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ABSTRACT

A SPATIO-TEMPORAL CORRELATION TECHNIQUE TO IMPROVE SATELLITE

RAINFALL ACCUMULATION

A spatio-temporal correlation technique has been developed to combine
satellite rainfall measurements using the spatial and temporal correlation of the
rainfall fields to overcome problems of sparse and infrequent measurements, while
at the same time accounting for the measurements’ accuracies. This technique
estimates instantaneous rainfall with desired temporal sampling using only
currently available satellite measurements with the goal of estimating 3-hour total
rainfall accumulations at various spatial scales.

The technique uses weighted mean to combine the measurements, adjusting
the weights to the temporal correlation length of the measured rainfall field, and to
the instrument accuracies. The relationship between the temporal and spatial
correlation of the rainfall field is exploited to provide information about rainfall
beyond instantaneous measurements. This information, depending on the nature of
the rainfall field, can be accurate for prolonged time periods. It is shown that slow
changing rainfall fields (i.e. stratiform-like rain) have high values of spatial

correlation coefficients, and temporal correlation lengths as long as 60min. While,



on the other hand, fast changing rainfall fields (i.e. convective-like rain) tend to have
low spatial correlations, and temporal correlation lengths as short as 20min.

This technique is developed using synthetic radar data. Nine months of the
Operational Program for the Exchange of weather RAdar (OPERA) data is used on
grid sizes of 100km, 250km and 500km with pixel resolutions of 8km, 12km and
24km to simulate satellite FOVs, and then applied to the real satellite data over the
Southwest region of USA to calculate 3-hour rainfall accumulations. The results are
then compared to the simple averaging technique, which takes a simple mean of the
measurements as a constant rainfall rate over the entire accumulation period. The
comparison is presented as improvements of the total absolute and RMS errors.
Using synthetic data, depending on the time separation of the measurements and
their accuracy, the technique has shown the potential to bring improvements of up
to 40% in absolute, and up to 25% in RMS error. When applied to the real satellite
data over the SE-USA, the technique has shown less skill, only 2% to 6% error
improvement, which can be explained by the poor temporal sampling of the
reference measurements.

This technique is computationally inexpensive and easily applicable to
currently used rainfall accumulation methods with linear interpolation between
measurements such as CMORPH (Climate Prediction Center’s Morphing Technique)
and TMPA (The Tropical Rainfall Measuring Mission Multi-satellite Precipitation

Analysis).
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CHAPTER 1

1 Introduction

Demands on water resources have been increasing since the early days of
human kind. Today, more than one billion people—almost one-fifth of the world’s
population—still lack access to safe drinking water according to the 3rd United
Nations World Water Development Report (2009). Precipitation variability
dominates both water supply and the occurrence of droughts and floods, thus
exerting great pressure on agriculture, as well as economic and social activities. This
was and still is the basic motivation for precipitation measurements from early
records in China dating as far back as two thousand years B. C. (Wand and Zhang
1988). Today’s motives are still the same with perhaps an added interest related to
recent climate change science. Understanding the hydrologic balance on a global
scale requires accurate precipitation information available at a high temporal
resolution. Atmospheric energy sources are highly influenced by spatial and
temporal distribution of the precipitation. An important part of the global hydrology
cycle is the interaction between its small and large-scale components. Both climate
and weather forecasts suffer from insufficient information about rainfall reflected in
their inability to correctly represent raining processes. All of this points to the

importance of precipitation measurements. Occurrence, intensity, amount, time and



place of a rain event is information that is always in high demand. Of those
parameters, rainfall accumulation is typically the most complex measurement. To
provide one, either dense frequent measurements or perfect knowledge about the

nature of rain is required.

For hundreds of years rainfall has been measured by the conventional method
of rain gauges, which provide good temporal coverage but no spatial distribution.
Today, with the ground radar networks and satellite remote-sensing technology,
rainfall accumulation estimates have improved dramatically. However, even with
the latest improvements there is still not enough accuracy to satisfy all the needs of
hydrology and meteorology. Research areas such as radiation, climate and flash

floods are still lacking in temporal and spatial coverage.

Spatial scales requirements can be as small as 1km x 1km for purposes of
nowcasting flash flood events (Huff 1993 and Yates et al. 2000), and as large as
250km x 250km for global climate analysis and forecasting (ref. GEWEX). At the
same time, requirements on temporal sampling varies from 5min (flash floods) to a
week or month (climatology means). There is also a demand for high accuracy at
large scales. For example, although they correspond to very large spatial and
temporal scales, calculations of global or regional rainfall trends require very small

errors.

Currently the best areal rainfall accumulations are provided by systems such
as the Weather Surveillance Radar 1988 Doppler (WSR-88D) system in the United

States (Crum et al. 1998). Unfortunately, the majority of the World does not have



such systems and is limited to satellite estimates. Using all currently available space
based measurements even three-hour and 0.25 degree space resolution remains a
challenge (Joyce et al. 2004, Huffman et al. 2007). The primary objective of this
study is to assess if spatial correlation patterns observed in rain systems can be
exploited to improve three-hour accumulations that would result from simple

averaging of sensor data.

Current rainfall accumulation products are based on measurements provided
by Infrared (IR), microwave and sometimes model results to compensate for poor
temporal and spatial samplings over some areas. Certainly for convective rain,
studies have shown that radars and spaceborn microwave sensors have the highest
skill scores (Ebert et al. 2007). However, these sensors suffer from temporal

sampling limitations.

Currently, temporal coverage of rainfall measurements from passive
microwave sensors varies from about 30-minute at high latitudes to about 6 hours
at low and mid-latitudes. It is expected that three-hour time sampling (the goal set
by the Global Precipitation Climatology Project) over all latitudes become available
for the first time once the Global Precipitation Mission (GPM) is in place
(http://gpm.gsfc.nasa.gov). To achieve this 3-hour global coverage goal, this project
plans to launch a core satellite to be used as a reference standard to a constellation
of partner radiometers. Measurements from all available satellites, regardless of
their capabilities, will be integrated to provide one global rainfall product. There is

no doubt that a planned increase in the number of orbiting satellites itself will



dramatically improve the quality of current rainfall products. However, in order to
provide the best possible results, the measurements from all sensors need to be

combined in such a manner that the most accurate ones are exploited to its maxima.

A number of techniques for combining the information from different
instruments have been developed. Currently, techniques such as TMPA (Huffman et
al. 2007) and CMORPH (Joyce et al. 2004) are able to provide rainfall estimates
based on the combination of IR, microwave, radar and gauge measurements from
both space and the ground (when available). These techniques use different
methods to overcome poor temporal-spatial sampling. However, there are still some
basic problems that if solved in a more quantitative manner can improve rainfall
estimates from combined measurements. Before discussing these problems, they
are introduced through a brief description of what are currently considered to be

state of the art rainfall accumulation techniques.

1.1 Accumulation Techniques

The method called CMORPH (Climate Prediction Center’s Morphing
Technique: Joyce et al. 2004) is based on tracking the rain system using information
from geostationary satellites (Griffith et al. 1978). CMORPH uses motion vectors
derived from half-hourly interval geostationary satellite IR imagery to propagate the
relatively high quality precipitation estimates derived from passive microwave data.
In addition, the shape and intensity of the precipitation features are modified

(morphed) during the time between microwave sensor’s scans by performing a



time-weighted linear interpolation. This process yields spatially and temporally
complete microwave-derived precipitation analyses, independent of the infrared
temperature field. CMORPH showed substantial improvements over both the simple
averaging of the microwave estimates and over the techniques that blend
microwave and infrared information but that derive estimates of precipitation from
infrared data when passive microwave information is unavailable. However,
CMORPH does not account for the differences in accuracy of microwave sensors or
the length of time that a passive microwave estimate might be valid for. For
example, if two measurements taken at the same time by two microwave sensors of
different accuracies are available, CMORPH will simply use the average value since
time weighting does not apply in this scenario. This is clearly not the best of what
two measurements can provide. This study offers a relatively simple solution for
this and similar accuracy related issues that can be easily implemented into

interpolation process.

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA), is another method which provides a calibration-based sequential
scheme for combining precipitation estimates from multiple satellites, at fine scales
(0.25 x 0.25 and 3hourly: Huffman et al. 2007). This method calibrates the
measurements from multi-satellite sensors using probability matching of
precipitation rate histograms of coincident data similar to the probability-matched
method suggested by Miller (1972) and used, for example, by Krajewski and Smith
(1991). Estimates are produced in four stages: 1) the microwave precipitation

estimates are calibrated and combined, 2) infrared precipitation estimates are



created using the calibrated microwave precipitation, 3) the microwave and IR
estimates are combined, and 4) rain gauge data are incorporated. The data source
used in this process is TRMM combined instrument estimate, which employs data
from both TRMM microwave imager and TRMM precipitation radar (TRMM product
2B31; Haddad et al. 1997a,b). In essence, when the measurement is provided by one
of lower quality sensors this method uses measurements of higher quality
instruments as a reference for calibrating. However in this process the method uses
relatively simple technique to form the best estimate of microwave input. For
example, when there are multiple overpasses in the 3-hour window for a given grid

box, data are simply averaged.

TMPA and CMORPH accumulations are ultimately both based on simple
averages of individual observations with no weight on the temporal correlation of
potentially superior estimate at some time step in the averaging window. This study
explores this topic providing a relatively simple method to exploit the temporal

correlation of rain to improve rainfall accumulation of techniques such as those.

The goal of this study is to investigate the nature of the rainfall fields and,
based on the findings, to develop a method that is capable of combining
instantaneous rainfall estimates into a rainfall accumulation. Rather than taking a
simple average of the measurements to represent the whole accumulation period,
the method will recognize when one measurement should be trusted for longer
periods. This solution can form a basis for improving accumulation techniques

currently in use.



1.2 Conceptual idea

When measurements from two sensors are combined, their accuracies are
often quite different. In such cases they should be weighted according to their
accuracy. Simply, measurements of higher accuracy should be trusted more. The
example of such an application is satellite-gauge-model (SGM: Huffman et al. 1995).
SGM combines satellite and gauge measurements with model results, weighting
them by their accuracy. In this study, the focus is on a 3-hour accumulation window
sampled by two radiometers. Rather than simply averaging two satellites
overpasses in the grid box to form a 3-hour accumulation, the technique will look at
both the accuracy and the temporal correlation of the observed field to develop an

optimal accumulation strategy for each grid box.

If successfully designed, this method will improve the accuracy of combined
rainfall rate measurements. To verify the results the rainfall accumulation will be
compared to the “simple mean technique” results. This technique simply uses an

average of two measurements to form a combined estimate.

Similar to the SGM, the basis of this concept is using a weighted mean. If two
measurements are made at times different than the time at which the estimate
based on them is made, then it is important to consider the expected change in the
rainfall field from the time of observation, as well as the accuracy of each
measurement. A larger weight should be assigned if the rain is expected to change

little and accuracy is high. The method, however, also has to be capable of



recognizing a point at which temporal decorrelation dominates over measurement
accuracy error and vice versa. Using a simple model, the basic idea of the method is
presented in the following section, while a detailed description can be found in

Chapter 4.

1.3 Simple model

Figure 1 depicts the radar image over Europe on May 2nd 2009. This is a
product of the OPERA radar network system which is further described in Chapter
2. The blue and green rectangles in the figure indicate the approximate locations of
the areas where two raining systems, subjectively classified as non-uniform and
uniform, respectively, have occurred. The sizes of the marked areas are about

150x150km.
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Figure 1. Radar rainfall rates over Europe (OPERA image on 2nd May 2009)

Both areas, the green and the blue, are shown in Figure 2 and Figure 3,
respectively, as sets of radar snapshots taken over the three-hour time interval.
These two events, one more convective and one more stratiform, are used to
illustrate how the nature of the measured raining system can be used as a criterion

for assigning the weights to the measurements before they are combined.

To conceptually introduce the method, imagine that for the 3-hour time
interval, shown in Figure 2, two measurements are given by the first and last
snapshots only. Based on these two measurements a 3-hour accumulation must be
estimated. This can be done in two steps. In the first step, each of the measurements
is used to create a set of the “best guesses” of the precipitation at a set of fixed time

points along the accumulation period. In the second step, the estimates derived from



each of the measurements are weighted and combined based upon the expected
accuracy of each estimate. Here and throughout this study, the field’s states are
estimated at 15-minute time increments in order to match OPERA data sampling
and to make the method verification process easier. Chapter 4 describes in detail the
second of the two steps. This section will only focus on the first one, where the
instantaneous rain measurements and knowledge of the rain system characteristic
are used to estimate the rainfall at intermediate time steps.

We define a quantity called temporal variability to provide the uncertainty of
the estimate at some time, ¢, before or after the actual observation. The definition
and detailed description of temporal variability is given in Chapter 3. From a rain
system’s perspective, the more uniform the system, the less it will change in time.
Small changes imply small temporal variability, while greater changes imply grater
temporal variability. Temporal variability, while unique to each raining system,
nonetheless do have some general characteristic. This is presented in Chapter 3. The

next two examples illustrate how the nature of a raining system can be quantified.

1.3.1 Correlated fields - stratiform rainfall

Figure 2 shows a set of consecutive 15-minute snapshots over a zoomed-in
area marked by the green rectangle in Figure 1. By tracking the change (in time) of
the rainfall system’s shape and intensity, it can be observed that the shape changes
relatively slowly while the rainfall rates remain more or less constant. In other
words, a stratiform rain system as shown in Figure 2, is likely to keep its shape and

intensity for prolonged time periods. Mathematically, time change of the system can

10



be presented through a temporal correlation coefficient or temporal variability
(both defined later). If calculated between the initial and each of the latter states, the
value of this coefficient will slowly decrease, while the value of the temporal
variability will slowly increase.

Besides this slow change in time, another important property of the stratiform
system shown in Figure 2 is the absence of large changes in rainfall rates.
Mathematically, the uniformity of the system can be presented by a spatial
correlation coefficient. If calculated, this coefficient would have a high value for any
of the field states shown in Figure 2. The mathematics of this is also presented in

Chapter 3.

11
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Figure 2. Evolution of the uniform rainfall field over 3-hour time interval in 15min snapshots

1.3.2 Uncorrelated fields - convective rainfall

Another rain event (the one marked by the blue rectangle in Figure 1) is
shown in Figure 3. Again, focusing on the temporal and spatial change of the
distribution of the rain, it is noticeable that the rainfall field at the time of 15-
minutes is already quite different form the initial one, especially in rain intensity.
Mathematically speaking, this means that the temporal variability between the two
field states is large or, the temporal correlation coefficient is low. At the same time,

due to high spatial variability in the rainfall rates, this is an example of a non-

12



uniform system, typically associated with convective types of clouds. If calculated,

the spatial correlation coefficient of any of the states shown in Figure 3 would have

a low value.
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Figure 3. Evolution of the non-uniform rainfall field over 3 hour time interval in 15min
snapshots

It is important to note that for two completely different types of raining
systems seen in these two examples, stratiform and convective, the relationship
between temporal variability and spatial correlation coefficient is preserved.

Temporal variability appears inversely proportional to the spatial correlation

13



coefficient. This relation will be exploited to say something about the temporal
evolution of the rain field based upon the spatial correlation coefficient at any given
time. This sets the basis for this study, namely that the spatial correlation computed
at the time of rainfall observation is generally related to the temporal correlation of
the rainfall and therefore can be exploited to improve the estimated rain between

actual observations.
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CHAPTER 2

2 Data

2.1 OPERA data

The primary goal of this study was to design a rainfall accumulation method
that is based on any two, or more, instantaneous rainfall measurements. To
accomplish this, the data from the Operational Program for the Exchange of weather
RAdar (OPERA) were employed. The OPERA program (Huuskonen, 2006) is the
Weather Radar program of GIE/EIG (Economic Interest Group) EUMETNET, the
Network of the European Meteorological Services. The objective of OPERA is to
harmonize and improve the operational exchange of weather radar information
between national meteorological services. It is a joint effort of 30 European
countries, and it is designed to firmly establish the host of the European Weather
Radar Network. Currently OPERA is in its 34 stage (OPERA 3). The program will run
from 2007 through 2012 with the Royal Netherlands Meteorological Institute as the
Coordinating Member. OPERA 3 radar data are available at 15-minute time
resolution over the majority of Europe (see Figure 4) at a spatial resolution (here
referred to as pixel resolution) of 4km x 4km. This makes OPERA data well suited

for studying spatial and temporal properties of precipitating systems. This study

15



uses OPERA 3 data from the beginning of September 2008 to the end May 2009 over

its entire available domain.

Figure 4 presents a randomly chosen OPERA data scene. Scenes like this one
are available every 15 minutes, except for intermittent problems affecting individual
radars and for a dominant period during January and February 2009 when no data

are available due to archiving.

.00:00ITI372008

e

&

Figure 4. OPERA data scene

The current spatial distribution and radar types in the OPERA network

system are shown in Figure 5. Data from Iceland, Bulgaria, Romania, Serbia, Greece,

16



Lithuania, and the eastern part of Italy were not used in the study since these data
became available in the OPERA network only in late 2009 and 2010. A total of
approximately 100 radars are used, all of which operate at S, C or X band in either
Doppler or non-Doppler mode. About 5-10% of radars are polarimetric radars. All
data are assumed to be accurate with no qualitative differences between different
types of radars. The data is used here only to develop and test the techniques so that
uncertainties in the rain rates themselves would have little or no impact on the
results. No time or space interpolation is made at times when missing data has

occurred.

17
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Figure 5. OPERA network (map provided from OPERA web documentation)

2.1.1 Subdividing data

All scenes are divided into a number of square, equally spaced sub-scenes,
referred to as grids. In this study, the following three grid sizes are used: 100km,
250km and 500km. These grids are intended to correspond to typical accumulation

grids used in satellite studies. For a grid size of a 100km, for instance, the entire

18



radar coverage area is divided into approximately 400 sub-scenes. Throughout the
study, only fully covered sub-scenes containing at least one raining pixel are used as
grids. Each grid contains a certain number of pixels. Beside the original 4km radar
resolution, three lower pixel resolutions are formed (8km, 12km and 24km).
Averaging the number of neighboring pixels reduces the original resolution. These
pixels resolutions are again intended to represent typical satellite fields of view

(FOVs).

A grid size of 100km provides approximately 1.5 million grids over the 6
months of available OPERA data. For 500km grids, the number of grids is

approximately 100 000, still providing a relatively large database.

2.1.2 Simulated errors

The methodology developed in this study is intended for satellite data
application, which, unlike the OPERA data, has a broad range of uncertainties.
Therefore, the methodology must be tested on inaccurate data. Rather than using
sparse, scattered, real satellite data where the accuracy is often difficult to estimate,

inaccurate data are simulated by the OPERA data itself.

Random errors are introduced in a controlled manner. Normally distributed
random perturbations are added to the prescribed pixel rain rates. This is done

following

r=Topera (I + €,1)

(1)
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where r denotes the rainfall rate having some uncertainty, er, roeea is the original
rainfall value provided by OPERA, n in normally distributed random number, and e
is the assigned error. The product ern represents a perturbation that has been
added to the original data. The value of e, is allowed to vary from 0.1 to 0.9 (in

increments of 0.1) corresponding to errors from 10% to 90%.

2.2 Validation data

While the methods are developed using OPERA data, the methodology is
tested using real data in a case study over the Southeastern US. Satellite data are
provided from currently available sensors consisting of the TRMM Microwave
Imager (TMI: Kummerow et al. 1998), the Advanced Microwave Scanning
Radiometer for EOS (AMSR-E) onboard the NASA Aqua satellite (Lobl 2001, NSIDC
2007b), and the Special Sensor Microwave Imagers (SSM/I: Weng, and Grody, 1994)
carried aboard the Defense Meteorological Satellite Program’s (DMSP) satellites
F13, F14 and F15. The data covers a 10 day time period from April 20t to April 30t
2006. The area used in the case study is 10° by 5°, placed in the South-Eastern USA

(83°W-93°W, 31°N-36°N) marked in Figure 6 as a grey rectangle.
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Figure 6. Case study area (grey rectangle) and NEXRAD radar sites (yellow pins)

On average, each satellite passes over the area twice a day leading to an
average sampling interval of 140 minutes. Spatial coverage of the area is also
relatively poor. Satellites’ swats are 700 to 1400 km which corresponds to about
half of the area. On the other hand, data resolution is relatively high at roughly
25km. Due to its low inclination TRMM has slightly more overpasses than the other

satellites.
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Figure 7. NEXRAD Stage 1V data scene (hourly rainfall accumulation)

“Truth” for the case study over the SE US is provided by the NEXRAD stage IV
radar data (Lin and Mitchell 2005, Baldwin and Mitchell 1998). The NEXRAD stage
IV data represent the best estimate of rainfall accumulation where currently
available, considering spatial and temporal coverage. Stage IV data are radar data
mosaicked into a national product at the National Centers for Environmental
Prediction (NCEP), from the regional hourly/6-hourly multi-sensor (radar and
gauges) precipitation analyses produced by the 12 River Forecast Centers over
conterminous United States (CONUS). Data are available hourly on a 4km grid, from
Jan 1st 2002 to the present. Figure 7 shows a randomly chosen stage IV scene which
took place on 20t April 2006 at 20h UTC. Figure 8 shows the part of that scene that

corresponds to the area of the case study (gray rectangle in Figure 6).
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Figure 8. NEXRAD Stage IV radar data zoomed into the case study area (hourly rainfall

accumulation)
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CHAPTER 3

3 Temporal variability and spatial correlation of rainfall

In Chapter 1, the concept of using temporal variability and spatial correlation
was introduced. This Chapter explains these two quantities and their dependence on
grid size and pixel resolution. Results presented here are extended in Chapter 4 to
give a full understanding of their role in the rainfall accumulation estimation
process. Before proceeding, terms used in this study such as rainfall grid and pixel

resolution are defined more precisely.

A pixel refers to a single rainfall rate measurement that is taken over an area
and defines the resolution of the data. The original size of the “OPERA” pixel is
4x4km. All areas used in this study are square. The 4x4km pixel is therefore referred
to simply as a pixel of 4km resolution. A pixel of 8km resolution would imply an

average of four 4km pixels to a pixel of 8x8km.

A rainfall grid is an area that is at least the size of the pixel though typically
larger over which the rainfall is being accumulated. The size of the grid can vary,
usually depending on the users’ needs. For modeling purposes, grids can be as small
as 1x1km in mesoscale or flash flood models, or as large as 500x500km in Global

Circulation Models. Here the size of the grid varies from 100x100km to 500x500km,
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which corresponds to the grid sizes used in GPCP (Global Precipitation Climatology

Project).

A series of consecutive raining grids over a given area describes a rain event. A
grid is considered to be raining if it has at least one raining pixel. As previously
mentioned, grids with missing data are excluded from this study. If the excluded
grid is part of a rain event, that event is excluded as well. This causes a reduction of
10-12% of the available data, leaving 3,500-15,000 fully described rain events,

depending on the size of the grid.

3.1 Spatial correlation

Polar orbiting satellites often have highly accurate rain estimates and good
spatial resolution but suffer from poor temporal coverage. By linking the spatial
correlation of the measured grid to its temporal variability (defined in Section 3.2),
these instantaneous measurements can be used to determine the expected temporal

variability.

There are a variety of techniques used to calculate the spatial correlation or
the spatial auto-correlation of one entity. The correct technique depends on the
purpose of the calculation and on the definition of the entity. The entity used here is
rainfall grid. Mathematically, spatial auto-correlation quantifies the similarity
between the distributions of the values of two vector’s elements. In this case, the

elements of two vectors are the grid’s pixels, while their values are rainfall rates
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(see Figure 9). Therefore, the correlation coefficient represents the “uniformity” of

the rainfall field enclosed by the grid.

Figure 9 depicts one grid with its pixels. Both the left and the right panels
represent the same grid at the same time point (to). The labels are applied to

provide a physical explanation of Equation 2.

L) ty
X1 | X | X3 Yi| Y2 | V3
Xy | Xs | X Ya| ¥s5 | Ve
X7 | Xg | Xg Y71 ¥Ys | ¥o

Figure 9. Calculation of the spatial correlation coefficient

The spatial correlation coefficient, rxy, of a rainfall field is calculated using:

D LT L0 XA i ),
P (Ss) BB RS

where x and y are two vectors: x=(x1, X2, X3, ..., Xn) is the vector that contains the

(2)

grid’s pixels as marked in the left panel in Figure 9, and y=(y1, y2, ¥3, ..., yn) is the
vector that contains the corresponding neighboring pixels shifted by one pixel to the
right, and n represents the number of pixels. Sx and Sy are standard deviations of the
vectors x and y respectively. Equation 2 can be applied to any or all directions. The

example in Figure 9 illustrates only the shift in the westerly direction. If more than
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one direction is used, then for each additional direction x vector is extended by
repeating its elements while vector y will contain sets of corresponding neighboring
pixels in that direction. Results presented in this study are based on the spatial

correlation being calculated using the four directions, West, East, North and South.

Spatial correlation (referred to here as “uniformity”) has high values for highly
uniform raining systems. Average spatial correlations for OPERA data for three

different pixel sizes (8, 12, 24km) and a grid size of 100km are shown in Table 1.

Table 1. Average spatial correlation coefficient for grid size of 100x100km

Pixel resolution (km) 24 12 8
Spatial correlation coefficient 0.599 0.624 0.635

Table 1 suggests that the lower the pixel resolution is, the smaller the
correlation coefficient will be. Since spatial correlation describes the uniformity of
the rainfall field within a grid, the higher the coefficient is, the more uniform the
field is. However, it would be wrong to conclude that the spatial correlation
coefficients in Table 1 suggest that an increase of the resolution increases the
uniformity of the field. On the contrary, a decrease in pixel resolution always results
in an increase in uniformity. The technique presented in Figure 9 implies that the
lower the resolution is, the larger the shifts of the pixels in space will be. This causes
the correlation coefficient values in Table 1 to decrease with a decrease in pixel
resolution, since in general, rainfall rates between further points differ more than
between close ones. Being aware of this, the more appropriate conclusion from

Table 1 is: the lower the pixel resolution is, the less of the uniformity is captured.
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Spatial correlation coefficients calculated for various field sizes and
resolutions are shown and discussed in Section 3.3. Here, an example of this
calculation for two different types of raining events is shown. The purpose of this
example is to demonstrate that different distributions of the rainfall rates over the
grid result in different spatial correlation coefficients of the grid. The red box on the
right panel side of Figure 10 corresponds to a uniform (stratiform) type of rain,
while the box shown on the left is placed over a non-uniform (convective) type of
rain. These are the same fields that were previously discussed in Chapter 1. In this
example the non-uniform rain has a spatial correlation of 0.529, while the uniform
type of rain has a spatial correlation of 0.682. Calculations for both grids were done

for resolutions of 4km and grids of 150km by 150km.
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Rainfall rate (mm/h)

Figure 10. Rainfall rate distribution of non-uniform vs. uniform type of rain
3.2 Temporal variability
The previous section explained how spatial correlation coefficients could be
used to quantify the homogeneity of rainfall. This section will define the temporal

variability of the rainfall field.
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Using the same concept as in Figure 9, Figure 11 helps to understand the

mathematical definition of temporal variability ex given by Equation 3:

3)
where x and y have the same meanings as in Eqauton 2, except that now the vectory
corresponds to same pixels as vector x just at some later time t;. Since vectors x and
y are made of instantaneous rainfall rate values, their totals are instantaneous
totals. Therefore, the temporal variability of a raining grid corresponds to the
change of rainfall during a time interval At. This change is presented as a ratio
between the average instantaneous rain of the initial state, and the difference in the
average instantaneous rain between the initial and final state. The temporal
variability also can be defined as a temporal sampling error, implying the error that
would be introduced to the estimate based on the assumption that the initial rainfall

is constant in time.

t t
X;| X, | X3 Yi| Y2 | V3
X4 | X5 | Xg Yo Y5 | Ve
X7 | Xg | X9 Y71 Y8 | Yo

Figure 11. Calculation of temporal variability
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The temporal variability must be defined relative to a time separation (ti-to).
Each measurement time of the OPERA data defines one state of the raining event, so
for m consecutive measurements (states of the raining event) this would result in m
temporal variability (exi, ..., €xm). An example is shown in Figure 12 and the values
used are given in Table 2. Temporal variability in this figure are calculated directly
from the 15min OPERA data for a single stratiform raining event, which occurred on
May 2nd 2009, and plotted as a function of time. Negative values of temporal

variability indicate increase in the rainfall compared to its initial value at 0-minute.
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Figure 12. Time line of temporal variability for stratiform raining event shown in Figure 2
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Table 2. Temporal variability time dependence shown in Figure 12

Time (min) 0 |15

30

45

60

75

90

105

120

135

150

165

180

Temporal variability (%) 0 [-17

-17

-34

-22

-27

-20

-24

-19

27

38

48

Another example, for a single non-uniform raining event (the one presented in

Figures 1 and 3), is shown in Figure 13 followed by Table 3. It is easy to notice that

the temporal variability in Figure 13 has larger amplitude and more rapid change

than in Figure 12. This supports the hypothesis that grids of higher spatial

correlations, or uniformity, have temporal variability that change at a slower rate

and are more or less monotonical, as compared to less uniform ones. More detailed

results supporting this are presented in Chapter 3.

A number of factors influence the change in temporal variability. Aside from

the rainfall type, temporal variability behavior depends largely on the size of the

chosen grid. Rainfall moving in and out of the grid, it will be seen, affects the

temporal variability considerably.
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Figure 13. Time line of temporal variability for non-uniform raining event shown in Figure 3

Table 3. Temporal variability time dependence shown in Figure 13

Time (min) 015]|30(45]|60( 75 [90]105]|120 (135|150 165|180
Temporal variability (%) 0|21]57]|58|61|60]|56]| 53|66 |70 ]| 78 | 86 |88

3.3 Grid size and pixel resolution dependence
The results illustrated in the previous section depend upon the grid and pixel

sizes. The results presented here are based on the OPERA data domain. The
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following grid sizes and pixel resolutions are used to simulate typical grid sizes and

satellite FOV:

o 500x500km grid for pixel resolutions of: 8, 12 and 24km
o 250x250km grid for pixel resolutions of: 8, 12 and 24km

o 100x100km grid for pixel resolutions of: 8, 12 and 24 km

On average, approximately 100,000 raining events are used in calculation. Results

shown in this section are average values.

Table 4 enumerates the values of the spatial correlation coefficient for

different grid sizes and pixel resolutions.

Table 4. Averaged spatial correlation coefficient for different grid sizes and pixel resolutions

L Pixel Resolution (km)
Grid size (km)
24 12 8
500x 500 0.406 0.454 0.469
250x 250 0.385 0.418 0.438
100x 100 0.599 0.624 0.635

By looking at any of the rows in Table 4, one can see that the correlation
coefficient increases with finer pixel resolution. As previously explained, this is
brought about simply because grids are shifted by one pixel to compute the spatial
correlation. The spatial shift of the 8km pixel is therefore only 1/3 of the shift used

to compute the correlation when the pixel size is 24km.

Calculations (not shown here) are made for some smaller grid sizes (75km and

50km). Results show the same trend of increasing correlation coefficients with
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decreasing grid size. This can be explained by the fact that smaller grids have fewer
raining systems. Rain systems over smaller areas increase the probability of uniform
raining systems. Generally, rainfall rates change gradually within a raining system,
implying that smaller portions of a system are generally more uniform. However,
this is not the case when the 500km grid is compared to the 250km grid. This is
caused by the definition of raining grids requiring at least one raining pixel. Very
large grids have a higher chance of containing isolated rain pixels, which appears
highly correlated because of the large number of zeros in those grids. The minimum
around 250mk grids appears to be related to synoptic scales. That is, there is usually
some rain at these scales but not always at the smaller scales considered in this

study.

Similar behavior can be seen in the temporal variability results. Table 5 shows
the average variability for the same grid sizes and pixel resolutions as are shown in
Table 4. The same data are used, choosing 180-minute long raining events to start at
00, 06,12, and 18 UTC. A raining event is defined as the time period during which all

of the grids are raining. Grids without continuous rain were not considered.

Table 5 shows only two time separations (30-minute and 45-minute). Similar
behavior is seen for both longer and shorter separations. For all grid sizes and pixel
resolutions, increased time separation results in increased temporal variability.
Simply, the longer it has been, the more the precipitation will change. By looking at
any of the columns in Table 5 one can conclude that smaller grids experience larger

changes in instantaneous accumulations. This is plausible since raining systems
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need less time to move over smaller grids. Table 5 also confirms that the temporal
variability is not dependent on pixel resolution. This is expected since changes in the
average rain within the grid are constant no matter what the pixel resolution is, as

long as the grid captures the same area.

Table 5. Average temporal variability (%) for different grid sizes and pixel resolutions for
time separations of 30min and 45min

Grid size (km) | Time separation (min) > 4Pixel resolllzltion (km) 3
500500 i TS VN T
250x250 ig 17049 17049 17049
s T T T

Similar results, as seen here for spatial correlations and temporal variability,
can be found in the works of Bell et al. 1990 and Habib et al. 2001a. In these two
studies the correlation length is used instead of the correlation coefficient (see
Appendix A). Additionally, rather than using temporal variability to describe the
change of the rainfall field in time, these authors used temporal correlation, which is

related to the temporal variability.

3.4 Temporal variability dependence on spatial correlation

coefficient

The fundamental hypothesis of this study is that the correlation coefficient, or
rainfall homogeneity that can be observed by a satellite snapshot, is closely related

to the temporal variability. Linking these two allows instantaneous rainfall
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measurement to propagate its information through time, providing a basis for
rainfall estimates along the period of propagation (see Chapter 4). The idea of using
the link between the spatial and temporal properties of the rainfall field comes from
studies such as Bell et al. 1990 and Habib et al. 2001a. These two studies present the
dependence of spatial and temporal correlation coefficients on separation distances
and separation time, respectively. The calculations are repeated here using the
OPERA data set to confirm those results as well as the present methodology (see

Appendix A).

Figure 14 shows the average absolute values of temporal variability and their
standard deviations, as a function of spatial correlation coefficient for 6 separation
times. The sample size used in this calculation is depicted as the green curve in
Figure 14. This result is based on the full OPERA data domain for a grid size of
250km and pixel resolution of 12km. Other combinations of grid sizes and pixel
resolutions (not shown here) show the same trends. It is clear that as the separation
time increases the temporal variability increase as well. Also, for any given
separation time, higher values of the spatial correlation coefficient correspond to
lower temporal variability. Variability for separation time of 0-minute are equal to

zero since they correspond to the difference of the initial state of the grid to itself.

The relationship shown in Figure 14 is the basis of the spatio-temporal

correlation technique used to accumulate rainfall from multiple satellites.
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Figure 14. Temporal variability vs. spatial correlation coefficient (grid size: 250km, pixel
resolution: 12km)
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CHAPTER 4

4  Spatio-temporal correlation technique

The spatio-temporal correlation technique is a statistical method that combines
rainfall rate measurements from sensors on different satellites, with the goal of

estimating 3-hour total rainfall accumulations at various spatial scales.

The total rainfall accumulation is computed by weighting the available
measurements based on both the measurements accuracies and the temporal
variability of the measurements. The calculation of total rainfall accumulation is
presented in two parts in this section. The first part (i) introduces the technique
assuming that the sensors are 100% accurate, focusing only on temporal variability.
The second part (ii) deals with measurement accuracies only. Finally, both parts are
combined to provide an estimate of instantaneous grid average rainfall and its

uncertainty.

The spatio-temporal correlation technique is introduced here with the
assumption that there are only two available measurements within the
accumulation interval. The technique can be modified to use a larger number of

measurements, but that does not change the principles discussed here. Each
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measurement provides an instantaneous grid average rainfall, r, and the spatial

correlation coefficient of the grid, A.

Figure 15 shows an example that is used in this chapter to introduce the
spatio-temporal correlation technique. In this example, the accumulation time period
is chosen to be 3 hours with a 15-minute sampling rate. The accumulation interval is
chosen to match the GPCP products (described in Chapter 1), while the time
sampling matches the OPERA sampling. To estimate the total rainfall accumulation
during this period, instantaneous grid average rainfall must be known. For 15-
minute time intervals without measurements, the instantaneous grid average

rainfall must be calculated first.

4.1 Combining two perfect measurements

Figure 15 shows a timeline of the accumulation period. An instantaneous grid
average rainfall for any specified time is estimated by a weighted mean (Rabinovich,
2005) of the two measured instantaneous grid average rainfalls. The weighted mean,

1, is given by:

1
r=(nw +r, Wz)m (4)
1 2

where r1 and rz are measured instantaneous grid average rainfalls at times t1 and tz,
while w1 and w2 are the corresponding weights. The weighting accounts for a

temporal variability using weights given by:
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(5)

where e;;j is the temporal variability, i is the measurement index corresponding to
one of the two measurements used in this study, and j is the separation time
between the measured and the estimated instantaneous grid average rainfall. The

derivation of the weighted mean is given in Appendix B.

In Figure 15, the green points mark the times t1=45min and t2=150min when
two measurements of instantaneous grid average rainfall are made, while the red
point marks the time of the instantaneous grid average rainfall estimate. In this
scenario subscript j in es; has the value of 45, since there is 45min separation time
between the measurement at t; and the estimate. Similarly, subscript j in ez; has a

value of 60.

* * *

0 15 30 45 60 75 90 105 120 135 150 165 180
Time (min)

Figure 15. Accumulation period time line
Temporal variability, e, that is used to form the weights are pre-calculated

based on large sets of data, as described in Chapter 3, and stored in look-up tables.

Table 6 gives an example of a look-up table corresponding to values shown in
Figure 14 where temporal variability are given as a function of the spatial
correlation coefficient for a grid size of 250km and 12km pixel resolution. Once the

measurement is made, the grid size, the pixel resolution, and the spatial correlation
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coefficient are known. A corresponding look-up table provides a temporal

variability value for any chosen time separation.

Table 6. Look up table of temporal variability for a grid size of 250km and a 12km pixel
resolution

Spatial correlation coefficient
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0 0 0 0 0 0 0 0 0 0 0
15 3.04 | 0.89 | 0.82 0.66 | 0.42 0.3 0.22 | 0.17 | 0.14 | 0.12 | 0.11
30 4.14 1.2 1.13 1.02 | 061 | 045 | 036 | 0.3 | 0.25 | 0.22 | 0.21
45 5.65 1.5 1.48 1.24 | 0.79 | 0.63 0.5 | 042 | 035 | 0.32 | 0.31
60 891 | 197 | 195 1.69 | 1.08 | 0.79 | 0.64 | 0.53 | 0.44 | 0.39 0.4
75 8.82 2.4 2.27 2.02 | 142 | 098 | 0.79 | 0.65 | 0.53 | 0.47 | 0.44
90 12.43 | 3.09 | 2.88 258 | 1.71 | 1.16 | 092 | 0.75 | 0.61 | 0.54 | 0.49
105 | 16.94 | 3.56 | 3.47 3.1 2.12 1.4 1.11 | 0.86 | 0.69 | 0.61 | 0.56
120 | 21.87 | 433 | 4.31 3.75 | 256 | 1.61 | 1.27 | 096 | 0.76 | 0.67 | 0.62
135 | 2839 | 5.1 5.19 439 | 298 | 1.79 | 146 | 1.06 | 0.83 | 0.73 | 0.66
150 | 35.53 | 6.27 | 5.85 541 | 3.53 | 2.03 1.6 | 1.15 | 0.89 | 0.77 0.7
165 | 43.66 | 7.57 | 6.71 6.75 | 411 | 231 | 1.78 | 1.25 | 0.95 | 0.82 | 0.75

Separation time (min)

4.2 Accounting for instrument errors

Using weights given by Equation 5, the rain can be estimated at t=90min from
rain and its spatial correlation at t;=45min and tz=150min. However, perfect
measurements are rarely available, if ever. If two imperfect measurements are
combined according to the previous method, the error of any of them can easily bias
the estimate, making it worse than if a simple mean had been used. Therefore, the
weights that are defined in Equation 5 must be modified according to well
established techniques (e.g. Xie and Arikin 1996) to account for measurement
errors. However, when the weights are adjusted for measurement errors, temporal
variability must be preserved. Before the two adjustments are combined, the weight

for the measurement error adjustment alone is presented:
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wod
“ (6)
where a; is the uncertainty of the instrument i, given in a form of a positive decimal
number. For example, 10% uncertainty is given by a=0.1. Since the weight is an
inverse of uncertainty, less accurate measurements are weighted less. If there was
no temporal variability involved, the weighted mean of two uncertain

measurements, defined using Equation 6, would provide the best estimate of

instantaneous grid average rainfall.

Appendix B explains how to combine two independent errors of a
measurement. Since measurement error and temporal variability are independent,
and Section 3.2 defines temporal variability as temporal sampling error, the method
described in Appendix B can be used to combine them and form the weights as

shown in Equation 7:

2 2
e . +a

utd (7)

where the symbols are the same as previously explained. Using the weighted mean
with weights as defined in Equation 7, one can estimate r at any time in Figure 15.
Summing the instantaneous grid average rainfalls within the accumulation period

forms the estimate of the total rainfall accumulation.

Before proceeding to the results presented in Chapter 5, it should be noted
that if the measurement is not 100% accurate, the spatial correlation coefficient

provided by such a measurement is also imperfect. The measurement error thus
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affects the temporal variability as well. Therefore, correlation coefficients are
corrected to compensate for measurement inaccuracy. Monte Carlo methods are
used to define the corrections (see Appendix C). Once known, corrections are added
to the measured correlation coefficient, which are then used to find the

corresponding temporal variability.
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CHAPTER 5

5 Results

The goal of this study was to provide potential improvement to rainfall
accumulation estimates by implementing the spatio-temporal correlation technique
into currently used state of the art rainfall accumulation methods as described in
Chapter 1. To achieve this goal, the spatio-temporal correlation technique must
provide a foundation for those methods that is better than the one currently being
used. Since most of them use linearly interpolated raw measurements, simulations

of those are used to define a baseline against which improvements can be gauged.

A randomly chosen rain event from the OPERA data is used (the same one
was shown in Figure 2 to illustrate the methodology). The accumulation period is as
defined in Figure 15. Both the spatio-temporal correlation technique and the simple
average technique base their instantaneous grid average rainfall estimates on using
only two grids marked by times t1 and tz. This simulates a scenario when only two
measurements are available for the entire accumulation interval. For simplicity,

both measurements are 100% accurate in this example.
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The spatio-temporal correlation technique uses Equation 4 with weights wy
and w2 defined for 100% accurate instruments (a;=az=0). Estimates of
instantaneous grid average rainfall are made at 15-minute intervals along the
accumulation period. The results are given in Table 7 with the estimate of the total
rainfall accumulation of 280.2x10-3mm/3h (of the 150x150km box shown in Figure

2), which is simply the sum of all instantaneous grid average rainfalls (IGARs).

Table 7. Instantaneous grid average rainfall estimates given by the correlation technique

Time (min) 0 [15]30] 45|60 ] 75 ] 90 [105]120]135] 150 [ 165 | 180
IGARs (mm10°/h) [113| 115|117 | 119 | 116 | 109 | 98 | 85 | 76 | 67 | 64 | 66 | 69

The simple averaging technique uses the same equation 4 to make an
instantaneous grid average rainfall estimate, but rather than weighting the
measurements according to their temporal variability, it forms their simple mean by
setting wi=wa. This simple mean is taken to be instantaneous grid average rainfall at
all time points of an accumulation interval where no measurement is available.
Results are given in Table 8 with the estimate of the total rainfall accumulation of

275.7x10-3mm/3h.

Table 8. Instantaneous grid rainfall estimates given by simple averaging technique

Time (min) 0 (15| 30| 45 | 60 | 75 | 90 |105|120| 135|150 | 165 | 180
IGARs(mm10'5/h) 92191 | 92 {119 | 92 | 92 | 92 | 92 | 92 | 92 | 64 | 92 | 92

The true total rainfall accumulation of 279.7x103mm/3h is calculated by
summing all of the instantaneous grid average rainfalls given by the OPERA data set

for this raining event. This is shown in Table 9.
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Table 9. Instantaneous grid rainfall estimates given by OPERA data (the truth)

Time (min) 01530 ] 45 60 [ 75 |90 [105][120]135] 150165180
IGARs (mm10°/h) |89 |104 | 104 | 119 | 108 | 113 [107 | 110 | 106 | 88 | 64 | 54 | 46

Table 10 shows the differences between the true value of total rainfall
accumulation (given in Table 9) and the values estimated by the two techniques. The
last column of Table 10, labeled as “improvement”, quantifies both the absolute and
the Root Mean Square (RMS) error improvement over simple averages. Positive
values of these numbers indicate that improvement has been made, while negative

values indicate a decrease in skill from the spatio-temporal correlation technique.

Table 10. Comparing the results of two technique estimates

Total Rainfall
Accumulation Error Improvement
(mm*10°/3h) (mm*107/3h) (%)
OPERA data Absolute| RMS [Absolute] RMS
279.7
(the truth) error error error | error
Simple averaging 275.7 4.0 20.2 .
Technique
Spatio-temporal 280.2 05 | 168 | 88 | 17
correlation technique

In this particular example, it is clear that the spatio-temporal correlation
technique has smaller errors. If used, these instantaneous grid average rainfalls

could potentially improve total rainfall accumulation estimates significantly.

5.1 Simulated measurements

To depict the characteristics of the spatio-temporal correlation technique, two

cases are examined. In the first one, the time separation of the two measurements is
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kept constant, while in the second case, the time separations are randomly
distributed over the accumulation period. The first case provides more insight into
the improvements that are dependent on data accuracy and temporal decorrelation,

while the latter simulates more realistic scenarios, but is more difficult to interpret.

The results indicate that there are improvements in total rainfall accumulation
estimates made by applying the spatio-temporal correlation technique to

approximately 15,000 raining events over the entire OPERA space/time domain.

5.1.1 Fixed time separation measurements

Table 11 gives the absolute and the RMS error improvements for the grid size
of 250km with 12km pixels. The time steps and the resulting temporal separations
are shown in Figure 16. The color markers correspond to the markers displayed in

Table 11. Measurement errors are set to be 0% for both of the instruments.

Table 11. Error improvement (%) for various time separations; grid size 250km; pixel
resolution 12km

Separation time (min)
o | ® 60 | ® 120 | ® 180
Absolute 0.00 33.03 47.54 36.00
RMS 0.00 26.04 45.30 30.10

Error improvement (%) >

Both the absolute and the RMS error improvements behave the same. Since
both instruments are assumed perfect (i.e. 0% measurement error), weighting is
based only on the temporal variability. The maximum improvement occurs when
the correlation times (related to spatial correlation) of the two measurements cover

as much of the accumulation period as possible. Typically the length of the
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correlation time is not longer than 60-minute. If measurements are too close to each
other their correlation times could overlap, potentially leaving portions of the
accumulation period uncovered. This lowers the impact of improvement. The time
separations of 0-minute and 60-minute in Table 11 correspond to overlapping
correlation time lengths. The ideal scenario is to have measurements that are about
twice the mean temporal correlation length apart. A separation of 120-minute is an
example of this scenario, clearly having the greatest improvement among all of the

time separations.

o
2 * 2 > 2 * \ 4
0 15 30 45 60 75 90 105 120 135 150 165 180
Time (min)

Figure 16. Accumulation period with marked measurements

In Table 12 and Table 13 error improvements are given for combinations of 3
different sensor’s accuracies while the time separation is fixed at 120-minute to

provide simpler analysis.

Table 12. Absolute error improvement (%); 120min separation time; Grid size 250km; pixel
resolution 12km

Uncertainty of sensor #1 (%)
10 30 60
U ] ¢ 10 46.62 42.47 25.16
ncertainty o 30 42.47 43.46 32.77
sensor #2 (%)
60 25.16 32.77 39.69

It is clear from the tables that the best results are obtained if two
measurements have the same accuracy. This is expected, since any inequality in the

measurement error will lead to more weight being given to a single sensor. This is
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the case even if the instantaneous grid average rainfall estimate corresponds to the
times beyond the correlation time of the more accurate measurement. Temporal
variability that corresponds to extended time separations of accurate
measurements is larger than variability that corresponds to short time separations
of less accurate measurements. It is important to note that this does not mean that a
pair of two instruments of equal accuracies produces a better instantaneous grid
average rainfall estimate than the same pair after the accuracy of one of them is
increased. It simply means that in this case, the improvement compared to the

simple average technique, is lower.

Table 13. RMS error improvement (%); 120min separation time; Grid size 250km; pixel
resolution 12km

Uncertainty of sensor #1 (%)
10 30 60
U ) ¢ 10 45.24 41.75 20.32
neertainty o 30 41.75 4415 30.94
sensor #2 (%)
60 20.32 30.94 40.81

Additional details on these results are shown in Appendix D.

5.1.2 Random time separation measurements

Table 14 presents absolute and RMS error improvements for the grid size of
250km with 12km pixels. The measurements are randomly distributed over a 3-
hour accumulation periods. The distribution is uniform, allowing any time
separation within the 3-hour interval to occur, including the case of no-separation
(i.e. measurements taken at same time). Measurement errors are set equal for both

instruments.
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Table 14. Error improvement; random separation time; grid size 250km pixel resolution
12km

Measurement error (%)| 0 10 20 30 | 40 50 | 60 70 80 | 90

Error Absolute |22.94(21.74|19.81|18.49|17.13|16.64|15.93|15.86|15.14|15.41
Improvement
(%) RMS |15.26|15.15|14.54|14.16|13.74|13.67|13.33|13.26|12.96|12.39

In general, Table 14 indicates that a decrease in sensor accuracy leads to a
decrease in error improvements. It is worth mentioning that the spatio-temporal
correlation technique applied to measurements with 90% uncertainty still provide
an absolute error improvement of 15% and RMS error improvement of more than
10%. This implies that the spatio-temporal correlation technique has skill even when
applied to unreliable instrument measurements. Even more important is the fact
that the technique can deal effectively with inaccurate measurements, which was
the primary mission of this study. Error improvements for various spatial

resolutions are shown in Appendix E.

In Tables 15 and 16, error improvements are given for 3 combinations of
different sensor’s accuracies. These results mirror those seen in the fixed time
separation scenario, except that the improvements are lower. This is expected, since
time separation is not set to be at its optimum value (120-minute in Table 12). Again,
different spatial resolutions for the grid and pixel resolutions are found in Appendix

E.
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Table 15. Absolute error improvement (%); random separation time; grid size 250km pixel
resolution 12km

_ Uncertainty of sensor #1
Uncertainty of sensor #2 10 30 60
10 21.74 18.16 9.57
30 18.16 18.49 12.94
60 9.57 12.94 15.93

Table 16. RMS error improvement (%); random separation time; grid size 250km pixel
resolution 12km

) Uncertainty of sensor #1
Uncertainty of sensor #2 10 30 60
10 15.15 13.42 5.93
30 13.42 14.16 9.59
60 5.93 9.59 13.33

Finally, Table 17 shows how the absolute error improvement is dependent on

the grid size and pixel resolution. Both of the measurement errors are equal to 30%.

Table 17. Absolute error improvement for sensors uncertainty of 30%; various grid sizes and
pixel resolutions

_ Grid Size (km)
Uncertainty of sensors 30 % 100 250 500
_ _ 8 18.69 18.77 15.10
Pixel rf;'s"l“t‘on 12 17.69 18.49 15.56
(k) 24 18.57 16.32 18.62

No particular pattern is evident from Table 17. The same is the case for other
combinations of measurement errors as well as for RMS error. Thus, the conclusion
is that improvements do not show well-defined dependency on the grid size or the
pixel resolution. However, they do remain reasonably high, keeping their values in

the range of 15% to 20% for absolute error improvements.
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5.2 Real data application

To test its methodology with real data, the spatio-temporal correlation
technique was applied to satellite data observed over the Southeastern US for a
period of 10 consecutive days, as described in Chapter 2. The results and basic

information regarding the case study are given in Table 18.

Measurements from five satellite sensors are used. Sensors’ biases are
calculated by comparing satellite instantaneous grid average rainfall measurements
to the ground based instantaneous grid average rainfalls for the 10-day period. After
removing the bias, instrument errors are determined by comparing satellite
instantaneous pixel rainfall estimates to the true instantaneous pixel rainfall
estimates, for each sensor over the study area. Measurement errors are given in

Table 18.

The satellite pixel resolution was approximately 0.25° currently among the
highest resolutions available. The grid size is defined by 4x4 pixels resulting in grids
of about 100km in size. Across the 10-day period, two or more instruments have

detected 42 raining events having a time separation shorter than 3 hours.

The true total rainfall accumulation is estimated using the NEXRAD stage IV data. As
described in Chapter 2, these data are hourly accumulation estimates. In order to
calculate the improvement of spatio-temporal correlation technique over simple
averages, 15-minute estimates made from the spatio-temporal correlation technique
are aggregated to 1-hour period and compared to NEXRAD’s accumulation. Results

are shown in Table 18. Results are not as good as those predicted with synthetic data
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(shown in brackets) but this is often the case when using real data. The total rainfall

accumulations shown in Table 18 correspond only to the area where rain has been

detected by satellites.

Table 18. Results and description of the case study

Number of satellites 5
Satellites’ instruments TMI, AMSR-E, SSMI13, SSMI14, SSMI15
Instrument error (%) 30, 30, 40, 30, 30

Number of raining events 42
Accumulation Grid Size 100 km
Pixel resolution 24 km
Accumulation intervals 3 hours
Total accumulation time 10 days
Total accumulation area 5°x10°
True TRA (radar) 159 mm/10days
Estimated TRA 164 mm/10days
Absolute error improvement 6 % (18 %)
RMS error improvement 2% (13 %)
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Radar rainfall data
ST4 2006,/04/20 22h
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Figure 17. Convective-like raining event (NEXRAD stage IV hourly rainfall accumulations)

Details of two selected rain events are shown in Table 19 and Table 20, while
events are shown in Figure 17 and Figure 18. Similar to Chapter 1, the two events are
used to present two different raining types. One of the events has fields with high
spatial correlation coefficients, indicating uniform rain (Table 20); while the other
event containing low coefficients, implies more convective-like raining fields (Table

19).
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Radar rainfall data
ST4 20068,/04/30 18h
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Figure 18. Stratiform-like raining event (NEXRAD stage IV hourly rainfall accumulations)

A time separation happened to be at the minimum in the convective type
event. Table 19 shows small At. Instantaneous rain, and rain accumulation for this
event are shown in Table 19. This 3-hour accumulation period started on April 20th
2006 at 21:45 UTC. Two satellite instantaneous grid average rainfall measurements,
made by the SSMI13 and SSMI14 sensors, at approximately 23:30 and 23:45 UTC,
respectively, are 6.060mm/h and 6.236mm/h. The times of measurements are
marked as 105-minute and 120-minute (relative to the beginning of the
accumulation interval) in Table 19. A spatial correlation coefficient of the field
measured by SSMI13 was 0.181, while 15 minutes later and with the same field, the

SSMI14 had estimated a spatial correlation coefficient of 0.258. Both of the
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techniques have overestimated the radar accumulation. Also, the simple averaging
technique has a slightly better result than the spatio-temporal correlation technique.
The absolute error improvement made by the spatio-temporal correlation technique
is negative and equal to -0.9%. In other words, the spatio-temporal correlation
technique has made a 0.9% larger absolute error than the simple averaging
technique. Table 19 supports findings of previous section, that low values of spatial
correlation coefficients and/or short time separations, result in small

improvements, or even in slight aggravations.

Table 19. Convective-like raining event

Time (min) Accumulation (mm/h)
Spatio-temporal Simple
i ' : . Radar
correlation technique averaging technique
15 6.196 6.148
30 6.184 6.148
45 6.180 6.184 6.148 6.148 4.165
60 6.176 6.148
75 6.176 6.148
90 6.180 6.148
105 6.188 6168 6.060 6.148 5.554
120 6.128 6.236
135 6.124 6.148
150 6.132 6.148
165 6.132 6131 6.148 6.148 4.450
180 6.136 6.148
Total
(mm/3h) 18.483 18.444 14.169

Another raining event that occurred on April 30t 2006 was detected by the
TMI sensor. The 3-hour rainfall accumulation period, starting at 18:00 UTC, with
satellite measurements of the instantaneous grid average rainfall at approximately

19:00 UTC and 20:45 UTC is shown in Table 20. Instantaneous grid average rainfall

56



measurements had values of 1.992mm/h and 0.144mm/h. Two measured fields had
spatial correlation coefficients of 0.422 and 0.239, respectively, implying a higher
uniformity than the fields presented in Table 19. Here, both techniques have
underestimated the radar accumulation, except that the spatio-temporal correlation
technique made a 0.847mm smaller absolute error than the simple averaging

technique, providing improvement of 41%.

Clearly, higher spatial correlation coefficients and longer time separations
resulted in an increased skill of the spatio-temporal correlation technique. Also, from
comparing hourly rainfall accumulations of the two techniques, Table 20 shows that
having the second measurement at the end of the accumulation period decreases

the skill of the spatio-temporal correlation technique.

Table 20. Stratiform-like raining event

Time (min) Accumulation (mm/h)
Spatio-temporal Simple
. . . . Radar
correlation technique averaging technique
15 1.872 1.068
30 1.884 1.068
4z 1920 1.906 1068 1.068 3.146
60 1.948 1.068
75 1.964 1.992
90 1.888 1.068
105 1708 1.720 1068 1.299 1.341
120 1.320 1.068
135 0.888 1.068
150 0.520 1.068
165 0.292 0.469 1068 1.837 0.885
180 0.176 0.144
Total 4.095 3.204 5.372
(mm/3h) ' ' '
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CHAPTER 6

6 Conclusions

The spatio-temporal correlation technique has been developed to improve
estimations of 3-hour satellite rainfall accumulations. Statistical properties of rain
and technical properties of instruments have been combined to assign the weights
to sparse and rare instantaneous rainfall measurements. When weighted, they were
first combined to form the estimates of the rainfall at the times between the
measurements, and then used to estimate a 3-hour total rainfall accumulation. The
results were then compared to the simple averaging technique, which takes a simple
mean of the measurements as a constant rainfall rate over the entire accumulation
period. The comparison was presented as improvements of the absolute and the
RMS errors. The results implied a potential improvement of the total rainfall
accumulations of currently used accumulation methods, such as CMORPH and

TMPA, if the technique would be implemented into their estimates.

This new technique has showed skill in combining both inaccurate and
sparse measurements. Rainfall fields have characteristic temporal and spatial
correlations, which if used, can assist in making estimates between satellite
overpasses. It was shown that more uniform rainfall fields have longer time

correlations than less uniform fields. It was also shown that the temporal
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correlation length, or the time that the information from a single measurement is
still useful, can be as long as 60 minutes. This greatly overcomes the temporal
sparseness of the measurements, provided that the measurements are properly

spaced over the accumulation period.

The best results are seen when the measurements are 120min apart, and of
equal accuracies. The prior is consequence of having temporal correlation length of
both measurements entirely covering the accumulation period, leaving no gaps in
information about rainfall no matter which of the two measurements this
information originates from. The letter is based on the fact that when one
measurement is trusted less the other one is trusted even beyond its temporal
correlation length. This results in lower improvements since temporal variability
that corresponds to extended time separations of accurate measurements is larger
than variability that corresponds to short time separations of less accurate

measurements.

In addition to time separation dependence, the proficiency of the spatio-
temporal correlation technique depends on the accuracy of the measurements. This
technique has shown the capability of combining the measurements of different
accuracy, although the most valuable results tend to occur if the measurements are

of the similar accuracies.

The results indicate that when the spatio-temporal correlation technique is
compared to the simple averaging technique, it creates improvement of 0%-50% in

absolute error, and 0%-40% in RMS error, depending on the time separation and
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the measurement accuracy. Additionally, the spatio-temporal correlation technique

rarely results in a deterioration of quality.

It is certain that the time separation between the measurements cannot be
chosen or forced to its ideal length of 120 minutes. However, the results obtained by
simulating the realistic scenario of having the length of time separation randomly
distributed between 0 and 180 minutes are promising. They imply that the spatio-
temporal correlation technique is capable of making up to 25% improvement in
absolute error and up to 15% improvement in RMS error when compared to the
simple averaging technique. This is non-negligible, especially since the spatio-

temporal correlation technique is computationally inexpensive.
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Appendix A
The spatial correlation coefficient is introduced in Chapter 3 to describe the
spatial change of the rainfall rate distribution. This quantity is convenient when the
pixel resolution is fixed, as it would be in satellite applications. The drawback of
correlation coefficient is that pixel size is implied. Other studies have therefore used

the correlation length to describe the homogeneity of the rainfall filed.

Table 21. Spatial correlation coefficient and length for a grid size of 100x100km

Pixel resolution (km) 24 12 8
Spatial correlation coefficient 0.599 0.624 0.635
Spatial correlation length (km) 26.4 23.3 18.6

The correlation length is defined as the distance at which a correlation
coefficient value drops by a factor of e compared to its initial value (i.e. no shift).
Table 21 compares the correlation coefficients and correlation lengths to each of the
correlation coefficients shown in Table 1. Here, although the 8km pixel has higher
correlation coefficients than the larger pixel, it is cleat that the correlation length is

actually smaller for the higher resolution field.
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Table 22. Correlation length vs

. correlation coefficient

Spatial correlation length (km) 5 10 15 20 25 30 35 40 45 50
g | 8km [0028 0343|0658 [0.973] 10 | 10 | 10 [ 10 | 10 | 10

- o _ s

S Gridsize '8 51 jorm [-0.115] 0.146 | 0.407 [0.668[0.929] 1.0 | 1.0 | 1.0 | 1.0 | 10

£ 4| 100x100km |25

— (]

e 3 2| 24km |-0.569]-0.309 [-0.0490.210] 0.47 | 0.73 | 099 | 1.0 | 1.0 | 1.0

(=) i=]

=3 £ | 8km [0.094 0258 | 0422 |0.585|0.749]0913| 10 | 10 | 10 | 10

l: (5] . . —

= Grid size g 5

£ | 2s00s0km |22 12km | 0.017 | 0.159 | 0.301 |0.4430.586 |0.728|0.871| 1.0 | 1.0 | 1.0
£ | 24km [-0.161[-0.055] 0.056 |0.164]0.273]0.382]0.491| 0.6 [0.709]0.818

To give a better sense of the relationship between the spatial coefficient and

the spatial correlation length, Table 22 shows averages calculated for the entire

OPERA data set, for the grid sizes of 250x250km and 100x100km and for pixel

resolutions of 8km, 12km and 24km. This table provides convenient conversion for

the spatial correlation coefficient if the spatial correlation length is known, and vice

versa.
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Figure 19. Spatial correlation coefficient vs. length (grid size 100km; 8km pixel resolution)

67




Figure 19 shows this relationship for a 100x100km grid size with an 8km pixel
resolution. The diagram is based on approximately 5% of all of the data available in
the OPERA data set. The line shown in Figure 19 defines the values in Table 22 for
the corresponding grid size and pixel resolution. The exponential relationship
between the length and the coefficient can be also found in Pereira et al. (1999). The
difference between their result and the one seen here is due to the fact that their
study was focused to specific area with the pixel resolution of only 2km. Therefore,
their spatial correlation coefficient with approximate value of 0.98 corresponds to
the length of approximately 22km, while here that length is approximately 1.5 times

greater. Otherwise the results show the same behavior.

Table 23. temporal correaltion coefficient for separation times of 30 and 45min

. . . . . Pixel size (km)
Field size (km) [Time separation (min) 22 12 3

30 0.616 0.505 0.424

500x500 45 0.528 0431 0343
250 x 250 30 0.552 0.434 0.389
45 0.455 0357 0318

100x100 30 0.540 0.390 0342

X 45 0.452 0323 0.288

Similarly to the spatial correlation case, temporal correlation length is
calculated as the time at which the initial value of the temporal correlation
coefficient drops by a factor of e. Figure 20 shows that longer spatial correlation
lengths correspond to longer temporal correlation lengths, implying that more
uniform (stratiform) raining systems tend to change at a slower rate than non-

uniform (convective) ones.
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Figure 20. Spatial-Temporal length (grid size 250km; pixel resolution 12km)

The same dependence of temporal and spatial correlation lengths can be found
in Bell et al. (1990b). Although they have found different values for correlation
lengths (much longer than seen here), the shapes of the relationship curves are the
same. The differences in the lengths are due to the different manner in which
calculations have been done (the parameters they have used to obtain those
relations are based on observations taken in less than a month) and the fact they

have used much smaller and more specific area.

Table 24. Spatial-Temporal length (grid size 250km; pixel resolution 12km)

Spatial correlation length (km) 5(10[15]20(25(30|35|40(45|50
Temporal correlation length (min) |31(38(44|50(56(62|68|74(80|86
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Appendix B

Combining the results of measurements

Rabinovich 2005, provides the foundation for combining measurements with
various uncertainties. Here, only the combination of two measurement sets of

known variances is described.
Theoretical principles

Consider L groups of measurements of the same quantity A. Estimates of the

measured quantity Xy, ..., X, were made from the measurements of each group, and

The variances of the measurements in each group o013, .., 6.2 and the number of

measurements in each group nj, ..., n;, are known.

The goal is finding an estimate of the measured quantity based on data from all

groups of measurements. This estimate is denoted as x and is called the combined

average or weighted mean.
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We shall seek x as a linear function of ;,- i.e., as their weighted mean,
= L —_—
X= E 8;Xj
j=1

Therefore the problem reduces to finding the weights gj. As E[;,-]=A and

E|:)_Cj:|=A,We obtain

Therefore,

Next, we require that x be an efficient estimate of A; i.e. V[ x] must be minimum.

For this reason we find an expression for V[ x ], using next formula:

Using the condition that the sum of all weights must be equal to 1, we write

g =1-g,-g,-----g, ,. We shall now find the condition under which the derivative of V[

)_c] with respect to gj is equal to 0. It turns out that the weights of the arithmetic

means of the groups of measurements must satisfy (for details see Rabinovich

2005):
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To find weight, gj, it is necessary to know either the variances of the arithmetic

. . . 2
means or the ratio of the variances. If we have the variances, o (x/.), then we can

set g; = — 1 We then obtain:

o*(x))

This defines ; .

According to this study, groups of measurements are data sets from different
satellites, while what has been defined as measurement accuracy is the standard
deviation of the arithmetic mean of such a data set. Thus, the squared accuracy is

the variance as used here to define the weight gj. Note that in Chapter 4 the symbol,

g, is replaced by wi.

Combining the results of measurements containing both systematic and

random errors

Assume that n instruments measure the same quantity A. Each instrument

gives the result, xj with error, gj:

x,;=A+q; ,j=1,2,..n
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To combine the series of values of x in a well-founded manner and obtain a more
accurate estimate of the measured quantity, one must have certain information
about the errors, gj. Here, the error, gj, is the sum of the conditionally constant error,

v, and random error, Y,

q; =V + ¥,

If this is the case, the weights, gj, of the measurements being combined should

be calculated using the following formula:

1
S ) +S* @)

J n 1
ESz<vj>+52<w,-)

j=1

Where Sz(vj) and Sz(wj) are estimates of variances of conditionally constant

errors and the random error of the same measurement result.

Regarding this study, Sz(vj) and Sz(wj) are proportional to temporal

variability and measurement error, respectively.
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Appendix C

Monte Carlo Method

The Monte Carlo Method (Metropolis and Ulam, 1949) is any method that
solves a problem by generating suitable random numbers and observing the
fraction of numbers obeying some property or properties. The method is useful for
obtaining numerical solutions to problems, which are too complex to solve

analytically. In this particular case the problem is as follows.

Inaccuracy of the measurement influences the accuracy of the spatial
correlation coefficient calculated in Equation 2, which is then used to define the
temporal variability. Rather than looking for the propagation of the x and y vectors’
errors in Equation 1, the Monte Carlo method is used to define the uncertainty of the
spatial correlation coefficient, by comparing accurate fields to their uncertain
duplicates. OPERA data with simulated errors (as described in Chapter 2) are used
to produce those uncertain duplicates for 10 different uncertainty levels (given in
Table 25) for all combinations of grid sizes and pixel resolutions. Results are given
as corrections that have to be added to uncertain spatial correlation coefficients.
Table 25 gives an example of the spatial correlation coefficient’s corrections for the

grid size of 250km with a 12km pixel resolution.
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Table 25. Spatial correlation coefficient correction (grid size 250km; 12km pixel resolution)

Spatial correlation coefficient interval

[-0.1,0)[[0,0.1)[[0.1,0.2)[[0.2,0.3)[[0.3,0.4)|[0.4,0.5)|[0.5,0.6)[[0.6,0.7)|[0.7,0.8)|[0.8,0.9) [0.9,1.0)

10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
< |20 000 | 000 0.00 | 000 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.02 | 0.00
& 30 0.00 [0.00] -0.01 | -0.01 | -0.02 | -0.02 | -0.03 | -0.03 | -0.04 | -0.04 | 0.00
5 [40] 0.00 |-0.01] -0.01 | -0.02 | -0.03 | -0.04 | -0.04 | -0.05 | -0.06 | -0.06 | 0.00
§ 50 | 0.00 |-0.01] -0.02 | -0.03 | -0.04 | -0.05 | -0.06 | -0.07 | -0.08 | -0.09 | 0.00
2|60 0.00 [-0.01] -0.02 | -0.04 | -0.05 | -0.07 | -0.08 | -0.10 | -0.11 | -0.12 | 0.00
§ 70 | 0.00 |-0.01] -0.03 | -0.05 | -0.07 | -0.09 | -0.11 | -0.12 | -0.14 | -0.15 | 0.00
2 180 0.00 |-0.02] -0.04 | -0.06 | -0.09 | -0.11 | -0.14 | -0.16 | -0.17 | -0.19 | 0.00
= [90] -0.01 [-002] -005 | -0.08 | -011 | -0.14 | -016 | -0.19 | -021 | 022 | -0.01
99 | -0.01 [-0.03] -0.05 | -0.09 | -0.12 | -0.16 | -0.19 | -0.21 | -0.23 | -0.25 | -0.01
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Appendix D

RMS error improvement (%) with Omin separation time
Grid size 250km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15,000 0 10 20 [ 30 | 40 | 50 | 60 | 70 | 80 | 90
0 0 0 [-0.01|0.07]-0.01]0.29|0.76 | 0.60 | 0.6 | 1.61
s | 10 0 0 |-0.01|0.03]-0.03|0.23|0.71 | 0.55| 0.56 | 1.56
~ | 20 ]-001] -001 | 0 |0.07]|0.04]|0.32|0.79|0.68|0.69 | 1.61
?:5 30 | 0.07 | 003 |0.07| 0 [-0.09|0.15|0.47 | 0.40 | 0.43 | 1.22
§ 40 | -0.01 | -0.03 [0.04|-0.09| 0 |0.10|0.46|0.35|0.39 ]| 1.22
S | 50| 029 | 023 |032|015| 0.1 | 0 |0.03]0.05]|-0.18| 0.61
£ | 60 | 076 | 071 |[079|047|046|003| 0 |0.06]|0.02]|0.11
g | 70 | 0.60 | 055 |0.68|0.40|0.35]|0.05(0.06| 0 [-0.26/-0.13
S [ 80| 060 | 056 |0.69]043]039](-0.18]0.02-026] 0 [-0.38
90 | 161 | 156 |1.61|1.22|1.22|0.61|0.11[-0.13|-0.38| 0
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Absolute error improvement (%) with Omin separation time
Grid size 250km pixel resolution 12km

# of events:

Uncertainty of sensor #1 (%)

15,000 0

10

20

30

40

50

60

70

80

90

0 0

0.16

0.34

0.62

0.83

1.03

1.51

1.96

2.68

3.06

10 [0.16( O

0.09

0.30

0.50

0.69

1.16

1.62

2.35

2.71

20 |0.34( 0.09

0.11

0.26

0.43

0.84

1.31

1.97

2.28

30 |0.62( 0.30

0.11

0

0.01

0.13

0.38

0.76

1.33

1.70

40 |0.83] 0.50

0.26

0.01

0

-0.07

0.14

0.44

0.89

1.26

50 |1.03| 0.69

0.43

0.13

-0.07

0

-0.01

0.08

0.41

0.73

60 |1.51( 1.16

0.84

0.38

0.14

-0.01

0

-0.02

0.26

0.38

70 |1.96( 1.62

1.31

0.76

0.44

0.08

-0.02

-0.12

-0.10

Uncertainty of sensor #2 (%)

80 |2.68] 2.35

1.97

1.33

0.89

0.41

0.26

-0.12

-0.28

90 |[3.06( 2.71

2.28

1.70

1.26

0.73

0.38

-0.10

-0.28

RMS error improvement (%) with 60min separation time
Grid size 250km pixel resolution 12km

# of events:

Uncertainty of sensor #1 (%)

15,000 0

10

20

30

40

50

60

70

80

90

0 |26.04

25.75

24.07

21.04

16.53

11.88

8.02

3.46

0.25

-1.77

10 | 25.75

25.60

24.32

21.64

17.42

13.03

9.09

4.63

1.32

-0.85

20 | 24.07

24.32

24.09

22.64

19.55

15.71

12.06

7.48

4.01

1.91

30 | 21.04

21.64

22.64

22.57

20.93

18.13

14.66

10.35

6.71

4.32

40 |16.53

17.42

19.55

20.93

21.36

20.31

17.84

14.32

10.90

8.66

50 | 11.88

13.03

15.71

18.13

20.31

20.94

19.68

17.76

14.57

12.84

60 | 8.02

9.09

12.06

14.66

17.84

19.68

19.83

18.85

16.72

15.24

70 | 3.46

4.63

7.48

10.35

14.32

17.76

18.85

20.35

19.21

19.08

Uncertainty of sensor #2 (%)

80 | 0.25

1.32

4.01

6.71

10.90

14.57

16.72

19.21

19.51

20.01

90 | -1.77

-0.85

1.91

4.32

8.66

12.84

15.24

19.08

20.01

20.49
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Absolute error improvement (%) with 60min separation time
Grid size 250km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15,000 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |[33.03(32.15(29.19(25.08|19.96|15.61|11.78| 7.90 | 5.75 | 3.86
< 10 |32.15(31.51(29.13(25.40|20.50|16.24|12.38| 8.44 | 6.20 | 4.23
~ | 20 129.19(29.13|28.3126.11|22.21|18.40 | 14.57|10.56 | 8.19 | 6.13
?:5 30 | 25.08(25.40 (26.11|25.84|23.59|20.60|17.06(13.08(10.53| 8.17
§ 40 [19.96|20.50|22.21|23.59|23.46|22.16(19.66(16.31|13.78|11.53
N 50 |15.61(16.24|18.40(20.60|22.16|22.56|21.13|18.89|16.62 | 14.64
.g 60 |11.78(12.38(14.57|17.0619.66|21.13|21.12(20.06 | 18.64 | 16.91
§ 70 | 790 | 8.44 [10.56|13.08|16.31|18.89(20.06(20.90(20.27|19.60
S 80| 575 | 6.20 | 819 [10.53[13.78] 16.62 | 18.64]20.27[20.53] 20.34
90 | 3.86 | 4.23 | 6.13 | 8.17 |11.53|14.64 (1691 19.6 |20.34|20.62

RMS error improvement (%) with 120min separation time

Grid size 250km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15,000 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |45.30(45.20|44.18(40.86|35.40(25.99|18.53(12.18| 4.41 | 0.56
< 10 |45.20|45.24|44.58|41.75(36.72|27.62(20.32|14.02| 6.15 | 2.32
~ | 20 [44.18]|44.58|45.05|43.55(39.84|31.93|25.00(18.88|11.22| 7.27
?:5 30 |40.86(41.75|43.55(44.15|42.58|36.52|30.94|25.27|17.75|13.75
§ 40 |35.40|36.72(39.84|42.58(44.02|40.50(36.81(32.31|25.25(21.68
o 50 |25.99|27.62|31.93|36.52(40.50|41.37(39.86|37.09(32.43|29.59
.g 60 |[18.53(20.32(25.00(30.94|36.81(39.86|40.81(40.11|37.49(35.21
§ 70 [12.18(14.02|18.88(25.27|32.31(37.0940.11|39.65|38.52|36.30
5 80 | 441 | 6.15 |11.22(17.75|25.25(32.43|37.49(38.52|39.50 | 38.51
90 | 0.56 | 2.32 | 7.27 [13.75]21.68(29.59|35.21(36.30|38.51(37.02
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Absolute error improvement (%) with 120min separation time
Grid size 250km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15,000 0 | 10 | 20 | 30 | 40 | 50 | 60 [ 70 | 80 | 90
0 |47.54(47.03|45.52(42.09|36.92|30.65(24.06|18.82|13.44| 9.83
< 10 |47.03|46.62|45.45(42.47|37.62(31.65(25.16|19.95(14.47|10.86
~ | 20 |45.52(45.45|45.23|43.41(39.70|34.47|28.33(23.27|17.80 | 14.14
?:5 30 |42.09(42.47|43.41(43.46|41.65|37.96(32.7728.09|22.55|18.95
§ 40 |36.92|37.62(39.70141.65(42.19|40.41|36.73(33.03|27.91| 24.69
N 50 |30.65(31.65|34.47|37.96|40.41|41.04(39.29|36.75|32.97 | 30.20
.g 60 |24.06(25.16(28.33|32.77(36.73|39.29|39.69|38.73|36.33 | 34.38
§ 70 |18.82(19.95|23.27|28.09|33.03|36.75(38.7339.07|37.78 | 36.48
5 80 |13.44|14.47(17.80|22.55(27.91|32.97|36.33(37.78|37.86(37.72
90 | 9.83 |10.86(14.14|18.95(24.69|30.20|34.38(36.48|37.72| 37.6

RMS error improvement (%) with 180min separation time
Grid size 250km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15,000 0 [ 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |30.10(30.03]|29.21|27.81(23.47(18.14|11.64| 5.59 | 0.28 | -3.93
< 10 |30.03(30.05(29.36|28.35(24.30(19.33{12.90| 7.10 | 1.66 |-2.40
~ | 20 [29.21]29.36(29.22(29.16|25.95(21.93|15.99(10.30| 5.16 | 1.22
?:5 30 |27.81|28.35|29.16(30.95(29.37(26.81|22.07(17.18(12.16| 8.85
§ 40 |23.47|24.30(25.95(29.37|29.23|28.87(25.90|22.21|17.67|15.31
o 50 |18.14(19.33|21.93|26.81(28.87(30.58(30.23|27.39(23.42(22.24
.g 60 |11.64| 12.9 |15.99|22.07| 25.9 {30.23|30.98(30.18(27.71|27.09
§ 70 | 5.59 | 7.10 |10.30(17.18(22.21|27.39|30.18(30.48(29.03 | 28.93
5 80 | 0.28 | 1.66 | 5.16 (12.16|17.67|23.42(27.71|29.03|28.39|29.68
90 |[-3.93|-2.40| 1.22 | 8.85 |15.31|22.24(27.09|28.93|29.68|31.44
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Absolute error improvement (%) with 180min separation time
Grid size 250km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15,000 0 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |[36.00]35.72{34.73(32.50|28.33|23.82(18.27|13.37| 8.77 | 5.08
= 10 |35.72(35.46|34.65|32.71(28.84|24.58|19.12 [ 14.33| 9.68 | 6.02
< | 20 |34.73(34.65|34.47(33.56(30.51|26.91|21.89(17.28|12.62| 9.07
‘; 30 |[32.50(32.71|33.5634.31|32.78(30.49|26.32|22.28|17.75 | 14.47
§ 40 |28.33]|28.84(30.51(32.7833.03|32.54|29.85|26.76(22.65| 19.86
0
; 50 |23.82(24.58|26.91(30.49(32.54|33.64|32.77(30.79|27.25| 25.46
£ | 60 |18.27|19.12|21.89|26.32|29.85|32.77 |33.06 [ 32.53|30.21| 29.04
S
g | 70 [13.37(14.33|17.28(22.28|26.7630.79|32.53 | 33.36|32.04 | 31.34
5 [ 80 [ 877 | 9.68 |12.62]17.75|22.65 | 27.25]|30.21 [ 32.04| 31.21] 31.90
90 | 5.08 | 6.02 | 9.07 [14.47|19.86|25.46|29.04|31.34|31.90] 33.05
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Appendix E

RMS error improvement (%) with random separation time
Grid size 100km pixel resolution 24km

# of events: Uncertainty of sensor #1 (%)
15,000 0 | 10 [ 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |[13.78(13.76(13.77|13.86|12.47|11.86|11.78| 9.44 | 9.42 | 7.88
< | 10 [1376]1373|13.78|13.92|12.57|12.02|12.08| 9.91 | 9.78 | 8.29
~ | 20 [13.77(13.78(13.50|13.94|12.51|11.89|12.02| 9.75 | 9.65 | 8.30
?:5 30 |13.86(13.92|13.94|13.96|13.08|12.75|13.25|10.85|10.71| 8.89
§ 40 |12.47|12.57(12.5113.08|12.51|11.92|12.18| 9.75 | 9.95 | 8.43
S | 50 |11.86|12.02|11.89|12.75|11.92| 9.73 |12.00| 8.94 | 858 | 8.22
£ | 60 [11.78|12.08{12.02|13.25|12.18{12.00|12.25(10.29| 9.72 | 8.32
5 | 70 | 9.44 | 991|975 [10.85| 9.75 | 8.94 |10.29| 7.04 | 7.73 | 6.41
S | 80 | 942978965 [1071] 995|858 ] 9.72 773 | 6.63 | 5.79
90 | 7.88 | 829 | 830 | 8.89 | 8.43 | 8.22 | 832 | 6.41 | 5.79 | 4.68
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Absolute error improvement (%) with random separation time
Grid size 100km pixel resolution 24km

# of events: Uncertainty of sensor #1 (%)
15000 | o0 | 10 | 20 | 30 | 40 | 50 [ 60 | 70 | 80 | 90
0 |21.64(21.16(20.53|20.10(18.73|17.63|17.07[15.64|15.14| 14.26
< 10 |21.16(20.58|20.06|19.67(18.34|17.20|16.74(15.40|14.87| 13.90
~ | 20 [20.53(20.06/19.22]19.10(17.68|16.59|16.11|14.77 | 14.16 | 13.40
?:5 30 |20.10(19.67(19.10|18.57|17.66(16.59|16.33|15.00 [ 14.28| 13.02
§ 40 |18.73|18.34|17.68(17.66|16.76(15.71(15.20|14.04|13.47 | 12.64
N 50 |17.63(17.20|16.59|16.59(15.71|13.46|14.15(12.80(11.91| 11.17
% 60 |17.07(16.74(16.11|16.33|15.20(14.15|13.51|12.86(11.69| 10.39
§ 70 |15.64(15.40(14.77|15.00|14.04| 12.8 |12.86|10.22(10.80| 9.53
S | 80 [15.14[14.87]14.16]14.28]13.47[11.91[11.69[10.80] 9.62 | 8.28
90 |[14.26|13.90(13.40|13.02|12.64(11.17(10.39| 9.53 | 8.28 | 6.76

RMS error improvement (%) with random separation time

Grid size 100km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15000 o | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |10.98|10.94(10.76(10.01| 9.44 | 8.32 | 6.64 | 6.41 | 4.47 | 4.70
< 10 |10.94|10.91(10.83(10.22| 9.73 | 8.65 | 7.01 | 6.87 | 5.02 | 5.12
~ | 20 [10.76[10.83[11.14|10.91|10.65| 9.70 | 8.40 | 7.92 | 6.34 | 6.43
?:5 30 |10.01|10.22|10.91(11.28(11.26|10.75| 9.88 | 9.34 | 7.71 | 7.70
é 40 | 944 | 9.73 |10.65|11.26|11.38(11.26(10.62|10.08| 8.75 | 8.53
o 50 | 832 | 8.65 (9.700(10.75|11.26|11.33|11.08(10.78 | 9.40 | 9.37
% 60 | 6.64 | 7.01 | 840 | 9.88 [10.62|11.08|11.39|10.57[10.53| 9.41
§ 70 | 6.41 | 687 | 792 | 9.34 (10.08|10.78|10.57| 9.77 | 9.03 | 8.92
S| 80 [447 502634771875 940 [1053] 9.03 | 887 | 841
90 | 470 | 512 | 643 | 7.7 | 853 937 | 9.41 | 892 | 841 | 7.54
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Absolute error improvement (%) with random separation time
Grid size 100km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15000 | o0 | 10 | 20 | 30 | 40 | 50 [ 60 | 70 | 80 | 90
0 ]19.57(19.15(18.52|17.29|16.09(14.39(13.07|12.02|10.66 | 10.33
< 10 |19.15(18.74(18.27|17.22|16.10(14.49(13.18|12.19(10.95( 10.44
~ | 20 [18.52(18.27|18.30(17.71[16.96 |15.56|14.41|13.31(12.08 | 11.67
?:5 30 |17.29|17.22(17.71(17.69|17.48(16.58(15.74|14.67 |13.43 [ 13.01
§ 40 |16.09|16.10|16.96|17.48(17.61|17.19|16.71|15.86(14.76| 14.34
N 50 |14.39(14.49(15.56|16.58|17.19(17.15(17.10|16.48|15.33 [ 15.05
% 60 |[13.07|13.18(14.41(15.74|16.71|17.10(17.11(16.70|16.13| 15.76
§ 70 |[12.02]12.19(13.31(14.67|15.86|16.48(16.70(15.85|15.29| 15.14
S | 80 [10.66[10.95]12.08]13.43[14.76|1533[16.13]15.29| 14.41] 14.54
90 |10.33|10.44|11.67(13.01|14.34|15.05|15.76(15.14|14.54| 13.58
RMS error improvement (%) with random separation time
Grid size 100km pixel resolution 8km
# of events: Uncertainty of sensor #1 (%)
15000 | o | 10 | 20 | 30 [ 40 | 50 | 60 | 70 | 80 | 90
0 |10.00( 998 | 9.81 | 9.28 | 8.16 | 6.12 | 5.26 | 3.79 | 3.06 | 3.15
< 10 | 998 [10.00( 990 | 9.51 | 850 | 6.58 | 5.74 | 4.43 | 3.62 | 3.74
~ | 20 [981| 99 [10.04|10.18| 9.44 | 7.93 | 7.27 | 6.15 | 5.36 | 5.45
?:5 30 | 9.28 | 9.51 (10.18(10.88|10.75| 993 | 9.25 | 852 | 7.57 | 7.57
§ 40 | 816 | 85 | 9.44 |10.75(11.16(10.73(10.30| 9.86 | 9.11 | 9.15
o 50 | 6.12 | 658 | 7.93 | 9.93 |10.73|11.04|10.97(11.18(10.26| 10.59
% 60 | 5.26 | 5.74 | 7.27 | 9.25 (10.30]10.97|11.09|11.50(11.00| 11.20
§ 70 | 3.79 | 443 | 6.15 | 852 | 9.86 |11.18|11.50|11.86(11.73|11.84
S | 80 [3.06 362536757911 [1026]11.00{11.73[11.50[ 11.72
90 | 3.15| 3.74 | 545 757 | 9.15 [10.59|11.20|11.84(11.72|11.71
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Absolute error improvement (%) with random separation time
Grid size 100km pixel resolution 8km

# of events: Uncertainty of sensor #1 (%)
15000 | o0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |19.35(19.03(18.44|17.43|15.77|13.85(12.22(10.88| 9.69 | 9.38
< 10 |19.03(18.77|18.34|17.51|15.94(14.09(12.51| 11.2 |10.06| 9.70
~ | 20 [18.44(1834|18.35|18.15(17.03|15.54|14.09|12.88|11.78|11.39
?:5 30 |17.43(17.51(18.15|18.69|18.22(17.35(16.17|15.10|14.21| 13.74
§ 40 |15.77|1594|17.03(18.22(18.55|18.26|17.50|16.74(16.14 | 15.57
N 50 |13.85(14.09|15.54|17.35(18.26(18.76|18.48|18.31|17.77(17.52
% 60 |12.22(12.51(14.09|16.17|17.50|18.48(18.51(18.72|18.55|18.32
§ 70 |10.88( 11.2 ({12.88|15.10|16.74|18.31(18.72(18.81|19.04| 18.88
S | 80 [9.69 [10.06]11.78]14.21]16.14[17.77]18.55 | 19.04] 19.24 [ 19.20
90 |9.38 |9.70 [11.39(13.74|15.57|17.52(18.32(18.88|19.20| 18.8

RMS error improvement (%) with random separation time

Grid size 250km pixel resolution 24km

# of events: Uncertainty of sensor #1 (%)
15,000 0 | 10 [ 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |11.56(11.52|11.01| 9.86 | 8.12 | 6.54 | 4.84 | 3.83 | 3.03 | 2.46
< 10 [11.52|11.54(11.24|10.17| 849 | 6.92 | 5.24 | 4.28 | 3.39 | 2.68
~ | 20 [11.01]|11.24[11.32|10.69| 9.40 | 7.99 | 6.42 | 5.48 | 4.38 | 3.60
?:5 30 | 9.86 (10.17|10.69|10.57(10.04| 9.12 | 7.72 | 6.82 | 5.73 | 5.02
§ 40 | 8.12 | 849 | 9.40 [10.04]|10.02| 9.38 | 8.64 | 8.11 | 6.76 | 6.28
o 50 | 654|692 (799|912 |9.38(9.09|9.00|886| 783|738
% 60 | 484 | 524 | 6.42 | 7.72 | 8.64 | 9.00 | 9.41 | 9.50 | 8.49 | 7.96
§ 70 | 3.83 | 428 | 548 | 682 | 811 | 886 | 9.50 | 9.66 | 8.75 | 8.65
5 80 |3.03(339(438|573|6.76| 783|849 |875] 815 | 7.83
90 | 246 | 2.68 | 3.60 | 5.02 | 6.28 | 7.38 | 7.96 | 8.65 | 7.83 | 8.30
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Absolute error improvement (%) with random separation time
Grid size 250km pixel resolution 24km

# of events: Uncertainty of sensor #1 (%)
15,000 0 | 10 [ 20 [ 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |21.75|20.93(19.15(16.70|14.37|11.97(10.32| 859 | 8.08 | 7.51
< 10 |20.93|20.29(1891|16.66|14.44(11.98(10.32| 8.60 | 7.99 | 7.30
~ | 20 |19.15|18.91(18.34|16.84(15.03{12.66|10.99| 9.37 | 8.53 | 7.72
?:5 30 |16.70(16.66(16.84|16.32|15.40(13.57|12.08|10.42| 9.56 | 8.71
§ 40 |14.37(14.44(15.03|15.40(15.29|14.02|13.10|11.77(10.75| 9.67
N 50 |11.97|11.98|12.66(13.57|14.02|13.46(13.14|12.19|11.19( 10.52
% 60 |10.32(10.32(10.99|12.08|13.10(13.14|13.07|12.54(11.81| 10.82
§ 70 1859 (860 (937 (1042|11.77(12.19(12.54|12.15(11.73| 11.24
5 80 |8.08 (799 |853]|9.56(10.75(11.19]|11.81(11.73(10.95| 10.64
90 | 751 (730 | 7.72 | 871 | 9.67 {10.52|10.82|11.24(10.64| 10.08

RMS error improvement (%) with random separation time

Grid size 250km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15,000 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |15.26(15.17|14.41|13.05|10.76| 8.17 | 5.29 | 3.14 | 0.31 | -0.84
< 10 [15.17|15.15|14.58|13.42|11.25| 8.76 | 593 | 3.76 | 0.90 | -0.28
~ | 20 |14.41(14.58|14.54(13.95|12.36(10.25| 7.57 | 5.44 | 2.51 | 1.34
?:5 30 |13.05(13.42|13.95(14.16|13.40(12.00| 9.59 | 7.74 | 491 | 3.68
§ 40 |[10.76]11.25(12.36| 13.4 [13.74(13.19|11.71(10.09| 7.65 | 6.36
o 50 | 8.17 | 8.76 |10.25(12.00|13.19|13.67|12.99|11.94|10.11| 9.05
% 60 | 529 (593 (757|959 (11.71|12.99|13.33|12.91|11.96(10.93
§ 70 | 3.14 | 3.76 | 5.44 | 7.74 |10.09|11.94|12.91|13.26| 12.7 |12.14
5 80 | 031|090 (251|491 | 7.65|10.11|11.96|12.70|12.96|12.67
90 |-0.84(-0.28| 1.34 | 3.68 | 6.36 | 9.05 |10.93(12.14|12.67|12.39
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Absolute error improvement (%) with random separation time
Grid size 250km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
15000 | o | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |22.94|22.24(20.41(18.00(14.86(11.89| 9.27 | 6.87 | 491 | 3.77
< 10 |22.24|21.74(20.30(18.16(15.13(12.20| 9.57 | 7.11 | 5.12 | 3.92
~ | 20 [20.41[20.30|19.81|18.55|16.20|13.62|11.04| 8.60 | 6.46 | 5.19
?:5 30 (18.00/18.16|18.55(18.49(17.14(15.27(12.94(10.60 | 8.44 | 7.04
§ 40 |14.86(15.13|16.20|17.14|17.13|16.32|14.72|12.73|10.67 | 9.39
N 50 |11.89|12.20(13.62(15.27(16.32(16.64|15.87|14.55|12.91|11.72
% 60 |[9.27|9.57 |11.04|12.94|14.72|15.87(15.93(15.43(14.30(13.41
§ 70 |[6.87| 7.11 | 8.60 |10.60|12.73|14.55(15.43(15.86(15.28(14.93
5 80 | 491|512 | 6.46 | 8.44 [10.67|12.91|14.30(15.28|15.14|15.18
90 |3.77 392|519 | 7.04 | 9.39 |11.72|13.41|14.93|15.18|15.41

RMS error improvement (%) with random separation time
Grid size 250km pixel resolution 8km

# of events: Uncertainty of sensor #1 (%)
15000 f o | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |[14.34(14.25(13.76(12.35|10.87| 8.49 | 5.84 | 395 | 0.85 | -0.15
< 10 |14.25(14.22|13.86|12.61|11.24| 893 | 6.36 | 4.47 | 1.30 | 0.30
~ | 20 |13.76|13.86{13.88(13.09(12.08(10.14| 7.75 | 5.94 | 2.81 | 1.69
?:5 30 |12.35|12.61(13.09(13.06(12.73|11.51| 9.65 | 8.08 | 5.02 | 3.88
§ 40 110.87|11.24|12.08|12.73(13.06(12.56(11.26| 9.99 | 7.04 | 597
o 50 | 849 | 893 [10.14(11.51|12.56|13.00|12.67|11.99| 9.64 | 8.57
% 60 | 584 | 636 | 7.75 | 9.65 |11.26|12.67(12.94|12.83|11.18 10.58
§ 70 | 395 | 447 | 594 | 8.08 | 9.99 (11.99|12.83|13.24|12.31|11.54
S| 80 [ 085|130 2815027040964 [11.18[1231[12.18]11.83
90 |-0.15| 0.30 | 1.69 | 3.88 | 597 | 8.57 |10.58|11.54|11.83|11.70
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Absolute error improvement (%) with random separation time
Grid size 250km pixel resolution 8km

# of events: Uncertainty of sensor #1 (%)
15,000 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |22.95|22.32|20.81(18.32|15.66|12.67| 993 | 7.67 | 5.30 | 3.75
< 10 |22.32|21.89(20.73(18.49|15.97|13.04(10.30| 8.04 | 5.62 | 4.02
~ | 20 [20.81]20.73]20.38(18.97(16.99|14.39|11.76| 9.45 | 6.99 | 5.24
?:5 30 |18.32|18.49|18.97(18.77|17.82|16.04|13.79(11.59| 9.10 | 7.26
§ 40 |15.66(15.97(16.99|17.82|1797(17.26(15.60|13.76|11.39( 9.56
N 50 |12.67)13.04|14.39(16.04|17.26|17.68(17.08|15.89|13.99|12.33
% 60 | 993 | 10.3 {11.76(13.79(15.60|17.08|17.29|16.82 | 15.61 | 14.35
§ 70 | 7.67 | 8.04 | 9.45 |11.59(13.7615.89|16.82(16.93|16.52| 15.62
S | 80 [ 530562699910 ]|1139[13.99[15.61[16.52]16.77] 16.44
90 | 3.75 | 4.02 | 5.24 | 7.26 | 9.56 [12.33|14.35(15.62(16.44| 16.67

RMS error improvement (%) with random separation time

Grid size 500km pixel resolution 24km

# of events: Uncertainty of sensor #1 (%)
3,500 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |16.47(16.28(15.57| 14.2 |12.34|10.22| 7.59 | 6.17 | 3.86 | 3.01
< 10 |16.28(16.17| 15.6 |14.36|12.59|10.52| 7.87 | 6.52 | 4.23 | 3.36
~ | 20 [15.57[15.60(15.51|14.72|13.33|11.56| 9.15 | 7.80 | 5.51 | 4.54
?:5 30 |14.20|14.36(14.72|14.47|13.50|12.10| 995 | 8.66 | 6.59 | 5.60
§ 40 |12.34(12.59|13.33|13.50(13.01({12.04(10.35| 9.32 | 7.54 | 6.36
o 50 |10.22(10.52(11.56|12.10|12.04|11.46|10.35| 9.60 | 8.12 | 7.00
% 60 | 7.59 | 7.87 | 9.15 | 9.95 [10.35(10.35|10.15| 9.80 | 8.88 | 8.02
§ 70 | 6.17 | 652 | 7.80 | 8.66 | 9.32 | 9.60 | 9.80 | 9.60 | 9.25 | 8.43
S| 80 [ 386|423 (551|659 754812888 925|947 891
90 | 3.01 | 3.36 | 454 | 560 | 636 | 7.00 | 8.02 | 843 | 891 | 8.14
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Absolute error improvement (%) with random separation time
Grid size 500km pixel resolution 24km

# of events: Uncertainty of sensor #1 (%)
3,500 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |24.81(23.94(22.16(19.74|16.74|14.33|11.67(10.59| 8.70 | 7.81
< 10 |23.94(23.20(21.69(19.47|16.59|14.21|11.53(10.43| 8.55 | 7.63
~ | 20 [22.16(21.69(20.95(19.41|16.97|14.74|12.20[10.99| 9.01 | 8.01
?:5 30 |19.74|19.47(19.41(18.62(16.89|15.09|12.78|11.44| 9.58 | 8.43
§ 40 |16.74116.59|16.97|16.89|16.11|14.86(13.09(12.14|10.51| 9.16
N 50 |14.33(14.21(14.74(15.09|14.86|13.86|12.76(11.89(10.59| 9.21
% 60 |11.67|11.53(12.20(12.78(13.09|12.76|12.24|11.58(10.81| 9.61
§ 70 110.59|10.43(10.99(11.44(12.14|11.89|11.58(11.00(10.66| 9.39
S | 80 [ 870855901 [958 [1051]1059]/1081[10.66[10.74] 9.77
90 | 7.81 | 7.63 | 8.01 | 843 | 9.16 | 9.21 | 9.61 | 9.39 | 9.77 | 8.87

RMS error improvement (%) with random separation time

Grid size 500km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
3,500 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |16.00(15.57(13.56|10.28| 6.67 | 2.86 | 0.28 |[-1.86|-3.39 | -4.72
< 10 |15.57(15.37(13.86|10.89| 7.42 | 3.60 | 0.96 |-1.26 |-2.88 | -4.29
~ | 20 |13.56[13.86|13.62|11.98| 9.26 | 5.74 | 3.19 | 0.84 |-0.93 | -2.51
?:5 30 |10.28(10.89|11.98|12.01| 10.7 | 813 | 5.83 | 3.51 | 1.59 | -0.16
§ 40 | 6.67 | 742 | 9.26 | 10.7 {10.78| 9.56 | 790 | 591 | 4.08 | 2.25
o 50 | 286 | 3.60 | 5.74 | 8.13 | 9.56 |10.08| 9.58 | 8.44 | 7.14 | 5.77
% 60 | 0.28 | 096 | 3.19 | 583 [ 790 | 9.58 [ 9.81 | 9.31 | 834 | 7.49
§ 70 |-1.86(-1.26| 0.84 | 3.51 | 591 | 844 [ 931 | 941 | 9.19 | 8.81
S | 80 [-339]-288[-093] 159 | 408 | 7.14 | 834 [ 9.19 [ 9.10 | 9.25
90 |-4.72|-429|-251|-0.16 | 2.25 | 5.77 | 7.49 | 881 | 9.25 [ 10.00
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Absolute error improvement (%) with random separation time
Grid size 500km pixel resolution 12km

# of events: Uncertainty of sensor #1 (%)
3,500 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |24.37|22.84|19.03|14.46|10.19| 6.72 | 3.88 | 2.15 | 0.70 | -0.33
< 10 |22.84|22.04|19.16|14.95|10.79| 7.27 | 436 | 251 | 0.96 | -0.14
~ | 20 |19.03|19.16|18.43|15.92|12.48| 9.13 | 6.24 | 4.22 | 2.49 | 1.17
?:5 30 |14.46|14.95|15.92|15.56(13.80|11.20| 8.50 | 6.47 | 4.48 | 2.98
§ 40 |10.19(10.79(12.48(13.80(13.76(12.46|10.54| 8.83 | 6.89 | 5.28
N 50 | 6.72 | 7.27 | 9.13 |11.20|12.46|12.48|11.69|10.57| 9.04 | 7.56
% 60 | 3.88 | 4.36 | 6.24 | 8.50 [10.54|11.69(11.78|11.38|10.22| 9.26
§ 70 | 215 | 251 | 422 | 6.47 | 883 |10.57(11.38(11.52(11.11(10.48

=]
> | 80 | 0.70 | 0.96 | 2.49 | 448 | 6.89 | 9.04 |10.22|11.11(11.00|10.93
90 |-0.33(-0.14 | 1.17 | 298 | 5.28 | 7.56 | 9.26 [10.48(10.93|11.14
RMS error improvement (%) with random separation time

Grid size 500km pixel resolution 8km

# of events: Uncertainty of sensor #1 (%)
3,500 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
0 |1299] 12.7 |11.44| 9.07 | 6.47 | 3.71 | 1.15 | -0.51 | -2.05 | -3.64
< 10 |12.70(12.55(11.57| 945 | 6.96 | 4.23 | 1.67 |-0.04 | -1.63 | -3.27
~ | 20 [11.44|11.57|11.43|10.20| 8.26 | 5.78 | 3.33 | 1.50 | -0.20 | -1.94
?:5 30 | 9.07 | 9.45 |10.20(10.19( 9.21 | 7.45 | 543 | 3.59 | 1.91 | 0.20
§ 40 | 6.47 | 696 | 826 | 9.21 | 9.27 | 833 | 695 | 541 | 3.85 | 2.15
o 50 | 3.71 | 423 | 578|745 (833|830 | 780 | 6.61 | 546 | 4.05
% 60 | 1.15 | 1.67 | 3.33 | 543 | 695 | 7.80 | 794 | 7.33 | 6.85 | 5.79
§ 70 |-0.51|-0.04| 1.50 [ 3.59 [ 541 | 6.61 | 7.33 | 7.25 | 7.08 | 6.43
S | 80 [-2.05|-1.63]-020] 1.91 | 385 | 5.46 | 6.85 | 7.08 | 7.67 | 7.55
90 |-3.64|-3.27|-194| 0.20 | 2.15 | 405 | 5.79 | 6.43 | 7.55 | 7.75
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Absolute error improvement (%) with random separation time
Grid size 500km pixel resolution 8km

# of events: Uncertainty of sensor #1 (%)

3,500 0 10 20 30 40 50 60 70 80 90

0 |2297|21.72]118.61(14.50(10.80| 7.48 | 4.84 | 2.73 | 1.28 | -0.06

10 |21.72(2097|18.57|14.81(11.21| 7.89 | 5.20 | 3.03 | 1.52 | 0.12

20 |18.61|18.57|17.95(15.60|12.66| 9.52 | 6.84 | 452 | 2.84 | 1.31

30 |14.50]14.81|15.60(15.10|13.49|11.06| 8.73 | 6.45 | 4.68 | 3.08

40 | 10.8 |11.21(12.66|13.49113.35(11.98(10.36| 8.41 | 6.78 | 5.06

50 | 748 | 7.89 | 9.52 |11.06(11.98|11.60|10.88| 9.47 | 8.21 | 6.71

60 | 484 | 520 | 6.84 | 8.73 |10.36/10.88(10.89|10.19| 9.42 | 8.20

70 | 2.73 | 3.03 | 452 | 6.45 | 8.41 | 9.47 [10.19(10.22]|10.04 | 9.33

Uncertainty of sensor #2 (%)

80 | 1.28 | 1.52 | 2.84 | 468 | 6.78 | 8.21 | 9.42 |10.04(10.32|10.11

90 |-0.06|0.12 { 1.31 | 3.08 | 5.06 | 6.71 | 8.20 | 9.33 [10.11|10.21

90




