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FOREWORD

Since November 1954 the Bureau of Public Roads, U. S.
Department of Commerce, has sponsored a research project
in cooperation with Colorado State University to study the back-
water effects of bridge piers and abutments., This has been
conducted in the Hydraulics Laboratory of the Civil Engineering
Department, through the State University Research Foundation.

The research is intended to provide a sound method of
designing bridge waterways in accordance with the general cri-
terion that ". . . the waterway provided shall be sufficient
to insure the discharge of flood waters without undue backwater
head . . . " as quoted from Article 3.1.1 of the Standard Speci-
fications for Highway Bridges, American Association of State
Highway Officials.

This report presents a study of backwater effects and
related problems for clear-water flowing through a local con-
striction, The constriction is caused by bridge abutments with
or without piers in an open channel with a rigid boundary.

Both the ‘experimental and analytical work reported
herein, except Chapter VI, was under the direct supervision
of H. K. Liu, Assistant Professor at Colorado State University.
Chapter VI was prepared by J. N. Bradley, hydraulic engineer
~ of the Bureau of Public Roads. E. O. Plate, former graduate
student of the University, participated in the experimental work

as well as the analysis of data presented in Chapter V.
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ABSTRACT

\ The purpose of the research reported herein is to deter-
mine the maximum height of backwater caused by a given local
constriction in an otherwise prismatic channel. The experiments
were conducted in a flume 73,5 ft long and 2 ft deep. For runs
prior to run no. 121, the flume width was 4 ft and for the remain-
ing experiments, the flume width was maintained at 7.9 ft. The
slope of the flume could be adjusted by raising or lowering the
jacks underneath the flume. The flow system was recirculatory.

Two kinds of artificial bed roughness were used in the
flume. Manning's n was approximately 0.024 for the bar rough-
ness, and 0.045 for the baffle roughness. The constriction was
formed by models of either bridge abutments or piers, or a combi-
nation of both. Types of abutments used extensively in the experi-
ments were 45 degree wing-wall, 1:1% spill-through, and vertical-
board. Tests on piers were not extensive. The various crossing
conditions tested were:

[a] simple normal crossing

[b] abnormal stage-discharge condition

[c] dual-bridges contraction

[d] bridge‘girders partially submerged

[e] skew crossing

[f] eccentric crossing

[g] piers with and without abutments

[h] flood-plain models

A uniform flow was established before the models were

placed and the normal depth and the Froude number of this normal

xxiii



flow condition were used as reference variables. Also the opening
ratio, denoting the ratio of the width of the opening to the channel
width has been used in the analysis.

In Chapter III, the basic principles of open channel flow
through a constriction is discussed extensively. The maximum
backwater is defined as the difference between the maximum
depth of the backwater and the normal depth of flow. The maxi-
mum backwater caused by local constriction is classified as [a]
contraction backwater and [b] resistance backwater. An equation
to be used as a criterion for separating the resistance backwater
from the contraction backwater has been obtained from theoreti-
cal considerations.

The application of hydrodynamics to the problem of an
open channel constriction is discussed at length in this chapter.
Dimensional analysis is applied to the problem in order to study
the effect of many variables on the maximum backwater . It was
found that both the channel slope and the channel roughness can
be eliminated as variables if the normal depth and the Froude
number of the normal flow are used.

Analysis of data is made both in Chapter V and Chapter
VI. In Chapter V, the method of analysis is analytical with a
view to understanding the effect of various 4primary variables
on the maximum backwater. In the case of a simple normal
crossing, an empirical formula for computing the maximum
backwater caused by the vertical board constriction has been
established. Furthermore, a set of graphs of maximum back-
water has been established for other types of abutment models.
A method of computing qualitatively the various energy losses

of the flow in the constriction zone has been found. In analyzing

xXxiv



the data of other crossing conditions, a method of so-called
effective opening ratio M#* has been applied with considerable
success.

In Chapter VI the method of analysis is less accurate
but very easy for highway engineers to use. The general princi-
ple of this method is the conservation of energy. A number of
graphs based upon laboratory data have been developed for deter-
mining the maximum backwater and the differential level of

water surface across the embankment.

XXV



I. INTRODUCTION

In general, bridge crossings interfere with the natural
flow of a stream. Where a bridge spans an entire valley, the
bridge piers offer the only obstruction of the flow, which is
minor. In the usual case, however, roadway embankments
are extended out onto the flood plain, for the purpose of reduc-
ing the cost of the bridge structure. In so doing, the highway
crossing introduces a sudden constriction in the stream at the
bridge during flood. This constriction causes a rise in stage
upstream and an increase in velocity through the bridge. One
of the problems of the designer is to provide the minimum water-
way area, consistent with structural stability and optimum long-
range cost to the highway user.

The decision of the designer must be based not only on
hydraulic considerations but also on hydrologic and economic
factors. From a hydrologic standpoint, it is necessary to choose
a design ﬂood for the structure and make provision for passing
greater floods without severe damage tokthe structure proper.
Economic factors include initial cost, operating costs, mainten-
ance, possible flood damage, interruption to traffic and others.
The hydrologic and economic considerations are beyond the
scope of this research.

Highway engineers have long recognized that constricting
the flow in a river results in a rise in stage upstream. It has
been observed that extreme amounts of such backwater were
frequently associated with severe scour around abutments and

piers, sometimes resulting in destruction of part or all of the



bridge. On occasion the difference in water surface elevation
on the flood plain from one side of the approach roadway to

the other side has been noted by upsiream property owners,
some of whom have successfully brought suit against the res-
ponsible highway department for property damage caused by the
increased stage. These occurrences have served to make highway
departments more conscious of the need for predetermining how
proposed bridges will affect the flow in rivers. As the subject
was explored, it became evident that existing methods of com-
puting backwater were not reliable, or were too cumbersome
to be used readily by highway engineers.

In recognition of these facts the Bureau of Public Roads
arranged a cooperative research project with Colorado State
University in November 1954, This report covers the experi-
mental investigation of backwater caused by various model
bridges placed in a sloping flume having a rigid bed, analysis
of the data, development of a working method of design and
verification of that method by comparison with measurements
of flood flow through actual bridges. The model tests were
necessarily idealized by using onily a straight channel of uni-
form cross section. The true effect of the constiriction caused
by the bridge was obtained by esitablishing steady uniform flow
in the flume and then recording the changes in flow produced by
placing the constriction while holding the discharge constant.
The flume was of sufficient length to permit normal flow to be
reestablished downstream,

The very real problem of scour was deliberately elimi-
nated by use of the rigid boundary. As experience has proven,
the analysis of the mechanics of flow was difficult enough without

involving a moving bed. Research is now continuing with a similar
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flume having a sand bed in which an attempt will be made to
discover how scour within the bridge waterway affects back-
water.

The research has produced a direct and relatively
simple method of estimating the backwater caused by bridges
with usual abutment and pier types. The method has been
verified by field measurements on bridges up to about 200 ft
in length. Application of the model results to waterway openings
of great width relative to depth has not been proven, nor is it
known how the results might apply to multiple openings.

An eminently practical result is the demonstration that
the length, and hence the cost, of a bridge at a given site varies
within wide limits depending on the amount of backwater consi-
dered tolerable for a given flood. The basis of an engineering
economic study of the total cost of owning and operating the
bridge is thus provided when floods of different recurrence
intervals are considered.

Another fact, confirming results obtained by other
investigators, is the proof that the total drop in water surface
across the embankment was invariably greater than the actual
increase in upstream stage above the stage which would exist
if the bridge were not constricting the flow. It was found that
the water surface at the downstream side of the bridge was
below the normal elevation of the unconstricted flow but would
gradually approach the normal surface profile in the downstream
direction as the flow expanded to the full width of the channel.
This fact could be important in court cases where a litigant
might construe the drop in water surface across the embank-

ment as being equal to the amount by which the bridge had



raised the upsiream stage, which is not true. The drop in

water surface across embankments also has a bearing on the
stability of embankments subject to overflow since the height

of free fall off the downstream shoulder affects the possible
erosion as the embankment begins to be overtopped. This also
affects length of bridge necessary to keep the head across the
embankment within reasonable limits at the roadway grade eleva-
tion for which f,he roadway is expected to come into operation as
an emergency spillway to discharge flood waters in excess of

the design flood for unhindered traffic,

The laboratory testing was performed in the Hydraulics
Laboratory of the State University by the personnel of the Civil
Engineering department. The variables to be studied and the
outline of the testing program were determined jointly by the
labbratory staff and the personnel of the Bureau of Public Roads
in order io meet the urgent need of designing bridge waterways
for the Interstate highway system. Analyses of the data were
made independently by the laboratory staff and the staff of the
Bureau of Public Roads. The approach to the analysis made by
the laboratory staff is based upon the present knowledge of fluid
mechanics as applied to the problem of backwater caused by
channel constrictions. Formulas and graphs relative to this
approach may be extended to a certain degree to the prototype
problem. They will yield accurate information for the flow
conditions similar to the ones under which they were developed.
In the analysis developed by the sta?f of the Bureau of Public
Roads it has been necessary, in sorﬂe cases, to sacrifice accur-
acy for the sake of ease of application. Since each of these two

approaches has its own merits, both are presented in this report.



The following are the symbols most commonly used in

this report. They have been defined where they first appear

within the text. For further clarification please refer to the

definition sketches, Figs. 1-1 to 1-12.

NOTATIONS AND DEFINITIONS

Symbol Unit Definition
A, ft? Area of flow at section .i
A ft? Normal area at bridge site before
n . s
the bridge is in place
A . ft2 Opening area at section i with water
ni
at normal depth
A f1? Projected area of piers normal to
p flow, between normal water surface
and stream bed
A ft? Area of a sub-section & of a cross-
o section of the flow
ft Width of channel
ft Width of opening Q
ft Critical openin idth = \ g3
Cc P gv Z?an
b ft Bottom width for spill-through abut-
m
ments [models]
b! ft Minimum width of jet = b - CC
b* ft Equivalent b for the method of
effective M
CDA - D'Aubuisson's pier coefficient
_ N .
CNA Nagler's pier coefficient
CRE - Rehbock's pier coefficient
Cc ~ Coefficient of contraction
CD - Drag coefficient for flow around

cylinders
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Symbol Unit Definition

C d - ‘Discharge coefficient for submerged
bridge girders
CK - Kindsvater and Carter's discharge
coefficient
Cm - Coefficient for momentum energy
loss
C - Coefficient for abnormal stage-discharge
P analysis
c! - Coefficient for abnormal stage-discharge
P analysis
cn - Coefficient for abnormal stage-discharge
P analysis
Cs - Coefficient for double submerged bridge
girders analysis
C‘S : - Coefficient for double submerged bridge
girders analysis
CST - Coefficient for spill-through abutments
CWW - Coefficient for wing-wall abutments
D ft Pier diameter
Eb ft Energy loss caused by contractioh
Ee ft Excess friction loss
Eeis ft Friction head loss between sections i
J and j
Ei~' ft Total energy loss between sections i
] and j
Em ‘ ft Energy loss due to momentum loss of
jet
ni-; ft Normal head loss between sections i
J and j
‘En ft Normal head loss
Er ft Residual loss produced by boundary
resistance
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Symbol Unit Definition

e - Eccentricity defined as 1 - [length of
short abutment/length of long abut-
x(n;nts] or 1 - [QL/QR] where QL

R

Fi - Froude number at section i

FD 1b Total drag acting on a cylinder

Fn - Ijrox{;ie number for unobstiructed flow

~/Bhy,

Fi-j 1b Bpunda;y fricjcion force between sec-
tions i and j

f - Darcy-Weisbach friction factor

fi - Denotes function

G - Function of M

g ft/sec?  Acceleration of gravity

H ft Specific head

Hi ft Specific head at section i

Hn ft Normal specific head

h ft Flow depth

h A ft Depth at model entrance before model
is put in for effect of abnormal stage-
discharge condition

hB ft Depth in a channel of width B

hb ft Depth in a channel of width b

h, ft Critical depth = A/Q%/gw*

hf ft Friction head loss

hi ft Depth at section i

hl ft Depth at section 1

h, ft Depth at section IV

hn ft Normal depth



Symbol Unit Definition

hUL ft Stagnation depth upstream left

hUR ft Stagnation depth upstream right

hu ft Average stagnation depth upstream

hDL ft Stagnation depth downstream left

hDR ft Stagnation depth downstream right

hD ft Average stagnation depth downstream

Ahs ft Differential level across roadway
embankment [z}.hS = Ah in Chapter VI]

Ah ft hy*+hy* + SolL,; -5 Difference in water
surface elevation between section I and
section III

h * ft Maximum backwater for normal

1 .

crossing [above normal depth]

h * ft Maximum backwater for dual cross-

d .

ing cases [above normal depth]

ha* ft Vertical distance from water surface
on downstream side of embankment

Ahy* ft Additional backwater caused by piers
at section I

hs* ft Backwater at section I produced by
partial submergence of bridge super-
structure

J Ap/ A, Ratio of area obstructed by piers to

gross water area based on normal
water surface at section II

K* - k + Ak + Ake + Ak Total back-
water cgefﬁcient '

Kb - Backwater coefficient [base curve]

AK - Incremental backwater coefficient
for eccentricity



Symbol Unit

Definition

AK -
p

A
'

13/ sec

13/ sec

3/ sec

e

’Ectr ’
and K

ft
ft
ft
ft

| N

i-]

Incremental backwater coefficient
for piers

Incremental backwater coefficient
for skew crossing

Backwater coefficient for abnormal
stage-discharge condition [base
curve]

Backwater coefficient for dual bridges
crossing [base curve]

Conveyance of a sub-section of a
cross-section of the flow

Total conveyance at section I

Conveyance of that portion of the
natural flood plain obstructed by the
roadway embankment [subscript refers
to right, center or left side, facing
downstream]

Channel roughness elevation

Length of throat

‘Distance between dual bridges

Distance between sections i and j

Distance between section I and section
II [Chapter V]

Distance from water surface on up-
stream side of roadway embankment
to point of maximum backwater [Chap-
ter VI]

Model height

Opening ratio bh,/Bh, = b/B or
Qctr/Q = Qctr/QR + Qctr + QL

Critical opening ratio

Effective M value for method of
effective M



Symbol Unit " Definition

AM - [M - M*]

M - M based on jet width = C; b/B

m - Contraction ratio [1 - M]

N - Number of piers

n £11/6 Manning's roughness coefficient

P 1b Total boundary pressure at section II

P, b/ £t? Local pressure at section i

Ap 1b/ ft2 Pressure difference

Q cfs Total discharge

QB = Q cfs Total discharge over channel width B

Qb s Qc ir cfs Discharge over channel width b

QR s QL cfs Partial discharge of that portion of
the flood plain obstructed by the road-
way embankments [subscript refers
to right or left side, facing downstream]

ch cfs Discharge of a sub-section of a cross-
section of the flow

q cfs/ft Unit discharge

Ynax cfs/ft Maximum unit discharge = Q/ b,

R ft Hydraulic radius

Rb ft Hydraulic radius of bed

'Re - Reynolds number Vh/w

Ri ft Hydraulic radius of a sub-section of
flood plain or main channel

R ft Hydraulic radius of a sub-section of

o )

cross-section of the flow

S - ‘Energy gradient

Sf - Friction slope

So - Flume slope
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Symbol Unit Definition

Soliy-4 ft Fall in channel between sections I
and IV

ST 1:x - Abbreviation of spill-through model
with side slope 1:A

ST - Standard spill-through model 1:1%

s - Pier correction factor for method
of effective M

T - Temperature

t! - Ratio of abnormal to normal depth
of flow, previous to constriction in
place

u ft/sec Local velocity along x direction

v ft/ sec Local velocity along y direction

VW - Abbreviation for vertical-wall model

VB - Abbreviation for vertical-board model

v ft/ sec Normal velocity = Q/hnB

v, ft/ sec Average velocity at section i

Vi ft/ sec Hypothetical velocity Q/Ani at section i

Vj ft/ sec Average jet velocity

WWwW - Abbreviation for standard wing-wall
abutment [model]45°

WW¢ - Abbreviation for wing-wall model
with angle of throat inlet ¢°

W ft Local channel width

X ft Variable distance from the upstream
face of the consiriction

y ft Variable

Z ft Distance from channel bed to bottom
of bridge deck

Azi-j ft Difference in bed elevation between

sections i and j
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Symbol Unit Definition
z, ft Distance of center of gravity of normal
area from the water surface
Bi - Correction factor for non-hydrostatic
pressure distribution at section i
B! - Correction factor for velocity head
in Nagler's formula
y 1b/ ft3 Specific weight of fluid
50 - Rehbock's pier shape factor
A
Ae Af *h ] Incremental differential level ratio
€ hy* + hy*’e : o
for eccentricity
Le - Incremental differential level ratio
P for piers
Aes - Incremental differential level ratio
for skew
€A - Differential level ratio abnormal flow
condition [base curve]
*
€ . h Differential level ratio normal flow
b hy* + hy* s
condition [base curve]
€* - €+ Ae + Le + Aes - Total differen-
tial level rati
n - Backwater multiplication factor for
dual bridges crossing ‘
6’ - Correction coefficient in Nagler's
formula = 0.3
Zqv? . ; )
aei WMQV Energy correction factor for non-uniform
i distribution of velocity at section i
z
@ 5%% Momentum correction factor for non-
uniform distribution of velocity at section
i
b sec/ft?  Dynamic viscosity
ft?/ sec Kinematic viscosity
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Symbol Unit Definition

p slugs/ ft? Unit mass density of fluid

o} N A subscript denoting a sub-section
of a cross-section of flow

T 1b/ ft? Average boundary shear stress

T 1b/ ft? Normal boundary shear stress

¢ - Angle of skew

X)) /e Correlation coefficient between
constriction and resistance back-
water

£ - Correlation coefficient between
constriction and resistance back-
water

W o= ¢+ i¥ - Complex potential function

Z x+ iy - Complex number

-13-
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II. REVIEW OF LITERATURE

Late in the eighteenth century, hydraulic engineers began
to study the subject of flow through contracted sections. Some
of the investigators, such as Boussinesq [2] and Jaeger [13],
used mathematical analysis while others, such as Rehbock, [24]
Nagler [23], Lane [19], and Yarnell [36, 37], employed the
empirical approach. In recent years the use of dimensional
analysis in hydraulic research has modified data evaluation as
well as experimental procedure. However, experimentation on
open channel constrictions using this new approach has been
limited. The most recent laboratory investigations using the
approach of dimensional analysis include those by Kindsvater
and Carter [16] and by Tracy and Carter [32].

Yarnell [36, 37] made a very extensive literature review
on the study of backwater caused by pier contraction in 1934.

He also made a very complete bibliography up to that time. Con-
tinuing Yarnell's work, Garrett [4] compiled a bibliography up
to 1956.

As pointed out by Rehbock [24] a general theoretical
method to determine the backwater due to piers cannot be found
readily because of mathematical difficulty, since the energy loss
so produced is 1argely through the action of resistance which is
so complex that no exact mathematical interpretation is feasible.
In this chapter only those publications which are most useful to
the current research are reviewed.

According to the D'Aubuisson theory [36], the velocity

in the contraction zone is
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V, = CDA ~/2g[H, - h,] = CDA ~/ 2g[Vi*/2g + h; - h,]

or
= @ 1 L _
hl hZ zg [CDAzbzhzz BthZI {2' 1]
where C is D'Aubisson's pier coefficient,

DA
H, is the specific head at Section I in ft,

hy is the depth at Section I in ft,
h, is the depth at Section II in ft,

vV, is the velocity at Section I in ft,

g is the acceleration of gravity in ft/ sec?,
Q is the total discharge in cfs,
b is the width of constriction in ft,

is the width of channel in ft,
hy is the depth at Section IV in ft,
hn is the normal depth.
The true maximum backwater should be defined h;* = h, - hn
= h; - hy instead of h; - h, . For practical purposes, however,

hn can be substituted for h, , which results in

_ Q
DA -/ 2gb*h,f[h* + V] 2g]

C

or

- 1 v V2
CDAMz 2g 2g

hy* [2-2]
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where M is the opening-channel width ratio or opening ratio,
Vn is the normal velocity in ft/sec,
hy* is the maximum backwater in ft.

Nagler's [23] formula is

v 2
Q = Cya b~/2g[h, -6 —%L] ~/h, -h + B'V,*/2g [2-3]

where ' is a function of contraction ratio

C is the Nagler's pier coefficient,
NA he - h
@' is a correction factor = B2

Vn®l 2g

Nagler assumed that 68' = 0.3 .

E. W. Lane [19] also conducted a study on the problem
of open channel flow through constrictions. He introduced sharp-
edged vertical models in his experiments which was a sound
first step toward the final solution of obtaining formulas for back-
water due to constrictions.

Lane is the first investigator who studied the flow con-
traction caused by the contraction of the channel itself. Most
of the investigators dealt with contractions created by placing
piers in the flow until Kindsvater, Carter and Tracy [16 and 17]
made their investigation. His analysis was mainly based upon
formulas by D'Aubuisson and Weisbach. He correlated the dis-
charges and difference of surface elevétion upstream and down-
stream from the constriction by introducing empirical discharge
coefficients. There was no definite’unique correlation given.

He did indicate that there may exist a correlation between the
backwater ratio and the coefficient of discharge.

Rehbock [24] conducted extensive research to determine

the backwater height caused by piers. The models of the piers
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had a thickness varying from 0.147 in. to 4.72 in. with most of
them being 1.18 in. The length of most piers was about 7.87 in.
The flume width was 15.75 in. The discharge was not mentioned
in the report. Rehbock divided the channel flow passing through
a constriction into three classes:

Class I when

< - 0.13 [2-4]
0.97 + 21—

Class II when

2
L Fz-0.13<m <0.05+ [0.9 - 2.5-13‘%]2 [2-5]
0.97 + 2152

Class 111 when
F. 2.
m> 0.05+[0.9 -2,550-P [2-6]

where Fn is the Froude number of the unobstructed flow

m is the total width of the piers divided by the channel
width. Such a classification is shown in Fig. 2-1 .

Rehbock reasoned that since the law of resistance loss
due to the presence of a constriction is still mathematically
unknown, an exact theoretical solution to the problem of cdmpu—
ting backwater cannot be obtained. Therefore, model studies
to develop empirical formulas must be used. In his study, the
following independent variables were used: discharge Q , width

of channel B , depth of unobstructed flow h number of piers

n 2
N , thickness of the piers D, form of the piers and roughness

of the piers. Rehbock assumed that the maximum backwater
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hy* is proportional to the velocity head of the unobstructed flow

Va'!

hl* = CRE _Zg » [2-7]

where CRE is Rehbock's pier coefficient.

He found that the roughness of the piers is not an important fac-
tor and also that the roughness and the slope of the channel have
no direct effect on the maximum backwater since they are already
taken into account in the determination of the normal depth -hn
for the unobstructed channel. He proposed the following formula

to compute C for class I flow

RE

Cop =[5, - m[yao -17] [o,4m+ m?+ 9m*] [1 + F 7] [2-7a]

therefore
2 4 21V
hy¥ = [60 —m[éo -1]][0.4m+ m +9m][1+Fn]—2—g— [2-8]

where

_ INDhy _ =ND

Bh, ~ B = contraction ratio [2-9]
60 is called pier shape factor and depends upon the pier geome-
*
try. Eq 2-8 indicates that the backwater ratio LS L propor-

h
2 n
tional to [1+ FHZ]%IgL , a function of the Froude number. For

a given contraction ratio pier form effects the backwater in two
ways:
a. It can affect the point of separation which in

turn effects energy dissipation, and
b. It can change the effective opening area and

therefore, affects the maximum backwater.
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Such effects owing to the pier form depend, furthermore,
on the contraction ratio. The empirical term [60 - m[«So - 1]]
is thus explained. The contraction ratio has a major effect upon
the backwater indicated by the factor [0.4m + m?+ 9m?].

Rehbock found that the pier form has a very important
effect upon the backwater as indicated by the factor 60 - mf 60 -1].
For instance, with a semi-circular nose the backwater reduces
to about 37% of that of a rectangular pier. With a given nose the
smallest backwater height was observed when the total length of
pier amounts to from three to five times its width. In summary,
Rehbock found that the maximum backwater caused by pier ob-
struction depends on the contraction ratio m , the Froude num-
ber of the unobstructed flow and the pier geometry.

D. L. Yarnell [36, 37] conducted about 2600 experiments
to verify different backwater formulas existing at the time, such
as those of D'Aubuisson, Weisbach, Nagler and Rehbock. He
also made an intensive literature review [36]. His channel was
10" x 10" x 312'. Discharge varied from 10 to 160 cfs. He
determined experimentally the coefficients used in different
formulas for various kinds of pier shape, dimension, and orien-
tation. The size of pier was 14 in. in width and several feet in
length. His classification of flow was according to whether the
flow condition in the constricted section was at critical stage.
Comparison of such classification with Rehbock's is shown in
Fig. 2-1. Yarnell concluded that:

a. Weisbach's formula is theoretically unsound,

b. As long as the velocities are slow enough to keep

within Rehbock's Class I flow, anyone of the three
formulas will give results close enough for prac-

tical purposes, if the proper coefficient is used.
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This coefficient varies with channel contraction
as well as the pier shape,

c. The height of the backwater due to bridge piers
varies directly as the depth of unobstructed
channel,

d. For the lower velocities, the more efficient
shapes are lens-shaped nose and tail or a simi-
lar shape,

e. The optimum ratio of pier length to width proba-
bly varies with the velocity and is generally
between 4 and 7,

f. Placing the piers at an angle with the current has
an insignificant effect on the amount of backwater
if the angle is less than 10° ,

g. Placing the piers at an angle of 20° or more with
the current materially increases the amount of
backwater, the increase depending upon the quantity
of flow, the depth, and the channel contractions.

A summary of Yarnell's work is given by Woodward and Posey
[35].

Kindsvater and Carter [16] and with Tracy [17], on the
basis of laboratory investigation, proposed a method of estimat-
ing the discharge through a contracted section, which is caused
by the installation of abutments [see Fig. 1 - 1]. A combination
of an energy equation and continuity equation results in the dis-

charge equation

Q = C bhy +/2g [Ah +or |V, 2g - Ef;-5] [2-10]
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where Q@ = discharge in cfs;
C,. = Kindsvater's discharge coefficient;
b = Width of the contracted opening;
hy = flow depth at section III;

g = gravitational acceleration;

>
g
n

difference in elevation of the water surface between

sections I and III

<

[ vt
N
"

weighted average velocity head in feet at section I,
log where V,; is the average velocity at section I, and
a; is a coefficient which takes into account the

“variation in velocity in sectionI.
Eg -9 = The head loss in feet due to friction between sec-
tions I and III.
By the aid of dimensional analysis, the discharge coeffi-

cient is found to be a function of the following variables

- hy L -
CK-CK[F,m, 5B e, ¢, abutment type] [2-11]
where
F - Q
bh;~/ ghs

which is a Froude number
m = 1 - b/B , which is called contraction ratio [2-12]
L. = length equivalent to the contracted opening in the
flow direction
e = eccentricity of the opening, see Fig. 1-8.
¢ = skew angle of the abutment with respect to the flow,

see Fig. 1-7,
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In case of an irregular, natural channel, the contraction ratio

m can be evaluated from

m =1 —%b— [2-13]
=B
in which _Igb is the conveyance of that part of the approach
channel which occupies an area of width b , and K 1is the

B
conveyance of the total section. Conveyance is defined in terms

of the Manning formula as
K = —-1°"§9AR2/’ [2-14]

in which A is the area, R is the hydraulic radius, and n is
the Manning's roughness factor.

By ignoring the ratio hs/b , in Eq 2-11, which was shown
by experiment to be insignificant, Kindsvater and Carter defined
a standard condition such that F = 0.5, e =1, ¢ = 0° with
the abutment type vertical-faced with square-edges. From the
experimental data for the standard condition, a family of base
curves showing the relationship between C, ., m , and L/b
was constructed [not shown in the current report]. If the dis-
charge coefficient for the standard condition is designated as
C'K , the value of C‘K should be adjusted for the effects of
F, e, ¢ and abutment type. Such an adjustment value of dis-
charge coefficient can be substituted into Eq 2-10 for computing
the discharge. A set of figures for the adjustment of C'g was
given by Kindsvater and Carter in their report [14]. |

To apply this method for computing discharge, the stages

of the flow in the vicinity of the constriction must be obtained
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from the field measurement in addition to such information as
contraction ratio and abutment geometry. This process of com-
puting the discharge is just the opposite to the one of computing
the maximum backwater. In the later case, the stages of the flow
in the vicinity of the constriction is unknown, but the discharge,
which is a design discharge for a certain flood frequency, is
always given. In Eq 2-10, if Q and b are known and if CK
can be estimated, the remainder of the terms which represent
the flow stages can be expressed as a function of the discharge
and the discharge coefficient. This is to say that a laboratory
investigation intended for determining the discharge character-
istics for an open-channel constriction can be adopted to deter-
mine the maximum backwater as well and vice versa.

By extending the previous investigation [16 and 17] on
discharge coefficients for open-channel constriction, and using
the data and certain computation procedures in that investiga-
tion, Tracy and Carter [32] proposed the following method for
computing the maximum backwater:

The maximum backwater h;* measured upstream at a
distance b can be divided by Ah which is the difference in
water surface elevation between section I and section Il for the
constricted channel, see Fig. 1-1. The ratio hy*/Ah , accord-’
ing to Tracy and Carter, has been shown by laboratory data to
be a function primarily of the percentage of channel contraction.
The influences of bed roughness and constriction geometry are
secondary. Variables characteristic of the flow, such as the
Froude number, the depth and constriction length are largely

unimportant in their effect on this ratio. Fig. 2-2 shows the
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variation of [hl*/Ah]base with the contraction ratio m and
the Manning's roughness factor n , where [hl*/Ah]base is the
ratio hy*¥/Ah for a channel having a vertical-faced constriction
with square-edged abutments. [Note by the current authors: The
word 'base' corresponds to ''standard" defined previously [16
and 17] except that for the cases of eccentricity and skew in
which the ratio h;*/Ah was not defined by Tracy and Carter.]
Letting

hy*/ Ah

K = =— ,
¢ [hlﬁ/Ah]base

where h*/Ah is for any type of abutments, it was found that
Kc varies with the contraction ratio and the ratio of existing
discharge coefficient CK to the discharge coefficient C'K for
the base condition, see Fig. 2-2. The discharge coefficient
CK is Kindsvater's discharge coefficient which was mentioned
previously.

Tracy and Carter claimed that the quantity Ah can be

computed from

_ QZ ) v 2
Ah = W al_LZg Ef1'3 . [2-15]

In application, h;*/Ah is selected from Fig. 2-2. The
ratio hy*/Ah is then adjusted for a constriction-geometry effect
by the factor Kc obtained from Fig. 2-3. The adjusted ratio
hy*/ Ah may be multiplied by Ah to yield the value of hy* .

The data used by Tracy and Carter were obtained in a

channel having a level bottom. The difficulty of using the data
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from a level channel is the lack of standards representing the
unobstructed flow conditions, because in a certain channel the
velocity, the depth, and the energy gradient of the unobstructed
flow vary from section to section for a given discharge(which
means that the flow is non-uniform). Such standards are in
general very essential for both theoretical and laboratory in-
vestigation.

This method cannot be used directly to estimate the
maximum backwater h;* , because the ratio h;*/Ah contains
Ah which is an independent variable itself. This method con-
stitutes a process of trial and error which is not convenient to
use in computing the backwater.

Izzard [12] in discussing the work of Tracy and Carter

pointed out:

"the following distinction between the objectives of
the hydrologic engineer and those of the highway
designer is important: The former is expected to
achieve a fairly high standard of accuracy in his
estimate of the flood discharge as computed from
backwater, and that estimateis the end result.

The highway engineer, however, reverses the com-
putation and wants to know approximately how much
backwater can be expected for floods of various fre-
quences whose peak discharge can probably be
estimated ho more accurately than + 20% [unless

a gaging station having a long record happens to
exist nearby]. Obviously, then, the highway engi-
neer does not have to work to the close tolerances
expected of the engineer who is gaging streams."

Izzard [11] proposed the following formula for computing

backwater:

v 2
hy - h, = hy* = Ky ._Jl?x-zg [2-16]
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where V,, = is a hypothetical velocity and K, _ is called

Q

bh, b

the backwater coefficient which must be obtained from experi-
ments.

More discussion of this approach will be given in Chap-

ter viI of the current report.

By using Carter and Tracy's data, Izzard [12] developed
a simple graph correlating the maximum backwater contraction
ratio and Froude number. As pointed out by Izzard, his graphi-
cal correlation is encouraging, but not conclusive owing to
limited data. The effect of other variables such as channel
slope, channel roughness, skew crossing, eccentricity and piers
is still unknown.

From review of previous research, it is evident that
further study of backwater caused by bridge constriction is

needed for planning and designing bridges across rivers.
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III. THEORETICAL ANALYSIS

An open channel will flow at a normal depth if the discharge
is constant, and the channel, within a sufficiently long reach, has
a uniform cross-section, a uniform surface roughness, and a
uniform grade. If a constriction is installed into such a channel,
the flow pattern will become that as shown in Fig. 1-1., Along
the centerline profile, the flow can be divided into several reaches.
at section O, the flow depth is essentially unaffected by the con-
traction. From section O to section I, the flow depth increases
to a maximum. Downstream from section I the flow depth begins
to decrease through section II where the minimum bridge opening
begins, until it reaches a minimum flow area at section IIIL.

From section III, the flow depth begins to increase until it reaches
the normal depth at section IV.

As shown in Fig. 1-1b, the approaching flow separating
from the sidewalls of the channel begins to converge toward
~the contracted opening. A separation zone designated as zone
Ia is formed by the boundary and the converging stream. At
the upstream edge of the model the converging streamline separ-
ates again -- this time from the walls of the bridge opening. A
strong eddy is formed owing to separation. This eddy zone,
designated as zone Illa extends to the sidewall downstream from
the model. The streamlines that separate from the abutment
form a jet. The jet continues to converge until it reaches sec-
tion III, where the width and the depth of the jet assume a mini-
mum, [the vena-contracta]. Downstream from section III the
jet begins to diverge until it reaches the side boundaries approxi-

mately at section IV. In this reach between sections III and IV
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the jet boundaries cannot be traced distinctly owing to the lateral
mixing of the jet with the surrounding water.

Along the boundary, the flow depth begins to increase from
section 0 until it reaches a maximum at the stagnation point which
exists at the intersection of the upstream face of the abutment
and the channel wall. Along the upstream face of the abutment,
the flow depth decreases gradually from the stagnation depth to
a point near the edge of the abutment -- beyond which the depth
decreases rapidly. The minimum flow depth is usually at the
center of the eddy which is in the separation zone IIla. The eddy
is small compared to the size of zone IIla. It can be stated that
within the separation zone IIla, the depth is essentially thé same
as that at section III. From section III, the flow depth along the
boundary increases untilit reachesthe normal depthat section IV.

From this brief discussion, it is clear that an analysis
of the problem of open channel flow through a local contraction
is very complex. An engineer who must estimate the height of
the maximum backwater, which is the maximum elevation above
the normal water surface, not only needs to know how to apply an
empirical formula for backwater but he also needs to understand
the fundamental nature of the problem in order to apply the for-
mula intelligently. It is the purpose of this research to provide
such information by means of model study.

Theoretical considerations, based on the continuity equa-
tion, the momentum equation, and the energy equation, are
employed in order to derive an equation for the maximum back-
water. Dimensional analysis is used in order to evaluate the
parameters whose influence on the maximum backwater is most
important. The theory of free streamlines is used to determine

the location of the maximum backwater.
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Continuity Equation

According to the principle of conservation of mass, the
continuity equation from section 0 to section IV [Fig. 1-1] can

be written as

Q = V_Bh

n n

V _Bh [h =h , V_=V]
o o :

V,Bh,

V,bh,

]

"

|1}

Vsccbh3 [Assuming the vena contracta
is at section III]
V4Bh, [hy = hy, V4 = Vp] [3-1]

where:

is the total discharge

is the normal velocity

S N>}
=

is the normal depth
is the width of the channel

s

is the width of the opening
is the velocity at section i

is the depth of flow at section i = I, II, III or IV

o< oo
[

OP“

is the coefficient of contraction.

(¢}

Momentum Equation

According to the principle of conservation of force and
momentum-flux, and by assuming that the pressure distribution
in both sections 0 and I is hydrostatic, the momentum equation

between these two sections is:
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B —
E‘Y[hoz -0% - Foq = pQlamiVi - @moVol [3-2]

where:

Y

is the momentum correction factor for non-uniform
distribution of velocity at section 0

is the momentum correction factor for non-uniform
distribution of velocity at section I

is the density of the fluid

is the boundary resistance between section 0 and
section 1

is the unit weight of the fluid

Since the distance between section 0 and section I usually

is great, the term F,_; is important. There is no accurate

method of evaluating Foq at the present time. Hence Eq 3-2

does not have any practical application although it is theoreti-

cally sound. The momentum equation between sections I and II

is:

HiBhy? - Bbh,?] - Fi-p - P, = pQlem:V; - amVy] [3-3]

where:

is the boundary resistance between section I and
section II

is a correction factor for non-hydrostatic pressure
distribution at section II

is the momentum correction factér for non-uniform

distribution of velocity at section II
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P, is the total pressure exerted on the body of water
at section II by the abutment.
If the distance between sections I and II is small, the boundary
resistance force F,_, can be neglected. Because the flow
depth along the upstream face of the model is not known, the
total pressure —I;z cannot be evaluated accurately.

The evaluation of the momentum equation between sec-
tions II and III is even less certain owing to the unknown bound-
ary force.

The momentum equation between sections IIl and IV can

be written as
B J—
E‘Y{hsz - hnz] - F3-4 = pQ[aysVy - amsVs] [3-4]

where:

F,-, is the total boundary resistance between sections
III and IV,
@m3 » @ms 1S the momentum correction factor for non-
uniform velocity distribution at sections III and
IV respectively.
It is assumed that h; is a constant over the entire cross-section
and the pressure distribution in both sections is hydrostatic. The

use of this equation will be discussed later.

Energy Equation

The cause of the backwater due to a contraction can be
studied by classifying the maximum backwater into two kinds:
[a] Contraction backwater - the flow depth at the mini-

mum contracted opening is critical. In this case
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the maximum backwater is mainly governed by the
energy requirement of such a critical flow,

[b] Resistance backwater - the flow depth at the mini-
mum contracted opening is greater than the critical
depth. In this case the maximum backwater is main-
ly governed by the energy loss caused by flow expan-
sion and by the increase of boundary shear.

Contraction backwater:- The cause of the contraction

backwater can be explained by means of the specific energy dia-
gram, see Fig. 3-1, and the discharge diagram, see Fig. 3-2.
The flow is assumed to have no boundary resistance in a level
channel or in case of sloping channel the specific energy at all
sections is the same.

For a flow in a channel of a mild slope, the specific

energy of the flow can be written as

H = h+ E‘é [3"5]
where:

H = specific energy of the flow

V = velocity of the flow

h = depth of the flow.

The velocity distribution is assumed uniform and the pressure
distribution is hydrostatic. Equation 3-5 can be written in terms

of H, h, Q, and B through the use of the continuity equation

2
H = h+§%-z~z—g- [3-6]
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Let

3
- | Q7 .
hg = gB? [3-7]

and substitute Eq 3-7 into Eq 3-6

H =h+%%1}]3- . [3-8]

By differentiating Eq 3-8 with respect to h , putting
[%;I—" = 0 and letting this particular value of h to be designated

as hC , it is found that

h =h_=h o [3-9]
Substituting Eq 3-9 into Eq 3-8 yields
H=H . =%h . [3-10]

min. Cc

The quantity hC is called the critical depth, it is defined as
the flow depth at which the specific energy head is minimum for
the given discharge. From Eqs 3-7 and 3-10 the critical depth
and the minimum specific energy can be calculated for a given

magnitude of Q and B . Dividing Eq 3-8 by th yields

H o __1_1......;.1_‘1_0%__ . [3-11]
h h 2h
cB cB

Eq 3-11 is shown in Fig. 3-1. Fig. 3-1 indicates also

that for a given h on the basis of Eq 3-7, there is a minimum

cB’
specific energy H = 1.5 hc below which the flow is not possible.
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Fig. 3-1 is called the specific energy diagram. The flow is

classified as rapid when hg hc or tranquil when h> hc

B B
Eq 3-6 may be rewritten for discharge per unit width

‘ QZ qz
HszZh*—Z@? [3*12]

where:

h is the local flow depth,

W is the local channel width, and Eq 3-12 indicates
that for a constant, H , and Q , the local flow
depth varies also with the channel width w , or
the unit discharge q .

Let the flow be narrowed from a width B to a width

b while the specific energy H remains constant. The critical
depth according to the given constant H is hc =2H . The

depth relationship between the two sections is then expressed

by the discharge diagram Fig. 3-2. Figs. 3-2 and 3-3 indicate,
if the approaching flow is tranquil, the flow depth decreases

as the unit discharge q increases [width of the channel decreases]
until q reaches a maximum beyond which the flow is not possi-
ble under the given specific head. This means that for a given
specific head, there exists a minimum channel width which gives
the maximum unit discharge, beyond which the flow is not possi-
ble. If the approach flow is a rapid flow, the flow depth increases
as the unit discharge increases up to a maximum limit beyond
which the flow is not possible under given H .

Fig. 3-2 is developed on the basis that the specific head

in the converging channel is the same at all sections. Because

the energy loss of a converging flow is small, the condition stated
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above is true as a first approximation for flow that converges

gradually. Let hB be the depth in the approach channel, and
assume hB >%H =h ,i.e., the approaching flow is tranquil.

c
Let

O
CA (313

cw g

=
]
< o

The magnitude of hcw can be computed for a given Q and w .
If h  computed from Eq 3-13 is less than %2H , the flow having
a width w is tranquil, i,e. h>h . If h =%2H = h_ , the
c CW c

flow having a width w is critical, i.e., h = hC . If hcw com-
puted from Eq 3-13 is greater than % H , the flow having a width
w 1is impossible under the given head H .

For flow through a contracted channel of width b ,

let
h =\/ 4 - [3-14]

where:

The following statements may be made:

a. If hcb< hc = £H , the flow in the contracted chan-

nel is tranquil, that is hb > hC s hb denotes the flow
depth in the channel of width b .
b. If h == hc = £2H , the flow in the contraction is

b

critical, thatis h, = h .
b c
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c. Ifh,>h_ = 4 H , the flow is impossible under the

given conditions. That is to say that for a given H
and Q , there exists a minimum opening width bc
and a corresponding maximum unit discharge q =

max
Q

5 - If the width is decreased the flow is impossible
c
under given conditions. The magnitude of bc can

be found as follows:

Qz

2 = = = ' -
$H hc hcb E;'z'g* s [3-15]
ot
\/[8 ] g [3-16]

When the constriction is so small: that it calls for q
larger than Ynax at a given H , part of the Q has to be
stored temporarily upstream from the constriction until H
is increased sufficiently to force the total discharge through the
constriction,

Eq 3-15 and Fig. 3-4 demonstrate the necessity of increas-
ing the specific head in order to increase Unax through the con-
striction.

As shown in Fig. 3-1, for tranquil flow h> hc the speci-
fic head increases as the depth of the flow increases. The in-
crease of depth is accomplished as soon as the constriction is
installed because of the work done on the flow. In case of an
ideal fluid, the specific head thus increased would be the same
throughout the flow, and would remain the same because of no
loss of energy.

In case of a real fluid, the increase of depth, and there-

fore the increase of the specific head as a result of work done
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on the flow by installing the constriction, is accompanied by a
reduction of velocity. Therefore, the energy loss owing to the
boundary resistance is reduced. In other words, the friction
slope between the sections 0 and I is less than that of a normal
flow, Thus, the specific head at section I is maintained to be
such that the total discharge can pass through the contracted
opening .

The difference between the maximum depth required by
the critical flow at the constriction and the normal depth of the
unconstricted flow is called the contraction backwater. The
contraction backwater is independent of the flow condition below
the contraction since the flow is critical at the contraction.

The foregoing discussion is based upon the assumption
that the specific head H of a flow of varying width is a constant.
Because the energy loss of a converging flow is comparatively
small, the foregoing principle can be applied to a converging,
open channel flow; i.e., the specific head is constant in the
converging zone. Let h_ = hn for the uncontracted channel,

the contraction backwate? is defined as h'B - hB , Where h'B
is taken from Fig. 3-1 according to H' = %@m . Because
h’B depends only upon Q/b , it is independent of the flow condi-
tions downstream from the contracted opening. This corres-
ponds also to the properties of critical flow which occurs in the
contracted section,

Resistance backwater:~ For the convenience of illustra-

tion, it was assumed in the previous section that the backwater
is caused by excessive contraction only. This implies that there
would be no backwater above normal unless the opening is so

small that a given discharge cannot be forced through it for a
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given specific head. For this condition the depth of flow would
pass through critical depth where the contraction is minimum.
This approximation is not sufficient, however, for analyzing
actual flow conditions because the energy dissipation downstream
requires additional backwater upstream from the contraction to
overcome this loss.

Referring to Fig. 1-1, the equation expressing the con-
servation of energy between section I and section IV in a channel
having a mild slope can be written as

V2 Vin?

AZI...4+ hl + Qel""“‘l"‘ = hn+ Qpy Zg

Zg + El"'& [3“17}

where:

Azy_.4 is the difference in bottom elevation between the

' two sections.
The total head loss E,_, between sections I and IV is caused
by dissipation of energy. Results obtained from model tests can
be applied to prototype condition only if the similarity of model
and prototype extends also to the similarity of the different pro-
cesses of energy dissipation. Therefore, the knowledge of the
head losses encountered in flow through a contracted section is
needed. The tools for separating the losses are the energy equa-
tions and the momentum equation.

The different losses of energy can best be explained by
discussing them from section to section. Between sections 0
and I, the boundary resistance loss is less than the normal loss
owing to the reduction in velocity in the backwater reach. The
stored energy is consumed entirely between sections I and IV

and principally between sections II and IV .
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It is generally known that there is very little excess energy
loss due to the convergence of flow., This fact is confirmed later
in this study by experiments. It was found through this study that
the specific energy at section I is approximately equal to that at
section II. The energy loss between sections I and II is caused
mainly by the boundary resistance. This energy loss is approxi-
mately equal to the difference in bottom elevation of the two sec-
tions. An additional small amount of energy loss may be caused
by separation that occurs along the wall a short distance upstream
from the stagnation point.

The following assumptions are made for flow between
section I and section II:

a. Pressure distribution is hydrostatic at both section

I and section II,

b. Velocity is uniform and parallel to the bottom at
both sections,

c. Energy loss is equal to the normal boundary resis-
tance slope S, multiplied by the distance between
the two sections.,

With these assumptions the following energy equation can be

written between sections I and 1I:
Q2 2
+ o—%—5 = h,+ ———-Z-Q -
= 2gB*“h; = 2gb®h, [3-18]

Between sections II and III, the energy loss caused by
the boundary resistance increases because of the appreciable
increase of velocity. Such an increase of velocity depends not
only upon the channel contraction but also upon the further con-

traction of the jet. The smaller the coefficient of contraction,

-53-



the greater is the boundary-resistance loss. This resistance
loss occurs within a small reach between sections II and III.

In addition to the boundary-resistance loss within this
reach, there is also an energy loss caused by the internal shear
which accompanies separation. The separation occurs near the
upstream edge of the abutment. If the upstream edge is sharply
defined, separation can always be found at this point, which is in
section II. In case the abutment has no sharp edge, the location
of the point of separation is not clearly defined, and can only be
calculated approximately by asing the boundary layer theory or
measured in the laboratory. In general, it is influenced by the
geometric characteristics of the abutment and the Reynolds num-
ber of the flow.

At the region where the streamlines leave the boundary,
the velocity gradient is usually very great. Considerable energy
is dissipated directly into heat through viscous action. The.
work done by the shear per unit volume of the fluid per unit time
is equal to 7du/dy , in which 7 is the unit shear stress, and
du/dy is the mean velocity gradient [in a horizontal plane] trans-
verse to the flow. For viscous flow this rate is equal to p [dd/dy]? ,
in which p is the coefficient of dynamic viscosity. The zone of
the high velocity gradient and intense shear is called the vortex-
layer. For an ideal fluid this is called a vortex sheet because
the thickness of this zone is theoretically nil -~ hence, the velo-
city distribution is discontinuous across the sheet. Since these
viscous vortex layers are highly unstable, the rolling-up pro-
cess to form an eddying pattern begins almost immediately down-
stream from the point of separation, Part of the energy from

the main stream is dissipated directly into heat by viscous action,
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and part of it is converted first into eddies and turbulence and
then into heat. As soon as the eddies start forming, lateral
mixing of these eddies follows immediately, consequently addi-
tional loss of energy results. The total energy loss caused

by separation varies with such factors as the opening ratio, the
discharge, and the model geometry.

The reach between sections III and IV is usually called
the "jet-expansion zone' . Within this zone the energy loss is
greater than that for normal flow. It can be classified into:

a. Energy loss caused by lateral mixing of eddies

or lateral exchange of momentum,
b. Energy loss caused by the boundary resistance.

Energy loss caused by lateral mixing:- The energy

loss caused by lateral mixing of eddies can be expressed by the

formula

E_ = Cm(—":iz'gy—*)—z— [3-19]
where:
Em is the loss of energy head caused by lateral
mixing,
(Vs - V,)?/ 2g is a theoretical expression, known as the
Borda loss, for computing the energy loss caused
by sudden expansion of flow in a pipe,
Cm is a coefficient.
Archer [1] found that for gradual expansion of pipe
flow the measured head loss is slightly different from (V3-V,)?%/ 2g .
A correction factor such as shown in Fig. 3-5 was obtained by

Archer. For lack of accurate information, Archer's correction

factor will be used as C to compute E__ .
m m
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Energy loss caused by boundary resistance:- The energy
loss due to boundary resistance can be assumed proportional to
the boundary shear. The boundary shear between sections III
and IV can be evaluated from laboratory data by using the follow-

ing equation:

= B

Fy4 = '2“'7[1’132 - hy?1+ pQlemsVs - amaVa) [3-4]
in which:

@3 5 @ma can be assumed to be unity,

hy , hy , and Q are measured directly,
V4 can be computed, and

Vs can be computed after the vena contracta is

measured.
Assuming So = CfTO = Cf*yhnso s [3-20]
.-
= = w—“a—:«-—i -
Sf Cf'r Cf Bl . [3-21]

where:

S  is the normal energy loss per unit length in the
flow direction,

S. is the average energy loss per unit length between
sections III and IV,

C, 1is a proportion factor,

o is the normal boundary shear,

T  is the average boundary shear = F;_4/BLj.4 .

From Eq 3-21, Cf = llq/hn , therefore,

1 F
} = ——— 34 322
Sf '}’hn jBI..‘g,,‘.*’§ [ }
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The total energy loss due to boundary resistance between sec-

tions III and IV is

F,-
- = 3 -
Erq = Sl ——-——ﬁthn . [3-23]

Now Ej;-4 = total normal energy loss between sections III and

v = SOL3-4 [3-24]
therefore,
Egs-q total excess resistance loss between sections

IIT and IV

= [8; - S_1Ls-y = 5331_1; -8 L,, - [3-25]

In summary, the energy loss between sections 0 and IV

can be stated as follows:

a. Between sections 0 and I, the energy loss is less
than the normal energy loss,

b. Between sections I and II, the energy loss is approxi-
mately equal to the normal energy loss.

c. Between sections II and III, the energy loss is greater
than the normal energy loss owing to greater bound-
ary resistance and also to energy loss accompanying
separation and lateral mixing.

d. Between sections IIl and IV, the energy loss is
usually much greater than the normal energy loss
owing to greater boundary resistance and also to

lateral mixing.
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Therefore,

Ej-y = Egyo o+ B

= Ens-4t Ees-yt Epy [3-26]

in which Ep3-4 , Eg3-4, B can be computed according to
Eqs 3-24, 3-25 and 3-19 respectively.

A reduction of energy loss means a reduction in the
energy gradient. Likewise, an increase of energy loss means
an increase in the energy gradient. A sketch of the energy
gradient for flow through a contraction is shown in Fig. 1-1.
Downstream of section IV, where the flow resumes its normal
flow condition, the normal energy gradient, which is governed
by the normal flow conditions, remains parallel to the channel
slope. The excess energy loss between sections II and IV has
to be supplied from upstream. A steeper energy gradient can
be drawn between section IV and section II. The vertical dis-
tance between the energy gradient line and the channel bottom
at section II is the specific head H, required at that section
in order to maintain the flow. Since the specific head H; at
section I is approximately equal to that of section II, [i.e.,

H, = H,], the quantity H, may be considered the required
specific head at section I. Such an increase of specific head
H, - Hy is a result of the backwater between sections 0 and I.

Notice that

Ve V.2 _ Vol _
Hy = hy+ Se = h, + —n—zg =H, = h0+2— Hy [3-27]

Therefore,
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[3-28]
and

H ‘H4 =0 [3'29]

Hn is the specific head of the normal flow,
HO , Hg4 are the specific heads at sections 0 and
IV respectively.

Eq 3-28 means that the total energy gain in the backwater reach
between sections 0 and I is completely dissipated between sec-
tions II and IV.

It is reasonable to expect that for a given Q , hn , and
B , the smaller the opening b , the longer the distance L,_4 --
which means the further section IV is downstream. Further-
more, for a given Q , hn , and B , the smaller the opening
b , the greater the energy gradient and the greater the specific
N e
the backwater is classified as resistance backwater. The limit-
ing case is when H, = %— m and the corresponding open-
ing width bC is the critical width of the opening. A further

head H, . As long as H, is greater than %—hc

reduction of b, i.e., b< bc , causes backwater classified as
contraction backwater. In this case the contraction backwater

is independent of the downstream flow condition.

Equation of Maximum Backwater

The principles of specific energy, discharge diagram

for contraction backwater, the mechanics of the flow through
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an open channel contraction and expansion, and the factors affect-
ing energy loss for resistance backwater have been discussed
extensively. Because there is no available mathematical formula
at the present time to predict the amount of energy loss, it is
necessary to use experiments in pursuit of a satisfactory method
of estimating the maximum backwater.

In the light of these facts, it is hoped that the problem

might be analyzed in the following manner:

a. By making certain assumptions about factors such
as the velocity distribution, pressure distribution
and separation, the change of water surface con-
figuration can be approximately expressed by the
use of the specific energy and discharge diagrams.

b. By using experimental data, some coefficient to
correct for these assumptions can be introduced
into the expression.

The purpose of the following analysis is to correlate the

maximum backwater height with the discharge and the degree

of the contraction, under the condition that the flow is critical
at the minimum cross-section of the contraction. The applica-
tion of this approach to the case when the flow is less than criti-
cal in the contraction will also be discussed in the latter part of
the current report.

In addition, the following conditions are observed:

a. Non-uniform distribution of velocity at both sections
I andIIl.

b. Non-hydrostatic pressure distribution at section II.

¢. Hydrostatic pressure distribution at section I.

d. Contracted opening at section II is smaller than
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b due to separation at the edge of the abutment.
e. The water surface at section II is level across
the constriction.
f. The contracted width is the same in any plane
parallel to the bottom of the channel.
The specific head at any section of the flow which may
have non-uniform velocity distribution, and non-hydrostatic

pressure distribution is:

VZ

H = ae_Z—é + Bh [3-30]

where ae , B are coefficients to correct for non-uniform
velocity and for non-hydrostatic pressure respectively. Eq

3-30 can be written also as

H = 2—"% + Bh [3-31]

gwW
or

H = aeh—-—~ + Bh ; [3-32]
where

2 _ -

F W s [3-33]
F is known as the Froude number,
Letting

3

h =/ % [3-34]

cw Bgw
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Eq 3-31 becomes
_ Bhgy®
H = ’E}% +Bh . [3*35}

Under critical flow conditions

gg..:()

dh

h=h =h . [3-36]
c CwW

or

hc = %__IB_H [3-37]

i.e,, at critical flow
i = = = a Q -
% BH h, =h__ —§—-3ng . [3-38]
The continuity equation is [Fig. 1-1]
Q = Bq; = wqg = bqg,

where:

d; is the unit discharge at section I

qz is the unit discharge at section II
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or
_b -
q = ]‘3“312 = Maq, [3-39]
where

M = b/B . [3-40]

The quantity M is called the opening ratio in this report. It
is a ratio of the width of the contracted opening to the width of

the approach channel. Notice that
M-=1-m [3-41]

where m is previously defined as the contraction ratio. Unless
mentioned otherwise, the term opening ratio is used throughout
the current report. The relation between the unit discharge q

and the Froude number F can be written as:
g = 1 gh3F? ) [3-42]
Qg

For section I:

2 1

= E“"ghlelz [3-43]
e1

d:

where the subscript 1 denotes section I.

From Eq 3-34

q.® = fighcf [3-44]
ez
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where the subscript 2 denotes section II,
@e; is the energy correction factor for non-uniform
flow at section II,
B> is the correction factor for non-hydrostatic
distribution of pressure at section II, and
he, is the critical depth of flow at section II.
Substituting

1.
hep = %"B‘;Hz

from Eq 3-38 into Eq 3-44 and making the use of

H, = H,
yields
2 =_§L *-%-“H 3, 3-45
@’ = s -glzg ] [3-45]
From Eq 3-32
F 2
HI = aelhl"“é';"" + Blhi . {3‘46]

Combining Eqs 3-46 and 3-45, yields
2 1 3 ﬁeﬁ.ﬁ 3 3-47
0? = F—zen [T+ B [3-47)
ae2P2
Combining Eqs 3-39, 3-43 and 3-47 then gives

oeiF?
NS o xl o eV [3-48]
e2r'z
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Based upon the assumption that hydrostatic distribution of pres-

sure prevails throughout section I,
Br =1
Therefore,

2= el Mz[a'elFl + 17 . [3-49]
ae2B2
In which the coefficient a@g; , @, , B, are expected to be a
function of the opening ratio, Froude number of the uncontracted
flow, and the geometry of the abutments which form the contrac-
tion. In case the velocity distribution is uniform, the pressure

distribution is hydrostatic in any section,

aelzaez=1,Bz=l

Therefore, Eq 3-49 can be written as

F,2 =% Mm? z+ 113 . [3-50]
Since Eq 3-50 is a cubic equation, there are three roots

of F;® for a given value of M . The first root gives F,® greater

than 1 , which is for the case that the upstream flow is rapid;

the second root gives F,®* smaller than 1 , which means the

upstream flow is tranquil flow; and the third root gives F,% as

being negative, which has no physical meaning. Since the upstream

flow condition is usually tranquil in natural streams, the second

root is chosen, namely
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F,? = Z[szsm(% - 309 -1] [3-51]

where Cos 6 = -M .

Eq 3-51 has been derived by Yarnell [Fig. 2-1] for
claséifying flow through a contraction. If the Froude number
F; of the flow is less than that given by Eq 3-51 for a certain
M , the flow is tranquil in the contracted section [known as Iowa
Class A flow]; if the Froude number F, of the flow is greater
than that given by Eq 3-51 for a certain M , the flow in the con-
tracted section is critical [known as Iowa Class B flow].

In the current report the backwater for Class A is called
the resistance backwater and that for Class B is contraction
backwater. Eqs 3-50 and 3-51 or more generally Eq 3-48 or 3-49,
define the upper limiting condition for the resistance backwater
and also the lower limiting condition for the contracted backwater.

The Froude number F; of the upstream portion of the
flow can be written in terms of Fn , the Froude number of the
normal uncontracted flow, and hg/hn , the ratio of the total
maximum depth with backwater to the depth of the uncontracted

flow:

Fy2 = @e1Vy® _ “‘“Fﬂzg, . [3-52]
Substituting Eq 3-52 into Eq 3-51 and assuming
ey =1

for uniform distribution of velocity, yields

h Fp? 1 h*
[—-—L 3 .21 - =f1+ L7 . 3-53
hn] 2 ﬁSlﬂ[g_ - 30 -1 L hn] [ ]
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Eq 3-53 shows that the total maximum depth of the backwater

h; can be computed, for the case of critical flow at the con-
tracted section, if the Froude number of the uncontracted flow,
and the degree of contraction are known. Fig. 3-6 is a plot

of Eq 3-53. This shows that for a given value of Fn , there

is an upper limiting value of M beyond which there is no con-
traction backwater. Furthermore, the larger Fn is the larger
M should be., Finally, for Fn = 1 , any amount of contraction
will cause contraction backwater and for Fn = 0.1, M can
be as low as 0,185,

Eq 3-53 is derived as a mathematical solution for the
lower limiting case of the contraction backwater and the upper
limiting case of the resistance backwater. In order to see the
justification of the assumption that Eq 3-53 can be modified by
introducing empirical coefficients so that it is also applicable
to the general case of resistance backwater, the following facts

have been observed:

a. For a given opening ratio M the maximum depth
of the backwater increases as the discharge increases
regardless of whether the flow is critical or tranquil
at the contracted section.,

b. For a given discharge, the maximum depth of the
backwater increases as M decreases regardless
of whether the flow condition in the constriction is
critical or not.

¢. In both cases, the backwater caused by the constric-
tion is dependent upon the same variables such as

F and M.
n
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Fig. 3-7 is a series of record of the water surface
profiles along the center line of a steady flow through a contract-
ed opening. The change of surface profile was caused by the change
of the opening ratio. For this particular case, Q was 2.5 cfs,
B was 7.9 ftand M changed from 0.25 to 0.75.

The water surface profiles for critical flow at the con-
traction can be sketched as shown in Fig. 3-8 after the critical
depth hc = hCb , and the maximum depth of the backwater hB
are computed. For given Q and M , the quantity hcb can be
computed according to Eq 3-14 and the quantity hB can be com-
puted from Eq 3-51. The trend of Fig. 3-8 is similar to Fig.
3-7.

Fig. 3-9 indicates hB vs hc as computed for the case

of critical flow at the contraction andbindicates also h; vs h,
taken from Fig. 3-7 for the case of tranquil flow at the contrac-
tion., The two curves have a similar trend.

On the basis of the above analysis, Egs 3-49, 3-50, 3-51,
3-52 and 3-53, which are for the upper limiting conditions of the
resistance backwater, can be modified by empirical coefficients
so that they can be used for the case of resistance backwater.
Such introduction of empirical coefficients will be made after the
simplification of Eq 3-53 shown in the following.

In Eq 3-53 the effect of M on hy/h,, is not expressed
explicitly. The following approximation can be introduced in
order to express the effect of M more conveniently.

From Eq 3-49
4 2
o F
Fyf o= & S M+ a3 [3-54]
e
where
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A::_l._..fl

Qo1
because

@er > 1
Let

F-élf- =X [3-55]

Eq 3-54 becomes

2X = $ ¥ M*[X + a]3

where,
4
[+ 4
J =
a’esz
or,
2X = ¥ & M?[X3 + 3AX%+ 3A%ZX + A% . [3-56]

Because F,; is usually much less than unity, and A is also
less than unity the terms X?, 3AX? can be neglected.

Solving for X yields

¥ 4 M2A?

R R VI

Because
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_ FHZ _ de _ (QZ Ek;

X =5 = 2gh; ~ 2gB%h,> Iy
—--n-ﬁF : 3-57
[hllh ] [ I
therefore,
h 9 1
M3 _3f 2 - -
e R e v Bl [3-58]

In case the velocity is uniform, the pressure distribution is

hydrostatic, ¥ =1, A =1, and
9
[ ]3 PRS- U - [3-59]

Eq 3-59 is an approximation of Eq 3-53, Fig, 3-10 shows the
comparison of Eq 3-59 with Eq 3-53., They agree very well
except when M approaches unity. In this case the required
F; approaches F, , and the error introduced by neglecting terms
of higher order becomes appreciable,

The terms ¥ , and A were originally introduced into
Eq 3-58 for correcting the non-uniform velocity distribution
and non-hydrostatic pressure distribution, If ¥ is defined as
an empirical coefficient which correlates the resistance back-~
water to the contraction backwater, andif A =1 and ¢§ = 1/ ¥ ,

then Eq 3-59 can be written as

[%1;1]3° 3r 128, - 1) [3-60]

which is a general equation for the resistance backwater, More

discussion of Eq 3-60 will be presented in Chapter V,
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Method of Free Streamline Analysis

The pattern of open channel flow through a contracted
opening is often assumed to be similar to the flow of an ideal
fluid through an orificek., Although there is much to be gained
by using this approach, it is equally important to realize the
differences between these two flow problems. For instance
comparing [a] an open channel flow through a contraction with
[b] the free streamline problem for flow out of a two-dimensional
orifice, one finds no free surface, no energy loss, and no separa-
tion zone for case [b]. In this case the velocity distribution is
symmetrical with respect to the vertical plane passing through
the centerline of the orifice, and is identical in all the horizontal
planes. The pressure is constant along the boundary of the free
streamline,

Applying the transformation theorem of Schwarz-Christoffel,
Von Mises was able to obtain the complex potential function of
flow out of a two-dimensional orifice. He also obtained a formula
to describe the width of the contracted jet. Under the supervision
of J. S. McNown this problem has been solved in a manner as
adopted by standard textbooks of hydrodynamics [see Appendix].

The results are summarized as follows: [See Fig. 3-11] p.70

Continuity: BV, = C bV [3-61]
where:

B is the width of the channel,

b is the width of the two-dimensional orifice,

Cc is the coefficient of contraction,

V0 is the velocity of approaching flow, and

Vj is the velocity of the free jet along the

boundary where the pressure is zero.
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Geometry;

1 +-};(V0 %) cm“[f(%% - %{1)] . [3-62]

Velocity along BC :

Y 2 Vo [ ptan (L) + U Yy+ Yo
1- 873 —C[-2tan (Vj)'l'votan (VO)+VJtn—-QT)][3 63]

where v is the local velocity
y is the horizontal distance from the center of the orifice.

Velocity along the upstream bank BA , where u< V, and hence

u u 2
e 4+ — 4 =
= == |In — 1In -+ = In———9%— [3-64]
B T 2R u v 2 u 2
l1--—R 1 - — 1 -—R
Vo Vo Vo -
where
Vv Cecb
= -0 e & 0)
R V; B
J
The pressure distribution along BA is
2Py -1 () [3-65]
+ov, Vo

where A p is the pressure increment greater than that of the

approaching flow. Velocity along the center line AC , where

u>Vvg,
. c 1+o-R 1+-$—- R 1+‘—‘;-R.‘
= = =€ |In O - In Q += In—0 [3-66]
b m 1 -_E{R 2R 1 __Ef 2 1 -_B.R 2
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and the pressure distribution along the centerline is

Pop‘; b _ [_{;j,_,}z -1 [3-67]
g o

o

or writing the equation in terms of Vj and pj where pj =0,

5%? =1 - [;}‘;]2 . [3-68]
Eq 3-63, 3-65, and 3-68 can be used to indicate approximately
the water surface along the upstream face of the embankment,
along the bank, and along the centerline of the stream respec-
tively. The application is only an approximation to open chan-
nel flow through a contraction because of the assumptions used
in the derivation. Theoretical curves of pressure distribution
are plotted in Fig, 3-11, 3-12 according to b/B = 0.25, 0.5,
and 0.75 . The correlation between the depth of flow in the case
of flow having a free surface and the pressure head for two-
dimensional flow depends not only on the pressure distribution
but also on the continuity equation. In Fig. 3-11, 3-12 both

of these correction factors have been neglected.

Two-Dimensional Flow Around Cylinders

The problem of a flow around a cylindrical body has
been studied extensively in recent decades. Most of the analyti-
cal study is for two-dimensional flow with no free surface. ‘
Although such study cannot be applied directly to open channel
flow, a review of such study will aid to the understanding of
open channel flow around piers. Such analytical study will be

summarized as follows:
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Flow around a cylinder can be studied from two different

approaches:

a. The fluid is assumed to be inviscid or ideal, and the
flow is a potential flow. The discussion of this ideal
case can yield a general description of the flow pattern,

b. The flow pattern obtained from [a] is, at least in the
vicinity of the pier, modified owing to the presence of
boundary resistance.

Irrotational flow around a cylinder:- For an ideal fluid

flow, there will be no resultant force upon the cylinder. In the
case of a single cylinder surrounded by an infinite amount of
fluid having an approaching velocity V. , the pressure distri-
bution around the cylinder is as shown in Fig. 3-13., There will
be two stagnation points -- one at point a and the other at point
d. The pressure at points b and ¢ will be a minimum because
the maximum velocity occurs at these points. The velocity and
pressure at any point can be computed because the flow condition
can be described fully by a complex potential function,

The complex potential of an unlimited fluid around a cylin-

der can be written as [30]
DZ
W = Vg[z + -—Z;——] = ¢+ il [3-69]

where:
w is the complex potential,
¢ is the potential function,
3 is the stream function,
Z is a complex variable z = x+ iy in which x ,

y are real numbers, and i = ~/-1,
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D is the diameter of the cylinder, and
Vo is the approach velocity.
The complex velocity is accordingly

2
%}Vu-v -DVa [3-70]

1dz |

and the magnitude of the velocity is dWl

At point a ,
aw) _

0.
dz

z =-D, v =
o
At point b ,
z = iD , Vb‘-'ZVO .
In other words, at point a the velocity is zero, and at point

b the velocity is twice the approach velocity VO . Through
the use of Bernoulli's equation the pressure at points a and

b can be obtained.

2 2

\'% \4

—_— = ~Ja. -
Pt 2g p,* 28 [3-71]
v =0,
a

v 2 2

-0 = Vb -
po+ 2 pb-i— 2g - [3-72]

From Eq 3-71 and Eq 3-72

b o= p + Yol [3-73]
a o 2g

- Vo _[2Vo]? -

The difference between p, and p_ is 4V02/ 2g .
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The pressure and velocity distributions around a single
cylinder, with boundaries at infinity, are different from those
around a row of cylinders in a single line transverse to the flow.
See Fig. 3-14. If the cylinders are equally spaced, the stream-
lines passing through the mid-point between two cylinders will
remain unchanged because of the symmetry of the flow, and can
be considered as a rigid wall boundary, This is also the case
where a single cylinder is placed in the middle of a straight
channel,

It can be shown mathematically that [30]

TZ
W = Vg+ Voc'Coth—B— [3-75]
is the complex potential of a flow passing through a row of cylin-
ders spaced at a distance B ,

where:

c! is a constant depending upon the size of the piers
and the spacing of the piers.
The major and minor semidiameters of the cylinders can be

shown to be respectively x, = 0.254B , y, = 0.25B which

o
are approximately the same., The complex velocity is given by

T Tz
- =V, - VOG‘ECsch—g . [3-76]

When x =0,254B , and y = 0, it can be shown that

dw _
a—;—()
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which means x = 0,254B , and y = 0 is a stagnation point.

When x =0, y = 0,.25B,

aw
dz

_ 2+ 7
- o[ 2 ] °

The maximum difference in pressure between a and b is,

therefore,
VZ2+an V.2
w— ] - ] 0.
g 2 ] = 6.6 2g

which is about 65 percent greater than the pressure difference
for unlimited flow around a single cylinder.

Real flow around a cylinder:- The measured pressure

distribution at Re =1,86 x 10° in Fig, 3-15 is different from
the theoretical curve in Fig, 3-13., The difference is caused

by separation. It should be noted, however, that the measured
stagnation pressure at point a is the same as the theoretical
value because it is measured upstream from the point of separa-
tion. The measured pressure at point b is greater than the
corresponding theoretical pressure, and the measured pressure
at d is smaller than the theoretical pressure at point d .

Since the measured pressure distribution is also symmetrical
with respect to the axis parallel to the flow, there is no lateral
force acting on the cylinder. However, the unbalanced pressure
distribution between the front and the back of the circular cylin-
der results in a drag force called form drag acting along the
direction of the flow. In addition to the form drag acting on

the cylinder, there is also a force of boundary drag owing to the

viscous effect. The total longitudinal force including both the
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form drag and the boundary drag is normally called the total drag

F The coefficient of drag C_ 1is defined as

D

F
C, = . 3-77
N [3-77]

is mainly a function of Reynolds number

D °

The drag coefficient CD

defined as

Re = Yoo [3-78]

where D is the diameter of the circular cylinder., For an ideal

D

Fig. 3-16 indicates the drag coefficient CB varies with

the Reynolds number VoD/v . The following is taken mainly

fluid, C_ is zero.

from Goldstein's discussion [8],

Fig. 3-16 shows the relative contributions to the total
drag of a circular cylinder made by skin~friction and by normal
drag for the value of Re less than about 2 x 10* , Except at
Re = 10 and 20 the form drag was predicted from measurements
of normal pressure [form drag] and the boundary shear drag.
The boundary drag and form drag at Re = 10 and 20 were deter-
mined by Thom [8] from a numerical solution of the equations
for the flow of a viscous fluid around a cylinder. The figure
shows that at Re = 10 the contribution of the boundary drag
amounts to about 43% of the total drag. The contribution then
decreases with increasing Re , and become s quite small at
Re = 10* ., A broken line in the diagram shows that the boundary
drag over the range 30<Re<10* is closely given by the relation

Cp = 4Re"Y2 | This relation is due to Thom [8], who calculated
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the skin-friction up to 60 degrees from the forward stagnation
point [point a Fig, 3-15] by using his approximate solution in
closed form of the boundary layer equations, and took values
between 60 degrees and 90 degrees from experiment. The
relation has been verified up to Re = 4 x 10* by Schiller and
Linke [8] with the accuracy obtained by experiment.

The discussion of flow around cylinders is so far limited
to two-dimensional flow. It has been shown that the flow pattern
away from the vicinity of the cylindrical boundary can be treated
as irrotational flow, and the flow near the cylindrical boundary
can be studied by the use of the boundary layer approach. How-
ever, for gravitational flow around cylinders [i.e., flow with a
free surface] none of the previous theories has a direct applica-
tion. The problem is mathematically very complex. The mechan-
ics of the flow is also complex, because both the Reynolds number
and the Froude number have influence on the drag coefficient.
Further laboratory measurements of the distribution of pressure,
shear, and velocity are needed for gravitational flow around cyl-

inders and piers.

Dimensional Analysis

In the science of experimental research the method of
dimensional analysis is a very necessary tool for correlating
experimental data. According to the procedure, a dependent
variable is listed as a function of variables which will affect
its value, Such a group of independent variables together with
the one dependent variable can be grouped into a number of
dimensionless terms by using the w-theorem [33]. The depen-

dent variable appears only in one of the dimensionless terms.
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The maximum backwater h;* can be listed as a function
of the following variables: total discharge Q , width of the chan-
nel B , width of the contracted opening b , slope of the channel
SO , roughness of the channel k , gravitational acceleration g ,
density of the fluid p , viscosity of the fluid p , abutment-geometry
factor, pier-geometry factor, channel geometry, characteristics
of turbulence in the approaching channel, velocity distribution
of the approaching flow, roughness of the model, and orientation
of the constriction with respect to the approaching flow [such as
skew crossing and eccentric crossing]. Because there are many
independent variables affecting the maximum backwater, the
analysis of this problem become s very complex, In order to
reduce the problem to its simplest form, it is necessary to res-
trict the dimensional analysis to the case of simple normal cross-
ing, i.e., the roadway is perpendicular to the flow, and the con-
traction is symmetrical with respect to the flow centerline, It
is assumed that all the other cases can be related empirically
to the normal crossing,

If the considerations are confined to constant abutment
and channel geometry, then h;* can be expressed as a function

of the remaining independent variables, or

hy* = £[Q, B, b, So, k, g,p,p] . [3-79]

Because the channel roughness cannot always be repre-
sented by a single length dimension, Eq 3-79 cannot be con-
sidered as being very useful, Therefore, variables h, and
V, are used instead of k , S, , and Q through the following

operation,
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The normal depth for the uncontracted channel can be

listed as a function of variables shown in the following equation.

hn = fZ[Q: So: k: B, [ p’] ° [3'80}

This equation can be expressed implicitly without losing any

generality by writing

f3{hn:Q5so:k9B:p:p‘1=0 - [3'—81]

If the flow is uniform, that is, a normal depth prevails
throughout the channel, the channel slope is equivalent to the

energy gradient., Since

where

VaR k

f = function [ v 'R

and is called the Darcy-Weisbach resistance coefficient and
R is the hydraulic radius. For a very wide rectangular channel,
R = h, , therefore, the energy gradient can be expressed by

the following function:

=S = ionfYoink  Vg® -
Se=5o = function|: v bp ’ Zghnl - [3-82]

The equation of continuity is

Q = V;Bh . [3-83]
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By treating Eq 3-81, 3-82 and 3-83 as three simultaneous
equations having three unknowns, Q , k and SO , the solu-

tion for Q@ , k, and So can be written as

Q = function {Vn s hn , B]
k = function [Vn " hn ,B,p , ¥
Se = function [Vn , hn s, ps B ,B,gl . [3-84]

Substituting Eq 3-84 ‘into Eq 3-79

hy* = £[V_, h

n,B,b,Q,g:M . {3"85]

The effects of channel roughness and slope are only reflected in
the normal depth and the normal mean velocity of the flow.

If Vn , hn , and p are chosen as repeating variables,
and the w-theorem is applied, Eq 3-85 reduces to the following

dimensionless equation, if model type is included:

o v el PR s B €S
In case of 1:1} spill-through abutment, the average opening
width below normal water surface b+ lé-hn will be used to
replace b .

Equation 3-86 is the final equation obtained from dimen-
sional analysis. It is used for planning the experimental work

and for analyzing the data.
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IV. EQUIPMENT AND PROCEDURE

Equipment

The equipment used in the testing may be divided into:
[1] the flume, [2] the supply system, [3] the measuring devices,
and [4] the models.

Flume
The flume, see Fig. 4-1, is of adjustable slope type, 73.5
ft long and 2 ft deep. For run Nos. 1-66, its width was 4 ft, for
all runs thereafter it was widened to 7.9 ft. The floor and the
walls are of 3 -in. painted plywood, braced by 2-in. by 4-in. ribs
every 18 in. The bottom of the flume rests on a pair of 6-in. I-
beams, 4 ft apart. These are supported by pairs of screw-jacks
at 8 ft to 10 ft intervals along the length of the flume. A rail is
mounted on the top of each flume wall by means of adjustable
screws at 1-ft intervals. These serve as guide rails for the instru-
ment carriage.
Tests were conducted on two different kinds of roughness.
The first kind, see Fig. 4-2a, consisted of a mesh of4 -in, rein-
forcing bar spaced at 6 in. longitudinally and 12 in. transversely.
The longitudinal bar rested directly on the flume floor so that the
transverse bar was held +in. above the floor. For creating the
second kind of roughness, see Fig. 4-2b, the mesh was turned
upside down so that the transverse bars rested on the floor.
Sheet metal angles 6 in. long and 1 in..high were put under the
transverse bar, with a transverse distance of 6 in. between, in

such a fashion that a staggered roughness pattern was obtained
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as shown in the sketch. The Manning n was approximately
0.024 for the bar roughness and approximately 0.045 for the

baffle roughness.,

Supply System

From runs Nos. 1 to 120 the water was recirculated
entirely within a pipeline. It was drawn by a centrifugal pump
of 9 cfs capacity in a 14 in. supply pipe to be delivered at the
flume entrance. A valve in the supply pipe served to control the
discharge. To introduce uniform distribution of discharge at
the entrance a diffuser section was attached to a transverse
float bar, two honey comb lattice works, and three hardware
cloth screens -- placed in series in that order to insure uniform
velocity distribution and reduce excessive turbulence. See Fig.
4-3. After the flume was widened to 7.9 ft, the diffuser section
and the float bar were abandoned in favor of a rectangular weir.
The depth in the tailbox was kept constant to insure a minimum
in head variation on the pump.

It was decided to draw water directly from the large Hydrau-
lics Laboratory sump after run No. 121. The water was pumped
through a 14-in. pipe line and dropped into the entrance section.
Lattice works and a float bar were needed to smooth the water
surface and reduce excessive turbulence. The water was con-
veyed back to the sump.

After run No. 760 the tests were made in another flume
[73.5 ft in length]. Here the 14-in. pipe was connected to a
manifold type diffuser at the flume entrance. This permitted

the use of one lattice screen and one float bar only.
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An adjustable tailgate having two sets of vertical slats
was attached to the downstream end of the flume for the purpose
of counteracting the drawdown effect of the drop-off at the end
of the flume., See Fig. 4-4. This maintained a water surface
slope very nearly parallel to the flume floor at the downstiream

end of the flume.

Measuring Devices

For measuring water surface profiles, piezometers were
connected to openings in the side wall about 1 in. above the flume
floor at 4-ft intervals along the length of the flume. A carriage-
mounted point-gage was used to measure the surface elevation
at any point within the flume. See Fig. 4-5. The point gages
were equipped with a vernier to measure to the nearest 0.004-ft,
and were correlated with the flume bottom by means of metal
reference plates screwed on the floor. The carriage traveled
along the flume on the rails mounted on the side walls and the
point gage could be moved across the flume on two rails mounted
on the carriage. A steel tape fixed on the flume wall and another
one arranged on the carriage provided readings for longitudinal
and transverse locations of the point gage.

One stationary point gage was used near the downstream
end of the flume during the runs Nos. 67-121 to determine normal ‘
depth. It was believed that its position was far enough downstream
from the model for re-establishment of normal depth, and yet far
enough upstiream from the end of the flume to be unaffected by
drawdown. After run No. 200 a more accurate method of deter-
mining the normal depth was adopted [see procedure: establishing

normal depth].
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The discharge was measured by a 10-in. orifice which
was located in the supply line. A differential manometer regis-
tered the pressure difference across the orifice plate, and the
discharge could be read from a calibzation chart.

Velocity profiles were taken occasionally by using a Pitot
tube mounted to the carriage. The Pitot tube was calibrated
and the coefficient was found to be close to unity. A coefficient
of unity was therefore assumed throughout the testing. |

An engineers level and a rod were used for settirig the
flume slope, adjusting the rails, and determining the relative
elevations of all measurement devices. Confetti of either allumi-
num powder or potassium permanganate was used for studying
the rollers and eddies as well as the flow pattern. The water
used in the tests was city water, its tempe rature was measured

with a thermometer and recorded.

Models ,
The types of bridge-crossing models studied in this report
are:

. Simple normal crossing,

Abnormal stage-discharge condition,

&

Dual bridges crossing,

°

Bridge girder partially submerged,
Skew crossing,

. Eccentric crossing,

~ O~ b W N

. Piers with and without abutments

8. Flood-plain crossing.
The classification of these types is according to the geometric
flow condition in the contracted section. Greater detail on these
crossings is presented following the discussion of the abutment

models and the pier models
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Abutment models:- Three types of abutments were tested;

the wing-wall model, the spill-through model, and the vertical-
board model. Wing-wall médels and spill-through models were
made from 16 and 20 gage galvanized sheet metal. The opening
between the two abutments could be varied by clamping a 6-in,
extension on the back end of each abutment, see Fig. 4-6 and
Fig. 4-7. The vertical board models were made from ¥ -in.
plywood; a strip of galvanized sheet metal was fixed to the throat
side of the model to insure conditions of sharp edge entrance,
see Fig, 4-7,

Pier models:- Six different kinds of pier models were

tested, either separately or in combination with different abut-
menis. These are: circular single-shaft piers, circular double-
shafi piers, circular double-shaft piers, round-ended narrow
piers, square pile bents, round pile bents, and H-beam pile bents.
The single and double-shaft circular piers were made either of
£ -in. steel rod or of pipe, a footing was soldered across the bot-
tom when necessary. For sizes see Fig. 4-8.

For round ended narrow piers two pipes were attached
by a # - in. by 13 -in, plate, and the space between the pipes
was filled with concrete. Another kind of round-ended narrow
pier was made by welding a sheet metal rib between the two pipes
and filling plywood flush outside of the pipes. The pile bents

in

were made from steel rod welded on a 13" x "

steel plate. The
top consisted of a piece of 2-in. by 4-in. wood.

For the H-beam bents aluminum channels were soldered
together to form the H beam, the beams were then soldered on
an aluminum strip, the top was a piece of wood of 2-in. by 4-in.,

see Fig. 4-7,
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Simple normal crossing is the case where the bridge

crossing is normal to the main flow direction and symmetrical
with respect to the center line of the flume. Only abutment models
are used in this type of crossing. A normal flow condition pre-
vailed in the flume before the abutment models were installed.

See Fig. 1-1and 1-2.

Abnormal state-discharge condition is similar to the sim-

ple normal crossing except that the flow was at an abnormal stage-
discharge condition before the abutment models were installed,
see Fig. 1-4. The abnormal stage-discharge condition is the

only case in this repori where the flow was not set at normal flow
before the abuiments were installed,

Dual bridges crossing is the case where there are two

bridge crossings parallel to each other. The crossings are nor-
mal and symmetrical with respect to the main flow, see Fig. 1-5,

Bridge girder partially submerged is the case which changes

the simple normal crossing by adding a model of bridge girder sup-
poried by the two abutments. The lower part of the girder is sub-
merged in the flow. The models of the bridge girder were so
constructed that the degree of submergence could be changed. Two
types of bridge girder models were used in connection with the 45
degree wing-wall abutments and 1:13} spill-through abutments.

The first one was made of  -in. plywood with four girders $-in.
thick. The model was 1 ft wide which is the same as the top width
of the abutment models. Each end of the girder could be adjusted
so that it contacted tightly either the spill-through abutment or
the wing-wall abutment. The second one consisted of a plywood
deck, 1 ft wide to which a sheet-metal angle was attached on the

upsiream side. The ends of the angle could be adjusted for both

-100-



types of abutments. See Fig. 1-6 for the general arrangement
and Fig. 4-9 for the bridge girder models.

Skew crossing is the case where the center line of the

roadway does not intersect the center line of the flow at a right
angle. The intersection angle is ¢ , see Fig. 1-7. In the case
in which the front face of the abutments is perpendicular to the
roadway, the geometry of the abutment models remained the
same as shown in Figs., 4-6 and 4-7. In the case where ‘he
front face of the abutments is parallel to the direction of the
flume, the geometry of the abutment was changed accordingly.
The top width of the roadway is Cos ¢ .

Ecceniric crossing is the case in which the center line

of the contracted opening, although being parallel to the center
lire of the flume, does not coincide with the center line of the
flume.

Piers with and without abutments is the case in which

the effect of piers on the maximum backwater has been studied.
The arrangement of the models is symmetrical with respect to
the center line of the flume, see Figs. 1-9 and 1-10,

Flood plain crossing is the case in which the cross-

section of the channel is not a simple rectangle. The cross-
section is a composite section as shown in Fig, 1-12. The fload
plain of each side was 3 ft wide. The center channel is 2 ft wide,
and is recessed 0.345 ft below the flood plain. A variety of

roughness patterns can be arranged as shown in Fig. 1-12,
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Procedure

The testing procedure was as follows., First, the channel
slope was set as desired and the rails adjusted accordingly. Sec-
ond, normal depth was established and recorded, corresponding
to the desired discharge. Finally, the models were placed, and

the data taken and recorded.

Setting of Slope

Wiih the flow in the flume the jacks under the flume were
adjusted according to predetermined readings with an engineer's
level and rod. The rod readings always were taken on the flume
bottom directly above the jacks. The bottom actually is slightly
wavy due to warping of thé plywood, but the method of setting

the slope gave a very satisfactory average value of slope.

Setting of Rails

The rails were adjusted parallel to the flume bottom after
the flume slope had been set. Each screw supporting a rail was
adjusted separately if found necessary. Both slope and rails were
adjusted again whenever the discharge was changed or if there was
reason to do so [for example, if the normal depth were not correct].
Because both the slope and the rails were adjusted under normal
flow conditions, small deflections were possible once the model
was installed and a heavier load of water resulted upstream from
the model. The error of measurements introduced thereby was

considered small enough to justify no further adjustment.
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Establishing Normal Depth

For the first 154 runs the water surface slope was deter-
mined by means of piezometer readings. The tailgate was changed
until water surface was parallel to the flume slope, according ic
the piezometer readings. Later it was found that the piezometier
readings were not in agreement with direct waier surface read-
ings made by the point gage. This was due to the difficulty of
removing all the air trapped in the piezometer tubing, and to the
difficulty of reading the piezometers accurately on account of the
capillary rise in the tubes. It was possible to avoid all these
difficulties by use of the point gage, which had the additional
advantage of giving a constanti reading for uniform depth elimi-
nating the computations formerly necessary with the piezometers.
The accuracy of setting normal depth by this method was found
io be quite satisfactory. The normal depth could always be re-
established within a fraction of one thousandth of a foot for the
same discharge, slope, and roughness.

When the effect of downstream ponding was investigated,
the normal depth was established first. Then the tailgate was
adjusted so that the depth at the position where the model entrance
would be located was equal to the normal depth plus the desired
increased depth. Actually, this position was one point on a back-
water curve, and the definition of the depth is rather arbitrary,

see Fig. 1-4.

Placing of Models

Once normal depth had been established, the models were
placed. Beginning with run 200 all cracks between model section
and between model and flume were sealed with plasticine. Further-

more, the roughness elements, which had been taken out previously
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for placement of the models, were returned. Care was taken,

thereby, to re-establish a consisten! roughness pattern in the

throat section. The importance of a systematic roughness pat-

tern was particularly apparent during runs with piers, where
p y app p

the increment in backwater due to the piers was very small, A

difference caused by re-arrangement of roughness, or by leaving

out the roughness between the piers, could cause a change in

backwater which sometimes was equal to or larger than the back-

water increment caused by piers.,

Data Taken

The data of primary interest were: the water surface

readings at particular points, i.e. the position of maximum back-

water, the section of re-established normal depth, the stagnation

points in the upstream and downsiream corners of model with

flume side wall, and the width of the contracted jet [the vena con-

tracta]. The methods of taking these data were:

a.

The point of maximum backwater was found by taking

a water surface profile along the center line by means

of the point gage. In the case of skewed crossings the
position of the maximum backwater shifts to the side
wall, Maximum backwater height and its position were
always recorded.

The section of re-established normal depth was deter-
mined by using the water surface profile along the
centerline of the flume. It is the section downstream
from the model where the normal depth was re-established.
The continuous reading of the normal depth from this sec-
tion furnished a control to determine whether the experi-

mental conditions had remained undisturbed. If the
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continuous reading downstream was differen? from

the normal depth reading as obtained without the
models, then the discharge was checkéd and eventu-
ally flume and rail slopes also were checked., Due
.to small undulations caused by the expanding jet
through the constrictions, the position of the begin-
ing of re-established normal depth could not be defined
clearly. Therefore, an attempt was made to define
more accurately a length parameter for the particular
case of flow under consideration. There was always
a reverse current along the side wall in the wake of
the model where the water was flowing upstream.
Some distance downstream the velocity along the side
wall reversed its direction and the water flowed down-
stream again. The average of the position of the stag-
nation points between both currentis on both walls was
determined as the desired length parameter. It was
determined by dropping potassium permanganate into
the water at different positions along the walls, and
thus finding the stagnation point.

The water surfaces around the models were measured
frequently, but in most cases, only the depth at the
stagnation points was recorded. In order to average
the errors due to small fluctuations, the readings
were taken three times during each run. In the case
of two bridges, the water surface between the two
models was of a surging nature. Therefore, the stag-
nation depths at the downstream side of the upstream
model, and the stagnation depths at the upstream side

of the downstream model were determined by taking
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the mean of each average of three readings of the
maximum depth and of three readings of minimum
depth.
d. A measurement of the width of the vena contracta
yielded results which showed considerable scatter.
It was found that the position of the minimum depth
along the center line was approximately equal to the
position of the vena contracta. This point therefore
was defined as the position of the vena contracta. The
width was then measured by defining it as the width of
the jet between the turbulent mixing zones on each side.
This zone was made clear by inserting dye close to the
upstream side of the model.
Figure 4-10 shows a typical arrangement of taking measurements.
In this particular case, the Velocity distribution in the contracted
section was measured. Figure 4-11 shows typical flow in the vicin=-
ity of a wing-wall abutment. Figure 4-12 shows typical flow in the

vicinity of a spill=through abutment.
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V. PRESENTATION AND ANALYSIS OF DATA

The ultimate objective of ithis research is to find a.practi-
cal method of estimating maximum backwater caused by a bridge
coniracting a stream channel. Therefore, the qualitative study
of a large number of variables has been given preference aver
an extensive investigation of the mechanics of backwater forma-
tion. The basic principles, such as stated in Chapter III, were
studied experimenially whenever possible.

Experimental data obtained from this research were num-
bered chronclogically from 1 to 121 for earlier data cbiained in
a flume of 4-ft width and from 200 to 1392 for later daia obiained
in & flume of 7.9-ft width,

Data pertaining to the flume of 4-ft width were limited
to 45 degree wing-wall abutments, and 1:1} spill-through abui-
ments, [hereafter referred to as WW abutments and ST abutments
respectively.] The opening was centered and perpendicular io the
approaching flow. Owing to the fact that during these earlier runs
the experimental procedure was not well established and the normal
water surfaces were not determined exactly, the information con-
cerning the Froude number of the uncontracted flow , and the maxi-
mum backwater are not accurate. In general, data of this group
will be used only to check the conclusions based upon the data from
the flume of 7.9-ft width. Some runs of this group have not been
analjzed for one of the following reasons, such as: inaccuracy
in determining the slope of the flume, inaccuracy in measuring
the discharge, and inaccuracy in determining the elevation of the

normal water surface.
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Some of the data pertaining to the flume of 7.9-ft width
have not been analyzed for one of the following reasons such as.
fluctuation of discharge; inconsistency of bed roughness in the
contracted section; abutments over-topped, and inaccuracy in
establishing the normal flow condition in the uncontracted channel.

Experimental data obtained from this research are listed
in Appendix B according o the conditions of contraction.

In this chapter the presentiation and analysis of data will
be divided into three parts:

1. Flow Geometry,

2. Energy Loss, and

3. Maximum Backwater.

The analysis of maximum backwater will be concerned
about the maximum backwater along the center line of the flume,
except in the cases where the maximum backwater along the
center line of the flume does not exist. For such exceptional
cases the analysis will be for the backwater at one of the two
upstream stagnation points.

The data of the differential elevation of the water surfaces
across the roadway embankment can be found from the tables in
the Appendix. According to dimensional analysis the data of such
differential elevation can be considered as a dependent variable
similar to the maximum backwater. The data of such differential

elevation are not analyzed in this chapter.
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Part I. FLOW GEOMETRY

The term "'flow geometry'' is used here to include:
1. The water surface profile along the boundary,
and along the center line;

2. The coefficient of contraction of the jet, and

3. The location of the maximum backwater,
The flow geometry of open channel flow through a contraction
has been studied through the use of free sireamline theory.
According to this theory the velocity distribution and the pres-
sure distribution of the flow are uniquely determired by the
boundary geometry. The pressure along the jet boundary is
constant, consequently the velocity along the jet boundary is
also constant. The mathematics involved in the free siream-
line theory is rather complicated but it is included in the Appen-
dix for reference. The application of this theory to an open
channel contraction was suggested by J. S. McNown, consultant
to this research., The difficulty of applying free streamline
theory to the case of open channel flow through a contraction lies
chiefly in the fact that the former is valid for two-dimensional
flow while the latter has a free surface and is of a three~dimensional
nature. The theory is based upon the assumption that along the
entire free streamline the pressure is constant and consequently,
the velocity is also constant. Such an assumption is not entirely

valid for the jet from an open channel contraction.

Water Surface Profiles

Information concerning flood stage along the highway

embankment and the river bank is needed in order to safeguard
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the embankment and the farm land adjacent to the bank. For
rectangular channel in the laboratory, this information can be
obtained approximately by use of free streamline theory. For
given boundary conditions, the velocity distribution along the
boundary and along the centerline of the flow can be calculated,
and the pressure distribution can be computed according to
Bernoulli's theorem. In order to convert this pressure head
into the flow depth, the continuity equation must be taken into
consideration. The effect of non-hydrostatic pressure should
be considered wherever surface curvature is pronounced and
accelerations due to gravity are large. Fig. 3-11 indicates the
theoreticai distribution of relative pressure head and relative
velocity along the embankments, in which the relative pressure
head Ap /%—;.\V‘_iz is the difference between the local pressure
along the contracting boundary and that along the free stream-
line, divided by the dynamic pressure p%ﬁ of the free jet.
The relative velocity v/vj , is the ratio ‘of the local velocity
¥ to the jet velocity Vj . At the stagnation point, y =0,
therefore Ap/-%pvjz = 1; at the edge of the plate where the
jet separates from the boundary, ¥V = Vj , hence Ap/+ pv; =0,
No correction was made regarding the continuity equation and
non-hydrostatic pressure distribution. A theoretical water sur-
face profile can be determined by assuming there exists a simi-
larity between a two=—dﬁnensional flow through a slot, with an
approach velocity V 0 ° and open channel flow through a contrac-
tion with an approach velocity Vl at section I. Data taken along
the upstiream face of a VB model are shown in Fig. 5-1. In this
case the local depth of flow divided by the depth at the stagnation

point was plotted against Verification was made only for

-
B/2°
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b/B = 0.25 , because the length of the roadway in this case was
adequately long so that the variation of water surface could be
measured more satisfactorily.

Theoretical curves for Ap/%+ ijz along the upstream
bank and along the center line are plotted in Fig. 3-12 for differ-
ent opening-ratios; in which Ap is the difference between the
local pressure and that along the free streamline. These curves
resemble the experimental water surface profiles along the bank
and along the center line at different opening ratios., Data taken
along the upstream bank and along the center line are shown in
Fig. 5-2. In order to minimize the effect of curvilinear flow on
the pressure distribution along the center line, an opening ratio
b/B = 0.75 has been chosen for comparison. The comparison
was made by defining V.%/2g = Ah x 0.709 for b/B = 0.75 in
which 0.709 is ?féj‘l?/_/g‘gm for the approaching flow and Ah = Ap/y
was measured above hj; . The comparison is fairly satisfactory
despite the assumptions used in the theory. Data deviate appreci-
ably from the theoretical curve when x/b 0.1 . This might be
owing to the fact that along the lateral boundary of the jet the
pressure is not censtant as assumed.

Although the comparison between the theory and the
measurement in some cases is quite satisfactory, it should be
remembered that the comparfison regarding pressure distribution
along the bank and the embankment can deviate considerably from
theory to measurement because of:

a. Non-uniform distribution of velocity of the approach

flow, and

b. Separation loss in the vicinity of the stagnation point.
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Coefficient of Contraction

An analytical study of open channel flow through a local
contraction requires the use of three basic principles as expressed
by: |

a. Continuity equation,

b. Momentum equation. and

c. Energy equation.

In dsing any of these threek equations, it is necessary to know the
maximum jet velocity, which occurs in the section of minimum
opening. If the coefficient of jet contraction is known, the maxi-
mum jet velocity can be computed through the use of the continuity

equation. According to the free streamline theory, the coefficient

of contraction has a minimum value of 7{: 5 = 0.611 at a dis-
tance far downstream from the opening. The values of Cc mea-=
sured for different values of b/B are shown in Figs. 5-4, 5-5
and 5-6 for vertical board model, 45 degree wing-wall abutments
and 1:1% spill through abutments respectively [hereafter referred
to as VB model WW and ST abutments]. No conclussion can be
drawn from these figures because of scatter data.

Because open channel flow through a contraction is three
dimensional in nature, it is difficult to measure the contraction
coefficient of the jet. First, the boundary of the jet is not clearly
defined due to the mixing action between the oncoming jet and the
surrounding fluid. Second, in addition to lateral contraction which
is caused direcily by the geometry of constriction, there is also
a vertical contraction caused by gravity. The minimum width does
not necessarily correspond to the minimum depth of the jet. Fur-
thermore, the coefficient of contraction may depend upon the dis-

tribution of the approaching velocity, the roughness of the bank
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and the bed in the vicinity of the contraction and the width-
depth ratio of the uncontracted flow.

The minimum jet width was observed by introducing
dye at the point of separation along the abutment. It was mea-
sured by a point gage. Because information on the coefficient
of contraction is very essential in studying the maximum back-
water, it is suggested that research be continued on the coef-

ficient of contraction.

Liocation of Maximum Backwater

The distance of the maximum drawdown is the distance
between section I, where the maximum backwater occurs, and
section Il where the minimum opening begins.

The approaching velocity of two-dimensional flow through
a slot is V0 and is theoretically at infinity upsiream from the
slot. The maximum pressure head pol*y is also at infinity up-
stream. For a flow in a channel having a uniform slope, the
natural velocity of approach is at a distance upstream from the

¢ ontraction and is equal to the normal velocity Vn of the uncon-
tracted flow. The maximum potential caused by the contraction
can be assumed to be where the velocity is equal to the normal
velocity. In order to illustrate how the location of maximum
backwater depends upon other variables; the following compari-
son between the two-dimensional flow and the open channel flow
is made:

Because the slope of the water surface between sections
0 and I is extremely small, the maximum depth h; can be con-
sidered as the maximum potential head of the backwater. Assum-

ing that the maximum pressure potential of the two-dimensional
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consiricted flow corresponds {o the maximum potentiai head of
the contracted open-channel flow, the approximate location of

the maximum pressure potential obtained from the free stream-
line theory can be used as a guide to determine the location of

the maximum backwater h;* . Although the location of the maxi-
mum pressure potential of the two-dimensional flow is theoreti-
cally at infinity, it can be considered approximately to be at a
place, where the velocity is 1 per cent greater than the approach-
ing velocity, i.e., v = 1.01V_'. Based upon such a standard,
the nomiral distance L* bhetween the section of maximum pres-
sure potential and the slot can be computed by use of Eq. 3-66,
As shown in Fig. 5-7, the distance L* divided by the slot width
b , varies with the opening ratio. Fig. 5-7 indicates that L* = b
at b/B = 0.70: L*>b for b/B<0.7 ; and L*<Db for b/B>0.7 .

The location of maximum backwater was scaled from the
recorded water surface profiles and has been tabulated in Tables
of Appendix B. Because the water surface slope in the vicinity‘
of maximum backwater is rather small, it is difficulf to determine
exactly the location of maximum backwater. Plots of this dis-
tance to maximum backwater have been made for various flow
conditions and abutment types shown in Figs. 5-8, 5-9, 5-11 and
5-12,

As shown in Fig. 5-8, the effect of channel slope is that
the greater the slope, the smaller is L*/b . This is true because
the maximum backwater is referred to the channel bottom, not
to a horizontal datum.

According to Fig. 5-9, the location of maximum back-
water is also affected by abutment geometry which is caused by

changing the model height. This is due to the fact that the entrance
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condition of flow is affected by abutment geometry. If the model
were prismatical [such as the vertical-wall model] or cylindri-
cal, the‘change of model height would not affect the abutment
geometry. The effect of abutment geometry due to varying
abutment height can be understood from the following illustration:

Fig. 5-10 shows the plan view of both WW abuiments and
ST abutments. Each type of abutment has two different heights.
The shaded area indicates the portion of the abutments submerged
under the same depth [$ft] of flow. For WW abutments although
the horizontal projecied area of submergence for the higher model
[0.9 ft high] is larger than that for the lower model [0.6 f1 high],
and is located further upstream than that for the lower model,
the flow in the vicinity of the abutments is guided along the same
direction for both cases. Hence, the height of the abutment may
not affect appreciably the location of the maximum backwater.
For ST abutments, not only the projected areas of submergence
are not the same for abutments of different height, but also the
flow in the vicinity of the abutments is guided along different
curvature for abutments of different height. This explains the
effect of height of ST abutments on the distance L* as shown
in Fig. 5-9.

Fig. 5-11 indicates that for the VB model, n = 0.024 ,
an increase in F, decreases the ratio L*/b . On the other
hand, Fig. 5-12 indicates for the same abutments and slope but
n = 0.042, and increase in F, increases the ratio L*/b .

The variation of L*/b with F_ in these two figures is not
consistent which might be caused by the effect of the channel
roughness. At the present, because of limited data, no conclu-

sion can be drawn regarding the effect of F, on L* .
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From these graphs it can be concluded, however, that
the distance of the maximum backwater measured from the abutment
entrance never exceeds the theoretical value shown in Fig. 5-7
which is also shown in these graphs. To assume then for a design
problem that the location of the maximum backwater exists at a
distance as shown in Fig. 5-7, provides a reasonable upper limit,
Fig. 5-13 shows the contours of the water surface elevation
above an arbitrary datum in the vicinity of a contracted opening.
In general the flow pattern changes with opening ratio, Froude

number, and abutment geometry,
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Part 2. ENERGY LOSS

The theoretical considerations of energy loss have been
presented in Chapter III. They are briefly reviewed here as a
guide for discussing the experimental results. Fig. 1-1is
needed for reference.

From section 0 to section I, the flow is entirely within
the backwater reach, because the depth is greater than the nor-
mal depth,; hence the average velocity is less than the normal;
therefore, the energy loss is less than that accompanying the
normal flow. Notice that there is a steady gain of potential
energy compared to that of normal flow within this reach.

From section I to section II the flow converges from a
width B to a width b . There is a small amount of energy loss
due to separation in zone la. The average specific head of sec-
tion II is assumed to be the same as that of section I, as indicated

by Eq 3-18.

2 2
+ = + -
MY g T M 2gb;? (318l

Table 5-1 gives the value of h; + 'Zg_g%z and h,+ Zgb%[
obtained by using different model data. The difference is not
appreciable. |

At section II the abutments may cause separation to the
flow. Consequently, there is a certain amount of energy loss
due to separation, the amount of such loss may or may not be

important depending upon the type of abutments, the opening

ratio, and the other flow conditions.
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TABLE 5-1

Comparison of Specific Head Between Section I and Section 11

H, -

H,

Q? 2 Q? 2 H, -H
e R R e
ft ft
301 VB |5.0 5.99 .519| .023 .542 .495 | .044 .539 0.55
361 VB 6.00 .355p ,012 .367 .341 |.023 .364 0.83
450 VB (2.5 6.00 .532] ,005 537 .524 |[,010 .534 0.75
459 VB | 5.0 6.00 .733) ,012 . 745 .724 |,021 . 745 0.00
455 WW | 2, 4,46 .539 .005 .544 .531 |.017 .548 0.74
469 WW | 5, 2.44 .888; ,008 .896 .792 | .104 .896 0.00
498 WW | 5,0 4,48 .549{ ,021 .570 .498 | .078 .576 1.05




From section II to III as the flow continues to converge,
additional energy loss is due to lateral mixing between the jet
and the surrounding water. No information is available about
the amount of energy loss within this reach.

Between sections III and IV the energy loss can be divided
into three categories:

a. Energy loss caused by the normal boundary resis-

tance
En3—-4 = SOL3—4 ° [3" 24}

b. Energy loss caused by the excess boundary resis-
tance
F;-
Eanes = 3"4
e3-4 ‘YBhn

- SOL3_4 B [3‘25]
c. Energy loss caused by lateral exchange of momentum

Vo - V" [3-19]

Em3-4 = Cm Zg -

Under the assumption that the energy loss between sec-
tion I and section IIl is equal to the normal energy loss, the dis-
tribution of energy 1oss between section I and IV has been com-
puted according to Eqs 3-19, 3-24 and 3-25, as shown in Figs,
5-14 to 5~17, The distribution curves for VB, WW and ST
models are similar. Although the figures are somewhat quali-
tative, they are quite informative. In general, the following

conclusions can be stated qualitatively:
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The excess energy loss reaches a maximum of about
20% of the total energy loss when the opening ratio is
about 0.5. Either increasing or decreasing the open-
ing ratio M will reduce the energy loss due to excess
boundary resistance.

Normal energy loss increases as the opening ratio M
increases. At M = 0,5, for VB model, it is about
20% of the total energy loss. For WW and ST models,
it is about 25% of the total loss.

Energy loss due to mixing decreases as the opening
ratio increases. At M = O.S for all models, it is
about 50% of the total energy loss.

The efiect of increasing channel bottom roughness is
to reduce the percentage of loss owing to lateral mix-
ing, and excess boundary resistance, and to increase
the percentage of loss owing to normal boundary resis-

tance.
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Part 3. MAXIMUM BACKWATER

The main objective of this research was to determine
the maximum backwater depth caused by bridge contractions.
In order to understand the problem, a laboratory investigation
as described is needed. It has been realized that the laboratory
results cannot be applied to the complex prototype problems with-
out modifications based upon engineering judgment. Nevertheless,
a thorough understanding of the basic principles involved in the
problem is very helpful to those responsible for desig-.

The logical approach for studying the backwater problem
is to consider first the most simplified case. Results obtained
from the most simplified case can be used then as a basis for the
study of the more complex cases. In accordance with this approach,
the discussion of the effect of different crossing conditions on the
maximum backwater is presented as follows:

1. Simple normal crossing,

Abnormal stage-discharge condition,

. Dual bridges crossing,

2
3
4. Bridge girders partially submerged,

5. Skew crossing,

6. Eccentric crossing,

7. Piers with and without abutments, and

8. Flood plain models
Definition sketches shown from Figs. 1-1 to 1-12 are recom-
mended for reference.

Among the different crossing conditions, the data of
simple normal crossings are sufficient for extensive analysis.

The data of abnormal stage-discharge condition can be considered
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sufficient only for the case that the abnormal condition in a tilted
channel is caused by MIl-type backwater, The data of other
crossing conditions, such as dual bridge crossings and bridge
girder partially submerged are not sufficient to permit com-
plete analyses. Different methods of analysis will be discussed

for these crossing conditions,

Simple Normal Crossing

The analyses of data pertaining to the simple normal
crossings are divided into three parts:

a, Discussion of variables;

b, Equation of maximum backwater; and

C, Empirical curves,

The significance of each independent variable of simple normal
crossings will be discussed in order to find the most important
ones. The equations of maximum backwater refer to the theore-
tical equations which have been présented in Chapter III, and will
be modified by coefficients based upon experimental data. Empiri-
cal curves will be developed by plotting data according to the vari-
ables obtained from dimensional analysis and theoretical considera-
tion.

The simplest laboratory condition for this case is obtained
by using sharp-edged vertical board models [VB models] ina
rectangular flume, see Fig, 4-7. Although the vertical board
type of model does not find direct application in highway design
practice, it does provide the most convenient means of investi-
gating the relative influences of the basic variables on the maxi-

mum backwater,
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In this case these variables include the discharge Q ,
the slope So” the roughness k , the width of bridge opening b ,
and the channel width B . The changes produced by any of these
variables can best be demonstrated by a plot of hy* vs b, in
which the variables have been made dimensionless by dividing
by B . The variable under consideration suchas @ , k , or
S,is the third variable as shown in Fig. 5-18, Fig. 5-19 or Fig.
5-20 respectively. Since only one channel width was used, these
plots do not show the effect of channel width. The plots show
that discharge, roughness and slope influence the maximum back-
water considerably.

It was shown in Chapter III that the channel roughness
and the slope can be eliminated if the normal depth and the nor-

mal mean velocity are used. This resulted in the equation

h* b v Vyh B
—l- = function [, o, -8 —  model type] . [3-86]
hn B /ghn v hn

If only the VB model is considered, the variable of model type

can be eliminated, and Eq 3-86 can be reduced to the following

expression
* V,h B
%"— = function [%, —Vn-—, —o=n H—J [5-1]
n Vghp v n

which contains four dimensionless parameters.
Flume experimenis were made by maintaining the Froude
number V,/~/gh, of the uncontracted flow constant, hereafter

referred to simply as Froude number F The influence of

n -
the opening ratio b/B , and the Reynolds number Vnhn/v on

the backwater ratio h{“/hn can be seen from Fig. 5-21. The
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theoretical curve based upon Eq 3-53 at F,, = 0.184 , is also
shown for comparison. The parameter b/B has a predominant
effect on hy*/h, . The Reynolds number which has only two
values, 5.87 x 10* and 1.25 x 10* , seems to have little or no
effect on the backwater ratio hy*/h_ . Although there is some
slight discrepancy between the two sets of data for smaller b/B-
values, it cannot be attributed to the effect of Vnhn/v , because
the smaller the value of b/B , the greater is the curvature of
the contracted water surface, and the smaller is the viscous
effect. Therefore, the slight scatter may be attributed to experi-
mental error. ‘

InFig. 5-21, the Froude number was maintained con-
stant by changing the channel slope, from S = 0.0012 to 0.002.
From this figure, it can be seen that the channel slope does not
have any influence on h;*/ h, , provided Froude number is used
as a variable. The reason, explained in Chapter III, is that the
effect of channel slope on the backwater ratio is reflected through
the normal flow depth except in the case of horizontal slope So = 0.
The normal depth in a horizontal channel is infinite. Such a case
should be considered as an abnormal stage-discharge condition
which will be discussed in the next section.

The data for Fig. 5-21 were taken in the same flume,
and the width~-depth ratio varied from 11 to 16.5 because of the
change in depth. Despite the variation in the width-depth ratio
B/hn , however, there is no indication that it affects the back-
water ratio hy*/h_ .

Thus Fig. 5-21 has demonstrated that the effect of three
variables namely, Vnhn/v ) So, and B/h, on the backwater

ratio hy*/ h, is not appreciable. The conclusion thus obtained
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is probably positive for the parameter Vnhn/v and S0 , but
bs still uncertain for the parameter B/ h, because it was not
varied over a wide range. The effect of Reynolds number on
the backwater ratio is commonly known to be small because,
both in the flume and in the natural rivers, the Reynolds num-
bers are large. The conclusion regarding the effect of chan-
nel slope on the backwater ratio can be accepted because the
variation of tested slope is appreciable despite the fact it was
ﬁot within the slope range of natural rivers. The conclusion
regarding the effect of width-depth ratio is not certain because
of the limited range of data. The width-depth ratio in natural
streams is usually far greater than that in the laboratory.
Therefore, it is recommended that further research in a much
wider flume should be done to check the results of the current
investigation, |

A contraction in an open channel usually creates pro-
nounced surface curvature of the flow, Therefore, the flow
pattern in the vicinity of the contraction is influenced signifi-
cantly by the fluid weight or the Froude number., The data
in Fig. 5-21 have demonstrated that Reynolds number, slope,
and width-depth ratio [at least tentatively] are not important
factors for the problem of backwater, Therefore Eq 5-1 can

be reduced to the following expression

hy* b \4 '
2 =function [z , —8B—] . [5-2]

The effect of the opening ratio b/B = M and the Froude
number F = Vn/ ~ gh = on the backwater ratio h,*/ h are
shown in Fig. 5-22, The backwater ratio increases with increas-

ing Froude number, Furthermore, for each constant value of
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the Froude number, the backwater ratio decreases with increas-
ing opening ratio, as shown in Fig, 5-21 for a single value of Fn .

In order to examine the trend of the variation of hy*/h n
with M for different values of the Froude number, the theoreti-
cal equation of maximum backwater, Eq 3-53 was plotted as shown
in Fig. 5-23, From Fig, 5-23, it can be seen that as M approaches
zero, hﬁ‘/hn approaches infinity asymtotically for all Froude
numbers., Furthermore, all the curves have a point of inflection
at intermediate values of M and then h;*/ h, decreases suddenly
at the larger M-values, because as M—>1.0 , h;*—>0 , The group
of curves converge as M decreases, and diverge as M increases.,
Such a trend can be observed also from Fig, 5-22,

A direct comparison between the theoretical equation
[Eq 3~53] at Fn = 0,184 , and the experimental data at the same
Froude number can be seen from Fig, 5-21. The data follow the
general trend of the theoretical curve. However, there is consider-
able discrepancy between the data and the theoretical curve. Such
discrepancy is owing to the assumptions used in the derivation
of the theoretical curve., In order to make use of the theoretical
analysis, it is necessary to introduce an empirical coefficient
¢ into Egs 3-51 and 3-53 as expressed by Eq 3-60 to fit experi-
mental data.

Fig. 5-23 indicates that for a certain Froude number there
is a limiting value of M at which hy*/ h ~goes to zero. The
limiting value of M can be obtained through Eq 3-53 by putting
hy = hy ,;, i.e, hy* = 0,

The resemblance between Fig. 5-22 and Fig. 5-23 is a
further demonstration that analysis of maximum backwater based
upon the assumption of critical flow at the contraction is logical

and useful.
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The variation of Froude number in Fig, 5-22 was obtained
by varying the discharge, the channel slope and the channel rough-
ness., If the position of the curves for different values of the Froude
number is consistent, it is an experimental proof that the influence
of discharge, channel slope, and channel roughness is reflected
completely in the Froude number, Figs, 5-24, 5-25 and 5~26
show the variation of hy*/h, with F_ and M based upon the
data taken for various discharges, channel slopes, and channel
roughnesses. It may be seen that h;*/ h ~varies consistently
with Fn for a constant value of M . Note that in Fig, 5-24 three
discharges are indicated by three different symbols; in Fig. 5-25
two slopes are indicated by two different symbols; and in Fig, 5-
26 two kinds of roughness are indicated by two different symbols,
The consistent variation in these plots verifies Eq 5-2 and the
assumption that the influence of discharge, slope, and roughness
are included in the Froude number,

Because other types of abutments are more practical than
the vertical board, the effect of abutment geometry on the back
water must be studied., Fig. 5-27 shows that the type of abutment
influences considerably the backwater ratio., This may be inter-
preted as indicating that the flow pattern is affected by the entrance
condition which depends considerably upon the abutment geometry.
The curve for VB abutments is theupper curve in Fig, 5-27; the
curvé for WW abutments is the lowest; and the curve for ST abut-
ments lies between the two., The position for the curve of the
ST abutments depends upon how the opening ratio is defined. The
curve shown in Fig. 5-27 is for M defined as the ratio of the
average width of the contraction at normal flow depth to the width

of the approach channel. Should M be defined as the top-width
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divided by the channel width, the curve wouid be shifted foward
the right; and if M is defined as the bottom width divided by the
channel width, the curve will be shifted toward the left., For the
case of a large ratio of contracted-opening to depth b/ h, , the
different definitions of opening ratio M for ST abutments does
not affect the value of M appreciably.

Fig. 5-27 shows that for a given normal flow condition,
the effect of model geometry on backwater becomes less signifi-
cant as the opening raiio M decreases. As M becomes small,
all three curves tend to approach the same curve, that is, the
curve for the VB model. It can be concluded that if other condi-
tions remain constant, the flow pattern at small values of the
opening ratio is governed primarily by the opening ratic and is
not affected appreciably by the geometry of the abutments.

That the entrance condition of the flow can be changed
also by using different heights of abutments has been explained
previously, see Fig. 5-10. For WW abutments, the change of
entrance condition due to change of abutment height is not signi-
ficant enough to affect h,f’i‘"/l‘xn as can be seen from Fig. 5-28.
For ST abutments the rather marked effect of abutment height
can be seen clearly from Fig. 5-29.

Within the test range, the model length does not have
any significant effect on the backwater ratio h;*/hn as shown
in Figs. 5-30 and 5-31 for WW and ST abutments respectively.

Equation of maximum backwater:- A study of the meas-

ured data from laboratory experiments confirms the result ob-

tained from dimensional analysis

h¥ . b A%
= = function [=, — , model . 5-3
hn 5 Tan - mote] S
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Any suitable empirical or theoretical equation for the maximum
backwater, therefore, must include the parameters given in Eq 5-3,
For an analysis of this type of problem, three basic equations

should be considered:

1. The continuity equation
2. The momentum equation, and
3. The bernoulli equation.

In applying the continuity equation, it is necessary to make assump-
tions regarding the distribution of velocity and the coefficients of
contraction., When using the mementum equation, it is necessary

to evaluate the forces exerted by the boundary to the flow in addi-
tion to the velocity distribution and the pressure distribution. In
applying the Bernoulli equation, it is necessary to evaluate along
each streamline the energy loss, vé.locity distribution, and pressure
distribution. All indicate that there are unknown quantities which
must be evaluated through experiment.

Eq 3-60 was obtained in Chapter III:

h 9
[P = 37y 20 . [3-60]

This equation was based upon the continuity equation and
the Bernoulli equation, As pointed out in Chapter III, the coeffi-
cient ¢ has three meanings.

a. It corrects for non-uniform velocity distribution

in sections I and II, and non-hydrostatic pressure
distribution in section II.

b. It corrects for the deviation of the actual flow condi-

tions from the conditions of critical depth at the

entrance of the contraction.
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c. It corrects for the approximation obtained by neg-
lecting terms of higher order in Eq 3-54.

Because the correction stated under c¢ become s significant
only for values of M larger than 0.8 , which is beyond the
range of laboratory data, it need not be considered.

According to the correction stated under a, the velocity
distributions in sections I and II depend on the opening ratio,
the abutment geometry and the Froude number. Hence ¢ is

a function of M , F_ and abutment type.

n

Regarding the correction stated under b, it is noted
that the assumption of critical depth at the contraction becomes
more realistic, the smalier the value of M and the larger the
Froude number F,, . The term ¢ becomes unity in case the
assumption of critical depth at the contraction is fulfilled, there-
fore for small values of M and large values of F, the codfici-
ent ¢ approaches values close to unity. However, correction
for non-uniform velocity distribution and non-hydrostatic pres-
sure distribution prevents ¢ from reaching unity.

By inserting into Eq 3-60 the values of hy*/h_ , F, and
M obtained through measurement, ¢ values can be computed.
Fig. 5-32 shows the variation of the ¢-values with F_  with M
as a third variable for the VB model. These curves indicate the
trend that for constant Froude number, the larger the M , the
larger the value of ¢ ; and for a constant value of M , the small-
er the Froude number, the larger the value of ¢ . The ¢-value
approaches unity for all values of M when F, approaches unity,
and ¢ approaches infinity for all values of M as F, approaches

zero.
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Fig. 5-33 and 5-34 are ¢-values as a function of M
with Fn as a third variable for WW abutments and ST abutments
respectively. These two figures are very similar, which means
that the geometric effect of the WW abutmentis and ST abutments
on the ¢-value is approximately the same.

Notice that all experimental ¢-values shown in Figs. 5-
32, 33 and 34 are greater than unity, which means that within
the experimental range the flow in the contracted section is not
at critical stage, the distribution of velocity is not uniform, and
the distribution of pressure is not hydrostatic. Furthermore for
the same value of F_ and M, the ¢-value from Fig. 3-32 is
larger than the @-value from either Fig, 3-33 or 3-34, Assum-
ing that the correction for the flow in the contracted section, not
being at critical stage, is the same for all abutment-types when
Fn and M are the same, the larger ¢-value for the VB model
means that the distribution of velocity deviates more from being
uniform, and the distribution of pressure deviates more from
being hydrostatic in this case,

It is clear from Figs. 5-32, 5-33 and 5-34 that the ¢-
value is a function of Fn , M , and meodel type. For each model
an empirical equation of ¢ expressed as a function of Fn and
M can be obtained, Such an equation for either ST or WW abut-
ments, if obtained, does not have appreciable practical use.

The equation of the g¢-value for the VB model alone will illus-
trate the function of Fn and M . The method of obtaining such
an equation is now explained.

In Chapter III the following equation was given:

h F,2
113 - ¥n -
[h ] —-—-TFl [3-53]
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where

2
3 qint® _ 2001 L
$7Sinl3 - 30% - 1

F? = [3-51]
This equation is for the upper limit of resistance backwater
having uniform velocity distribution and hydrostatic pressure
distribution in the contraction, Eqs 3~53 and 3-51 show that
[hy/ hn]a‘ varies directly with Fnz , and apparently in a complex

way with some function of M , The boundary conditions are:

when F :O,}'—h-=0
n hp

when M =1, Fy =1, F_=1, and §i= 1 [5-4]
Assume that [hy/h ]* for the VB model varies practi-
cally with Fn2 and let the function of M of Eq 3-51 change to
fit the laboratory data. An equation relating [h,/ hn]3 , Fnz and
M can be obtained for the VB model from experiments. For the
VB model the variation of [h;/th With‘Fnz and M is shown
~in Fig. 5-35, A series of straight lines can be drawn through

the data. The general equation for the straight line is
[P-LP =GF 2+ 1 [5-5]
hn‘ n '

where G is the slope of the straight line and is a function of

M . Notice that Fig. 5-35 satisfies the boundary value of Eq 5~
4, The best fitting empirical equation for G to satisfy Eqs 5-
4 and 5-5 is
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G[M] = 4,483[—1317 -#2.5-M) . (5-6]
Substituting G({M) into Eq 5-5 and rearranging terms

[—111}’ -1 = 4,483F 2[—17 -4(2.5 - M)] [5-7]

h, ° n-M 3 ’

By combining Eq 5-7 and 3-60 the equation for ¢ can be obtained

as
$ = 1.33[1 - #M¥2-M ‘5{31?)] . [5-8]

Eq 5-7 is an empirical equation for determining the maximum

backwater for the VB model, Substitute
hy = hy, + hy* . [5-9]

Eq 5-7 results in

h* 1
[HLP = 4,483Fnz[ﬁz -&2,5-M]+1 . (5-10]

n

The variation of [hy*/h ]* with F_2[1/M? - H{2.5 - M)]
for VB data is shown in Fig, 3-36. Eq 5-7 is also shown for
comparison., It shows that Eq 5-7 fits the data very well. There-
fore it can be used to compute the backwater caused by the VB
contraction,

Similar to Fig, 5-35, are Figs, 5-37 and 5-38 showing
the variation of [hllhn]s with Fnz and M for WW and ST abut-
ments respectively. In these two figures, data for a given M-

value do not follow a straight line, This imples that [hllth
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- does not vary linearly with Fn2 . This is because the entrance
condition of the flow varies with Fn . No attempt has been made
to find empirical equations to fit the data because of the limited
usefulness of these equations.

Empirical curves:~ Based upon Eq 5-7, significant para-
meters can be devebped for presenting data by simple empirical
curves., Eq 5-7 can be changed into the following form and still

satisfy the boundary conditions as indicated by Eq 5-5.
[ -1 = F iy - 16" [5-11]
h, n-M

where G' is a new function of M . Comparing Eq 5-11 with
‘Eq 5-7 yields,

MZ

M+ 1 1 . [5-12]

G' = 2.98[1.5 -

A plot of [hy/h J* with Fnz[ll M? - 1] has been prepared
for the VB model in Fig, 5-39 which indicates that when Fn"[l | M2
- 110, [h;lhn]3*->1 .

The value of Fnz{ 1/ M? - 1] approaches zero either by
letting Fn2 approach zero or by letting M approach unity.

‘When the value of Fn approaches zero either the normal velo-
c¢ity in the uncontracted channel must approach zero, or the nor-
mal depth in the uncontracted channel must approach infinity.

In either case the maximum backwater hy* caused by channel
contraction is insignificant. On the other hand, as the opening

ratio M approaches unity the maximum backwater depth h;

approaches h’n . Data for different Froude numbers fall very

well on a single curve. At any point the tangent of the curve
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varies with F_%[1/M? - 1]. The advantage of using Fig. 5-39
instead of Fig. 5-35 is two-fold:

a. According to Fig. 5-35, interpolation is needed

for an M-=-value other than those indicated by the
curves. No interpolation is needed if Fig, 5-39
is used because there is only one curve,

b. According to Fig. 5-35 extrapolation is needed
for Fn‘; 0.416 , such extrapolation is not nec-
essary if Fig. 5-39 is used as long as F_?
[1/Mm?% - 1]< 2.6 .

The same piot has been prepared for other abutment
types as shown in Figs., 5-40 to 5-43, namely for WW 45 degree,
WW ¢0 degree, WW 60 degree and WW 30 degree abutments, and
ST 1:1%, ST 1:1, and ST 1:2 abutments. These curves can be
constructed with a relatively small number of data. Fig. 5-40
and Fig. 5-41, which are for WW and ST models respectively,
indicate that Froude number may enter as a possible third vari-
able. This may be explained by the fact that the entrance condi-
tion for a model other than VB changes with Froude number. The
advantage of using VB model to simplify the problem is then
clearly demonstrated. It can be found from Figs. 5-40, 5-41
that the scatter of data for [h,/ hn]3 is mostly within 8 per cent,
which means 2 per cent for h,,/hln . Considering the wide range
of data, the correlation is exceedingly good.

The curves for different models as shown in Fig. 5-39
to Fig. 5-43 are replotted for comparison in Fig. 5-44 where
it may be seen that the VB model gives the largest maximum
backwater and the WW60 degree model gives the least maximum

backwater if other variables are held constant.
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The data for simple normal crossings are listed

as Table I in the Appendix B,

Abnormal Stage-Discharge Condition

Abnormal stage-discharge condition at the proposed
bridge crossing can be caused by a dam downstream or flood
flow in another river whose confluence with the river under con-
sideration is a short distance downstream. In the laboratory,
this backwater which is known as an M1 curve can be obtained
by raising the tailgate to cause ponding in the downstream sec-
tion of the flume. The changing of depth due to the effect of an
M1 curve varies from maximum at the tailgate to zero at some
distance far upstream from the tailgate.

The depth measured at section II is chosen as the refer-

ence depth h see Fig., 1-4, After the model was in place,

A 3
the maximum backwater was measured. The difference between

h; and hA

contraction.

is defined as the maximum backwater caused by the

Experiments for this abnormal condition have been made
for VB, ST and WW abutments. Data for this condition are tabu-
lated in Table 2 in Appendix B, For ST and WW abutments, two
values of Froude number were used, Fn = 0,289 and Fn =
0.332 . For the VB model Fn = 0.289 was used. The range
of [(hA - hn)/hn] varies from zero to forty per cent.

In analyzing the simple normal crossing case, graphs
showing the variation of [h;/h_]* with Fnz and M was found
to be satisfactory, see Figs. 5-35, 5-37 and 5-38., The same
type of plot may be used for the present case provided the pro-
per depth and Froude number are defined to take into considera~-

tion the abnormal stage-discharge effect.

-146~



In the case of a simple normal crossing, the reference
depth is the normal depth. In case of flow having abnormal
stage-discharge, however, the desired reference depth is the
depth at the section where the maximum backwater is expected
to occur after the contraction is installed. Since the location
of the maximum backwater is not generally known, the refer-
ence depth has been defined as the depth measured at section II

before the contraction is in place. Thus

hA = hn[l + ratio of increase at section II] [5-13]

where hA is the reference depih for the abnormal stage-discharge

condition. The reference depth measured at section Il is greater
than the depth if measured at section I; hence h;/h, <1 for M

= 1 , The reference Froude number can be defined as:

Q
F B ] 5-14
A hpB /gha [ ]

2
A

M are given in Figs. 5-45, 5-46 and 5-47. In all cases a series

Plots showing the variation of [h;/h AP with F,% and

of curves can be drawn, these curves do not pass through the

point [hI/hA]3 = 1 for FA = 0 as compared to the curves for

the case of the simple normal crossing. The reason is that h A

and h; were not measured at the same section.
For the case that the flow has a horizontal bed, the refer-

ence depth h A can also be taken as the depth measured at sec-

tion II. However, in this case hl/hA> 1 for M = 1 , because

the backwater curve is the H2-type instead of M1 . Based upon

this reference depth, F and [hl/hA] were computed. Fig.r 5-48

A
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shows the variation of [h/h AP with FAZ and M . The curves
do not coincide with those in Fig. 5-35 which is for data from a
sloping channel, This discussion leads to the conclusion that
data taken in a horizontal channel do not represent flow condi-
tions in sloping channels, Fig. 5-48 does not coincide with Fig,
5-45 which is for an abnormal stage-discharge condition of M1
type of backwater curve.

Data of abnormal stage-discharge conditions are in Table

2 of Appendix B,

Dual Bridges Crossing

Whenever there is heavy traffic crossing a river or a
stream, there is usually more than one bridge crossing. Dual
bridges may be built for many purposes, such as for highways
and for railroads, According to modern development of divided
highway construction, two bridges of identical design, placed
parallel and only a short distance apart, are becoming more
common. It is to be expected that the backwater produced by
dual bridges contraction [hereafter called dual contractions]
would be higher than that for a single bridge. As the combinations
o dual contractions encountered in the field would be innumerable,
it was necessary to restrict the model tests to the simplest
arrangement, namely: identical parallel bridge crossings nor-
mal to the flow, see Fig. 1-5, The abutments were restricted
to the WW model and the ST model. The distance between the
two bridges was limited to the range permissible in the flume,
The maximum backwater h; d* upstream from the first contract-
ion depends not only upon the variables discussed in the case of

a simple normal crossing but also on L_ , the distance between

the two bridges.
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The effect of LD on the maximum backwater is reasoned

as follows: If LD = 0 , the two contractions are represented by

one only and the backwater can be determined by the method dis-
cussed for the simple normal crossing. If LD > 0, the jet com-
ing from the first contraction enters into a zone of backwater
caused by the second contraction downstream. Owing to the

effect of higher tailwater depth, there will be a different force-
momentum flux, and different energy dissipation for the oncom-
ing jet. Consequently, the maximum backwater h d* will be
higher than hy* which is for a single contraction. If the dis-
tance between the two contractions is fairly great, the backwater
effect of the second contraction will not affect materially the
oncoming jet from the first contraction. Consequently, the maxi-
mum backwater will not be affected appreciably. Other conditions
remaining the same, there will be a value of LD = LDC which
gives the highest maximum backwater. In this study it is expected

to determine the effect of L and to determine the magnitude

D 3

of LDC . Needless to say, in the design of a dual crossing, the

L_ ~-value should always be avoided.

DC
The magnitude of L depends upon such variables as

the Froude number, the ope])?fng ratio, and the model type. With
the limited amount of data, it is not possible to evaluate the effects
of all these variables. In this study the opening ratio was varied
approximately from 0,35 to 0.75. The length LD was varied
from 0 to 10 ft, which is about 20 times the normal flow depth.
The effect of Froude number cannot be studied because of limited
data.

Let h * and h;* denote the maximum backwater for

d
dual contractions and for a simple normal crossing respectively.
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Plots are given, see Figs. 5-49 and 5-50, showing variation of
[hd* - hy*] with LD and M with a constant Froude number

for two WW models and two ST models., The difference [hd* -
h,*] is the increase of maximum backwater due to the existence
of the second contraction dewnstream. The two plots are differ-
ent from each other, which means that there is an effect due to
abutment geometry., Figs. 5-49 and 5-50 indicate that for a
given Froude number, abutment type, and spacing of the two
brudges, the smaller the M , the larger the [hd* - hy*] .

Along any one curve of M = constant, [hd* - hy*] varies with

L Furthermore h * is independent of L therefore hy*

D° d
is the highest, if [hd* - hy*] is a maximum,

D »

The LD-value which corresponds to maximum [h d* -

hy*] is designated as L according to the definition., Figs.

DC

5-49 and 5-50 seem to indicate that LDC increases with decrease
of M because the tailwater depth below the first contraction in-

creases as M decreases, and L is expected to increase

DC

with the tailwater depth. The range of LD is not sufficient to

determine the LDC value which will give highest backwater.

In analyzing the case of simple normal crossings it was
found that by plotting [hl/th with Fnz[l/Mz - 1] , data of the
same abutment type fell along a single curve, see Fig. 5-39 to
Fig. 5-43. Another type of plot using [h;/h,]® - 1 and F'nz[lfMz
- 1] was made but not reported; it showed that data fell on a
straight line, the slope of the line is not 1.0 , but varies slightly
with abutment geometry. Following such an analysis, data for
dual bridges crossing were plotted as [h!/hn]?3 - 1 against Fnz
[1/M?2 - 1] as shown in Figs. 5-51 and 5-52 for WW and ST abut-

ments respectively, From these two figures, straight, parallel
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lines can be obtained for different values of 1. The third

variable LD is not expressed dimensionlessl;) because of
insufficient data. From dimensional analysis the third vari-
able can be expressed either as LD/ hn or LD/ B, Only one
value of Froude number was used for ST abutments. Three
values of Froude number were used for WW abutments -- in
which case Fn does not enter as a third variable as can be
seen from Fig, 5-51, Empirical equations can be obtained from

these two figures. For WW abutments

[(%ni-)s RN LEEL cWWF;[—M% -1 . [5-15]
For ST abutments

[G* - 1% = CorPellgp - 1] [5-16]

Both CWW and CST are shown in Fig. 5-53 as a func-

tion of LD . According to the data, the greater the L_ , the
greater the coefficient CWW and CST -

the backwater. For each type of abutment there must be a

- therefore, the higher

value of LD which creates the highest maximum backwater,

it is concluded that the experimental range of L_ is not large

D

enough to give the maximum value of CWW and CST , corres-
ponding to the highest value of [h;/h,]. Data for dual contrac-

tions are listed as Table 3 in Appendix B.

Bridge Girders Partially Submerged

If the contracted opening is not adequate for a given

flood, the backwater will be forced so high that it may overtop
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the bridge superstructure or it may partly submerge the upsiream
girder of the bridge. In the latter case, the contraction due to
the bridge crossing acts as an orifice, see Fig., 1-6. The pro-
blem of studying backwater then becomes a problem of studying
the discharge coefficient of such an orifice.

Laboratory models have been made to study this problem.
The bridge girder was substituted by a wooden box of 1-ft width,
see Figs. 1-6 and 4~9, The distance z between the bottom of
the box and the flume bottom could be varied easily. The length
of the box matched with the contracted opening length so that
there was no problem of sealing the joints. Both WW and ST
abutments were tested. Most tests were made by using F,, =
0.332 for the ST abutments, and Fn = 0,297 for the WW abut-
ments. The method of studying the maximum backwater by use
of the discharge coefficient, with the bridge girder partially sub-
merged, is presented in Chapter VI. By the use of dimensional
analysis the ratio of the maximum backwﬁater depth to the normal

depth can be expressed by the following variables:

-gi ={f[M, F,, f;a abutment type, EB;] . [5-17]
Figs. 5-54 and 5-55 show the variation of hy/h  with z/h,

and M for WW and ST abutments respectively. In each of these
two figures the abutment type, the Froude number, and the width-
depth ratio were held constant. Because of limited data, the
series of dimensionless curves cannot be completed. In general
it can be expected that along the curve of a constant M , the
smaller the value of z/ hn , the greater the magnitude of h,;/ hn .

Furthermore, it is expected there is an upper limit of z/ hn
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beyond which hy/ h, remains unchanged. The z-value in this
case should be greater than h, -- the depth at section II when
the bridge girder is not submerged.

In the foregoing analysis the parameters used for analyz-
ing data of dual contractions, and partially submerged bridge
girders are derived from the case of simple normal crossing.

A new method utilizing the effective opening ratio M* has been
found successful in correlating data of partially submerged bridge
girders. This method was found satisfactory also for correlating
data of other conditions reported hereafter.

Using experimental data, the backwater depth for the
simple normal crossing with certain abutments and under cer-
tain flow conditions can be plotted against opening ratio M as
a base curve., The measured depth h; or hy* for a contraction
condition other than a simple normal crossing, but with the same
abutments and flow conditions, is superposed on the base curve
for the simple normal crossing. The opening ratio thus found
is called effective opening ré.tio M* , In application if the M*-
value is known for a certain contraction, the backwater depth
for this contraction can be obtained from the known information
of a simple normal crossing.

The method of effective opening ratio can be applied to the
case of bridge girders partially submerged as follows: The effec-
tive opening ratio M* under certain flow conditions for WW abut-
ments can be found, and the difference between actual opening
ratio and the effective opening ratio M-M#* is plotted against
z/hy with M as the third variable, see Figs. 5-56, Because
h; and possibly M* are functions of Froude number, the Froude

number does not appear in Fig. 5-56 as third variable.
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In order to use Fig, 5-56, a simple trial and error pro-
cedure is needed., By assuming the value of h; , the value of
M* can be found from Fig. 5-56. The values of h; and M¥*
should fall also on the base curve of h; vs M under the same
flow condition with the same abutments. Data for bridge girder

partially submerged are included in Table 4 of Appendix B,

Skew Crossing

The skew crossing was obtained by placing the abutments
on a skew angle ¢ with respect to the longitudinal direction of
the flume, see definition sketch Fig. 1-7. The abutments were
installed after the normal flow was established. Measurements
indicate that the flow pattern in the vicinity of the contracted sec-
tion differs considerably from the case of the simple normal
crossing -- refer to Fig. 5-13, With the skew crossing, the
flow pattern is no longer symmetrical with the center line of
the channel, see Fig. 5-57, the water surface contour., The sec-
tion I, where the maximum backwater h; is usually measured,
cannot be defined in this case., Data show that the maximum
depth may occur at the upstream left or right stagnation points
and depends upon the opening ratio and skew angle., Flow depth
hUL s hUR s hDL , and hDR were measured at the points
PUL s PUR s PDL and PDR respectively, see Fig. 1-7.

There are two ways to orient the face of the model abut-
ment, see Fig, 1-7:

a, Parallel to the center line of the approaching chan-

nel, and

b. Perpendicular to the center line of the roadway.

It is difficult to conclude which arrangement gives the least
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backwater. Case a is suitable for the upstiream abutment while
case b is suitable for the downstream abuiment.

Data for skew crossings were taken for VB, WW and ST
abutments, see Table 5 in Appendix B. Skew angles varied at
15 degrees, 30 degrees and 45 degrees. It was found in the tests
that a skew angle equal to or less than 15 degrees does not affect
appreciably the depth at the stagnation point. Therefore, testing
of the i5-degree skew angle was not completed. Froude numbers
used were 0,289 and 0,332, For skew crossings the opening
ratic M is defined as M = [b Cos ¢]/B , where ¢ is the skew
angle. In order to obtain a wider range of M-values for ST and
WW abutments, it was necessary to alter the abutment for wider
openings. This might introduce some uncertainty into the data
because the abutment shape is no longer standard.

The method of effective opening ratio M* was applied
to this case. In order to obtain the effective opening ratio, it is
necessary to plot a base curve. The base is obtained by plotting
the average of hUR and hUL as hu [for the simple normal
crossing] against M for a given model at a given Froude num-
ber. The effective opening ratio M* can be found by superpos-
ing on the base curve the reading hUR or hUL of the skew
crossing. The corresponding opening ratio is called the effec-
tive opening ratio M* of a skew crossing according to h or

UR
h respectively for a given abutment at a given Froude number,

Dgi_; of the VB model analyzed by this method is presented in the
following to illusirate the proceedure.

Fig. 5-58 shows the base curve hu vs M of the simple
normal crossing for the VB model at Fn = 0,332, If the value
of hUR’ of the skew crossing at opening ratio M is superposed
on the base curve, the effective opening ratio can be obtained.
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Fig. 5-59 shows a plot of M vs M* for VB model at Fn =
0.332. Notice that M* is also a function of skew angle. A
straight line M = M* is drawn for reference. The fact that

all data fall above the line means that the effective opening

ratio of skew crossings is greater than the actual opening ratio.
It is equivalent to saying that for the same opening ratio, the
backwater h of a skew crossing is less than hu , the average

UR
of water h and h of a simple normal crossing. The rea-

son for thisUi: that foEI;he same opening ratio of a given channel,
the opening width b of a skew crossing is actually greater than
that of a simple normal crossing. In general M* depends upon
M, ¢, Fn and abutment geometry.

Fig. 5-60 is the base curve for the WW abutment at Fn =
0.332, Fig. 5-611is a plotof M vs M* for the WW abutment
with the abutment face perpendicular to the roadway. Fig. 5-62
is a plotof M vs M%* for the WW abutment with the abutment
face parallel to the center line of the channel.

From Figs. 5-61 and 5-62, it can be seen that some of
the data fall below the line M = M¥* =-- which means that in this
case M* is smaller than M , i.e., the backwater hUR of a
skew crossing is greater than hu of a simple normal crossing
if the opening ratio remains the same. However, such an effect
is not important because it happens when ¢ is small or when M
is large as shown in these two figures.

Fig. 5-63 is the base curve for the ST abutment at Fn =
0.332; Fig. 5-64 is a plot of M vs M* for the ST abutment
with the abutment face perpendicular to the roadway. It shows

that M vs M¥* is independent of skew angle. Fig. 5-65is a
plot of M vs M* for the ST abutment with the abutment face
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parallel to the center line of the flume., It shows that M* is
generally greater than M , which means hUR is smaller than

hu for the same opening ratio,

Eccentric Crossing

Bridge abutments are almost invariably placed back from
the normal low water channel, During floods, however, the river
occupies the entire flood plain., The flood plain, however, is not
always symmetrical with respect to the normal channel., Conse-
quently, the bridge span become s eccentric with respect to the
axis of the flood plain, The degree of eccentricity e was defined
in this chapter as the difference between unity and the ratio of the
lengths of the short roadway to the long roadway, see Fig, 1-8,
When e = 1, it corresponds to a bridge for which only one road-
way extends into the river, and when e = 0 it corresponds to the
case of a normal crossing.

For the VB model degrees of eccentricity varying from
zero to unity have been tested. When the eccentricity is unity,
the roadway embankment is from one side of the channel only.
This case could be treated as a hypothetical case of simple nor-
mal crossing by considering the opposite bank of the channel as
the center line of the flow and the hypothetical channel has twice
the channel width, if the boundary layer developed along the bank
is assumed negligible, For practical application, this assump-
tion implies that the bank adjacent to the opening must be straight
and hydraulically smooth, Figs. 5-66, 5-67 and 5-68 show the
comparison of the magnitude of h; between the simple normal
crossing and the eccentric crossing of e = 1, for VB, WW and
ST abutments respectively. Except for ST abutment, the differ-

ence in h; is negligible,
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In the case of eccentric crossing, the maximum back-
water hy* cannot be determined very simply because of the
unsymmetrical flow pattern. For approximation it may be con-
sidered still to be on the center line of the opening.

For ST abutments the effect of eccentricity on h; be-
comes more significant as shown in Fig, 5-68, By comparing
these three Figures, it can be concluded that among the three
types of abutments tested, the backwater depth h; caused by
eccentricity of ST abutments changes most appreciably, and
that caused by eccentricity of the VB contraction does not change
appreciably. This indicates that the flow pattern pertaining to
the ST abutments is easily affected by eccentricity while the
flow pattern pertaining to the VB contraction is least affected
by eccentricity.,

The effect of eccentricity on the stagnation depth has
been studied by use of the method of effective opening ratio,

The value of M* for measured hUL was found from a base

plot of hU with M for simple normal crossing of the same
abutment type at the same Froude number; The value of M* varies
linearly with M as shown in Fig, 5-69. Notice that for all cases,
M* is less than M , which means the magnitude of hUL of
eccentric crossing is generally larger than that of the simple nor-
mal crossing for the same abutments at the same Froude number.

Fig. 5-69 yields a very convenient correlation between
normal crossings and eccentric crossings. In order to estimate
the effect of eccentricity, the value of M has to be multiplied
by a factor of proportionality which is the slope of the straight
line. Such a factor depends on the model type, the Froude num-
ber, and the degree of eccentricity, More experimental data on
the effect of eccentricity on the maximum backwater are needed in

order to complete this graph,
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The data for eccentric crossings are in Table 6 of Appen-

dix B.

Mest bridges have piers built in the stream channel to
support the superstructure. The channel contraction is caused
either by piers alone, if the abutments lie outside the channel,
or by a combination of piers and abutments.

A study of the effect of piers on the backwater is there-
fore desirable. The shapes and sizes of piers encountered in
practice vary considerably. Only ceriain common types could
be considered in this research. These are:

a. single shaft circular pier,

b. double shaft circular pier,

c. round-ended narrow pier,

d. round pile bent,

e. square pile bent, and

f. H-pile bent.

Detailed descriptions of these piers are shown in Fig. 4-8,
Froude numbers of 0,289, 0.298, and 0.332 were used in the
testing.

Extensive studies on the backwater caused by piers
alone have been made previously by Rehbock [24], Yarnell [36],
and Nagler [23]. It is therefore possible to analyze the present
data by these methods derived by previous investigators.

If the combined effects of piers and abutments are to be
investigated, the problem is considerably more involved: Con-
siderable error may result if the additional backwater caused

by piers is assumed to be equal to the difference between the
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total backwater and the backwater caused by the abutments. It
was pointed out that in the case of a normal crossing without piers,
the influence of abutment geometry changes with the flow depth.

If this is also true for piers in place, then it is not possible to
evaluate separately the additional effect of abutment geometry

and the influence of piers on the backwater. This consideration
makes clear that it is not possible to apply methods for piers alcne
to the case of the combination of piers and abutments. A further
complication arises from the considerations given in Chapter III
for the case of flow around a circular shaft: The head-loss caused
by a pier varies not only with the size of the pier but also with the
approaching flow conditions. One finds, therefore, that the pier
size D , as well as the number of piers N , will enter as separ-
ate variables -- i.e., if the additional headloss is expressed by

a function of s ND/B , where s is a function ¢ of pier shape
and size.

From the foregoing considerations, it is concluded that
an accurate method of computing maximum backwater for the
case of piers with abutments cannot be found without an exten-
sive study. However, owing to the fact that piers cause a rela-
tively small amount of backwater, an approximate but safe method
may still be obtained.

It was found that the artificial bed roughness in the throat
section is of considerable influence on the backwater. In some
cases the influence of the artificial bed roughness in the contracted
opening may even be larger than that of piers. A series of tests
had been conducted to demonstrate this effect for the case of b/B
= 0,563 with pile bents, the differences between tests of maximum

backwater with and without roughness in the contraction can be seen
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from Fig. 5-76. For example, hy* was 0,041 fi for the case
of WW abutments with bar roughness [n = 0.024] in the con-
traction, and hy* was 0,039 for the case of WW abutments,
without bar roughness in the coniraction. After one pile bent
was added, hy* became 0,040 for the case without bar rough-
ness, which was still less than h;* for the case of no piles but
with bar roughness. The effect of bed roughness in the contrac-
tion on the maximum backwater becomes more important as the
number of piers increases. Notice that in Fig, 5-70, the differ-
ence between the two h;*-values increases as the number of
piers increases. This fact can be used to explain some of the
data scatter reported in Table 7 of Appendix B.

Piers only:- It was found that the backwater caused by
a few piers is very small and the error of measurement may
often be almost equal to the backwater.

The methods available for computing the backwater
caused by piers are those of Rehbock [24], d'Aubuisson [36],
Nagler [23], and Weisbach {36].

Rehbock [24] assumed the backwater proportional to

the velocity head of the unobstructed flow, or

Vi’

* = Yn
By CRE 2g

[2-7]
where

Cpp = [50 - m(ﬁo - 1] [0.4m+ m?+ 9(m)*] [1+ F_ 2] [2-7a]

where 60 is a form index of the pier,

m 1is the contraction ratio = %—Q , see Eq 2-9,
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For round-ended narrow piers and single round shaft
piers the values of the coefficient 60 computed for present
data compare reasonably well with the ones given by Rehbock.
Rehbock did not furnish coefficients for other types of piers
used in this research. These coefficients for all piers tested
have been computed from the data, see Table 5-2. A compari=-
son of computed backwater heights according to Rehbocks coeffi-
cient with measured backwater heighis is given in Table 5-3,
For Q = 5 cfs, the backwater computed from Rehbock's formula
is smaller than the measured backwater. For @ = 3 cfs, the
computed backwater is comparable to the measured backwater.
D'Aubuisson assumed the backwater height to be equal
to the difference between the velocity head at the pier side, and
the velocity head at the section of maximum backwater. For
the former he used the velocity head of the normal section multi-
plied by a factor of proportionality l/CD A"‘ which depends on
the pier type. Thus he obtained the following equation:

V,2
2g

h* = [ Ly ‘222] - : [2-2]
DA

The coefficients CD A from current data compare reasonably
well with the ones given by Yarnell [36] for round ended narrow
piers and double shaft piers, Yarnell did not give coefficients
for other pier types. Coefficients for all piers tested have been
computed from present data, see Table 5-2. The backwater
heights computed from D'Aubuisson's equation compared unusually
well with the measured ones as shown in Table 5-3.

By using the coefficient for round-ended narrow piers

CNA = 0.934 and for double circular shaft CNA = 0.892 as
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given by Yarnell, the backwater was computed according to Nag-

ler's backwater formula:

. v 2 v F4
= . SR ¢ - U -
Q = Cy,bV2g[h_ -6 zg]\/[hl hyl+ Bt [2-3]
or

Z 2

hl* = h! - hn = Q 7 5 - Btv‘zlg
2.2 ~ n_ 12
CNA b Zg[hn 6’ 2g ]

where 6' is 0.3 according to Yarnell, and B' is obtained

from Fig. 2 of Yarnell's report [36]. Table 5-3 shows that Nag-
ler's method does not compare well with the present data. There-
fore, Nagler's method was not used. The method of Weisbach
has been found unsound by Yarnell [36], therefore, it is not
included in this report.

The data for piers only are in Table 7 of Appendix B.
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TABLE 5-2

Comparison of Pier Coefficients

Rehbock's form index 65

D'Aubisson Coef. K

Nagler's Coef. K

A
Pier Type Authors | Yarnell | Rehbock Authors YarnellDA Authors Yarnell\i
Round Narrow 3.21 3.35 1.27+§-I—]‘) 1,052 1.079 0.910 0.934
Single Shaft 3.46 - 2.51 1.043 - - -
Double Shaft 5.23 6.13 - 0.996 0.991 0.949 0.892
Round Pile 10.51 - - 0.918 - 0.878 -
Square Pile 10.61 5.03 - 0.928 1.003 0.900 0.885

Note: L = length of piers

D = thickness of piers

Round Ended Narrow Piers - In the experiments by the authors L/D varied from 5 to 20 times.

The coefficient is the average value. Yarnell used L/D equal to 4

only.

Square Pile Bents - The models used by Yarnell included bracings whereas the models in the

author's experiments had no bracings.
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TABLE 5-3

Comparison of Maximum Backwater Computed from Various Formulas

N M h* [ = Backwater height]
[Number _B-ND Measured From From From
Type of of (= B ] h Backwater Rehbock's d'Aubuisson Nagler's
Run No, Model Piers] Discharge “n Height Method Method Method
594 Round 4 5 cfs .899 0,416 0,007 0.0037 0.0083 0.012
595 Narrow 2 " .949 " 0.003 0.0017 0.0042 0.007
1120 " 12 " .921 0,484 0,004 0.0034 0.0033 0.0063
1121 " 16 " .895 " 0.006 0.005 0.0045 0.0057
1122 " 8 " .895 " 0,006 0.0034 0.0046 0.0058
1123 " 6 " .921 " 0.004 0.0024 0.0027 0.0064
1124 " 4 " .947 " 0.003 0.0016 0.0012 0.0064
1125 " 2 " .974 " 0,001 0.00074 0.000 0.0055
1133 " 16 3 cfs .895 0,360 0,004 0.0032 0.0029 0.0040
1134 i 12 " .921 " 0.002 0.0024 0.0018 0.0044
1135 " 8 " .947 " 0.001 0.0015 0,0005 0,0014
1136 " 8 " .895 " 0,002 0.0022 0.0026  0,0035
1137 " 6 " .921 " 0.001 0.0016 0.0016 0.0022
596 single 4 5 cfs .848 0,416 0,013 0.0081 - -
597 shaft 2 " .924 " 0.007 0.0035 - -
608 " 2 " .924 0,484 0,002 0,0025 - -
609 " 4 " .848 " 0.008 0.0057 - -
610 " 2 " .949 " 0.003 0.0016 - -
611 " 4 " .899 " 0.006 0.0035 - -
1110 " 2 " .974 ! 0.006 0.00075 - -
1111 " 4 " .947 ' 0,003 0.00152 - -
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TABLE 5-3 -- Continued

N M hy* [ = Backwater height]
[Number _B-ND Measured From From From
Type of of [= B ] Backwater Rehbock's d-Aubuisson Nagler's
Run No, Model Piers] Discharge n Height Method Method Method
1112 single 6 5 cfs .921 0.484 0,006 0.00248 - -
1113 shaft 8 " .895 " 0,008 0.00346 - -
1126 " 8 " .947 " 0.002 0.0015 - -
1127 " 12 " .921 " 0.003 0.0025 - -
1128 " 16 " .895 " 0.003 0.0035 - -
1145 " 16 3 cfs .895 0,360 0,003 0.0022 - -
1147 " 12 " .921 " 0.001 0.0016 - -
1151 " 8 " .895 " 0.002 0.0022 - -
1152 " 6 " .921 " 0.001 0.0016 - -
1154 " 4 a .947 a 0.001 0.0010 - -
623 double 2 5 cfs .926 0.484 0.006 - 0,0063 0.0097
624 shaft 2 " .949 " 0.004 - 0.0045 0.0094
1114 f 8 " .895 " 0.011 - 0.0081 0.0098
1115 " 6 " .921 " 0.005 - 0.0039 0.0098
1116 " 4 " .947 " 0.008 - ‘ 0.0039 0.0098
1129 " 16 " .895 " 0.007 - 0.0077 0.0128
1130 " 12 " .921 " 0.006 - 0.0055 0.0097
1131 " 8 " .947 " 0.004 - 0.0039 0.0094
1132 " 4 " .974 " 0,001 - 0.0020 0.0085
1146 " 16 3 cfs .895 0,360 0,006 - 0.0043 0.0061
1148 " 12 " .921 " 0.003 - 0.00396 0.0061
1149 " 8 " .947 " 0.001 - 0.00363 0.0058
1150 " 8 " .895 " 0.004 - 0.00428 0.0059
1153 " 6 " .921 " 0.002 - 0.00394 0.0062
1155 " 4 " .947 " 0.002 - 0.00363 0.0059



TABLE 5-4
Shape Factor for Piers with Abutments

Abutment Type .D/hﬂ, s = Pier Shape Factor
Diameter
of the Piers|Single |[Double|Round | Round{Squar
Normal Shaft |Shaft Nar-| Pile| Pile
Depth row Bents
Wing-wall 0.10 - - - |0.944(1.08
0.15 0.412}0,722]0.458 1,30 |1.80
0.20 0.40410.722]0.500
0.25 0.405]0.720]0.516
0.30 0.414]10.,732]0.536
0.35 0.42810.746 10.560
0.40 0.450}10.770{0.590
| _0.45 0.478]0.798 | 0. 624
0.50 0.510(0.828 |0.668
0.55 0.554|0.8640.712
0.60 0.598]10.904{0.760
Spill-through 0.10 0.180/0.390|0.340{0.77 |1.02
0.15 0.274|0.470]0,420
0.20 0.34410.540]0.480
0.25 0.400}0.588]0.538
0.30 0.456|0.636|0.578
0.35 0.498/0.674|0.616
0.40 0.530/0.700 0.648
0.45 0.5580.724| 0.670
0.50 0.580|{ 0,744} 0.688
0.55 0.600| 0.760} 0.708
0.60 0.616] 0.776} 0.720
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Piers and abutments:- The head loss caused by piers in

addition to the abutments will be a function of the properties of
the piers and abutments and the properties of the flow. The pier
properties are the size D , the shape, and the number of piers
N . Since the size and number of piers are predetermined, the
only factor that can be adjusted to fit experimental results is

the shape factor.

By use of the pier shape factor the method of effective
opening ratio can be applied to this case as follows:

The effect of the piers is to increase the backwater as
compared to that of the simple normal crossing. One might
therefore assume that the effect of piers is expressed through
a decrease of M of the normal crossing case, designated by
M* . The difference M-M¥* is a function of the properties of
the piers and abutments and of the properties of flow. It was

assumed that
M- M* = g— | [5-18]

where s is a function of pier shape, pier diameter, abutment
geometry, and unobstructed flow conditions. In order to deter-

mine s from the data, Eq 5-18 can be written as
s = [M - M*]—-B— [56-19]
ND °

For each run, M* was determined from a base plot.of h;* vs
M of simple normal crossing without piers by superposing the
h;*-value of the same crossing conditions with piers. The coef-
ficient s was plotted against D/hn as shown in Figs. 5-71 and

5-72, Although the data scatter somewhat, an average curve
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correlating s with D/hl,1 can be drawn for each combination
of abutment type and pier type. These two figures indicate
the effect of abutment type changes on the trend of s vs
D/ h . The s-value for pile bents differs considerably
from the one for piers. Based upon these two figures, the
average value of s for all the pier types and abutment types
tested are summarized in Table 5-4,

In order to use the method of effective opening ratio
to estimate the maximum backwater, it is necessary to com-
pute the effective opening ratio M%* , by using the formula

M* = M - s-l}-I—]2 [5-20]

B

where s is taken from Figs. 5-71 or 5-72 or Table 5-4, accord-
ing to the abutment type. After M* has been obtained, the back-
water h;* can be computed by using the method described for
the case of a simple normal crossing. Fig. 5-73 is for WW
abutments atf;0.332. Type of piers is the third variable in these
figures. The curve is the computed h;* based upon M* ., This
curve is in fact also the base curve of hy* vs M for the same
flow condition without piers, where M is defined as b/B . The
measured backwater h;* are shown as data. The agreement is
satisfactory. Fig. 5-74 is another sample but for ST abutments.

The method of effective M can be extended to dual
bridges crossing with piers. From analysis it was found that
the coefficient s which is derived from the simple normal

crossing with piers can also be used for these cases.
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In the case of a skew crossing, the effective M , i.e.,
M* was calculated according to Eq 5-20, in which s is the
same as that for a simplified normal crossing with piers, and

M = [bEcs¢]/B . The measured backwater [h__ - hn] is

UR
plotted against M* as compared to the curve of skew without
piers shown in Fig. 5-75. The agreement between [hUR - hn]

measured and [h - hp] predicted is very good.

This figxdirtf; permits the conclusion that the coefficient
s derived from data of the simple normal crossing with piers
is dependent upon the abutment type, the pier type, and the
ratio of D/hy ; and is independent of such variables as Froude
number and opeuning condition.

Data of maximum backwater caused by piers and abut-

ments are in Table 7 of Appendix B.

Flood Plain Models

In order {o simplify the problem, most of the model

tests in this research were performed in a rectangular chan-
nel having uniform roughness. Natural waterways, however,
seldom have rectangular channels., Rivers confined within
the main channel during low flow may extend to the wide flood
plain during flood. The roughness of the main channel may be
considerably different from that of the flood plain. Trees and
vegetation on the flood plain tend to produce a roughness which
18 greater than that of the main channel,

Some experiments have been conducted to explore the
possibility of applying resulis obtained in rectangular channels
to the cases consisting of a main river channel and a flood plain.

These tests arereferred here as the ones for flood plain model.
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The experiments on composite area were performed on
a flood plain of 7.9 ft width, having a main rectangular channel
which is 1,97 ft wide in the center and is 0.354 ft below the
flood plain, see Fig. 1-11. The roughness arrangement was
a combination of bar and baffle roughness, as VB model WW
and ST abutments were used in the study.

Because the channel cross-section is not rectangular,
the method developed for normal crossing has to be modified
before it can be applied to the case of a flood plain model.

This requires new definitions for Froude number,opening
ratio, and normal depth. These definitions should satisfy
two conditions:

a. If applied to rectangular channels, the terms

should reduce to the ones previously employed
for analysis of the simple normal crossing.

b. The definition of the terms should be based on
data which are accessible to the designing engi-
neer, such as rating curves and topographic maps.

Although the data on the flood plain model are not suffi-
cient to draw definite conclusions, a reasonable correlation
seems possible by using the method of effective opening ratio
M*, if the following definitions are employed, see Fig. 1-12.

a. The normal depth is defined as twice the distance
from the normal water surface to the center of
gravity of the cross-sectional area below the nor-
mal water surface.

b. The mean velocity is defined as the total discharge
divided by the cross-sectional area below the nor-

mal water surface.
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c. The opening ratio M is defined as the ratio of
the contraction area below the normal water sur-
face to the uncontracted cross-sectional area of
the flow below the normal water surface.

d. The Froude number was based on the depth defined
above and the mean velocity.

The plots of M vs M* are given in Figs., 5-76 to 5-78,

The data do not suffice to draw final conclusions., However, the
following may be stated tentatively:

a. For the VB model, the conservative design is to
use M = M* , The line M = M* fits the data of
Fn = 0,337 rather well, However, the data of
smaller Froude number deviate considerably. This
deviation is on the safe side, That is, a larger
backwater will be obtained if M = M* is used.

b. For the WW model, a straight line relation exists
between M and M* around which there exists some
scatter. This straight line deviates from M = M*
which means that M should be defined so that for
large openings the value of M decreases whereas
for small openings it increases.,

C. The same trend as that for the WW model can be
observed for the ST model. However, owing to the
pronounced effect of the baffle roughness, the data
deviate in a consistent manner from the straight line.

In conclusion it may be stated that further investigation and

more data are needed in order to correlate the data for the flood
plain model to those for the normal crossing.

Data of flood plain model are listed as Table 8 in Appendix B.
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