertext. For simplicity, we will denote Ee(α) = E(e, α) and Db(β) =

D(d, β).

We now show how to construct private-key and public-key encryption schemes.

Definition 11. (Private-key Encryption Scheme[24]). Let F = {Fn} be an ef-

ficiently computable function ensemble, and let I and V be the sampling and evaluation

functions, respectively. Then, define (G,E,D) as follows:

• Key generation: G(1n) = (k, k), where k ← I(1n).

• Encryption of x ∈ {0, 1}n using key k: Ek(x) = (r, V (k, r)⊕ x) where r ∈R {0, 1}
n.

• Decryption of (r, y) using key k: Dk(r, y) = V (k, r)⊕ y.

Definition 12. (Public-key Encryption Scheme[24]). Let (I, S, F, F−1) be a col-

lection of trapdoor permutations and let B be a predicate. Then, define (G,E,D) as follows:

• Key generation: G(1n) = (i, t), where i = I1(1
n) is the first element of the output

of I(1n) and t is the second element of the output of I(1n), or the “trapdoor”.
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• Encryption of σ ∈ {0, 1} using key i: Sample a random element x according to S(i)

and compute y = F (i, x). Output (y, τ) where τ = B(i, x)⊕ σ.

• Decryption of (y, τ) using key (i, t): Compute x = F−1(t, y) and output σ = B(i, x)⊕

τ .

An private-key or public-key encryption scheme is secure if the output ciphtertext reveals

no information about the encrypted plaintext. Speaking formally, an encryption scheme is

secure under semantic security if everything the adversary can learn about the plaintext given

the ciphtertext, it could learn about the plaintext using its a priori knowledge alone. In other

words, the probability of finding the plaintext from the ciphtertext is no much different from

guessing the plaintext without the ciphtertext. Formally, this defined as follows.

Definition 13. (Semantic Security Private-key Model[24]). An encryption scheme

(G,E,D) is semantically secure in the private-key model if for every probabilistic polynomial-

time algorithm A there exist a probabilistic polynomial-time algorithm A
′

such that for every

polynomially-bounded probabilistic ensemble {Xn}n∈N, every pair of polynomially-bounded

functions f, h : {0, 1}⋆ → {0, 1}⋆, every positive polynomial p(·) and all sufficient large n’s

Pr[A(1n, EG1(1n)(Xn), 1
|Xn|, h(1n, Xn)) = f(1n, Xn)]

< Pr[A
′

(1n, 1|Xn|, h(1n, Xn)) = f(1n, Xn)] +
1

p(n)

(7)

where the probabilities are taken over Xn and the internal coin tosses of G, E, A and A
′

.

The semantic security definition for public-key model is almost identical. In this definition

G1(1
n) denotes the first key output by key-generator algorithm G. We include it only for

reason of completeness.
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Definition 14. (Semantic Security Public-key Model[24]). An encryption scheme

(G,E,D) is semantically secure in the public-key model if for every probabilistic polynomial-

time algorithm A there exist a probabilistic polynomial-time algorithm A
′

such that for every

polynomially-bounded probabilistic ensemble Xnn∈N, every pair of polynomially-bounded func-

tions f, h : {0, 1}⋆ → {0, 1}⋆ every positive polynomial p(·) and all sufficient large n’s

Pr[A(1n, G1(1
n), EG1(1n)(Xn), 1

|Xn|, h(1n, Xn)) = f(1n, Xn)]

< Pr[A
′

(1n, 1|Xn|, h(1n, Xn)) = f(1n, Xn)] +
1

p(n)

(8)

where the probabilities are taken over Xn and the internal coin tosses of G, E, A and A
′

.
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CHAPTER 3

Related Work

In this chapter we present the result of a systematic literature review we conducted on

existing research in the searchable encryption area. A systematic review is important for

research activities since it summarizes existing techniques concerning a research interest and

identifies further research directions. The purpose of the review described in this chapter is

to compare current searchable encryption solutions and identify their limitations through a

systematic evaluation. The review follows a meticulously designed paper selection procedure,

and identifies different techniques in scientific journals and conferences published from 2000

to 2015.

We begin with an overview of the searchable encryption framework in Section 3.1. Next,

we describe the state-of-the-art survey on symmetric searchable encryption techniques avail-

able in the literature in Section 3.2. We outline the comparison criteria that we will use to

review existing solutions in Section 3.2.1. Section 3.3 is devoted to describe existing security

models. In Section 3.4 we evaluate and compare current solutions to answer the research

questions identified in Section 3.2.1. We review some other related solutions in Section 3.5.

3.1. Searchable Encryption System Model

Consider a cloud data hosting service show in Figure 3.1 that involves three entities: data

owner, cloud server and data user. The data owner may be an individual or an enterprise, who

wishes to outsource a collection of documents D = (D1, D2, . . . , Dn) in encrypted form C =

(C1, C2, . . . , Cn) to the cloud server and still preserve the search functionality on outsourced

data. Here, the data owner uses semantically secure encryption scheme E with a secret key
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Figure 3.1. Searchable Encryption Framework.

S to encrypt each document Di to form Ci, i.e. Ci = ES[Di]. To enable search, the data

owner constructs an index I from collection D. The index is a data structure that allows

an efficient keyword search on encrypted collection C without revealing any meaningful

information about the original document content. The index is built on m distinct keywords

K = (k1, k2, . . . , km) extracted from the original dataset D. Now, the data owner uploads

both the index I and encrypted document collection C to the cloud server.

To securely search the document collection for one or more keywords K̄ ∈ K, the data

user contacts the data owner to obtain a search control. The search control includes a search

trapdoor that serves to input a set of keywords K̄ and output a search query Q which is sent

to the cloud server. Note, the trapdoor learning process is one-time operation and thus the

data user does not need to contact the data owner anymore. Once the cloud server receives

the search request Q, it invokes search on stored index I and returns a set of matching

encrypted documents L ⊆ C back to the data user. The data user then uses the secret key

S to decrypt received documents L to original view.
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The reminder of the this chapter uses the model defined by Curtmola et al.[5] that uses

a tuple of four algorithms that enable search over encrypted document collection. We define

these algorithms as follows:

• KeyGen(1s): a probabilistic key generation algorithm that is run by the data owner.

This algorithm inputs the security parameter s and output a secret key S.

• BuildIndex(K,D): a probabilistic algorithm run by the data owner that takes as

input a collection of documents D, the secret key S and it outputs the index I.

• Trapdoor(S, K̄): is a deterministic algorithm run by the data user that inputs

keywords of interest K̄, the secret key S and outputs search request Q.

• Search(I,Q): is a deterministic algorithm run by the cloud server to execute search.

The algorithm inputs the index I and search request Q (received from the data user).

It outputs a set of L ⊆ C matching encrypted documents.

Before discussing any existing solution we need to define the model of the adversary

(or attacker). We assume that the adversary resides at the cloud server. In cryptographic

protocols the honest-but-curious model has been traditionally used to model the adversarial

behavior. We outline honest-but-curious model as follows:

• The cloud server is honest, that is, it is always available to the data user and it

correctly follows the designated protocol specification, and it provides all services

that are expected.

• The curious cloud server may try to perform some additional analysis to breach the

confidentiality of the stored data (both index and encrypted documents) and search

queries.
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In this dissertation proposal we assume that the cloud server and the adversary are the

same entity. That way, the adversary has access to the same set of information as the cloud

server. In addition, we are not concerned about the cloud server being able to link a query

to a specific user; nor are we concerned about any denial-of-service attacks.

3.2. Previous Work

3.2.1. Review Scope and Comparison Criteria. Searchable encryption has been

an active research area and many quality works have been published [1–18]. Traditional

searchable encryption solutions build an index data structure such that its content is hidden,

yet allowing document search with given search query. The scope of the systematic review

can thus be restricted to research on searchable encryption techniques. In the rest of this

survey we will focus only on symmetric searchable encryption, and detail the most renowned

schemes. Our systematic review uses the following comparison criteria:

• Search Type: What kind of techniques are available to search an encrypted data

in the cloud? What kind of efficient algorithms and data structures are used in

modern solutions?

• Search Expressiveness: What types of search features can be executed? What

is the granularity of search queries? It is desirable to support single as well as

multi-keyword capability in the search.

• Security: What kind of security is provided in existing solutions? What kind of

information is leaked to the adversary? It is important to protect the content of

stored data (as well as the content of search queries) without leaking any meaningful

information to the untrusted server.
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• Performance/Efficiency: How do existing solutions scale over large data sets?

What are the search and storage algorithm complexities? Pushing any existing

solution to the real-world cloud storage requires a thorough performance evaluation.

3.2.2. Keyword Encryption Construction. The scheme proposed by Song et al.[1]

was the first attempt to develop new techniques for keyword search over outsourced encrypted

document collection. The authors begin with idea to store a set of plaintext documents on

data storage server such as mail servers and file servers in encrypted form to reduce security

and privacy risks. The work presents a cryptographic scheme that enables indexed search

on encrypted data without leaking any sensitive information to the untrusted remote server.

To illustrate proposed scheme, consider the following example. A data owner Alice wishes

to store a set of sensitive documents on a remote server Bob. Since Bob is untrusted, Alice

wishes to encrypt her documents and only store set of ciphertexts on Bob. Whereas Alice

want to utilize storage and computational resources of Bob, she wishes to retrieve only

documents that contain a keyword w. To do so, Alice builds an index that provides desired

keyword search and also leaks as little information as possible about the content or the

original documents to Bob. In order to achieve this goal, for each word w Alice constructs

a search trapdoor that allows her to retrieve matching documents from Bob.

We now describe the proposed scheme in details. Let the document D consist of the

sequence of words {w1, . . . , wm}. The index is created by computing the bitwise XOR of

the keyword plaintext with a sequence of pseudorandom bits that Alice generated using a

stream cipher. Figure 3.2 shows details of proposed technique.

First, Alice generates a sequence of pseudorandom values {s1, . . . , sm} using a stream

cipher, where each si is n−m bit long. For each sequence si, Alice computes a pseudorandom
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Figure 3.2. Basic Search Scheme. Taken from [1].

function Fk(si) using a secret key k. Using the result of Fk(si), Alice computes a n-bit

sequence ti = < si, Fk(si) >, where < x, y > is concatenation of the strings x and y. To

encrypt n-bit keyword, Alice calculates the ciphertext ci = wi ⊕ ti with XOR operator.

Since Alice is the only who generates the pseudorandom stream {t1, . . . , tm}, no one else can

decrypt ci.

To execute a search on outsourced documents, Alice sends a keyword w and secret key

k to remote server Bob. Bob, using existing index structure, analyzes incoming keyword w

and checks whether ci ⊕ w makes a form of < si, Fk(si) >. Once matching items are found,

Bob sends back documents that contain the keyword w. Alice later can decrypt founded

document back to the original view.

Proposed scheme is a pioneer work in the area (proposed in early 2000’) of remote search-

ing on encrypted document collection. Experiments showed that for a document of length n,

the encryption and search algorithms need O(n) stream cipher and block cipher operations.

We can clearly see that proposed scheme requires one key for each keyword in every doc-

ument and thus introduces an extremely large storage and computational overhead. From

security point of view, this scheme reveals plaintext keywords to the remote server and thus

does not provide an adequate security and privacy protection of the search query.
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3.2.3. Secure Index Construction. The solution proposed by Song et al.[1] was

greatly improved by Goh et al.[2]. New proposed scheme “secure index” greatly improved

search complexity compared to previous approach. The search complexity is reduced to

O(D), where D is total number of documents in the collection, which makes this scheme

as the first practical searchable encryption scheme. The scheme uses an index that is con-

structed using a probabilistic data structure called the Bloom filter[30]. We first provide

details on the Bloom filter data structure and then we describe the searchable encryption

scheme in details.

Bloom filter is a probabilistic data structure that represent sets while allowing efficient

membership testing. Bloom filter allow verification of whether or not an element exist in a

given set, storing all elements in an efficient way. The most important feature of Bloom filter

is that the time of the element verification is constant, O(1). We now describe the formal

definition of Bloom filter.

Definition 15. (Bloom Filter). A Bloom filter represents a set of n elements S =

{a1, . . . , an} and r independent hash function hi : {0, 1}
⋆ → {0,m} where i ∈ [1, r]. Then,

for each a ∈ S, the array bits at positions h1(a), . . . , hr(s) are set of 1. To determine if an

element a⋆ belongs to the set S, we check the bits at positions h1(a
⋆), . . . , hr(a

⋆). If all the

bits are set to 1, then a⋆ is considered a member of the set.

A bloom filter does not store the elements themselves, in fact it stores the bit output

generated by hash functions. However, due to the nature of hashing, the false positive oc-

currences may appear in the Bloom filter. Note that Bloom filter does not require rebuilding

in order to add the new elements of the original set.

22



”Secure index” scheme proposed by Goh et al.[2] uses Bloom filter to store keywords

extracted from the document collection. Specifically, the solution uses Bloom filter to map

each document to a set of unique keywords, i.e. for each document Di in the collection there

exist a Bloom filter, constructed using keywords from Di. Before describing the details of

proposed technique, we first give cryptographic notations used in this work:

• There exists a pseudorandom function f : {0, 1}n × {0, 1}s → {0, 1}s, and a key set

K = {ki
R
←− {0, 1}s|1 ≤ i ≤ r}, where s is a security parameter and r s the number

of hash functions used by Bloom filter.

• For every document d in the collection of documents D, there is a unique document

identifier id(d).

• The index is constructed as a result of process involving the generation of code-word

and a trapdoor.

We now describe the details of framework.

• KeyGen(k): an algorithm that inputs a secret parameter k. The algorithm outputs

a secret key Kpriv, which is decomposed into r other keys Kpriv = (k1, . . . , kr).

• Trapdoor(w, Kpriv): an algorithm that inputs the keyword w, secret key Kpriv. The

output of the algorithm is defined as: Tw = (fk1(w), . . . , fkr(w))

• BuildIndex(d, Kpriv): an algorithm that inputs a single document d and outputs

a Bloom filter BF (d). Let wi represents a keyword in document d. The index is

constructed using trapdoor of wi and document identifier id(d) as follows: Cwi
=

(fTw1
(id(d)), . . . , fTwr

(id(d))). Lastly, the algorithm inserts each result of Cwi
into

the Bloom filter BF (d). Output index I = (id(D), BF (d))
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• Search(T , I): an algorithm that inputs a trapdoor Tw and index I. The algorithm

calculates Cw = (fTw1
(id(d)), . . . , fTwr

(id(d))) and checks BF (d) if such entry exists

in Bloom filter. The algorithm outputs a set of documents that contain a keyword

w back to requester.

Proposed scheme is very efficient since the use of Bloom filter enables pre-processing

of search on the client side and consequently the search on the server becomes linear in

the number of documents. The pre-processing requires computation of O(n) hash functions,

where n is the number of keywords for a single document, hence the construction is performed

in O(n × D), where D is the number of documents. While proposed solution is efficient,

it suffers from the possibility of false positives. In this sense the remote server may return

identifiers for documents that do not contain keywords of interest.

3.2.4. Searchable Symmetric Encryption (SSE-1) Construction. Previous search-

able encryption scheme[2] remained the most efficient scheme until 2006, when Curtmola et

al.[5] proposed the first searchable symmetric encryption scheme (SSE). SSE scheme allows

a party to outsource the storage of his data to another party in a private manner, while

maintaining the ability to selectively search over it. The this work, the authors describe a

non-adaptively secure SSE system (SSE-1) and adaptively secure SSE system (SSE-2). Both

SSE-1 and SSE-2 are index-based schemes and they allow a keyword search over encrypted

document collection. In this section we preset non-adaptive SSE-1 solution. Section 3.2.5

describes adaptive SSE-2 scheme.

Now we describe the properties of non-adaptive adversary and give the definition of

history that is used in non-adaptive security. The history is defined as the interaction

between the cloud client and the cloud server by a document collection and a sequence of

24



Figure 3.3. SSE-1 Index.

keywords that the client wants to search for and that we want to hide from the adversary.

The authors assume that the adversary generates the histories at once, i.e. the adversary is

not allowed to see the index of the document collection or the trapdoors of any keywords it

chooses before it has finished generating the history. In non-adaptively secure SSE approach

the index is based on encrypted array and permuted linked list data structures.

We now give some cryptographic notations used in non-adaptively secure SSE scheme.

Let k and l be security parameters, and there exist semantically secure encryption system, one

pseudorandom function f , and two pseudorandom permutations π, ψ. The pseudorandom

function has following parameters f : {}k × {0, 1}p → {0, 1}l+lg(m), where m is the total size

of the plaintext document collection and p is the size of a keyword. Two pseudo-random

permutations are defined as π : {0, 1}k × {0, 1}p → {0, 1}p and ψ : {0, 1}k × {0, 1}lg(m) →

{0, 1}lg(m). The semantically secure encryption scheme (G,E,D) has an encryption function

E : {0, 1}l × {0, 1}r → {0, 1}r, where r is the block size.

Non-adaptively secure SSE scheme is defined as follows:
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• KeyGen(k): an algorithm that generates key as a triple of random bit strings needed

for the system: s, y, z
R
←− {0, 1}k.

• BuildIndex(D, s, y, z): an algorithm that constructs an index that consists of

encrypted array with permuted linked list, as follows:

(1) Scan the document collection to construct id(D), where id() assigns the iden-

tifier of the document D. Build a keyword dictionary ∆ that contains all the

distinct keyword in D. Initialize the counter c to 1.

(2) For each keyword w ∈ ∆ build the document set D(w), which includes the set

of all document with keyword w.

(3) For each wi ∈ ∆ build an encrypted permuted linked list that contains D(wi)

and store it in array A. Select κi,0
R
←− {0, 1}l for each i.

(4) For each jth identifier in D(wi):

– Select κi,j
R
←− {0, 1}l and create Ni,j = id(Di,j)||κi,j||ψs(c + 1), where

id(Di,j) is the j-th identifier in D(wi).

– Compute Eκi,j−1
(Ni,j) and store it in A at location ψs(c), i.e. A[ψs(c)] =

Eκi,j−1
(Ni,j).

– Increase counter c by 1.

(5) To make the start of the list in array A, a lookup table is constructed for each

wi ∈ ∆

– Let v = (addr(A(Ni,1))||κi,0) ⊕ fy(wi), where addr(A(Ni,j)) denotes the

address of Ni,j in A.

– Set location πz(wi) of T to v, i.e. T [πz(wi)] = v.

(6) Set any empty locations in table T to random bit strings.
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• Trapdoor(w, z, y ): for a given keyword w, the search trapdoor is calculated as a

tuple Tw = (πz(w), fy(w)).

• Search(T , I): the remote server first locates the document set for a keyword w

using πz(w) in index I. Next, the algorithms walks the list and uses the κ values it

finds at each node to decrypt the subsequent node values. The resulting document

identifiers are then sent back to the data user.

An illustrative example of SSE-1 index construction for document corpus {D1, D3, D5, D6}

is shown on the Figure 3.3.

3.2.5. Searchable Symmetric Encryption (SSE-2) Construction. Now we de-

scribe the adaptively secure SSE scheme (SSE-2), which is significantly simpler in all algo-

rithms than non-adaptive form. SSE-2 scheme uses the stronger security model (adaptive

security), which takes into consideration the adaptive attacker. Here, the adaptive attacker

can take into consideration the history of all queries sent to it from the first data user’s

query. In SSE-2 scheme, the index is constructed from an encrypted lookup table of key-

word/document identifier pair. SSE-2 relies on the following four algorithms:

• KeyGen(k): an algorithm that generates key s
R
←− {0, 1}k.

• BuildIndex(s, D): an algorithm that constructs the index as follows:

(1) Scan the entire document collection and construct a dictionary ∆ that contains

all the distinct keywords in D.

(2) For each keyword w ∈ ∆ build the document set D(w).

(3) For each keyword wi ∈ ∆, apply πs(wi||j) and set the value in table T [πs(wi||j)] =

id(Di,j). Here, π is pseudorandom permutation and id(D) is document identi-

fier (name).
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(4) Set all empty entries in the table T to random values with correct length.

• Trapdoor : an algorithm that constructs trapdoor Tw = (πs(w||1), . . . , πs(w||max)),

where max is the size of the longest plaintext document in D.

• Search: an algorithm inputs the trapdoor Tw and finds values in the table T . The

result identifiers are collected and returned to the querier.

3.2.6. Ranked Search Construction. In this section we present a multi-keyword

ranked search over encrypted data proposed by Cao et al.[9]. Their searchable encryption

scheme is based on information retrieval techniques to measure the similarity between the

given search query and the each encrypted document stored at the cloud server. To effi-

ciently achieve multi-keyword ranked search, the scheme uses “inner product similarity”[31]

to quantitatively evaluate the efficient similarity measure. More specifically, let Di be the

binary data vector for document Fi, let Di[j] ∈ {0, 1} defines the existence of a corresponding

keyword wj in that document, let Q be the binary query vector that indicate the keyword

of interested (submitted by the data user). The similarity score of the document Fi to the

search query Q is defined as inner product of their binary column vectors, i.e. Di ×Q. The

ranking is done at the cloud server in a way that the server must rank the documents with

the highest inner product output and return the documents back to the data user.

We now describe the scheme in details:

• KeyGen: an algorithm that generates a (n+ 2)-bit vector S, two (n+ 2)× (n+ 2)

invertible matrices {M1,M2}, where n is the number of keywords in the document

collection. The output is tuple {S,M1,M2}.
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• BuildIndex : an algorithm that generates the binary data vector Di for each doc-

ument Fi. Every Di is expanded to the view D̄i by applying dimension exten-

sion and including random variables. The output of the algorithm is index Ii =

{MT
1 D̄i,M

T
2 D̄i} for each encrypted document Ci.

• Trapdoor : with t keywords of the interest, the trapdoor is generated as vector Q,

where each bit Q[i] indicates if keyword exists in the dictionary (1 or 0 values). In

similar way vector Q is extended and scaled to the random value r 6= 0 to form Q̄.

The trapdoor output is a tuple {M−1
1 Q̄,M−1

2 Q̄}.

• Search: the remote server inputs the trapdoor T and compute an inner score between

each index Ii and the trapdoor T : score = Ii×T . After sorting all scores, the remote

server returns the top-k ranked document list back to the data user.

Proposed scheme sorts documents using the score based on ”inner product similarity”

where a document score is simply the number of matches of query keywords in each docu-

ment. Therefore, this ranking loses information about keyword importance to the document

collection w.r.t. document lengths and other keywords (e.g., document which contain all

query keywords are ranked equally). Also, proposed scheme uses a heuristic to hide the

search and access patterns by adding dummy keywords and noise. As a result, the returned

document list may contain false negatives and false positives, which is not desired property.

In addition, the authors did not define a security model beyond the general data privacy

model.

3.2.7. Fuzzy Keyword Search Construction. As we have seen above, many ef-

fective symmetric searchable encryption schemes have been proposed. Most of the time,

these schemes consist of building up some indexing data structure and associate constructed
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index with document collection. By integrating the trapdoors of keyword within the index

information, effective keyword search can be executed while both document content and

keyword privacy are well-preserved. Although allowing for performing searches securely and

effectively, existing searchable encryption techniques do not work well for cloud computing

scenario since they support only exact keyword search, i.e. there is no tolerance of minor

typos and format inconsistencies. It is quite common that cloud users’ input might not

match pre-defined set of keywords and may contain typos, such as “Britney” and “Brit-

taney”, “Illinois” and “Ilinois”, and/or just lack of exact knowledge about the data. Li

et al.[18] were the first to focus on enabling effective yet privacy preserving fuzzy keyword

search on encrypted data outsourced to the cloud. Fuzzy keyword search greatly enhances

system usability by returning the matching documents when cloud users’ searching inputs

exactly match the predefined keyword or the closest possible matching files based on key-

word similarity semantics, when exact match fails. The authors use edit distance (number

of operations (substitution, deletion, insertion) required to transform one work into another)

to quantify keywords similarity and develop a novel technique - fuzzy keyword symmetric

searchable encryption that is based on wildcard fuzzy sets. We first provide details on the

wildcard-based fuzzy set construction and then we describe the main searchable encryption

scheme.

Wildcard-based fuzzy set construction is a technique to list all possible variants of the

keyword with given edit distance. The construction works as follows: the set of a keyword

wi with edit distance d is denoted as Swi,d = {S
′

wi,0
, S

′

wi,1
, . . . , S

′

wi,d
}, where S

′

wi,τ
denotes

the set of words w
′

i with τ wildcards. For example, for the keyword “CAT” with the pre-set

edit distance 1, its wildcard-based fuzzy keyword set can be constructed as SCAT,1 = {CAT,
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∗CAT, ∗AT, C ∗ AT, C ∗ T, CA ∗ T, CA∗, CAT∗}, where ∗ represents an edit operation

on that position. From this example we can see that with larger pre-set edit distance value

(and keyword dictionary), more storage overhead is required.

We now describe the details of proposed fuzzy keyword symmetric searchable encryption

scheme:

• KeyGen(k): an algorithm that generates key sk
R
←− {0, 1}k.

• BuildIndex(sk, D): an algorithm that first computes a trapdoor for each keyword

wi as follows: Tw′

i
= fsk(w

′

i) for all w
′

i ∈ Swi,d with secret key sk and pseudorandom

permutation f . Second, the algorithm uses symmetric key encryption to encrypt

document identifier and trapdoor output as follows: SKE.Encsk(id(D)wi
||wi). The

output of algorithm is index table {{T
w

′

i
}
w

′

i∈Swi,d
, SKE.Encsk(id(D)wi

||wi)}.

• Trapdoor(sk, w): an algorithm that computes trapdoor for a given keyword w

and pre-set edit distance k. First, the algorithm forms a fuzzy set Sw,k. Second, the

algorithm computes trapdoor {Tw′}w′
∈Sw,k

for each element w
′

∈ Sw,k. The trapdoor

output is submitted to the cloud server.

• Search(T , I): an algorithm that checks if given trapdoor exist in index stored at

the cloud server. The algorithm returns the search result SKE.Encsk(id(D)w||w)

if there exists exact match. Otherwise, the algorithm compares all elements of

{Tw′}w′∈S′

w,τ
(1 ≤ τ ≤ k) with index for the document collection and return match-

ing results {SKE.Encsk(id(D)wi
||wi)} back to requester.
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3.3. Existing Security Models

In order to talk about the security of any system we must model the abilities of the

attacker. In this case, the attacker is the cloud server shown on Figure 3.1. In this section

we focus on formal definitions of security properties in the searchable encryption. There

have been proposed many different security models in the literature . We focus on following

four security models:

• Indistinguishability under Chosen Keyword Attacks (IND-CKA and IND2-CKA)

defined by Goh et al.[2].

• Non-Adaptive and Adaptive Indistinguishability against Chosen Keyword Attacks

(CKA-1 and CKA-2) defined by Curtmola et al.[5].

We should note the pioneer work by Song et al.[1] did not define any security models

beyond the normal cryptographic assumptions.

We begin our discussion with two security models: IND-CKA and IND2-CKA, first

security models defined by Goh et al.[2]. IND-CKA model aims to capture the notion that

an adversary A cannot deduce a document’s contents from its index. The model involves

the challenger C and the adversary A, and uses the game-defined security. Suppose the

challenger C gives the adversary A two equal length documents D0 and D1, each containing

some number of keyword together with an index. Adversary’s challenge here is to determine

which document is encoded in the index. If A cannot determine which document is encoded

in the index with probability non-negligibly different from 1/2, then the index reveals nothing

about its contents. Note, that the index does not hide information such as document size

that can be obtained by examining the encrypted documents.

We are now ready to give the formal definition of IND-CKA security model:
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Definition 16. (IND-CKA Game[2]). An IND-CKA game between the challenger

C and the adversary A is a game that includes the following four rounds:

• Setup: The challenger C creates a set S of q words and gives this to the adversary

A. The adversary then chooses a number of subsets from S⋆. Once C receives S⋆ it

runs BuildIndex algorithm to create index I for each document D. The challenger

C concludes by sending all indexes with their associated subsets to A.

• Queries: The adversary A is allowed to query C on the keyword k and receive the

trapdoor T for k. With T , the adversary A can invoke Search on an index I and

determine if k exist in I.

• Challenge: After making some trapdoor T queries, A decides on a challenge by

picking a non-empty subset V0 ∈ S⋆, and generates another non-empty subset V1

from S such that |V0−V1| 6= 0, and the total length of the words in V0 is equal to the

total length of words in V1. Finally, A must not have queries C for the trapdoor of

any work in V0 ∪ V1. Next, A gives V0 and V1 to C who chooses b
R
−→ {0, 1}, invokes

BuildIndex to returns index IVb
for Vb to the adversary A. The challenge for A

is to determine b. After the challenge is issued, the adversary A is not allowed to

query C for the trapdoors of any keyword k ∈ (V0 − V1).

• Response: The adversary A eventually outputs a bit b
′

, representing its guess for b.

The advantage of A in winning this game is defined by AdvA = |Pr[b = b
′

] − 1
2
|.

This probability is taken over all the internal coin tosses of A and C.

We say that the adversary A (t, ǫ, q)-breaks the index if AdvA is at least ǫ after A takes at

most t time and makes q trapdoor queries to the challenger. The index I is (t, ǫ, q)-IND-CKA

secure if no adversary can (t, ǫ, q)-break it.
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IND2-CKA security game has slightly stronger security than IND-CKA. More specifically,

in IND2-CKA game, with the given access to a set of indexes, the adversary is not able to

learn any partial information about the encrypted document that cannot be learned from

possessing the trapdoor. Here, possessing the trapdoor only provides the knowledge of

whether or not a keyword occurs in the index.

Taking into account IND-CKA and IND2-CKA security models, they have a set defi-

ciencies. For instance, both IND-CKA and IND2-CKA models do not require trapdoors to

be kept secure. Namely, the trapdoor T for a keyword k may reveal k entirely because this

property is not necessary for all applications[2]. This issue can easily lead to scenario where

an adversary can recover the keyword content from the trapdoor.

To address the issues above Curtmola et al.[5] introduced the set of formal definitions

for non-adaptive and adaptive indistinguishability notions, and showed a reduction to a

form of non-adaptive and adaptive indistinguishability notions for semantic security. The

interaction between the cloud user and cloud server is determined by a document collection

and a sequence of keyword that the user wants to search for and that we wish to hide from

the adversary. In non-adaptive security model, the security is only guaranteed when cloud

users generate all queries at once (in one batch). This might not be feasible for certain

(practical) scenarios[5]. In the case of adaptive security, the security is guaranteed even if

the users generate queries as a function of previous search outcomes. It should be noted

that until work by Curtmola et al.[5], any searchable encryption schemes were classified in

the non-adaptive sense at best. We now give more details to understand the definitions of

non-adaptive and adaptive security guarantees.
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The strongest definition of searchable encryption scheme can be characterized as the

requirement that nothing is leaked beyond the outcome of the search execution that includes

search pattern and access pattern. Search pattern refers to the information that can be

derived in the following sense: given that two searches return the same results, determine

whether two searches use the same keyword. Access pattern refers to the information that

is implied by the query results. For example, one query can return a document x, while the

other query could return x and another 5 documents. This implies that the predicate used

in the first query is more restrictive than that in the second query. We say that searchable

encryption scheme is secure if nothing is leaked beyond the search pattern and access pattern.

Curtmola et al.[5] defined three sources of information over an interaction between the

client and the remote server: the history, the view and the trace. The history is the combi-

nation between a given query and set of resulted documents matching the set of keyword.

The view consist of the encrypted documents, the index and incoming trapdoors, i.e. all

information given to the remote server. The trace defines the information about all of the

structure of the interaction. More specifically, the trace includes the length of the documents,

the search outcomes, and the search patterns. We now formalize these notions:

Definition 17. (History). Let D be a document collection of n documents and δ is a

keyword dictionary. A history Hq is an interaction between the client and the server over q

queries, denoted as Hq = (D, k1, . . . , kq), where ki is the queried keyword.

Definition 18. (View). Let D be a document collection of n documents and δ is a

keyword dictionary. The view of the adversary using history Hq is defined as: V (Hq) =

35



(id(D1), . . . , id(Dn)), (C1, . . . , Cn), I, (T1, . . . , Tq), where id(Di) is the document identi-

fier (i.e. name), Ci is encrypted form of document Di, I is the index, Ti is the trapdoor

constructed from keyword ki.

Definition 19. (Trace). Let D be a document collection of n documents and δ is a

keyword dictionary. The trace Tr is the following tuple: Tr(Hq) = (id(D1), . . . , id(Dn)),

(|D|, . . . , |Dn|), (D(k1), . . . , D(kq)), πq, where |Di| denote the length of document Di, Dki

specifies the set of document identifiers that contain the keyword ki and πq is the search

pattern of the cloud user.

We now give the definition of non-adaptive semantic security.

Definition 20. (Non-Adaptive Semantic Security (CKA-1)[5]). A searchable

encryption scheme is non-adaptively semantically secure if ∀q ∈ N for all (non-uniform)

probabilistic polynomial-time adversaries A, there exists a (non-uniform) probabilistic polynomial-

time algorithm (simulator) S such that for all traces Trq of length q, all polynomially sam-

pleable distribution Hq over Hq ∈ 22
δ

× δq : Tr(Hq) = Trq, for all functions f : {0, 1}m →

{0, 1}l(m), for all polynomials p, and sufficiently large s, we have:

(9) |Pr[A(Vk(Hq)) = f(Hq)]− Pr[S(Tr(Hq)) = f(Hq)]| < negl(s)

where Hq
R
←− Hq and the probabilities are taken over Hq and the internal coin tossing over

the algorithms KeyGen, BuildIndex, A and S.

In other words, the searchable encryption scheme is secure if the adversary is unable to

learn anything more than what he can learn from the index. The definition above describes

the scenario if the simulator can simulate some function of the history that the adversary
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cannot distinguish with negligible probability, where the simulator is given access to only the

trace of the history and the adversary is given the view of the history of previous queries.

The stronger security can occurs if the simulator is given access to only the partial trace

of the history and the adversary is only given an access to a partial view of the history. The

partial trace of the history is denoted as H t
q where t is number of elements of the q-length

history. The partial view V t
q is composed of the t elements of the q-length view. We now

define the adaptive semantic security for searchable encryption schemes.

Definition 21. (Adaptive Semantic Security (CKA-2)[5]). A searchable encryp-

tion scheme is adaptively semantically secure if for all q ∈ N and for all (non-uniform) prob-

abilistic polynomial-time adversaries A, there exist a (non-uniform) probabilistic polynomial-

time algorithm (simulator) S such that for all traces Trq of length q, all polynomially sam-

pleable distribution Hq over Hq ∈ 22
δ

× δq : Tr(Hq) = Trq, all functions f : {0, 1}m →

{0, 1}l(m), all 0 ≤ t ≤ q, and all polynomials p, and sufficiently large s, we have:

(10) |Pr[A(V t
k (H

t
q)) = f(H t

q)]− Pr[S(Tr(H
t
q)) = f(H t

q)]| < negl(s)

where Hq
R
←− Hq and the probabilities are taken over Hq and the internal coin tossing over

the algorithms KeyGen, BuildIndex, A and S.

We say that the searchable encryption is secure if the simulator can simulate a view of the

partial history that the adversary cannot distinguish with more than negligible probability

from the actual view.
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Table 3.1. Comparison of search features and security analysis of existing
searchable encryption schemes.

Scheme Search
type

Query
type

Security
level

Adaptive
adversary

Song [1] Linear Single keyword CPA No
Goh [2] Index Single keyword CKA-1 No
SSE-1 [5] Index Single keyword CKA-1 No
SSE-2 [5] Index Single keyword CKA-2 Yes
Cao [9] Index Multiple keywords CKA-1 No
Li [18] Index Single keyword CKA-2 Yes

3.4. Evaluation and Open Issues

In this section we present an evaluation of the symmetric searchable encryption solutions

using previously introduced comparison criteria in Section 3.2.1. We split the comparison

into two subsets. Table 3.1 deals with search types, query types and security features,

namely the security level and ability to handle adaptive adversaries. Table 3.2 shows a

comparison that deals with search performance by detailing the search, query execution

complexity and index storage. We use the same terminology for both tables: d is the

number of encrypted documents, d(w) is the number of documents containing the keyword

w, ∆ is the keyword dictionary in d. We use security notations from [2, 5]: CKA1 refers to

the security against chosen-keyword attack, CKA2 is the security model against adaptive

chosen-keyword attacks.

We now discuss the open issues with existing solutions in the area of searchable encryp-

tion. From Table 3.1 we can see that almost all existing symmetric searchable encryption

solutions are index-based and support single keyword search semantics. Cao’s solution [9] is

the first work that supports multi-keyword semantics and ranks documents using similarity

metric, however it clearly lacks strong security model against an adaptive adversary (which

was introduced in SSE-2 scheme by Curtmola et al.[5]). Moreover, Cao’s scheme has a linear
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Table 3.2. Performance comparison of existing searchable encryption solu-
tions. With d we denote the size of document collection, with d(w) we denote
the size of document collection that contain keyword w, with ∆ the size of the
keyword dictionary, with τ the number of fuzzy sets for a keyword w.

Scheme Search
complexity

Index storage Number
of rounds

Query

Song [1] O(d×∆) N/A 1 O(1)
Goh [2] O(d) O(d) 1 O(1)
SSE-1 [5] O(d(w)) O(d+∆) 1 O(1)
SSE-2 [5] O(d(w)) O(d×∆) 1 O(1)
Cao [9] O(d) O(d×∆) 2 O(1)
Li [18] O(τ) O(d×∆× τ) 2 O(1)

search complexity according to the Table 3.2, and thus the search is executed on the whole

document collection (even if only one document contain the queried keyword), which makes

this solution inefficient over the large data collection.

Finally, looking at both Table 3.1 and Table 3.2, almost all existing solutions support

only exact keyword search and there is no tolerance of minor typos in the search query. Li et

al.[18] is the only work that allows fuzzy keyword search over encrypted document collection.

However, this work requires a very large storage and search time according to Table 3.2 (τ

is the number of fuzzy sets for a single keyword). With this, we conclude that all existing

searchable encryption techniques are not ready to efficiently handle different types of search

(other than exact match) in secure and efficient manner. We believe that there is a need for

more advanced techniques in the searchable encryption area.

Only few papers[9, 18] provide an implementation of these schemes including performance

numbers. Most implementations are not publicly available, which makes it hard to compare

the schemes on the same hardware with the same dataset. Moreover, it is difficult to provide

a direct performance comparison since existing protocols for searchable encryption address

different scenarios and security models.
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3.5. Other Solutions

To complete the systematic review, we describe some related topics, which are often

addressed with conjunction with symmetric searchable encryption.

3.5.1. Asymmetric Searchable Encryption. In asymmetric searchable encryption,

any user with a public key can store the document collection in the cloud server, but only the

one possessing the corresponding private key can generate encrypted queries and generate

search queries for a keywords of interest in the documents stored by other users. Such

schemes may be useful in an email scenario. For example, consider a person who wants to

retrieve encrypted email messages containing a given keyword from remote mail server. Any

sender should be able to encrypt email with the public key, while only the receiver should

have the ability to query for a given keyword using the private key.

The security goals of asymmetric searchable encryption are the same as in symmetric

searchable encryption with the additional property that any sender should not be able to

gain access to keywords included in documents sent by another sender. The first solution

was introduced in [32] and later, improved schemes were proposed in [14, 13, 33], where the

authors focus on improving either the search complexity or the search features (for example,

multiple keywords in the search query). As with the symmetric setting, there have been

several enhancements to search and storage complexity in the public settings as well in

[34–37].

3.5.2. Private Information Retrieval Approach. Private Information Retrieval

(PIR) focuses solely on allowing users to retrieve documents without revealing the access

pattern, i.e. which documents are being retrieved. Confidentiality of documents is not the
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focus and thus documents can be stored at the server unencrypted. The examples of such

application are services that provide the public access to the information, where the users

wants to preserve the anonymity and the search interests. PIR presents a great deal of com-

plexity, particularly in terms of communication cost. The first solution was address by [38]

and later by [39], where the authors proposed the scheme with communication cost equal to

na, where n is the number of bits in the database and a < 1. Next, [40] proposed solution

that uses ϕ-hiding assumption for its security model and achieves a poly-logarithmic com-

munication cost. The most recent approach by [41, 42] reduce the communication overhead

even further.

3.5.3. Oblivious RAM Approach. Oblivious RAM (O-RAM) solves both searchable

encryption and PIR issues by continuously shuffling the memory to prevent the cloud server

from learning any information about the search query and previously issues queries by the

user. O-RAM was initially introduced in [43, 44] in order to enable efficient protection

from reverse engineering by hiding program access patterns from the computer memory. O-

RAM have many other applications including symmetric searchable encryption and secure

operations between central processing unit (CPU) and an external memory. O-RAM focuses

on more ambitious security goal than searchable encryption by hiding not only the content

of search queries and documents, but also the search pattern and access pattern. The main

disadvantage of O-RAM is the search complexity, storage and communication, which are

in order of magnitude higher than in searchable encryption. For this reason, the recent

O-RAM solutions [45–47] focus on reducing the search complexity as well as storage and

communication complexity.
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CHAPTER 4

Multi-keyword Similarity Searchable Encryption Scheme (MKSim)

In this chapter we investigate the problem of finding mechanisms to enable efficient

multi-keyword similarity search in a collection of encrypted documents. Researchers have

investigated this problem quite extensively in the context of encrypted documents [1, 2, 6, 8–

11, 5, 13–16, 3, 4, 48–50]. Solutions generally involve building an encrypted searchable

index such that its content is hidden from the remote server yet allowing the corresponding

documents to be searched. These solutions differ from each other mostly in terms of whether

they allow single keyword search or multi-keyword search, and in terms of the types of

techniques they use to build the trapdoor function that facilitates the search. A few of

them, most notably [8–10], allow the notion of similarity search. The similarity search

problem consists of a collection of data items that are characterized by some features, a

query that specifies a value for a particular feature, and a similarity metric to measure

the relevance between the query and the data items. However, these techniques either do

not allow searching on multiple keywords and ranking the retrieved document in terms of

similarity scores or are very computationally intensive. Moreover, none of these schemes

are resistant against adaptive adversaries [5]. Taking into account large volumes of data

available today, there is need for efficient methods to perform secure similarity search over

encrypted data outsourced into the cloud. Finally, these works are mostly confined to the

single user setting – the owner of the encrypted document corpus is the one to search it.

If an arbitrary group of data users need to search the encrypted document corpus, existing

schemes fail to manage their access privileges. In this work, we propose a novel secure and
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efficient multi-keyword similarity searchable encryption scheme that returns the matching

data items in a ranked order.

Our contributions can be summarized as follows:

• We present a secure searchable encryption scheme that allows multi-keyword query

over an encrypted document corpus and retrieves the relevant documents ranked

based on a similarity score.

• We construct the searchable encryption scheme that is CKA2-secure in the random

oracle model[24, 5]. Our scheme achieves semantic security against adaptive adver-

saries that choose their search queries as a function of previously obtained trapdoors

and search outcomes.

• We present a construction that achieves the optimal search time. Unlike many pre-

vious schemes that are glued to the linear search complexity, our search is sublinear

to the total number of documents that contain the queried set of keywords. We per-

form a thorough experimental evaluation of our solution on a real-world dataset.

In Section 4.1 we briefly review preliminaries and cryptographic notations used in our

solution. Section 4.2 describes the important details of building blocks that are used in

constructing our scheme. In Section 4.3 we propose algorithm definitions, security model

as well as details of the proposed searchable encryption scheme. The security analysis and

perfomance comparison to other existing schemes is given in Section 4.4. Finally, Section

4.5 is devoted for the concluding remarks.

4.1. Notations

In this section we present the set of preliminaries and set of cryptographic notations.
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4.1.1. Preliminaries. We first introduce the notations and preliminary concepts that

will be used in the proposed searchable encryption scheme.

Let D = (D1, D2, . . . , Dn) be a set of documents and K = (k1, k2, . . . , km) be the dictio-

nary consisting of unique keywords in all documents in D, where ∀ i ∈ [1,m] ki ∈ {0, 1}
∗.

C = {C1, C2, . . . , Cn} is an encrypted document collection stored in the cloud server. Ii is

a searchable index associated with the corresponding encrypted document Ci. If A is an

algorithm then a ← A(. . .) represents the result of applying the algorithm A to given argu-

ments. Let R be an operational ring, we write vectors in bold, e.g. v ∈ R. The notation

v[i] refers to the i-th element of v. We denote the dot product of u, v ∈ R as u ⊗ v =

∑
i=1 u[i] · v[i] ∈ R. We use ⌊x⌉ to indicate rounding x to the nearest integer, and ⌊x⌋, ⌈x⌉

(for x ≥ 0)to indicate rounding down or up.

4.1.2. Cryptographic Notations.

Definition 22. (Symmetric Key Encryption Scheme (SKE)). A symmetric en-

cryption scheme SKE = (Gen, Enc, Dec) consists of three algorithms, as follows:

• Gen: the key generation algorithm, is a probabilistic algorithm that returns a string

K. Let Keys(SKE) denote the set of all strings that have non-zero probability of

being output by Gen. The members of this set are called keys. We denote K ← Gen

for the operation of executing Gen and letting K denote the key returned.

• Enc: the encryption algorithm, is a probabilistic algorithm that takes a key K ∈

Keys(SKE) and a plaintext M ∈ {0, 1}⋆. It returns a ciphertext C ∈ {0, 1}⋆. We

write C ← Enc(K,M) for the operation of executing Enc on K and M and letting

C denote the ciphertext returned.
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• Dec: the decryption algorithm, a deterministic algorithm that takes a key K ∈

Keys(SKE) and a ciphertext C ∈ {0, 1}⋆. It returns some M ∈ {0, 1}⋆. We write

M ← Dec(K,C) for the operation of executing Dec on K and C and letting M

denote the message returned.

The SKE scheme is correct if for any key K ∈ Keys(SKE), any sequence of messages

(M1, . . ., MQ) ∈ {0, 1}
⋆, and any sequence of ciphertexts (C1 ← Enc(K,M1), . . . , CQ ←

Enc(K,MQ)) that may arise in encrypting (M1, . . ., MQ), it is the case that Dec(K,Ci)

= Mi for each Ci 6= ⊥ (i ∈ [1;Q]). A symmetric-key encryption scheme SKE is secure

against chosen-plaintext attacks (CPA) (executed by the adversary with an access to encryp-

tion oracle) If produced ciphertexts do not leak any useful information about the original

plaintexts[27].

We also make use of pseudo-random permutation (see Definition 9), which is a polynomial-

time computable function that cannot be distinguished from random functions by any prob-

abilistic polynomial-time adversary.

4.2. Background

4.2.1. Term Frequency-Inverse Document Frequency. One of the main prob-

lems of information retrieval is to determine the relevance of documents with respect to the

user information needs. The most commonly used technique to represent the relevance score

in the information retrieval community is Term Frequency-Inverse Documents Frequency

measure[51, 52, 31]. It is computed based on two independent measures - the Term Fre-

quency and the Inverse Document Frequency. The Term Frequency (TF) is a statistical
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measure that represents the frequency of repeated terms in documents. The TF value cal-

culates the number of times a given term appears within a single document. The Inverse

Documents Frequency (IDF) is a measure of a term’s importance across the whole document

collection. It is defined as the logarithm of the ratio of the number of documents in a given

collection to the number of documents containing a given term. The consequence of IDF

definition is that rarely occurring terms have high IDF values and common terms have low

IDF value. In judging the value of a term for ranking representation, two different statistical

criteria come into consideration. A term appearing often in one single document is assumed

to carry more importance for content representation than a rarely occurring term. On the

other hand, if that same term occurs as frequently in other documents of the collection,

the term is possibly not as valuable as some other terms that occur less frequently in the

remaining documents. An example of this conundrum is illustrated by the occurrence of

prepositions in English language documents. This suggests that the ranking of a given term

as applied to a given document can be measured by a combination of its frequency of occur-

rence and an inverse function of the number of documents in the collection. Therefore, we

use the product of term frequency and the inverse documents frequency (TF-IDF) for the

ranking function in our search. A term with higher TF-IDF value is more relevant to the

user’s query than the term with lower TF-IDF value.

We adopt the following equation for TF-IDF measure from [31]:

(11) WTi,j = log (fi,j + 1)× log


1 +

n
n∑

k=1

χ(fi,k)



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where fi,j specifies the TF value of term j in the document Di, n is the total number of

documents in the corpus and n
n∑

k=1

χ(fi,k)
denotes the IDF value of term j among the entire

collection D.

To provide the ranked results to user’s queries we choose to use the dot product as

similarity metric. We use vector space model[51], where the documents and search query are

represented as high dimensional vectors. The similarity metric is measured by applying the

dot product between each document vector and the search query vector as follows:

(12) dotprod(Di, Q) = Di ⊗Q,

where Di is a vector that represents i -th document and Q is a query vector.

4.2.2. Homomorphic Cryptosystem. We now review definitions related to homo-

morphic cryptosystem. Our definitions are based on Gentry’s works [53] and [54], but we

slightly relax the definition of decryption correctness, to allow a negligible probability of

error.

Definition 23. (Homomorphic encryption (Hom)). Let s denote the security

parameter. Fix a function l = l(s). An l-homomorphic encryption Hom for a class of

circuits {Cs}s∈N consists of four polynomial-time algorithms Gen, Enc, Dec, and Eval such

that:

• Gen: The key generation algorithm, is a probabilistic algorithm that takes the se-

curity parameter s as input and outputs a public key PK and secret key SK.

• Enc: The encryption algorithm, is a probabilistic algorithm that takes a public key

PK and a message m ∈ {0, 1} as input, and outputs a ciphertext c.
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• Dec: The decryption algorithm, is a deterministic algorithm that takes the secret

key SK and a ciphertext c as input, and outputs a message m ∈ {0, 1}.

• Eval: The homomorphic evaluation algorithm, takes as input a public key PK a

circuit C ∈ Cs, and a list of ciphertexts c1, . . . , cl(s), and outputs a ciphertext c⋆.

The following correctness properties are required to hold:

• For any s, any m ∈ {0, 1}, and any (PK, SK) output by Gen(s), we have m =

Dec(SK,Enc(PK,m)).

• For any s, any m, . . . ,ml, and any C ∈ Cs, we have

(13) C(m1, . . . ,ml) = Dec(SK,Eval(PK, (C,Enc(PK,m), . . . , Enc(PK,ml))))

We use the standard notion of security against chosen-plaintext attacks (CPA-security).

Definition 24. (CPA security). Let Hom = Gen, Enc, Dec, Eval be a homomor-

phic encryption scheme. Let s be the security parameter, A be an adversary and there is a

probabilistic experiment CPAHom,A(s) that is executed between the challenger and the adver-

sary:

• Generate (PK, SK) ← Gen(s).

• The adversary outputs (m0,m1, stA) ← A
(·)
1 (PK).

• The bit is chosen at random, i.e b ← {0, 1}.

• The adversary runs number of polynomial queries c ← Enc(PK,mb).

• The adversary outputs bit b
′

← A
(·)
2 (c, stA).

Homomorphic encryption scheme Hom is CPA-secure if for all polynomial-size adver-

saries A,

48



(14) Pr[CPAHom,A(s) = 1] ≤
1

2
+ negl(s),

where the probability is over the choice of bit b and the coins of Gen and Enc.

There are many homomorphic encryption scheme available in the literature. However, in

our solution we use Brakerski et al.[55, 56] homomorphic cryptosystem since it provides the

efficient “batching mode” property where a single ciphertext represent a vector of encrypted

values and single homomorphic operation on two such ciphertexts applies the homomorphic

operation component-wise to the entire vector.

4.3. Basic Construction

Recall that we are targeting the following scenario: the data owner creates secure search-

able index and sends it along with encrypted data files to the cloud server. The index is

constructed in such a way that it provides enough information to perform the search on the

outsourced data, but does not give away any information about the original data. Once the

server receives the index and encrypted document files, it performs a search on the index

and retrieves the most relevant documents according to data user’s query.

4.3.1. Algorithm Definitions.

Definition 25. (Multi-keyword Similarity Searchable Encryption (MKSim)).

An index-based MKSim scheme over a set of documents D is a tuple of five polynomial-time

algorithms (Gen, BuildIndex, MakeQuery, Evaluate, Decrypt), as follows:
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• S1, S2, PK, SK ← Gen(1s): a probabilistic algorithm that is run by the data

owner to setup the scheme. The algorithm outputs a set of secret keys S1, S2, SK

and public key PK.

• (I, C) ← BuildIndex(S1, S2, PK,D,K): a probabilistic algorithm run by the data

owner that takes as input a collection of documents D, a keyword dictionary K

and keys S1, S2 and PK, and outputs a collection of encrypted documents C =

{C1, C2, . . . , Cn} and searchable index I.

• Ω←MakeQuery(S2, PK,K, K̄): a probabilistic algorithm run by the data user that

inputs keys S2 and PK, keyword dictionary K and multiple keywords of interest K̄,

and outputs the search query Ω.

• L ← Evaluate(PK, I,Ω): a deterministic algorithm run by the cloud server. The

algorithm inputs a public key PK, searchable index I and search query Ω. The

algorithm outputs a sequence of identifiers L ⊆ C matching the search query.

• Di ← Decrypt(S1, SK,Ci): a deterministic algorithm that takes as input secret keys

S1 and SK, and a ciphertext Ci and outputs a document Di.

An index-based MKSim scheme is correct if ∀ s ∈ N, ∀ S1, S2, PK, SK generated by

Gen(1s), ∀ D, ∀ (I, C) output by BuildIndex(S1, S2, PK,D,K), ∀ K̄ ∈ K, and 1 ≤ i ≤ n,

(15) Evaluate(PK, I,MakeQuery(S2, PK,K, K̄)) = L
∧

Decrypt(S1, SK,Ci) = Di

4.3.2. Security Model. In this section we focus on security definitions for our scheme.

Security goal of any searchable encryption scheme is to reveal nothing (no meaningful infor-

mation) to the adversary. Our goal is to provide two following security guarantees:

50



• Given a searchable index I and a set of encrypted document C = (C1, C2, . . . , Cn)

to the adversary, no valuable information about the original documents D = (D1,

D2, . . . , Dn) is leaked to the adversary.

• Given a set of search queries Q = (Q1, Q2, . . . , Qm) generated by the data user,

the adversary cannot learn any information about the content of the search query

Qi or the content of the documents in the search outcome.

To hide the plaintext document collection we require the symmetric key encryption

scheme SKE (see Definition 22) to have the pseudo-randomness against chosen-plaintext

attacks (PCPA) security guarantee which assures that the ciphertexts are indistinguishable

from random1. We outline the PCPA-security of SKE scheme as following experiment:

Definition 26. (PCPA security). Let SKE = (Gen,Enc,Dec) be a symmetric key

encryption scheme, s be the security parameter, A be an adversary and there is a probabilistic

experiment PCPASKE,A(s) that is run as follows:

• Output the secret key S1 ← Gen(1s).

• The adversary A is given oracle access to Enc(S1, ·).

• The adversary A outputs a message M (e.g., plaintext document D).

• Let C0 ← Enc(S1,M) and C1
R
←− C, where C denotes the set of all possible cipher-

texts. A bit b is chosen at random and Cb is given to the adversary A.

• The adversary A is again given to the oracle access to Enc(S1, ·), and A runs number

of polynomial queries to output a bit b
′

.

• The experiment outputs 1 if b = b
′

, otherwise 0.

1Note that symmetric key encryption schemes such as AES in counter mode satisfy the PCPA-security
definition.
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Symmetric key encryption scheme SKE is PCPA-secure if for all polynomial-size adver-

saries A,

(16) Pr[PCPASKE,A(s) = 1] ≤
1

2
+ negl(s),

where the probability is over the choice of bit b and the coins of Gen and Enc.

Achieving the second security property is difficult and and most known searchable en-

cryption solutions [3, 57, 5, 2, 48] reveal some information from the search queries, namely

access pattern and search pattern. In MKSim scheme we follow the similar approach to

weaken the security guarantees and allow some limited information to the adversary. We

begin with definitions of the history, access pattern and search pattern, and then we give the

definition of trace that combines definitions of history, access and search patterns.

Definition 27. (History). Let K̄ be a collection of keywords of interest, D be a

collection of documents and Ω = {Ω1, Ω2, . . ., Ωq} be a vector of q search queries. The

history of search queries is defined as H(D,Ω).

Definition 28. (Access Pattern). Let K̄ be a collection of keywords of interest, D

be a collection of documents and Ω = {Ω1, Ω2, . . ., Ωq} be a vector of q search queries. The

access pattern induced by a q-query history H(D,Ω), is defined as follows: α(H) = (D(Ω1),

D(Ω2), . . . , D(Ωq)), where D(Ωi) denotes the set of documents that match search query Ωi.

Definition 29. (Search Pattern). Let K̄ be a collection of keywords of interest, D

be a collection of documents and Ω = {Ω1, Ω2, . . ., Ωq} be a vector of q search queries,

The search pattern of the history H(D,Ω) is a symmetric binary matrix σ(H) such that for

1 ≤ i, j ≤ q, the element in the ith row and jth column is 1 if Ωi = Ωj, and 0 otherwise.
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The access pattern represents the results of search queries Q sent to the cloud server,

and specifically, the document identifiers corresponding to each query. The search pattern

represents a historical observation of queries searched for. We combine both access pattern

and search pattern to form the definition of trace, as follows:

Definition 30. (Trace). Let K̄ be a collection of keywords of interest, D be a collection

of documents and Ω = {Ω1, Ω2, . . ., Ωq} be a vector of q search queries. The trace induced

by the history H(D,Ω) is a sequence τ(H) = (|D1|, |D2|, . . . , |Dn|, α(H), σ(H)) comprised of

the lengths of document collection D = (D1, D2, . . ., Dn), and the access and search patterns

induced by the history H(D,Ω).

Unlike security definitions originally presented in [5], our searchable encryption scheme

introduces a randomization of a search query that enables the data user to hide the search

pattern. Thus, queries are different even if they are generated for the same set of keywords

of interest. The definition of randomized queries is given as:

Definition 31. (Randomized query). Let Ω1≤i≤q be a sequence of q generated search

queries with the same set of keywords K̄. We say that the scheme has (q, ǫ)-randomized

query if: ∀i, j ∈ 1, q Pr(Ωi = Ωj) < ǫ.

Our security model uses the simulator-based definition approach that includes the view

from adversary and the simulator. Adaptive security means that the adversary generates

the history adaptively, that means that the results of previous search queries are taken into

account. We outline simulation-based experiments in the following definition:

Definition 32. (Adaptive Semantic Security). Let MKSim = (Gen, BuildIndex,

MakeQuery, Evaluate, Decrypt) be an index-based similarity searchable encryption scheme,

s be the security parameter, and A = (A0, . . . , Aq) be an adversary such that q ∈ N and S =
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(S0, . . . , Sq) be a simulator. Consider the following probabilistic experiments Real⋆MKSim,A(s)

that is executed between the challenger and the adversary, and Sim⋆
MKSim,A,S(s) that is exe-

cuted between the adversary and the simulator:

Real⋆MKsim,A(s): Sim⋆
MKSim,A,S(s):

(D,K, stA) ← A0(1
s) (D,K, stA) ← A0(1

s)

(S1, S2, PK, SK) ← Gen(1s) (I, C, stS) ← S0(τ(D,K))

(I, C) ← BuildIndex(S1, S2, PK,D,K) (K̄1, stA) ← A1(stA, I, C)

(K̄1, stA) ← A1(stA, I, C) (Ω1, stS) ← S1(stS, τ(D, K̄1))

Ω1 ← MakeQuery(S2, PK,K, K̄1) for 2 ≤ i ≤ q

for 2 ≤ i ≤ q (K̄i, stA) ← Ai(stA, I, C,Ω1, . . . ,Ωi−1)

(K̄i, stA) ← Ai(stA, I, C,Ω1, . . . ,Ωi−1) (Ωi, stS) ← Si(stS, τ(D, K̄1, . . . , K̄i))

Ωi ← MakeQuery(S2, PK,K, K̄i) let Ω = {Ω1, Ω2, . . ., Ωq}

let Ω = {Ω1, Ω2, . . . , Ωq} output o = (I, C,Ω) and stA

output o = (I, C,Ω) and stA

where stA is the state of adversary, stS is the state of the simulator. We say that MKSim

is adaptively semantically secure if for all polynomial-size adversaries A = (A0, . . . , Aq) such

that q is polynomial in s, there exists a non-uniform polynomial-size simulator S = (S0, . . . ,

Sq) such that for all polynomial-size R:

(17) |Pr[R(o, stA) = 1]− Pr[R(ō, ¯stA)]| ≤ ǫ,

where (o, stA) ← Real⋆MKSim,A(s), (ō, ¯stA) ← Sim⋆
MKSim,A,S(s) and the probabilities are over

the coins of Gen and BuildIndex and MakeQuery.
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Gen(1s) : generate S1 ← SKE.Gen(1s) and S2
R
←− {0, 1}s. Sample SK, PK ←

Hom.KeyGen(). Output S1, S2, SK and PK.
BuildIndex(S1, S2, PK,D,K) :
Initialization:

(1) scan document corpus D, extract k1, k2, . . ., kp ← from Di.
(2) construct dictionary K with dummy Z.
(3) for each k ∈ K, build D(k)(i.e., the sequence of documents with k).

Build lookup filter T :
(1) for each ki ∈ K:

• for 1 ≤ j ≤ |D(ki)|:
– value = id(Di,j), where id(Di,j) is the j

th identifier in D(ki).
– set T [πS2

(ki||j)] = value.
(2) let p̄ =

∑
ki∈K
|D(ki)|. If p̄<p, assign value = id(D) for all Di ∈ D for exactly max

entries, set the address to random values.
Build TF-IDF table Φ:

(1) for each Di ∈ D
• for each kj ∈ K

– WTi,j ← TFIDF(kj) (i.e., calculate TF-IDF value for keyword kj).
• set Φi = Hom.Enc(PK,WTi) (i.e., apply homomorphic encryption Hom with
public key PK on vector WTi).

Output:
(1) for each Di ∈ D, let Ci ← SKE.Enc(S1, Di).
(2) output (I, C), where I = (T,Φ) and C = {C1, C2, . . . , Cn}.

Figure 4.1. MKSim Scheme Setup Phase.

This completes our security model requirement for MKSim solution, and we are now

ready to present scheme details.

4.3.3. Scheme Construction. Setup Phase. Our searchable scheme is based on

SSE-2 inverted index data construction previously introduced in [5]. We enhance SSE-2

scheme with addition of TF-IDF statistical measurement and dot product for ranked search.

We show that our construction is very efficient and it achieves the same semantic security

guarantees as SSE-2 scheme. Fig. 4.1 shows an outline of MKSim setup phase.

Our searchable index consists of two main algorithms: building the lookup filter T ,

based on SSE-2 construction and building the TF-IDF table Φ, based on TF-IDF word
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importance. We create a lookup filter T whose entries have of the form (keyword, value).

For each keyword k ∈ K we add an entry in T whose value is the document identifier with the

instance of keyword k. Note, for a given keyword k and the set of documents that contains the

keyword k, we derive a label k||j for keyword k with j-th document identifier. For example,

if “colorado” is contained in document D5, then k||j is “colorado1”. Formally, we represent

the family of k with matching j-th documents as follows: Fk = {k||j : 1 ≤ j ≤ |D(k)|}, where

|D(k)| represents the list of matching documents. For instance, if “state” is contained in set of

four document (D2, D4, D10, D13), then family Fk is {“state1”, “state2”, “state3”, “state4”}

and we add the following entries in lookup table T : (state1, 2), (state2, 4), (state3, 10) and

(state4, 13). In our construction, searching for keyword k becomes equal to searching for all

labels in a form of k||j in the family Fk.

We guard the unique number of words in each document by adopting the idea of padding

the lookup filter T such that the identifier of each document appears in the same number of

entries. To protect the keyword content in the table T , we use the pseudo-random permuta-

tion π with secret parameter S2 such as {0, 1}S2 × {0, 1}l+log2(n+max) → {0, 1}l+log2(n+max),

where max denote the maximum number of distinct keywords in the largest document in D,

n is the number of documents in D and each keyword is represented using at most l bits.

Our lookup table T is ({0, 1}l+log2(n+max) × {0, 1}log2(n) × {p}), where p = max ⋆ n.

In our second step, for each distinct keyword kj in a document Di, we calculate the

TF-IDF measure using Equation 11. We then construct the TF-IDF table Φ where each row

corresponds to the document identifier Di and each column is the keyword in the dictionary

K. Each cell element in Φ contains the TF-IDF value of a keyword kj. Unfortunately,

outsourcing the table elements to the cloud leaks some important information. It is well
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known fact[36] that an adversary (in our case, the cloud server) may know some of keywords

and their TF distributions. Using this information, an adversary can infer the keyword

index or even the document content. Based on this observation, we decided to improve the

security of our solution. Our table includes the set of dummy keywords Z that are added

to the keyword dictionary K. This gives us the randomness that hides the original keyword

distribution of TF-IDF values. Finally, we use the CPA-secure homomorphic cryptosystem

Hom to protect the values of TF-IDF table Φ. We apply Hom.Enc() with public key PK

on each row of TF-IDF table Φ.

Once both the lookup filter T and TF-IDF table Φ are constructed, we use PCPA-secure

symmetric key encryption scheme SKE with secret key S1 to encrypt each document Di, i.e.

Ci = SKE.Enc(S1, Di). We outsource searchable index I = (T,Φ) and encrypted collection

C = {C1, C2, . . . , Cn} to the cloud server. Now the collection is available for selective retrieval

from the cloud server.

Search Phase. We outline the search phase in Figure 4.2. To search the keywords

of interest K̄, the data user contacts the data owner to receive the search trapdoor. The

trapdoor includes the keyword dictionary K with IDF values for each keyword in K, the set

of (S1, S2, PK, SK) keys, the pseudo-random permutation π, homomorphic cryptosystem

Hom and symmetric-key encryption scheme SKE. Note, the trapdoor learning process is a

one-time operation and the data user does not need to contact the data owner anymore. The

data owner inputs the set of keywords of interest K̄ to the search trapdoor. The trapdoor

generates a search query in form of Ω = (t, x), where t corresponds to the lookup search

query and x corresponds to the TF-IDF search query. The lookup search query t is the

output of the pseudo-random permutation π with secret key S2. The TF-IDF search query
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MakeQuery(S2, PK,K, K̄) :

(1) for each keyword kj ∈ K̄, set tj = (πS2
(kj||1), . . . , πS1

(kj||n)).
(2) for each keyword kj ∈ K̄, calculate WTj ← TFIDF(kj).
(3) set x = Hom.Enc(PK,WT) (i.e., encrypt vector WT using homomorphic encryp-

tion Hom with public key PK).
(4) output search query Ω = (t,x).

Evaluate(PK, I,Ω) :

(1) Find all matching identifiers id ← T [t].
(2) for all j ∈ [1; |id|], calculate scoreCj

= Hom.Eval(PK, (ΦCj
,x)). (i.e. with public

key PK, execute homomorphic dot product (multiplication and addition) between
ΦCj

and x).
(3) output results {scoreC1

, . . . , scoreCid
}.

Decrypt(S1, SK,Ci) :

(1) set scoreDi
= Hom.Dec(SK, scoreCi

) (i.e., decrypt scoreCi
using Hom with secret

key SK).

(2) select (scoreDi
)m

top-m
←−−− {scoreD1

, . . . , scoreDid
} (i.e. select top-m documents with

highest scores).
(3) output (Di)m ← SKE.Dec(S1, Ci), where i ∈ [1;m].

Figure 4.2. MKSim Scheme Search Phase.

x is the result of applying the homomorphic encryption Hom.Enc with public key PK on

the output of TF-IDF measure calculated using Equation 11 on set of keywords of interest

K̄. Finally, the data user sends resulted search query Ω = (t, x) to the cloud server.

Once Ω received, the server locates the matching document identifiers in the lookup

filter T as T [t]. Now the cloud server executes the homomorphic dot product Hom.Eval

(that includes homomorphic multiplication and homomorphic addition) between the TF-IDF

search query x and rows in the TF-IDF table Φ that correspond to the matching document

identifiers. The cloud server sends the set of resulted ciphertexts {scoreC1
, . . . , scoreCid

}

back to the data user.

The data user decrypts each polynomial scoreCi
using Hom.Dec with secret key SK to

form scoreDi
. The data user retrieves the top-m documents with highest similarity scores
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from the cloud server. Using SKE.Dec with secret key S1, the data user decrypts matching

documents to the original view.

4.4. Evaluation

4.4.1. Security Analysis. We now focus on the security evaluation of proposed search-

able encryption scheme. We focus on two security properties:

• We prove that our scheme is CKA2 secure[24, 5] and achieves the strongest semantic

security against adaptive adversaries.

• We demonstrate that inserting dummy keywords provides randomized search queries.

It is important to show that the search queries generated by our scheme are different

for the same set of keywords of interest, making the adversary difficult to collect

and distinguish the document outcomes.

Theorem 1. If π is a pseudo-random permutation, Hom is CPA-secure and SKE is

PCPA-secure, then MKSim = (Gen, BuildIndex, MakeQuery, Evaluate) scheme is adap-

tively secure.

Proof. We are going to describe a polynomial-size simulator S = {S0, . . . , Sq} such that

for all polynomial-size adversaries A = {A0, . . . , Aq}, the outputs of Real⋆MKSim,A(s) and

Sim⋆
MKSim,A,S(s) are computationally indistinguishable. Consider the simulator S = {S0,

. . . , Sq} that adaptively generates the output o⋆ = (I⋆, C⋆, Ω⋆) as follows:

• S0(1
s, τ(D)): the simulator has a knowledge of history H that includes the number

and the size of the documents. S0 starts with generating C⋆
i

R
←− {0, 1}|Di| where i ∈

[1, n] and searchable index I⋆ = (T ⋆,Φ⋆). Here T ⋆ R
←− {0, 1}l+log2(n+max) is a lookup

filter, and Φ⋆ R
←− {0, 1}K×n is a TF-IDF table. S0 now includes I⋆ in stS and outputs
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(I⋆, C⋆, stS). Since, with all but negligible probability, stA does not include secret S2,

T ⋆ is indistinguishable from the real lookup table T . Otherwise S0 can distinguish

between the output of pseudo-random permutation π and a random values of size

l + log2(n +max). Similarly, simulated TF-IDF table Φ⋆ is indistinguishable from

the real Φ due to the CPA security of homomorphic encryption Hom, otherwise

one could distinguish between the output of Hom.Enc and a random string of size

K × n. At the same time, stA does not include secret S1, thus the PCPA security

of SKE scheme will guarantee that the output C⋆ is indistinguishable from the real

ciphertext.

• S1(stS, τ(D,Ω1)): now the simulator S1 has a knowledge of all document identi-

fiers corresponding to the search query Ω1. However the search query does not

disclose its structure and the content. Recall that D(Ω1) is the set of all matching

document identifiers. For all 1 ≤ j ≤ |D(Ω1)|, the simulator first makes an associ-

ation between each document identifier id(Dj) and a generated search query such

that (D(Ω1)i, I
⋆
i ) are pairwise distinct. S1 then creates Ω⋆

1 = (t⋆, x⋆), where t⋆
R
←−

(id(D1), . . . , id(|D(Ω1)|)) and x
⋆ R
←− {0, 1}K . S1 stores the association between Ω⋆

1

and Ω1 in stS, and outputs (Ω⋆
1, stS). Since, with all but negligible probability, stA

does not include secret S2, the output t⋆1 is indistinguishable from the real gener-

ated query t1 otherwise one could distinguish between the output of π and a random

string of size l + log2(n + max). Similarly, simulated x⋆ is indistinguishable from

the real x due to the CPA security of homomorphic encryption Hom, otherwise one

could distinguish between the output of Hom.Enc() and a random string of a size

K. Thus, Ω⋆
1 is indistinguishable from Ω1.
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• Si(stS, τ(D,Ω1,Ω2, . . . ,Ωq)) for 2 ≤ i ≤ q: first Si checks if the search query Ωi was

executed before, that is, if it appeared in the trace σ[i, j] = 1, where 1 ≤ j ≤ i− 1.

If σ[i, j] = 0, the search query has not appeared before and Si generates the search

query as S1. If σ[i, j] = 1, then Si retrieves previously searched query, and constructs

Ω⋆
i . Si outputs (Ω

⋆
i , stS), where Ω

⋆
i is indistinguishable from real Ωi. The final output

Ω = (Ω⋆
1, . . . , Ω

⋆
q) is indistinguishable from generated query (Ω = Ω1, . . . , Ωq), and

outputs of experiments Sim⋆
MKSim,A,S(s) and Real

⋆
MKSim,A(s) are indistinguishable.

�

Theorem 2. Injection of dummy keywords provides randomized search queries.

Proof. Let us consider two search queries Ω1 and Ω2, both constructed from the same

keyword set K and a randomly chosen set of dummy keywords Z1 and Z2 from a dictionary

Z of a size n = |Z|. We are aiming to prove that: ∀i, j i 6= j Pr(Ωi = Ωj) < ǫ where ǫ

tends to zero as n increases.

We first estimate the probability Pr(k) that the intersection Z of two sets Z1,Z2 ⊆ Z is

equal to some value k. We have:

(18) Pr(k) =
#of ways of choosing Z1, Z2 with |Z| = k

# of ways of choosing Z1, Z2

Note, there are
(
n

k

)
choices for Z. If Z1 has size k, then there is one choice for Z1, and we can

choose Z2 arbitrarily from 2n−k possibilities. If Z1 has size k + 1, then there are
(
n−k

1

)
choices

for Z1 and 2n−k−1 choices for Z2. Let m = n− k, then there are
m∑
j=0

2m−j
(
m

j

)
= 3m possible

choices for Z1,Z2 with intersection Z. Thus, there are 3n−k
(
n

k

)
possible ways of choosing the

subsets. Since there are 4n ways of choosing any two subsets of Z, we have the following:
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Table 4.1. Comparison of several searchable encryption schemes. n is size
of the document collection D, m is the size of the keyword space K, δ is the
number of documents containing keywords of interest K̄.

Scheme Matching
Query

Randomization
Security

Search
Time

Index
Size

Song et al. [1] Exact no CPA O(n) N/A
Goh et al. [2] Exact no CKA1 O(n) O(n)
Curtmola et al.[5] (SSE-1) Exact no CKA1 O(δ) O(n+m)
Curtmola et al.[5] (SSE-2) Exact no CKA2 O(δ) O(nm)
Cao et al. [9] Similarity yes CKA1 O(n) O(nm)
Moataz et al. [3] Exact yes CKA2 O(n) O(nm)
Orencik et al. [4] Exact no CKA2 O(n) O(nm)
MKSim Similarity yes CKA2 O(δ) O(nm)

Pr(k) =
3n−k(nk)

4n
. We now evaluate Pr(k) with input k → 0: limk→0 Pr(k) = limk→0

3n−k(nk)
4n

=
(
3
4

)n
. As n increases, limk→0Pr(k)→ 0 and hence Theorem 2 is preserved . �

4.4.2. Performance Evaluation. We compareMKSim scheme with previous search-

able encryption solutions in Table 4.1. Our comparison is based on the following metrics:

matching technique, query randomization, security, search time and index size. Matching

technique describes if solution supports exact match or similarity match. Query random-

ization describes the support of randomized search queries. We use security notations from

[5] to describe the security of each solution. Search time is the time to invoke search on the

index that is constructed from the document collection D of size n. Note that previous solu-

tions are able to achieve the linear search complexity within the total number of documents

in the collection. In contrast, the search in our solution is proportional to the number of

documents that contain a set of keywords of interest. Finally, we measure the size of the

searchable index. Our searchable index I consists of a lookup filter T of size O(nm) (where n

is the size of document collection and m is the size of keyword dictionary K) and a TF-IDF

table Φ of size O(nm), which makes the total ciphertext having the size of O(nm).
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We have developed and implemented a multi-threaded proof-of-concept prototype of

MKSim scheme using C++ language. Our implementation includes 37 classes with a total

of 10200 lines of code. Our prototype leverages two cryptographic libraries: libtomcrypt 2 and

HElib 3. Libtomcrypt is portable C cryptographic library that supports symmetric ciphers,

one-way hashes, pseudo-random number generators, and a plethora of support routines. We

use libtomcrypt to build the lookup filter T and encrypt the document collection. HElib is

a C++ cryptographic library for homomorphic encryption available as an implementation

of Brakerski et al. [58] scheme. We utilize HElib homomorphic cryptosystem since its

one the few homomorphic toolkits that efficiently supports multiplication operation on the

ciphertexts. Specifically, it provides the efficient “batching mode” property where a single

ciphertext represents a vector of encrypted values. Thus, single homomorphic operation (i.e.,

multiplication) on two such ciphertexts applies the homomorphic operation component-wise

to the entire vector. We use HElib to build the TF-IDF table Φ and compute the similarity

measure of a search query and set of stored encrypted documents.

We show a thorough experimental evaluation of the MKSim scheme on a real-world

dataset: the Internet Request for Comments (RFC) database [59], which is a collection

of plaintext documents that consists of a large number of technical keywords describing

different specifications, protocols, procedures and events in the Internet. All experiments

have been performed on a 6 core Intel(R) Xeon(R) E5645 @ 2.40GHz processor and 98 GB

memory running 64-bit Fedora 21 distro with the 3.19 kernel. We setup our prototype to

use 20 pthread[60] threads in all experiments. The cloud server, data owner and data user

applications were run on the same machine, as the network communication overhead was

2https://github.com/libtom/libtomcrypt
3https://github.com/shaih/HElib
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(a) (b)

Figure 4.3. (a) RFC Keyword Dictionary. (b) RFC Keyword Dictionary Size.

assumed to be negligible. In our evaluation we measure the computation and communication

overheads of proposed solution. Specifically, we measure the overheads of the BuildIndex,

MakeQuery and Evaluate algorithms presented in n Section 4.3.1.

Encryption Overhead. In this section, the overheads associated with the encryption

process will be detailed. First, we study the size of keyword dictionary K = (k1, k2, . . . , km)

extracted from RFC documents D = (D1, D2, . . . , Dn) of different sizes. Figure 4.3a shows

the number of distinct keywords extracted from 250 to 2000 RFC documents. Figure 4.3b

shows that the storage overhead of keyword dictionary is nearly linear with the size of the

dataset.

Second, we study computation and communication overheads for BuildIndex algorithm.

Our building index algorithm consists of two phases: constructing lookup filter T and TF-

IDF table Φ. Figure 4.4a shows the time cost of constructing the lookup filter T using

RFC documents of different sizes. The lookup filter T consists of applying a pseudo-random

permutation on each keyword from the dictionary and labeling the output with document
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(a) (b)

Figure 4.4. (a) Lookup Filter T Generation. (b) Lookup Filter T Size.

Table 4.2. Keyword Search Queries.

Search Query 1 (SQ-1) OSPF BGP MIME XML iSCSI
Search Query 2 (SQ-2) Encryption Framework Certificate Authorization Authentication

identifier where the keyword appeared. Figure 4.4b shows the storage requirements of lookup

filter T .

Next, we measure the overhead related to TF-IDF table Φ. Our TF-IDF table Φ con-

struction consists of computing the TFIDF table for each extracted keyword from RFC

dataset and applying Brakerski’s homomorphic cryptosystem in “batching mode” on each

document row. We show the time cost of generating the TF-IDF table Φ in Figure 4.5a

and the storage overhead in Figure 4.5b. Although the time of building TF-IDF table Φ is

not a negligible overhead for the data owner, this is a one-time operation before sending the

encrypted documents to the cloud server.

Search Overhead. To evaluate the search overhead, we leverage two types of search

inputs in our prototype. The first search query (SQ-1) describes five popular acronyms in the

RFC dataset, while the second search query (SQ-2) is a set of general keywords describing
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(a) (b)

Figure 4.5. (a) TF-IDF Table Φ Generation. (b) TF-IDF Table Φ Size.

technical security standards for the Internet. Table 4.2 shows the keywords used in our

experiments.

First, we measure the performance of the MakeQuery algorithm. This overhead of

MakeQuery consists of calculating a pseudo-random permutation applied on each queried

keyword and calculating Brakerski’s homomorphic encryption on each weighted keyword.

Figure 4.6a shows the time cost for generating trapdoors for both SQ-1 and SQ-2 using

keyword dictionaries of different sizes. Our results demonstrate that time cost to construct

both SQ-1 and SQ-2 search queries stays mostly constant.

Second, we test the overhead of the Evaluate algorithm. The Evaluate execution at the

cloud server consists of calculating similarity scores (i.e., homomorphic dot product) between

a given search query and stored searchable index I. Table 4.3 shows the experimental results

for RFC documents of different sizes. For each search input we measure the number of

documents that match the lookup filter T and the time cost of calculating similarity scores for

a set of selected documents. For example, for SQ-1 search input and RFC collection of 1500

documents, there are 472 documents that match the lookup filter T and it takes a total of
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Table 4.3. Search Query 1 and Search Query 2 Execution Results.

Search Query 1 Search Query 2
Number of
Documents

Number of Matching
Documents in T

Execution
Time in Φ (s)

Number of Matching
Documents in T

Execution
Time in Φ (s)

250 85 217 152 341
500 173 454 307 738
750 255 680 462 1169
1000 324 873 608 1618
1250 400 1107 753 2068
1500 472 1427 919 2738
1750 562 1807 1071 3429
2000 626 2089 1220 3989

Table 4.4. Different Size Query Execution Results.

1000 Documents 2000 Documents
Search Query

Size
Number of Matching
Documents in T

Execution
Time in Φ (s)

Number of Matching
Documents in T

Execution
Time in Φ (s)

5 11 57 123 518
10 222 643 1069 3634
25 286 807 1080 3694
50 340 924 1131 3867
100 571 1537 1172 3998
250 916 2424 1418 4880
500 959 2543 1892 6530
1000 988 2605 1950 6609

1427 seconds to measure similarity scores of selected 472 documents. Our results demonstrate

that lookup filter T allows the cloud server to efficiently select the set of documents that

contain the queried set of keywords without the need of calculating similarity scores for all

documents in the dataset.

Third, using the results from Table 4.3 we measure the time cost to calculate the similarity

score for each selected document. We define the Similarity Search Performance (SSP) metric

as follows: SSP (Q) = tΦ
nK̄

, where tΦ corresponds to total time cost to calculate similarity

scores for selected documents in Φ and nK̄ corresponds to the number of documents that

match the search query in T . Figure 4.6b shows the SSP metric for both SQ-1 and SQ-2
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(a) (b)

Figure 4.6. (a) Time Cost of Generating Trapdoor. (b) Cloud Similarity
Search Time.

search queries. Our results demonstrate that the cloud server has an average overhead of 2.8

seconds on each similarity score calculation. Also, Table 4.4 shows the experimental results

for search queries of different sizes. We use two collections of sizes 1000 and 2000 documents

and varied the size of search query. The results show that our search is proportional to the

number of documents that contain a set of keywords of interest. In short, we notice that

the MKSim protocol, although uses homomorphic encryption, adds minimal overhead on

computation and storage. We believe that proposed solution can be easily deployed in a

real-world cloud environment.

4.5. Conclusion

Searchable encryption is a technique that enables secure searches over encrypted data

stored on remote servers. We define and solve the problem of multi-keyword similarity search

over encrypted cloud data. In this chapter, we present an efficient similarity searchable en-

cryption scheme that supports multi-keyword semantics. Our solution is based two building
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blocks: Term Frequency - Inverse Document Frequency (TF-IDF) measurement and ring-

LWE-based variant of homomorphic cryptosystem. We use the dot product to quantitatively

evaluate similarity measure and rank the outsourced documents with their importance to the

search query. We show that our scheme is adaptive semantically secure against adversaries

and able to achieve optimal sublinear search time.
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CHAPTER 5

Group Multi-keyword Similarity Searchable Encryption (GMKSim)

In order to make an important step toward widespread use of searchable encryption,

existing solutions need to include mechanisms to efficiently support hundreds even thousands

cloud users in the system[61]. In this chapter we consider a multi-user scenario that involves

a data owner that wishes to share a documents and multiple data users that want to query

encrypted data using the cloud server.

Curtmola et al. [5] were the first to extend their single-user scheme with broadcast

encryption[62], where the data owner is able to outsource an encrypted document collection

to the cloud server and an arbitrary group of users is allowed to query the data. Broadcast

encryption allows the data owner to distribute a shared secret key to a group of data users.

However, this solution might not work in a real-world cloud deployment that involves po-

tentially large number of on-demand data users since only one key is shared among all users

and each user revocation requires a new key to be distributed to the remaining users. It is

desirable that each data user could keep its own secret key, which makes key management

easier and more efficient.

We propose a new Group Multi-keyword Similarity Searchable Encryption (GMKSim)

scheme that solves the problem of managing access privileges and searching multiple key-

words over encrypted cloud data. Our solution is based on distributed broadcast encryption

scheme[63] that supports a distributed setup where the data owner sets up the system, but

each user generates their own key when joining the system. In fact, we remove the burden

of key management from the data owner and let group establishment run by participating

data users (i.e., data users are allowed to pick desired participants and establish a shared key
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to search remote encrypted data). We first give the set of definitions and security notions

of GMKSim scheme. Later we present an efficient construction of GMKSim that combines

the idea of a single-user MKSim scheme (presented in Chapter 4) with distributed broadcast

encryption scheme.

5.1. Scheme Construction

5.1.1. Preliminaries. We begin with the definition of witness pseudo-random function

(WPRF). Informally, a witness PRF for an NP language L is a PRF F such that anyone

with a valid witness that x ∈ L can compute F (x) without the secret key, but for all x 6∈ L,

F (x) is computationally hidden without knowledge of the secret key. Formally, a witness

PRF is defined as follows:

Definition 33. (Witness Pseudo-Random Function (WPRF)[63]). A witness

PRF is a triple of algorithms (Gen, F, Eval) such that

• Gen: a probabilistic algorithm that inputs a security parameter λ and a circuit R :

X × W → {0, 1}, and outputs a secret function key fk and a public evaluation key

ek.

• F : a deterministic algorithm that inputs the function key fk and an input x ∈ X,

and outputs some output y ∈ Y for some set Y.

• Eval: a deterministic algorithm that inputs the evaluation key ek, an input x ∈ X

and a witness w ∈W, and produces an output y ∈ Y or ⊥.

The following correctness property is required to hold:
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Eval(ek, x, w) =





F (fk, x) if R(x, w) = 1

⊥ if R(x, w) = 0

for all x ∈ X, w ∈W.

A multiparty key exchange protocol allows a group of g users to simultaneously post a

message to a public bulletin board, retaining some user-independent secret. After reading

off the contents of the bulletin board, all users establish the same shared secret key. The

multiparty key exchange protocol consists of the following algorithms:

Definition 34. (Non-Interactive Multiparty Key Exchange protocol (NIKE-

WPRF)[63]). Let G : S → Z be a pseudo-random generator with |S|/|Z| ≤ negl. Let

WPRF = (Gen, F, Eval) be a witness PRF. Let Rg : Zg × (S× [g]) → {0, 1} be a relation

that outputs 1 on input ((z1, . . . , zg), (s, i)) if and only if zi = G(s). The non-interactive key

exchange protocol consists of:

• Publish(λ, g): a probabilistic algorithm that takes as input the security parameter λ

and the group order g. It computes (fk, ek)
R
←− Gen(λ,Rg). Next, it picks a random

seed sk
R
←− S and compute z ← G(sk). It outputs a secret key sk and public values

(z, ek), where sk is kept secret and (z, ek) are published to the bulletin board.

• KeyGen({zi, eki}i∈[g], sk): a deterministic algorithm that inputs group g and user’s

secret sk. It outputs a group key k = Eval(eki, (z1, . . . , zg), (sk, i)).

Broadcast encryption[62] allows an encryptor (data owner) broadcast a message to a

subset of recipients (data users). The system is said to be collusion resistant if non-data

users can learn information about the plaintext. Boneh et al.[64] recently proposed a new

distributed broadcast encryption that is based on NIKE where data users generate secret keys

on their own and simply append their corresponding public values to the broadcast public key.
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Unlike existing broadcast encryption schemes[65–67] where participants are assigned their

secret key by a trusted authority (data owner), distributed broadcast scheme has no trusted

authority and each user generates a secret key for itself. However, scheme in [64] is based

on the indistinguishable obfuscation, for which none practical construction is known[63].

Most recent work by Zhandry et al. [63] proposes a distributed broadcast encryption scheme

that replaces indistinguishable obfuscators with a witness PRFs. The scheme is simpler and

much more efficient that current obfuscation candidates. We use the following definition of

distributed broadcast encryption scheme:

Definition 35. (Distributed Broadcast Encryption over NIKE (BE-NIKE-

WPRF) [63]). Distributed broadcast encryption scheme over multi-party non-interactive

key exchange protocol consists of four following algorithms:

• Setup: a probabilistic algorithm to setup BE-NIKE-WPRF scheme. The algorithm

outputs a secret parameter λ and group order g.

• Join(λ, g): a probabilistic algorithm to join the scheme that is executed by each

participant. The algorithm inputs a secret parameter λ and group order g. The

algorithm invokes NIKE-WPRF.Publish(λ, g) to output secret sk and public values

(z, ek). The user makes (z, ek) publicly available to other participants.

• Enc({zi, eki}i∈[g], sk,m): a probabilistic algorithm to encrypt messagem under shared

key. The algorithm inputs the set of public values {zi, eki}i∈[g], secret key sk and

plaintext message m. The algorithm runs NIKE-WPRF.KeyGen({zi, eki}i∈[g], sk)

to derive the shared key k. The algorithm outputs a ciphertext c which is the en-

cryption of message m using the shared key k.
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• Dec({zi, eki}i∈[g], sk, cm): a deterministic algorithm to decrypt cm. The algorithm

invokes NIKE-WPRF.KeyGen({zi, eki}i∈[g], sk) to derive k. If k 6=⊥, then algo-

rithm decrypts cm using k and outputs the original message m.

This completes cryptographic preliminaries used in our solution. We are now ready to

present the GMKSim scheme.

5.1.2. Algorithm Definitions.

Definition 36. (Group Multi-keyword Similarity Searchable Encryption (GMK-

Sim)). An index-based GMKSim scheme over a set of documents D is a tuple of eight

polynomial-time algorithms GMKSim = (Gen, BuildIndex, Join, SetupGroup, Revoke,

MakeQuery, Evaluate, Decrypt), as follows:

• (S1, S2, PK, SK, λ, g)← Gen(1s): a probabilistic algorithm run by the data owner

to setup the GMKSim scheme. The algorithm invokes MKSim.Gen with an input

of a secret parameter s, and outputs a set of keys S1, S2, PK, SK. The algorithm

runs BE-NIKE-WPRF.Setup to output secret parameter λ and group order g.

• (I, C) ← BuildIndex(S1, S2, PK,D,K): a probabilistic algorithm run by the data

owner to encrypt a document collection D. The algorithm invokesMKSim.BuildIndex

with an input of keys S1, S2 and PK, a document collection D and a keyword dic-

tionary K. It outputs a searchable index I and a set of encrypted documents C.

• (sk, (z, ek)) ← Join(λ, g): a probabilistic algorithm run by each data user to partic-

ipate in the scheme. The algorithm invokes BE-NIKE-WPRF.Join with an input

of secret parameter λ and group order g. It outputs a pair (sk, (z, ek)).

• cr ← SetupGroup({zi, eki}i∈[h], sk): a probabilistic algorithm run by the group owner

to establish the group h ⊆ g of authorized data users. The algorithm runs BE-NIKE-WPRF.Enc
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with an input of public values {zi, eki}i∈[h], group owner’s secret key sk and a sam-

pled secret r. The output is encrypted ciphertext cr.

• cr ← Revoke({zi, eki}i∈[h\o],, sk): a probabilistic algorithm run by the group owner to

remove a user o from the set of authorized users. The algorithm invokes BE-NIKE-WPRF.Enc

that inputs the set of public values {zi, eki}i∈[h\o], group owner’s secret key sk and a

new secret r. The output is encrypted ciphertext cr.

• Ω ← MakeQuery(S2, PK,K, K̄, cr): a probabilistic algorithm run by a data user

to construct a search query. The algorithm invokes BE-NIKE-WPRF.Dec with an

input of public values {zi, eki}i∈[h], secret key sk and ciphertext cr. It outputs a

secret r. If r 6=⊥, the algorithm invokes MKSim.MakeQuery with keys S2, PK,

keyword dictionary K, and set of keywords of interest K̄. The output is a search

query Ω encrypted under secret r.

• L ← Evaluate(PK, I,Ω, cr): a deterministic algorithm run by the cloud server.

The algorithm invokes BE-NIKE-WPRF.Dec an input of public values {zi, eki}i∈[h],

secret key sk and ciphertext cr, and it outputs secret r to decrypt search query Ω.

The algorithm runs MKSim.Evaluate with an input of public key PK, searchable

index I and search query Ω. The algorithm outputs a sequence of identifiers L ⊆

C.

• Di ← Decrypt(S1, SK,Ci): a deterministic algorithm that inputs a set of secret

keys S1, SK and an encrypted document Ci. The algorithm outputs a document Di.

We now formalize the security of proposed scheme.

• We require that the cloud server should not learn anything about the documents: an

adversary with an access to searchable index I and encrypted document collection
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C = (C1, C2, . . . , Cn) should learn nothing about original documents D = (D1, D2,

. . . , Dn)

• We require that the cloud server should not learn anything from the search queries

beyond the access and search patterns: an adversary with an access to a search

queries (Q1, Q2, . . . , Qm) generated by the data user learns nothing about the

content of each search query Qi or the content of resulted documents.

• We require the revocation for the data users: once a data user removed from the set

of authorized data users, he/she is no longer able to execute a search over encrypted

documents.

In GMKSim we use the adaptive semantic security notion of a single-user MKSim scheme.

It provides the security against an adaptive adversary: cloud server does not learn anything

about the documents and search queries beyond the access and search patterns. However,

with an addition of access privilege property, we need to expand our security definitions

towards the Revoke algorithm. We define the probabilistic experiment Rev as follows:

Definition 37. (Revocation). Let GMKSim = (Gen, BuildIndex, Join, SetupGroup,

Revoke, MakeQuery, Evaluate, Decrypt) be a group MKSim scheme, s be a security param-

eter, and A = (A1, A2, A3) be an adversary. We use the following probabilistic experiment

RevGMKSim,A(s):
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RevGMKSim,A(s):

S1, S2, PK, SK, λ, g ← Gen(1s)

(stA, D,K) ← A1(1
s)

(skA, (zA, ekA)) ← Join(λ, g)

cr ← SetupGroup((zA, ekA), sk)

(I, C) ← BuildIndex(S1, S2, PK,D,K)

stA ← A
O(I,C,stS,·)
2 (stA, skA, (zA, ekA), cr)

c
′

r ← Revoke((zA, ekA), sk)

Ω ← A3(stA)

L ← Evaluate(stS, PK, I,Ω, c
′

r)

if L 6= ⊥, output 1, otherwise output 0,

where O(I, C, stS, ·) is an oracle that inputs a search query Ω and outputs ciphertexts C

indexed by L ← Evaluate(PK, I,Ω, c
′

r) if L 6= ⊥ and ⊥ otherwise. We claim that Revoke

algorithm achieves user revocation if for all polynomial-size adversaries A = (A1, A2, A3)

the following is correct:

(19) Pr[RevGMKSim,A(s) = 1] ≤ negl(s),

where the probability is over the coins of Gen, Join, SetupGroup, Revoke and BuildIndex.

5.1.3. GMKSim Construction. Figure 5.1 shows the details of GMKSim = (Gen,

BuildIndex, Join, SetupGroup, Revoke, MakeQuery, Evaluate, Decrypt). In our con-

struction we combine the ideas of a single-user MKSim = (Gen, BuildIndex, MakeQuery,
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Gen(1s) :

(1) generate S1, S2, PK, SK ← MKSim.Gen(1s).
(2) generate λ, g ← BE-NIKE-WPRF.Setup(1s).

Output the key set S1, S2, PK, SK, secret parameter λ and group order g.
BuildIndex(S1, S2, PK,D,K) :

(1) set (I, C) ← MKSim.BuildIndex(S1, S2, PK,D,K).
Store (I, C) to the cloud server.
Join(λ, g) :

(1) generate (sk, (z, ek)) ← BE-NIKE-WPRF.Join(λ, g).
Keep sk private, output (z, ek) to the cloud server.
SetupGroup({zi, eki}i∈[h], sk

(1) pick h ⊆ g and get public values {zi, eki}i∈[h] from the cloud server.
(2) sample r ← {0, 1}s and compute cr ← BE-NIKE-WPRF.Enc({zi, eki}i∈[h], sk, r).

Output cr to the cloud server.
Revoke({zi, eki}i∈[h\o], sk)

(1) set (h\o) ⊆ g and retrieve public values {zi, eki}i∈[h\o] from the cloud server.
(2) generate new r ← {0, 1}s

(3) compute cr ← BE-NIKE-WPRF.Enc({zi, eki}i∈[h\o], sk, r).
Output new cr to the cloud server.
MakeQuery(S2, PK,K, K̄, cr) :

(1) retrieve cr and from the cloud server.
(2) compute r ← BE-NIKE-WPRF.Dec({zi, eki}i∈[h], sk, cr). If r = ⊥, output ⊥.
(3) calculate Ω′ ← MKSim.MakeQuery(S2, PK, K, K̄).
(4) set Ω ← ρ(r,Ω′).

Output Ω.
Evaluate(PK, I,Ω, cr) :

(1) compute r ← BE-NIKE-WPRF.Dec({zi, eki}i∈[h], sk, cr).
(2) compute Ω′ ← ρ−1(r,Ω).
(3) output L ← MKSim.Evaluate(PK, I,Ω′), where L ∈ C.

Output L.
Decrypt(S1, SK,Ci) :

Output Di ← MKSim.Decrypt(S1, SK,Ci).

Figure 5.1. GMKSim Scheme Construction.

Evaluate, Decrypt) and a distributed broadcast encryption scheme BE-NIKE-WPRF =

(Setup, Join, Enc, Dec). We require standard security notions for broadcast encryption.

Specifically, in addition of providing PCPA-security, it provides revocation-scheme security

against a group of all revoked users.
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Our construction relies on a pseudo-random permutation ρ : {0, 1}r × {0, 1}t → {0, 1}t,

where r is the secret parameter and t is the size of search query Ω in the MKSim scheme.

We assume the honest-but-curious adversarial model for the cloud server. We also assume

that the cloud server does not collude with revoked users, otherwise our construction cannot

prevent a revoked user from executing a search.

To describe GMKSim in details we use following hospital example illustrated in Figure

5.2. Consider a doctor (data owner) that performed a blood test on a patient and wishes

to share resulted documents with group of nurses (data users) in the hospital. The doctor

considers building a searchable index I from the resulted documents D, and sending both

index I and encrypted results C to the hospital blackboard running on the cloud server. To

remove the burden of key management, the doctor enables distributed setup, where each

nurse generates its own secret key (when joining the system) and establishes a group of

authorized participants (e.g., a head nurse includes her subordinate nurses). The doctor

begins with sampling a secret parameter s, which is used as input to generate the set of

secret keys. The key generation algorithm outputs a set of keys S1, S2, PK, SK for a single-

user scheme, secret key λ and group order g for a distributed broadcast encryption scheme.

The doctor next invokes the BuildIndex algorithm of a single-user schemeMKSim outlined

in Figure 4.1. The outputs are searchable index I and set of encrypted documents C. Note,

the searchable index I consists of a lookup filter T , based on SSE-2 construction, and a

TF-IDF table Φ constructed using a term weight importance. Next, each nurse launches the

Join algorithm with secret λ and group g (both distributed by the doctor) to generate an

output of (sk, (z, ek). Secret key sk is kept private, while (z, ek) are published to the cloud

server.
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Figure 5.2. Group Hospital Example.

Now, the head nurse (group owner) creates a group of authorized users (other partici-

pants) that are allowed to execute search over encrypted cloud data. The head nurse launches

the SetupGroup algorithm where she picks public values {zi, eki}i∈h of authorized partici-

pants h ⊆ g, samples random secret parameter r, and uses the distributed broadcast encryp-

tion to output the ciphertext cr. Finally, head nurse sends cr to the cloud server. Now the

document collection is available for selective retrieval.

To search for a keywords of interest K̄, a nurse (data user) executes MakeQuery al-

gorithm that includes four steps. First, she contacts the cloud server and retrieves the

ciphertext cr. Next, she invokes the distributed broadcast encryption algorithm with her

own secret sk, public values {zi, eki}i∈h to recover the secret r. If r successfully recovered,

she inputs keywords K̄ to a single-user MKSim.MakeQuery algorithm that outputs search

query Ω′. Next, the nurse forms a permuted search query by applying PRP ρ with secret

key r, i.e. Ω = ρ(r,Ω) which is sent to the cloud server. The cloud server, upon receiving
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Ω, recovers the search query by executing ρ−1(r,Ω). Here, the key r used in ρ is known

only by the head nurse, the cloud server and the set of authorized data users h. Once Ω′ is

decrypted, the cloud server executes a single-user MKSim.Evaluate algorithm to find a set

of encrypted documents that match K̄ keywords of interest.

If a nurse o is no longer an authorized user in group, the head nurse invokes the Revoke

algorithm on o. Specifically, the head nurse samples a new secret r′ and generate a new

cloud server ciphertext c
′

r using distributed broadcast encryption algorithm that exclude the

public values (z, ek) of nurse o. The new cloud ciphertext c
′

r is distributed to the cloud server

to replace the old cr. Since revoked data user o is not able to recover the new secret r′ in

the MakeQuery algorithm, permuted Ω will not yield a valid search query after applying

ρ−1(r
′

,Ω) permutation at the cloud server. This simple extra layer given by the pseudo-

random permutation ρ prevents data users from performing successful search once they are

removed from the system. Proposed solution is very efficient since the cloud server only

needs to evaluate a pseudo-random permutation to decide whether a data user is authorized

to search an encrypted document collection.

The following theorem shows that the GMKSim scheme satisfies revocability.

Theorem 3. TheGMKSim= (Gen, BuildIndex, Join, SetupGroup, Revoke, MakeQuery,

Evaluate, Decrypt) achieves revocability according to Definition 37.

Proof. The proof is straightforward, and we only state the intuition behind the proof.

The revocation of proposed scheme relies on the following assumption. The PCPA-security of

BE-NIKE-WPRF scheme guarantees that the simulated search query Ω⋆ is indistinguishable

from the real search query Ω. Indeed, this is true since decryption of the new message c
′

r

(generated by the group owner that excludes the public values of revoked user) will never

output a valid r′ that is used to generate the real Ω. �
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5.2. Conclusion

In this chapter we presented a Group Multi-keyword Similarity Searchable Encryption

(GMKSim) scheme that solves the problem of managing access privileges and searching

multiple keywords over encrypted cloud data. In our solution an arbitrary group of data

users can submit queries to the remote server to search an encrypted document collection.

We design a scheme supports distributed setup, where participants choose their own secret

key rather than receive the key from a trusted authority. Finally, we argued the revocability

correctness and efficiency of our construction.
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CHAPTER 6

Substring Position Searchable Symmetric Encryption (SSP-SSE)

As we have seen in Chapter 3, many Searchable Encryption (SE) schemes have been

proposed in recent years [1–6, 68, 9, 69, 48, 57, 70, 12, 11, 48, 71, 17, 50]. (Note, we use the

term searchable encryption somewhat loosely to include schemes such as private information

retrieval also.) Generally, SE solutions involve building an encrypted searchable index that

hides the sensitive information from the remote server, yet it allows a search on the encrypted

data. SE solutions differ in the level of efficiency and security guarantees they offer; however,

most of them support only exact keyword search. As a result, there is no tolerance of format

inconsistencies which are part of typical cloud user behavior; and they happen frequently.

It is quite common that the search queries do not exactly match the pre-set keywords due

to lack of exact knowledge about the data. For example, a financial company stores its

employees income tax documents in encrypted form in the cloud. A tax accountant may issue

a search query of “mcd”, which describes multiple keywords suchs as “mcdaniel”, “mcdavid”,

“mcdonald”, “mcdunn”, and she wants to find a position of the first occurrence of the query

in each encrypted document that contain the string of characters. The significant drawback

of existing schemes underlines an important need for new techniques that support search

flexibility over encrypted documents. In this chapter, we consider the problem of efficient

substring position search over encrypted data. The users can query the remote untrusted

server for a set of encrypted documents that contain a substring of characters. The cloud

server retrieves the set of matching documents together with positions where the queried

string begins.
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An important application of this chapter is in the area of searching a genome sequence

against a genomic databases. Such search can be used in the analysis of genetic diseases,

genetic fingerprinting or genetic genealogy, and requires a set of results that not simply match

the genome, but rather the position of the genome sequence within the genome database. The

major contribution of our work is to initiate the study of a very important problem, namely,

substring position search over encryption data. Our solution should not be considered as

a complete approach of the subject, which has very strong future directions of research.

Nonetheless, our solution provides the preliminary foundation for the study of the subject,

including formal definitions, building blocks, basic construction as well as security proofs.

In this work, we continue exploring the line of recent searchable encryption solutions, but

from the slightly different standpoint.

We now give an overview of our contributions:

• We present a Substring Position Searchable Symmetric Encryption (SSP-SSE) scheme

that allows a substring search over encrypted document collection. The scheme is

based on a position heap tree data structure recently proposed by Ehrenfeucht et

al.[72].

• We formally define two leakage functions and security against adaptive chosen-query

attack of a tree-based SSP-SSE scheme. Apart from traditional access and search

patterns we include the definition of path pattern in the leakage functions of a tree-

based searchable encryption. We show that SSP-SSE enjoys the strong notion of

semantic security[5].

• We present a construction that is very efficient and does not require large ciphertext

space. Our encryption takes O(kn) time and the ciphertext is of size O(kn), where
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k is the security parameter and n is the size of stored data. The search protocol

takes O(m2 + occ) time and three rounds of communication, where m is the length

of the queried substring and occ is the number of occurrences of substring in the

document collection.

We organize the rest of the chapter as follows: In Section 6.1 we briefly review preliminar-

ies and cryptographic notations used in our solution. In Section 6.2 we present algorithms

and data structures that allow a substring search on the plaintext data. We give a brief

overview of each data structure and later present a discussion on choosing the right data

structure to enable substring search in untrusted cloud environment. In Section 6.3 we pro-

vide the details of SSP-SSE scheme and define the security definitions and requirements.

Section 6.4 is devoted to security and performance analysis. Lastly, we conclude in Section

6.5.

6.1. Notations

6.1.1. Preliminaries. Let D = {D1, D2, . . . , Dl} be an original set of documents and

let C = {C1, C2, . . . , Cl} be an encrypted collection of documents from D. If Di and Dj are

two documents, we denote text t as their concatenation by Di||Dj. If A is an algorithm,

then a ← A(. . .) represents the result of applying the algorithm A.

6.1.2. Cryptographic Notations.

Definition 38. (Symmetric Key Encryption (SKE)). A symmetric key encryption

scheme consists of the following PPT algorithms:

• Gen(1k) : a key generation algorithm that inputs a security parameter k and outputs

a secret key K.
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• Enc(K,m) : a probabilistic algorithm that inputs a secret key K and message m,

and outputs a ciphertext c.

• Dec(K, c) : a deterministic algorithm that inputs a secret key K and ciphertext c,

and outputs a message m or special symbol ⊥ (if decryption failed).

Definition 39. (SKE Correctness). Given the symmetric encryption scheme SKE

that consists of three algorithms (Gen,Enc,Dec), for all k and all m such that K ← Gen(1k),

we require:

(20) Dec(K,Enc(K,m)) = m.

We also require SKE to be secure against pseudorandom chosen-plaintext attacks (PCPA).

We now give the definition of PCPA-security of SKE scheme.

Definition 40. (PCPA-security). Let SKE = (Gen, Enc, Dec) be a symmetric

encryption scheme, A be an adversary and there is a probabilistic experiment PCPASKE,A(k)

that is run as follows:

• Use secret parameter k to output the secret key K → Gen(1k).

• The adversary A is given oracle access to EncK().

• The adversary A outputs a message m.

• Let c0 ← EncK(m) and c1
R
←− C. C denotes the set of all possible ciphertexts. A bit

b is chosen at random and cb is given to the adversary A.

• The adversary A is again given to the oracle access to EncK(), and A runs number

of polynomial queries to output a bit b
′

.

• The experiment outputs 1 if b = b
′

, otherwise 0.
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Symmetric encryption scheme SKE is PCPA-secure if for all polynomial-size adversaries

A,

(21) Pr[PCPASKE,A(k) = 1] ≤
1

2
+ negl(k),

where the probability is over the choice of bit b and the coins of Gen and Enc.

We also make use of pseudo-random function (Definition 8) and pseudo-random per-

mutation (Definition 9), which are polynomial-time computable functions that cannot be

distinguished from random functions by any probabilistic polynomial-time adversary.

6.2. Substring Search Algorithms

In this section, we present the most popular algorithms and data structures that allow

a substring search on the plaintext data. Specifically, we focus on mature data structures

like suffix tree [73] and suffix array [74] that have been widely used in many substring

search applications. We also, present the details of recently proposed position heap tree [72].

For each data structure we give a short overview with examples and then we present the

computation and storage efficiency. Lastly, we present a discussion on choosing the right

data structure to enable substring position search in untrusted cloud environment.

6.2.1. Suffix Tree. Suffix tree [73, 75, 76] is a trie-like representation of text supporting

a wide range of applications on strings. The suffix tree is pre-processed data structure that

enables a substring search on the stored string. We now give the definition of the suffix tree:
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Definition 41. (Suffix Tree). A suffix tree for string t = t1 . . . tn is a rooted, directed

tree with following properties:

• Each edge is labeled with a non-empty substring of t, named as edge label.

• Every internal node as at least two children.

• No two edges out of a node have edge labels starting with the same character.

• The tree has n leaves, labeled from 1 to n.

Definition 42. (Path Label). The path label of a node is the concatenation of the

edge labels on the path from the root to that node.

Definition 43. (Suffix Tree Search). A string χ is a substring of t if and only if it

is a prefix of some suffix of t.

Figure 6.1a shows an example of suffix tree constructed from the text “coconut”. To

check if a string χ is a substring, the algorithm searches for a path from the root whose

labels match χ. For instance, searching for a string “coconut”, we begin at the root node

and start checking the neighbor edge labels, down to the matching node, i.e. node 1 is the

matching and it corresponds to the occurrence in the text. Similarly, the search of “co” leads

us to the intermediate node whose leaf nodes (1, 3) are the positions in text.

The suffix tree can be constructed in O(n) time for a string of length n [76]. Also, it can

be shown that a suffix tree has at most 2n nodes and storing edge label for all edges would

require O(n2) in the worst case. (Consider a suffix tree for the strings t1t2 . . . tn, where ti is

unique. The suffix tree would contain distinct edge for each of the n suffixes t1 . . . tn, t2 . . . tn,

. . . , tn. These suffixes have a total length of O(n2)). Searching for a substring χ of length m

takes O(m+ occ) time to find all occurrences of χ, where occ is the number of occurrences.
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(a) (b) (c)

Figure 6.1. An example of data structure constructed from the text “co-
conut”. (a) A suffix tree. (b) A suffix array. (c) A position heap tree.

6.2.2. Suffix Array. Suffix array[74] is a sorted index array of all suffixes of a string.

Suffix array data structure is used in full text indices, within the field of computational

biology and others.

Definition 44. (Suffix Array). Given a text t of length n, the suffix array for t is an

array of integers of range 1 to n specifying the lexicographic ordering of the suffixes of the

string t.

A suffix tree can be built inO(n) time for a string of length n[74]. To search for a substring

χ of length m, the search can be executed as simple binary search over the suffix array, i.e.

for each element in the suffix array we then compare the suffix of t at element position with

a substring χ. Thus, the search for any substring can be performed in O(m× log(n)) time.

This complexity can be improved by adding the longest common prefix information, so the

search can be executed in O(m+ log(n)) (see [74] for details).

Consider an example of suffix array in Figure 6.1b constructed from the text “coconut”.

Searching for “coconut” gives the occurrence of (1), while searching for “co” results in (1, 3)

occurrences in the text.
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6.2.3. Position Heap Tree. We now give an overview of a position heap tree data

structure[72].

Definition 45. (Position Heap). The position heap Λ of text t is a tree constructed

by iteratively inserting the suffixes (t1, t2, . . . , tn) of t in ascending order into Λ. That is, ti

is inserted by creating a new node in Λ that is the shortest prefix of ti that is not already a

node of the tree, and labeling it with position i.

Figure 6.1c shows an example of position heap tree Λ constructed from the text “coconut”.

The first suffix “t” of text creates the root node in Λ with position label of “1”. Next, second

suffix “ut” of text creates the new node with position 2 and connecting edge with label “u”;

third suffix “nut” creates the new node with position 3 and connecting edge with label “n”.

Similarly, seventh suffix “coconut” creates a new node with position 7 and connecting edge

with label “o” since there is already a node in Λ with edge label “c” created by fifth suffix

“conut”. Following Definition 45, the position heap Λ is constructed. The construction can

be executed for any text t, and since it is deterministic, the position heap Λ for a text is

unique.

We now present the definition of the search in the position heap tree.

Definition 46. (Position Heap Search). Position heap search of all occurrences of

a substring χ of text t in Λ consist of the following steps:

• Index into the position heap Λ to find the longest prefix p of χ that is a node of Λ.

For each ancestor p′ of p, lookup the position i stored in p′. Here, position i is an

occurrence of p′. Determine if this occurrence is followed by χ− p′. If yes, report i

as an occurrence of χ.

• If p = χ, also report all positions of descendants of p.
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Using the example tree in Figure 6.1c, the search for a substring “co” leads to the node

(7). The set of traversed ancestor nodes (5, 1) needs an inspection with text t. Indeed, only

position 5 matches to the substring “co”. So, the positions of substring query “co” are (5, 7).

In case of substring query “coconut”, the search algorithm falls of the tree, thus the search

algorithm returns a set of traversed nodes (7, 5, 1) for an inspection, where 7 is the only

matching occurrence of “coconut” in the text.

Position heap tree for a text of length n can be constructed in O(n) time[72]. All positions

of substring χ of lengthm can be found in O(m2+occ), where occ is the number of occurrences

reported. We refer the reader [72] for detailed discussion on position heap properties.

6.2.4. Discussion. Recall our goal is to construct a scheme that allows a substring

search over encrypted data outsourced to the cloud. In our system model the data owner

has a set of documents with sensitive information that he wants to upload in encrypted

form to the cloud provider. To enable the substring search, the data owner constructs a

searchable index I from the set of plaintext documents D, and then he places I at the cloud

provider to allow the substring search. Our goal is to choose an optimal data structure that

has low storage requirements and fast search execution. Later we use selected data structure

to construct the searchable index I in our scheme.

As we have noted previously, many substring matching algorithms have been proposed

and they differ in terms of storage requirements and search execution. We outline the

comparison of substring search data structures in Table 6.1. We use several comparison

parameters: the construction time, the search execution time and the storage requirements.

The construction time corresponds to the time it takes to create a data structure with input

of the text t of size n. The search execution time is the time it takes to find all occurrences of
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Table 6.1. Comparison of plaintext substring search data structures. n is
the length of the text t, m is the length of the substring χ, occ is the number
of occurrences of χ in t.

Data Structure Construction Search Cloud Storage
Suffix Tree O(n) O(m+ occ) O(n2)
Suffx Array O(n) O(m+ log(n)) O(n2) 4

Position Heap Tree O(n) O(m2 + occ) O(n)

substring χ of length m in the text t. The cloud storage describes a storage of all combined

textual labels in each data structure.

From Table 6.1 we can see that the suffix tree, suffix array and position heap tree have

O(n) preprocessing time of text t of size n. In search, the suffix tree has the best O(m+occ)

execution time for a substring χ of length m. However, the suffix tree has at most 2n nodes

and it would take O(n2) space to store the text at the cloud provider. On the other side,

the suffix array can be constructed with n elements, but it has O(n2) storage. Only position

heap tree allows us to have the low storage O(n) with n nodes; however the substring search

execution takes O(m2 + occ) time. In the rest of the chapter, we use the position heap tree

data structure as the main construction block for our scheme. In our choice between the

data structures we believe that the O(n) storage requirement is the predominant criteria

since expanding any large dataset (e.g., human genome with 3 billion letters) to a O(n2)

storage would cause a substantial waste of cloud computing resources.

4Note that suffix array data structure stores only the array of integers (no need to store the suffixes of text)
and the array can be accessed by running a binary search algorithm in log(n) time, i.e. each time we access
the element in the suffix array, we execute a lexicographical comparison of strings of the suffix at element
position and the the given substring query. This can be executed locally (by the data owner), however, in
our system model defined in Section 3.1, the data owner sends the data and constructed searchable index to
the malicious cloud provider. Both the data and the searchable index are encrypted so no plaintext (and no
lexicographical order) is leaked to the cloud provider. If we were to encrypt the suffix array by encrypting
each element of suffix array, then the cloud provider would not be able to execute the search in log(n) (in
fact, it would observe the ciphertext at each element in the array which gives no order in binary search
execution). However, to keep the binary search log(n) time, one solution is to store encrypted suffixes in
each node of the binary search tree and use an expensive homomorphic encryption[77] that allows search on
the encrypted binary search tree. However, this would take O(n2) worst case storage for all suffixes in the
tree.
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6.3. Basic Construction

6.3.1. Algorithm Definitions. We now present the definition of our scheme.

Definition 47. (Substring Position Searchable Symmetric Encryption (SSP-

SSE). A tree-based SSP-SSE scheme over a set of documents D is tuple of six polynomial-

time algorithms (KeyGen, BuildTree, Encrypt, ConstructQuery, Search, Decrypt), as

follows:

• K ← KeyGen(1k): a probabilistic key generation algorithm to setup the SSP-SSE

scheme. The algorithm takes a secret parameter k and outputs a set of secret keys

K.

• (Λ)← BuildTree(D): a deterministic algorithm to build a position heap tree Λ. The

algorithm takes a document collection D = (D1, . . . , Dl) and outputs a position heap

tree Λ.

• (I, C)← Encrypt(K,Λ, D): a probabilistic algorithm to encrypt a position heap tree

Λ and document corpus D. The algorithm inputs a set of secret keys K, a position

heap tree Λ and a documents corpus D. The output of algorithm is a searchable

index I and encrypted collection C = (C1, . . . , Cl).

• [(Q) ← ConstructQuery(K,χ)] ↔ [(L) ← Search(I,Q)] : two deterministic algo-

rithms that are executed interactively between the cloud user and the cloud provider.

ConstructQuery algorithm inputs a set of secret keys K, a substring χ, and it out-

puts a search query Q. Search(I,Q) is an algorithm that inputs a searchable index I

and a search query Q. The algorithm finds the set of matching encrypted document

identifiers L ∈ C.
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• (Di, posDi
) ← Decrypt(K,Ci): a deterministic algorithm that takes a set of secret

keys K and a ciphertext Ci as input, and outputs an original document Di, ∀i ∈

[1;n], and a set of χ’s positions posDi
in Di.

Definition 48. (SSP-SSE Correctness). We say that the tree-based SSP-SSE scheme

is correct if ∀k ∈ N, ∀ K produced by KeyGen(1k), ∀ D, ∀ Λ output by BuildTree(D), ∀

χ, ∀ i ∈ [1;n]:

Search(Encrypt(K,Λ, D), ConstructQuery(K,χ)) =

= C(χ)
∧

Decrypt(K,Ci) = (Di, posDi
)

(22)

The SSP-SSE correctness ensures proper output if all SSP-SSE algorithms are executed

honestly by the cloud provider.

6.3.2. Security Model. Security goal of any searchable encryption scheme is to reveal

as little information as possible to the adversary. Intuitively, in SSP-SSE scheme we want to

provide the following security guarantees: given a searchable index I and a set of encrypted

documents C = {C1, . . . , Cl} to the adversary, no valuable information about the original

documents D = {D1, . . . , Dl} is leaked to the adversary; given a set of incoming search

queries Q = {Q1, . . . , Qt}, the adversary cannot learn any practical information about

the content of the search query Qi or the original document collection D. However, these

security guarantees are difficult to achieve and most known searchable encryption schemes

[3, 57, 5, 2, 48] reveal some information, namely the access pattern and the search pattern. In

94



SSP-SSE we follow the similar approach of [5] to weaken the security guarantees and allow

some limited information to the adversary.

Definition 49. (Access pattern). Given the n encrypted documents C, where C =

{C1, . . . , Cl}, the search query vector Q, where Q = {Q1, . . . , Qt} of size t, the access

pattern κ(C,Q) includes the set of document identifiers induced by a search query vector Q.

Definition 50. (Search pattern). Given the n encrypted documents C, where C =

{C1, . . . , Cl} the search query vector Q, where Q = {Q1, . . . , Qt} of size t the search pattern

γ(C,Q) is a n × t binary matrix such that ∀i ∈ [1;n] and ∀j ∈ [1; t], the cell element of ith

row and jth column is 1, if a document identifier idi is returned by a search query Qj. The

search pattern reveals whether the same search was executed in the past or not.

Since our solution is based on the position heap tree data structure, we would like to

capture the path pattern security notion. The path pattern of the position heap tree reveals

the path traversed from the root node to the matching node for a given search query.

Definition 51. (Path pattern). Given the n encrypted documents C, where C = {C1,

. . . , Cl}, and the searchable index I built from the document collection, the path pattern of

(C, I) induced by the search query vector Q, where Q = {Q1, . . . , Qt} of size t, is a tuple

δ(C, I,Q) that reveals the set of identifiers of nodes in the index I that are reached by query

Qi∈[1;t].

Now we define the leakage functions to capture all the information leakage we have in

this work:
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• Leakage L1(I, C). Given the encrypted collection C = {C1, . . . , Cl} and the search-

able index I, the leakage consists of the following information: the number of en-

crypted documents, the size of encrypted documents, the identifier of each encrypted

document.

• Leakage L2(Q, I, C). Given the encrypted collection C = {C1, . . . , Cl}, the search-

able index I and the search query Q, the leakage function outputs the access pattern

κ(C,Q), search pattern γ(C,Q) and path pattern δ(C, I,Q).

Definition 52. (Security against adaptive chosen-query attack CQA2). Let

SSP-SSE be tree-based SSE scheme that consists of six algorithms as described in Definition

47. Let A be a stateful adversary, S be a stateful simulator. We consider two probabilistic ex-

periments RealA and IdealA,S that involve A as well as S with two stateful leakage algorithms

L1 and L2 and security parameter k:

RealA(k): The challenger runs the KeyGen(1k) to output the key set K. The adversary

A sends constructed plaintext position heap tree Λ and collection D to the challenger, and

receives a tuple (I, C) ← Encrypt(K,Λ, D) from the challenger. The adversary A makes

a polynomial number of adaptive string searches χ = χ1, . . . , χt and sends them to the

challenger. A then receives the search queries generated by the challenger such that Qi ←

ConstructQuery(K,χi). The adversary returns 1 if his queries return the expected result,

otherwise 0.

IdealA,S(k): The adversary A outputs the tuple (D, Λ), where Λ ← BuildTree(D), and

sends it to the simulator. Given the leakage L1, simulator S generates the tuple (I, C) and

sends them to the adversary. A makes a polynomial number of adaptive string searches χ =

χ1, . . . , χt and sends them to the simulator. Given the leakage L2 the simulator S sends the
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appropriate search queries to the adversary. Finally, A returns 1 in the case of successful

experiment, otherwise 0.

We say that SSP-SSE is adaptively secure against chosen query attack if for all prob-

abilistic polynomial time adversaries A, there exist a non-uniform probabilistic polynomial

time simulator S such that:

(23) |Pr[RealA(k)] = 1− Pr[IdealA,S(k) = 1]| ≤ negl(k)

6.3.3. SSP-SSE Construction. We now present the details of proposed SSP-SSE

scheme.

The scheme consists of two phases, namely setup phase and search phase. The setup

phase is done once by the data owner to upload the set of encrypted documents and searchable

index to the cloud provider. In this phase, the data owner uses the KeyGen, BuildTree and

Encrypt algorithms to encrypt the document collection as well as construct searchable index.

The search phase is performed every time by the cloud user when a query is submitted. In

this phase, cloud user invokes the ConstructQuery algorithm to generate the search query.

The cloud provider executes the Search algorithm to output matching results. Finally, the

cloud user invokes the Decrypt algorithm to decrypt document collection to original view.

Our scheme is based on a set of important notations shown in Figure 6.2. We outline the

details of setup phase in Figure 6.5. We later show the search phase in Figure 6.6.
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NOTATIONS.
• t = (t1, t2, . . . , tn) - the text constructed from document collection D. ti is the letter
in text t at position i.
• ν[i] - the node in Λ at index i (i ∈ [1;n]).
• V (ν[i]) - the position value of node ν[i] in Λ.
• pid(Dj) = id(Dj)||posDj

- concatenation of document identifier Dj (j ∈ [1; l]) with
position i of character ti in the document Dj.
• L(ν[i]) - the path label of node ν[i] in position heap tree Λ.
• Lparent(ν[i]) - the path label of ν[i]’s parent node.
• depth(ν[i]) - the depth of node ν[i] in Λ.

• ν[i] - the encrypted node in Λ̄ at index i.

• V (ν[i]) - the encrypted value of node ν[i] in Λ̄.

• L(ν[i]) - the encrypted path label of node ν[i].

• Lparent(ν[i]) - the encrypted path label ν[i]’s parent node.

• descendants(ν[i]) - the set of descendant (child) nodes in the subtree rooted at node

ν[i]. If ν[i] is the leaf node, then descendants(ν[i]) = 0.

• ancestors(ν[i]) - the set of ancestor (parent) nodes at node ν[i]. If ν[i] is root node,

then ancestors(ν[i]) = 0.

Figure 6.2. SSP-SSE Scheme Notations.

(a) (b)

Figure 6.3. An example of position heap tree. (a) Constructed from the
text “ab$aaa$bb”’ exatracted from documents (D1, D2, D3). (b) Constructed
from the text “abaaababbabaaba”.

6.3.3.1. Setup Phase. Let k be a security parameter and let SKE = (Gen, Enc, Dec) be

a PCPA-secure symmetric-key encryption scheme. The data owner begins with the KeyGen

algorithm that inputs a secret parameter k and outputs a set of keys K1, KX , KY , KV
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and set of random keys KQ, KL, K2,K3
R
←− {0, 1}k. He will use these keys to encrypt the

document collection D = (D1, . . . , Dl) and construct searchable index I.

Handling multiple documents. First, the data owner constructs a position heap

tree Λ using the BuildTree algorithm outlined in Definition 45. The BuildTree algorithm

inputs the text t, where t is constructed from the document collection D = D1||$ . . . $ ||Dl

padded with the unique terminator string $, and outputs the single position heap tree Λ.

In order to handle multiple documents in the collection, the data owner adds an auxiliary

information to each node that contains the document identifier Di and the position of the

letter in Di. For example, if the character “a” appears in the document D1 at position 1, the

node in Λ will have an extra information of pid(D1) = id(D1)||1. Formally, we concatenate

identifier of Dj (j ∈ [1; l]) with position i of character ti in the document Dj, i.e. pid(Dj) =

id(Dj)||posDj
, and add this information in each node in the position heap tree. Figure 6.3a

shows an example of position heap tree Λ of the text “ab$aaa$bb” constructed from three

concatenated documents (D1, D2, D3), where D1 has a text “bb”, D2 has a text “aaa” and

D3 has a text “ab”. Note, a search of “ab” in the position heap tree returns a set of nodes

(9, 4, 1) where only 9 is the matching node and it describes the document position of D3||2.

Thus, the search query “ab” appears only in the document D3 at position 2.

Constructing searchable index. The data owner constructs the searchable index that

is based on the position heap tree data structure. To present the details, we use an example

of the position heap tree Λ showed in Figure 6.3b. The Figure depicts constructed position

heap tree Λ from text t = “abaaababbabaaba” and text arrayX (shown at the top of Figure),

where each array element has a single character of text t indexed from right-to-left.
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(a) (b)

Figure 6.4. Construction of searchable index. (a) An example of position
array Y . (b) An example of path label encryption of position heap tree.

The data owner begins by extracting position information from Λ as follows: index each

node in tree Λ and create a position array Y such that each index in Y corresponds to the

node value of Λ. Figure 6.4a shows an example of left-side branch of position heap tree Λ

and constructed position array Y . In this example, nodes in Λ are marked with red-color

index and their corresponding values (positions) are stored as elements in Y . (In Figure 6.4a

we show an example of the position array Y for 9 nodes of Λ for demonstration purpose only.

The actual algorithm is executed on all nodes in Λ.) With this, the data owner is ready to

encrypt the position heap tree Λ, text array X and position array Y data structures.

First, to encrypt the position heap tree Λ, the data owner uses a pseudorandom function

F : {0, 1}k × {0, 1}∗ → {0, 1}k and PCPA-secure symmetric-key encryption scheme SKE

= (Gen, Enc, Dec). For each node i in Λ, the data owner applies PRF F with key KQ

on concatenation of the path label of node i, depth of the node i, the encrypted path label

of i’th parent node and the secret key KL. Figure 6.4b shows an example of path label

encryption. For instance, the label of node 4 is L4 = FKQ
(a||3||L3||KL), where the L3 =

FKQ
(a||2||L2||KL). The root path label is special case and its label L1 = KKQ

(a||0||∅||KL).
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Let SKE = (Gen, Enc, Dec) be a PCPA-secure symmetric-key encryption scheme, let F :
{0, 1}k × {0, 1}∗ → {0, 1}k be a PRF, and let P : {0, 1}k × {0, 1}n → {0, 1}n be a PRP.
SETUP PHASE.
KeyGen(1k) : given the security parameter k, generate K1, KX , KY , KV ← SKE.Gen(1k)

and KQ, KL, K2,K3
R
←− {0, 1}k. Output the key set K = (K1, KX , KY , KV , KQ, KL,

K2,K3).
BuildTree(D) : given the document collection D = (D1, . . . , Dl):

(1) construct text t = t1t2. . .tn from document collection D and and input t of size n
to build the position heap tree Λ.

(2) index into Λ, for each node ν[i] (i ∈ [1, n]):

(a) set V (ν[i]) = pid(Dj)||V (ν[i]) , where Dj (j ∈ [1, l]) is the document in collec-
tion D.

(3) output the position heap tree Λ
Encrypt(K,Λ, D) : given the secret key set K, position heap tree Λ and the set of documents

D = (D1, . . . , Dl).
Build Encrypted Tree:

(1) index into Λ, traverse from the root node:
(2) for each node ν[i] (i ∈ [1, n]):

(a) set L(ν[i]) = FKQ
(L(ν[i])||depth(ν[i])||Lparent(ν[i])||KL) (i.e. apply PRF F with

key KQ on concatenation of the path label L of ν[i], depth of the node ν[i],
encrypted parent label Lparent of ν[i] and the secret key KL.

(b) set V (ν[i]) = SKE.EncKV
(i).

(3) output encrypted Λ̄.
Build Encrypted Arrays:

(1) for each character ti of t indexed from right-to-left (i.e, tntn−1. . .t1), set an array
X[PK2

(i)] = SKE.EncKX
(ti).

(2) for each i = [1, n]: set an array Y [PK3
(i)] = SKE.EncKY

(V (ν[i])).
Encrypt Document Collection:

(1) for each document Di where i ∈ [1, l], let Ci ← SKE.EncK1
(Di).

(2) output C = (C1, C2, . . . , Cl).
Output: index I = (Λ̄, X, Y ) and encrypted document collection C = (C1, C2, . . . , Cl).

Figure 6.5. SSP-SSE Setup Phase.

In this way, the data owner encrypts all path labels in the tree. This hides the plaintext

path labels of same character at different levels of the tree Λ. Moreover, this makes the

ciphertext unique for all path labels in the tree. To hide the index information of each node

in Λ, the data owner uses SKE encryption with key KV on the index of node, i.e Vi =
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SKE.EncKV
(i), where i ∈ [1, n]. For instance, the value of node 8 is V8 = SKE.EncKV

(8).

With no plaintext left in Λ, the data owner outputs an encrypted position heap tree Λ̄.

Second, the data owner utilizes a pseudorandom permutation P : {0, 1}k × {0, 1}n →

{0, 1}n and PCPA-secure symmetric-key encryption SKE to hide plaintext elements of text

array X and position array Y . For each i (i ∈ [1, n]) in X, the data owner applies PRP P

with secret key K2 on each i, i.e. PK2
(i). For each corresponding character ti at index i in X,

he applies SKE with secret key KX on character ti, i.e. SKE.EncKX
(ti). The data owner

sets the encrypted array X as X[PK2
(i)] = SKE.EncKX

(ti). Next, for each i (i ∈ [1, n]) in

Y , he utilizes PRP P with secret key K3 and SKE with secret key KY as follows: Y [PK3
(i)]

= SKE.EncKY
(Vi), where Vi is i’th element in Y .

Finally, the data owner encrypts each document Di in the collection D using PCPA-

secure symmetric-key encryption scheme SKE with secret key K1 to produce the encrypted

document Ci← SKE.EncK1
(Di). After all, the data owner uploads the encrypted collection

C along the searchable index I = (Λ̄, X, Y ) to the cloud provider. Now the collection is

available for selective cloud retrieval.

6.3.3.2. Search Phase. The search phase includes both the ConstructQuery and the

Search interactive algorithms that are executed between the cloud user and the cloud

provider. The cloud user keeps the set of secret keys K = (K1, KX , KY , KV , KQ, KL,

K2,K3) received from the data owner.

In order to search a substring χ of length m the cloud user begins with creating a search

query Q: for each character χi in χ, he applies PRF F with secret key KQ on concatenation

of χi, i, output of previous query Qi−1 and the secret parameter KL. The cloud user forms

a query Q = (Q1, . . . , Ql) and sends Q to the cloud provider. For instance, for a substring
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SEARCH PHASE.
[(Q) ← ConstructQuery(K,χ)] ↔ [(L) ← Search(I,Q)] is an interactive protocol be-

tween the cloud user and the cloud provider. The cloud user keeps the key set K = (K1, KX ,
KY , KV , KQ, KL, K2,K3) and query cloud provider for a substring χ. The cloud provider
executes search on searchable index I = (Λ̄, X, Y ) and returns results back to the cloud
user.

(1) cloud user: given the secret key KQ and the string of interest χ, output the search
query Q as follows:

(a) for each character χi, i ∈ [1;m], where m = |χ|

(i) set Qi = FKQ
(χi||i||Qi−1||KL) (i.e., apply PRF F with key KQ on con-

catenation of character χi of χ, i, output of query Qi−1 and secret key
KL.)

(ii) set Q = (Q1, Q2, . . . , Qm).
(b) send search query Q to the cloud provider.

(2) cloud provider: index into Λ̄, start at root node

(a) for each Qi and each node ν in Λ̄, match the encrypted label L(ν) to Qi.

Continue until longest node ν[match] found.

(b) If ν[match] 6= ⊥, return (descendants(ν[match], ancestors(ν[match])), other-
wise return ⊥.

(3) cloud user: let TMP-AN and TMP-DE be two arrays, let TMP-RES = TMP-AN
+ TMP-DE is an array that combines elements from TMP-AN and TMP-DE.

(a) for each node ν in ancestors(ν[match]):

(i) if SKE.DecKV
(V (ν)) = ⊥, abort. Otherwise output idx, add to TMP-

AN.
(b) for each node ν in descendants(ν[match]):

(i) if SKE.DecKV
(V (ν)) = ⊥, abort. Otherwise output idx, add to TMP-

DE.
(c) set TMP-RES = TMP-AN + TMP-DE, for each idx in TMP-RES, set yidx =

PK3
(idx). Send (y1, . . . , ynum) to the cloud provider.

Figure 6.6. SSP-SSE Search Phase Part 1.

“aba”, the cloud user creates Q1 = FKQ
(a|1|Lroot|KL) (Lroot is shared by the data owner to

the cloud user), Q2 = FKQ
(b|2|Q1|KL), Q3 = FKQ

(a|3|Q2|KL) and sends Q = (Q1, Q2, Q3)

to the cloud provider. The cloud server indexes into the encrypted position heap tree Λ̄, and

for each given Qi it matches encrypted label L of each node in Λ̄ to Qi, and continues until

the longest matching node νmatch in Λ̄ found. The cloud server returns the set of ancestor

and descendant nodes of νmatch to the cloud user. Using the example in Figure 6.4b and
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SEARCH PHASE.
[(Q) ← ConstructQuery(K,χ)] ↔ [(L) ← Search(I,Q)] is an interactive protocol be-

tween the cloud user and the cloud provider. The cloud user keeps the key set K = (K1, KX ,
KY , KV , KQ, KL, K2,K3) and query cloud provider for a substring χ. The cloud provider
executes search on searchable index I = (Λ̄, X, Y ) and returns results back to the cloud
user.

(4) cloud provider: get Yi = Y [yi] (i ∈ [1, num]), output (Y1, . . . , Ynum).
(5) cloud user: let AN and DE be two arrays.

(a) for i = [1,m], if SKE.DecKY
(Yi) = ⊥, abort, otherwise add output to AN.

(b) for i = [m+ 1, num], if SKE.DecKY
(Yi) = ⊥, abort, otherwise add output to

DE.
(c) parse each element from AN as pid(D)||pos.
(d) for each pos in AN, for j = pos, j > (j −m) (where (j −m) > 0), j − −, let

xj = PK2
(j), send (x1, . . . , xh) to the cloud provider.

(6) cloud provider: get Xi = X[xi] (i ∈ [1, h]), output (X1, . . . , Xh).
(7) cloud user: let REAL-AN be an array.

(a) for i = [1;h], if SKE.DecKX
(Xi) = ⊥, abort. Otherwise parse the output as

tj.
(b) for each pos in AN, compare characters χu = tj, where u = 0, u < m, u + +

and j = pos, j > (j − l) (where (j − l) ≮ 0), j − −. If all χu = tj match at
given pos, add pos to REAL-AN, otherwise ignore pos.

(c) let RES = REAL-AN + DE. Parse each element of array RES as id(Dh)||posDh
,

where posDh
is the position of substring χ in document Dh (h ∈ [1, l]).

Decrypt(K1, K2, Ci) :

(1) retrieve set C = (C1, . . . , Ck) from the cloud provider.
(2) Di ← SKE.DecK1

(Ci), where i ∈ [1; k].
(3) output ((D1, posD1

), . . . , (Dk, posDk
)).

Figure 6.7. SSP-SSE Search Phase Part 2.

search query Q = (Q1, Q2, Q3), the cloud provider returns the set of encrypted ancestor

nodes (SKE.EncKV
(1), SKE.EncKV

(2), SKE.EncKV
(6)) and set of encrypted descendant

nodes (SKE.EncKV
(7), SKE.EncKV

(8)).

Now, the cloud user applies SKE scheme with secret key KV to decrypt the ancestor

and descendant nodes, i.e. (1, 2, 6) ancestor nodes and (7, 8) descendant nodes. Next, he

uses PRP P with secret key K3 on each decrypted node, i.e. yidx = PK3
(idx), where idx

is (1, 2, 6, 7, 8) and sends the resulted query y to the cloud provider. The cloud provider

uses array Y to fetch the elements at index yi (i ∈ [1; 5]) as Y [yi] and sends back results.
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Once received, the cloud user applies SKE with secret key KY to decrypt the positions in

ancestor and descendant nodes, i.e, (1, 3, 6) positions in ancestor nodes and (11, 15) positions

in descendant nodes. According to Definition 46 descendant nodes (11, 15) are the positions

of query “aba” in the text and ancestor nodes (1, 3, 6) require an inspection since some of

them can point at “aba” in the text. Note, since the substring “aba” has length of 3, the

substring may exist at positions (6, 5, 4) and (3, 2, 1) in the text. So, to launch the inspection,

the cloud user applies PRP P with secret key KX at on each position (6, 5, 4, 3, 2, 1) as

xidx = PK2
(idx) and sends query x to the cloud provider.

Now, the cloud provider uses array X and sends back the elements of the array at

index X[xi] (i ∈ [1; 6]). The cloud user uses SKE.Enc with secret key KX to decrypt the

characters tj at positions (6, 5, 4, 3, 2, 1) (i.e. received characters are (a, b, a, a, b, a)). Using

this information, the cloud user verifies if substring characters χi match received characters tj

at each ancestor position. The inspection of ancestors shows that only (6, 3) are the positions.

Thus, the cloud user concludes that substring query “aba” is at position (3, 6, 11, 15) in the

text.

Note, if multiple documents involved in the original text construction, ancestor and

descendant nodes contain the document identifiers, which can be later used by the cloud

user to download the matching encrypted documents and decrypt them locally using PCPA-

secure symmetric-key encryption SKE with secret key K1.

6.4. Evaluation

6.4.1. Security Analysis. In this section we focus on the the security of SSP-SSE

scheme. First, we show that the SSP-SSE scheme is correct according to the Definition
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48. Second, we prove that SSP-SSE scheme is secure against chosen-query attack (CQA-2)

executed by adaptive adversary according to the Definition 52.

Theorem 4. (Correctness). Substring Positions Searchable Symmetric Encryption

(SSP-SSE) scheme consisting of six polynomial-time algorithms (KeyGen, BuildTree, Encrypt,

ConstructQuery, Search, Decrypt) is correct according to Definition 48.

Proof. The Search algorithm inputs the searchable index I and the search query Q.

The index I consists of the encrypted position heap tree Λ̄ and two arrays X, Y (both

encrypted). Since the path labels in Λ̄ and the search query Q are both encrypted with

the same instance of pseudorandom function F with same secret key KQ, the correctness of

SSP-SSE scheme relies on the correctness of pseudorandom function.

When the cloud provider receives the search query Q, it traverses the path labels in the

encrypted position heap tree Λ̄ according to Definition 46. Search query Q is constructed

using the pseudorandom function F applied on the substring χ with key KQ. Each encrypted

path label in Λ̄ is constructed using the pseudorandom function F with key KQ on set of

characters extracted from the plaintext document collection D = {D1, . . . , Dl}. Therefore,

the search algorithm outputs true if the document Di contains the string of characters χ.

Thus, the cloud provider outputs a set documents that match the search query Q. �

Theorem 5. (Security). Let SKE be a symmetric PCPA-secure encryption scheme,

F be a pseudorandom function and P be a pseudorandom permutation. Substring Position

Searchable Symmetric Encryption (SSP-SSE) presented above is (L1, L2)-adaptively secure

against chosen-query attacks defined in Definition 52 (CQA-2 security), where L1 and L2

are the possible leakages.
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In a nutshell, the proof of security of SSP-SSE scheme works as follows. The simulator S

generates a simulated searchable index Ĩ that consist of simulated encrypted position heap

tree Λ̃, simulated position array Ỹ and simulated text array X̃, i.e. Ĩ = (Λ̃, Ỹ , X̃); and

simulated set of ciphertexts C̃ = {C̃1, . . . , C̃l}. Both Ĩ and C̃ are constructed using the

leakage L1 that disclose number of encrypted documents, size of encrypted documents and

identifier of each encrypted document. The simulated encrypted position heap tree Λ̃ is

constructed using the pseudorandom function F and symmetric-key encryption SKE with

random values {0, 1}. Both simulated Ỹ and X̃ are constructed using the pseudorandom

permutation P and symmetric-key encryption SKE on random values {0, 1}. The security of

proposed scheme relies on the following assumptions. The pseudorandomness of F guarantees

that the simulated encrypted position heap tree Λ̃ is indistinguishable from the real encrypted

position heap tree Λ̄. The pseudorandomness of P will guarantee that simulated Ỹ and X̃

are indistinguishable from the real Y and X. Moreover, simulated set of ciphertext C̃ is

indistinguishable from the real encrypted document collection C.

The search algorithm is simulated in similar way that requires to keep track of different

dependencies between the result output and the search query. However, since the real search

query is constructed with pseudorandom function F and pseudorandom permutation P ,

the simulator is not able to distinguish it from the simulated query. Similarly, simulated

outcome of search is indistinguishable from the real set of nodes. We outline the formal

proof as follows.

Proof. Polynomial-size simulator S can be defined such that for any challenger and any

polynomial-time adversary A, the outputs of two experiments IdealA,S(k) and RealA(k) with

secret parameter k are computationally indistinguishable according to the Definition 52. We

now describe the details of experiment IdealA,S(k) that presents the simulator S.
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• S(1k,L1): The simulator S has a leakage L1 which gives the simulator information

about the number and size of documents as well as identifier of each encrypted

document. The simulator S randomly generates a set of simulated ciphertexts C̃

and simulated searchable index Ĩ as follows:

– Simulator S outputs the set of ciphertexts C̃ = {C̃1, . . . , C̃l}, where C̃i
R
←−

{0, 1}|Di|.

– Simulator S sets the simulated encrypted position heap tree Λ̃ where each node

is set as Ṽ (ν[i])
R
←− {0, 1}k and each path label of node ν[i] is set as L̃(ν[i])

R
←−

{0, 1}k, where i ∈ [1;n]. The simulator outputs the encrypted position heap

tree Λ̃.

– Simulator S now constructs simulated arrays X̃ and Ỹ : X̃[i] = {0, 1}k and Ỹ [i]

= {0, 1}k, where i ∈ [1;n].

– Simulator S outputs simulated searchable index Ĩ = (Λ̃, Ỹ , X̃) and set of

simulated ciphertexts C̃.

At this point, the simulator S generated the set of simulated encrypted documents C̃ and

simulated index Ĩ. Next, the adversary A adaptively queries the polynomial-size simulator

S as follows.

• S(1k,L1,L2): The adversary A sends a new query Q to the simulator S. The

simulator now starts collecting various dependencies between incoming search query

and resulted output.

– With given search query Q, simulator S traverses the simulated encrypted po-

sition heap tree Λ̃ starting from the root node, following the simulated path
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labels to find the set of matching encrypted nodes in Λ̃. The simulator outputs

the set of simulated matching nodes: ˜ancestors and ˜descendants.

– With given search requests (ỹ1, . . . , ỹnum), the simulator performs a search in

simulated array Ỹ and returns matching elements (Ỹ1, . . . , Ỹnum).

– With given search requests (x̃1, . . . , x̃h), the simulator performs a search in

simulated array X̃ and returns matching elements (X̃1, . . . , X̃h).

We now need to show that the outputs of two experiments IdealA,S(k) and RealA(k)

are indistinguishable. Since the simulator generates randomly set of ciphertexts C̃, the out-

put of the simulator is truly indistinguishable from the real ciphertexts that are generated

with PCPA-secure symmetric encryption scheme SKE scheme using secret key K1. Other-

wise, this would mean that simulator could distinguish between the output of PCPA-secure

symmetric encryption scheme SKE and the random value. Next, the simulated encrypted

position heap tree Λ̃ is truly indistinguishable from the real encrypted position heap tree.

Otherwise, this would mean that simulator could distinguish between the output of pseu-

dorandom function F with secret key KQ, and the random values. Similarly, the simulated

arrays Ỹ and X̃ are truly indistinguishable from the real arrays Y and X. Otherwise, this

would mean the simulator can distinguish between the output of pseudorandom permutation

P with keys K2, K3, SKE scheme with keys KY , KX and the random values. Thus, this

concludes that the outputs of two experiments are indistinguishable. �

6.4.2. Performance Analysis. In this section we outline the performance of proposed

solution. We assume encryption and decryption using SKE scheme take O(k) time, where

k is the security parameter. We also assume element selection from array takes O(1) time.
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Encryption Efficiency. We first focus on the encryption efficiency of SSP-SSE scheme.

Given plaintext position heap tree Λ with n nodes, we compute encrypted position heap

tree Λ using SKE in O(kn) time. The arrays X and Y each have n elements and can be

computed in O(kn) time. Therefore, encryption takes O(kn) time and the total ciphertext

is O(kn) size.

Search Protocol Efficiency. We now analyze the efficiency of proposed search algo-

rithm. The cloud user inputs a substring χ of length m and outputs a search query in O(m)

time. The cloud provider uses Λ̄ and performs m matches in the tree and retrieves occ de-

scendant nodes, in O(m+ occ) time. The cloud user then computes y1, . . . , ym+occ elements

and the cloud provider retrieves Y [y1], . . . , Y [ym+occ] in O(m+occ) time. The cloud user then

computes x1, . . . , xm2 elements (the cloud user wants to inspect m ancestor positions and

the substring χ of m length may appear at each ancestor position) and the cloud provider

retrieves X[x1], . . . , X[xl2 ] in O(m
2) time. Now the cloud user performs an inspection of m

ancestors m times, making execution in O(m2) time. Thus, both the cloud user and the

cloud provider take computation time O(m2 + occ) in the query protocol and three rounds

of communication to complete the execution of protocol.

Experimental Results. We have developed and implemented a proof-of-concept pro-

totype of SSP-SSE scheme using C++ language. Our prototype leverages libtomcrypt cryp-

tographic library 5 that is portable C cryptographic library that supports symmetric ciphers,

one-way hashes, pseudo-random number generators, and a plethora of support routines. We

use libtomcrypt to build the searchable index I and encrypt the document collection. We

utilize AES-CTR encryption for SKE symmetric-key encryption scheme, HMAC-SHA1 for

pseudorandom function F and DES encryption for pseudorandom permutation P .

5https://github.com/libtom/libtomcrypt
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Table 6.2. Experimental Database.

Organism Name Description
mRNA

Size (MB)
Organism Name Description

mRNA
Size (MB)

Dufourea
Novaeangliae

28
Papilio
Polytes

41

Bactrocera
Dorsalis

49
Fopius
Arisanus

60

Halyomorpha
Halys

63
Tribolium
Castaneum

63

Stomoxys
Calcitrans

70
Orussus
Abietinus

72

Nasonia
Vitripennis

75
Linepithema

Humile
77

We show a thorough experimental evaluation of the SSP-SSE scheme on a real-world

dataset: the Genome database[78] (published by National Center for Biotechnology Infor-

mation, National Institutes of Health) that contains sequence data from the whole genomes

of over 1000 species or strains. The database include all three main domains of life (bacteria,

archaea, and eukaryota) as well as many viruses, phages, viroids, plasmids, and organelles.

All experiments have been performed on a 6 core Intel(R) Xeon(R) E5645 @ 2.40GHz pro-

cessor and 98 GB memory running 64-bit Fedora 23. The cloud server, data owner and cloud

user applications were run on the same machine, as the network communication overhead

was assumed to be negligible.

For our experiments we pick large mRNA transcript datasets of various insects. Table

6.2 shows the details of experimental set. Figure 6.8a shows an overhead of constructing

encrypted position heap tree Λ. We compare the time of construction of plaintext position

heap tree (original algorithm) and the encrypted position heap tree proposed in this work.

Figure 6.8b shows a storage overhead of searchable index I that consists of encrypted position

heap tree Λ, position array Y and text array X. In short, we notice that proposed scheme
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(a) (b)

Figure 6.8. Experimental Results. (a) A construction of position heap tree.
(b) A searchable index storage.

adds insignificant overhead on computation time, however its storage overhead depends on

the block cipher size of underlying encryption schemes. We believe that proposed solution

can be easily deployed in a real-world cloud environment.

6.5. Conclusion

In this work, we present a new substring position searchable symmetric encryption scheme

(SSP-SSE) that allows efficient substring search on encrypted documents outsourced to the

cloud. Specifically, our solution efficiently finds occurrences and positions of a substring

over encrypted cloud data. We formally define the leakage functions and security notions of

SSP-SSE. We show that our scheme is secure against chosen-query attacks executed by an

adaptive adversary.
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CHAPTER 7

Multi-User Substring Position Searchable Symmetric Encryption

(MSSP-SSE)

The original system model shown in Figure 3.1 (Chapter 3.1) includes only 3 single

entities. In this chapter we consider a simple extension to our system model, where a data

owner has a document collection and there is a group of data users that want to query

encrypted data at the cloud provider. The data owner can control the search access by

granting and revoking searching privileges to other users. We propose a new multi-user

substring position search symmetric encryption (MSSP-SSE) scheme that solves the problem

of managing access privileges and searching a substring over encrypted cloud data. First,

we present the definitions of a multi-user substring position search symmetric encryption

scheme. Later we give an efficient construction that combines ideas of a single-user SSP-SSE

scheme with a broadcast encryption scheme.

7.1. Scheme Construction

7.1.1. Preliminaries. We begin with definition of Broadcast Encryption scheme.

Definition 53. (Broadcast Encryption (BE)[62]). Let U denote the user space, i.e.

the set of all possible users in the system. A broadcast encryption scheme is a set of four

polynomial-time algorithms BE = (Gen, Enc, Add, Dec) defined as follows:

• Gen is a probabilistic algorithm that takes as input a security parameter k and

outputs a master key mk.
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• Enc is a probabilistic algorithm that takes as input a master key mk, a set of users

G ⊆ U and a message m. The algorithm outputs a ciphertext c.

• Add is a probabilistic algorithm that takes as input a master key mk and a user

identifier U ⊆ U , and outputs a user key ukU .

• Dec is a deterministic algorithm that takes as input a user key ukU and a ciphertext

c and outputs either an original message m or the failure ⊥.

The broadcast encryption scheme BE is secure if its ciphertext leaks no useful information

about the original message to any user not in G.

7.1.2. Algorithm Definitions.

Definition 54. (Multi-User Substring Position Searchable Symmetric Encryp-

tion (MSSP-SSE). A tree-based MSSP-SSE scheme over a set of documents D is tuple of

eight polynomial-time algorithms (KeyGen, BuildTree, Encrypt, AddUser, RemoveUser,

ConstructQuery, Search, Decrypt), as follows:

• (K, mk) ← KeyGen(1k): a probabilistic key generation algorithm to setup the SSP-

SSE scheme. The algorithm takes a secret parameter k and outputs a set of secret

keys K and mk.

• (Λ) ← BuildTree(D): a deterministic algorithm to build a position heap tree Λ.

The algorithm takes a document collection D = {D1, . . . , Dl} and constructs a

position heap tree Λ.

• (I, C, stS, stO) ← Encrypt(K,Λ, D,G): a probabilistic algorithm to encrypt a posi-

tion heap tree and document corpus. The algorithm inputs a set of secret keys K, a

position heap tree Λ, a documents corpus D and a set of authorized users G ⊆ U.
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The output of algorithm is a searchable index I, an encrypted collection C = {C1,

. . . , Cl}, a set of states stS, stO.

• (ukU)← AddUser(mk,U): is a probabilistic algorithm run by the data owner to add

a data user. It takes an input of a key mk and a user identifier U , and it outputs

a secret key ukU used by a data user.

• (stS, stO) ← RemoveUser(mk,U): is a probabilistic algorithm run by the owner to

remove a data user U from group G. The algorithm takes as input a key mk and a

data user identifier U . It outputs a set of updated states stS and stO.

• [(Q) ← ConstructQuery(K,χ, ukU , stS)] ↔ [(L) ← Search(I,Q, stS, ukU)]: two

deterministic algorithms that are executed interactively between the authorized cloud

user and the cloud provider. The algorithm inputs a set of secret keys ukU , K, a

state stS and a substring χ, and it outputs a search query Q. The algorithm uses

a query Q, searchable index I, an input of stS state and secret ukU . It outputs a

sequence of identifiers L ∈ C.

• (Di, posDi
) ← Decrypt(K,Ci): a deterministic algorithm that takes a set of secret

keys K and a ciphertext Ci as input, and it outputs an original document Di, ∀i ∈

[1;n], and a set of χ’s positions posDi
in Di.

The security model of multi-user substring position search symmetric encryption scheme

can be defined similarly to a single-user SSP-SSE scheme: given a searchable index I, set of

encrypted documents C = {C1, . . . , Cl} and set of incoming search queries Q = {Q1, . . . ,

Qm} to the adversary, no valuable information is leaked from a tuple of eight polynomial-

time algorithms to the adversary beyond what can be inferred from the access, search and

path patterns.
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KeyGen(1k) :

(1) generate K ← SSP-SSE.KeyGen(1k).
(2) generate mk ← BE.Gen(1k).

Output the key set K and mk.
BuildTree(D) :

Given a document collection D = {D1, . . . , Dl}, output Λ ← SSP-SSE.BuildTree(D).
Encrypt(K,Λ, D,G) :

(1) set (I, C) ← SSP-SSE.Encrypt(K,Λ, D).

(2) set stS ← BE.Enc(mk,G, r), where r
R
←− {0, 1}k and group G include the cloud

provider.
(3) set stO = r.

Output (I, C), stS and stO.
AddUser(mk,U) :

(1) calculate ukU ← BE.Add(mk,U).
Output ukU .
RemoveUser(k,mk, U) :

(1) sample r
R
←− {0, 1}k.

(2) calculate new stS ← BE.Enc(mk,G \ U, r) and stO = r.
Output stS and stO.
[(Q)← ConstructQuery(K,χ, ukU , stS)]↔ [(L)← Search(I,Q, stS, ukU)]

(1) cloud user:

(a) get stS from the cloud provider.
(b) if BE.Dec(ukU , stS) = ⊥, output ⊥, else calculate r ← BE.Dec(ukU , stS).
(c) calculate Q′ ← SSP-SSE.ConstructQuery(K,χ)) and Q ← ρr(Q

′).
(2) cloud provider:

(a) compute r ← BE.Dec(ukU , stS).
(b) calculate Q′ ← ρ−1

r (Q).
(c) get L ← SSP-SSE.Search(I,Q′), where L ∈ C.
(d) output L.

Decrypt(K,Ci) :

Output (Di, posDi
) ← SSP-SSE.Decrypt(K,Ci).

Figure 7.1. MSSP-SSE Construction.

7.1.3. MSSP-SSE Construction. Figure 7.1 shows the details of our multi-user scheme

MSSP-SSE = (KeyGen, BuildTree, Encrypt, AddUser, RemoveUser, ConstructQuery,

Search,Decrypt). Let SSP-SSE = (KeyGen, BuildTree, Encrypt, ConstructQuery, Search,

Decrypt) be a single-user substring position searchable symmetric encryption scheme. Let

BE = (Gen,Enc,Add,Dec) be a broadcast encryption scheme. Let U denote the set of all
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users and let G ∈ U denote the set of users authorized to search. Let ρ be a pseudorandom

permutation such that ρ : {0, 1}k ×{0, 1}t → {0, 1}t 6, where t is the size of search query Q

in SSP-SSE scheme.

The MSSP-SSE construction works as follows. First, the data owner samples the secret

parameter k and generates the set of encryption keys K. Also, the data owner samples the

secret key r for the pseudorandom permutation ρ and the master key mk for the broadcast

encryption BE. Next, the data owner encrypts the document corpus with PCPA-secure

symmetric encryption scheme SKE and outputs the searchable index I. It then generates

a cloud provider state stS, which is the output of a broadcast encryption BE that takes an

input of secret key r, master key mk and the set of identities G. The data owner stores the

searchable index I, the encrypted document corpus C and the cloud provider state stS at

the cloud provider. In order to allow the user U to search the remote collection, the data

owner generates a user key ukU using broadcast encryption scheme with master key mk and

user’s identity U .

In order to search for a substring χ, the authorized user first contacts the cloud provider

to receive the latest state stS and uses its user key ukU to output the secret key r. It then

constructs a single-user search query Q′ and encrypts it with pseudorandom permutation ρ

with r, and outsources ρr(Q
′) to the cloud provider. The cloud provider recovers the search

query Q′ by computing ρ−1
r (ρr(Q

′)). Here, the key r is only known by the data owner and

the set of authorized users that includes the cloud provider.

If user U is no longer the authorized user in the system, the data owner samples a new key

r′, generates new cloud provider state st′S. The new state st′S is sent to the cloud provider to

replace the old stS. Newly generated search queries utilize r′ in pseudorandom permutation

6ρ can be constructed as pseudorandom permutation over domains of arbitrary size [79].

117



ρ and ρ−1, thus no unauthorized users are able to output a valid search queries to the cloud

provider.

MSSP-SSE utilizes the security and performance of a single-user SSP-SSE scheme. Our

construction is very efficient since the cloud provider needs only to execute a pseudorandom

permutation to evaluate the access privileges, thus eliminating the need of more expensive

authentication protocols.

7.2. Conclusion

In this chapter we consider a natural extension of SSP-SSE scheme, where an arbitrary

group of data users can submit substring queries to search the encrypted collection. We for-

mally define a Multi-User Substring Position Searchable Symmetric Encryption (MSSP-SSE)

and present an efficient construction that does not require authentication, thus achieving

better performance than simply using access control mechanisms.
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CHAPTER 8

Conclusions

Searchable encryption allows a client to encrypt its data in such a way that this data

can still be searched. The most immediate application of SSE is to cloud storage, where

it enables a client to securely outsource its data to an untrusted cloud provider without

sacrificing the ability to search over it. In this chapter we summarize the results presented

in this dissertation and elaborate upon future research directions.

8.1. Results

In this dissertation we solved the following open problems:

• We present a systematic literature review and comparison on searchable encryption

techniques (Chapter 3). Through this systematic literature survey we found that

challenges faced in searchable encryption techniques fall into main chategories: (1)

ability to support search expressiveness, provide different query types and security

features, namely ability to handle adaptive adversaries (2) ability to meet the re-

quirements of performance and system usability through search and query execution

time, and index storage. We identified ways to potentially overcome these challenges

and their limitations.

• We present a secure and efficient searchable encryption scheme that allows multi-

keyword query over an encrypted document corpus and retrieves the relevant docu-

ments ranked based on a similarity score (Chapter 4). We construct the searchable

encryption scheme that is CKA2-secure in the random oracle model[24, 5]. Our

scheme achieves semantic security against adaptive adversaries that choose their
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search queries as a function of previously obtained trapdoors and search outcomes.

We present a construction that achieves the optimal search time. Unlike many pre-

vious schemes that are glued to the linear search complexity, our search is sublinear

to the total number of documents that contain the queried set of keywords.

• We present a secure and efficient searchable symmetric sncryption scheme that al-

lows a substring search over encrypted cloud document collection (Chapter 6). The

scheme is based on a position heap tree data structure recently proposed by Ehren-

feucht et al.[72]. We formally define two leakage functions and security against

adaptive chosen-query attack on proposed scheme. Apart from traditional access

and search patterns we include the definition of path pattern in the leakage functions

of a tree-based searchable encryption. We show that SSP-SSE enjoys the strong no-

tion of semantic security[5]. We present a construction that is very efficient and

does not require large ciphertext space.

• We present a natural extension of both schemes, where an arbitrary group of data

users can submit substring queries to search the encrypted collection (Chapter 5

and Chapter 7). We formally define a group multi-keyword similarity searchable

encryption scheme and a multi-user substring position searchable symmetric encryp-

tion scheme. Both extensions include efficient construction that does not require

authentication, thus achieving better performance than simply using access control

mechanisms.

Work in this dissertation has also led to publication of two journal papers ([80] and one

currently under review) and three peer-reviewed conference papers [81–83].
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8.2. Future Directions

In this section we will investigate the several directions we can follow to extend the results

discussed in this dissertation.

• Dynamic searchable encryption (DSE) enables a data owner to encrypt his document

collection in a way that it is still searchable and efficiently updatable. Presented

schemes are static and if the data owner wants to modify the original collection,

he/she will have to regenerate a searchable index and share an updated trapdoor

information with cloud users. Obviously, this induces large computation and com-

munication overheads. In a DSE scheme, encrypted keyword searches should be

supported even after documents are arbitrarily inserted into the collection or deleted

from the collection.

• Our schemes utilizes a honest-but-curious threat model of the cloud adversary. In

this model, the adversary follows the protocol specification and it provides docu-

ments that matches the search query. However, it is desired to support a malicious

threat model where the cloud server may return incorrect search results to the cloud

users. One future direction is to extend our schemes to support verifiability, where

the users can check whether the returned documents contain the queried keywords.

• An interesting approach for future research is certainly a problem-driven approach;

identifying the real-world problems, requirements, and needs first and then trying

to address them by means of searchable encryption would lead to concrete and

useful application scenarios, for example, search in outsourced (personal) databases,

secure email routing, search in encrypted emails, and electronic health record (EHR)

systems. In order to make an important step toward widespread use of searchable
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encryption, multiuser schemes need to become more efficient and scalable for large

datasets. It is possible to extend our work by exploring the different key distribution

schemes to allow multiple data users to launch the search over encrypted cloud data.
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