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ABSTRACT 

 

 

 

EVALUATING AND CORRECTING SENSOR CHANGE ARTIFACTS IN THE SNOTEL 

TEMPERATURE RECORDS, SOUTHERN ROCKY MOUNTAINS, COLORADO 

 

 

In many high elevation mountain regions, documented warming rates have been greater 

than the global surface average. These warming rates directly affect the snowpack, runoff, 

ecosystems, agriculture and species that rely on a high elevation snowpack. Temperature records 

from the snow telemetry (SNOTEL) network across the Southern Rocky Mountains in the 

western United States have high warming rates, which may have been affected by systematic 

inhomogeneities in the temperature data caused by sensor changes. This study evaluates the 

maximum, average, and minimum temperature trends from 68 long-term SNOTEL stations 

across Colorado for the period from the 1980s through 2015 using the non-parametric Mann-

Kendall/Theil-Sen’s analyses before and after the temperature records were corrected for the 

sensor-caused inhomogeneities. Three homogenization methods were tested using a simple 

temperature index snow accumulation and melt model.  

Results show that the significant warming trends found in the original datasets, especially 

in minimum temperature (average increase of 1.2 °C per decade), decreased (to an average of 

0.5 °C per decade) after homogenization. Step-like shifts in temperature datasets were observed 

in SNOTEL temperature records at the time of temperature sensor change, which created a 

discontinuity in the temperature dataset. The temperature-index snow model simulated snow 

water equivalent (SWE) well (more than 93% of the calibrated stations within the “good” and 

“very good” performance category for all three statistical-evaluation periods based on the Nash-
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Sutcliffe coefficient of efficiency, NSCE) using the new temperature sensor dataset. However, 

these models did not perform as well when using the original (pre-sensor change) and 

homogenized temperatures, with 23% of stations for the original temperature data and 44-69% of 

stations for two homogenized temperature datasets within the “good” and “very good” 

performance categories. The homogenized temperature records simulated snow water equivalent 

(SWE) better than the original uncorrected temperature data, but they did not fully correct for the 

effects of sensor change on the temperature records. The NSCE and bias statistics from SWE 

modeling using the original and homogenized datasets suggest that the homogenization methods 

evaluated in this study are applicable for many of the SNOTEL stations in Colorado but not all, 

and need to be applied with caution. Potential users of temperature products from the SNOTEL 

network should also be very careful when choosing time periods for future climate change 

research and assessments. More long-term climate monitoring stations should be installed in high 

elevation mountain regions to document and investigate elevation-dependent warming. 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENTS 

 

 

 

First and foremost, I would like to thank my advisor and my co-advisor, Drs. Steven 

Fassnacht and Stephanie Kampf, for their constant patience and guidance through my 

undergraduate and master’s degree. I would also like to thank my committee member Dr. Yu 

Wei for his contributions to my thesis and my graduate education. This research was partially 

funded by Colorado Water Conservation Board (CWCB). In addition, I would like to thank the 

Department of Ecosystem Science and Sustainability at CSU. I would also like to express my 

gratitude to Dr. Jared Oyler for providing the homogenized temperature data. Finally, I am very 

thankful to my family and friends for their endless support through my education and life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

TABLES OF CONTENTS 

 

 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

1.  INTRODUCTION ......................................................................................................................1 

1.1 The SNOTEL Dataset ..........................................................................................................2 

1.2 Questions and Objectives .....................................................................................................4 

2. DATA AND METHODS ............................................................................................................6 

2.1 Study Region and Stations ...................................................................................................6 

2.2 Dataset..................................................................................................................................7 

2.3 Temperature Data Quality Control ......................................................................................7 

2.4 Homogenization Approaches ...............................................................................................8 

      2.4.1 H1 (Morrisey Concurrent Observations) ....................................................................8 

      2.4.2 H2 (Oyler’s Temperature Adjustments) .....................................................................9 

      2.4.3 H3 (GHCN-D Pairwise Method) ................................................................................9 

2.5 Trend Analysis ...................................................................................................................10 

2.6 Snow Water Equivalent Modeling .....................................................................................11 

3. RESULTS ..................................................................................................................................15 

3.1 Trend Analysis ...................................................................................................................15 

3.2 SWE Modeling...................................................................................................................17 

      3.2.1 Calibration.................................................................................................................17 

      3.2.2 SWE Model Performance using the Original, H1 and H2 Temperature ..................18 

      3.2.3 SWE Model Performance Using H3 Temperature ...................................................20 



vi 
 

4. DISCUSSION ............................................................................................................................30 

4.1 Warming in the Southern Rocky Mountains of Colorado  ................................................30 

      4.1.1 Warming after Homogenization ...............................................................................31 

4.2 Homogenizations Methods ................................................................................................32 

4.3 SWE Modeling...................................................................................................................35 

5. CONCLUSTIONS .....................................................................................................................37 

LITERATURE CITED ..................................................................................................................39 

APPENDIX A: DATASET SUMMARIES ...................................................................................44 

 

 

 

 

 

  



1 
 

CHAPTER 1: INTRODUCTION 

 

 

 

Global mean surface temperature increased 0.85°C from 1880 to 2012 (IPCC, 2014). 

Since 1975, two-thirds of the warming has occurred at an approximate rate of 0.15-0.2°C per 

decade (Hansen et al., 2010). There is growing evidence that the rates of warming at high 

elevations are greater than the global land average (Rangwala and Miller, 2012; Pepin et al., 

2015). Multiple studies from different mountain regions in the world have documented 

elevation-dependent warming, where temperature trends at high elevations are generally greater 

than those at lower elevations (Liu et al., 2009; Diaz and Eischeid, 2007; Clow, 2010; Harpold et 

al., 2012; Rangwala and Miller, 2012; Yan and Liu, 2014; Pepin et al., 2015).  

Documented temperature trends in the Tibetan plateau are 0.42°C per decade for the 

annual mean temperature from 116 meteorological stations at an elevation higher than 2000m 

(Liu et al., 2009). In this same region, Yan and Liu (2014) found warming rates of 0.36 and 

0.50°C per decade for locations over 3000 m and over 4000 m respectively, especially from 2001 

to 2012. These warming rates are similar to those reported for the Swiss Alps, where Ceppi et al. 

(2012) found an annual average warming rate of 0.35°C per decade. In addition, available 

observations suggested that the Colorado Rocky Mountains in the western U.S. were 

experiencing greater seasonal warming rates (0.50-1.0°C per decade) than lower elevations 

during the last three decades, particularly since the mid-1990s. These trends were determined 

based on long-term annual mean temperature from the SNOTEL network (Clow, 2010; Pederson 

et al., 2011; Harpold et al., 2012; Rangwala and Miller, 2012; IPCC, 2014).   

Understanding the warming patterns in regions of high elevation is important because it 

directly affects the snowpack, runoff, ecosystems, agriculture, and species that rely on high 
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elevation habitats (Pepin et al., 2015).  Only a few studies have addressed the possible reasons 

for elevation-dependent warming, which include snow-albedo feedback, cloud properties, water 

vapor, and radiative fluxes (Rangwala and Miller, 2012; Pepin et al., 2015). In the Colorado 

Rocky Mountains in the western U.S., where some of the greatest rates of warming have been 

reported, there is evidence that temperature trends are affected by systematic data artifacts due to 

sensor inhomogeneities, defined as “non-climatic temperature jumps and trends resulting from 

changes in observation protocols, instrumentation, or station siting” (Oyler et al., 2015). These 

inhomogeneities are present in data from the Natural Resources Conservation Service (NRCS) 

Snow Telemetry (SNOTEL) network <wcc.nrcs.usda.gov>. There are more than 800 SNOTEL 

stations located at high elevation stations across the western United States that have been 

recording data for about 30 years <http://www.wcc.nrcs.usda.gov/about/prog_overview.html>.  

1.1 The SNOTEL Dataset 

The automated SNOTEL monitoring network, operated by the Natural Resources 

Conservation Service (NRCS), was initially designed as a water supply forecasting hydro-

climatic data collection network in the late 1970’s to complement and replace existing manual 

snow courses (Julander et al., 2007). Snow water equivalent (SWE), snow depth, and density 

were measured at the snow courses, typically on the first of the month over the winter (from 

February through May in Colorado). The SWE data were used to forecast seasonal runoff 

volumes in mountain rivers. To that end, locations of the SNOTEL stations were specifically 

chosen for forecasting water supply in the western United States.  

During the mid 1980’s, daily minimum, average, and maximum air temperature data 

were added to standard data collection but without any uniformity in mounting temperature 

sensors and measurement protocols (Julander et al., 2007). Hence, these temperature 
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measurements had less consistency and less quality control compared to precipitation and SWE 

measurements made from the onset of the establishment of the SNOTEL network (Julander et 

al., 2007; Rangwala et al., 2015).  Initially, YSI temperature sensors were used to record 

temperature data at or near the SNOTEL data logging hut. In the late 1990s to mid-2000s, 

several sensor changes were made as follows: i) the sensor was changed from a (standard) YSI to 

a YSI Extended Range sensor <ysi.com>, ii) the radiation shield was changed, iii) the voltage to 

temperature algorithm was changed, and iv) the sensor location was changed so that all are now 

at the same relative position, on a cross-arm off the tower opposite the snow pillow and snow 

depth sensor (Julander et al., 2007). Unfortunately, the original temperature sensor configuration 

was only maintained concurrently with the new configuration at a few stations in Idaho. This 

temperature sensor change has caused inhomogeneities in the historical temperature observations 

in SNOTEL network across Colorado.  

Oyler et al. (2015) evaluated SNOTEL minimum and maximum temperature 

observations from 1991- 2012 compared to the U.S. Historical Climatology Network (USHCN). 

They developed a pairwise homogenization algorithm, which identifies and removes relative 

inhomogeneities in the historical temperature records by comparing station temperature series to 

stations in the surrounding area (Menne and Williams, 2009; Oyler et al., 2015). They computed 

trends using an ordinary least squares linear regression on time series of annual temperature 

anomalies and showed substantial biases in trends at SNOTEL stations, especially for minimum 

temperature across the Southern Rocky Mountains of Colorado (Oyler et al., 2015 Figures 2e, 2f, 

S3e, and S3f).  Results from their research showed that the minimum temperature trend from 

1991-2012 was 1.16°C per decade before applying the homogenization algorithm and reduced to 
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0.11°C per decade after homogenization. Homogenization made the high elevation SNOTEL 

temperature trends statistically indistinguishable from lower elevation trends (Oyler et al., 2015).  

However, trends computed by Oyler et al (2015) from the adjusted SNOTEL temperature 

dataset are not consistent with trends over a similar time period (1989 to 2008) from an elevation 

gradient in the Front Range in Colorado (McGuire et al., 2012).  Moreover, Oyler’s adjustments 

tend to create too uniform trends (Figure 1a-b), especially compared to the sets of pre and post-

sensor change trends (Figure 1c-d).  

In relatively flat terrain, such as the Eastern Plains of Colorado (Pielke et al., 2002) and 

the Northern Great Plains (Fassnacht et al., 2016), temperatures (and other climatic trends) are 

often different, even over short distances. Therefore, it is still unclear how well the Oyler et al. 

(2015) homogenization method works in the study area.   

1.2 Questions and Objectives: 

In this research, the overall research questions are: 1) How do temperature sensor 

changes in SNOTEL stations affect temperature trends at SNOTEL stations across the state of 

Colorado? and 2) Can the inhomogeneities in temperature observations be corrected? To address 

these questions, the objectives are as follows: 1) Test three different homogenization methods 

that attempt to correct temperature data biases due to the change of sensors. These methods are: 

(H1) a bias correction based on co-located old and new temperature sensors in Idaho, (H2) 

adjustment values provided by the Oyler et al. (2015) study, and (H3) pairwise comparisons 

between SNOTEL stations in Colorado and nearby Global Historical Climatology Network - 

Daily (GHCN-Daily) <https://www.ncdc.noaa.gov/cdo-web/search>, 2) Compare warming 

trends derived from homogenization methods versus those derived from the original SNOTEL 

temperature records, and 3) Examine the performance of different temperature homogenization 
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methods by modeling Snow Water Equivalent (SWE) with a temperature index snow 

accumulation and melt model. This objective provides an independent test of the temperature 

homogenization methods. The modeling performance is statistically evaluated for three periods 

per year: all days, snow months only (October through June), and melt months only (March 

through May). 

 

 

 
 

Figure 1. Histogram of Colorado SNOTEL temperature trends derived from (a) Oyler et al. 

(2015) temperature homogenization method from 1980s to 2015, (b) Original temperature data 

from 1980s to 2015, (c) Pre-sensor change temperature data from 1980s to 2006, and (d) Post-

sensor change temperature data from 1998~2006 to 2015. 
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CHAPTER 2: DATA AND METHODS 

 

 

 

2.1 Study Region and Stations 

The study area is the Southern Rocky Mountains in Colorado (Figure 2). This area is the 

source of four major rivers: the Arkansas, the Colorado, the Platte, and the Rio Grande (Colorado 

Water Conservation Board, 2015). The steep mountain topography creates dramatic local 

temperature differences and complex precipitation patterns. Annual average precipitation in the 

southern Rocky Mountain region ranges from 200 to 1500mm (Doesken et al., 2003). Rain 

dominated precipitation occurs at area with elevations lower than around 2300m, whereas snow 

dominated precipitation occurs at all higher elevations (Kampf and Lefsky, 2015). Snow that 

persists throughout the winter (seasonal snow) covers approximately 26 percent of the area in 

Colorado. Seasonal snow is found at elevations as low as 2286m in the northwestern part of the 

state (Kampf and Fassnacht, 2016). Most seasonal snow at the Southern Rocky Mountains in 

Colorado starts to accumulates in October, and peak accumulation time varies from March 

through June (Kampf and Fassnacht, 2016) 

This study uses the 68 long-term SNOTEL stations in Colorado with at least 25 years of 

record (from Fassnacht and Records, 2015) (Figure 2). The elevations of study stations range 

from 2560m (Dry Lake, north-east of Steamboat Springs) to 3536m (Beartown, located in the 

San Juan Mountains near Silverton). All stations experience seasonal snow cover, and most of 

them are located in the persistent snow zone (Moore et al., 2015). The northern-most SNOTEL 

station is located in Larimer County at 40°53’ N while the southern-most SNOTEL is located in 

Conejos County at 37°01’ N. The physical distance between SNOTEL stations ranges from 

2.1km (Kiln to Nast Lake) to 430km (Roach to Cumbres Trestle). Tower is the SNOTEL site that 
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has the largest mean maximum SWE of 1324mm and is located on Buffalo Pass near Steamboat 

Springs, Colorado. The SNOTEL station with the smallest mean maximum SWE of 144mm is 

Copeland Lake, located in Rocky Mountain National Park near Allenspark, Colorado.  

2.2 Dataset 

From all selected SNOTEL stations, we downloaded daily maximum, average, and 

minimum air temperature, precipitation, and Snow Water Equivalent (SWE) data from the NRCS 

website <http://www.wcc.nrcs.usda.gov/snow/>. Station records range from the early 1980s to 

2015.  Most of the temperature sensor changes in the state of Colorado occurred from the late 

1990s to mid-2000s; all temperature data were divided into two time periods, pre-sensor change 

and post-sensor change. The temperature time series after the sensor change (starting from1998 

to 2006) was assumed to be correct, and homogenization methods were applied to adjust the pre-

sensor change data to the post-sensor change data (Domonkos, 2016). 

2.3 Temperature Data Quality Control 

To remove observation errors and invalid values from temperature dataset, all SNOTEL 

stations were divided into four major clusters based on their longitude and latitude. Nearby 

stations that are experiencing similar precipitation variability and climate patterns were 

considered as one group according to a climate cluster map (Figure 2), which was derived 

through multivariate statistical techniques include clustering and rotated Principal Components 

(Wolter, 2001). Although climatic trends from adjacent stations can vary in magnitude and 

direction (Pielke et al., 2002; Fassnacht et al., 2016), the comparison of temperature records to 

other stations facilitated temperature data quality evaluation. Maximum, average, and minimum 

temperature data from all SNOTEL stations in one of the four climate clusters were plotted from 

1985 to 2015 by group to search for obvious anomalies such as “physically impossible or 

http://www.wcc.nrcs.usda.gov/snow/
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climatologically implausible temperature values for the locations and time of the year” (Durre et 

al., 2010), which indicate sensor error. Temperature values in each group that were abnormally 

higher or lower (> three standard deviations) than all neighboring stations were removed. Other 

anomalies such as temperature values that do not vary for several weeks or months or gradually 

varying values that are not consistent with other stations were also removed.  

Many previous studies have used non-missing neighboring observations to infill missing 

data at a target station and create serially complete station data (DeGaetano et al., 1995; Huth 

and Nemesova, 1995; Eischeid et al., 2000; Oyler et al., 2015). For each station, a best fit linear 

equation was derived to relate the target station daily temperature to the mean temperature from 

all other stations in the same group. These equations had average R2 values of 0.95 (minimum 

temperature) to 0.98 (average temperature) and were used to infill the target’s missing values. 

The amount of filled values ranges from 4.4% to 11.1% of the daily records for average 

temperature, 6.1% to 22.2 % for maximum temperature and 7.8% to 13.4% for minimum 

temperature.  

2.4 Homogenization Approaches 

Three approaches were applied to correct the temperature imhomogeneities at the 

SNOTEL station, leading to three adjusted temperature datasets (Table 1). 

2.4.1 H1 (Morrisey Concurrent Observations)  

The first temperature homogenization method (H1) was derived from four SNOTEL 

stations in Idaho, where data from the old sensors and new sensors were collected concurrently 

from 1999 to 2001 and were compared to explore the apparent cold temperature bias for the old 

sensors (data from Phil Morrisey, hydrologist, USDA NRCS shown in Figure S4 of Oyler et al., 
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2015). The H1 adjustment equation (Equation 1) is the best-fit curve for the Morrisey concurrent 

data using a fourth-order polynomial, as follows:  

Tadjusted = 5.30 x 10-7 Told
4 + 3.72E x 10-5 Told

3 - 2.16 x 10-3 Told
2 - 7.32 x 10-2 Told + 1.37  

(Equation 1),  

where Tadjusted is the revised H1 temperature in degrees Celsius (deg. C), and Told is the original 

temperature from the period before the sensor change in deg. C. This equation (Equation 1) was 

applied to the pre-sensor change quality-controlled and filled average temperature datasets. 

2.4.2 H2 (Oyler’s Temperature Adjustments) 

Oyler et al. (2015) provided corrections to the daily minimum and maximum SNOTEL 

dataset (482 stations total including the 68 study stations) based on comparisons to the U.S. 

Historical Climatology Network (USHCN, see Menne et al., 2009) dataset (320 stations) over the 

period from 1991 to 2012. For each SNOTEL station, they provide either one or several 

adjustment values, which can be added or subtracted from every daily temperature value. If more 

than one adjustment value is provided, each value applies to a specified range of dates. All 

adjustment values obtained from Oyler et al. (2015) for each study site were applied to the daily 

filled original maximum and minimum temperature datasets by adding or subtracting the 

adjusted values. Average daily temperature values were then computed as the mean of the daily 

adjusted maximum and minimum temperature datasets. 

2.4.3 H3 (GHCN-D Pairwise Method)  

 The GHCN (Global Historical Climatology Network)-Daily is an integrated database that 

contains daily climate summaries from over 75,000 surface stations across the globe (Burroughs, 

2009). In this study, five GHCN-D sites in Colorado were paired with nearby SNOTEL stations. 

These pairs were: Yampa with Crosho, Glenwood Springs #2 with Bison Lake, Climax with 
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Fremont Pass, Aspen #1 SW and Leadville Lake CO Airport with Kiln. The GHCN-D sites were 

selected because they are adjacent to the listed SNOTEL study stations within distances ranging 

from 1.7 km to 27.4 km (Figure 2). Maximum and minimum temperature data from each site for 

the period 1980 to 2015 were downloaded directly from National Oceanic and Atmospheric 

Administration (NOAA) <https://www.ncdc.noaa.gov/cdo-web/>. Temperature data from all 

GHCN-D sites were aligned with SNOTEL datasets because there were missing dates in the 

GHCN-D system. Aspen #1 SW and Leadville Lake CO were aligned and averaged as one 

dataset because their distances to Kiln SNOTEL site are about the same, and it is more 

comprehensive to group them as one dataset. The two datasets from the post-sensor change 

period of GHCN-D and SNOTEL were then plotted as scatter plot, and the best fit line was 

determined using linear regression. The derived equation for each SNOTEL station was then 

applied to the pre-sensor change period to get daily H3 maximum and minimum temperature 

datasets. Daily average temperature values were then computed from the daily H3 maximum and 

minimum temperature datasets. These steps were applied to all four SNOTEL stations with their 

paired GHCN-D sites. 

2.5 Trend Analysis 

To investigate annual temperature trends in each of the datasets from all SNOTEL 

stations, a Mann-Kendall non-parametric trend analysis was conducted (Mann, 1945; Kendall 

and Gibbons, 1990). The Theil-Sens’ slope was then calculated to get the rate of change (Theil, 

1950; Sen, 1968).  Mean annual maximum, average, and minimum temperature values were 

computed from daily data, and years with more than 15 missing values were eliminated (Venable 

et al., 2012). Using the filled original SNOTEL temperature data, trends were computed for the 

entire time series, for the data before the sensor change, and for the data after the sensor change 

https://www.ncdc.noaa.gov/cdo-web/
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(Table 1). Trends were also computed for the entire period of record and pre-sensor change 

period for the three adjusted datasets. 

2.6 Snow Water Equivalent Modeling 

To evaluate the three-homogenization methods, a simple temperature-based daily SWE 

model was applied to determine which of the homogenization algorithm performed the best. This 

model only uses observations of temperature (T) in degrees Celsius, precipitation (P) in 

millimeters, and two parameters (Kampf and Richer, 2014), as follows: 

                                             𝑆𝑊𝐸𝑖 = 𝑆𝑊𝐸𝑖−1 −  𝛼 𝑇𝑖           if  𝑇𝑖 > 𝑇𝑠 

                              𝑆𝑊𝐸𝑖 = 𝑆𝑊𝐸𝑖 + 𝑃𝑠𝑛𝑜𝑤−𝑖          if 𝑇𝑖 ≤ 𝑇𝑠          (Equation 2) 

 

where α is the melt coefficient parameter in mm/day/degree C, Ts is the threshold temperature 

parameter separating rain and snow, and i indicates day. 

SWE was modeled for each year at each SNOTEL station using the original, H1, H2 and 

H3 average pre-sensor change temperature datasets. Two model parameters, Ts and α, were 

calibrated using the post-sensor change period of record (~2006 to 2015). Three different 

statistical-evaluation periods were assessed in daily SWE modeling: all days, snow months only 

(October through June), and melt months only (March through May) because it is more 

representative to use the snowmelt season with more snow cover on the ground than the entire 

accumulation and melt period during a year (Martinec et al., 2008; Guan et al., 2013). The Nash–

Sutcliffe Coefficient of Efficiency (NSCE) and Bias were computed to evaluate the performance 

of the simulations. The Nash–Sutcliffe Coefficient of Efficiency calculated as:  

                          NSCE = 1 - 
∑ (𝑆𝑊𝐸𝑜𝑏𝑠−𝑆𝑊𝐸𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑆𝑊𝐸𝑜𝑏𝑠− 𝑆𝑊𝐸̅̅ ̅̅ ̅̅ ̅ )𝑛
𝑖=1

2                         (Equation 3) 

Where n is the total number of time steps, i is the time step, SWEobs is the observed SWE and 

SWEsim is the simulated SWE calculated from Equation 2. Values of NSCE can vary from 1.00 
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to -∞. An efficiency with a value of 1.00 indicates that simulation matches the observations, 

while an efficiency of lower than 0 indicates that the observed mean is better as a predictor than 

the model (Moriasi et al., 2007). Bias is used to measure the average tendency of the simulated 

data to be larger or smaller than their observed counterparts (Gupta et al., 1999). Bias is 

computed as follows:  

                         Bias = 
(∑ 𝑆𝑊𝐸𝑜𝑏𝑠−∑ 𝑆𝑊𝐸𝑠𝑖𝑚)𝑛

𝑖=1
𝑛
𝑖=1

∑ 𝑆𝑊𝐸𝑜𝑏𝑠
𝑛
𝑖=1

                            (Equation 4) 

Bias values with smaller absolute magnitude indicate better model simulation, and 0.0 is the 

optimal value (Gupta et al., 1999). Positive values indicate a model bias towards 

underestimation, while negative values indicate a model bias towards overestimation (Gupta et 

al., 1999). NSCE and bias values are considered “good” if 0.65 < NSCE ≤ 0.75 and ±0.10 ≤ Bias 

< ±0.15. Models are considered “very good” if 0.75< NSCE ≤1.00 and Bias < ±0.10 (Table 3). 

These criteria are stricter than the “satisfactory” rating for most model assessments because 

parameters are optimized during calibration but not during model evaluation (Moriasi et al., 

2007). Parameters Ts and α over the post-sensor change period were optimized manually based 

on the values of NSCE and bias. The best-fit Ts and α were then applied to simulate SWE using 

the original and three homogenized temperature datasets over the pre-sensor change period. The 

starting date for each SNOTEL stations during the pre-sensor change period is the date of the 

first temperature measurement. Due to missing dates in GHCN-D system, years with more than 

15 missing data were eliminated (Venable et al., 2012) in SWE modeling for H3.  
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Table 1. Temperature datasets and time periods used in the a) trend analysis, and b) calibration 

and evaluation of the SWE modeling. 

 

Dataset 

a) Trend analysis time period  
b) SWE modeling 

Start End  

Original entire 1980s 2015  N/A 

Original pre-sensor change 1980s 1998 to 2006  evaluation 

Original post-sensor change 1998 to 2006 2015  calibration 

H1: Morrisey concurrent data 1980s 2015  evaluation (pre change only) 

H2: Oyler adjustment 1980s 2015  evaluation (pre change only) 

H3: GHCN adjacent station(s) 1980s 2015  evaluation (pre change only) 

 

Table 2. Information for the four SNOTEL stations with paired GHCN-D stations used for H3 

SNOTEL 

stations Latitude Longitude 

Elevation 

(m) 

Paired 

GHCN-D 

stations Latitude Longitude 

Elevation 

(m) 

Bison 

Lake 39.76487 -107.357 3316 

Glenwood 

Spgs #2  39.53964 -107.321 1775 

Crosho 40.16745 -107.057 2774 Yampa 40.15327 -106.905 2403 

Fremont 

Pass 39.37991 -106.197 3475 Climax 39.36859 -106.187 3451 

Kiln 

39.31724 -106.615 2926 

Aspen #1 

SW 39.18542 -106.835 2488 

Leadville 

Lake CO 

Airport  39.23095 -106.317 3029 

 

Table 3. Performance ratings for hydrologic models based on the Nash-Sutcliffe Coefficient of 

Efficiency (NSCE) and Bias (Moriasi et al., 2007).  

Performance Rating NSCE Bias 

Very good 0.75 < NSCE ≤ 1.00 Bias < ±0.1 

Good  0.65 < NSCE ≤ 0.75 ±0.1 ≤ Bias < ±0.15 

Satisfactory 0.50 < NSCE ≤ 0.65 ±0.15 ≤ Bias< ±0.25 

Unsatisfactory NSCE ≤0.50 Bias ≥ ±0.25 
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Figure 2. Map of the 68 long-term SNOTEL study stations, some shown with their paired 

GHCN-D stations (connected by black lines). SNOTEL stations are divided into four groups 

based on their precipitation variability (Wolter, 2001).  
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CHAPTER 3: RESULTS 

 

 

 

3.1 Trend Analysis  

From the filled original dataset over 1980s to 2015, a majority of the trends were 

warming annual temperatures (Table 2). This was especially true for the average and minimum 

temperatures where 99% of all SNOTEL study stations (expect Arrow) were warming 

significantly (α ≤ 0.1 level of significance). Additionally, 99% of these stations with a 

statistically significant trend for minimum temperature were at α = 0.001 level of significance. 

More of the maximum temperatures were warming (54% of all study stations) than cooling (26% 

of all study stations), but fewer trends were significant. For the pre-sensor change period 1980s -

2006, most of the stations were experiencing significant warming trends for maximum (76% of 

all study stations), average (82% of all study stations) and minimum (85% of all study stations) 

temperature datasets. However, much fewer were warming significantly for all three datasets 

during the post-change period (Table 4).  

When the H1 correction was applied, fewer stations were significantly warming, and the 

average rate of warming was at a lower rate over 1980 to 2015. From the filled original dataset, 

the greatest computed warming rates were 2.1 and 2.0 C° per decade for maximum and 

minimum temperatures, respectively; these rates were reduced to 1.6 and 1.2 C° per decade for 

the adjusted H1 datasets. Similarly, trends with H2 indicated the greatest warming was 1.9 C° 

per decade for maximum temperature and 1.2 C° per decade for minimum temperature. Overall, 

although all trends computed from three different datasets are generally warming, the trends tend 

to be smaller with two adjusted datasets compared to the original dataset (Table 4, Figure 3a, 3c). 

Ratios between trends from the original datasets and H1 datasets for maximum, average, and 
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minimum temperature were all below the 1 to 1 line (Figure 3a), indicating that the original 

datasets had greater trends than H1 datasets (Table 4, Figure 3a). Figure 3c illustrates that ratios 

between the original and H2 datasets for a majority of the average and all minimum temperature 

were below 1 to 1 line, with mainly positive values. This figure emphasizes that the original 

datasets had greater trends than H2 dataset as well, but in average and minimum temperature 

only. In addition, most of the trends for maximum, average, and minimum temperature for both 

original and H2 were positive. Figure 3b, 3d and 3e are quantile box plots showing the medians 

and ranges of +/- one standard deviations for H1 (Morrisey), H2 (Oyler), and Original 

temperature datasets.  

Figure 4 illustrates an example of different magnitudes of trends in minimum temperature 

derived from pre-sensor change, post-sensor change data, original, H1 and H2 for Spud 

Mountain SNOTEL station. The original annual average minimum temperature had a step-like 

shift between 2004 and 2005, which was when temperature sensors were upgraded for Spud 

Mountain SNOTEL station. The original annual average minimum temperature shows a 

significant positive trend of 1.1°C per decade from 1987 to 2015 (Figure 4). Pre-sensor change 

data also demonstrated a significant positive trend but much smaller magnitude of 0.5°C per 

decade, while post-sensor change data showed the same warming rate but not statistically 

significant (Figure 4). Results from both H1 and H2 indicated much smaller trends of 0.4 and 

0.3°C per decade compared to the original dataset over the entire time period (Figure 4). 

For H3, Table 7 shows that average trends of maximum, average, and minimum 

temperature calculated from H3 were much smaller and less significant (expect Kiln) compared 

to the original datasets. Trends lowered from 0.1 °C per decade (maximum temperature from 
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Bison Lake) to 2.5 °C per decade (minimum temperature from Fremont Pass). Results from Kiln 

indicated higher and more significant trends in H3 compared to the original dataset.  

3.2 SWE Modeling  

SWE simulations were calibrated to observed SWE using the post-sensor change data, 

and then evaluated using other three temperature datasets. To evaluate the performances of three 

homogenization methods in the SWE modeling, we compared NSCE and bias values derived 

from daily SWE modeling for all days, snow months only (October through June), and melt 

months only (March through May) from all SNOTEL study stations using the original, H1, H2 

and H3 average pre-sensor change temperature datasets.  

3.2.1 Calibration 

The calibrated values of Ts for the SWE simulations ranged from 0.4 to 7.2 °C with an 

average value of 4.1 °C, and calibrated values of α range from 0.6 to 4.9 mm/d/°C with an 

average value of 2.9 mm/d/°C. The calibration parameters Ts and α varied depending on the 

SWE data used and the statistical-evaluation periods used for performance statistics: all days, 

snow months only, or melt months only (Figure 5). Figure 6, 7, Table 6a, 6b and 6c illustrate the 

performance of the calibration (post-sensor change) daily SWE simulation. Figure 6a and 7a 

show that for evaluations of simulations over all days, 97% of the study stations were at “very 

good” model performance rating with values of NSCE greater than 0.75 and values of bias less 

than 0.1(Figure 6a, Figure 7a, Table 6a). For snow months only and melt months only, 96% and 

84% of the study stations had “very good” model performance (Figure 6b, 6c, Figure 7b, 7c, 

Table 4b, 4c).  
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3.2.2. SWE Model Performance Using the Original, H1 and H2 Temperatures 

The simulations using the original dataset during the pre-sensor change time period for 

all days had NSCE values ranging from -1.19 to 0.95 with a mean value of 0.73 (Figure 6a), and 

bias ranging from -1.22 to 0.18 with a mean value of -0.24 (Figure 7a), indicating a tendency for 

the simulations to over-estimate SWE values. Results showed 30% of the study stations were 

within “good” and “very good” performing ratings for all days. SWE model performance using 

the H1 dataset indicated that 84% of the study stations were considered as “good” and “very 

good” during all days statistical-evaluation period (Table 6a). Values of NSCE for H1 ranged 

from 0.06 to 0.97 with an average of 0.87 (Figure 6a), and values of bias ranged from -0.56 to 

0.16 with an average of -0.08 (Figure 7a).  For H2, 69% of the study stations were within the 

range of “good” and “very good” performing ratings during all days statistical-evaluation period 

(Table 6a). NSCE values varied from -1.48 to 0.97 with mean value of 0.81, and bias values 

varied from -1.18to 0.57 with mean of 0.07 (Figure 6a, 7a). NSCE values of both H1 and H2 

improved by an average of 0.14 and 0.08, while bias values increased by an average of 0.16 for 

H1 and 0.31 for H2 compared to the original dataset.  

Performance metrics for snow months only (October through June) illustrated that 29%, 

84% and 62% of the study stations from the original, H1 and H2 were within “good” and “very 

good” performance ratings (Table 6b). Mean NSCE values were 0.67, 0.84 and 0.59 while mean 

bias values were -0.24, -0.07 and 0.10 for the original, H1 and H2, respectively. NSCE values 

from H1 dataset illustrated an average improvement of 0.17, but the mean NSCE values from H2 

dataset lowered by 0.08 compared to the original dataset correspondingly for snow months only 

(October through June). Bias values from H1 and H2 datasets showed average improvements of 

0.17 and 0.34 compared to the original dataset for this statistical-evaluation period. 
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For the melt months only (March through May), results indicated that 23%, 69% and 

44% of the study stations had “good” and “very good” performance ratings for original, H1, and 

H2 temperature datasets (Table 4c). Values of NSCE varied dramatically for this period and 

ranged from -11.23 to 0.90 for the original dataset, -0.31 to 0.94 for H1 dataset and -3.45 to 0.89 

for H2 dataset (Figure 6c). Bias values also varied from -1.93 to 0.15, -0.66 to 0.23, and -0.66 to 

0.74 for the original, H1 and H2 datasets (Figure 7c). Results of NSCE derived from H1 showed 

an average improvement of 0.43 compared to the original dataset, and H2 indicated an average 

improvement of 0.20 compared to the original dataset. Bias values from H1 and H2 

demonstrated average increases of 0.19 and 0.36, respectively. All average NSCE values of H1 

and H2 for all three statistical-evaluation periods improved compared to the original dataset, and 

bias values for H1 and H2 were closer to 0.0 (optimal) as well. 

Overall, the homogenized temperature values in H1 and H2 improved the performance of 

SWE simulation compared to the original temperature values, with H1 performing better than 

H2.  However, the relative performance of the three temperature scenarios varied between 

stations. Figure 8a illustrates an example in which the original dataset had the best performance 

for SWE modeling. From this figure, simulated SWE using the original temperature dataset had a 

“very good” performance rating with 0.95 for NSCE and 0.03 for bias. The simulations for all 

three temperature datasets tended to under-estimate the SWE for both snow years, but the 

simulation with the original temperature dataset was closest to the observed SWE. Figure 8b 

shows an example of SWE modeling in which H1 yielded the best results among all three 

datasets, within “very good” performance rating of NSCE=0.95 and bias=0.00.  The simulations 

for both original and H1 tended to over-estimate the peak SWE, whereas the simulation for H2 

tended to under-estimate the peak. Figure 8c is an example in which H2 had the best modeling 
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performance among all datasets with NSCE value of 0.97 and bias value of 0.02. SWE 

simulation using H2 in this case had the most similar shape to the observed SWE, while the other 

two datasets tend to over-estimate the peak SWE. 

3.2.3 SWE model performance using H3 temperature 

 SWE modeling for H3 was separated from other two datasets because of the limited study 

stations and the elimination of the years. Total eliminated years ranged from 15% (Crosho) to 

59% (Fremont Pass) of the pre-sensor change period. Table 7 demonstrates the results of the H3 

performance. Average NSCE improvements (compared to the original temperature dataset) for 

the four selected SNOTEL stations during all days were 0.09, 0.07 and 0.11 for H1, H2 and H3 

datasets respectively. Values of bias for H1, H2 and H3 during all days also increased compared 

to the original dataset by an average of 0.13, 0.22 and 0.23 (Table 7), indicating better model 

performance in this case since the absolute magnitudes of the bias of all three homogenized 

temperature datasets are much smaller compare to the original temperature dataset. 
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Table 4. Average [and percent of all 68 SNOTEL study stations in brackets] of trends in degrees 

Celsius per decade for annual maximum, average, and minimum temperatures for the original, 

H1 and H2 datasets with significant and non-significant increasing and decreasing trends from 

1980s to 2015. Trends are shown over pre-sensor change and post-sensor change time periods. 

Trends are considered significant if α ≤ 0.1. 

  

entire period 

of record 

(1980s-2015) 

maximum 

 

average 

 

minimum 

  

Dataset Direction 

signif. [% 

of stations] non signif. signif. non signif. signif. non signif. 

 Increasing + 0.65 [54] 0.17 [26] 0.95 [99] 0.24 [1] 1.22 [99] 0.18 [1] 

Original Decreasing - 0.60 [7] 0.11 [12] N/A [0] N/A [0] N/A [0] N/A [0] 

 Total 0.50 [62] 0.082 [38] 0.95 [99] 0.24 [1] 1.22 [99] 0.18 [1] 

H1 

(Morrisey 

adjustment) Increasing + 0.59 [28] 0.15 [25] 0.44 [79] 0.13 [19] 0.53 [91] 0.19 [6] 

 Decreasing - 0.06 [16] 0.13 [31] N/A [0] 0.23 [2] N/A [0] 0.24 [3] 

 Total 0.16 [44] 0.01 [56] 0.44 [79] 0.10 [21] 0.53 [91] 0.04 [9] 

H2 (Oyler's 

adjustment) Increasing + 0.58 [93] 0.27 [4] 0.54 [96] 0.17 [3] 0.51 [87] 0.10 [13] 

 Decreasing - 0.06 [1] 0.07 [2] N/A [0] 0.13 [1] N/A [0] N/A [0] 

 Total 0.57 [94] 0.19 [6] 0.54 [96] 0.07 [4] 0.51 [87] 0.10 [13] 

                

 

pre-sensor 

change 

(1980s-2006) maximum average minimum 

Dataset Direction signif. non signif. signif. non signif. signif. non signif. 

 Increasing + 1.05 [76] 0.32 [13] 0.77 [82] 0.30 [13] 0.78 [85] 0.39 [12] 

Original Decreasing - N/A [0] 0.52 [11] 0.18 [2] 0.18 [3] N/A [0] 1.08 [3] 

 Total 1.05 [76] 0.05 [24] 0.72 [84] 0.21 [16] 0.78 [85] 0.09 [15] 

H1 

(Morrisey 

adjustment) Increasing + 0.88 [72] 0.53 [13] 0.61 [81] 0.20 [12] 0.67 [78] 0.34 [18] 

 Decreasing - 0.11 [6] 0.18 [9] 0.21 [1] 0.20 [6] 0.17 [1] 0.11 [3] 

 Total 0.73 [78] 0.25 [22] 0.56 [82] 0.07 [18] 0.63 [79] 0.27 [21] 

H2 (Oyler's 

adjustments) Increasing + 0.98 [93] 0.22 [4] 0.94 [91] 0.36 [7] 0.93 [82] 0.48 [16] 

 Decreasing - N/A [0] 0.29 [3] N/A [0] 0.87 [2] N/A [0] 1.25 [2] 

 Total 0.98 [93] 0.02 [7] 0.94 [91] 0.15 [9] 0.93 [82] 0.34 [18] 

                

 

post change 

(2000s-2015) maximum average minimum 

Dataset Direction signif. non signif. signif. non signif. signif. non signif. 

Original Increasing + 1.50 [9] 0.70 [65] 0.99 [13] 0.66 [84] 1.43 [21] 0.84 [73] 

 Decreasing 0.26 [1] 0.40 [25] N/A [0] 0.10 [3] N/A [0] 0.30 [6] 

  Total 0.91 [10] 0.39 [90] 0.99 [13] 0.63 [87] 1.43 [21] 0.75 [79] 
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Table 5. Average trends in degree Celsius per decade for annual maximum, average, and 

minimum temperature for the original and H3. (If the trend is significant, level of significance 

listed in brackets: ***: α=0.001 level of significance; **: α=0.01 level of significance; *: if 

α=0.05 level of significance; +: if α=0.1 level of significance) 

 maximum average  minimum 

Stations Ori H3 Ori H3 Ori H3 

Bison Lake 0.4 [*] 0.3 0.5[**] 0.2 0.7 [*] 0.8 [+] 

Crosho 

1.1 

[***] 0.1 

0.9 

[***] 0.2 

1.1 

[***] 0.3 [*] 

Fremont Pass 

1.5 

[***] 0.2 

1.3 

[***] -0.5 

1.1 

[***] -1.4 [*] 

Kiln 0.8 [**] 0.9 [***] 0.5 [**] 

0.8 

[***] 0.6 [**] 0.6 [**] 

 

Table 6. Numbers [and percent count in brackets] of the study stations that are within different 

performance ratings (Moriasi et al., 2007) from SWE modeling performance using daily data, (a) 

all days (total 68 stations for calibrated, original, H1 and H2; results of H3 is shown in Table 7), 

(b) snow months only (October through June), and (c) melt months only (March through May). 

(a) All days 

Calibrated 

(n=68) 

Original 

(n=68) 

H1 

(n=68) 

H2 

(n=68) 

Very Good 66[97] 10[15] 44[65] 34[50] 

Good 1[1.5] 10[15] 13[19] 13[19] 

Satisfactory 1[1.5] 22[32] 6[9] 12[18] 

Unsatisfactory 0 26[38] 5[7] 9[13] 

 

(b) October-June 

Calibrated 

(n=68) 

Original 

(n=68) 

H1 

(n=68) 

H2 

(n=68) 

Very Good 65[96] 9[13] 44[65] 30[44] 

Good 1[1] 11[16] 13[19] 12[18] 

Satisfactory 2[3] 25[37] 6[9] 13[19] 

Unsatisfactory 0 23[34] 5[7] 13[19] 

 

(c) Mar-May 

Calibrated 

(n=68) 

Original 

(n=68) 

H1 

(n=68) 

H2 

(n=68) 

Very Good 57[84] 9[13] 30[44] 19[28] 

Good 6[9] 7[10] 17[25] 11[16] 

Satisfactory 3[4] 17[25] 10[15] 17[25] 

Unsatisfactory 2[3] 35[52] 11[16] 21[31] 
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Table 7. Comparison of NSCE and bias values from modeling SWE using original, H1, H2 and 

H3 datasets over years with complete temperature data (<15 years missing data)  
 Original H1 H2 H3 

 Entire Year NSCE Bias NSCE Bias NSCE Bias NSCE Bias 

Kiln 0.92 -0.12 0.96 0.04 0.93 0.10 0.91 0.14 

Fremont Pass 0.70 -0.25 0.84 -0.13 0.89 0.11 0.90 0.04 

Crosho 0.60 -0.39 0.83 -0.21 0.82 -0.21 0.92 -0.08 

Bison Lake 0.86 0.16 0.81 0.22 0.73 0.29 0.80 0.21 

Oct-Jun                

Kiln 0.89 -0.14 0.95 0.03 0.91 0.10 0.91 0.12 

Fremont Pass 0.65 -0.19 0.79 -0.10 0.84 0.11 0.86 0.05 

Crosho 0.51 -0.38 0.79 -0.21 0.78 -0.21 0.90 -0.08 

Bison Lake 0.79 0.17 0.71 0.22 0.60 0.29 0.69 0.22 

Mar-May              

Kiln 0.78 -0.17 0.92 0.05 0.85 0.13 0.84 0.14 

Fremont Pass -23.09 -0.97 -4.19 -0.42 0.75 0.05 0.55 0.06 

Crosho 0.19 -0.47 0.68 -0.24 0.66 -0.23 0.86 -0.09 

Bison Lake 0.40 0.18 -0.03 0.27 -0.21 0.30 -0.03 0.25  
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Figure 3. Comparison of temperature trends from the adjusted data using (a) H1 (Morrisey) and 

(c) H2 (Oyler) versus those computed from the original data over 1980s to 2015. Estimated 

sensor bias within one standard deviation for maximum, average and minimum temperature for 

(b) H1 (Morrisey), (d) H2 (Oyler), and (e) Original temperature datasets. Red refers to the 

maximum value, whereas the blue is the minimum value; Lines in the middle of the hollow 

boxes are the medians, and the bars are quantile box plots. 
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Figure 4. Plot of mean annual minimum temperature (°C) for the Spud Mountain SNOTEL 

station. Trend lines were fit to the data according to the different time periods. Dotted lines 

represent no statistical significance.  
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Figure 5. Range of values of the calibration parameters (a) Ts  and (b) α, for all days, snow 

months only (October through June), and melt months only (March through May). Both plots (a) 

and (b) are quantile box plots, and the whiskers on plot correspond to the quantiles in the 

distribution output (top horizontal line: 100%, top line of the box: 75%, middle line in the 

box:50%; bottom line of the box: 25%; botton line: 0%). 
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Figure 6. Comparison of NSCE values from the SWE simulations using calibrated (over post-

sensor change period), original, H1 and H2 temperature datasets (over pre-sensor change period) 

for (a) all days, (b) snow months only (October through June) and (c) melt months only (March 

through May). (Plots are quantile box plots; Two data points with NSCE= -6.07 from H2 and 

NSCE= -11.23 from the original data were removed from plots (b) and (c) for figure consistency, 

solid line = 0.5 is the model satisfactory performance rating)  
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Figure 7. Comparison of bias values from the SWE simulation using calibrated (over post-sensor 

change period), original, H1 and H2 datasets (over pre-sensor change period) for (a) all days, (b) 

snow months only (October through June), and (c) melt month only (March through May). (Plots 

are quantile box plots, dotted line = 0 is the optimal value of bias) 
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Figure 8. Example observed and simulated SWE for sequential years using the original, H1, and 

H2 temperature values for the (a) Trapper Lake SNOTEL station for 1999 (low) and 2000 (high), 

(b) Spud Mountain SNOTEL station for 1996 (low) and 1997 (high), and (c) Roach SNOTEL 

station for 1999 (high) and 2000 (low). 
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CHAPTER 4. DISCUSSION 

 

 

 

4.1. Warming in the Southern Rocky Mountains of Colorado 

 Similar to previous studies (Clow, 2010; Pederson et al., 2011; Harpold et al., 2012; 

Rangwala and Miller, 2012), we found a significant trend of 0.95 °C per decade using the 

original average temperature data from 68 long term SNOTEL study stations across Colorado for 

the period from the 1980s to 2015. This trend is much greater than the trends at lower elevations 

(Hansen et al., 2010; Oyler et al., 2015). The majority of the stations (>82%) show significant 

positive trends in both average and minimum temperature for the entire time of records and pre-

sensor change period, while only a few stations show significant trends for the post-sensor 

change time period (Table 4). Maximum temperature for both the entire time and pre-sensor 

change period shows less significant and smaller positive trends compared to average and 

minimum temperature datasets (Table 4), which is consistent with the findings from Oyler et al. 

(2015).  

Snow-albedo feedback, which increases the absorption of solar radiation due to the 

decreasing in snow cover and therefore albedo, was introduced as a main cause for elevation-

dependent warming in southern and northern Rocky Mountains (Clow, 2010; Pederson et al., 

2011). However, as discussed in Rangwala and Miller. (2012), snow-albedo feedback leads to 

greater warming rates for maximum temperature since solar radiation absorption increases 

during daytime. Hence, although the temperature trends from the SNOTEL network are 

distinctly different from the trends of lower elevations, the relatively small trends in maximum 

temperature suggest that snow-albedo feedback was not the cause of high and low elevation 

differences. Additionally, step-like shifts in temperature datasets especially minimum 
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temperature were found in SNOTEL temperature records (e.g. Figure 4), which is again 

consistent with the findings from Oyler et al. (2015) and Rangwala et al. (2015). An artificial rise 

or drop in temperature, which results from changes in locations or sensor exposure, tends to have 

a more definite effect on minimum temperature than maximum temperature. The minimum 

temperature usually occurs at the time of sunrise with calm and steady boundary conditions when 

surface temperature is heavily coupled to the characteristics of the immediate surroundings. 

During the daylight, the boundary layer is generally well mixed, thus the differences of 

microclimates between the pre and post sensor locations is less evident for maximum 

temperatures (Menne et al., 2009).  Both the step-like temperature shifts and the larger trends in 

minimum temperature indicate that the temperature sensor changes in the SNOTEL network 

magnified the warming at higher elevations, which delivered an “artificial amplified” (Oyler et 

al., 2015) elevation dependent warming signal across Colorado. Users of temperature data 

provided by the SNOTEL network should be careful when choosing the time periods to analyze, 

especially for trend investigations.   

4.1.1 Warming Trends with Homogenized Datasets 

Results from Table 4 demonstrate that both H1 and H2 yielded lower rates of change for 

minimum [(average of 0.69 and 0.71 °C per decade for H1 and H2)], average [(average of 0.51 

and 0.41 °C per decade for H1 and H2)] and maximum [(average of 0.06 and 0.07 °C per decade 

for H1 and H2)] temperature, compared to the original datasets. However, a majority of the 

SNOTEL stations (>79%) still show significant warming in both minimum and average 

temperature. Therefore, even with the inhomogeneities in the historical temperature observations 

in SNOTEL network across Colorado caused by temperature sensor change, warming at higher 

elevations is still significantly greater than lower elevations and should not be neglected. Others 
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have found evidence of elevation dependent warming in Colorado and other parts of the western 

United States (Diaz and Eischeid, 2007), but we did not notice any apparent correlation between 

elevations and warming rates in our study. Identifying the patterns and mechanisms of elevation 

dependent warming is difficult because of sparse long-term meteorological stations at high 

elevations (Pepin et al., 2015) and spatial and temporal variability, which is even seen within 

terrain considered homogeneous (Pielke et al., 2002; Rangwala and Miller, 2012; Fassnacht et 

al., 2016).  

4.2. Homogenization Methods 

 The NSCE and bias statistics derived for SWE modeling illustrate that both H1 and H2 

datasets have improved the performance of the SWE simulation compared to the original 

datasets for both NSCE and bias. As shown in Tables 6a-c, NSCE and bias values from SWE 

modeling using H1 indicate 84%, 84% and 69% of the study stations are within the “good” and 

“very good” performance rating for all days, snow months only, and melt months only, 

respectively. Likewise, H2 yields “good” and “very good” results at many stations with 69% for 

all days, 62% for snow months only, and 44% for melt months only (Tables 6a-c). H1 

homogenized data lead to dramatic improvements compared to the original data for which >23% 

of the study stations had “good” or “very good” performance ratings. H2 also improves modeling 

performance compared to the original data, but it does not improve as much as H1. Hence, H1 is 

the better homogenization method according to the SWE model performance. Additionally, 

trends from H1 datasets shown in the histogram (Appendix Figure A-1) have a range of 

variability that is similar to the original temperature datasets, whereas H2 datasets tend to over-

smooth the trends (e.g. Figure 1a). The H1 homogenization method may perform better than H2 

probably is because it is computed from comparing old and new temperature sensors with the 
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same configuration in the relative same locations in Idaho, and the adjustments vary with 

temperature. On the other hand, the H2 adjustments are derived using the USHCN stations, 

which are at lower elevations than SNOTEL stations. The USHCN stations may not fully 

represent the SNOTEL station temperature variability, since each station has a distinct climatic 

condition and location. Previous studies have shown that there could be large differences in 

temperature even in much more homogenous terrains (Pielke et al., 2002; Fassnacht et al., 2016), 

while mountain regions have more pronounced spatial variability (Rangwala and Miller, 2012; 

Patterson, 2016). H2 adjustments are also fixed to remain the same with low and high 

temperatures, and this likely accounts for the more limited ranges of temperature trends after 

homogenization. H3 is also derived from lower elevation GHCN-D stations, similar to Oyler et 

al. (2015), but the adjustments are temperature-dependent as the H3 temperature is a function of 

the original temperature. The intent of the H3 analysis is not to redo the effort of Oyler et al. 

(2015), so only four SNOTEL stations were paired with GHCN-D stations to illustrate site 

specific variability (Table 7). Evaluation of H3 temperature adjustments were limited by the 

missing data in GHCN-D stations, which reduced the range of years that could be tested.  

H1 and H2 are applicable for many of the SNOTEL stations (>44%) in Colorado but not 

for all, possibly since not all temperature sensors were initially installed in the same location at 

the data collection hut, yet all were moved to the same location above the snow pillow. 

Temperature sensors were not part of the initial SNOTEL design so their addition, sometimes ten 

years after a SNOTEL station was established, was ad hoc. Previous research using in situ 

observations has noted the possibility of preferential cold air drainage at night near the hut, 

which would yield colder minimum temperatures during the pre-sensor change period compared 

to the current, common location above the snow pillow (Domonkos, 2016). From the SWE 
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simulation results, the median bias values for the original temperature data are all lower than 0.0 

for the three statistical-evaluation periods (Figure 7a-c), suggesting that the original temperature 

records tended to be cold-biased (more simulated SWE than observed). However, differences in 

the range of cold bias between stations may have been caused by canopy changes at many 

stations caused by tree encroachment (e.g., Fassnacht and Hultstrand, 2015) or beetle kill of the 

trees. Due to safety reasons, some trees have been removed though the NRCS snow survey tried 

to diminish canopy changes particularly encroachment (Fassnacht and Ma, 2016). For example, 

Arrow station has been completely cleared of beetle killed trees by a private land owner around 

2009 (Gillespie, 2012). Due to these types of changes, hemispherical canopy closure 

photographs should be to be taken on a regular basis at each SNOTEL station to monitor canopy 

changes.  High resolution satellite imagery may also be available for the past decade to examine 

canopy changes at some SNOTEL stations (Fassnacht and Ma, 2016).  

Although homogenized datasets produce more coherent trends (Figure 3) and improved 

SWE modeling results in most cases (Figure 8), performance of SWE simulations for the 

homogenized datasets is still a little worse than performance during the calibration time period 

(e.g. with an average NSCE lowered by 0.05 for H1 and by 0.11 for H2, while bias decreased by 

an average of 0.08 for H1 and increased by an average of 0.07 for H2 during all days). Therefore, 

it is essential to understand the limitations and uncertainties in the homogenization methods. 

Pielke et al. (2007) suggested that homogenization tends to neglect the uniqueness in climatic 

conditions from individual stations and over-smooth the trends (e.g. Figure 1a) because the 

homogenized data are integrated from the average temperatures of neighboring stations. This 

effect is similar to the use of the Regional Kendall Test (e.g., Clow, 2010) that produces a single 

trend among multiple stations, but has been shown to mask larger individual trends or even 
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trends in opposite direction (Fassnacht et al., 2016). Oyler et al. (2015) states that a standard 

homogenization procedure lacks the capability to account for strong seasonal dependencies, so it 

is not completely effective for solving the temperature inhomogeneities in the SNOTEL network. 

However, it is still informative to use homogenized data because it helps to interpret the patterns 

of climate variability and change at the surface (Menne et al., 2009). H3 shows similar or slightly 

worse performances compare to H2 (Table 7); therefore, a better site-specific method (with more 

complete temperature data, similar geographic and climatic conditions as the SNOTEL study 

stations) is recommended to replace H3 in the future.  

4.3 SWE Modeling 

 Statistics from the calibrated SWE models show that the simple temperature-based model 

simulates SWE well (Tables 6a-c and Figure 8), with more than 85% of the study stations having 

“very good” performance ratings for the three statistical-evaluation periods (Tables 6a-c). 

Temperature based models perform well because air temperature plays an essential role in 

melting due to its link to longwave atmospheric radiation, which is an important heat source 

contributing to melt (Ohmura, 2001; Hock, 2003).  

In the calibrated simulations, values of Ts ranged from 0.4 to 7.2 °C with similar 

distributions for all days, snow months only, and melt months only (Figure 5a). Ts values for 

calibrated stations with lower NSCE (<0.75) were all greater than 3.5 °C.  Kampf and Richer 

(2014) also found that the model performs relatively well when Ts is within 0 to 3.3 °C. In 

reality, there is likely a difference between a Ts threshold that distinguishes rain from snow and a 

Ts for initiation of melt, but Kampf and Richer (2014) simplified the model by using one value 

for both to reduce the number of non-unique modeling solutions. The model can also be applied 
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with two separate temperature thresholds, one for snow fall versus rain fall (e.g., Fassnacht et al., 

2013) and another for snow melt.  

Melt factors also vary over time as a function of individual energy components that 

provide energy for melt, which depend on weather and surface type (Hock, 2003; Fassnacht et 

al., 2017). For this study, the melt factor α was assumed to be constant in time for each SNOTEL 

station to simplify the computation and calibration. The melt factor calibrated for the melt 

months only has a slightly smaller range of 1.0 to 4.3 mm/d/°C, compared to other two  

evaluation time periods (0.6 to 4.8 mm/d/°C for all days and 0.7 to 4.9 mm/d/°C for snow 

months only; Figure 4b). Values of the melt factor α are comparable to those identified in Kampf 

and Richer (2014) and Fassnacht et al. (2017). 

No correlation (direct increasing or decreasing) has been found between the two model 

parameters and elevation (Figures 4a and b). Fassnacht et al. (2017) found that time explains 

about 70% of the variance in the computed snow melt factor across a similar domain, whereas 

elevation explains less than 10% of the remaining variance for stations not in evergreen forests. 

When examining smaller domains, such as watersheds, elevation can be more important in 

explaining the spatial variance in the snow melt factor (Fassnacht et al., 2017).  

It is important for users to be aware of the limitations in modeling SWE while using 

temperature-based daily SWE model. A classical temperature-based method is only suitable for 

“average conditions” owing to spatial and temporal variability in energy balance components, 

which varies with weather and surface type (Hock, 2003). Likewise, input variables and 

parameters obatained from point measurements are often not representative at catchment scale 

because of the large small-scale variability in mountain terrian (Hock, 2003).  
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CHAPTER 5: CONCLUSIONS 

 

 

 

This study evaluates the temperature products from long-term SNOTEL stations in 

Colorado over the period from the 1980s through 2015. These temperature products are all 

affected by a temperature sensor change. Results from trend analysis show a significant trend of 

0.95 °C per decade using the original average temperature data from 68 long term SNOTEL 

stations in Colorado over their entire period of record. More than 82% of the study stations have 

significant positive trends in both average and minimum temperature for the entire period of 

record and pre-sensor change period, while only few stations show significant trends for the 

post-sensor change time period. Additionally, steplike shifts in temperature datasets especially 

minimum temperature were found in SNOTEL temperature records at the time of the 

temperature sensor change. The temperature sensor change in the SNOTEL network magnified 

the apparent warming at higher elevations.  

Three homogenization methods were developed and tested using a simple temperature-

based model to simulate SWE. Homogenization methods lowered the magnitude of temperature 

trends especially in minimum temperature (lowered to an average of 0.5 °C per decade). 

However, the majority of the SNOTEL stations (>79%) still showed significant warming in both 

minimum and average temperature. Hence, it is crucial to note that even with the 

inhomogeneities in the historical temperature observations in SNOTEL network across 

Colorado, these areas are still warming at a rate higher than the global average (Diaz and 

Eischeid, 2007).  

SWE simulations with a temperature index model can test the performance of the 

temperature homogenization methods. Calibrated SWE models show an average NSCE of 0.88 
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and an average bias of 0.00 for all three statistical-evaluation periods: all days, snow months 

only (October through June), and melt months only (March through May). SWE models using 

the original pre-sensor change temperature data shows >23% of the stations are within “very 

good” and “good” performance model. Temperature homogenization improved SWE modeling 

performance, and >69% of the stations using H1 and >44% of the stations using H2 datasets are 

within “very good” and “good” performance ratings. NSCE generally improved for H1 and H2 

compared to the original temperature data (0.25 and 0.07 for H1 and H2), whereas bias generally 

increased for H1 and H2 (0.18 and 0.34 for H1 and H2) to yield bias values closer to 0.0. 

Therefore, homogenization methods evaluated in this study are applicable for many of the 

SNOTEL stations in Colorado but not all, and need to be applied with caution in future climate 

change research.  

Identifying the patterns and mechanisms of elevation dependent warming is difficult due 

to extremely sparse long-term meteorological stations at high elevations and the spatial and 

temporal variability of temperature in mountain terrain. Furthermore, accurate adjustment of the 

historical temperature dataset may not be possible. Therefore, high elevation mountian regions 

require more long-term climate monitoring stations to examine elevation-dependent warming in 

detail. We recommend that potential users of temperature products from the SNOTEL network 

be very careful about the time periods chosen for future climate change researchs and 

assessments. The H1 and H2 homogenizations evaluated in this study could be used to improve 

the continuity of the temperature records and correct the tempearture offset caused by sensor 

change in many cases, but not for all the SNOTEL stations across Colorado.  
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APPENDIX A: DATASET SUMMARIES  

 

 

 

Table A1. Information of the 68 long-term SNOTEL study stations in Colorado. 

SNOTEL station 

Station 

number Latitude Longitude 

Elevation 

(m) 

Apishapa 303 37.33062 -105.067 3048 

Arrow 305 39.91550 -105.761 2950 

Bear Lake 322 40.31118 -105.645 2896 

Beartown 327 37.71409 -107.512 3536 

Berthoud Summit 335 39.80392 -105.778 3444 

Bison Lake 345 39.76487 -107.357 3316 

Brumley 369 39.08766 -106.542 3231 

Burro Mountain 378 39.87505 -107.599 2865 

Butte 380 38.89433 -106.953 3097 

Cascade 386 37.65096 -107.805 2707 

Cascade #2 389 37.65800 -107.803 2719 

Columbine 408 40.39480 -106.604 2792 

Columbine Pass 409 38.41795 -108.382 2865 

Copeland Lake 412 40.20778 -105.569 2621 

Copper Mountain 415 39.48954 -106.171 3200 

Crosho 426 40.16745 -107.057 2774 

Culebra #2 430 37.20945 -105.200 3200 

Cumbres Trestle 431 37.01878 -106.452 3054 

Deadman Hill 438 40.80571 -105.770 3115 

Dry Lake 457 40.53397 -106.781 2560 

El Diente Peak 465 37.78617 -108.022 3109 

Elk River 467 40.84781 -106.969 2652 

Fremont Pass 485 39.37991 -106.197 3475 

Grizzly Peak 505 39.64631 -105.870 3383 

Hoosier Pass 531 39.36127 -106.060 3475 

Idarado 538 37.93390 -107.676 2987 

Independence Pass 542 39.07539 -106.612 3231 

Joe Wright 551 40.53215 -105.887 3085 

Kiln 556 39.31724 -106.615 2926 

Lake Eldora 564 39.93678 -105.590 2957 

Lake Irene 565 40.41432 -105.820 3261 

Lily Pond 580 37.37929 -106.548 3353 

Lizard Head Pass 586 37.79926 -107.924 3109 

Lone Cone 589 37.89183 -108.195 2926 

Lynx Pass 607 40.07806 -106.670 2707 

Mc Clure Pass 618 39.12897 -107.288 2896 

Middle Creek 624 37.61978 -107.035 3429 
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Mineral Creek 629 37.84747 -107.727 3060 

Molas Lake 632 37.74932 -107.689 3200 

Nast Lake 658 39.29722 -106.607 2652 

Niwot 663 40.03523 -105.544 3021 

North Lost Trail 669 39.07813 -107.144 2804 

Park Cone 680 38.81996 -106.590 2926 

Park Reservoir 682 39.04644 -107.874 3036 

Phantom Valley 688 40.39937 -105.848 2752 

Porphyry Creek 701 38.48884 -106.340 3280 

Rabbit Ears 709 40.36783 -106.740 2865 

Red Mountain Pass 713 37.89180 -107.713 3399 

Ripple Creek 717 40.10812 -107.294 3152 

Roach 718 40.87502 -106.046 2957 

Schofield Pass 737 39.01522 -107.049 3261 

Scotch Creek 739 37.64556 -108.008 2774 

Slumgullion 762 37.99152 -107.204 3487 

Spud Mountain 780 37.69866 -107.777 3249 

Stillwater Creek 793 40.22543 -105.920 2658 

Stump Lakes 797 37.47621 -107.633 3414 

Summit Ranch 802 39.71796 -106.158 2865 

Tower 825 40.53743 -106.677 3200 

Trapper Lake 827 39.99884 -107.236 2957 

University Camp 838 40.03279 -105.576 3139 

Upper Rio Grande 839 37.72194 -107.260 2865 

Upper San Juan 840 37.48576 -106.835 3088 

Vail Mountain 842 39.61676 -106.380 3139 

Vallecito 843 37.48510 -107.507 3316 

Whiskey Ck 857 37.21411 -105.122 3115 

Willow Creek Pass 869 40.34703 -106.094 2908 

Willow Park 870 40.43254 -105.733 3261 

Wolf Creek Summit 874 37.47922 -106.802 3353 
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Table A2a. SWE model results (NSCE and bias) during all days for all SNOTEL study stations 

with calibrated two model parameters Ts (°C) and α (mm/d/°C). 

   NSCE Bias 

SNOTEL Stations 

Ts 

(°C) 

α 

(mm/d/°C) Calibrated Original H1 H2 Calibrated Original H1 H2 

Apishapa 5.60 2.36 0.82 -0.19 0.44 0.35 0.00 -0.89 -0.56 -0.60 

Arrow 6.60 1.00 0.72 0.66 0.75 0.80 0.00 -0.17 -0.08 -0.03 

Bear Lake 7.20 2.30 0.94 0.85 0.88 0.95 0.00 -0.24 -0.14 -0.04 

Beartown 0.50 3.20 0.92 0.86 0.86 0.69 0.00 -0.02 0.16 0.35 

Berthoud Summit 1.70 3.00 0.96 0.83 0.92 0.91 0.00 -0.23 -0.08 0.10 

Bison Lake 5.00 4.30 0.94 0.94 0.89 0.88 0.00 0.01 0.09 0.11 

Brumley 2.50 2.80 0.95 0.72 0.92 0.93 0.00 -0.37 -0.17 0.01 

Burro Mountain 5.40 3.80 0.96 0.93 0.92 0.85 0.00 -0.08 0.06 0.10 

Butte 4.50 2.10 0.95 0.74 0.85 0.94 0.00 -0.28 -0.18 0.03 

Cascade 2.40 2.90 0.95 0.72 0.89 0.42 0.00 -0.40 0.02 0.57 

Cascade #2 2.60 3.00 0.90 0.46 0.72 0.46 0.00 -0.52 -0.13 0.47 

Columbine 5.35 4.80 
0.97 0.54 0.69 0.69 

0.00 -0.26 -0.13 -0.14 

Columbine Pass 5.35 4.18 0.92 0.89 0.96 0.93 0.00 -0.25 -0.09 0.02 

Copeland Lake 4.30 2.35 0.75 -1.19 0.35 0.76 0.00 -1.22 -0.49 -0.03 

Copper Mountain 3.60 3.00 0.98 0.89 0.96 0.96 0.00 -0.19 -0.06 0.04 

Crosho 5.40 2.40 0.91 0.63 0.85 0.85 0.00 -0.37 -0.19 -0.19 

Culebra#2 6.20 0.55 0.54 -0.21 0.06 -1.48 0.00 -0.66 -0.53 -1.18 

Cumbres Trestle 5.20 2.20 0.84 0.79 0.87 0.89 0.00 -0.14 -0.07 -0.01 

Deadman Hill 5.00 2.10 0.92 0.79 0.91 0.95 0.00 -0.21 -0.10 -0.01 

Dry Lake 5.45 3.31 0.98 0.85 0.92 0.94 0.00 -0.18 -0.07 -0.01 

El Diente Peak 0.40 3.00 0.92 0.84 0.93 0.81 0.00 -0.24 0.05 0.21 

Elk River 5.00 1.50 0.87 0.75 0.85 0.90 0.00 -0.20 -0.09 -0.01 

Fremont Pass 5.80 2.10 0.94 0.82 0.90 0.90 0.00 -0.14 -0.04 0.14 

Grizzly Peak 4.30 3.00 0.92 0.75 0.92 0.97 0.00 -0.25 -0.12 0.03 

Hoosier Pass 5.30 4.10 0.96 0.79 0.91 0.90 0.00 0.18 -0.06 0.12 

Idarado 2.50 2.90 0.95 0.82 0.95 0.81 0.00 -0.29 -0.05 0.20 

Independence Pass 2.30 3.00 0.93 0.73 0.88 0.92 0.01 -0.20 -0.06 0.13 

Joe Wright 4.60 2.90 0.95 0.84 0.95 0.94 0.00 -0.24 -0.08 -0.02 

Kiln 2.60 3.00 0.97 0.92 0.96 0.94 0.00 -0.13 0.03 0.09 

Lake Eldora 5.35 3.50 0.91 0.79 0.92 0.88 0.00 -0.23 -0.06 0.10 

Lake Irene 4.80 3.00 0.94 0.80 0.89 0.90 0.00 -0.05 0.05 0.17 

Lily Pond 1.90 3.00 0.93 0.83 0.90 0.60 0.00 -0.25 -0.02 0.35 

Lizard Head Pass 4.10 2.90 0.85 0.64 0.78 0.82 0.00 -0.27 -0.12 0.02 

Lone Cone 4.10 3.00 0.88 0.67 0.84 0.90 0.00 -0.29 -0.14 0.04 

Lynx Pass 4.10 2.90 0.94 0.83 0.94 0.94 0.00 -0.18 -0.03 0.04 

Mc Clure Pass 6.50 2.30 0.94 0.76 0.87 0.89 0.00 -0.24 -0.13 -0.01 

Middle Creek 2.10 3.00 0.94 0.86 0.95 0.94 0.00 -0.27 -0.06 -0.04 

Mineral Creek 3.00 3.00 0.95 0.74 0.93 0.94 0.00 -0.32 -0.11 0.05 

Molas Lake 3.10 2.50 0.91 0.88 0.93 0.84 0.00 -0.07 0.07 0.23 

Nast Lake 1.50 3.15 0.89 0.88 0.88 0.80 0.00 -0.26 0.03 0.20 
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Niwot 4.20 1.30 0.83 0.28 0.64 0.85 0.00 -0.46 -0.24 -0.07 

North Lost Trail 4.20 3.00 0.96 0.85 0.97 0.89 0.00 -0.27 -0.09 0.15 

Park Cone 4.00 3.00 0.96 0.77 0.91 0.92 0.00 -0.26 -0.10 -0.03 

Park Reservoir 4.60 4.30 0.96 0.94 0.94 0.83 0.00 -0.05 0.04 0.21 

Phantom Valley 1.90 3.00 0.95 0.71 0.91 0.88 0.00 -0.39 -0.12 0.04 

Porphyry Creek 4.40 3.90 0.88 0.67 0.86 0.28 0.00 -0.19 -0.05 0.31 

Rabbit Ears 5.20 4.10 0.97 0.95 0.96 0.95 0.00 -0.13 -0.02 -0.05 

Red Mountain Pass 2.30 3.10 0.97 0.79 0.85 0.82 0.00 -0.11 0.03 0.15 

Ripple Creek 5.90 3.00 0.92 0.89 0.95 0.96 0.00 -0.15 -0.05 0.04 

Roach 4.50 2.20 0.94 0.71 0.90 0.97 0.00 -0.31 -0.15 0.02 

Schofield Pass 4.50 3.00 0.92 0.91 0.96 0.94 0.00 -0.09 0.00 0.14 

Scotch Creek 1.20 3.00 0.94 0.52 0.83 0.59 0.00 -0.50 -0.11 0.42 

Slumgullion 5.25 3.60 0.92 0.75 0.89 0.83 0.00 -0.20 -0.10 0.17 

Spud Mountain 2.80 3.00 0.95 0.87 0.95 0.71 0.00 -0.18 0.00 0.35 

Stillwater Creek 4.20 2.80 0.90 0.73 0.90 0.94 0.00 -0.27 -0.10 0.03 

Stump Lakes 4.20 3.00 0.95 0.93 0.96 0.92 0.00 -0.14 -0.02 0.08 

Summit Ranch 4.90 3.80 0.94 0.90 0.95 0.88 0.00 -0.18 -0.04 0.13 

Tower 5.50 3.10 0.97 0.92 0.92 0.90 0.00 0.07 0.13 0.18 

Trapper Lake 5.10 3.40 0.95 0.95 0.92 0.83 0.00 0.03 0.13 0.22 

University Camp 4.45 2.50 0.96 0.90 0.95 0.90 0.00 -0.19 -0.03 0.06 

Upper Rio Grande 2.10 3.00 0.86 0.38 0.82 0.84 0.00 -0.65 -0.29 0.01 

Upper San Juan 1.30 2.80 0.96 0.90 0.95 0.93 0.00 -0.13 0.02 0.11 

Vail Mountain 5.70 2.70 0.95 0.92 0.93 0.89 0.00 -0.07 0.03 0.12 

Vallecito 5.20 3.00 0.91 0.84 0.87 0.85 0.00 -0.11 0.05 0.06 

Whiskey Ck 5.00 3.50 0.95 0.22 0.76 0.84 0.00 -0.62 -0.32 -0.21 

Willow Creek Pass 5.50 3.07 0.95 0.87 0.92 0.93 0.00 -0.16 -0.06 0.02 

Willow Park 1.30 3.00 0.93 0.93 0.94 0.88 0.00 -0.18 0.01 0.13 

Wolf Creek Summit 4.20 2.00 
0.97 0.90 0.95 0.91 

0.00 -0.13 -0.04 0.15 
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Table A2b. SWE model results (NSCE and bias) during snow months (October through June) 

only for all SNOTEL study stations with calibrated two model parameters Ts (°C) and α 

(mm/d/°C). 

      NSCE Bias 

SNOTEL Stations 

Ts 

(°C

) 

α 

(mm/d/°C) 
Calibrated Original H1 H2 

Calibrate

d 

Origina

l 
H1 H2 

Apishapa 5.7 2.4 0.79 -0.35 0.38 0.23 0.00 -0.89 -0.55 -0.61 

Arrow 6.6 1.0 0.64 0.58 0.70 0.75 0.00 -0.15 -0.07 -0.02 

Bear Lake 7.2 2.3 0.93 0.72 0.86 0.93 0.00 -0.23 -0.14 -0.03 

Beartown 0.5 3.2 0.89 0.82 0.81 0.59 0.00 -0.02 0.16 0.35 

Berthoud Summit 1.7 3.0 0.95 0.77 0.89 0.87 0.00 -0.23 -0.08 0.10 

Bison Lake 4.8 4.0 0.93 0.93 0.86 0.84 0.00 0.02 0.08 0.12 

Brumley 2.5 2.8 0.93 0.65 0.89 0.92 0.00 -0.37 -0.17 0.01 

Burro Mountain 5.7 4.2 0.94 0.91 0.90 0.82 0.00 -0.09 0.06 0.09 

Butte 4.5 2.1 0.94 0.68 0.82 0.93 0.00 -0.27 -0.18 0.03 

Cascade 2.4 2.9 0.94 0.67 0.88 0.33 0.00 -0.40 0.02 0.57 

Cascade #2 2.6 3.0 0.89 0.40 0.68 0.39 0.00 -0.52 -0.13 0.47 

Columbine 5.4 4.8 0.96 0.55 0.74 0.61 0.00 -0.21 -0.09 -0.13 

Columbine Pass 5.7 4.9 0.92 0.85 0.94 0.91 0.00 -0.24 -0.08 0.01 

Copeland Lake 4.3 2.4 0.71 -1.49 0.26 0.73 0.00 -1.22 -0.49 -0.02 

Copper Mountain 3.6 3.0 0.97 0.86 0.95 0.95 0.00 -0.18 -0.06 0.04 

Crosho 5.4 2.4 0.89 0.55 0.82 0.81 0.00 -0.37 -0.19 -0.19 

Culebra#2 6.3 0.7 0.53 -0.16 0.12 -1.03 0.00 -0.50 -0.40 -0.73 

Cumbres Trestle 5.2 2.2 0.79 0.74 0.84 0.87 0.00 -0.14 -0.06 -0.01 

Deadman Hill 5.0 2.1 0.89 0.72 0.87 0.93 0.00 -0.19 -0.10 0.00 

Dry Lake 5.5 3.3 0.98 0.80 0.90 0.92 0.00 -0.18 -0.07 -0.01 

El Diente Peak 0.4 3.0 0.91 0.81 0.91 0.77 0.00 -0.24 0.05 0.21 

Elk River 5.0 1.5 0.84 0.69 0.82 0.88 0.00 -0.19 -0.09 -0.01 

Fremont Pass 5.8 2.1 0.92 0.78 0.87 0.86 0.00 -0.11 -0.03 0.14 

Grizzly Peak 4.3 3.0 0.89 0.68 0.89 0.96 0.00 -0.24 -0.11 0.03 

Hoosier Pass 5.3 4.1 0.94 0.73 0.88 0.86 0.00 -0.16 -0.06 0.12 

Idarado 2.5 2.9 0.94 0.77 0.93 0.76 0.00 -0.29 -0.05 0.20 

Independence Pass 2.3 3.0 0.90 0.64 0.84 0.89 0.01 -0.20 -0.06 0.13 

Joe Wright 4.6 2.9 0.93 0.79 0.93 0.92 0.00 -0.22 -0.08 -0.02 

Kiln 2.7 3.0 0.96 0.88 0.95 0.92 0.00 -0.15 0.02 0.08 

Lake Eldora 5.4 3.5 0.88 0.74 0.90 -6.07 0.00 -0.23 -0.06 0.10 

Lake Irene 4.8 2.9 0.91 0.73 0.85 0.87 0.00 -0.04 0.05 0.16 

Lily Pond 1.9 3.0 0.91 0.79 0.88 0.50 0.00 -0.25 -0.02 0.35 

Lizard Head Pass 4.1 2.9 0.80 0.54 0.72 0.77 0.00 -0.26 -0.12 0.02 

Lone Cone  4.1 3.0 0.86 0.60 0.81 0.88 0.00 -0.28 -0.13 0.04 

Lynx Pass 4.1 2.8 0.92 0.78 0.92 0.92 0.00 -0.19 -0.04 0.04 

Mc Clure Pass 6.6 2.4 0.93 0.70 0.84 0.87 0.00 -0.25 -0.12 0.00 

Middle Creek 2.1 3.0 0.92 0.81 0.93 0.92 0.00 -0.26 -0.06 -0.04 

Mineral Creek 3.0 3.0 0.94 0.68 0.91 0.93 0.00 -0.32 -0.11 0.05 
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Molas Lake 3.1 2.5 0.89 0.85 0.91 0.80 0.00 -0.06 0.07 0.23 

Nast Lake 1.5 3.2 0.88 0.86 0.86 0.76 0.00 -0.26 0.03 0.87 

Niwot 4.2 1.3 0.77 0.14 0.56 -4.31 0.00 -0.44 -0.23 -0.07 

North Lost Trail 4.2 3.0 0.95 0.81 0.96 0.86 0.00 -0.27 -0.09 0.15 

Park Cone 4.0 3.0 0.95 0.72 0.89 0.51 0.00 -0.26 -0.09 0.20 

Park Reservoir 4.6 4.2 0.94 0.91 0.92 0.78 0.00 -0.05 0.04 0.21 

Phantom Valley 1.9 3.0 0.94 0.63 0.88 0.85 0.01 -0.39 -0.12 0.04 

Porphyry Creek 4.4 3.7 0.84 0.55 0.80 0.06 0.00 0.17 -0.05 0.30 

Rabbit Ears 5.2 4.1 0.97 0.94 0.94 0.94 0.00 -0.12 -0.02 0.88 

Red Mountain Pass 2.3 3.1 0.96 0.72 0.80 0.76 0.00 -0.11 0.03 0.15 

Ripple Creek 5.9 3.0 0.90 0.86 0.94 0.95 0.00 -0.14 -0.04 0.05 

Roach 4.5 2.2 0.92 0.61 0.87 0.95 0.00 -0.31 -0.15 0.02 

Schofield Pass 4.7 3.0 0.88 0.87 0.94 0.92 0.00 -0.08 -0.01 0.13 

Scotch Creek 1.2 3.0 0.92 0.43 0.81 0.51 0.00 -0.50 -0.11 0.43 

Slumgullion 5.3 3.6 0.89 0.65 0.85 0.77 0.00 -0.19 -0.10 0.17 

Spud Mountain 2.8 3.0 0.93 0.84 0.94 0.63 0.00 -0.18 0.00 0.35 

Stillwater Creek 4.2 2.8 0.88 0.68 0.88 0.93 0.00 -0.27 -0.10 0.03 

Stump Lakes 4.2 3.0 0.93 0.91 0.95 0.89 0.00 -0.14 -0.02 0.08 

Summit Ranch 4.9 3.8 0.93 0.87 0.93 0.84 0.00 -0.18 -0.04 0.13 

Tower 5.7 3.1 0.96 0.89 0.89 0.85 0.00 0.07 0.13 0.17 

Trapper Lake 5.1 3.4 0.94 0.93 0.90 0.78 0.00 0.03 0.13 0.22 

University Camp 4.5 2.5 0.94 0.88 0.93 0.87 0.00 -0.18 -0.03 0.06 

Upper Rio Grande 2.1 3.0 0.83 0.28 0.79 0.82 0.00 -0.65 -0.29 0.01 

Upper San Juan 1.3 2.8 0.95 0.87 0.94 0.90 0.00 -0.12 0.03 0.11 

Vail Mountain 5.7 2.7 0.94 0.90 0.90 0.85 0.00 -0.07 0.04 0.12 

Vallecito 5.2 3.0 0.89 0.80 0.84 0.82 0.00 -0.10 0.05 0.06 

Whiskey Ck 5.0 3.5 0.94 0.04 0.71 0.80 0.00 -0.62 -0.32 -0.21 

Willow Creek Pass 5.5 2.9 0.93 0.81 0.89 0.92 0.00 -0.16 -0.07 0.02 

Willow Park 1.3 3.0 0.91 0.84 0.92 0.84 0.00 -0.17 0.01 0.13 

Wolf Creek Summit 4.3 2.0 0.96 0.90 0.95 0.88 0.00 -0.11 -0.03 0.14 
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Table A2c. SWE model results (NSCE and bias) during melt months only (March through May) 

for all SNOTEL study stations with calibrated two model parameters Ts (°C) and α (mm/d/°C). 

      NSCE Bias 

SNOTEL Stations 
Ts 

(°C) 

α 

(mm/d/°C) 
Calibrated Original H1 H2 Calibrated Original H1 H2 

Apishapa 5.6 3.1 0.74 -0.58 0.45 0.26 0.00 -1.08 -0.55 -0.66 

Arrow 6.7 1.0 0.44 0.36 0.50 0.57 0.00 -0.09 -0.03 -0.01 

Bear Lake 7.2 1.8 0.74 0.54 0.72 0.85 0.00 -0.14 -0.08 0.00 

Beartown 0.4 3.6 0.81 0.65 0.48 -0.18 0.00 0.09 0.23 0.42 

Berthoud Summit 2.0 3.0 0.88 0.45 0.69 0.56 0.00 -0.15 -0.04 0.11 

Bison Lake 4.5 4.0 0.84 0.80 0.55 0.47 0.00 0.05 0.12 0.15 

Brumley 2.5 3.0 0.88 0.38 0.84 0.85 0.00 -0.38 -0.14 0.05 

Burro Mountain 5.0 3.0 0.94 0.87 0.84 0.70 0.00 -0.03 0.11 0.19 

Butte 4.5 2.0 0.85 0.48 0.69 0.87 0.00 -0.28 -0.18 0.05 

Cascade 2.4 3.0 0.92 0.51 0.86 0.06 0.00 -0.50 0.08 0.74 

Cascade #2 2.1 3.0 0.84 0.19 0.70 0.23 0.00 -0.74 -0.07 0.66 

Columbine 5.3 4.3 0.90 0.31 0.64 0.32 0.00 -0.20 -0.06 -0.11 

Columbine Pass 5.0 4.0 0.84 0.87 0.94 0.85 0.00 -0.18 0.03 0.16 

Copeland Lake 3.8 2.3 0.64 -2.46 0.15 0.63 0.00 -1.93 -0.66 0.11 

Copper Mountain 3.8 3.0 0.92 0.66 0.88 0.86 0.00 -0.18 -0.05 0.05 

Crosho 5.4 2.5 0.83 0.25 0.72 0.70 0.00 -0.46 -0.22 -0.22 

Culebra#2 6.2 1.0 0.45 -0.21 0.10 -1.12 0.00 -0.42 -0.32 -0.60 

Cumbres Trestle 4.7 2.0 0.65 0.64 0.76 0.78 0.00 -0.11 -0.03 0.03 

Deadman Hill 5.5 2.1 0.82 0.51 0.74 0.84 0.00 -0.12 -0.07 -0.01 

Dry Lake 5.5 3.1 0.96 0.58 0.79 0.87 0.00 -0.21 -0.09 -0.01 

El Diente Peak 0.7 3.0 0.85 0.62 0.86 0.64 0.00 -0.29 0.05 0.21 

Elk River 4.8 1.5 0.77 0.47 0.67 0.77 0.00 -0.20 -0.09 0.00 

Fremont Pass 6.6 1.0 0.81 -11.23 -0.31 0.78 0.00 -0.62 -0.12 0.06 

Grizzly Peak 4.3 3.9 0.87 0.55 0.85 0.81 0.00 -0.18 -0.06 0.09 

Hoosier Pass 5.3 4.0 0.86 0.44 0.70 0.59 0.00 0.15 -0.05 0.14 

Idarado 2.5 2.8 0.88 0.57 0.90 0.60 0.00 -0.33 -0.03 0.26 

Independence Pass 1.8 3.0 0.85 0.39 0.74 0.74 0.00 -0.20 -0.04 0.15 

Joe Wright 5.0 3.0 0.87 0.57 0.83 0.75 0.00 -0.17 -0.07 -0.02 

Kiln 2.7 3.0 0.93 0.78 0.92 0.86 0.00 -0.18 0.04 0.12 

Lake Eldora 5.9 4.2 0.84 0.57 0.79 -3.45 0.00 -0.25 -0.10 0.14 

Lake Irene 5.0 2.0 0.79 0.45 0.56 0.60 0.00 0.03 0.06 0.06 

Lily Pond 1.9 3.1 0.85 0.68 0.77 -0.05 0.00 -0.20 0.04 0.45 

Lizard Head Pass 4.1 3.5 0.70 0.35 0.57 0.53 0.00 -0.17 -0.04 0.11 

Lone Cone  3.9 3.0 0.75 0.32 0.70 0.80 0.00 -0.40 -0.18 0.05 

Lynx Pass 4.1 3.1 0.86 0.64 0.86 0.84 0.00 -0.20 0.01 0.11 

Mc Clure Pass 6.4 2.1 0.85 0.58 0.75 0.81 0.00 -0.26 -0.13 0.01 

Middle Creek 1.9 3.0 0.79 0.74 0.89 0.86 0.00 -0.21 -0.03 -0.02 

Mineral Creek 2.9 3.1 0.87 0.51 0.87 0.84 0.00 -0.31 -0.07 0.11 

Molas Lake 3.2 2.9 0.81 0.79 0.81 0.51 0.00 0.00 0.14 0.29 

Nast Lake 2.0 3.1 0.88 0.74 0.91 0.75 0.00 -0.31 0.05 0.26 
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Niwot 3.7 1.1 0.55 -0.30 0.28 -1.43 0.00 -0.41 -0.25 -0.10 

North Lost Trail 4.4 3.0 0.90 0.68 0.93 0.75 0.00 -0.27 -0.07 0.23 

Park Cone 4.2 2.8 0.90 0.41 0.79 0.29 0.00 -0.38 -0.15 0.15 

Park Reservoir 4.7 3.6 0.92 0.83 0.84 0.52 0.00 -0.01 0.05 0.21 

Phantom Valley 2.3 3.0 0.94 0.24 0.79 0.77 0.01 -0.51 -0.16 0.11 

Porphyry Creek 3.5 3.0 0.68 0.27 0.64 -1.01 0.00 -0.18 -0.06 0.30 

Rabbit Ears 5.2 3.4 0.94 0.82 0.91 0.89 0.00 -0.10 -0.01 -0.02 

Red Mountain Pass 2.3 3.3 0.87 0.32 0.35 0.10 0.00 -0.01 0.10 0.21 

Ripple Creek 5.9 2.5 0.82 0.64 0.81 0.85 0.00 -0.10 -0.04 0.04 

Roach 4.5 2.1 0.89 0.34 0.78 0.89 0.00 -0.24 -0.13 0.03 

Schofield Pass 5.4 3.0 0.76 0.74 0.87 0.84 0.00 -0.04 0.02 0.10 

Scotch Creek 1.1 3.0 0.87 0.11 0.68 0.30 0.00 -0.67 -0.15 0.55 

Slumgullion 4.7 3.5 0.74 0.58 0.82 0.15 0.00 -0.12 -0.03 0.27 

Spud Mountain 2.5 3.0 0.87 0.73 0.88 0.18 0.00 -0.17 0.02 0.40 

Stillwater Creek 4.1 3.1 0.83 0.53 0.86 0.86 0.00 -0.36 -0.06 0.12 

Stump Lakes 4.3 3.0 0.84 0.87 0.91 0.79 0.00 -0.09 0.00 0.11 

Summit Ranch 5.0 3.8 0.89 0.73 0.90 0.66 0.01 -0.17 0.00 0.22 

Tower 6.3 3.1 0.93 0.51 0.43 0.28 0.00 0.11 0.13 0.16 

Trapper Lake 5.2 3.0 0.89 0.85 0.80 0.51 0.00 0.03 0.13 0.23 

University Camp 4.5 2.3 0.79 0.78 0.87 0.70 0.00 -0.13 -0.02 0.08 

Upper Rio Grande 2.4 2.9 0.78 -0.27 0.61 0.84 0.00 -0.94 -0.45 0.00 

Upper San Juan 1.4 2.8 0.93 0.85 0.89 0.80 0.00 -0.08 0.05 0.13 

Vail Mountain 5.8 2.8 0.89 0.80 0.71 0.45 0.00 -0.02 0.08 0.17 

Vallecito 4.9 3.0 0.77 0.68 0.72 0.69 0.00 -0.04 0.10 0.11 

Whiskey Ck 4.8 3.1 0.90 -0.59 0.52 0.68 0.00 -0.67 -0.30 -0.18 

Willow Creek Pass 5.9 2.8 0.86 0.66 0.84 0.85 0.00 -0.12 -0.03 0.04 

Willow Park 1.6 3.0 0.82 0.73 0.81 0.59 0.00 -0.14 0.03 0.15 

Wolf Creek Summit 4.5 1.9 0.94 0.90 0.94 0.68 0.00 -0.05 0.00 0.14 
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Table A3. SNOTEL station with the homogenization method that best improves SWE model 

performance. 

  Greatest NSCE Smallest Bias 

SNOTEL Stations Original H1 H2 Original H1 H2 

Apishapa           

Arrow           

Bear Lake           

Beartown           

Berthoud Summit           

Bison Lake           

Brumley           

Burro Mountain           

Butte           

Cascade           

Cascade #2           

Columbine           

Columbine Pass            

Copeland Lake           

Copper Mountain           

Crosho           

Culebra#2           

Cumbres Trestle           

Deadman Hill           

Dry Lake           

El Diente Peak           

Elk River           

Fremont Pass           

Grizzly Peak           

Hoosier Pass           

Idarado           

Independence Pass           

Joe Wright           

Kiln           

Lake Eldora           

Lake Irene           

Lily Pond           

Lizard Head Pass           

Lone Cone           

Lynx Pass           

Mc Clure Pass           

Middle Creek           

Mineral Creek           

Molas Lake           
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Nast Lake           

Niwot           

North Lost Trail           

Park Cone           

Park Reservoir           

Phantom Valley           

Porphyry Creek           

Rabbit Ears           

Red Mountain Pass           

Ripple Creek           

Roach           

Schofield Pass           

Scotch Creek           

Slumgullion           

Spud Mountain           

Stillwater Creek           

Stump Lakes           

Summit Ranch           

Tower           

Trapper Lake           

University Camp           

Upper Rio Grande           

Upper San Juan           

Vail Mountain           

Vallecito           

Whiskey Ck           

Willow Creek Pass           

Willow Park           

Wolf Creek Summit           
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Figure A1. Histogram of H1 (Morrisey) from 1980s to 2015. 


