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ABSTRACT OF DISSERTATION

PRECIPITATION OBSERVATIONS FROM HIGH FREQUENCY SPACEBORNE

POLARIMETRIC SYNTHETIC APERTURE RADAR AND GROUND-BASED

RADAR: THEORY AND MODEL VALIDATION

Global weather monitoring is a very useful tool to better understand the Earth’s hydro-

logical cycle and provide critical information for emergency and warning systems in severe

cases. Developed countries have installed numerous ground-based radars for this purpose,

but they obviously are not global in extent. To address this issue, the Tropical Rainfall

Measurement Mission (TRMM) was launched in 1997 and has been quite successful. The

follow-on Global Precipitation Measurement (GPM) mission will replace TRMM once it is

launched. However, a single precipitation radar satellite is still limited, so it would be benefi-

cial if additional existing satellite platforms can be used for meteorological purposes. Within

the past few years, several X-band Synthetic Aperture Radar (SAR) satellites have been

launched and more are planned. While the primary SAR application is surface monitoring,

and they are heralded as “all weather” systems, strong precipitation induces propagation

and backscatter effects in the data. Thus, there exists a potential for weather monitoring

using this technology. The process of extracting meteorological parameters from radar mea-

surements is essentially an inversion problem that has been extensively studied for radars

designed to estimate these parameters. Before attempting to solve the inverse problem for

SAR data, however, the forward problem must be addressed to gain knowledge on exactly

how precipitation impacts SAR imagery. This is accomplished by simulating storms in SAR

data starting from real measurements of a storm by ground-based polarimetric radar. In

addition, real storm observations by current SAR platforms are also quantitatively analyzed
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by comparison to theoretical results using simultaneous acquisitions by ground radars even

in single polarization. For storm simulation, a novel approach is presented here using neural

networks to accommodate the oscillations present when the particle scattering requires the

Mie solution, i.e., particle diameter is close to the radar wavelength. The process of trans-

forming the real ground measurements to spaceborne SAR is also described, and results

are presented in detail. These results are then compared to real observations of storms

acquired by the German TerraSAR-X satellite and by one of the Italian COSMO-SkyMed

satellites both operating in co-polar mode (i.e., HH and VV). In the TerraSAR-X case, two

horizontal polarization ground radars provided simultaneous observations, from which the-

oretical attenuation is derived assuming all rain hydrometeors. A C-band fully polarimetric

ground radar simultaneously observed the storm captured by the COSMO-SkyMed SAR,

providing a case to begin validating the simulation model. While previous research has

identified the backscatter and attenuation effects of precipitation on X-band SAR imagery,

and some have noted an impact on polarimetric observations, the research presented here is

the first to quantify it in a holistic sense and demonstrate it using a detailed model of actual

storms observed by ground radars. In addition to volumetric effects from precipitation, the

land backscatter is altered when water is on or near the surface. This is explored using

TRMM, Canada’s RADARSAT-1 C-band SAR and Level 3 NEXRAD ground radar data.

A weak correlation is determined, and further investigation is warranted. Options for future

research are then proposed.
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CHAPTER 1

INTRODUCTION

Any intelligent fool can make things bigger and more complex...

It takes a touch of genius - and a lot of courage to move in the opposite direction.

- Albert Einstein

1.1 Motivation and Background

Synthetic Aperture Radars (SAR) were designed for surface monitoring. A slant an-

gle viewing geometry and Doppler processing provide exceptionally high resolution in the

cross-track and along-track directions respectively. Processed SAR data appears similar to

optical images, hence, they are often referred to as imaging radars. However, one distinct

advantage of a SAR over optical sensors is the ability to generate quality data at night and

in the presence of clouds and storms. Through the use of interferometric capabilities and

multiple polarizations, detailed structures of a dynamic planetary surface can be analyzed.

Applications include digital elevation model (DEM) generation (including extraterrestrial

bodies such as Mars and the moons of Earth and Jupiter), surface deformation monitor-

ing (volcanology, plate tectonics, subsidence, glacier movement, etc.), vegetation and soil

study, snow and ice characteristics, oil slick detection, ocean current monitoring, change de-

tection, and target detection [Oliver and Quegan (2004); Curlander and McDonough (1991);

Cumming and Wong (2005)]. As recently as February 2010, a NASA SAR aboard India’s

Chandrayaan-1 spacecraft detected water near the north pole of the moon [NASA (2010)].

At microwave wavelengths greater than 4 cm, precipitation has a very minor impact on the

SAR images, although phase delays through severe storms can appear as subsidence signa-

tures in C-band interferometry. However, at X-band and shorter wavelengths, hydrometeors



can alter data characteristics by introducing attenuation and additional backscatter. For

traditional applications, this is considered clutter, much the way precipitation echoes were

classified in very early radar systems. Upon studying the problem, though, an entire branch

of radar application (radar meteorology) was formed and has become invaluable for study-

ing and forecasting weather. With newer high resolution SAR systems, it is conceivable

that investigation of precipitation from SAR could lead to important insights into storm

structure and contribute to radar meteorology.

Observations of meteorology from spaceborne radar actually began with early SAR mis-

sions. Atlas (1994) analyzed storms over the ocean as observed by the SEASAT satellite

[Born et al. (1979)]. Atlas and Moore (1987) also developed theoretical expressions to

measure precipitation using SAR while Pichugin and Spiridonov (1985) presented a ge-

ometric model from a real aperture side looking radar. In 1994, NASA Space Shuttle

Radar Laboratory (SRL) missions provided the first multi-polarization, multi-frequency

radar observations of precipitation from space [Moore et al. (1997); Jameson et al. (1997);

Melsheimer et al. (1998)]. Observations of storms were made both at traditional SAR

look angles and at nadir in preparation for the highly successful Tropical Rainfall Measure-

ment Mission (TRMM), a joint project launched in 1997 between the National Aeronau-

tics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency

(JAXA) [Kummerow et al. (1998); Liu et al. (2008)]. Building on the success of TRMM,

the follow-on Global Precipitation Measurement (GPM) [Bundas (2006)] mission scheduled

to be launched in 2013. In addition to microwave radiometers, a dual-frequency (Ku/Ka

band) nadir scanning radar will provide the core satellite of GPM with a more detailed

precipitation measurement instrument. However, the X-band SAR that was part of the

SIR-C/X-SAR missions had only one polarization: vertical. These studies showed the po-

tential of SAR for precipitation measurement, especially at and above the X band where

the signal is attenuated the most. C-band SAR observations of storms over the ocean have

also been compared with ground-based weather radar [Lin et al. (2001); Melsheimer et al.

(2001)], where the homogeneous background simplifies the estimation of the attenuation

caused by the precipitation.
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Since the turn of the century, several X-band SAR (X-SAR) missions have been suc-

cessfully launched or are planned for the near future, providing new opportunities to in-

vestigate global precipitation with high resolution spaceborne radar. In 2007, the Deutches

Zentrum für Luft und Raumfahrt (DLR or German Aerospace Center) launched the multi-

polarization X-SAR, TerraSAR-X (TSX) and are planning the follow-on mission TanDEM-

X. The year 2007 also saw the launch of the first two of four satellites in the COSMO-

SkyMed multi-polarization X-SAR constellation by the Agenzia Spaziale Italiana (ASI or

Italian Space Agency). As of August 2009, three COSMO-SkyMed systems are orbiting the

planet. Within the next several years more X-SARs will be launched by Korea (KOMPSat-

5), Russia (Severjanin on METEOR-M) and others. In addition, Ku-band SAR can also be

used, such as the planned European Space Agency (ESA) CoReH2O mission with X-band

and Ku-band dual polarized SARs [Hélière et al. (2010)] and the Cassini spacecraft sent

to observe the Titan moon of Saturn. As a result of these new sensors, and the fact that

precipitation has more of an impact on shorter wavelengths, renewed interest in SAR pre-

cipitation measurement has surfaced. Danklmayer et al. (2008) reported the first images of

storms observed by TSX during the commissioning phase, and the first polarimetric storm

observations at X band were described in Fritz and Chandrasekar (2009c). Meanwhile,

Marzano, Weinman et al. [Marzano et al. (2006); Marzano and Weinman (2008); Weinman

and Marzano (2008)] have made progress on model-based inversion algorithms. Currently,

however, the algorithms assume that the surface backscatter is constant, or at least from a

single distribution.

1.2 Problem statement

Characterizing precipitation from space-based radar is a growing field. Currently, there

is only one orbiting precipitation radar (TRMM-PR) and one planned for future launch

(GPM). However, considering the number of X-band SAR satellites orbiting the planet, or

in the planning stage, it would be beneficial if they could be used to investigate storms

as well. Creation of models to study precipitation from X-SAR is only in its infancy and

multi-polarization models do not exist. Once a thorough understanding of how storms affect

SAR data is established, then researchers can proceed to investigate the inverse problem of
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estimating parameters such as rain rate from SAR observations. The fundamental challenge

lies in the use of a 2D surface imaging radar to observe 3D volumetric targets. Based on

theory developed for ground validation of the TRMM rainfall estimation algorithms and

known radar wave propagation through precipitation, however, it is possible to extend this

to the slant viewing geometry of SAR to predict how a storm will ultimately affect the

SAR products. In addition to providing another sensor to observe storms, an accurate

model can be used to help mitigate the impact of storms for more traditional uses of SAR

where attenuation and backscatter caused by hydrometeors are considered clutter. One of

the more difficult problems to deal with when estimating precipitation induced attenuation

using surface backscatter, though, is estimating what the observations would be by removing

only the volumetric component. This involves understanding how the water in or near the

surface modifies the backscatter, and this is very dependent upon the contents of the ground

cover and soil.

1.3 Research objectives

There are a number of objectives for this research with the primary goal to establish

how precipitation effects multi-polarization SAR imagery at frequencies in X-band and

higher in a quantitative fashion. One objective is to develop a microphysics-based model to

simulate storm observations from a short wavelength spaceborne radar using real ground-

based polarimetric radar data. Another objective is to analyze and compare model results to

real polarimetric X-SAR observations of storms with simultaneous data from ground-based

weather radars. Lastly, the final objective is to characterize surface backscatter changes

caused by recent or active precipitation as seen from spaceborne radar. The following list

summarizes the details.

Precipitation affect on land backscatter

� Characterize land surface change due to precipitation using repeat orbit SAR data

� Study σ0 and potential impact to the TRMM SRT algorithm

Model precipitation to simulate spaceborne radar observations
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� Generate Particle Size Distributions (PSDs) for various hydrometeor types

� Develop models to transform 0° elevation dual-polarized S-band observations to higher

frequency, high elevation angle observations

� Evaluate the performance of a new nonlinear regression model to perform the fre-

quency transformation of Mie scatterers such as large raindrops and hail

Storm observations from X-SAR

� Characterize storm observations from a slant angle, dual-polarized radar using real

ground-based data

� Quantitative analysis of storm attenuation in SAR data using ground radar observa-

tions

� Simulate X-SAR storm backscatter and attenuation using real polarimetric ground

radar measurements

� Qualitative analysis of dual-polarization X-SAR propagation effects

1.4 Thesis Overview

Chapter 2 Introduces the theoretical background used throughout this dissertation. This

includes radar polarimetry and distributed particle scattering, polarimetric synthetic aper-

ture radar theory, neural networks and nonlinear regression techniques, as well as essential

information regarding the various radars used in this research.

Chapter 3 presents surface backscatter change and analysis using X-band and C-band

SAR as well as ground-based weather radars and TRMM-PR. The results provide implica-

tions for the TRMM rainfall estimation algorithm and how SAR can improve it where the

surface backscatter has high variability due to soil moisture and seasons.

Chapter 4 provides the microphysical model to simulate high frequency spaceborne po-

larimetric precipitation observations from real ground-based polarimetric S-band data. A

novel method is presented using a simulation trained regression model to handle the vari-

ability introduced by Mie scattering, especially in the presence of hail. Results are shown

by converting horizontal S and C band to slant angle X and Ku band.
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Chapter 5 demonstrates the results of applying the microphysical model to simulate

the effect of precipitation on a spaceborne SAR. The process of resampling a volume of

ground-based weather radar observations for slant angle SAR is described and results using

data from CSU-CHILL are shown over TerraSAR-X data.

Chapter 6 presents observations and analysis of several case studies using the TerraSAR-

X system and two NEXRAD WSR-88D weather radars over Florida in 2008 plus the

COSMO-SkyMed constellation with simultaneous observations from a polarimetric C-band

ground radar. The latter provides initial validation of the model presented in earlier chap-

ters.

Chapter 7 summarizes the findings of this thesis and discusses conclusions drawn from

it. In addition, future work is suggested.
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CHAPTER 2

THEORETICAL BACKGROUND AND INSTRUMENTATION

If I have seen further than others, it is by standing upon the shoulders of giants.

- Sir Isaac Newton

2.1 Radar Polarimetry and Scattering from Distributed Particles

2.1.1 The Radar Equation

One of the most fundamental concepts for all types of radar is known as the Radar

Equation, and even though it is based on the physics of electromagnetic propagation from

and to an antenna, there are as many ways to write the equation as there are researchers who

do. Different representations depend on the assumptions made, how variables are combined

and the primary parameter of interest, which could be range, power, signal-to-noise ratio

(SNR), etc. Variations in radars such as antenna pattern, volume vs. surface scanning or

signal processing (e.g., pulse compression or synthetic aperture processing) also alter the

equation. Starting from the basics, the received power from a scattering body at range R

can be written as

PR = (PTGT )

(
1

4πR2

)
σ

(
1

4πR2

)
Ae

(
1

LsysLatmos

)
=

PTGTσAe

(4π)2R4LsysLatmos

(2.1)



where

PR = received power (W)

PT = peak transmitted power (W)

GT = transmitter antenna gain

R = range to target from antenna (m)

σ = target Radar Cross Section (RCS) (m2)

Ae = effective receiver antenna area (m2)

Lsys = losses within transmitter and receiver systems

Latmos = atmospheric propagation loss factor.

The terms in parentheses in the middle of (2.1) can be described as follows: transmitted

power density, isotropic (solid angle) radiation loss, target scattering characteristic, isotropic

re-radiation loss, receiving antenna characteristic and losses due to system hardware and

atmospheric phenomena such as water vapor or hydrometeors. Frequently, the effective

receive antenna area is written in terms of gain and wavelength using the relationship

GR = 4πAe/λ
2. Noise is also a major factor, so (2.1) is often written as SNR by dividing

through by the noise power to give [Doerry (2006)]

SNRP =
PR

NR
=

λ2PTGTGRσ

(4π)3R4LsysLatmos (kTFN )B
(2.2)

for a single radar pulse where

k = Boltzmann’s constant = 1.38× 10−23J/K

T = nominal noise temperature ≈ 290K

FN = receiver system noise factor

B = bandwidth at the antenna port.

For monostatic radars, GR = GT so GTGR becomes simply G2. In weather radars, the

Radar Cross Section (RCS) is over a unit volume (m2m−3) and called reflectivity and is a

function of range and antenna beamwidth. The received power is expressed as an integral

over the volume weighted by the antenna gain function and transmitted waveform [Bringi
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and Chandrasekar (2001)]. Performing this integration and considering dV = R2dΩdR (dΩ

is the elemental solid angle) as well as ∆R = cT0/2, (2.1) results in the well known weather

radar equation after range normalizing the RCS for mean receive power:

P̄R =

(
cT0

2

)[
λ2PTG

2
0

(4π)3

](
πθ1φ1

8 ln 2

)
η(R)

R2
(2.3)

where c is the speed of light, T0 is the pulse width, G0 is the peak power gain and θ1 and

φ1 are the 3 dB beamwidths for a pencil-beam antenna pattern [Probert-Jones (1962)].

Losses in the receiver system are not included here, nor are atmospheric losses which are

occasionally the parameter of interest.

In a SAR system, the use of pulse compression and the formation of the synthetic

aperture by coherently combining pulses modifies (2.2) to improve the SNR. For pulse

compression τ0 is defined as the compressed pulse width and τu as the uncompressed version

the system bandwidth B = 1/τ0. An azimuth (along track) resolution of δaz at a distance

R and wavelength λ is achieved by requiring the synthetic aperture length to be

LSA =
Rλ

2δaz
. (2.4)

Incorporating pulse compression into (2.2) and considering an additional loss Lr due to

non-ideal range filtering yields

SNRcp =
λ2PT τuGTGRσ

(4π)3R4 (kTFN )LsysLatmosLr (Bτ0)
. (2.5)

In the absence of more detailed system information, the range filtering loss can be estimated

as Lr ≈ awr ≈ 1.2, where awr is the broadening factor of the range impulse response due to

weighting or windowing the data [Doerry (2006)]. With a pulse repetition frequency (PRF)

of F , platform velocity vp and (2.4), the number of pulses to coherently integrate is

N =
FLSA

vp
=

FRλ

2vpδaz
. (2.6)

The fully focused system with synthetic aperture formation from (2.5) and (2.6) with a loss

term to account for non-ideal azimuth filtering (La ≈ 1.2) is then

SNRf =
λ2 (PT τuF )RλGTGRσ

(4π)3R4 (kTFN )LsysLatmosLrLa2vpδaz

=
λ3PavgGTGRσ

128π3R3 (kTFN )LsysLatmosLrLavpδaz
(2.7)
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given that the average transmit power is Pavg = PT τuF . An important result here is that the

SNR is inversely proportional to R3 as opposed to R4 for a point target or R2 in weather

radars. For a monostatic radar, (2.7) is often written in terms of the effective antenna

aperture as

SNRfa =
PavgA

2
eσ

2 (4π)R3λ (kTFN )LsysLatmosLrLavpδaz
. (2.8)

Although the form is very different, Atlas and Moore (1987) showed that the SAR radar

equation, when using it as a precipitation radar, is essentially the same as (2.3).

2.1.2 Scattering Matrix and Radar Cross Section

Electromagnetic wave propagation and scattering upon intersecting with dielectric par-

ticles provides the fundamental physics involved with radar remote sensing of precipitation.

Using a plane wave approximation, the incident electric field to a plane of constant phase

at range ~r and orthogonal to the direction of wave travel î is

~Ei = êiE0e
−jk0 î·~r = Ei

hĥi + Ei
vv̂i (2.9)

where the wave number k0 = 2π/λ, E0 is the wave amplitude and êi defines the polar-

ization state [Bringi and Chandrasekar (2001)]. Fig. 2.1.2 displays the incident and scat-

tering geometry and variable definitions. The horizontal and vertical unit vectors ĥi and

v̂i respectively relate to the spherical unit vectors via k̂i = θ̂i × φ̂i = ĥi × v̂i. Similarly,

k̂s = θ̂s × φ̂s = ĥs × v̂s. This results in a far field scattered plane wave as

~Es =

~f
(
ŝ, î
)

r
e−jk0r = Es

hĥs + Es
v v̂s (2.10)

where r is the magnitude of ~r. The far field vector scattering amplitude ~f is defined as

~f =
k20 (ǫr − 1)

4π

∫

τ

[
~Ein
T (~r′)− r̂(r̂ · ~Ein

T )
]
e−jk0~r′·r̂dτ ′ (2.11)

where ǫr is the relative permittivity of the dielectric material, ~Ein
T is the electric field vector

inside the particle and τ is the volume. The incident and scattered waves are related via

the scattering matrix S, also known as the Sinclair matrix, written as

[
Es

h

Es
v

]
=

1

r
e−jk0rSFSA

[
Ei

h

Ei
v

]
=

1

r
e−jk0r

[
Shh Shv

Svh Svv

]

FSA

[
Ei

h

Ei
v

]
(2.12)
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Figure 2.1: (a) Incident wave direction, specified by k̂i = θ̂i × φ̂i and (b) the scattered

wave direction in FSA convention specified by k̂s = θ̂s × φ̂s [adopted from Bringi and
Chandrasekar (2001) with permission].

where FSA indicates the Forward Scattering Alignment convention. The Backward Scatter-

ing Alignment (BSA) convention uses “reflected” versus “scattered” and is related to FSA

fields via

[
Er

h

Er
v

]
=

[
−1 0
0 1

] [
Es

h

Es
v

]
(2.13)

i.e., k̂r = −k̂s, ĥr = −ĥs and v̂r = v̂s.
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2.1.3 Radar Cross Section

In Section 2.1.1 the received power is a function of the RCS σ, or the volumetric RCS η

for weather radars. The RCS depends on the characteristics of the target, but also depends

on the wavelength of the radar. In general, the RCS is defined by

σ = 4πR2 lim
R→∞

(
Pr

Pi

)
(2.14)

which is the limit of the ratio of received power to incident power as the range approaches

infinity. There are three regions of scattering: Rayleigh, Mie or resonant, and optical.

Consider a sphere with radius a. In the Rayleigh scattering limit a << λ, while in the

optical region a >> λ. Between the two regions, the Mie solution to Maxwell’s equations

is applied. For a dielectric sphere, the Sinclair matrix in (2.12) can be written as

SFSA =

[
j cosφs

k0
S1(θs)

−j sinφs

k0
S1(θs)

j sinφs

k0
S2(θs)

j cosφs

k0
S2(θs)

]

FSA

(2.15)

where φs and θs are defined in Fig. 2.1.2 and θi = φi = 0◦. The scattering operators are

described by

S1(θs) =
∞∑

n=1

2n+ 1

n(n+ 1)

[
αo1n

P ′

n cos θs
dθs

+ βe1n
P ′

n cos θs
sin θs

]
(2.16a)

S2(θs) =
∞∑

n=1

2n+ 1

n(n+ 1)

[
αo1n

P ′

n cos θs
sin θs

+ βe1n
P ′

n cos θs
dθs

]
(2.16b)

where αo1n and βe1n are the scattered field expansion coefficients. These coefficients are

given as [Bringi and Chandrasekar (2001)]

αo1n =
ρjn(ρ)[ρ0jn(ρ0)]

′ −√
ǫrρ0jn(ρ0)[ρjn(ρ)]

′

√
ǫrρ0h

(2)
n (ρ0)[ρjn(ρ)]′ − ρjn(ρ)[ρ0h

(2)
n (ρ0)]′

(2.17a)

βe1n =
ρ0jn(ρ0)[ρjn(ρ)]

′ −√
ǫrρjn(ρ)[ρ0jn(ρ0)]

′

√
ǫrρjn(ρ)[ρ0h

(2)
n (ρ0)]′ − ρ0h

(2)
n (ρ0)[ρjn(ρ)]′

(2.17b)

where ρ0 = k0a, ρ = ρ0
√
ǫr and [ρzn(ρ)]

′ = d[ρzn(ρ)]/dρ. In addition, jn(x) is a spherical

Bessel function of the first kind and h
(2)
n (x) is a Hankel function of the second kind.

In general, the radar cross section is considered the backscatter cross section and is

expressed as

σb(ŝ, î) = 4π|~f(ŝ, î)|2 (2.18)
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where ŝ = −î for the monostatic case. The Mie solution in this case is given by

σb(−î, î) =
π

k20

∣∣∣∣∣
∞∑

n=1

(−1)n(2n+ 1)(αo1n − βe1n)

∣∣∣∣∣

2

(2.19)

In the Rayleigh limit up to order ρ3, (2.19) simplifies to [Bringi and Chandrasekar (2001)]

σb(−î, î) =
4π

k20

∣∣∣∣
ǫr − 1

ǫr + 2

∣∣∣∣
2

(k0a)
6

=
π5

λ4

∣∣∣∣
ǫr − 1

ǫr + 2

∣∣∣∣
2

D6 (2.20)

where D = 2a is the diameter.

Dielectric bodies also possess a characteristic known as the extinction cross section that

consists of scattering and absorption components. Using the optical theorem [Bringi and

Chandrasekar (2001)] and the Mie solution, the extinction cross section is given by

σext(̂i, î) =
−4π

k0
ℑ
[
~f (̂i, î) · êi

]
(2.21a)

= −2π

k20

∞∑

n=1

(2n+ 1)ℜ (αo1n + βe1n) (2.21b)

Simplifying (2.21a) for the Rayleigh limit (correct up to ρ3) yields

σext =
4π

k20
ρ3ℜ

(
j
ǫr − 1

ǫr + 2

)

= 9k0V
ǫ′′r

|ǫr + 2|2 (2.22)

where V is the volume and ǫ′′r indicates the imaginary part of ǫr. Plots of the backscatter

and extinction cross sections for water spheres are shown in Fig. 2.2a-2.2c in addition to

the RCS of a conducting sphere in Fig. 2.2d for comparison. The relative permittivity

for the water spheres is calculated at a wavelength of 3.1 cm using the method described

in Ray (1972) at -10 � for pure ice (Fig. 2.2a) and 20 � for liquid water (Fig. 2.2b).

For the 3-phase mixture of water, ice and air shown in Fig. 2.2c, linear combinations

of the Maxwell Garnett (MG) mixing formula [Maxwell Garnett (1904)] were used at 5

� as described in Meneghini and Liao (1996). Using the combinations of phases solves

the problem of MG1,2 6= MG2,1 for the same fractional water level where MG1,2 indicates

material 1 is the matrix and material 2 is the inclusion (e.g., MGI,W is ice with water

inclusions). An alternative method of combining phases that avoids any discontinuities is

presented in Section 4.3.2.
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Figure 2.2: The normalized radar cross-sections (backscatter and extinction if applicable)
versus size parameter using the Mie solution at λ = 3.1cm for (a) pure ice sphere at -10 �
with ǫr = 3.17− j5e-4 (b) pure water sphere at 20 � with ǫr = 61− j33 (c) mixed phase
sphere 5 � consisting of 40% water, 50% ice and 10% air with ǫr = 7.6 − j0.7 and (d) a
conducting sphere for comparison.

2.1.4 Polarimetric Radar Observations

Typically, a multi-polarization radar observes all four components of the scattering

matrix in (2.12), expressed in vector form as Ω = [Shh Shv Svh Svv]
T where the subscript

pairs represent receive and transmit polarization respectively. The resulting 4×4 covariance

matrix fromC = ΩΩ∗T contains the relationships among the observations. However, in most

cases it is safe to assume reciprocity between the two cross-polar channels [Ulaby and Elachi

(1990)]. Indeed, these two channels can be used to calibrate the system such that Shv = Svh

[Freeman et al. (1992)]. Under this assumption of reciprocity, the scattering vector can be

written as Ωr =
[
Shh

√
2Shv Svv

]T
resulting in a 3×3 covariance matrix

C = ΩrΩ
∗T
r =

〈

|Shh|2 ShhS

∗

hv ShhS
∗

vv

S∗

hhShv 2|Shv|2 ShvS
∗

vv

S∗

hhSvv S∗

hvSvv |Svv|2



〉

(2.23)
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where 〈�〉 denotes the ensemble average. Similarly under the reciprocity assumption, the

Pauli scattering vector

k =
1√
2

[
Shh + Svv Shh − Svv 2Shv

]T
(2.24)

is used to generate the coherency matrix via Cloude and Pottier (1996)

T = kk∗T

=

〈
1

2




|Shh + Svv|2 (Shh + Svv)(Shh − Svv)
∗ 2(Shh + Svv)S

∗

hv

(Shh + Svv)
∗(Shh − Svv) |Shh − Svv|2 2(Shh − Svv)S

∗

hv

(Shh + Svv)
∗Shv 2(Shh − Svv)

∗Shv 4|Shv|2



〉
.
(2.25)

The transform to the coherency matrix is used because the diagonal elements have a physical

interpretation. T11 indicates single bounce or rough surface scattering and is maximum

when the co-polar phase difference φco is 0°. T22 is interpreted as double bounce or dihedral

scattering and is maximum when φco is 180°, while T33 indicates volume scattering. The

subscripts of T indicate the row and column in (2.25). At the time of the data acquisitions,

TerraSAR-X only provided any two of the elements of Ω and the two co-polar terms were

selected for discussion here, thus allowing analysis of co-polar relationships.

A number of fundamental relationships for weather radar applications are applied in

this work [Bringi and Chandrasekar (2001)]. The two basic phenomena of electromagnetic

wave interaction with precipitation are backscatter and attenuation, described by the radar

backscatter cross section per unit volume η (m2m−3), and the extinction cross section

σext (m2) (see Section 2.1.1 and 2.1.3). The radar reflectivity factor, z, is related to the

precipitation backscatter cross section as

z =
λ4

π5|Kp|2
η

=
λ4

π5|Kp|2
∫

σp(D)N(D)dD, mm6m−3 (2.26)

where λ is the wavelength, |Kp|2 is the dielectric factor of hydrometeors, σp(D) is the

radar cross section for precipitation and N(D) is particle size distribution (PSD), i.e., the

number of particles per unit volume with sizes in the interval (D,D + ∆D). (To avoid

confusion, a lowercase z indicates reflectivity in linear units while uppercase Z is in dBZ.)

At the time of observation, the ice content of particles, if any, is unknown, so the equivalent
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reflectivity factor Ze is calculated instead where |Kp|2 = |Kw|2 is the value appropriate for

water (approximately 0.93). If the particle size is small enough to be within the Rayleigh

scattering limit σp(D) = D6 in (2.26) the two reflectivity factors are related by [Smith

(1984); Bringi and Chandrasekar (2001)]

ze =
|Kp|2
|Kw|2

z (2.27)

Similarly, the specific coefficient of attenuation in horizontal polarization, Ah, as a func-

tion of σext and N(D) is expressed by

Ah = 4.343× 103
∫

σextN(D)dD, dBkm−1. (2.28)

Over a given range, r1 to r2, the signal attenuation is calculated using

l(r) = exp

(
−0.2 ln 10

∫ r2

r1

Ah(ξ)dξ

)
, (2.29)

and is also known as path integrated attenuation (PIA). The observed reflectivity is then

Zobs(r) = Z(r) + L(r) where L = 10 log10 l and L ≤ 0. A power law relationship describes

the association between the specific attenuation and reflectivity factor, written as

ah = αzβ . (2.30)

Due to the non-spherical nature of precipitation particles, a polarimetric radar can have

differential observations between horizontal and vertical channels. This effect is often more

pronounced at near horizontal elevation angles, but is still present at SAR look angles. The

specific differential phase observed between the two channels is [Bringi and Chandrasekar

(2001)]

Kdp =
180λ

π

∫
ℜ [fh(D)− fv(D)]N(D)dD, deg km−1 (2.31)

where fh and fv are the forward scattering amplitudes for the horizontal and vertical po-

larization states and ℜ refers to the real part of a complex number. The observed co-polar

phase in a monostatic radar, however, is expressed as

Ψdp = 2

∫ r2

r1

Kdp(r)dr + φco (2.32a)

= Φdp + φco (2.32b)
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where φco is the backscatter differential phase arg(S∗

hhSvv). Non-zero values of φco are

indicative of Mie scattering [Bringi and Chandrasekar (2001)] and includes backscatter

from the surface when applied to SAR. The specific differential attenuation is defined by

Adp =
(
8.686× 103

) ∫
ℑ [fh(D)− fv(D)]N(D)dD, dBkm−1 (2.33)

where ℑ refers to the imaginary part of a complex number.

Among these parameters, the co-polar correlation coefficient is calculated as

ρco =
〈ShhS

∗

vv〉√
〈|Shh|2〉〈|Svv|2〉

= |ρco|ejφco . (2.34)

The magnitude and phase of ρco, sometimes referred to as ρhv, provide information not

only about surface scattering mechanisms, but also propagation effects when the radar

wave passes through a volume of distributed particles. Another parameter that is available

with just these two terms is the co-polar ratio, or differential reflectivity, Zdr determined

from

Zdr = 10 log10

(〈|Shh|2〉
〈|Svv|2〉

)
, dB. (2.35)

The term Zdr will be used to refer to this co-polar ratio even though SAR observations

are not technically reflectivity measurements, but the calculation is the same because the

hydrometeor specific terms cancel. For dual linear polarization radars, the measured (equiv-

alent) reflectivity is typically from the horizontal polarization. Thus, Zh is used for obser-

vations and Zv can be calculated as Zv = Zh − Zdr. Unless otherwise noted, Zh means the

equivalent reflectivity described in (2.27).

2.2 Polarimetric Synthetic Aperture Radar (polSAR)

Early “imaging” radar systems, such as the Side-Looking (Airborne) Radar (SLR or

SLAR), consisted of an incoherent high frequency radar mounted on a moving platform

with the beam pointed at the ground at low grazing angles. This geometry allowed for

relatively high range resolution; however, along-track resolution was poor and degraded with

aircraft height. A technique first known as “Doppler beam sharpening” accredited to Carl

Wiley in 1951 [Curlander and McDonough (1991)] used the phase information and Doppler
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Figure 2.3: Imaging geometry of a SAR acquisition. Due to the platform velocity vx the
pulses illuminate a swath parallel to the platform track. The footprint of a single pulse is
indicated by the dark shaded area. The total SAR image starts in azimuth at the “early
azimuth” time, and lasts until the “late azimuth” time. In range direction, it covers an
interval from “near range” to “far range,” which corresponds to the light shaded area in
ground range [adopted from Hanssen (2001) with permission].

processing to discriminate between targets within the beam as the radar moved. Thus,

an artificial aperture was created by coherently summing pulse returns that dramatically

increased the resolution along the path and the concept of the Synthetic Aperture Radar

(SAR) became reality. Applications for SAR are many, although a significant majority

involve surveillance or monitoring of the Earth’s surface. The process of forming an image

from the raw data involves multiple steps, and the geometry shown in Fig. 2.3 will aid in

the discussion.

The process of reconstructing the response of surface scattering mechanisms from a series

of pulse signals is known as image formation or synthetic aperture processing. Raw data is
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also called raw phase history because the phase is critical in image formation. This allows

resolution improvement in the along-track direction (also called the azimuth or “slow time”

direction to relate it to conventional radar) from say a 4.5 km beam footprint to about 5-20

m. With a real antenna aperture of La by Da as seen in Fig. 2.3, the platform flies along a

specified trajectory at a velocity vx and height Hp above the surface. The beam with 3 dB

beam widths βr = 0.886λ/Da and βa = 0.886λ/La is pointed toward the surface at a look

angle of θ degrees from nadir illuminating a swath from “near range” to “far range”. The

beam footprint is then

Wa =
λ

La
R (2.36)

where R is the range from the platform to the surface. Location “1” along the trajectory

marks the beginning of the SAR image that ends at location “2” creating what is commonly

referred to as a stripmap image. Other imaging modes involve manipulating the beam to

either focus on a smaller patch at higher resolution (spotlight mode) or increase the swath

width by effectively scanning the beam (scanSAR mode). The length of the synthetic aper-

ture depends upon the pulse repetition frequency described by (2.4) results in an azimuth

resolution of [Curlander and McDonough (1991)]

δaz ≃
La

2
. (2.37)

The corresponding bandwidth is on the order of 2vx/La which is independent of both range

and wavelength due to the proportionality of the synthetic aperture length with range and

wavelength (2.4). Decreasing the La, however, also decreases the gain, which is proportional

to the antenna area, and in turn, decreases SNR as seen in (2.7). Atlas and Moore (1987)

also demonstrated the effect of hydrometeor spectral width σv on the resolution as

δazP =
2σvR

vx
(2.38)

A closer look at the SAR geometry and relevant features is depicted in Fig. 2.4. SAR

is inherently two-dimensional, and a monostatic system technically lacks the ability to

resolve three-dimensional features. Given a slant range resolution of δr, Fig. 2.4 shows the

effects of foreshortening (A), layover (B) and shadowing (C). These same effects also impact
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Figure 2.4: Imaging geometry and reference systems. Radar echoes are recorded between
the concentric circle segments indicating near range and far range. A range resolution cell
with size ∆r is indicated by the spacing between the concentric lines. Area A indicates
foreshortening, B indicates layover and C shadow. Ground-range coordinates can be ref-
erenced to the ellipsoid. Interferometric heights are referenced to the ellipsoid as well. In
order to obtain orthometric heights H, the geoid height N needs to be taken into account.
The look angle θ is defined w.r.t. the (geocentric) state vector, whereas the incidence angle
θinc and the local incidence angle θloc are defined w.r.t. the local vertical to the ellipsoid
and the local terrain, respectively [adopted from Hanssen (2001) with permission].

observations of atmospheric phenomena which are transformed to a ground-range/azimuth

coordinate system projected on to the Earth ellipsoid model. Additionally, Fig. 2.4 shows

three angles: look angle θ, incidence angle θinc and local incidence angle θloc. The local

incidence angle is dependent on the terrain as opposed to the standard incidence angle

which is relative to the ellipsoid model. It is the local incidence angle that will correctly

determine the surface RCS σ0. For this reason, slant range SAR data is almost always

provided as “radar brightness” (Raney et al. (1994)) or β0 related to σ0 by

σ0 = β0 sin θinc. (2.39)
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2.2.1 Waveform and Signal Processing

Waveform generation and signal processing is key to creating the SAR images at such a

high resolution. As alluded to in Section 2.1.1, SARs utilize pulse compression to improve

range (“fast time”) resolution with a chirp waveform. Typically, a linear frequency modu-

lation (FM) waveform is used where the frequency f(t) of the pulse changes linearly with

slope κ (Hz/s), leading to a transmit signal of

s(t) = rect(t/τu)e
jπκt2/2 (2.40)

where τu is the uncompressed pulse width. The bandwidth within the range f(−τ0/2) to

f(τ0/2) then becomes B = κτu = 1/τ0 with time-bandwidth product |κ|τ2u . Consequently, a

matched filter can then be applied on the received signal to retrieve the scattering modified

pulse, improving the range resolution to δr = c/(2|κ|τu) where c is the speed of light

[Cumming and Wong (2005)].

The Doppler effect allows for the improved resolution in SAR imagery and its role is

illustrated in Fig. 2.5. A point target on the surface is illuminated between points A and

C along the SAR platform path over the length of the synthetic aperture, Ls. Point B

indicates the zero Doppler point, or “point of closest approach”, at time t = t0 and range

R0. The received signal strength and Doppler frequency are shown below this schematic.

Fig. 2.5 indicates either a squint angle of 0° or the result of an early processing step that

estimates the zero Doppler direction. The range to the target at the edges of the synthetic

aperture are expressed as

R =
√
R2

0 + v2x(t− t0)2 ≈ R0 +
v2x
2R0

(t− t0)
2 (2.41)

using a quadratic approximation. The change in range between a fixed point and the radar

is called Range Cell Migration (RCM) because the range cell of a fixed point moves over

time. Mitigating this effect is a major goal of the various image formation processes. The

Doppler centroid frequency at t = t0 is proportional to the rate of change of R(t) given by

ft0 = − 2

λ

dR(t)

dt
|t=t0 = − 2

λ

v2xt0
R(t0)

=
2vx sinφs

λ
(2.42)
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Figure 2.5: Schematic of SAR Doppler. A point scatter initially becomes illuminated by
the SAR beam with azimuth beam width βa at point A along the platform path with a
distance R. At location B, the target is at range R0: the “point of closest approach”, also
known as the zero Doppler point. This is also where the received signal power from the
target is maximal. The point scatterer leaves the SAR beam at the end of the synthetic
aperture (of length Ls) at point C, again at range R. The bottom plot shows the observed
Doppler frequency vs. time.

where φs is the squint angle. From (2.42), the azimuth or Doppler bandwidth can be written

as [Cumming and Wong (2005)]

BDop =
2 cosφsβavx

λ
. (2.43)

Consequently, the azimuth resolution of the focused SAR image is vx/BDop.

Similar to weather radars, using a multi-polarization SAR provides more information

about the scattering mechanisms [van Zyl et al. (1987)]. At each range-azimuth resolu-

tion cell (pixel), the covariance matrix in (2.23) can be estimated. Applications such as
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classification [Alberga (2004); Cloude and Pottier (1996); Lee et al. (1999); Freeman and

Durden (1998)] and change detection [Conradsen et al. (2003); Fritz and Chandrasekar

(2008)] have become prevalent. Combining radar polarimetry with interferometry, forming

a 6×6 covariance matrix between 2 images provides additional methods to determine sur-

face motion, etc. [Cloude and Papathanassiou (1998); Tabb et al. (2004)]. Therefore, it is

reasonable to expect that polarimetric SAR can also be used to garner more information

from hydrometeor scattering.

2.3 Radar Platforms

A number of different radar platforms were used in the course of the research presented

here. These include two types of ground-based S-band and one C-band weather radars plus

three spaceborne platforms: X-band dual-polarization SARs, a C-band single polarization

SAR and a Ku-band nadir scanning precipitation radar. Specifications and basic details

about each system are give in the subsequent subsections.

2.3.1 CSU-CHILL Radar

The Colorado State University - University of Chicago/Illinois State Water Survey

(CSU-CHILL) radar is an advanced, trureansportable dual-polarized S-band weather radar

system operated by Colorado State University under the sponsorship of the National Sci-

ence Foundation and Colorado State University. The radar serves as an advanced research

instrument for radar meteorology, radar engineering and remote sensing. Features include

a high power dual-Klystron power amplifier, sophisticated transmitter controller, low side

lobe antenna and digital receiver system. Radar operations are performed through an inter-

active radar control system which communicates with the radar system through a TCP/IP

connection. Local and remote users can observe radar data in real-time, while the archival

system can store both the processed radar measurements such as reflectivity and Doppler

velocity as well as the digitized baseband signal data. Fig. 2.6 shows the antenna and

pedestal as it looked until July 2007 when the dome and antenna were removed for upgrade

to a new offset feed antenna. Table 2.1 lists basic system specifications for the older system,

which was the configuration used for the data analyzed in Chapters 4 and 5.
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Figure 2.6: The CSU-CHILL antenna and pedestal as it looked until July 2007 and the
version used to collect data analyzed in this thesis.

2.3.2 WSR-88D Radar

During the late 1980s and early 1990s, the National Weather Service (NWS) deployed

a vast number of S-band weather radars to cover the United States (see Fig. 2.7) known as

NEXt generation weather RADar (NEXRAD). Specifically, these were Weather Surveillance

Radar-1988 Doppler (WSR-88D) radars and the system processing was enhanced in 2008

to produce “super-resolution” data under 1.5° elevation [USDC/NOAA (2006); Torres and

Curtis (2006)]. The single polarization WSR-88D radars are still in use, and data from

two of them located in Florida were used to compare ground radar measurements with

TerraSAR-X observations in August 2008 as detailed in Chapter 6. Specifications for the

two systems during this data acquisition are shown in Table 2.2.
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Table 2.1: CSU-CHILL radar specifications prior to July 2007.
Antenna

Shape Parabolic
Size 8.5 m
Feed type scalar horn
Gain 43 dBi (includes waveguide loss)
3 dB Beamwidth 1.1 deg
Maximum sidelobe -27 dB (along any φ-plane)
Inter-channel isolation -45 dB
ICPR(two-way) -38 dB

Transmitters

Wavelength 11.01 cm (2.725 GHz)
Peak Power 1 MW (per channel)
Final PA Type VA-87B/C (Klystron)
Pulse Width 0.2 - 1.6 µs
PRT 800 - 12000 µs
Available Polarizations horizontal, vertical, alternating, slant 45o/135o,

right/left circular

Receivers/Digital Signal Processing

Noise figure 3.4 dB
Noise Power -113.0 dBm @ 1 MHz bandwidth
Dynamic range 80 dB
Bandwidth Programmable. Simultaneous 1 MHz and 5 MHz chan-

nels available
Output Range Resolution Programmable. 30 m minimum, typical: 150m
Maximum range gates 6000

Figure 2.7: The coverage map of NEXRAD over the continental United States (CONUS).
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Table 2.2: WSR-88D Radar specifications and operating parameters used in this research.

Parameter Radar

KMLB KTBW

Location 28.109◦ latitude 27.701◦ latitude

-80.650◦ longitude -82.398◦ longitude

Altitude 10 m 13 m

Volume Coverage
Pattern (VCP)

11, 12, 212 11, 212, 221

Data format Level 2 full resolution

Frequency 2700-3000 MHz

Power 750 kW peak, 300-1300 W average

Gain 45.5 dB @ 2850 MHz (including radome loss)

Beamwidth 0.925◦ @ 2850 MHz

Dynamic range 93 dB minimum

PRF 318-1304 Hz short pulse

318-452 Hz long pulse

Polarization HH

Elevation angles
(deg)

0.5, 0.9, 1.3, 1.8, 2.4, 3.1, 4.0,
5.1, 6.4, 8.0, 10.0, 12.5, 15.6,
19.5

0.5, 1.5, 2.4, 3.4, 4.3, 6.0, 9.9,
14.6, 19.5

Azimuth spacing
(w/ oversample)

0.5◦ ≤ 1.5◦ elevationa, otherwise 1.0◦

Range resolution 250 m ≤ 1.5◦ elevationa, otherwise 1000 m

Ground range ex-
tent

300 km (radial)

aWSR-88D uses a “super resolution” mode at elevation angles below 1.5◦
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Figure 2.8: RADARSAT-1 system components (image ©CSA).

Figure 2.9: RADARSAT-1 imaging modes (image ©CSA).

2.3.3 RADARSAT-1 SAR

The Canadian Space Agency (CSA) launched the RADARSAT-1 C-band SAR into a

sun-synchronous orbit in 1995. Designed to operate for 5 years, the system was finally

decommissioned in 2008 when the subsequent RADARSAT-2 was commissioned. Compo-

nents of the system are depicted in Fig. 2.8 and the various imaging modes are shown in

Fig. 2.9. Table 2.3 gives basic specifications of this system for the data processed in this

research which only used data from the Standard Beam Mode.

2.3.4 TerraSAR-X SAR

In 2007, the Deutches Zentrum für Luft und Raumfahrt (DLR) launched the multi-

polarization X-band SAR, TerraSAR-X (TSX) [Buckreuss et al. (2003); Herrmann and

27



Table 2.3: RADARSAT-1 Specifications [CSA (1995)].

Parameter Value

Frequency 5.3 GHz

Bandwidth 11.6, 17.3 or 30.0 MHz

Peak/average power 5000/300 W

Antenna aperture 15×1.5 m

Polarization HH

Altitude (orbit) 793−821 km

Incidence angle 27.5 (Standard Mode 2), 37
(Standard Mode 4)

Standard Mode Nominal
Resolution

30 m

Ground (surface) resolu-
tion

∼50 m2

Swath width 100 km

Repeat orbit time 24 days

Bottero (2007)]. This was the first commercial SAR to provide 1 meter resolution (and

even smaller in spotlight mode) and multiple polarizations. TerraSAR-X operates with a

phased array antenna that can be split for short baseline along-track interferometry and

repeat orbit interferometry with an 11 day cycle. Although the system can operate as a

fully polarimetric radar, only double polarization products (any two of HH, VH, HV and

VV) are available for general scientific use. Ironically, the first image provided (only four

days after launch) exhibited distinct signs of significant rainfall as seen in Fig. 2.10. The

flight path was right to left illuminating the storm from the bottom. Backscatter is visible

on the near-range side as whitish clouds followed by attenuation.
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Figure 2.10: First TerraSAR-X image. The storm signature is visible near the bottom
left, with the white backscatter on the near-range side followed by attenuation through the
precipitation volume (image courtesy of R. Bamler, ©DLR).

Table 2.4: TerraSAR-X radar specifications and operating parameters used in this research.

Parameter Value for processed data General Stripmap

Data format single look complex (SLC) SLC, geocoded amplitude

Frequency 9.65 GHz (3.11 cm)

PRF 2920 Hz 2.0 kHz-6.5 kHz

Range bandwidth 150 MHz 150 MHz, 300 MHz (advanced
mode)

Polarization HH, VV any 2 of: HH, VH, HV, VV

Antenna 0.7 m×4.8 m

Orbit 514 km

Incidence angle 33◦ - 34.4◦ 20◦ - 45◦ (full performance)

Azimuth spacing (w/
oversample)

2.4 m 1 m - 16 m (mode and inc angle
dependent)

Slant range resolution 1.2 m 0.65 m (advanced mode) - 1.5 m

Slant swath width 15 km 15 km (double polarization), 30
km (single polarization)

Repeat orbit time 11 days
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2.3.5 COSMO-SkyMed SAR

In an effort to significantly advance Earth observation capability, the Italian Space

Agency (ASI) and the Italian Ministry of Defense (MoD) launched a series of X-band SAR

satellites dubbed the COnstellation of small Satellites for Mediterranean basin Observation

or COSMO-SkyMed. The full constellation consists of four satellites operating within the

same orbital plan, but as of the writing of this document only three are launched and

operational. Each satellite contains both horizontal and vertical transmitters and receivers;

however, they cannot operate in a fully polarimetric mode where HH and VV are coherent

and cross-polarization signals are available. The acquisition schemes only allow for bursts of

pulses in a single polarization that will change to the other polarization if data is requested in

the ping-pong mode. Thus, both HH and VV data acquisitions are available when requested,

but co-polar correlation and phase difference are meaningless because the correlation is

essentially zero and the phase is simply a uniform distribution between −π and pi. With

this constellation, it is possible to obtain data less than 24 hours apart between satellite

number 2 and number 3 in an interferometric configuration. Unfortunately, data requests

for acquisitions from all 3 are frequently not completely fulfilled. Table 2.5 provides some

specifications about the configuration used for this research.

2.3.6 TRMM-Precipitation Radar

The first spaceborne system ever launched for the specific purpose of measuring global

precipitation was the Tropical Rainfall Measurement Mission (TRMM) launched in 1997.

TRMM is a joint project between the United States and Japanese space agencies, NASA

and JAXA respectively, and has been proven extremely successful, still collecting data well

beyond the 5 year design life. Figure 2.11 displays the overall TRMM viewing geometry

parameters prior to the altitude boost from 350 km to 402 km in August 2001. Specifications

for the TRMM Precipitation Radar (TRMM-PR) are listed in Table 2.6.
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Table 2.5: COSMO-SkyMed radar specifications and operating parameters used in this
research.

Parameter Value for processed data General PingPong
Stripmap

Data format single look complex (SLC) SLC, geocoded amplitude

Frequency 9.6 GHz (3.12 cm)

PRF 3151 Hz 2905.9 Hz - 3632.4 Hz

Range bandwidth 34.5 MHz 14.77 - 38.37 MHz (ping-pong
mode)

Polarization HH, VV any 2 of: HH, VH, HV, VV

Antenna 5.6 m in azimuth direction

Orbit 620 km

Incidence angle 24.4°- 27.3° 20°- 60°

Azimuth spacing (w/
oversample)

2.19 m ≤15 m (mode and inc angle de-
pendent)

Slant range resolution 3.48 m ≤15 m

Slant swath width 30 km 30 km (double polarization), 40
km (single polarization)

Repeat orbit time 16 days per satellite
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Figure 2.11: The TRMM observatory geometry before the altitude boost (adopted from
NASDA (2001)).
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Table 2.6: TRMM Precipitation Radar Specifications

Parameter Value

Antenna aperture 2×2 m 128 element active
phase array

Antenna gain ∼ 47.4 dB

Frequency 13.796 - 13.802 (GHz)

Pulse width 1.6 µs × 2 channels

PRF 2776 Hz

Peak power over 700 W

3 dB Beamwidth 0.71◦ by 0.71◦

Dynamic range ∼ 81.5 dB

Polarization HH

Altitude (orbit) 350 km

Incidence angle 0◦ - 18◦

Range resolution 250 m

Surface (horizontal) resolu-
tion

4.3 (nadir) to 5 km2

Swath width 220 km

Revisit time ∼1.5 days
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2.4 Neural Networks

Neural networks have been successfully applied to many applications, notably pattern

recognition and non-linear function estimation, and they can be created in a variety of

configurations [Haykin (1999)]. Radial basis function networks (RBFNs) are particularly

attractive due to their simplicity and the underlying functions are ideal for modeling non-

uniformly sampled irregular data. Figure 2.12 depicts a schematic of an RBFN with N

inputs and M outputs. The single hidden layer contains nodes or neurons that consist of

individual transfer functions, which are often multivariate Gaussian. The training of the

network consists of determining the center µ, width σ and the weight w of each RBF in

order to minimize some error criteria between the input and output estimate. Given L

hidden layer neurons with a Gaussian transfer function, the jth output is calculated as

ŷj = wj0 +
L∑

k=1

wjkφk (x) (2.44)

where φk (x) denotes the kth transfer function and wjk is the weight applied to the kth

neuron connection to the output, with wj0 being an overall bias value for that output. The

transfer function is written as

φk (x) = exp

(
−
‖ x− µk ‖2

2σ2
k

)
(2.45)

where ‖ • ‖ indicates the Euclidean norm, a distance measure.

The standard RBFN creates a neuron and updates all parameters for each training

vector. Therefore, it becomes extremely computationally inefficient for high dimensional

problems with a large training set. A number of algorithms have been developed to make

the RBFN more efficient, and the implementation chosen for this research is adapted from

Campa et al. (2002). Only neurons that are close to an input vector will have a noticeable

effect on the output, so only those neurons within a given distance from an input training

vector are updated in the learning process. This is known as the Extended-RBF, but it does

not reduce the number of neurons.Li et al. (2000) analyzed the performance of the Minimal

Resource Allocation Network (MRAN-RBF) algorithm, based on the RAN developed by

J. C. Platt [Platt (1991)], that limits the hidden layer size to a user selected number.
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Figure 2.12: Radial basis function network model.

The learning algorithm begins with zero neurons and grows at each new input until the

maximum number is reached, at which point neurons are culled to allow for a new neuron

or just parameters are updated. The MRAN-RBF algorithm as implemented is detailed as

follows.

Step 1: Calculate three errors

The first step involves calculating three error criteria to determine whether or not to add a

new neuron for the current (ith) input:

a. Estimation error criterion

‖ ei ‖=‖ yi − ŷi ‖> E1 (2.46)

b. Novelty criterion (minimum distance to closest neuron)

dimin = min ‖ xi − µi ‖> E2 (2.47)

c. Windowed mean error criterion

ermsi =

√√√√ 1

M

i∑

j=i−(M−1)

‖ ej ‖2 > E3 (2.48)

where M is the selected number of past outputs to consider in the filter. E1, E2 and E3

are thresholds to be appropriately selected. A node is added only when all three criteria

are met, assuring that the new node is sufficiently far from all existing nodes.
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Step 2: New node location

Once it is determined to add a new node, the parameters of this node are:

wL+1 = ei µ
M+1

= xi σM+1 = κdimin (2.49)

where κ is the defined overlap factor. If the number of nodes is already at the maximum

value, go to Step 5 to perform the pruning operation.

Step 3: Calculate the gradient

When all three of the criteria in Step 1 are not met, the current network is adapted to reduce

the error. It is possible to reduce computation time by limiting the gradient calculation

and parameter update to only those nodes within a given distance from the input vector,

although this can be effectively disabled by setting the threshold sufficiently large. Consider

the network parameters as a vector q = [wT
0 , w

T
1 , µ

T
1
, σT

1 , . . . w
T
LD

, µT
LD

, σT
LD

]T , where LD

is the number of nodes within the threshold distance. The gradient matrix is then

Bj = ∇q f(xj) =
∂ŷj
∂qj

|(LD)

=

[
I, φ1(xj)I, φ1(xj)(2w1/σ

2
1), (xj − µ

1
)T , φ1(xj)(2w1/σ

3
1) ‖ xj − µ

1
‖2, . . .

φLD
(xj)(2wLD

/σ2
LD

), (xj − µ
LD

)T , φLD
(xj)(2wLD

/σ3
1) ‖ xj − µ

LD
‖2
]T

(2.50)

At this point, the network can be updated by updating the vector q.

Step 4: Update the network parameters

In general, the network parameters q are updated as

qj = qj−1 +Kjej (2.51)

where Kj can be the Kalman gain matrix as used in the EKF method [Li et al. (2000)] or

simply by using Kj = −ηBj where η is the learning rate.

Step 5: Pruning strategy

When the number of nodes reaches the maximum and the criteria of Step 1 are met, the

least significant node is pruned from the network to provide room for a new node to be

added. This node is determined by evaluating the output of each node computed as the

components of the sum in (2.44) for the minimum value.
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The implementation used in this work was developed in Campa et al. (2002) in the

Matlab Simulink environment, and the block diagram is depicted in Fig. 2.13. In addition

to the core MRAN-RBF block, the input and output vectors are scaled so that they fall

within [−1, 1]. This can be helpful when some input elements are much larger than others

even though they both have relatively similar correlation with the desired output (e.g.,

reflectivity and differential reflectivity). We can also take advantage of this scaling by setting

the minimum and maximum to reduce the impact of potentially noisy input elements, e.g.,

scaling Kdp ∈ [−0.5, 0.5]. A unique formula is used in this implementation to determine the

distance threshold for the novelty criterion, and is expressed as

E3 = min
(
dgtmax, dmin

)
(2.52)

where t is time and g is typically close to 1 (e.g., 0.9999) to allow slow decay from the

maximum to the minimum. In cases where time is arbitrary, t increments by one for each

input vector.
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Figure 2.13: MRAN-RBFN Simulink block diagram.
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CHAPTER 3

PRECIPITATION INDUCED LAND SURFACE CHANGE -

IMPLICATIONS FOR TRMM

Anyone who attempts to generate random numbers by

deterministic means is, of course, living in a state of sin.

- John von Neumann

3.1 Introduction

The Tropical Rainfall Measurement Mission Precipitation Radar (TRMM-PR) produces

an estimate of the rain rate using the Surface Reference Technique (SRT) [Meneghini et al.

(2000)]. Essentially, this technique subtracts the measured surface backscatter through pre-

cipitation from an estimate of the reflection without precipitation to obtain the attenuation

along the path. A power law relationship with attenuation is then used to obtain a rain

rate. Over land, there are four schemes currently being used to determine the reference

(non-precipitation) backscatter, or Normalized Radar Cross-Section (NRCS). The predom-

inant methods use a spatial reference calculated from the NRCS of nearby non-rain cells

(fields of view) [Meneghini et al. (2000)]. One uses cells at the same incidence angle just

prior to the rain cells and is referred to as the along-track spatial reference, while the other

examines cross-track cells in an algorithm to handle different incidence angles and various

conditions. While the SRT works reasonably well given the complex nature of NRCS over

land, it has been shown that biases exist especially due to the impact of surface water due

to recent precipitation [Seto and Iguchi (2007)].

One of the contributing factors to the complexity of land NRCS is the spatial variability.

At the current altitude of the TRMM satellite, the TRMM-PR resolution cells on the



Figure 3.1: RADARSAT-1 mode ST2 and ST4 over a Google Earth image.

surface are approximately 4.3 km2 at nadir expanding to about 5 km2 at the extents of the

TRMM-PR look angle (±17°). In contrast, Synthetic Aperture Radar (SAR) has a very

high resolution, typically on the order of tens of meters or less. Although SARs operate in

lower frequency ranges (P to X-band vs. Ku-band) and incidence angles above 18◦, they can

be a powerful tool for analyzing surface backscatter characteristics. The research described

here presents the results of this analysis using the Canadian Space Agency RADARSAT-1

C-band SAR data over central Florida, USA. In particular, the effect of surface moisture is

studied using precipitation products from nearby NEXRAD WSR-88D radars.

3.2 Radar Data Processing

RADARSAT-1 acquired data over two swaths repeatedly from January 2006 through

April 2008 in Standard Beam Mode 2 (ST2) and Standard Beam Mode 4 (ST4). Each swath

is broken up into multiple frames as seen in Fig. 3.1. The 6 frames shown were processed

from raw phase data into ortho-rectified NRCS (σ0) images using the Vexcel Focus and

OrthoSAR products. The grid resolution is (1/2048)◦ in latitude and longitude or about

50 m2. RADARSAT-1 repeats orbits every 24 days; however, only images that could form

interferometric pairs were used to increase spectral and spatial overlap. Using the stack of
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Figure 3.2: By resampling TRMM-PR data on the same geo-referenced grid as SAR data,
direct comparisons can be made. The top 2 plots show σ0 (the surface backscatter) from
SAR and TRMM respectively. The bottom left shows the TRMM minimum echo flag (RC
= rain certain, RPx = rain probable with certain conditions, RP = rain probable, NR =
no rain). The lines with numbers show the TRMM-PR look angle (i.e., 0 = nadir). The
bottom left plot displays the TRMM flags for land, ocean and coast. For both bottom plots,
the blocks indicate TRMM-PR resolution ( 4.3 km2) while the SAR is about 50 m2.

images, a mask is generated to remove non-overlapping grid cells. The resulting “scene”

refers to the common grid, and is used as the geo-spatial reference for other data types.

Data from the TRMM-PR are obtained via the 2A21 product containing σ0, incidence

angle and flags for distinguishing land, ocean and coast as well as a flag indicating that

rain is present. TRMM-PR data are selected by determining which locations lie within the

boundaries of each scene. Fig. 3.2 shows an example of TRMM data within the ST4 3070

frame indicated in Fig. 3.1. The SAR σ0 is shown at the top left, with the TRMM σ0

in the upper right panel and nadir returns clearly visible near a longitude of -81.2° and

26.1° latitude. In the bottom left panel is the TRMM minimum echo flag as a transparent

overlay on the SAR σ0. The blue regions indicate definite rain while the purple shows where

rain is probable. A similar overlay is shown in the bottom right panel for land, ocean and
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coastal flags. Over Florida, many regions are marked as coastal due to the numerous lakes

present, some of which are visible in this scene. Coastal flags also change due to the specific

incidence and viewing angle as well as surface conditions such as oversaturated soil. Using

the processing to create Fig. 3.2, TRMM-PR data with rain and/or within a certain time of

a SAR acquisition can be determined as well as isolating the land, coast and ocean returns.

The precipitation products in NEXRAD Level 3 data provide contiguous auxiliary in-

formation across the domain from radars in Melbourne (KMLB) and Tampa Bay (KTBW).

Using the NOAA Weather and Climate Toolkit, the radial data are resampled and ortho-

graphically projected onto a grid of approximately 0.00425◦ latitude and longitude. Each

point can then be tested to determine which scene, if any, it is within.

3.3 TRMM-PR Land Backscatter

Radar backscatter from land, and the effect of soil moisture, incidence angle and radar

frequency, has been well studied and modeled [Moore et al. (1980); Ulaby et al. (1986);

Ulaby and Dobson (1989)]. The surface response of TRMM-PR has also been investigated

[Meneghini et al. (2000); Oki et al. (2000); Seto and Iguchi (2007)], however, the models have

not been directly applied. Moore et al. (1980) suggested a model of the form σ0
dB(θ, f) =

A+Bθ + Cf +Dfθ where f is the radar transmit frequency and θ is the incidence angle.

A different model was proposed by Ulaby and Dobson (1989) in the form σ0
dB(θ) = P1 +

P2 exp(−P3θ) + P4 cos(P5θ + P6) where a different set of coefficients accounts for both

frequency and ground cover. With the goal of verifying an existing model or creating a new

one, data were extracted from 2A21 files from 2004 through 2008 in order to provide a large

sample set over such a small area (the scenes), and only pixels flagged as land with no rain

were used. Fig. 3.3 depicts a 2D histogram of TRMM-PR σ0 vs. θ within two scene regions

similar to NRCS plots in [Meneghini et al. (2000); Oki et al. (2000); Seto and Iguchi (2007)].

Unfortunately, iterative least squares curve fitting techniques perform poorly at fitting the

aforementioned models to this data. A modification to the Ulaby model is proposed in

order to capture the trend of TRMM-PR land NRCS, given by

σ0
dB(θ) = k1θ

k2 + k3 exp(−k4θ). (3.1)
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(a)

(b)

Figure 3.3: 2D histogram of TRMM-PR σ0 vs. incidence angle (θ) within a RADARSAT-1
scene from 2004 through 2008. The lines with symbols are the calculated mean and 5% and
95% occurrence levels. In addition, the green line is the model fit from 3.1. (a) Data within
scene ST2 3015 (b) Data within scene ST4 3054
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Figure 3.4: The model difference from (3.1) in NRCS (dB) between wet and dry seasons for
all 6 scenes as a function of incidence angle. At lower incidence angles, this difference can
be above 2 dB, and the trend increases roughly from east to west.

The curves produced from the non-linear least squares fit of (3.1) shown in Fig. 3.3, as the

green line, to all the TRMM-PR data within each scene has an average RMS error of about

0.4 dB relative to the mean and 2.9 dB relative to all data due to a substantial variance.

NRCS consistency with SAR is verified by extrapolating the model to 27.5◦, resulting in

an average of -9 dB while the SAR average at this angle is about -10.5 dB with a larger

standard deviation. This is close to the 2-3 dB drop from Ku-band to C-band that most

general models indicate [Moore et al. (1980); Ulaby et al. (1986); Ulaby and Dobson (1989)].

Unfortunately, (3.1) continues the flattening trend of TRMM-PR with incidence angle, so

extrapolation to 37◦ is about the same.

Using the dates provided by Lascody (2002) to indicate the start of the wet and dry

seasons, a noticeable difference in NRCS is revealed. After subtracting the dry season model

fit from that of the wet season, in dB scale, the curves shown in Fig. 3.4 result. This plot

indicates that lower incidence angles are more sensitive to the season where soil moisture,

and to a lesser extent vegetation change, may play a role. There is also a greater difference

in western scenes than eastern ones. The hundreds of small lakes in central Florida, notably
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(a)

(b)

Figure 3.5: SAR σ̄0 and peak average precipitation within 12 hours prior to the SAR
acquisition for (a) mode ST2 scenes and (b) mode ST4 scenes.

towards the east coast, may also impact the trend as well as wetlands such as the Everglades

found in the southwestern part of the state. SAR data can now be used to examine the

surface response further.
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3.4 Correlation with Precipitation

The NEXRAD Level 3 Total Storm Precipitation product (NTP) is used for the initial

evaluation of precipitation effect. This product accumulates precipitation until the 1-hour

precipitation product indicates the storm has passed which resets the NTP output to zero.

Since resetting the NTP does not change the surface water content, the maximum NTP is

found within a 12-hour period preceding the SAR acquisition, and the maximum between

KMLB and KTBW is selected. Once the peak time is identified, the average precipitation

accumulation within each scene is calculated. The result is shown in Fig. 3.5 as the non-

connected symbols at the scale of the left-hand axis. The abscissa is in increments of

RADARSAT-1 repeat orbits, i.e., 24 days, to portray consistent time information.

In order to provide a comparable estimate of land NRCS from SAR, the extensive

number of lakes along with the ocean should be excluded because wind and rain roughened

water surfaces can drastically increase radar backscatter at larger incidence angles. In

particular, the ocean observations can sometimes exceed that of land. The “high resolution”

mask for oceans provided by the Generic Mapping Tools [Wessel and Smith (1995)] was used

to remove ocean pixels, but the resolution for lakes is not high enough. On average, the

radar reflections on the water bodies are very low and can be distinguished upon examining

the power distribution. Extreme accuracy in identifying water is not required, so the process

begins by applying a 3×3 moving average filter to the ortho-SAR images to further reduce

speckle. Subsequently, all acquisitions for each scene are averaged and a threshold is selected

to mask out the water. One threshold was selected for each mode/incidence angle based on

the histogram and empirical observation on the result in conjunction with optical imagery.

For ST 2 scenes, that threshold is -13.5 dB while it is -17.5 dB for ST 4. This removes a

majority of the water, although some larger lakes were not completely masked.

With the water removed, the average of the remaining pixels in each SAR image is

calculated, shown as the solid lines in Fig. 3.5. These plots also indicate the start of the

dry and wet seasons. As expected, there is, generally an increase in σ̄0 during the wet season

and a decrease when it tends to be drier. More importantly, there is some correspondence

between significant precipitation within 12 hours of SAR acquisition and an increase in
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σ̄0, although it is not always the case. Further analysis of precipitation trends is certainly

warranted since Fig. 3.5 does not indicate within how much time the NTP accumulation

occurred. The plots also show that the ST4 scenes tend to have higher variability versus

ST2 data.

From the information displayed in Fig. 3.5, specific RADARSAT-1 scenes are selected

to examine the jump in σ̄0. The change in σ0 is evaluated by calculating the linear ratio

of current values to the corresponding pixels in the previous acquisition. Noise is reduced

by calculating this ratio from the 3×3 MA filtered images described above. Fig. 3.6 shows

the result for the difference between 2006/08/12 (060812) and 2006/09/05 (060905) for ST4

3038. The values are clipped at ±7dB to enhance the visibility of more subtle changes and

the variability of ∆σ0 shortly after a storm. A close inspection also reveals a decrease in

σ0 around small lakes where the water level has risen beyond the average level that created

the mask. The set of all ∆σ0 images also indicates specific regions that tend to have a

higher variance than others. For example, the area to the east of the large lakes contains a

mixture of agriculture and swamps which could account for this dynamic. Noise is reduced

by calculating this ratio from the 3×3 MA filtered images. Thus, for a given pixel between

image B and the previous image A,

∆σ0(dB) = 10 log10




1∑

u=−1

1∑

v=−1

σ0
Buv

1∑

u=−1

1∑

v=−1

σ0
Auv




(3.2)

where u and v indicate the relative position of pixels and σ0
Buv is the next acquisition

afterσ0
Auv at location (u, v). Fig. 3.6a shows the result for ST 2 3031 between 2007/06/30

and 2007/07/24. Likewise, the difference between 2006/08/12 and 2006/09/05 for ST4 3054

is displayed in Fig. 3.6b. The values are clipped at ±7dB to make the mostly subtle changes

visible.

A specific relationship between the trends in SAR NRCS and TRMM-PR NRCS is

explored by looking at a time where a noticeable jump in SAR NRCS is followed by a

drop. From Fig. 3.5, 2006/09/05 was selected, and scene ST4 3038 (Fig.3.6b) had the most

TRMM-PR incidence angle coverage within 30 hours of the SAR acquisition. Decreasing the
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(a)

(b)

Figure 3.6: SAR ∆σ0(dB) for (a) scene ST2 3031 from 070630 to 070724 and (b) scene ST4
3038 from 060812 to 060905. Water bodies have been masked using the automated process
described in the text. Blue indicates an increase in RCS while red indicates a decrease. In
general, an increase is present after rain, but that is not the sole cause.
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Figure 3.7: Average TRMM NRCS within 30 hours of a given SAR acquisition. The SAR
acquisitions selected correspond to 2006.09.05 plus the adjacent dates that show a jump in
σ̄0. For the most part, the average TRMM-PR σ̄0 exhibits a similar trend.

temporal window severely limits this coverage at the expense of changing surface conditions

during that time. Much of the region around the larger lakes is flagged as “coast” by TRMM

and is excluded from the comparison.

Fig. 3.7 depicts the TRMM-PR σ0 where the colored symbols indicate the date of the

associated SAR acquisition. For most samples, a similar trend is visible where data close

to the target date are higher than the two adjacent dates. Given the 30 hour window,

this provides the qualitative evidence of the relationship between SAR and TRMM-PR and

the starting point for a more detailed analysis at specific locations. Also indicated in the

figure is the model fit from (3.1) providing a reference to the average response. Clearly,

060812 observations are several decibels below 060905 observations, although they do not

necessarily cover the same location.

3.5 Summary

Through the analysis presented here, an in-depth look at the impact of recent precipita-

tion upon the observed backscatter of spaceborne radar is provided. Using a high resolution

imaging radar like SAR, the surface changes within the TRMM-PR footprint can be ex-

plored at the temporal sampling rate of SAR. By focusing on specific regions over time, a

correlation between recent precipitation and surface NRCS was shown. TRMM-PR data

within 30 hours of a SAR acquisition exhibits the same trend, increasing near a significant
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precipitation event, and decreasing afterwards. Within the TRMM-PR footprint, however,

the surface varies significantly in terms of backscatter change. In addition, a model was

presented that adequately reproduces the trend of land NRCS versus incidence angle for

TRMM-PR, which is also useful for examining the differences between the dry and wet sur-

face across the Florida peninsula. These results provide strong evidence that the σ0 shortly

after significant rainfall will increase and that the amount of increase can be estimated from

high resolution SAR data. However, this will vary dramatically between geographic regions

and requires regular, short interval acquisitions to accurately characterize. For regions such

as Florida, though, that have significant inland bodies of water or easily saturated soil, SAR

can provide valuable information to improve the accuracy of the TRMM SRT result when

it is known to vary significantly. Further study with a larger amount of data, ideally at

X-band with lower incidence angle, is warranted.
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CHAPTER 4

MICROPHYSICAL MODEL TO SIMULATE SPACEBORNE

PRECIPITATION OBSERVATIONS AT OFF-NADIR ANGLES

Every great and deep difficulty bears in itself its own solution.

It forces us to change our thinking in order to find it.

- Neils Bohr

4.1 Introduction

A microphysical model of precipitation allows for realistic simulation of observations

by a high frequency spaceborne radar using real data from a ground-based system. An

accurate model can then be used to invert the process to estimate meteorological param-

eters from the spaceborne systems, or possibly mitigate precipitation effects if they are

considered clutter. Such a model is created by defining parameters of the Particle Size

Distribution (PSD) for precipitation in addition to physical properties such as density in

g cm−3, particle shape and canting angle distribution for the various hydrometeor types.

Once these are defined, computational models for electromagnetic scattering by these parti-

cles (e.g., T-matrix [Mishchenko et al. (1996)]) are applied given a wavelength and pointing

angle (azimuth and elevation) as well as an environmental temperature and set of particle

parameters. The model outputs are the following polarimetric radar observable quantities

for each specified radar system: horizontal polarization reflectivity Zh (dBZ), differential

reflectivity Zdr (dB), specific differential phase Kdp (deg km−1), linear depolarization ratio

LDR (dB), specific horizontal attenuation Ah (dBkm−1), specific differential attenuation

Adp (dBkm−1) and co-polar correlation coefficient ρhv. However, accurate representation

of ρhv requires very advanced models of particle oscillation and vibration that are not in-

cluded in available tools. The result is a ρhv that is very close to unity, when in reality



high quality measurements of precipitation can be as low as 0.9. In addition, simulated

LDR is often much lower than what is typically measured (e.g., -30 dB vs. -10 dB) due to

limitations of the simulation algorithm and measurement noise that increases observations

of this sensitive parameter. Following the generation of all the aforementioned parameters,

a regression algorithm is then used to determine coefficients of a mathematical model for

converting observations of a hydrometeor class between radar systems.

The research documented here describes the parameters used for frozen, melting and

liquid hydrometeors, the simulation output at several wavelengths and elevation angles,

and the results applied to data collected by real polarimetric radars. For ground radars,

horizontally pointing S and C band frequencies are simulated, while spaceborne radars

include both X and Ku bands with incidence angles of 25° and 35° (corresponding to 65°

and 55° elevation angle respectively). With this variety of frequencies and wavelengths, it

is possible to consider both SAR systems at X and Ku bands as well as precipitation radars

such as TRMM and GPM close to the edge of their scanning angles. PSD parameters

for small frozen and melting particles are dependent on the height relative to the melting

layer and were derived from an airborne dual frequency, polarized radar system. A least

squares regression method is used to compute the coefficients of basic non-linear functions

for the frequency transform. An LS technique is also common for rainfall [Chandrasekar

et al. (2006)] using a broader range of PSD parameters; however, errors increase when

Mie scattering is observed at higher frequencies such as X-band and above. When hail

is considered, and Mie scattering occurs even at S-band, curve fitting techniques cannot

adequately represent the oscillatory behavior and variability of radar observations. A novel

approach to model rain and hail observations when one or more radars are operating at

a short wavelength based on neural networks is presented here and applied to a variety

of input scenarios to showcase its robustness. Comparisons are made to curve fitting in

rainfall, and the result of applying it to real data are shown. In addition, the advantages

and disadvantages of this approach are discussed.
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4.2 Particle size distribution

The most common statistical representation for the PSD of precipitation is a three

parameter gamma distribution written as [Ulbrich (1983); Bringi and Chandrasekar (2001)]

N(D) = N0D
µe−ΛD, (0 ≤ D ≤ Dmax) (4.1)

where N(D) is the density of particles with diameters in mm per unit volume per unit size

interval, and N0, Λ and µ are the intercept, slope and shape parameters of the distribution

respectively. The drop or particle diameter is represented by D. A normalized version of

the PSD is described by Willis (1984) and Bringi et al. (2004) is

N(D) = Nwf(µ)

(
D

D0

)µ

exp

[
−(3.67 + µ)

D

D0

]
, (4.2)

where

f(µ) =
6

3.674
(3.67 + µ)µ+4

Γ(µ+ 4)
. (4.3)

In (4.2) and (4.3), D0 is the volume-weighted median drop diameter equivalent (mm), Nw

is the slope intercept parameter (mm−1m−3), µ is a shape parameter and Γ represents the

gamma probability density function (pdf). The PSD in (4.2) provides the framework for

simulating the relationship between polarimetric X-band and S-band observations.

4.3 Simulating Small Frozen and Mixed Phase Hydrometeors

Representing the PSD of small frozen and mixed phase hydrometeors can be challenging

due to fact that there is a broad range of parameter values that vary with altitude. One

method to address this problem is to base the parameters on in situ observations of airborne

radar. Using a procedure similar to the one described in Khajonrat (2008) and Chandrasekar

and Khajonrat (2009) and the same Ku/Ka band data from the NASA African Monsoon

Multidisciplinary Analysis (NAMMA) experiment in 2006, PSD values were determined for

this research. The following sections provides the details of the results.
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Figure 4.1: Dry graupel PSD parameters as a function of altitude relative to the melting
layer. The solid line depicts the mode derived from the airborne data and the ‘*’ is the
resampled and extrapolated version. The ‘o’ represent the mode ±2σ within specified limits
for (a) D0 and (b) logNw.
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Figure 4.2: Dry snow (a) D0 and (b) logNw as a function of altitude relative to the melting
layer. The symbols are defined in 4.1.

4.3.1 PSD Parameter Selection

Figs. 4.1-4.4 depict the characteristics of D0 and Nw from (4.2) at various altitudes rel-

ative to the freezing level for dry graupel, dry snow, wet graupel and wet snow respectively.
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Figure 4.3: Wet graupel (a) D0 and (b) logNw as a function of altitude relative to the
melting layer (i.e., below the 0 ° level. The symbols are defined in 4.1.

The third parameter, µ, is set to 0 for these particles thus implying an exponential dis-

tribution from (4.2). The mode of each parameter derived from the airborne data, shown

as the solid line in the figures, is resampled at 500 m increments for dry particles and

125 m for melting ice. Linear extrapolation is then used to estimate the values at further

distances from the melting layer. Chandrasekar and Khajonrat (2009) showed that the

distributions for both parameters are approximately Gaussian which was replicated here.

In order to avoid unrealistic outliers, limits of ±2 standard deviations from the mode are

applied within hard limits of 0 to 5 for D0 and 3 to 7 for log10Nw, shown in the figures as

circles.

The EM scattering simulation results using the PSD parameters shown in Figures 4.1-

4.4 were then used to generate observations at various wavelengths. In addition to PSD

parameters, air temperature, particle density and water fraction values were selected. A

rate of temperature change of 5° per km was used with a reference value of 0° at the freezing

altitude. The total particle density ρ and phase fractions f are related by

ρtotal = ρwaterfwater + ρicefice + ρairfair g cm−3. (4.4)

4.4 is simplified by the fact that ρwater = 1 and ρair ≪ 1 with ρice = 0.917.
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Figure 4.4: Wet snow (a) D0 and (b) logNw as a function of altitude relative to the melting
layer (i.e., below the 0 ° level. The symbols are defined in 4.1.

For dry snow, a typical density of 0.1 g cm−3 was chosen while a larger density of 0.5 g

cm−3 was selected for dry graupel, leaving only the fraction of air to calculate from (4.4).

Slightly prolate spheroids were selected for the frozen particle shape with an axis ratio of

0.95, which will result in Kdp < 0. For melting hydrometeors, a water fraction ranging from

0.01 to 0.85 was estimated from the NAMMA data and a starting ice fraction was selected

corresponding to the density of the particle prior to melting. As the hydrometeors melt, the

shape will approach spherical or oblate raindrops, but to simplify the process a constant

axis ratio of 1.05 was applied.

4.3.2 The dielectric constant of melting ice

The Maxwell Garnett (MG) mixing formula [Maxwell Garnett (1904)] is applied to

compute the effective dielectric permittivity ǫeff given the fractional volumes of air, ice and

water. Using the MG is one of the most common methods for modeling melting particles

[Bohren and Battan (1980); Meneghini and Liao (1996); Olson et al. (2001)], but there

are several drawbacks. Selection of the matrix and spherical inclusion materials must be

made while considering that the maximum volume of spherical inclusions is approximately

0.63. Consider MG1,2 where the subscripts indicate that material 2 is included in matrix
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material 1. Unfortunately, MG1,2 6= MG2,1 for the same fractional volume of material 1

meaning a discontinuity will occur when the matrix and inclusion materials switch at the

0.63 threshold. Figure 4.5 displays several solutions for calculating the effective dielectric

constant given an air and ice mixture (Fig. 4.5a) and for melting ice with some air (Fig.

4.5b) at X-band. The curves forming the envelope are the Maxwell Garnett solutions. More

complicated methods for modeling melting hydrometeors are available [Liao and Meneghini

(2005); Yokoyama and Tanaka (1984); Olson et al. (2001)], but it is difficult to determine

the “best” one due to the physical variety and complexity of melting ice crystals involved.

A mathematical solution proposed here that will allow a smooth transition from one

extreme to the other (e.g., solid ice to all water) utilizes a sigmoid function. This expression

written as a function of the variable fraction f of ice or water is

ν(f) =
2

1 + exp [−20n(f − z)]
− 1 (4.5)

where n controls the slope and z determines the zero-crossing of the function. Hence, it is

referred to as the NZ-sigmoid or NZS solution. The effect of these two parameters is shown

as a set of curves for NZS in Fig. 4.6. Using NZS, the final expression for calculating ǫeff

is

ǫeff (f) = 0.5{[1− ν(f)]MG1,2 + [1 + ν(f)]MG2,1} (4.6)

providing smooth transitions of the dielectric constant through the melting layer. Fig.

4.5 shows several NZS curves, two of which are close approximations to the Bruggeman

solution (green lines with triangle markers). The values for these two curves are shown

in the legend and are used for the estimation of ǫeff in the remainder of this thesis. The

third curve (shown in cyan in Fig. 4.5b) indicates another possibility. Experiments would

be needed, however, to determine values of n and z that result in realistic transitions of

melting particle ǫeff . The simplicity and flexibility of (4.5) and (4.6) make the NZS method

a formidable solution, albeit one that may not simulate the physical world depending on

the values selected.
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Figure 4.5: The real (top panels) and imaginary (bottom panels) parts of the effective
dielectric constant of an air, water and/or ice mixtures at a 3.9 cm wavelength. (a) Air
and ice mixture dielectric versus an increasing ice fraction. The blue curves (’x’ marker)
represent the Maxwell Garnett ice inclusion within an air matrix, while the bottom red
curves (circle marker) show the air in ice Maxwell Garnett solution. The black curve (’+’
marker) is the Bruggeman solution, but it is almost completely covered by an equivalent
NZ-sigmoid representation shown in green (triangle marker). The legend also shows the
NZ-sigmoid values to represent the Maxwell Garnett solutions. (b) Similarly, these panels
show the dielectric constant for melting ice versus water fraction from an initial air-ice
density of 0.4 g cm−3 at 5 �. Again, an NZ-sigmoid approximation for the Bruggeman
solution is shown, plus an additional NZ-sigmoid possibility for a smooth transition shown
in the cyan curve (square marker).

4.3.3 Frequency and Angle Conversion Models

Simulating the response at different frequencies and observation angles can be used to

determine the relationship among them. For small particles such as snow and graupel,

simple regression analysis techniques can be used to fit polynomial or exponential functions

in order to convert from one set to another. Figs. 4.7 and 4.8 show the results of the

scattering simulations for a horizontal S-band observation and an X-band elevation angle of

55° for dry and wet particles respectively at the altitudes comprising the extent of solutions.
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Figure 4.7: Scattergrams showing the relationship between S and X band parameters at the
minimum and maximum levels for dry graupel (top row) and dry snow (bottom row). The
S-band simulation assumes an antenna elevation angle of 0° while the X-band is pointed at
55°.

Dry graupel (Fig. 4.7a-c) and dry snow (Fig. 4.7d-f) show similar characteristics, while wet

graupel (Fig. 4.8a-c) and wet snow (Fig. 4.8d-f) exhibit distinguishing characteristics. Due

to the nearly spheroidal shape and densities involved, differential reflectivity, differential

specific attenuation and linear depolarization ratio are very close to zero so they are not
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Figure 4.8: Scattergrams showing the relationship between S and X band parameters at
the minimum and maximum levels for melting particles.The S-band simulation assumes an
antenna elevation angle of 0° while the X-band is pointed at 55°.

shown. In each panel, scatter plots are depicted for the altitude with the minimum value in

red and the maximum value in black. In most cases, Zh, Ah and Kdp increase as altitude

decreases. Panels (a) and (d) depict X-band reflectivity Zh,X versus S-band Zh,S , specific

attenuation at X-band Ah,X versus Zh,S is shown in panels (b) and (e) while panels (c) and

(f) display X-band versus S-band specific differential phase (Kdp,X and Kdp,S respectively).

Similarly, simulations were run to determine the relationship between horizontal S-band

with Ku-band pointing at 65° as well as horizontal C-band with a 65° pointing X-band

antenna. The S to Ku results are shown in Figs. 4.9 and 4.10. Attenuation is significantly

higher in the melting snow case, as expected, but other parameters are similar. Given the

size of the particles relative to the wavelengths used, there is not a significant difference

in the C-band to X-band case as seen in Figs. 4.11 and 4.12. Both Zh and Kdp exhibit a

linear relationship with low variance. A power law relation exists to estimate Ah,X from

Zh,S in the form Âh,X = azbh,S where zh,S is reflectivity in linear units. Coefficients for these

models are typically determined using a minimum LS error fit to the data which provides

an excellent representation given the low variability at the frequencies analyzed.
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Figure 4.9: Scattergrams showing the relationship between S and Ku band parameters at
the minimum and maximum levels for dry graupel (top row) and dry snow (bottom row).
The S-band assumes an antenna elevation angle of 0° while the Ku-band is at 65°.
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Figure 4.10: Scattergrams showing the relationship between S and Ku band parameters at
the minimum and maximum levels for melting particles. The S-band assumes an antenna
elevation angle of 0° while the Ku-band is at 65°.
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Figure 4.11: Scattergrams showing the relationship between C and X band parameters at
the minimum and maximum levels for dry graupel (top row) and dry snow (bottom row).
The C-band assumes an antenna elevation angle of 0° while the X-band is at 65°.
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Figure 4.12: Scattergrams showing the relationship between C and X band parameters at
the minimum and maximum levels for melting particles. The C-band assumes an antenna
elevation angle of 0° while the X-band is at 65°.
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Figure 4.13: Scattergrams showing X-band at 55° versus horizontal S-band observables at
2.0 � (red) and 29 � (black). (a) Zh,X vs. Zh,S are almost identical and both exhibit
a slight increase in variance above 35 dBZ as the canting distribution of more oblate par-
ticles becomes detectable. (b) Ah,X vs. Kdp,S . At higher temperatures, and larger Kdp,S

levels, the attenuation noticeably decreases. (c)Kdp,X vs. Kdp,S where the change due to
temperature is only visible at large values. (b) Zdr,X vs. Zdr,S where the curvature due to
Mie scattering is exacerbated by temperature.

4.4 Rain

Simulations for rain at S, C, X and Ku bands at the same elevation angles (0° for S

and C, 65° at X and Ku and 55° at X) provide the data necessary to design models for

using real lower frequency ground rain observations to estimate higher frequency spaceborne

measurements. For rain, the following standard PSD value ranges were used [Bolen and

Chandrasekar (2003); Bringi and Chandrasekar (2001)]: 0.5 ≤ D0 ≤ 2.5, 3 ≤ log10(Nw) ≤ 5

and −1 ≤ µ ≤ 4 with a constraint of a rain rate less than 300 mmh−1 and Zh ≤ 55 dBZ for

C-band ground radars and Zh ≤ 60 dBZ for S-band. In addition, the raindrop shape model

combining the models of Andsager et al. (1999) and Beard and Chuang (1987) proposed by
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Figure 4.14: Similar to Fig. 4.13 except showing Ku-band at 65° elevation versus horizontal
S-band observables at 2.0 � (red) and 29 � (black). Both Ah and Kdp exhibit increased
variance as Mie scattering becomes more dominant. The Zdr does not appear to change as
much with temperature, however, the Ku-band values at this elevation angle are small.

Bringi et al. (2003) was selected with a canting angle standard deviation of 5°. Simulations

were then run at temperatures ranging from near 2� (red) to 29� (black). Figs. 4.13, 4.14

and 4.15 display the results for the temperature extremes at three pairs of wavelength and

elevation configurations. X-band at 55° versus horizontal S-band results are shown in Fig.

4.13, 65° Ku-band versus 0° S-band output is depicted in Fig. 4.14, while Fig. 4.15 shows

65° X-band versus horizontal C-band. In all panels, Mie scattering is evident in regions of

curvature and increased variance. The horizontal attenuation and differential reflectivity

in panels (b) and (d) respectively are the most impacted by temperature. Reflectivity is

plotted in the (a) panels with virtually no temperature dependence except a slight increase

in variance, while the (c) panels show Kdp with a mild affect at higher values.

Several different model types are typically used for rain. The most common model for fre-
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Figure 4.15: Similar to Fig. 4.13 except showing X-band at 25° incidence versus horizontal
C-band observables at 2.0 � (red) and 29 � (black).

quency transformation of Kdp takes advantage of the linear trend when Kdp > 0.5 deg km−1

[Bringi and Chandrasekar (2001)], although a second order polynomial accounts for the

slight curvature when the lower frequency is in the S band. In some cases, a power law

relation with Zh and sometimes Zdr is also applied depending on frequencies and expected

real data quality. For Zh, shown in (a) panels of Figs. 4.13, 4.14 and 4.15, a complex, but

fairly accurate model is represented by

Ẑh,H =





c1Zh,L + c2 Zh,L ≤ 25 dBZ ∨ Zdr,L < 0.1 dB

c3c
Zh,L

4 Zc5
dr,L 25 < Zh,L ≤ 40 dBZ

c6Z
(c7+c8/Zdr,L)
h,L 40 < Zh,L ≤ 50 dBZ

c9Z
(c10+c11/Zdr,L)
h,L 50 < Zh,L dBZ

(4.7)

where coefficients c are found via least squares regression analysis, the subscript H is generic

for the higher frequency and L for the lower frequency. To account for the curvature in

the Zdr relation, an 8th order polynomial is used in 0.5 < Zdr,L ≤ 2.5; otherwise, a linear
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model is applied. At C-band, the Zh, Zdr relationship to horizontal attenuation is degraded

as compared to S-band, so the Kdp linear model is usually applied to fit the data plotted in

Fig. 4.15c. Weather radars in the C band are known to exhibit resonance in rain making

Zdr less reliable. From Fig. 4.14, however, we see that polynomial univariate models will be

inadequate to characterize the variability of Ah and Kdp. One approach is to use a bivariate

model such as

Âh,H = c1z
c2
h,L + c3Kdp,L (4.8)

where zh,L is reflectivity in linear units. A new model is proposed in Section 4.7 that

is comparable for simulated data, but considers a more complex interaction between the

variables. In addition, it is capable of representing all rain relationships with the need to

maintain a set of coefficients for every temperature unlike the LS curve fit models.

4.5 Hail

4.5.1 Overview of polarimetric radar hail scattering

Dual-polarized radars provide opportunities to study and characterize the electromag-

netic scattering from hail and identify it in the presence of rain [Aydin et al. (1986); Aydin

and Zhao (1990); Aydin et al. (1994); Balakrishnan and Zrnic (1990); Bringi and Chan-

drasekar (2001)]. As the hail diameter D approaches and then exceeds the wavelength (i.e.,

πD
λ ≈ 1 where λ is the wavelength) scattering from hail falls within the Mie scattering

regime, which obviously is more prevalent at higher frequencies. If the hailstone axis ratio

is close to unity, or the canting angle distribution is nearly uniform, polarimetric variables

Zdr, LDR and Kdp will be close to zero. However, it is not unusual for Zdr < 0 for larger

hailstones that are oblate, indicating a 90° mean canting angle from vertical [Balakrish-

nan and Zrnic (1990); Bringi and Chandrasekar (2001)]. Previous studies have shown that

polarimetric radar observables can be used to quantify a hail signature, and Aydin et al.

(1986) defined a new parameter base on Zdr:

Hdr = Zh −F(Zdr) (4.9)
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where, at a frequency of 3 GHZ

F(Zdr) =





27 Zdr ≤ 0 dB

aZdr + 27 0 < Zdr ≤ b

60 Zdr > b.

(4.10)

Under the equilibrium axis ratio assumption, a = 16.5 and b = 2dB. Given the wide vari-

ation in hail size, shape, canting and density parameters that can be observed in different

storms, the benefits of simulating all cases at once is likely to be small. However, simulating

a few representative scenarios will provide output to handle most hail storms. Scattering

oscillations described by the Mie solution in 2.1.3 also make modeling observations a chal-

lenge, but one that is tackled here.

When hail is mixed with rain, superposition can be used to model the covariance matrix

of the mixture in the linear polarization basis assuming “mirror” reflection symmetry and

polarization plane isotropy [Bringi and Chandrasekar (2001)]. In the BSA convention, the

covariance matrix of the mixture can be expressed as

(C)mix = (Ze)mix




1 0 |ρco|mix

0 2(L)mix 0
|ρco|mix 0 1/ (zdr)mix)


 (4.11)

where

(Ze)mix = (Ze)hail + (Zh)rain (4.12a)

(zdr)mix =
1 + [(Zh)rain/(Ze)hail]

1 + [1/(zdr)rain] [(Zh)rain/(Ze)hail]
(4.12b)

(L)mix =
(L)hail + (L)rain [(Zh)rain/(Ze)hail]

1 + [(Zh)rain/(Ze)hail]
(4.12c)

|ρco|mix =
|ρco|hail + |ρco|rain [(Zh)rain/(Ze)hail] (zdr)

−0.5
rain

1 + [(Zh)rain/(Ze)hail] (zdr)
−0.5
mix

. (4.12d)

Note that the equivalent reflectivity factor (Ze)hail is used for hail and this is the output

from the T-matrix based simulation for hail.

4.5.2 PSD parameters and canting angle distributions

The PSD parameters and canting angle distributions for hail differ from rain [Cheng

and English (1983); Bringi and Chandrasekar (2001)]. For rain, the size limits for the

integration of the PSD are typically 0.1 to max(3D0, 8) mm. A narrower set of limits
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are used for simulations here by applying D0 ± 0.02D0 and 5 ≤ D0 ≤ 40 mm to cover a

broad range of hail sizes. Depending on the storm, hail shapes and canting parameters can

vary widely. In order to produce a negative Zdr, two configurations are designed: prolate

spheroids with an axis ratio of 0.97 and oblate spheroids with a mean canting angle of

90° from vertical and an axis ratio of 1.07. A slight positive Zdr is achieved using oblate

spheroids with an axis ratio of 1.06, but with a canting distribution around the vertical axis.

Rather than use a standard Gaussian PDF to describe the canting angle distribution, Fisher

and axial distributions are applied. Limiting the Fisher distribution to be symmetric about

the vertical axis, the mean angle from vertical is θ̄ = 0. Assuming the second rotational

angle, φ̄ is zero, the general Fisher PDF can be expressed as [Bringi and Chandrasekar

(2001)]

g(θ, φ) =
κeκ cos θ

4π sinh(κ)
sin θ. (4.13)

Given the mean θ̄ of 90° used for the side canted oblate spheroids and a uniform distribution

around the vertical axis, the axial distribution is described by

gA(θ) =
1

2πd(κ)
exp

(
−κ cos2 θ

)
sin θ (4.14)

where

d(κ) = 2

∫ 1

0
e−κt2dt. (4.15)

The width of both distributions is determined by κ, and a value of 2 was selected for all cases,

providing a fairly large variability. PSD distributions for hail are described as exponential

or as gamma distributions [Cheng et al. (1985); Balakrishnan and Zrnic (1990)], so the

shape parameter is limited to 0 ≤ µ ≤ 1. The slope intercept parameter Nw is also smaller

than that of rain, and here, we use −2 ≤ log10Nw ≤ 3. Combining all of these variables

provides a simulation that covers a variety of hail conditions.

4.5.3 Simulation results: the effect of D0 and density

Using the PSD parameters described in Section 4.5.2, T-matrix based scattering simula-

tions were run for hail for 0° elevation S-band and 35° incident angle X-band and Ku-band
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Figure 4.16: Behavior of 3 observables with water fraction (density) and median hail stone
size at S-band (left panels) and 55° X-band (right panels) for oblate spheroids canted at
90°.

radars. Additional parameters consist of a constant temperature of -10 � with ten water

fraction levels increasing linearly from 0 to 0.45 corresponding to densities ranging from

0.917 to 0.954 g cm3 according to (4.4) and based on some in situ observations by El-Magd

et al. (2000).

Due to the oscillatory behavior in the Mie scattering regime, the polarimetric obser-

vations for radars at the same frequency can vary significantly. Three parameters, Zdr,

LDR and ρhv vary relatively smoothly with D0 and water fraction. Fig. 4.16 displays these

functions for the oblate spheroids canted at 90° where the left panels are S-band and the
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right panels are X-band (35° incidence angle) and the scales for each variable are set to be

identical for comparison. The top row (Figs. 4.16a and b) are for Zdr (dB), Figs. 4.16c

and d in the middle depict LDR (dB) while the bottom row ( Figs. 4.16e and f) shows the

unitless ρhv. Due to the use of (4.6), no discontinuity occurs as the water fraction increases.

A similar depiction is shown for the oblate spheroids canted about the vertical axis in Fig.

4.17. The most notable difference is the increased range of values of Zdr for the horizontal

oblate spheroids that begins positive and turns negative around D0 = 15 mm. The prolate

spheroid result is similar except that Zdr starts negative and turns positive. When the

frequency is increased to the Ku band, the transition point occurs at a smaller D0.

As Figs. 4.16 and 4.17 show, LDR is always below about -23 dB and ρhv is above 0.99

for almost all parameter sets. Both of these are not that realistic because the simulation

program does not reproduce particle vibration and oscillation as mentioned previously. In

addition, LDR is typically a very noisy parameter and as analysis with real data shows,

these values are often much closer to 0 dB. Therefore, these two parameters will be excluded

from the generation of spaceborne observations.

69



Figure 4.17: Behavior of 3 observables with water fraction (density) and median hail stone
size at S-band (left panels) and 55° X-band (right panels) for oblate spheroids oriented
about the vertical axis.
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Figure 4.18: Scattergrams showing the relationship of 55° X-band parameters vs. S-band
at a 17% water fraction and 90° canted oblate spheroids. (a) Zh, (b) Zdr (c) Kdp and (d)
Ah

A more detailed look at the relationship of polarimetric observables between S and X

band frequencies is given in Fig. 4.18 for a water fraction of about 17% and Fig. 4.19 at a

39% water fraction for the side canted oblate spheroids. The scattergrams are color coded

by range of D0 in 5 mm increments. Given random input values of the PSD parameters, it is

possible to obtain unrealistic combinations, so to eliminate the extreme cases the simulation

results were removed under the following liberal conditions for the plots: Zh < 35 dBZ,

Zh > 80 dBZ and Ah,X > 35 dB. More stringent maximum values of 75 dBZ, 15 dB

km−1 for Ah,X and 22 dB km−1 for Ah,Ku are used for model creation. By changing the

particle canting orientation to be distributed about the vertical axis, Zdr and Kdp change

significantly while reflectivity and attenuation are virtually the same. These differences are

depicted in Fig. 4.20 and Fig. 4.21 for the same two water fractions respectively.
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Figure 4.19: Similar to Fig. 4.18 except at a water fraction of 39%.
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Figure 4.20: Scattergrams showing the relationship of 55° X-band parameters vs. S-band
at a 17% water fraction and oblate spheroids canted about the vertical axis. (a) Zh, (b)
Zdr (c) Kdp and (d) Ah
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Figure 4.21: Similar to Fig. 4.20 except at a water fraction of 39%.

One prominent feature, that may be counterintuitive, is the decrease of higher frequency

reflectivity and attenuation as the particle size increases, again related to Mie scattering. It

is clear from these four figures that there is a strong dependence upon D0 and density, but it

is also clear that the non-linear relationship between wavelengths is quite complex. However,

when the simulation results are viewed in three dimensions, a parametric relationship is

revealed. Figure 4.22 depicts Zdr,X versus Zh,S and Zdr,S at a 34% water fraction and

clearly shows the points lying on a 3D surface for both orientations of oblate spheroids.

Thus, an ideal model to simulate one frequency from another would essentially fit a nonlinear

hypersurface to the data.

4.6 Rain Hail Mixture

When the distributed scattering medium consists of hail only, the complex relationship

between radar observables at different frequencies creates a modeling challenge. Even rain

poses a problem, especially as the frequency increases above X-band where Mie scattering

effects are even more prevalent. As hail falls below the freezing altitude and melting hail-
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Figure 4.22: At 34% water, Zdr,X versus Zh,S and Zdr,S forms a complex 3D surface. (a)
90° canted oblate spheroid and (b) 0° canted oblate spheroid
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Figure 4.23: Scattergrams showing the relationship of 55° elevation X-band parameters vs.
horizontal S-band for a mixture of rain and hail at a 28% water fraction for the hail using
oblate spheroids canted about the horizontal axis.

stones morph into pure raindrops, the mixture of rain and hail provides a further challenge

to extract meteorological variables from radar. Using the PSD parameters discussed pre-

viously for rain and hail (up to 30 mm hail D0 and excluding water fractions below 10%),
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Figure 4.24: Scattergrams showing the relationship of 65° elevation Ku-band parameters
vs. horizontal S-band for a mixture of rain and hail at a 28% water fraction for the hail
using oblate spheroids canted about the horizontal axis.

simulations of the mixture generate results such as those seen in Figs. 4.23 and 4.24. There

is still a multi-dimensional relationship among the observables, but the addition of rain in-

creases the challenge to model higher frequency radar observations from real ground-based

systems. In Fig. 4.24a, the reflectivity drops even further versus the ground measurement

as compared to Fig. 4.23a. The structure of Kdp seen in Fig. 4.24c is also diminished.

Horizontal attenuation in panel (d) appears to be similar, but this is primarily due to the

fact that data with unrealistically high attenuation were removed from both results at the

same threshold of 35 dB km−1. Characterizing the multivariate nonlinear relationship is

not, however, insurmountable and the next section presents a method to achieve the goal of

modeling rain, hail and the mixture of the two for simulating spaceborne convective storm

observations using real ground-based polarimetric radar measurements.

4.7 A Nonlinear Regression Model for Rain and Hail

Previous efforts to generate a model for simulating higher frequency radar observations

from lower frequency ground data typically relied on fitting linear and nonlinear functions

to scattering simulation results as discussed in previous sections [Chandrasekar et al. (2006);
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Chandrasekar and Khajonrat (2009)]. The models can work very well as long as the variance

of data due to Mie scattering effects is relatively small or highly correlated to another

variable such as Zdr. Curve fitting techniques also require a priori specification of the

underlying function, which could be multivariate in nature. A new model is presented

here based on a nonlinear regression technique of the scattering simulations implemented

as an adaptive radial basis function neural network (A-RBFN) or generically written as an

adaptive neural network (ANN).

Neural networks have been used in many nonlinear and pattern recognition applications

including those related to weather radar such as rainfall rate [Bringi and Chandrasekar

(2001); Xiao and Chandrasekar (1997)] PSD estimation [Vulpiani et al. (2006)] and attenu-

ation correction [Vulpiani et al. (2005)]. An adaptive A-RBFN was also successfully applied

to the rainfall rate estimation problem [Liu et al. (2001)], although it is more commonly

used for real-time control systems, nonlinear dynamic system identification, and of course,

pattern recognition [Campa et al. (2002); Li et al. (2000); Haykin (1999)]. The availability

of unlimited simulated training sets and the inherent nonlinear relationship between polari-

metric observables affected by Mie scattering (e.g., see Fig. 4.22) lends itself to an ANN

solution if the simulation data are similar to the real data. If the real input data differs

significantly from the training data, or if the ANN has been over fit, the output can oscillate

wildly. Fortunately, the choice of the A-RBFN over other types of neural networks, such as

the multilayer perceptron, reduces or eliminates this instability and overfitting problem.

A minimum resource allocation network RBFN is used to achieve the goal of simulating

realistic high frequency spaceborne observations from real ground based C or S-band data.

With that goal in mind, the ANNs are designed and trained such that a reasonable output

occurred when real data is applied, as opposed to creating an optimal fit of purely simu-

lated data. Once the network parameters are selected, the A-RBFs are trained using the

learning algorithm outlined in Section 2.4. Several constant parameters for all ANNs are:

pruning enabled, an overlap value of 0.4, an update radius of 1e10 (i.e., update all neurons),

stabalizing factors set to 0, all limiters at 1e9 and a learning rate of 5 × 10−4 for all three

basis function values. In addition, the windowed mean threshold is a constant 0.02 with
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the linear filter pole at 0.5 which effectively averages the current and previous error value.

For rain, the maximum number of neurons is set to 300 while it is set to 400 for the hail

plus rain networks and 500 for D0 due to the challenge of estimating D0 from only radar

observations. However, the input parameters are chosen to create a network with fewer

nodes at least within the first several iterations.

Scaling of the data prior to the RBFN input port, as described in Section 2.4 and shown

in Fig. 2.13, can have a signficant impact on the result. First, it prevents large values,

such as reflectivity, from completely overwhelming the impact of small variables such as

Kdp. However, setting the input limits larger than the expected range, so that the data

are scaled to say [−0.5, 0.5], reduces the impact noisy measurements have on the result. In

addition, setting the target limits for horizontal attenuation such that the target is always

between 0 and 1 practically eliminates negative attenuation values when real measurements

are applied to the ANN. For example, if the simulated X-band attenuation values are in

[0, 10], the limits to the network are set to -10 and 10. Setting limits for other variables to

accommodate real observations beyond the simulated values also aided in producing results

close to the theoretical limits.

Ideally, presentation of one large set of training vectors would be adequate; however, that

is not the case with this application. From the full set of simulated data vectors, 40-60,000

are selected for training, leaving about 5,000 for validation. Then, two rounds of training

loops are run. The first sets the center distance parameters in (2.52) to [dmax, dmin, gamma] =

[0.5, 0.2, 0.9999] and runs the test vectors twice before checking the mean absolute error

(MAE), randomly permutating the test vectors after the first run. The state (set of A-

RBFN weights, centers and widths) is saved for the minimum error. At each loop iteration,

the state is reset to zeros and continues until a maximum number of iterations is reached

or until a specified number of consecutive increases of MAE occurs (10 in this case). For

the second training loop, the state is not reset at each iteration, although the order of test

vectors is randomized and the loop begins with lower dmax, dmin and possibly A-RBFN error

threshold than the first training loop. The loop continues until either the MAE reaches a

threshold MAEmin, or the average slope of MAE increases above −MAEmin/100. A least
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squares fit of the previous P values of MAE (5 or 6) determines the slope, but if the MAE

increases more than 5% in a single iteration, that state is discarded and a new iteration is

started from the previous state. If the MAE increases more than 5% a second time, the

training stops.

While it is possible to develop one network to estimate all desired outputs from radar

observations, better performance is achieved by designing a network for each output. In

addition, different sets of lower frequency observables produced slightly different results due

to the varied relationships between them as seen in the previous sections. Table 4.7 shows

the ground radar input variables for each output and hydrometeor type; the networks for

rain plus hail were also used for “pure” hail so only two types are needed. In both cases,

an additional input variable is used that is correlated to the change in output. For rain,

it is temperature which can simply be determined from the distance to the melting layer

estimated in the hydrometeor classification step [Lim et al. (2005)] or from actual profiles

if available. Note that curve fitting models also need the temperature for minimum error.

A lower error is also obtained for rain Adp when linear reflectivity is input, while rain Kdp

uses the logarithm of the input Kdp. In particular, the output is expressed as

Kdp,out = exp{ŷ ([Zh,g, log |Kdp,g|])} (4.16)

where ŷ is the ANN output from (2.44) and the g subscript indicates ground radar input.

The absolute value is only needed for real data where Kdp could be less than 0, but the

corresponding outputs are also negated because Kdp < 0 is expected. The operation in

(4.16) was not performed for the hail model, however, because even theoretical observations

will be negative and are not necessarily symmetric about 0.

In the hail case, D0 has a significant impact on radar observations as seen in Figs. 4.18

through 4.22. Hail diameter must be estimated, however, so another ANN is designed for

that purpose and fed into the other ANNs. In this case, only direct radar observables,

including LDR, and the secondary variable Kdp are used to train the ANN. The D0 esti-

mation networks are the most difficult to train and achieve low error values. Nonetheless,

most output from subsequent networks still fell within reasonable values. Modifications

necessary to achieve better outputs are discussed in Section 4.8.
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Table 4.1: Ground radar input parameters for each spaceborne observation ANN in rain,
and rain plus hail (T = temperature in �)

Output Pa-
rameter

Ground Observable Inputs

Rain Rain + Hail

Zh Zh, Zdr, Kdp, T Zh, Zdr, Kdp, D0

Zdr Zh, Zdr, T Zh, Zdr, D0

Kdp Zh, log(Kdp) Zh, Zdr, Kdp, D0

Ah Zh, Kdp, T Zh, Kdp, D0

Adp 100.1Zh , Kdp, T Zh, Zdr, Kdp, D0

D0
a N/A Zh, Zdr, Kdp, LDR

aestimated D0 of hail for input to ANNs in hail regions
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Figure 4.25: Mean absolute errors for existing curve fitting techniques (blue) and the adap-
tive RBFN (A-RBFN) model (red) for converting S-band to 55° X-band at 26 � for (a)
Zh, (b) Zdr, (c) Kdp and (d) Ah. The lines in the figure represent the mean over the interval
between error bars, and the error bars indicate two standard deviations total.

4.7.1 Comparison of Model Fit Errors For Rain

Simulated data based on the PSD provides an opportunity to directly compare models

because the desired output is known precisely. Figs. 4.25, 4.26 and 4.27 display the results

of such a comparison between existing curve fit models described in Section 4.4 and the
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Figure 4.26: Mean absolute errors for existing curve fitting techniques (blue) and the ANN
model (red) for converting S-band to 65° Ku-band at 29 � for (a) Zh, (b) Zdr, (c) Kdp and
(d) Ah. For attenuation, the Zh, Kdp model performs well.

neural network model for the S-to-X, S-to-Ku and C-to-X conversions respectively. The

lines in the figure represent the mean over the interval between error bars, and the error

bars indicate two standard deviations total. With the exception of Kdp, there is virtually no

difference between the models. From this, a potentially false conclusion could be drawn that

the models will produce equivalent results. The ANN model used, however, was trained

to provide the most reasonable results when applied to real data. Therefore, the errors

depicted in these figures for the ANN model are higher than they would be if the ANN

was trained to find the optimal fit to simulation only data. Nonetheless, the performance

is either very close or better than the LS curve fits. An argument could be made that the

additional complexity of the RBFN does not warrant its use in most cases; however, the

ANNs characterize the complex relationship among multiple parameters and can be used

to identify noisy or possibly mis-classified hydrometeors.

80



0 10 20 30 40 50 60
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Z
h

Z
h,X

 from PSD (dBZ)

M
ea

n 
A

bs
ol

ut
e 

F
it 

E
rr

or
 (

dB
)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.005

0.01

0.015

0.02

(b) Z
dr

Z
dr,X

 from PSD (dB)

M
ea

n 
A

bs
ol

ut
e 

F
it 

E
rr

or
 (

dB
)

0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

(c) K
dp

K
dp,X

 from PSD (deg/km)

M
ea

n 
A

bs
ol

ut
e 

F
it 

E
rr

or
 (

de
g/

km
)

0 1 2 3 4 5
−0.02

0

0.02

0.04

0.06

0.08

0.1

(d) A
h

A
h,X

 from PSD (dB/km)

M
ea

n 
A

bs
ol

ut
e 

F
it 

E
rr

or
 (

dB
)

LS Curve fit

A−RBF

Model Fit Errors converting 0 o C−band to X @ 65 o

Figure 4.27: Mean absolute errors for existing curve fitting techniques (blue) and the ANN
model (red) for converting C-band to 65° X-band at 29 � for (a) Zh, (b) Zdr, (c) Kdp and
(d) Ah.

The best way to convey the different performance between the two models on real data

is to demonstrate it. Fig. 4.28 compares the two approaches for converting horizontal S-

band data from CSU-CHILL during the STEPS experiment to Ku-band at a 25° incidence

angle (see Section 4.8 for a more detailed description of the real data). The left panels

show the 2D histogram of the curve fit model output while the right displays the A-RBFN

model, both of which use a constant temperature of 23 �. Reflectivity in Fig. 4.28a using

(4.7) exhibits a larger variance in the 25 to 40 dBZ region, but the ANN output clearly

has reduced Zh when the input Zh is above 50 dBZ. This is actually due to low and even

negative Kdp associated with this high reflectivity when the scattering simulations suggest it

should be high. Theoretically, Kdp and Zh are related via a power law similar to attenuation

and reflectivity. For differential reflectivity in Fig. 4.28b and specific differential phase in

Fig. 4.28c, we see that a univariate curve fit looks very clean (low variance) by definition.
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However, this may not be an accurate representation because it does not consider other

variables and their interrelation. For example, the Zdr,Ku values above the main curve

(corresponding to Zdr,S < 0.6) are from points with a higher Zh,S relative to the theoretical

data. This larger Zh,S then increases the ANN output for Zdr,Ku. Whether or not the

influence is too strong is not easily determined without meticulous experiments. Finally,

Fig. 4.28d shows the attenuation results and the only variable without a lower frequency

version as input. The effect of the Kdp < 0, especially in higher Zh regions, causes the

model output to become negative for the curve fit model. The A-RBFN output, however, is

able to at least prevent negative attenuation (gain), but it is clear that neither completely

follow the power law relation with respect to Zh.

Similar to Fig. 4.28, Fig. 4.29 shows the results applied to C-band data from the Bric

della Croce radar operating in northern Italy after conversion to 25° incidence angle X-band.

(More details about the storm and the radar are given in Section 6.3.) Between real values

of 40 and 50 dBZ in Fig. 4.29a, many curve fit model outputs fall well below the theoretical

expectation, probably due to Zdr that was not completely attenuation corrected, ground

clutter/side-lobe contamination or oscillations. This problem does not occur from the ANN

model, but it does still produce lower Zh when the input is above 50 dBZ. Zdr and Kdp

in Fig. 4.29b and 4.29c are similar in behavior to the S-to-Ku band results shown in Fig.

4.28. The attenuation response in Fig. 4.29d, however, shows that the ANN version is much

better behaved than the curve fit output despite what Fig. 4.27d indicates. The negative

Kdp is again the cause of negative attenuation, but this occurs for almost all Zh values.

Low values of Kdp at Zh > 45 dBZ also reduce the attenuation output for the ANN model,

suggesting that perhaps the 340 m range spacing of this radar might not be small enough to

effectively capture higher Kdp gradients. Overall, the curve models might be realistic, but

the ANN does a better job of representing the actual measurements even if they contain

noise. The potential exists, then, to apply the ANN for data filtering improvements.
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Figure 4.28: Curve fit model (left panels) and ANN models (right panels) from CSU-CHILL
data to simulated Ku-band observations at 25° incidence angle for (a) Zh, (b), Zdr (c) Kdp

and (d) Ah. Univariate models are “clean”, but may not represent the actual data well.
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Figure 4.29: Curve fit model (left panels) and ANN models (right panels) from Bric della
Croce C-band data to simulated X-band observations at 25° incidence angle for (a) Zh,
(b), Zdr (c) Kdp and (d) Ah. Here, the curve fit Ah has a much larger variance and many
negative values.
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4.8 Results From Real Storm Measurements

The real test of model performance is the result of applying real ground based storm

measurements. By comparing the output to the theoretical values, we can assess whether

or not the model achieves the goal of simulating a realistic response from a spaceborne,

higher frequency platform. A good model will also be robust in the sense that input values

that are outside the vector space of training data still produce reasonable results. Real

data are noisy, and estimated values such as Kdp depend highly on the quality of the

direct measurements. The RBFN model provides such robustness, and can also indicate

data that have abnormal components, either from noisy measurements or perhaps from the

presence of other hydrometeor types or contamination. The following sections document

the performance of the ANN model using two storms observed by the CSU-CHILL dual

polarization S-band Doppler weather radar. One is from the STEPS experiment [Lang

et al. (2004)] in eastern Colorado during a hailstorm on 29 June, 2000 (denoted as 000629)

which was considered a classic supercell storm. A convective squall line on 2 August, 2001

(denoted as 010802) was used for an additional validation case. Both cases were converted

to 55° X-band observations, and the second storm was also converted to simulate 65° Ku-

band. Chapter 5 takes these results to the next stage to simulate data from a SAR platform

and the full propagation effects.

Before applying the conversion models, pre-processing is needed to identify the rain and

hail regions. First, an algorithm to estimate the forward scattering Kdp from the observed

backscatter Φdp is applied [Wang and Chandrasekar (2009)]. A basic gridding method is then

used to create an Earth-centric Cartesian grid of data that is subsequently smoothed with

a 3D Gaussian kernel. From this grid of polarimetric variables, hydrometeor classification

using the procedure described in Lim et al. (2005) generates seven classes of precipitation:

drizzle, rain, melting ice, dry snow, dry graupel, hail and rain plus hail, although drizzle

and rain are often combined as one.
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Figure 4.30: 2D histograms of rain from the 000629 data after gridding and filtering (left
panels) and simulated S-band data used to train the ANN (right panels). This shows the
similarities and differences among four polarimetric observations: (a) real Zdr vs. Zh, (b)
simulatedZdr vs. Zh, (c) real LDR vs. Kdp and (d) simulated LDR vs. Kdp.

4.8.1 Rain

4.8.1.1 STEPS Supercell

Fig. 4.30 shows 2D histograms of the real data after gridding and smoothing (Fig. 4.30a

for Zdr and Zh and 4.30c for LDR and Kdp) compared to S-band observations simulated

from the PSD parameters described in Sec. 4.6 (Fig. 4.30b and 4.30d). With the exception

of LDR, considerable overlap of the histograms exists, although there are certainly regions

that do not. Figure 4.30a also shows where an additional filter was applied to remove high

Zdr values at lower Zh along a line that is roughly parallel to the theoretical set as well

as Zdr < −0.2 resulting in the “clipped-looking” results shown in Fig. 4.30. The disparity

between simulation and reality for LDR is a primary factor for not using LDR to calculate
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Figure 4.31: Simulated X-band observations of rain vs. real S-band 2D histograms of the
000629 storm overlaid on the pure simulation results (gray x’s) (a) Zh, (b) Zdr, (c) Kdp and
(d) Ah vs. Zh,S . A vast majority of the result match the theoretical expectation.

other variables or to simulate it at the higher frequencies. In addition, many polarimetric

ground radars operate in simultaneous or slant 45 mode meaning that they cannot produce

a measure of LDR.

After training the ANNs on simulated S-band data, the results of applying the real data

are plotted as 2D histograms shown in Figs. 4.31 and 4.32. The gray x’s represent the

theoretical X-band simulated from PSD directly. While some outliers do exist, a significant

majority (over 99% in most cases) of the points lie within the theoretical region or continue

the trend. All of the network outputs that are outside the theoretical bounds correspond to

inputs that are outside the theoretical S-band values as seen in Fig. 4.30. For example, Fig.

4.31b shows some Zdr output data which are higher than expected at S-band Zdr values

below 1. These data correspond to higher values of Zh,S that would theoretically produce
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Figure 4.32: 2D histograms for simulated X-band specific attenuation vs. real S-band Kdp

for rain from the 000629 storm over the pure simulation results (gray x’s) (a) Ah and (b)
Adp.

higher differential reflectivity. Thus, we get an indication that the particles are either not

pure rain or that the measured Zdr is lower than expected. Theoretically, rain will not have

Kdp < 0, but this condition exists in the real data possibly due to the presence of mixed

phase hydrometeors near the melting regions or by an undershoot of the Kdp estimation

algorithm. The ANN output, however, is also negative in these regions which was achieved

by negating the output of these cells given that the scheme described in (4.16) will never

produce a value less than 0.

For attenuation in Fig. 4.32 and Fig. 4.31d, the ANN result is still mostly within

the expected values. Note that the color scale for Fig. 4.32a is multiplied by 104, so

the percentage of points that seem to produce attenuation that is too low, most of which

correspond to the points to the right of the attenuation versus reflectivity in Fig. 4.31d.

Also, despite negative Kdp data, attenuation values are still positive which was partially

achieved by setting the scaling limits of the RBFN such that the simulated target values

all fell within 0-1. The differential attenuation shown in Fig. 4.32b also appears noisy, but

again the percentage of values above the theoretical bound is very small.

4.8.1.2 2001 Squall Line

Fig. 4.33 shows 2D histograms of the real measurement from 2 August 2001 after

gridding and smoothing. Zdr and Zh are shown in Fig. 4.33a for and Fig. 4.33c depicts LDR
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Figure 4.33: 2D histograms of rain from the 010802 data (left panels) and simulated S-
band data used to train the ANN (right panels). This shows the similarities and differences
among four polarimetric observations: (a) real Zdr vs. Zh, (b) simulatedZdr vs. Zh, (c) real
LDR vs. Kdp and (d) simulated LDR vs. Kdp.

and Kdp, with comparisons to S-band observations simulated from the PSD parameters

described in Sec. 4.6 in Fig. 4.33b and 4.33d. As Fig. 4.33a shows, data with Zh < 10 dBZ

and Zdr < −0.2 dB were removed before processing. The very low reflectivity potentially

indicates frozen particles classified as rain. Higher Zdr values above this, however, were not

filtered as they were in the 000629 case. Again, a similar dispartity of LDR exists between

reality and the simulation output, reaffirming the decision not to use it. Similar to Figs.

4.31 and 4.32, the ANN output for rain in the storm are plotted in Figs. 4.34 and 4.35.

This storm is not as intense as the 000629 supercell, and the results indicate a better match

to the theoretical values. Likewise, Figs. 4.36 and 4.37 demonstrate the capability of the

A-RBFN to convert real S-band observations to realistic Ku-band.
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Figure 4.34: Simulated X-band observations of rain vs. real S-band 2D histograms of the
0108020 storm overlaid on the pure simulation results (gray x’s) (a) Zh, (b) Zdr, (c) Kdp

and (d) Ah vs. Zh,S .
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Figure 4.35: 2D histograms for simulated X-band specific attenuation vs. real S-band Kdp

for rain from the 010802 storm over the pure simulation results (gray x’s) (a) Ah and (b)
Adp.
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Figure 4.36: Simulated 65° Ku-band observations of rain vs. real S-band 2D histograms of
the 0108020 storm overlaid on the pure simulation results (gray x’s) (a) Zh, (b) Zdr, (c)
Kdp and (d) Ah vs. Zh,S .
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Figure 4.37: 2D histograms for simulated Ku-band specific attenuation vs. real S-band Kdp

for rain from the 010802 storm over the pure simulation results (gray x’s) (a) Ah and (b)
Adp.

91



4.8.2 Hail and Hail Mixed With Rain

Simulating high frequency radar observations of hail from real data presents several

challenges, as alluded to by the discussion in Section 4.5. A method employed to improve

the “realism” of the simulation data is to add a perturbation to the polarimetric variables.

This helps to simulate measurement noise in addition to natural variation of hail canting

and shape parameters. Without having a reasonable signal-to-noise (SNR) estimate in the

gridded data, the perturbation model is made as a function of reflectivity in the form of a

normal (Gaussian) distribution written as

ν ∼ N(0, σ2), σ = min

(
av
Zh

, bv

)
. (4.17)

Table 4.2 contains the values of av and bv for the variables to which the Gaussian noise is

added.

Table 4.2: Noise variance parameters in (4.17)
Parameter S-band Variable

Zdr Kdp LDR

av 1.5 5 6

bv 0.5 0.2 2

4.8.2.1 STEPS Supercell

Two dimensional histograms of the 000629 storm resolution cells containing hail com-

pared to simulated S-band distributions are displayed in Fig. 4.38, similar to Fig. 4.30.

In Fig. 4.38a we see an indication of a range of hailstone sizes as Zdr decreases with in-

creased Zh. The majority of Zdr values are also negative, indicating some level of vertical

orientation, hence the choice of horizontally canted oblate and vertically oriented prolate

spheroids in the simulation. Kdp also appears to be fairly close to the theory, although the

real measurements tend to be slightly less than the theoretical ones. In addition to the fact

that the simulations were run at a small number of discrete densities, the comparison to

real data here indicates that simulation parameters might be too simplistic, but are fairly

close. With the inclusion of the noise discussed above, the ANN can better accommodate

the expanded input space of measurements.

92



40 45 50 55 60 65 70
−1

0

1

2

3

4

5

Real Z
h,S

 (dBZ)

R
ea

l Z
dr

,S
 (

dB
)

(a)

 

 

C
ou

nt

20

40

60

80

100

120

140

160

180

40 45 50 55 60 65 70
−1

0

1

2

3

4

5

Simulated Z
h,S

 (dBZ)

S
im

ul
at

ed
 Z

dr
,S

 (
dB

)

(b)

 

 

C
ou

nt

20

40

60

80

100

120

140

−2 0 2 4 6 8
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Real K
dp,S

 (deg km−1)

R
ea

l L
D

R
S
 (

dB
)

(c)

 

 

C
ou

nt

200

400

600

800

1000

1200

1400

1600

−2 0 2 4 6 8
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Simulated K
dp,S

 (deg km−1)

S
im

ul
at

ed
 L

D
R

S
 (

dB
)

(d)

 

 

C
ou

nt

20

40

60

80

100

120

140

160

180

Figure 4.38: Same as Fig. 4.30 except for hail and rain plus hail within the 000629 storm.
The theoretical values in panels (b) and (d) show the multiple hail canting configurations
discussed in Section 4.5.2.

The neural networks for hail, however, do not perform well without the addition of a

D0 value as input when they are applied to the real data. Therefore, the first step is to

estimate D0 from observable parameters. As Table 4.7 indicates, LDR is used here, but in

order to account for the large difference between reality and the simulation 20 dB was added

to the simulated LDR prior to training the ANN. The histogram in Fig. 4.39 is the result

of this effort, which tends to be the most difficult estimation in terms of minimizing error.

Given the magnitude of this storm, and that 1.75 inch hailstones were reported [Lang et al.

(2004)], the result seems reasonable. This output allowed the remaining ANNs to produce

the results within theoretical bounds as exhibited in Figs. 4.40 and 4.41. The distribution

shown in Fig. 4.39 also contains multiple modes, the largest of which corresponds mostly

to the hail only regions. Unfortunately, it is unclear how well this matches reality or if it is
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Figure 4.39: Histogram of D0 estimated from 000629 hail and rain plus hail observations
using the ANN with Zh, Zdr, Kdp and LDR.

a result of trying to make the data match the simulation.

Similar to Figs. 4.31 and 4.32, 2D histograms of the simulated X-band model output

are plotted over the theoretical values in Figs. 4.40 and 4.41. All reflectivity estimates

are within the theoretical space, and if we assume Fig. 4.39 is correct, this is the output

we should expect. When real S-band Zdr observations lie beyond the theoretical values,

e.g., Zdr,S < −0.4 ∨ Zdr,S > 3.5, there is no clear trend so the modeled response shown

in Fig. 4.40b in this region could be reasonable. The Kdp,S result shown in Fig. 4.40c is

fairly representative of the expectation from simulation, and attenuation results seen in Fig.

4.40d and Fig. 4.41 are also within expected values except for a very few locations seen in

Fig. 4.41a. Even the typically noisy differential attenuation produced realistic estimations.
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Figure 4.40: Simulated X-band observations of rain plus hail vs. real S-band 2D histograms
of the 000629 storm overlaid on the pure simulation results (gray x’s) (a) Zh, (b) Zdr, (c)
Kdp and (d) Ah vs. Zh.
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Figure 4.41: 2D histograms for simulated X-band specific attenuation vs. real S-band Kdp

for rain plus hail from the 000629 storm over the pure simulation results (gray x’s) (a) Ah

and (b) Adp.
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Figure 4.42: Same as Fig. 4.30 except for hail and rain plus hail within the 010802 storm.
The theoretical values in panels (b) and (d) show the multiple hail canting configurations
discussed in Section 4.5.2.

4.8.2.2 2001 Squall Line

With the success of the model applied to a classic supercell, another good test of robust-

ness is to apply it to a different type of storm. The August 2, 2001 squall line observed by

the CSU-CHILL radar provided this data, and the variables within resolution cells classified

as hail or hail plus rain are depicted in Fig. 4.42. No additional filtering was applied as

the data quality is quite good. Even LDR is much closer to the simulated range of values,

but it was still only used for the D0 estimate. Both Zdr and Kdp, however, appear to have

more variability than simulations suggest. Despite this, a very reasonable estimate of the

D0 distribution was made, as displayed in Fig. 4.43. A squall line is expected to have

smaller hailstone sizes than a supercell, which is exactly what the figure suggests, showing

a fairly narrow peak around 10 mm. In this particular case, almost all hail was melted
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Figure 4.43: Histogram of D0 estimated from 000629 hail and rain plus hail observations
using the ANN with Zh, Zdr, Kdp and LDR.

before hitting the ground, as will be shown in Section 5.4.2.

With the estimate of D0 being very reasonable, the model converted the S-band mea-

surements to 55° X-band observations quite well. These results are shown in Figs. 4.44

and 4.45. Smaller hail stone sizes should result in higher reflectivity estimations, which is

exactly what Fig. 4.44a indicates. The Zdr output is also mostly within the theoretical

bounds, as is the Kdp estimation. Data seen in Fig. 4.44(b and c) that are outside this

region correspond to the same points where a large differential reflectivity (above 2.5) had

an associated small differential phase shift around 0.5. The output of the model then be-

came a reduced Zdr and an increased Kdp. Given that Kdp is not measured directly, it is

possible that it was underestimated. As expected based on the model output for observable

variables, attenuation is also well within realistic expectations as seen in Fig. 4.44a relative

to reflectivity and in Fig. 4.45. All Ah values are positive, and most Adp values are where

negative output corresponds to the small amount of negative Zdr.
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Figure 4.44: Simulated X-band observations of rain plus hail vs. real S-band 2D histograms
of the 000629 storm overlaid on the pure simulation results (gray x’s) (a) Zh, (b) Zdr, (c)
Kdp and (d) Ah vs. Zh.
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Figure 4.45: 2D histograms for simulated X-band specific attenuation vs. real S-band Kdp

for rain plus hail from the 000629 storm over the pure simulation results (gray x’s) (a) Ah

and (b) Adp.
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4.9 Summary

Simulating the observations of a short wavelength spaceborne off-nadir radar from lower

frequency ground data is the primary goal of this research. In order to reach this goal, elec-

tromagnetic scattering simulations are utilized given realistic PSD parameters for various

hydrometeor types. For particles in the Rayleigh scattering size region, these parameters

were derived from in situ observations and numerous experiments. The parameters for hail

are also based on field observations; however, only a simple shape and three simple canting

configurations are used to cover the essence of the real behavior. Following scattering sim-

ulations for horizontally pointing S and C-band radars and high elevation X and Ku-band

radars, models are presented to transform the former to the latter. For rain and hail, a

nonlinear regression model implemented with radial basis function neural networks is pre-

sented and performance documented from real S-band observations. The model for rain is

also compared with an existing curve-fit model, but there is no current model for hail with

which to compare. Nearly all model results lie within theoretical limits, thus achieving the

primary goal. These results are then used directly for simulating X-band SAR observations

discussed in subsequent chapters.

The neural network models produce excellent results, although they have cons as well

as pros. On the one hand, the oscillations due to Mie scattering can be handled for a large

variety of hail sizes and ice fractions, a lookup table of coefficients is not necessary and the

error when applied to rain is comparable to existing models. The network is also adaptive

to the input, so a complete redesign is not necessary to model different scenarios. On the

other hand, training the ANNs so that they produce reasonable results with real input

observations is challenging. This may be solved by a better optimization algorithm than

the gradient descent method used. For the most part, the lower the mean absolute error,

the better the results when applied to real radar measurements, so there is no overfitting

problem that can occur with implementations such as the multi-layer perceptron [Fritz

and Chandrasekar (2010a)]. However, values in real data that may be noisy, caused by

unusual circumstances or mis-classification in the hydrometeor identification stage, can

lead to erroneous results such as reflectivity that is too low. It is conceivable that results
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like this could then aid an improved filter algorithm, but for now they must be accounted

for by removing insidious data or providing an explanation for the results.

There are several possible improvements to the ANN models for future research. One

is to improve the training sets in order to better match realistic observations. While it is

not reasonable to simulate every case, better models of measurement noise could be helpful.

Another possibility is to take advantage of the adaptability of the A-RBFN design when

applied to real data. Although the target value may be unknown, the estimations will

not deviate too much from adjacent grid cells. If the data are processed by incrementing

through the grid, beginning with higher altitude values underneath snow or graupel, an

error can be presented to the ANN if the output value is beyond a threshold, e.g., from

the median value of adjacent cells that have already been computed. Thus, large spatial

gradients can be reduced.
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CHAPTER 5

SIMULATION OF SAR PRECIPITATION OBSERVATIONS

A scientific truth does not triumph by convincing its opponents and

making them see the light,but rather because its opponents eventually

die and a new generation grows up that is familiar with it.

- Max Planck

5.1 Introduction

Meteorological investigations from spaceborne SAR platforms are becoming possible

given recent and upcoming launches of higher frequency systems. To date, however, lim-

ited work has been done to create models for simulating the effect of precipitation on short

wavelength SAR and almost no prior research involves polarimetric observations. A method-

ology is presented here that is capable of simulating X-band polarimetric SAR observations

of convective storms containing hail based on real data from a ground-based S-band polari-

metric radar. This methodology involves a model and scattering simulations to transform

the longer wavelength observations to shorter wavelengths at higher elevation angles, using

a neural network for rain and hail, hydrometeor classification of the real data and spatial

modeling of the SAR viewing geometry in order to compare the simulated storm to real

SAR observations. Results using data from the CSU-CHILL radar of a supercell storm and

a squall line are shown and the simulated storm is added to TerraSAR-X data collected

over Florida in 2008.

5.2 SAR Precipitation Spatial Model

The spatial distribution and geometric model for SAR through precipitation has been

presented by several previous works including Pichugin and Spiridonov (1985), Moore et al.
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Figure 5.1: A schematic of SAR planar wavefronts through a rain cell. x is the cross-track
ground range, with various transition points between attenuation or backscatter (or both)
are indicated. rx is the radial vector while px is the perpendicular (ideal wavefront) vector.
Thus, r(x) is the range through the precipitation cell to surface location x, p(x) represents
the backscatter component of the precipitation affecting the observation at x and r(px) is
the attenuation of the precipitation backscatter as it is integrated along px.

(1997) and Weinman and Marzano (2008) is described with the aid of Fig. 5.1. This cross

track vertical slice depicts a precipitation cell (blue region), the direction of the incident

radar beam and the plane wave approximations to the range-time samples (δr = cτ/2 where

τ is the compressed pulse width). The cell could contain frozen, melting and liquid layers.

When the SAR beam passes through a precipitation cell, the observed NRCS can be

expressed as the sum of volume and surface cross sections as seen in Fig. 5.1 [Pichugin and

Spiridonov (1985); Melsheimer et al. (1998); Moore et al. (1997); Weinman and Marzano

(2008)]. This sum is given by

σobs = σsp + σvp

σ0
obsαsrf = σ0

spαsrf + ηvpVeff , (5.1)

where αsrf = δaδr is the surface area within the SAR resolution cell, ηvp is the volumet-

ric backscatter cross section (m2 m−3) and Veff is the effective volume of precipitation

backscatter [Moore et al. (1997)] that incorporates the turbulent velocity dependent az-

imuth resolution described in Atlas and Moore (1987). The obs subscript indicates the

observation while the srf subscript represents the surface component. Dividing through by

this surface area leaves σ0
obs = σ0

sp + ηvpaeff where aeff is the remaining effective area. In
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general, the volume and surface components are scaled based on how much of the sampled

beam volume travels through the precipitation volume (r(x) in Fig. 5.1), or resides in this

volume along the transverse dimension (p(x)). At the cross track range where the beam

reflects the surface, x, with a no-rain NRCS σ0
NR is expressed as

σ0
sp = σ0

NRlr(x)(r) (5.2)

where lr(x)(r) is defined by (2.29) integrated over r(x), and

ηvpaeff = sin θ

∫

p(x)
η(px)lr(px)(r)dpx (5.3)

where lr(px)(r) is defined by (2.29) integrated over r(px). Similarly, the differential reflec-

tivity contains surface and volume components expressed as

Zobs
dr = Zsrf

dr + Zvol
dr − 2

∫ R

0
Adp(r)dr (5.4)

where Adp is defined in (2.33) and the vol superscript indicates the contribution of the

hydrometeor volume. The last term in reveals the differential attenuation for a target at

range R.

If the precipitation cell were a perfect rectangle, basic trigonometry can be used to pre-

cisely calculate the integration parameters r(x), p(x) and r(px) [Pichugin and Spiridonov

(1985); Marzano and Weinman (2008)]. However, realistic values are not so easy to deter-

mine, especially when the edges of the storm are not well defined. The ground-based radar

reflectivity corresponding to visible artifacts in the SAR images are most likely convective

cells due to the high reflectivity values and sharp gradients [Steiner et al. (1995)] (this is

discussed further in Sections 6.2.2 and 6.2.3). Over the regions that would be classified as

stratiform, effects on the SAR observations are negligible. Despite the ambiguity, however,

the ground radar reflectivity volume provides estimates for comparison. Further details

on the impact of convective and stratiform precipitation cells are given in the following

sections.
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5.3 Data Processing

5.3.1 Overview

There are a number of steps involved to simulate storm observations of an X-SAR

from ground-based polarimetric radar. An unavoidable consequence of multiple steps is

the introduction of noise starting with the ground radar observations, hence the careful

application of smoothing filters at various stages without degrading true gradients and

peaks. The following is a list of the major stages.

1. Kdp estimation. As described in (2.31),Kdp is a forward scattering phenomena. There-

fore, it cannot be observed directly from a monostatic radar and must be estimated

from the backscatter Φdp (see (2.32)). The algorithm used for this purpose is detailed

in Wang and Chandrasekar (2009), and in the process, low signal-to-noise ratio (SNR)

data are removed.

2. Attenuation correction. If the ground based radar is subject to attenuation, for ex-

ample C-band radars, attenuation correction should be applied at this stage. The

algorithm used will depend on the specific conditions, but most are based on Kdp as it

is not affected by attenuation [Testud et al. (2000)]. A consequence, however, is that

the correction will be underestimated if Kdp is underestimated, which will propagate

to the final result.

3. Gridding. Using standard interpolation techniques with a range dependent window,

the original radial data are resampled to form an earth-centric Cartesian grid, i.e.,

the vertical axes indicates constant altitude based on the geolocation of the radar

and the horizontal axes correspond to latitude and longitude. This process inherently

filters the data, and some remaining artifacts can be smoothed further by applying a

three-dimensional Gaussian kernel to average adjacent samples. In addition, manual

removal of spatial outliers can be applied.

4. Hydrometeor classification. In order to apply the correct PSD based model to trans-

form observations to those of a different wavelength, the hydrometeor types need to
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be identified. This is a challenging process, met with a high degree of success using

the fuzzy logic approach described in Lim et al. (2005). Part of this process involves

an estimation of the melting layer from the dual-polarization observations, which can

then provide an estimation of temperature if no sounding data is available. Member-

ship functions have been fine tuned since the publication, as well as threshold values.

In addition, a spatial processing algorithm was added in the course of this research to

avoid cases where a grid cell is determined to contain frozen/melting particles while

the 3×3 grid array above it contains only liquid particles because the original method

does not consider spatial relationships except distance to the melting layer.

5. Transform frequency and look angle. Following hydrometeor classification, the models

discussed in Chapter 4 are applied to simulate the observations of the storm from a

higher frequency spaceborne radar with an off-nadir look angle. These observables

include Zh, Zdr, Kdp, Ah and Adp. The emphasis here is to generate realistic storm

observations and not necessarily the true observations of the specific storm from the

simulated platform, although that is the ultimate goal when coincident observations

from polarimetric SAR and ground radars are available. Field experiments will be

necessary, of course, to validate the simulation results.

6. Geometric resampling. At this point, the georeferenced volume of simulated polari-

metric radar observations is resampled with the geometry of the SAR. Fig. 5.1 shows

the essence of the process while Fig. 5.2 provides a more detailed look at the imple-

mentation showing discrete sample spacing. Slant angle resampling is described in

more detail below.

7. Integration to SAR observations. Given the range independent parameters generated

in the previous step, the final stage is to integrate them to simulate the propagation

effects from the storm onto a SAR ground observation, namely providing solutions

for (5.1) through (5.4) using real SAR observations without precipitation present.

Ultimately, the full covariance matrix can be generated incorporating real surface

measurements with simulated propagation effects.
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Figure 5.2: A more detailed look at the calculation of volumetric parameters given a grid
of ground radar data shown. The incidence angle at each ground location x is θx where
θn ≤ θx ≤ θf , i.e., between the near-range and far-range angles. Along the slant path,
the sample resolution is ∆r, while the resolution in the transverse direction, representing a
single range bin of SAR data, is ∆p. For each x there are Nx slant path samples and Mx

transverse samples.

5.3.2 Resampling and Integration

Fig. 5.2 provides a more detailed look at the implementation of the theory discussed in

Section 5.2. The grid shown is generated in Step 3 in Section 5.3.1 and can represent any

observation variable. Incidence angles of the SAR beam start at θn at the near-range side of

the swath and end at θf along the far-range edge. Shown are the sample lines representing

the slant range and plane wave beam approximation at ground location x (θn ≤ θx ≤ θf ).

Along the transverse line, there are Mx samples at a resolution of ∆p from the surface to

the far beam edge. At the ith sample along the transverse line is a slant line containing Nxi

samples at a resolution of ∆r. Thus, the ith sample of measured (i.e., attenuated) horizontal

reflectivity associated with x is

Zh,xmi = Zh,xi + Lh,r(x) = Zh,xi − 2∆r

Nxi∑

k=1

Ah,ik (5.5)

where Ah,ik is the kth sample of specific attenuation (see (2.28)) along the path to the

ith transverse sample. The estimation of path integrated attenuation (PIA) affecting the
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surface return is the same as that affecting the volume at the surface where i = 1, i.e.,

Lh,r(x) = −2∆r

Nx1∑

k=1

Ah,1k. (5.6)

Similarly, the differential reflectivity is determined by

Zdr,xmi = Zdr,xi + Ldp,r(x) = Zdr,xi − 2∆r

Nxi∑

k=1

Adp,ik (5.7)

where Adp,ik is the kth sample of specific differential attenuation (see (2.33)) along the path

to the ith transverse sample.

Before continuing with the conversion to NRCS, reflectivity is converted to volumetric

radar cross section ηh using (2.26) in units of m2m−3. Then the volume contribution of the

horizontal channel of the SAR observation can be written as

ηh,x = ∆p

Mx∑

i=1

ηh,xi = b∆p

Mx∑

i=1

10
0.1

(

Zh,xi−2∆r
∑Nxi

k=1
Ah,ik

)

−18
(5.8)

where b = π5|Kw|2/λ4 and the ’−18’ exponent is from the conversion from mm6 to m6.

The PIA at the ground location (lr(x)(r) in (5.2)) is the same as the second term in (5.5) at

i = 0 before conversion to linear units. Complex SAR data is usually delivered in terms of

β0 rather than σ0 where the two are related by (2.39). Therefore, it is simpler to calculate

βobs which removes the sin θ term in (5.3). The final result for estimating the observed

radar brightness for both co-polar channels is

βhhObs = β0
hhNRlh + ηh (5.9)

βvvObs = β0
vvNR (lv) + ηv (5.10)

where losses are in linear units, the subscript references to r and x have been dropped to

simplify notation, lv = lh/ldp and ηv is calculated similar to (5.8) using Zv = Zh − Zdr.

The co-polar correlation in (2.34) can also be estimated and provides the means to

construct a 2×2 covariance matrix from the scattering vector consisting of the co-polar

terms (i.e., [Shh Svv]). Propagation and volumetric backscatter affect the complex product

term, ShhS
∗

vv, similar to the intra-polarization terms, so the correlation magnitude can be

estimated in terms of β0 by

|ρ̂obs| =
ShhS

∗

vv

√
lhlv + 0.5 (ηh + ηv)√
βhhObsβvvObs

(5.11)
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where ShhS
∗

vv indicates the surface only response. This implies β0
xx = SxxS

∗

xx = |Sxx|2.

Similar to attenuation, phase is also accumulated along the path of the propagating radar

wave as described in (2.32), but consideration of the phase change along the entire wavefront

must be made. Using Kdp and a similar approach used to determine volumetric backscatter

attenuation in (5.8) the observed co-polar differential phase can be calculated. At the surface

location x, the total phase due to precipitation is the sum of backscatter and averaged

integrated specific phase:

Ψdp,x = φco,x +Φdp,x (5.12)

where φco,x ≃ 0 when the scattering is within the Rayleigh limits. For a SAR image without

precipitation in the beam, Φdp, x ≃ 0 and the copolar phase shift from the surface backscat-

ter is represented by φco,x. To compute Φdp,x, the specific phase Kdp is first integrated along

the slant path to each transverse sample, resulting in multiple Φdp estimates along this con-

stant range bin. Combining these differential phase values is accomplished considering that

the estimate for a single resolution cell is calculated by taking the argument of the lag 0

covariance Rco[0] = 〈VhhV
∗

vv〉, where Vvv and Vhh are the measured voltages from vertical

and horizontal polarization respectively. The overall calculation is represented by

Φ̂dp = arg {Rco[0]} = arg

{
1

N

N∑

n=1

Vhh[n](Vvv[n])
∗

}
. (5.13)

Given that samples of Φdp have been estimated along a constant SAR range bin, these must

be coherently summed. The total differential phase due to precipitation becomes

Φdp,x = arg

{
Mx∑

i=1

ejΦdp,xi

}
(5.14)

where

Φdp,xi = 2∆r

Nx∑

m=1

Kdp,xm. (5.15)

Then (5.14) is substituted into (5.12) and added to the copolar phase of the surface for

the final estimation of differential phase at the ground location x. Combining all of these

components provides a mechanism to simulate X-band SAR observations of a storm starting

with real polarimetric S-band ground observations.
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5.4 Case Studies

Data from the Severe Thunderstorm Electrification and Precipitation Study (STEPS)

experiment [Lang et al. (2004)] during a hailstorm on 29 June, 2000 (denoted as 000629) and

measurements of a squall line on 02 August 2001 (denoted 010802) are used to validate the

model results. These observations were made by the CSU-CHILL S-band dual-polarization

Doppler weather radar. Using the procedure detailed in Section 5.3, observations are simu-

lated to match parameters of the TerraSAR-X X-band SAR operating with a 35° incidence

angle in stripmap co-polarization mode where only Shh and Svv are measured. Real TSX

scenes captured over Orlando, Florida in August 2008 are then used as the SAR data to

which the simulated storms are added with a comparison to real storms observed in a prior

overpass. This procedure neglects changes to the surface due to an active storm, which will

provide insight into surface changes when comparing to real storms.

5.4.1 STEPS Supercell

In order to demonstrate the model, two cases are analyzed where hypothetical SAR

swaths run in the north-south direction with different east-west positions relative to the

storm - one on each side. For the east side swath, the storm is effectively rotated 180° so

that the look direction will be the same allowing both to be added to a single real SAR

image. Meanwhile, the swath on the west side simulates the SAR observations through the

core of the storm.

Figs. 5.3 through 5.6 provide an overview of the storm being processed. In Fig. 5.3, three

orthogonal slices of reflectivity indicate the intensity of the storm, identified as a supercell

with copious amounts of hail and a strong updraft near the region where reflectivity above

60 dBZ extends from the surface at 1.5 km above Mean Sea Level (MSL) to about 12 km

MSL. Detecting rain at such a high altitude, however, may in fact be caused by strong

gradients in the horizontal versus vertical returns, which in turn may skew Zdr. When the

antenna is pointing toward the top of the storm, significant backscatter could be detected

from the hail shaft via the sidelobes. Hydrometeor classification results using the Lim et al.

(2005) procedure are shown in Fig. 5.4 along the same 3 slices. Hail is indicated by the
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Figure 5.3: Slices of reflectivity observed by CSU-CHILL during the 000629 storm. (a) A
horizontal slice at 4 km MSL. (b) A vertical slice at 45 km north of the radar. (c) A vertical
slice at 72 km east of the radar. Some gridding effects are visible in this slice.

magenta color and hail mixed with rain by green. An estimation of the melting layer is

depicted in Fig. 5.5 which clearly shows a strong updraft to the west of a downdraft. The

horizontal slices of differential reflectivity displayed in Fig. 5.6 help confirm the presence of

the updraft. Once Zdr becomes positive from the storm top, hydrometeors have changed

from oriented ice crystals to oblate raindrops [Bringi and Chandrasekar (2001)].
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Figure 5.4: Slices of hydrometeor classification results at the same locations as the reflec-
tivity slices in Fig. 5.3. (a) A horizontal slice at 4 km MSL. (b) A vertical slice at 45 km
north of the radar. (c) A vertical slice at 72 km east of the radar. The color codes are as
follows: R/H = rain plus hail, H = hail, G/SH = graupel or small hail (includes melting),
DS = dry snow, WS = wet snow, R = rain and DZ = drizzle or light rain.
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Figure 5.5: The melting layer height in km above MSL estimated during hydrometeor
classification. The ground level is approximately 1.5 km. Around 72 km east of CSU-CHILL
and 47 km north, a strong updraft is indicated by a very high melting layer. This may
actually be above the freezing level, but indicate super-cooled raindrops. These raindrops
then become hailstone embryos.

Figure 5.6: Horizontal slices of differential reflectivity observed by CSU-CHILL during the
000629 storm at (a) 3 km MSL (b) 6 km MSL (c) 9 km MSL and (d) 12 km MSL.
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Figure 5.7: Vertical Maximum Intensity (VMI) of simulated X-band reflectivity from the
000629 storm (rotated 180◦) with the location of the hypothetical SAR swath indicated by
the dashed lines and vertical cross-track slice locations by the dotted lines.

5.4.1.1 Stratiform to Convective

Amajority of the June 29 storm is clearly convective; however, the region on the east side

possesses more stratiform characteristics. These characteristics include lower reflectivity, a

relatively flat melting layer and, in general, more homogeneity, although the stratiform

region in this storm does not exhibit a significant bright band. Frozen hydrometeor types

in stratiform storms are typically snow crystals, including those within the melting region,

unlike convective storms that contain higher density ice such as graupel and hail. Fig.

5.7 displays a Vertical Maximum Intensity (VMI) image of the rotated storm after being

transformed to X-band. The figure also indicates the position of the SAR swath with

vertical cross-track slice locations indicated by the dotted lines.

A better view of the storm structure within the SAR beam is given by Fig. 5.8 that

shows vertical cross-track slices of reflectivity at the locations marked in Fig. 5.7 (where

0 km along-track = 15 km north of the ground radar). Lines in each panel indicate the

slant path of the beam at six locations and the corresponding transverse planar wavefronts.

Figs. 5.8a and 5.8b contain light precipitation toward the edge of the storm; negligible

radar returns are indicated by white color. Much higher reflectivity values are shown in

113



−5 0 5 10 15
2

4

6

8

10

12

14
(a) 5 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB
Z

20

30

40

50

60

−5 0 5 10 15
2

4

6

8

10

12

14
(b) 11 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB
Z

20

30

40

50

60

−5 0 5 10 15
2

4

6

8

10

12

14
(c) 17 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB
Z

20

30

40

50

60

−5 0 5 10 15
2

4

6

8

10

12

14
(d) 23 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB
Z

20

30

40

50

60

−5 0 5 10 15
2

4

6

8

10

12

14
(e) 29 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB
Z

20

30

40

50

60

−5 0 5 10 15
2

4

6

8

10

12

14
(f) 35 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB
Z

20

30

40

50

60

Figure 5.8: Six vertical cross-track slices of horizontal reflectivity Zh,X (see 5.7). The solid
lines indicate several slant paths including the ideal beam boundaries and the dashed lines
indicate transverse (constant range) values. The slices are at (a) 5 km (b) 11 km (c) 17 km
(d) 23 km (e) 29 km and (f) 35 km along-track, offset from the ground radar by 15 km.

Figs. 5.8c-e where a gradient is visible along the edge of regions containing hail. Mie

scattering within the hail cell is likely to cause a decrease in observed reflectivity, and the

2D histograms of this storm shown previously in Fig. 4.40 along with the D0 in Fig. 4.39

confirms this.

Vertical cross-track slices of the X-band specific attenuation at the same six locations

are depicted in Fig. 5.9. Although there is not a one-to-one correspondence between high

reflectivity and attenuation, hydrometeor volumes resulting in high reflectivity, which are

usually rain or melting particles, tend to cause higher attenuation at higher frequencies

such as in X band. The resulting PIA within the SAR scene calculated from (5.6) is shown

in Fig. 5.10 where we see a more complete picture of the high attenuation between 18 and

33 km along-track. Fig. 5.10a shows the PIA in horizontal polarization while Fig. 5.10b

depicts the path integrated differential attenuation.
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Figure 5.9: Six vertical cross-track slices of specific attenuation Ah,X similar to Fig. 5.8
(see also 5.7). The slices are at (a) 5 km (b) 11 km (c) 17 km (d) 23 km (e) 29 km and (f)
35 km along-track, offset from the ground radar by 15 km.

In the absence of surface reflections, the volumetric radar cross-section η within the

SAR swath is shown in Fig. 5.11. Without attenuation, the integrated horizontal RCS

ηh in Fig. 5.11a is relatively high. By applying (5.8), much of the RCS above -10 dB is

attenuated as seen in Fig. 5.11b. Toward the outer edge of the storm, the result is negligible

even though the signal passes through regions around 30 dBZ. This is consistent with

real observations [Danklmayer et al. (2009); Fritz and Chandrasekar (2010b)]. Fig. 5.11c

depicts the difference between the attenuated ηh and ηv to show the differential reflectivity

change, where the near-range area that is below zero corresponds to the similar differential

attenuation in Fig. 5.10b.
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Figure 5.10: (a) The simulated total slant path integrated attenuation (PIA) from a SAR
swath indicated in Fig. 5.7 (b) The differential PIA for the same SAR swath.
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Figure 5.11: (a) The simulated volumetric radar cross section ηh from SAR swath indicated
in Fig. 5.7. (b) The attenuated ηh for the same swath. (c) The attenuated ηh − ηv.
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Figure 5.12: Six vertical cross-track slices of specific differential phase Kdp,X (see 5.7). The
slices are at (a) 5 km (b) 11 km (c) 17 km (d) 23 km (e) 29 km and (f) 35 km along-track,
offset from the ground radar by 15 km.

Similar to attenuation, six vertical slices of specific differential phase are shown in Fig.

5.12. Some regions with high Kdp will not result in high Φdp on the surface due to negative

Kdp above it and/or small values along the planar wavefront. The projection onto the SAR

slant range plane is discussed below in Section 5.4.1.3. Differential phase, however, is not

affected by attenuation like signal strength [Bringi and Chandrasekar (2001)].

5.4.1.2 Convective Supercell Storm

In Section 5.4.1.1 the simulation of SAR observations demonstrated the impact from

light precipitation with part of the hypothetical SAR beam within the convective region to

show backscatter and more significant attenuation. A more rigorous test of the simulation

and modeling is needed to cover the hail shaft of the supercell. The neural network based

models are more predominant in this area in order to transform the real S-band data to

X-band slant angle observations given substantial Mie scattering effects caused by the large
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Figure 5.13: Vertical Maximum Intensity (VMI) of simulated X-band reflectivity in the
convective region of the 000629 storm with the location of the hypothetical SAR swath
indicated by the dashed lines and vertical cross-track slice locations by the dotted lines.

hailstones. Fig. 5.13 depicts the VMI of the X-band version in this convective region with

a different hypothetical SAR swath indicated. Vertical slices of reflectivity at the indicated

cross-track locations are shown in Fig. 5.14 providing a look at the transformation result.

Along some of the boundaries of volumes classified as hail or rain plus hail with pure rain

or graupel, a fairly sharp gradient exists. Again, if the estimation showing a large median

diameter is correct, the result in Fig. 5.14 is expected; however, it is also possible the

hydrometeor classification boundary is not perfect. An improvement may be to allow for

a transition zone from graupel to hail. Despite this feature, the final result still exhibits

reasonable values for attenuation and backscatter and is a good starting point for further

research.
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Figure 5.14: Six vertical cross-track slices of horizontal reflectivity Zh,X (see 5.13). The
solid lines indicate several slant paths including the ideal beam boundaries and the dashed
lines indicate transverse (constant range) values. The slices are at (a) 9 km (b) 12 km (c)
15 km (d) 18 km (e) 21 km and (f) 24 km along-track, offset from the ground radar by 22
km.
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(c) 15 km along−track
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(e) 21 km along−track
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(f) 24 km along−track
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Figure 5.15: Six vertical cross-track slices of horizontal specific attenuation Ah,X (see 5.13)
with beam lines. The slices are at (a) 9 km (b) 12 km (c) 15 km (d) 18 km (e) 21 km and
(f) 24 km along-track, offset from the ground radar by 22 km.

Results of the transformation to X-band and the conversion to two-dimensional SAR

observations for attenuation, volumetric RCS and specific differential phase are displayed

in Figs. 5.15 through 5.18. As expected, the attenuation through the storm core shown in

Figs. 5.15 and 5.16a is more severe than in the propagation through the stratiform region

that only begins to cover the convective core. The differential attenuation seen in Fig. 5.16b

is also almost twice that of Fig. 5.10b, which is not surprising given the concentration of

Zdr < 0 seen in Fig. 4.40. Radar backscatter is also expected to be high, as Fig. 5.17a

shows for horizontal polarization, with the attenuated version in Fig. 5.17b from (5.8). As

the radar wave propagates through much of the storm cell, almost every region exhibits

attenuation. Fig. 5.17c similarly depicts the difference between the attenuated ηh and ηv

to show the differential reflectivity change. Transmission of the wave through the storm

accumulates differential phase as depicted in Figs. 5.18.
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Figure 5.16: (a) The simulated total slant PIA from an X-SAR with swath indicated in Fig.
5.13 (b). The differential PIA for the same SAR swath.
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Figure 5.17: (a) The simulated volumetric radar cross section ηh from SAR with swath
indicated in Fig. 5.13. (b) The attenuated ηh for the same swath. (c) The attenuated
ηh − ηv.
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(c) 15 km along−track
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(f) 24 km along−track
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Figure 5.18: Six vertical cross-track slices of specific differential phase Kdp,X (see 5.13). The
slices are at (a) 9 km (b) 12 km (c) 15 km (d) 18 km (e) 21 km and (f) 24 km along-track,
offset from the ground radar by 22 km.
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Figure 5.19: (a) Original TerraSAR-X image over Orlando, Florida 30 August 2008. The
image is an RGB composite where Red = |Shh|2, Green = |Svv|2 and Blue = 2−.5|Shh−Svv|2
from the coherency matrix in (2.25). (b) The same data as (a) with the simulated storm
shown in Fig. 5.7 added to the top half and the storm in Fig. 5.13 added to the bottom
half. The greenish color indicates higher VV backscatter from the vertically oriented hail.
(c) A previous TSX swath on 8 August 2008 with a real convective storm (squall line) for
comparison. Here, a reddish color is noticeable on the near range side, indicating backscatter
from oblate hydrometeors. Raindrops and wind perturbing water surfaces produce a higher
VV backscatter that shows up as green.

5.4.1.3 Simulated SAR Observations

The final stage of the simulation process is to incorporate the simulated X-SAR obser-

vations detailed in Sections 5.4.1.1 and 5.4.1.2 with real X-SAR data without precipitation.

TerraSAR-X data collected on 30 August 2008 over Orlando, FL is used for this purpose.
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Fig. 5.19 displays the final result of (5.9) - (5.12) with the original image on the left and the

simulated storm added to Fig. 5.19b. Matching the 100 m resolution of the weather radar

data was achieved by a 60×40 boxcar style multilooking from the original TSX ground

spacing of approximately 1.6 m in range (cross-track) and 2.4 m azimuth (along-track) fol-

lowed by linear interpolation of the weather data at the reduced TSX resolution. While the

correlation coefficient was modified via (5.11) and differential phase via (5.12) the volumet-

ric backscatter appears as a yellowish-green color indicating slightly stronger backscatter in

the vertical polarization (VV) channel. This is to be expected as the previous analysis and

the original S-band data suggest hail stones with a vertically oriented tendency. Surface

change due to precipitation, such as roughening of water bodies, however, has not been

included. Around 23 km along-track and 0 to 6 km cross-track in Fig. 5.19a is a minor real

storm signature where the water shows up as green due to raindrops impinging the surface

[Contreras et al. (2003)]. Figure 5.19c depicts a real convective storm (squall line) over the

same region 22 days prior, which allows for qualitative comparisons. Significant VV scat-

tering is visible on the lakes, while the near range side of the attenuation regions is reddish

(HH). Oblate hydrometeors will exhibit increased HH backscatter, so this is expected. In

the simulated storm, it is possible that the hail backscatter overwhelms that of the oblate

raindrops.

Figs. 5.20 through 5.21 provide more insight into the simulation result. While Fig.

5.19 provides information about the relationship between channels, it is only qualitative.

The span image created by summing the diagonal elements of the covariance matrix and

converted to dB as displayed in Fig. 5.20a is more quantitative along with the span ratio

in Fig. 5.20b. The ratio indicates exactly how much the overall power changes due to the

simulated storm, with the lower limit clipped at -25 dB (below the actual noise floor of the

SAR data which is ∼ -20 dB). Although some backscatter is visible in Fig. 5.20a, near 7 km

along-track and 4-9 km cross-track for example, the power change did not increase above

the original observation except over water bodies. A decrease in the co-polar power ratio

Zdr is also evident as shown in Fig. 5.20c. The shift is toward the Zdr of the precipitation

from the that of the surface, which in this case is higher. Histograms of the co-polar

124



Cross−track Ground Distance (km)

A
lo

ng
−

tr
ac

k 
G

ro
un

d 
D

is
ta

nc
e 

(k
m

)

Power Span with Simulated Storm

 

 

0 5 10 15
0

10

20

30

40

50

dB

−20

−15

−10

−5

0

5

10

15

20

(a)

Cross−track Ground Distance (km)

A
lo

ng
−

tr
ac

k 
G

ro
un

d 
D

is
ta

nc
e 

(k
m

)

Power Span Ratio (’Precip’/’No−Precip’)

 

 

0 5 10 15
0

10

20

30

40

50

dB
−25

−20

−15

−10

−5

0

5

10

15

20

25

(b)

Cross−track Ground Distance (km)

A
lo

ng
−t

ra
ck

 G
ro

un
d 

D
is

ta
nc

e 
(k

m
)

∆ Z
dr

 (’Precip’/’No−Precip’)

 

 

0 5 10 15
0

10

20

30

40

50

dB

−6

−4

−2

0

2

4

6

(c)

Figure 5.20: (a) The span (10 log10
(
|Shh|2 + |Svv|2

)
) image with the simulated storm. (b)

The span ratio with the original data indicating power increase (blue) due to backscatter
or decrease(red). Increased power is mostly over water bodies where the original power was
low due to pseudo-specular reflection, but it is not necessarily visible in (a) or Fig. 5.19. (c)
The ratio of the Zdr with the simulated storm to the original Zdr. In general, the simulated
storm increases Zdr by several dB which is expected due to the radar wave interaction with
raindrops as described by (5.4).

correlation coefficient are shown in Fig. 5.21 and show a distinct increase in correlation.

This is expected because scattering from rain and other hydrometeors is highly correlated

as seen in Fig. 6.19b. All of these results are reasonable when compared to analysis of real

storms in TSX scenes detailed in Chapter 6 [Fritz and Chandrasekar (2010b)]. Specifically,

see Figs. 6.17-6.20

Fig. 5.22 depicts the simulated differential phase shift from the storm, the surface

backscatter differential phase and the combination of the two. The resulting projection of

Φdp from applying (5.14) is shown in Fig. 5.22a. This projection appears as expected given
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Figure 5.21: Histograms of the co-polar correlation coefficient ρco for the original SAR
data (red) and the data with simulated storms (green). A distinct increase in correlation
is present, which is to be expected as precipitation generally has correlation magnitudes
above 0.9.

the Kdp slices in Fig. 5.12 for the top half and Fig. 5.18 for the bottom half. Considering

the path length and wavefronts through the upper regions with negative Kdp, especially for

the hail core, the overall Φdp is reduced. Along the near range edge beyond 35 km along-

track, however, a positive Φdp due to prolate ice crystals at the upper layers of the storm

is shown. Fig. 5.22c depicts the copolar phase change φco of the surface backscatter and

Fig. 5.22b is the result of applying (5.12) to the data in the other two panels. Given the

±180°range when combined with the surface differential phase, the additional propagation

effect is subtle, although some pixels that are close to 180°will wrap around to −180°. This

simulation, of course, does not account for surface changes in φco that may occur during a

real storm, which will be discussed in 6.2.5.
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Figure 5.22: (a) Simulated propagation differential phase Φdp from the 000629 storm (both
renditions). (b) The original surface backscatter copolar phase shift plus the simulated
propagation shift, Ψdp = Φdp + φco. Some values wrap as the sum exceeds ±180°. (c) The
original SAR copolar phase difference φco.
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Figure 5.23: A single scan of reflectivity at 1.2° elevation from CSU-CHILL on 010802. The
storm cell of interest is around 60 km (each range ring is 30 km).

5.4.2 2001 Squall Line

In order to demonstrate the effectiveness of the simulation based model for a variety

of meteorological conditions, another storm was selected. On August 2, 2001 a convective

squall line passed through the domain of the CSU-CHILL radar in Greeley, Colorado at

an altitude of approximately 1700 m MSL. A scan of the reflectivity data is shown in Fig.

5.23 at an elevation angle of about 1.2°. The portion of the storm aligned with north

around 60 km due east of the radar was selected to simulate spaceborne data. Fig. 5.24

depicts horizontal and vertical slices of reflectivity over a slightly smaller sub-region, cutting

through a hail cell at 6.8 km MSL and 58 km east of CSU-CHILL. The hail region can be

seen in the slices of hydrometeor classification, at the same locations, in Fig. 5.25. As this

figure indicates, almost all hail is melted by the time they reach the ground; therefore, it is

not likely that the hailstones are large. A distribution of relatively small hail was confirmed

by the RBFN estimation of D0 shown in Fig. 4.43. In addition, there is no indication of
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Figure 5.24: Slices of reflectivity observed by CSU-CHILL during the 010802 storm, trimmed
to the region of interest. (a) A horizontal slice at 6.8 km MSL. (b) A vertical slice at 58 km
east of the radar. Some gridding effects are visible in this slice.

a flat melting layer containing wet snow, adding more evidence of this being a convective

storm. The melting layer estimated from data is shown in Fig. 5.26. Strong updrafts, which

lead to the hail shafts, effectively push the melting layer height upwards from the average of

around 4.7 km MSL (3 km above ground level). The differential reflectivity shown in Fig.

5.27 at 4 altitude levels was used to detect the updrafts at locations where it is positive

even at 6.5 km MSL.
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Figure 5.25: Slices of hydrometeor classification results at the same locations as the reflec-
tivity slices in Fig. 5.3. (a) A horizontal slice at 6.8 km MSL. (b) A vertical slice at 58 km
east of the radar. Note that almost all rain plus hail becomes all rain at the ground level.
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Figure 5.26: The melting layer height in km above MSL estimated during hydrometeor
classification. The ground level is approximately 1.7 km. Strong updrafts indicated by
a very high melting layer estimate indicate super-cooled raindrops that become hailstone
embryos.
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Figure 5.27: Horizontal slices of differential reflectivity observed by CSU-CHILL during the
000629 storm at (a) 2.5 km (b) 4.5 km (c) 5.5 km and (d) 6.5 km MSL. Positive Zdr at
higher altitudes can indicate updrafts where larger raindrops are blown above the actual
freezing level to eventually become hailstones.
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Figure 5.28: Vertical Maximum Intensity (VMI) of simulated X-band reflectivity from the
000629 storm (rotated 180◦) with the location of the hypothetical SAR swath indicated by
the dashed lines and vertical cross-track slice locations by the dotted lines.

After all the storm data are interpolated on the georeferenced Cartesian grid and hy-

drometeor classification is determined, the data can be transformed from the horizontal

S-band to X-band observations at a 35° incidence angle. A hypothetical SAR image swath

was determined and is drawn over an image of vertical maximum intensity (VMI) reflectiv-

ity displayed in Fig. 5.28 as the long dashed lines. The short dashed horizontal lines in Fig.

5.28 indicate locations where vertical slices of transformed data are displayed in the figures

that follow. The bottom of the image is due east of CSU-CHILL. In Fig. 5.29, the X-band

reflectivity provides an indication of the volumetric backscatter to the SAR, in lieu of atten-

uation. At 12 km, the hail only region is most clearly seen because the reflectivity drops due

to Mie scattering. The next 4 slices (Fig. 5.29b-e) indicate the presence of reflectivity levels

above 50 dBZ. The corresponding specific attenuation at these same vertical slice locations

is shown in Fig. 5.30. As expected based on the Zh plots, the highest attenuation occurs

at 12 km (Fig. 5.30a), although the remaining slices still indicate Ah above 1 dBkm−1.
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(b) 19 km along−track
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(c) 26 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB
Z

20

30

40

50

60

−5 0 5 10 15
2

4

6

8

10

12

14

(d) 34 km along−track
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(e) 41 km along−track
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(f) 48 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB
Z

20

30

40

50

60

Figure 5.29: Six vertical cross-track slices of horizontal reflectivity Zh,X (see 5.28). The
solid lines indicate several slant paths including the ideal beam boundaries and the dashed
lines indicate transverse (constant range) values assuming ideal plane waves. The slices are
at (a) 12 km (b) 19 km (c) 26 km (d) 34 km (e) 41 km and (f) 48 km along-track in both
the SAR and ground radar reference frame.

Similarly, vertical slices of specific differential phase are plotted in Fig. 5.31. As expected,

Kdp tends to be high in areas where Zh and Ah are also high. Almost the entire volume

responds with positive values indicating horizontally oriented oblate spheroids including the

hail.
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(b) 19 km along−track
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(c) 26 km along−track
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(d) 34 km along−track
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(e) 41 km along−track
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(f) 48 km along−track

Cross−track Ground Distance (km)

A
lti

tu
de

 A
bo

ve
 M

S
L 

(k
m

)

 

 

dB

1

2

3

Figure 5.30: Six vertical cross-track slices of specific attenuation Ah,X similar to Fig. 5.29
(see also 5.28). The slices are at (a) 12 km (b) 19 km (c) 26 km (d) 34 km (e) 41 km and
(f) 48 km along-track.
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(b) 19 km along−track
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(c) 26 km along−track
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(d) 34 km along−track
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(e) 41 km along−track
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(f) 48 km along−track
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Figure 5.31: Six vertical cross-track slices of specific differential phase Kdp,X (see 5.28). The
slices are at (a) 12 km (b) 19 km (c) 26 km (d) 34 km (e) 41 km and (f) 48 km along-track.
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Figure 5.32: (a) The simulated total slant path integrated attenuation (PIA) from a SAR
swath indicated in Fig. 5.28 (b) The differential PIA for the same SAR swath.

Given a glimpse of what the radar beam propagates through, the full projection onto

the ground can be calculated via the procedure outlined in Section 5.3.2. The full path

integrated attenuation (PIA) is depicted in Fig. 5.32a along with the corresponding dif-

ferential PIA. Around the 12 km along-track slice seen in previous figures, the attenuation

results in more than a -25 dB signal loss with horizontal polarization about 2 dB below that

of vertical. Other parts of the storm are attenuated at a more moderate level of 10 to 15

dB, although this can still be severe for SAR, especially at the beam edges where the noise

floor is higher. The horizontal volumetric backscatter without attenuation is plotted in Fig.

5.33a with the attenuated version in Fig. 5.33b. Similar to the supercell storm discussed

in Section 5.4.1.2, peak backscatter is above 0 dB before attenuation is considered. Very
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Figure 5.33: (a) The simulated volumetric radar cross section ηh from SAR swath indicated
in Fig. 5.28. (b) The attenuated ηh for the same swath. (c) The attenuated ηh − ηv.

little backscatter occurs at the far range side considering that the volume of the storm

along constant range lines diminishes to zero. Fig. 5.33c depicts the difference between the

attenuated ηh and ηv to show the differential reflectivity change.
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(c) Real Storm (2008/08/08)
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Figure 5.34: (a) Original TerraSAR-X image over Orlando, Florida 30 August 2008. The
image is an RGB composite where Red = |Shh|2, Green = |Svv|2 and Blue = 2−.5|Shh−Svv|2
from the coherency matrix in (2.25). (b) The same data as (a) with the simulated storm
shown in Fig. 5.28 added. The backscatter is seen on the near-range side. (c) A previous
TSX swath on 8 August 2008 with a real convective storm (squall line) for comparison.
Here, a reddish color is noticeable on the near range side, indicating backscatter from
oblate hydrometeors. Raindrops and wind perturbing water surfaces produce a higher VV
backscatter that shows up as green.

5.4.2.1 Simulated SAR Observations

The culmination of simulating high frequency SAR observations from the real ground-

based S-band radar measurements of the 010802 squall line is displayed in Fig. 5.34b in

between the original “no-rain” case (Fig. 5.34a) and a real squall line observation (Fig.

5.34c). Backscatter is very prominent in the simulated storm along the near-range side
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Figure 5.35: (a) The span (10 log10
(
|Shh|2 + |Svv|2

)
) image with the simulated storm. (b)

The span ratio with the original data indicating power increase (blue) due to backscatter
or decrease(red). Increased power is mostly over water bodies where the original power was
low due to pseudo-specular reflection, but it is not necessarily visible in (a) or Fig. 5.34. (c)
The ratio of the Zdr with the simulated storm to the original Zdr. In general, the simulated
storm increases Zdr by several dB which is expected due to the radar wave interaction with
raindrops as described by (5.4).

and the hail core around 5 to 15 km along track. From a qualitative perspective, the

attenuation appears to be fairly close to the real observations. Some of the stronger targets

from man-made structures are still visible through the attenuation as they are in Fig. 5.34c

and would provide locations for future analysis. Within the hail core region, some of these

structures show up in a blue color indicating that 2−.5|Shh − Svv|2 is stronger than |Shh|2

and |Svv|2 individually. Considering the horizontally oriented hail stones and raindrops

below as determined by the ground radar Zdr, this is expected. Figs. 5.35 and 5.36 provide

a more qualitative analysis.
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The power span and power span ratio images displayed in Fig. 5.35 indicate overall

power level changes measured in decibels. From the power span image, the backscatter

regions are around 10 dB, although from the ratio image we see that in most areas there is

still a slight decrease in received power except over water bodies. In the hail core region,

some attenuation is visible from rain just to the west of the near-range edge as seen in Fig.

5.29a before the beam begins reflecting from the hail. Beyond this, the power is reduced by

as much as -25 dB. The attenuation and backscatter are not as strong to the north, but are

significant. In Fig. 5.35b, attenuation is measured approaching -5 dB which is not readily

noticeable in the composite image of Fig. 5.34b without very close inspection. Increased

power from the lake reflections can increase 5 to 10 dB and is similar to real observations

seen in Fig. 5.34c and analyzed quantitatively in Section 6.2.3.

The differential reflectivity change after adding the simulated storm also shows inter-

esting effects as seen in Fig. 5.35c. With a few exceptions in the hail core region, Zdr

from land backscatter decreases indicating a general shift to lower horizontal polarization

returns. This should be taken in the context of the fact that SAR surface Zdr is typically

higher than weather radar rain Zdr with a much higher variance. Thus, as precipitation

returns begin to overcome surface returns, Zdr decreases. Around 20 km along track, two

lakes exhibit a sizable increase in Zdr in a region where fairly strong simulated backscatter

overlaps real storm effects seen in Fig. 5.34a from much lighter precipitation that changes

surface characteristics. In both Fig. 5.35b and Fig. 5.35c, surface features are clearly visible

providing an indication that even when surface changes are not simulated they impact the

resulting data as expected from (5.1).

Similar to Fig. 5.21 from the supercell simulation case, the propagation through the

storm increases co-polar correlation as shown in Fig. 5.36. In this case, however, the increase

is more significant because the storm cells cover more area. This provides further validation

of the results seen from the real storm analyzed in Section 6.2.5. For the simulation, however,

the low resolution of the weather data impacts more pixels and hence, increases this effect.

Differential phase shifting caused by the storm are display in Fig. 5.37 similar to Fig.

5.22. In Fig. 5.37a the Φdp is concentrated along the near range side due to the coherent
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Figure 5.36: Histograms of the co-polar correlation coefficient ρco for the original SAR
data (red) and the data with simulated storms (green). A distinct increase in correlation
is present, which is to be expected as precipitation generally has correlation magnitudes
above 0.9.

sum of integrated Kdp along the constant range wavefronts as shown in Fig. 5.31. Most

of the values are positive and below 15° except around 4−12 km cross-track and 13−17

km along-track. Again, the result after combining with the surface φco is subtle give the

360° span of values, but it is visible. During the two real storms observed where HH and

VV were coherent, the histograms tend to become narrower, but do not exhibit significant

shifts in mean value. This will be discussed further in Section 6.2.5.

5.5 Summary

A multi-stage modeling approach is presented here that builds on previous research into

simulating higher frequency radar observations from real lower frequency data and hydrom-

eteor classification. The methodology for converting polarimetric ground-based data to

polarimetric spaceborne SAR observations is presented in detail with simplifying assump-

tions such as ideal beam patterns and planar wavefronts. Results are then presented for the

novel method of using neural networks to simulate rain and hail observations at X and Ku

bands from real C and S band data of a supercell storm and a squall line, accounting for

Mie scattering. Two hypothetical SAR swaths with three storm cells are examined in detail

showing attenuation, backscatter and co-polar phase shifts due to various storm parameters.
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Figure 5.37: (a) Simulated propagation differential phase Φdp from the 010802 storm. (b)
The original surface backscatter copolar phase shift plus the simulated propagation shift,
Ψdp = Φdp+φco. Some values wrap as the sum exceeds ±180°. (c) The original SAR copolar
phase difference φco.

Finally, the hypothetical observations are added to real SAR data from TerraSAR-X,

validating the overall methodology and modeling components because they are similar to

real observations accounting for the simplifications and ground radar resolution. Consider-

ing the complexity of the process and the possible introduction of errors at most stages, the

results show promise while also revealing problematic areas. The assumption of an ideal

beam pattern is likely to cause an increase in backscatter as seen in Fig. 5.19 and especially

in Fig. 5.34. This is because the calculation integrates across the beam front (5.3) where

the beam edges are weighted the same as the beam center versus a real beam that rolls off

from boresight. An enhancement of the result can be achieved by obtaining a real SAR

antenna pattern to weight the values as the real system would. In addition, some SAR

systems provide an estimate of the noise floor, which increases from the beam center, which
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can be used to determine where simulated attenuation will result in complete signal loss.

Changes to the observed phase difference between HH and VV were also simulated from

the storms alone and when combined with a SAR acquisition without precipitation. Due

to the coherent sum along a constant range slicing through the precipitation volume, the

resulting phase shifts are subtle when combined with the surface returns that span −pi to

π radians. However, overall shifts of 20 degrees are feasible given an intense storm. More

data is needed to analyze the polarimetric differential phase shift due to precipitation.
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CHAPTER 6

QUANTITATIVE ANALYSIS OF POLARIMETRIC X-BAND SAR STORM

OBSERVATIONS

What most experimenters take for granted before they begin their experiments is infinitely

more interesting than any results to which their experiments lead.

- Norbert Wiener

[Portions reprinted, with permission, from IEEE Transactions on Geoscience and Remote

Sensing, 48. ©2010 IEEE.]

6.1 Introduction

The focus of this chapter is to analyze and characterize real observations of storms by

multi-polarization X-band SAR and simultaneous ground weather radar. Ideally, both the

SAR and the ground radar will by fully polarimetric allowing for the calculation of the

full covariance matrix and the many benefits that come with polarimetric observations.

Unfortunately, very few radars exist that are fully polarimetric, so it becomes more difficult

to obtain such conditions. Two such cases are discussed here. One involves dual-polarimetric

(HH and VV) TerraSAR-X (TSX) observations of storms with HH only measurements

from ground radars in central Florida, USA. The second benefits from a polarimetric C-

band ground radar, but the spaceborne SAR is the COSMO-SkyMed (CSK) system where

the HH and VV data are not coherent (see Section 2.3.5). In both cases, the storms

occur over heterogeneous land adding more challenges to the problem of characterizing

the propagation effects. Backscatter from the ground to the C-band radar also reduces

the capability considering this radar is not as sofisticated as say the CSU-CHILL system.

Nonetheless, these two cases provide a fundamental step towards fully characterizing storms

from spaceborne SAR.



Table 6.1: Coefficients to convert Zh,S to X-band parameters in the form aZb
h,S

X-band Parameter a b

kh 1.4E-4 0.80

Adp 8.4E-7 0.93

Kdp 1.6E-4 0.75

6.2 TerraSAR-X Over Florida

By using data from two National Weather Service (NWS) Weather Surveillance Radar,

1988, Doppler (WSR-88D) S-band systems, in conjunction with microphysical and spatial

distribution models, the observed backscatter and attenuation in the TSX images can be

explained. The two NWS radars used were KMLB in Melbourne, Florida and KTBW in

Tampa Bay, Florida. In addition, multiple TSX acquisitions were scheduled at the same

location allowing temporal analysis of surface backscatter through different atmospheric

conditions. One of the consequences of using strip-map dual-pol TSX data, is a reduction

in swath width to only 15 km. However, the very high resolution may still provide some

insight into storm structure. Various parameter specifications for the two radar systems

during the data acquisitions analyzed in this chapter are given in Tables 2.2 and 2.4.

6.2.1 Microphysical simulation from horizontal polarization ground radar

In order to analyze the precipitation effect due to storms, simulations are utilized based

on the microphysical representation to simulate X-band observations give horizontal polar-

ization S-band ground radar data. Similar to Bolen and Chandrasekar (2003), the PSD is

represented by a normalized gamma distribution in (4.2).

The PSD in (4.2) provides the framework for simulating the relationship between polari-

metric X-band parameters and S-band horizontal reflectivity. For rain cells, the following

standard value ranges are used (Bolen and Chandrasekar (2003); Bringi and Chandrasekar

(2001)): 0.5 ≤ D0 ≤ 2.5, 3 ≤ log10(Nw) ≤ 5 and −1 ≤ µ ≤ 4 with a constraint of a rain

rate less than 300 mmh−1. In addition, the Beard and Chuang (1987) drop shape model

was used with an S-band radar elevation angle of 2° and 56° for X-band (corresponding to

a 34° incidence angle) at a temperature of 10 �. Fig. 6.1 shows the results as scattergrams
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with non-linear curve fits shown in red. The relationship between horizontal reflectivity is

nearly linear, i.e.,

Zh,X =
(
2.1× 10−3

)
Z2
h,S + 0.91Zh,S + 0.51 (6.1)

while the other parameters follow a power law relationship. Table 6.1 gives the coefficient

values for the power law equations in the form p = aZb where p is the parameter of interest

and Z is the S-band reflectivity in linear units. Because the TSX data contains HH and VV

polarizations, the co-polar differential scattering ratio can be determined (Zdr); however, the

relationship between X-band differential reflectivity at a 34° incidence angle and horizontal

pointing S-band reflectivity is not always well defined as seen in Fig. 6.2. The differential

reflectivity does increase in general with reflectivity due to oblate particles, but it is close

to 0 dB.

6.2.2 Multi-temporal SAR Acquisitions

Estimation of the attenuation caused by precipitation requires an estimation of the

surface return without rain - the basis for the TRMM Surface Reference Technique (SRT)

in Meneghini et al. (2000). For a homogeneous surface, the observations of nearby rain-free

regions is generally adequate (Meneghini et al. (2000); Marzano and Weinman (2008)). Over

land, this criterion is typically found only in rain forests or deserts. Unfortunately, this is

not usually adequate for heterogeneous surfaces, but SAR systems can take advantage of

accurate repeated orbits to use temporally adjacent samples. The short, 11 day repeat cycle

of TSX orbits helps to reduce temporal decorrelation due to land cover changes; however,

consideration of backscatter change due to soil moisture and near surface water should be

considered, especially in a region such as Florida with numerous lakes and easily saturated

soil (Ulaby et al. (1986); Fritz and Chandrasekar (2009a)).

In August 2008, several TSX acquisitions over the Florida peninsula were requested by

the author with the express goal of capturing precipitation signatures in the data. By

requesting acquisitions suitable for interferometry, better temporal comparisons can be

made without concern for fluctuations due to different viewing geometries or beam modes.

Success was achieved on multiple overpasses using the same operational mode. Specifically,
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Figure 6.1: Scattergrams of X-band polarimetric observables vs. S-band horizontal polariza-
tion reflectivity using the PSD model (4.2): a) horizontal reflectivity, b) specific attenuation,
c) specific differential phase and d) specific differential attenuation. The S-band radar is set
at a 2° elevation angle while the X-band is at 56° , corresponding to a 34° incidence angle
with a temperature of 10 �. The parameters for the curve fits are given in Table 6.1.

data acquired in the dual-polarimetric strip-map mode over the Orlando and Kissimmee

regions captured a strong storm on 8 August (080808) seen from the NEXRAD KTBW

radar in Fig. 6.3a. Given the sharp reflectivity gradients and high values, this storm is

mostly convective (Steiner et al. (1995)) and may even be classified as a squall line. In

mid-August, Tropical Storm Fay (TS Fay) swirled over the state for several days dumping

up to 700 mm of rain near Melbourne, FL with sustained winds over 100 kmh−1 (Stewart

and Beven (2009)). During this time, the TerraSAR-X satellite acquired a dual-polarization

data just south of Orlando, FL on 19 August 2008 (080819) as shown over the NEXRAD

KMLB radar reflectivity in Fig. 6.3b. The third acquisition was captured during a virtually

rain free time period 11 days later on the 30 August (080830). Each SAR swath is broken

into multiple products known as frames and the two southernmost are analyzed in this work
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Figure 6.2: Scattergram from the theoretical model showing (a) the difference between X
and S band reflectivity vs. X band differential reflectivity Zdr,X and (b) Zdr,X vs. Zh,S ,
with the same radar alignment as Fig. 6.1. When the X minus S band reflectivity difference
drops below 0 dBZ, the a 1:1 correspondence with Zdr,X no longer exists due primarily
to Mie scattering. There is also high variability in the differential reflectivity when only
knowing Zh,S , but at an elevation angle of 56° Zdr,X is close to 0 dB.

(a) (b)

Figure 6.3: WSR-88D reflectivity scans over Google Earth image of Florida, USA. (a)
Convective storm front reflectivity from the KTBW radar on 8 August 2008 at an elevation
of 1.5°. (b) Tropical Storm Fay reflectivity on Aug. 19, 2008 from the KMLB radar at an
elevation of 0.5°. The SAR image frames are outlined in (a) white and (b) black with the
NEXRAD locations indicated.

(i.e., six products/images were purchased from DLR under the TSX science program).
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(a) (b) (c) (d)

Figure 6.4: Three TSX HH, VV acquisitions on (a) 080808 (b) 080819 and (c) 080830. The
truecolor composite images are comprised of 2 β0 frames of |HH| (red) |V V | (green) and√
T22 (blue) in dB and are co-registered with respect to each other. (d) depicts

√
T11 where

the RGB consists of 080808, 080819 and 080830 respectively (see text). The flight direction
is bottom to top looking right.
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Fig. 6.4 depicts color composite multi-looked β0 images of all three acquisitions where

the two frames have been mosaicked together. The first three images consist of the |HH|

and |V V | channels assigned to the red and green while the blue color is 2−.5|HH − V V |

(i.e.,
√
T22 in (2.25)). For qualitative comparison and visualization, the histogram tails

are clipped at the same values (±0.5% with respect to the 080830 data) after conversion to

decibels. The fourth image, Fig. 6.4d, consists of T11 from 080808 (red), 080819 (green) and

080830 (blue). This provides a clear indication of the different power from each acquisition

even with only an 11-day separation. For example, cyan indicates attenuation from the

080808 storm, red marks backscatter from that storm, whereas magenta and green identify

where TS Fay increased attenuation and VV reflectivity over water surfaces.

There are several interesting features to point out that are relative to the investigation

of storms. Obviously, the storms during the first two acquisitions caused severe attenuation

and appear like black clouds. Without further knowledge, a conclusion might be reached

that these storms cells were isolated, but the analysis in Section 6.2.3 shows that is not the

case. These images do give an indication, however, that the storm cells on 8 Aug. were

more severe than on 080819 because they appear to have higher attenuation. In Fig. 6.4a

a higher (reddish) HH return is visible on the near-range side, indicating the precipitation

backscatter here is stronger than the attenuated surface returns (i.e., the volume term in

(5.1) dominates). As shown in Section 6.2.3, this region corresponds to the high reflectivity

gradient on the western side of the convective cell. Figs. 6.5-6.7 show the storm regions in

more detail and indicate zones that will be used for a more detailed analysis and comparison

to the weather radar data in Section 6.2.3 and polarimetric investigations in Section 6.2.5.

The colors shown in these images are created by using |HH|, |V V |, and
√
T22 from 080808,

080819, and 080830 respectively only to indicate the attenuation region while still revealing

surface features that would otherwise be obscured by the precipitation.

Two other storm related effects visible in the TSX images are related to surface water.

One is the higher VV return from the water bodies due to the wind and rain resulting in

a significant increase in Bragg scattering at the TSX incidence angle, which is typically

stronger in VV polarization (Contreras et al. (2003)). In the 080808 image, rain is more
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Figure 6.5: Close-up of the 080808 storm region over Orlando with analysis zones marked.
The RGB image is formed by using |HH| from 080808, |V V | from 080819, and

√
T22 from

080830 respectively only to indicate the attenuation region while still revealing surface
features. Attenuation here is indicated by the cyan color (green + blue) while backscatter
is more red.

likely the cause, but the pattern on the water surfaces in the 080819 image suggests that

the high winds might be more dominant. The other effect is due to near surface water and

soil saturation. Some of these regions become visible in the composite image of Fig. 6.4d

and are discussed briefly in the next two sections. There is significant agriculture in this

region and the sandy soil is easily saturated.

6.2.3 Comparison to Ground Radar

Weather data from ground based radar are used to quantify the observations from TSX

acquisitions. The goal is to demonstrate that features in the reflectivity data align with

features in the SAR data, followed by a more quantitative analysis in the regions indicated

in Figs. 6.5-6.7. Considerable overlap exists between the two NEXRAD radars, ie., KMLB

in Melbourne, FL and KTBW in Tampa Bay, FL, and provides the capability to estimate
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Figure 6.6: Close-up of the 080808 storm region near Kissimmee with analysis zones marked.
The RGB channels are the same as in Fig. 6.5. Again, the attenuation from the 080808
storm shows up as cyan.

the reflectivity volume by combining observations. KMLB is the closest radar to the TSX

acquisition frames at roughly 78 and 92 km to the center of each frame while KTBW is

approximately 105 and 119 km.

The merging process is complicated by the fact that the two radars are not synchronized

and sometimes have very different volume coverage patterns (VCPs). For example, during

TS Fay KMLB scanned a volume in 4.5 min. whereas KTBW took about 6 min., with dif-

ferent pulse repetition frequencies (PRFs), scan rates and elevation angles (see Table 2.2).

Fortunately, these differences are addressed in the Warning Decision Support System - Inte-

grated Information (WDSS-II) and the merging algorithms contained within Lakshmanan

et al. (2006) and Lakshmanan et al. (2007). The 3D grid from WDSS-II is georeferenced

allowing for spatial comparisons with the SAR acquisitions. A Gaussian weighted 3D low-

pass filter is then applied for additional smoothing. WDSS-II can also estimate advection,

which is especially important when the precipitation cores of the TS Fay were moving over
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Figure 6.7: Close-up of the 080819 storm region with analysis zones marked. The RGB
channels are the same as in Fig. 6.5. In this case, the attenuation caused by the 080819
tropical storm is magenta (red + blue) with higher backscatter in bright green.

22 ms−1; however, there is still a fair amount of uncertainty and selection of the best algo-

rithm is not straightforward. Prior to experimenting with advection estimation, adjusting

the time period of the output volumes can provide a reasonable snapshot of the storm dur-

ing the TSX acquisition, within the limitations of the radar VCPs. The grid resolution is

0.0015° latitude and longitude (approximately 150 × 150m2), by 250 m vertically. After

the 3D volume of reflectivity is gridded, it can be sliced at any angle to reveal what the

SAR beam would pass through and illuminate. The path integrated reflectivity at S-band

can then be used to estimate the attenuation seen by the X-band SAR at each resolution

cell using the model presented in Section 6.2.1. Coregistration and orthorectification of the

TSX data was accomplished using the Doris SAR interferometry software (Kampes and

Usai (1999)).
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6.2.3.1 Case 1: 8 August 2008

Fig. 6.8 clearly shows a strong relationship between the ground radar reflectivity and

the precipitation signature in the orthorectified SAR image. To get a better sense of the 3D

volume in a 2D image, the reflectivity plot is the maximum value within the vertical column

at each grid location to capture the most intense portions within the storm, also known as

Vertical Maximum Intensity (VMI). Smoothed contours of this maximum reflectivity field

at 29, 36 and 43 dBZ are drawn over the SAR image. With an incidence angle of about 35° ,

it appears that the visible backscatter and attenuation in the TSX data is around 45 dBZ in

this case. Selection of this threshold will be explored in the subsequent quantitative analysis

below, and it is likely that the threshold level depends on many variables. Several factors

contribute to the challenge of accurately aligning ground-based weather radar observations

to SAR images. A major factor is the 4 to 6 minute volume update time of the NEXRAD

radars versus the nearly instantaneous SAR acquisition. Another factor is horizontal cross-

track storm motion which can induce a Doppler shift resulting in along-track displacement.

It is also clear from Fig. 6.8a that it was raining over the lakes to the west of the convective

cell causing stronger backscatter in the vertical polarization. Although it is not visible at

the scale of the images in this document, a small amount of attenuation is also present in

the data around 28.6° latitude and -81.45° longitude, corresponding to the small region

that is close to 40 dBZ in Fig. 6.8b. Around 28.2° latitude, the cell with reflectivity > 55

dBZ to the west of the TSX swath results in nearly complete signal loss from the SAR.

This is described in Fig. 6.9c-d and the accompanying text and is also shown in Fig. 6.16c

where the copolar phase is almost uniformly distributed. The outline of the TSX images in

Fig. 6.8b also indicate the overlap of the frames.

As aforementioned, the advantage of having a gridded volume of reflectivity from multi-

ple ground radars is that it can be sliced to examine what the SAR beam encounters as the

radar wave propagates through the lower troposphere. Fig. 6.9a shows a slice from Zone H

in Fig. 6.5 where lines indicating the cross-track ground range of the SAR image and the

ideal beam edges and planar wavefronts are also shown for reference. White regions in all

of the reflectivity images indicate no data is available even after smoothing. Because it is
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Figure 6.8: (a) The orthorectified 080808 TerraSAR-X RGB composite compared to (b)
the same region in the vertical maximum of the merged WSR-88D reflectivity. Contours
of this maximum field are drawn on the TSX image at 29, 36 and 43 dBZ. This clearly
shows correspondence between the high reflectivity region and the high attenuation in the
SAR image and provides a visual indication of the horizontal displacement due to viewing
geometry described in Sec. 5.2. Portions of the 2 SAR image frame boundaries are shown
in (b).

unlikely that the reflectivity changes significantly from the lower edge shown in Fig. 6.9a

and the ground, the values were repeated to 0 km AGL (Above Ground Level) to fill in

the bottom portion of the slice. The reflectivity slice is then interpolated at a resolution

of 75 m (half of the grid resolution) along the ideal beam path calculated from the known

incidence angles at the near and far ranges.

From the SAR data at multiple dates, an estimate of the storm induced attenuation

can be calculated as shown in Fig. 6.9b for both HH and VV. The full cross-track zones

selected for analysis are 62 lines wide in the azimuth direction and averaged at 96 pixels in

range yielding speckle reduced samples of approximately the same horizontal resolution as

the gridded reflectivity volume (150 m2).

Overall, the trend in ∆β0 in Fig. 6.9b shows an increase in radar brightness followed
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by a trough, and is typical of a precipitation cell signature in side-looking radar images

(Pichugin and Spiridonov (1985); Melsheimer et al. (1998); Weinman and Marzano (2008)).

This increase is not immediately apparent in the SAR images, e.g., Fig. 6.4a. Fig. 6.9b also

shows the change in β0 between 080808 and the subsequent acquisitions, where the higher

intensity backscatter from the rain roughened water surfaces that are not present in the

080830 image is clearly seen as three large peaks. Nonetheless, noticeable attenuation starts

at roughly 10 km from the near range side, well into the storm cell. However, it appears that

only the more intense convective core impacts the SAR observations. In addition, the two

plots in Fig. 6.9b reveal differences in the behavior of HH vs. VV over the same region, 11

days apart. Around 12 km, there are indications of higher HH backscatter on both no-rain

days, possibly due to a larger PSD in the convective core on August 8. This comparison

also provides more insight to the impact of precipitation on various terrain types.

In addition to the SAR data differences, Fig. 6.9b also shows the theoretical path

integrated attenuation (PIA) indicated by the dash-dot blue line. The PIA is calculated

from the reflectivity in Fig. 6.9a using the k-Z relation discussed in Section 6.2.1 and

the values in Table 6.1. The curve only accounts for the attenuation term in (5.2), so it

will never rise above 0 dB. The blue dash-dot curves in Fig. 6.9b show there is strong

agreement between the observed attenuation and the theoretical attenuation. As discussed

above, the 3D reflectivity volume relies on 4 to 5 min. unsynchronized volume scans which

may explain the quicker recovery of the theoretical curve versus the observations. Additional

investigations are necessary.

An example of severe attenuation due to the 080808 storm is explored in Zones D and

E. Just on the near range side of the image at roughly 5 km AGL, reflectivity values close

to 60 dBZ were observed from the ground radars as seen in Fig. 6.9c, although no hail was

reported in the region. However, it is likely that hail was aloft based on studies of convective

storms with polarimetric radar (Bringi and Chandrasekar (2001)) and considering that the

reflectivity is higher above 4 km (this could indicate a melting layer of approximately 4

km). This induces a signal loss from the surface of nearly 15 dB relative to the two other

acquisitions as shown in Fig. 6.9d. Absolute values in this region were close to −20 dB which
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Figure 6.9: (a) Vertical slice of the merged reflectivity volume at zone H (see Fig. 6.5)
with ideal beam boundaries and 5 planar wavefronts indicated. (b) The HH (top) and VV
(bottom) averaged slant range NRCS (β0) change from 080808 to both 080819 (green line)
and 080830 (red line). The blue line indicates the theoretical path integrated attenuation
at each ground point give the reflectivity slice in (a) (see text for details). (c) Vertical slice
of the merged reflectivity volume at zone D (see Fig. 6.6) with ideal beam boundaries and
5 planar wavefronts indicated. (d) The HH (top) and VV (bottom) averaged slant range
NRCS (β0) change from 080808 to both 080819 (green line) and 080830 (red line). The
blue line indicates the theoretical path integrated attenuation at each ground point give the
reflectivity slice in (c) (see text for details).

is lower than the semi-specular reflections observed from smooth water surfaces indicating

that many observations are likely to be close to the system noise floor before averaging.

Near and far range pixels are farthest from the beam center, meaning the system noise floor

is higher in these regions. Theoretically, however, the attenuation in this region should go

down to −22 dB if the system were sensitive enough and the hydrometeors were all liquid

water. The theoretical PIA plotted in Fig. 6.9d does match fairly well with the signal
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recovery after passing beyond the storm cell at approximately 5 km. Because there is no

precipitation beyond about 5 km cross-track ground range, the differences observed from

080808 to 080819 and 080830 can be attributed to surface backscatter changes and some

precipitation effects caused by TS Fay discussed in Section 6.2.3.2.

6.2.3.2 Case 2: 19 August 2008 - TS Fay

Tropical Storm Fay provides another case to explore the impact of precipitation on X-

band SAR. Fig. 6.10 depicts the spatial relationship between ground radar reflectivity and

TSX signal attenuation on 080819, similar to Fig. 6.8. In this case, however, it is evident

that rain is falling over the entire region, but mostly at rates too low to noticeably attenuate

the TSX data. The threshold for attenuation appears to be closer to the 43 dBZ contour

line shown in Fig. 6.10a, but there are numerous differences between this tropical storm

and the convective storm on 080808. Aside from physical differences, the KTBW radar was

operating with a 6 min. VCP. With estimated storm motion in this region of 22 m s−1

even the shorter 4 min. VCP for KMLB will have difficulty capturing the horizontal storm

structure.

Using the same analysis and processing discussed in Section 6.2.3.1, comparisons between

the ground-based reflectivity from two NEXRAD radars are compared with the TSX data

during TS Fay. Cross-track vertical slices of the WSR-88D reflectivity at the Zone A and B

along-track ranges shown in Fig. 6.7 correlate spatially with the SAR parameters in those

regions. The vertical slice of the S band reflectivity volume shown in Fig. 6.11a verifies that

attenuation should be apparent from the near-range edge. The observed disparity between

TSX radar brightness on this date relative to 080808 and 080830 results in a decrease

of about 3 dB to begin with, dropping to about −7 dB at both polarizations as seen in

Fig. 6.11b. A larger discrepancy between the acquisitions is also more apparent in HH

polarization mode; however, surface changes resulting from the tropical storm may play a

considerable role in this natural ground cover region. Fig. 6.11b also shows a fairly close

match with the theoretical PIA, although features do not line up in range as well, most

likely due to a temporal gap in the lower elevation NEXRAD coverage. Close examination
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Figure 6.10: (a) The orthorectified 080819 TerraSAR-X RGB composite compared to (b)
the same region in the vertical maximum of the merged WSR-88D reflectivity. Contours of
this maximum field are drawn on the TSX image at 29, 36 and 43 dBZ.

of the sharp changes with respect to 080830 reveal flooded regions and other water surfaces

that exhibit low backscatter.

Analysis of Zone B, depicted in Fig. 6.11c-d, shows a slightly different behavior of the

observations relative to Zone A. However, these are more similar to the 080808 case where

the attenuation is preceded by backscatter despite the fact that it is not visually noticeable.

Compared to the theoretical PIA curve in Fig. 6.11d, the backscatter term in (5.1) appears

to dominate the attenuation plus the wet surface may have enhanced reflectivity. Again,

the trend in the theoretical curve does not quite line up with the observations, but they are

within a few decibels. The SAR data, however, appears to pick up a sharper gradient that

is beyond the resolution of the WSR-88Ds. Similar to the Zone A response, the HH return

relative to 080808 is larger, but storm induced surface alteration is suspected because no

rain was present in this area on either of the adjacent acquisition dates. The drastic spike

at the far range is caused by SAR interaction with the lake surface.
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Figure 6.11: (a) Vertical slice of the merged reflectivity volume at zone A (see Fig. 6.7) with
ideal beam boundaries and 5 planar wavefronts indicated. (b) The reduction in slant range
NRCS (β0) from both 080808 and 080830 in Zone A (see Fig. 6.7 for zone indications) with
∆HH on the top and ∆VV on the bottom. This shows the total NRCS change from each
of the two adjacent passes indicating that potentially significant surface change resulted
from the storm. (c) Vertical slice of the merged reflectivity volume at zone B (see Fig. 6.7)
with ideal beam boundaries and 6 planar wavefronts indicated. (d) The reduction in radar
brightness (β0) from both 080808 and 080830 in Zone B with HH on the top and VV on
the bottom. This shows the total β0 change from each of the two adjacent passes indicating
that potentially significant surface change resulted from the storm.

6.2.4 Summary of Ground Radar Comparison

The overall relationship between the path integrated slant range reflectivity and change

in radar brightness compared to the no-rain cases for all cross-track zones is displayed in Fig.

6.12. Drastic changes due to roughened water surfaces were removed and differences between

the no-rain data were averaged. Accumulating reflectivity with range is unconventional, but

it is analogous to PIA using a directly observable parameter. Significant backscatter can still
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Figure 6.12: Differential radar brightness from rain cases versus path integrated S-band
reflectivity for all cross-track zones (A, B, D, F and H) at both polarizations. Observations
from roughened water are removed and differences between no-rain values are averaged.
The solid line is an exponential least squares fit.

be present up to an accumulated 55 dBZ, but at that point it drops sharply. Accumulated

values above 68 dBZ, which did not decrease the signal beyond the noise floor, were also

removed. An exponential recursive least squares fit of the form ŷ = aebx (in linear units)

where a = 1.144 and b = −7.065× 10−7 is plotted as the black line in Fig. 6.12. In general,

this is similar to the expression for PIA in (2.29).

6.2.5 Polarimetric effect

The previous section analyzed the attenuation and backscatter caused by the storms.

Now we investigate the effect of the precipitation on signal polarization. There are three

parameters we can investigate with the two available copolar channels. Two of these param-

eters are represented by (2.34): 1) the copolar correlation coefficient magnitude |ρco|, and

2) the copolar phase φco. The third parameter is the copolar ratio Zdr (differential reflectiv-

ity) from (2.35). While weather radars measure these parameters directly, in the absence of

ground clutter, SAR must rely on detecting the deviation from the polarimetric properties

of the surface scattering. Unfortunately, this may not be conclusive because polarimetric

SAR is also valuable as a surface property change analyzer. Despite this uncertainty, how-

ever, pure attenuation of the surface reflections will not change the polarimetric properties.
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Given a constant return from the surface, this change can only occur due to propagation

effects that are polarization dependent, such as nonspherical oriented hydrometeors Bringi

and Chandrasekar (2001).

Several observations about polarimetric effects of precipitation can be made from the

scatter plots in Section 6.2.1 and literature on the subject (Bringi and Chandrasekar (2001)).

Differential reflectivity and attenuation will be 0 dB for perfectly spherical hydrometeors

and increase as liquid drops increase in size and become oblate. Lighter rain, and most

hail, tend to be very correlated between polarizations, decreasing as the raindrop size, and

corresponding oblateness, increases. The oblateness increase is usually associated with an

increase in horizontal reflectivity coupled with an higher attenuation in this polarization.

However, Figs. 6.1d and 6.2b indicate that the impact on Zdr and Adp are minimal at a

surface incidence angle of 34° . Likewise, the copolar phase change will be close to zero until

particles become more nonspherical and oriented. As the EM wave propagates through a

volume with non-spherical oriented hydrometeors, the phase change accumulates as shown

in (2.31) and Fig. 6.1c conveys the level of propagation phase shift relative to S-band Zh

at the viewing geometries analyzed.

Histograms of the three polarimetric parameters for Zone C (Fig. 6.5) are shown in

Fig. 6.13 for all three acquisitions. The solid green line is 080808, the dash-dot blue line is

080819 and the dashed red line is 080830. Parameters from 19 August during TS Fay clearly

stand out from the others. For Zdr, however, the difference is not statistically significant

because over this natural cover area, the mean copolar ratio is approximately 0 dB. On the

other hand, the 080819 |ρco| histogram shown in the middle panel indicates higher copolar

correlation with an increase in the mean of 0.04 and 0.06 from the other two. This is

indicative of the precipitation affecting the observed signals. A more significant divergence

of the TS Fay data is seen in the bottom panel for φco. The mean phase difference decreases

by 14.4° and 11.1° from the other dates with a 14° − 20° decrease in standard deviation.

Additional discussion of copolar phase change due to TS Fay, including pooling surface

water, can be found in Fritz and Chandrasekar (2009b).

Figure 6.14 provides some insight into the polarimetric changes that occurred in Zone

C due to the storm. For these images, data from 080830 were selected as the no-rain
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Figure 6.13: Histograms of polarimetric parameters from Zone C for all three acquisitions.
080808 is the green solid line, 080819 is the blue dash-dot line and 080830 is the red dashed
line. (a) Zdr, (b) |ρco|, (c) φco.

estimate of surface returns considering the fact that changes occur even without rain. The

complex copolar difference power (T22 from (2.25)) on 080830 is depicted in Fig. 6.14a.

Limited dihedral scattering results in relatively low power. TS Fay, however, caused a

drastic decrease in this parameter of about 10 dB as seen in Fig. 6.14b, where the linear

power ratio between 080819 and 080830 determines the change prior to decibel conversion.

A drop of this magnitude is not likely from pure surface change in 11 days. Fig. 6.14c

displays the increase in copolar correlation (|ρ080819co | − |ρ080830co |) seen in the Fig. 6.13b
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(a) (b)

(c) (d)

Figure 6.14: Polarimetric changes in Zone C. (a) T22 in dB on 080830 (the no-rain date).
(b) The difference (in dB) of T22 from 080819 to 080830. (c) The smoothed difference of
ρco from 080819 to 080830, where ∆ρco ∈ [−1, 1]. (d) The smoothed difference (in dB) of
Zdr from 080819 to 080830. In both cases, smoothing is performed by a 2D Gaussian kernel
with σ = 0.9.

histogram. Comparing this to Fig. 6.14a does reveal some correspondence with ground

features, but the increase over most of the region points to propagation effects. The change

in Zdr from 080819 to 080830 is shown in Fig. 6.14d (again the linear power ratio was

calculated prior to decibel conversion). Here we can see that while shifts on the order of
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±3 dB have occurred in this zone, the balance does not drastically change the histogram

in Fig. 6.13a. Unfortunately, the impact of the last two terms of (5.4) is inconclusive here

without better ground truth. Due to the inherent noise of Zdr and |ρco|, a 2D Gaussian

filter kernel with σ = 0.9 was applied to better reveal the spatial trend.

Moving up to Zone E where the largest signal attenuation was detected during the

080808 storm, we find a different polarimetric effect. The histograms are plotted in Fig.

6.15 in the same fashion as Fig. 6.13. In this region and time, the Zdr histograms are almost

identical and centered close to 0 dB. In this case, though, hydrometeors appear to have had

the opposite effect on |ρco| indicating more decorrelation as shown in the middle plot of Fig.

6.15. In the bottom plot it is apparent that φco has a nearly uniform distribution. This

provides additional support to the statement in Section 6.2.3.1 that the rain attenuated the

signal down to the system noise floor.

Figure 6.16 also provides more insight into the polarimetric response, similar to Fig.

6.14, except that the reference date is 080808. The change in T22 is again drastically

reduced as Fig. 6.16b shows, with the average drop more than 12 dB down from the 080830

observations. Unlike the observations in Zone C, though, the copolar coefficient magnitude

shown in Fig.6.16c is decreased almost everywhere, in agreement with Fig. 6.15b and the

assessment that the signal quality is low on 080808. Fig. 6.16d depicts a more widespread

decrease in Zdr at the far-range, possibly indicating a nonnegligible third term of (5.4).

Again, however, the no-rain Zdr in this natural land cover zone makes it challenging to

draw conclusions on propagation effects to differential reflectivity.

In contrast to the Zones discussed above, Zones G and I exhibit noticeably discernible

Zdr during the 8 August storm, but the differences in co-polar correlation are similar to Zone

C. The histograms are depicted in Figs. 6.17 - 6.19. One key difference is that the land cover

is primarily urban which tends to exhibit less fluctuation over time. The positive shift seen

in mean Zdr can be explained by backscatter and attenuation from oblate hydrometeors.

This interaction also increases the |ρco| as shown in the middle plot of both Fig. 6.17 and

Fig. 6.19. Furthermore, the copolar phase difference exhibits similar behavior to that of

Zone C in that it trends towards 0° as seen in the bottom plot of Figs. 6.17 and 6.19. The
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Figure 6.15: Histograms of polarimetric parameters from Zone E for all three acquisitions
with the same color/line representations as Fig. 6.13. (a) Zdr, (b) |ρco|, (c) φco.

mean φco is slightly above 0° for the 080808 case, but the tails of the distribution are lower

than the ones from 080819 and 080830.

Again, plots of changes to polarimetric variables across the zone, seen in Figs. 6.18 and

6.20. Both Fig. 6.18a and 6.20a indicate much stronger dihedral scattering mechanisms from

man-made structures on 080830. These are also visible in Fig. 6.18b which also provides

a much clearer indication of propagation induced attenuation of T22 within the storm core.

In Fig. 6.18c we see where the increased copolar correlation occurs: at the near-range side

of the storm, meaning that it is probably caused by precipitation backscatter. Significant

overlap exists between this area of increased correlation and increased Zdr seen in Fig.
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(a) (b)

(c) (d)

Figure 6.16: Polarimetric changes in Zone E. (a) T22 in dB on 080830 (the no-rain date).
(b) The difference (in dB) of T22 from 080808 to 080830. (c) The smoothed difference of
ρco from 080808 to 080830, where ∆ρco ∈ [−1, 1]. (d) The smoothed difference (in dB) of
Zdr from 080808 to 080830. In both cases, smoothing is performed by a 2D Gaussian kernel
with σ = 0.9.

6.18d. While this is not conclusive of reflectivity from large rain drops, it is encouraging.

In Zone I, where precipitation backscatter was visible in the power images (Fig. 6.4), T22

is slightly elevated and Fig. 6.20c agrees with Fig. 6.19b in indicating increased co-polar

correlation. The change in Zdr, however, is not consistent except over the lake edge as Fig.

6.19 shows.
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Figure 6.17: Histograms of polarimetric parameters from Zone G for all three acquisitions
with the same color/line representations as Fig. 6.13. (a) Zdr, (b) |ρco|, (c) φco.
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(a) (b)

(c) (d)

Figure 6.18: Polarimetric changes in Zone G. (a) 2−.5|HH − V V | in dB on 080830 (the no-
rain date). (b) The difference (in dB) of 2−.5|HH − V V | from 080808 to 080830. (c) The
smoothed difference of ρco from 080808 to 080830, where ∆ρco ∈ [−1, 1]. (d) The smoothed
difference (in dB) of Zdr from 080808 to 080830. In both cases, smoothing is performed by
a 2D Gaussian kernel with σ = 0.9.
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Figure 6.19: Histograms of polarimetric parameters from Zone I for all three acquisitions
with the same color/line representations as Fig. 6.13. (a) Zdr, (b) |ρco|, (c) φco.
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(a) (b)

(c) (d)

Figure 6.20: Polarimetric changes in Zone I. (a) T22 in dB on 080830 (the no-rain date).
(b) The difference (in dB) of T22 from 080808 to 080830. (c) The smoothed difference of
ρco from 080808 to 080830, where ∆ρco ∈ [−1, 1]. (d) The smoothed difference (in dB) of
Zdr from 080808 to 080830. In both cases, smoothing is performed by a 2D Gaussian kernel
with σ = 0.9.
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6.2.5.1 Storm induced differential phase shift

The co-polar phase shift observed by TerraSAR-X in several small rectangular zones

shown in Figs. 6.13c, 6.17c, 6.15c and 6.19c indicate that storms effect the phase between

HH and VV. Simulation results of the propagation phase shift caused by precipitation were

shown in Sections 5.4.1.3 and 5.4.2.1, but comparisons to real observations were not made.

However, both showed only slight phase changes relative to the 360° range of values. In Figs.

6.21 and 6.22, the φco values in the two storm regions are shown for all three acquisition

dates to provide a qualitative comparison. These representations are averaged with the

15×10 boxcar filter in order to reduce the speckle phenomena which is very prevalent in

phase data.

Within the attenuation region caused by TS Fay displayed in Fig. 6.21, the surface

is comprised of mostly agriculture, sub-tropical forest and lakes. During the storm, the

observed φco seen in Fig. 6.21b exhibits an overall decrease to negative values compared

to Figs. 6.21a and 6.21c, and it also appears to partially obscure surface features. Zone C

falls completely within this region, and the histogram in Fig. 6.13c also shows the negative

mean and reduction of large phase changes as a narrower distribution. According to the

theory and simulations discussed previously, Kdp should also be negative, although the

lack of polarimetric ground radar measurements prevents verification of this. By the 30th

of August, much of the co-polar phase response in this region returns to the pre-storm

levels except around many of the numerous lakes and water filled pits to the east of Lake

Hatchineha in the center of the scene. As documented by Fritz and Chandrasekar (2009a),

the trees surrounding these water bodies create dihedral scattering resulting in a 180° co-

polar phase shift and is a surface effect unique to this type of terrain.

Contrary to the effect of the tropical storm, Fig. 6.22 depicts the change in co-polar

differential phase near Orlando during and after the August 8, 2008 squall line. In this

region of urban and mixed used ground cover, the storm affects are more difficult to discern.

Comparing Fig. 6.22a to the 6.22b and 6.22c, it appears that there is a slight increase in φco

and a similar obscuring of surface features. Many urban structures seen where φco is close

to 180° are still visible; however, shifts closer to -180° indicated by darker green in Figs.

172



Cross−track Distance (km)

A
lo

ng
−

tr
ac

k 
D

is
ta

nc
e 

(k
m

)

080808 φ
co

 within 080819 Storm Region

 

 

0 2 4 6 8 10 12 14 16

12

14

16

18

20

22

24

26

28

30

32

de
gr

ee
s

−150

−100

−50

0

50

100

150

(a)

Cross−track Distance (km)

A
lo

ng
−

tr
ac

k 
D

is
ta

nc
e 

(k
m

)

080819 φ
co

 within 080819 Storm Region

 

 

0 2 4 6 8 10 12 14 16

12

14

16

18

20

22

24

26

28

30

32

de
gr

ee
s

−150

−100

−50

0

50

100

150

(b)

Cross−track Distance (km)

A
lo

ng
−

tr
ac

k 
D

is
ta

nc
e 

(k
m

)

080830 φ
co

 within 080819 Storm Region

 

 

0 2 4 6 8 10 12 14 16

12

14

16

18

20

22

24

26

28

30

32

de
gr

ee
s

−150

−100

−50

0

50

100

150

(c)

Figure 6.21: The differential phase shift φco observed by TSX in the region most affected
by Tropical Storm Fay (approximately the area shown in Fig. 6.7) from acquisitions on
(a) 2008/08/08 (b) 2008/08/19 and (c) 2008/08/30. Note the overall decrease in φco to
negative values during the storm in addition to reducing the visibility of surface features.
The significant increase of phase near −180° in (c) occurs around lakes and pits that filled
with water and have trees around them, creating a dihedral return to the radar.
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Figure 6.22: The differential phase shift φco observed by TSX in the region most affected
by the August 8 squall line (approximately the right 2/3 of the area shown in Fig. 6.5)
from acquisitions on (a) 2008/08/08 (b) 2008/08/19 and (c) 2008/08/30. In this case, the
far-range portion seems to have a slight increase in φco seen in (a), although it still has the
affect of obscuring surface features.

6.22b and 6.22c are not. Without a detailed analysis of this phenomena with coincident

observations by a polarimetric ground radar, the main conclusion that can be reached is

that the storm definitely impacts the co-polar phase shift, part of which may be due to

surface changes.
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6.3 COSMO-SkyMed Over Northern Italy

On June 29, 2010 satellite number two of the COSMO-SkyMed X-band SAR constel-

lation acquired HH and VV images over the Pavia region of northern Italy capturing a

convective storm. Meanwhile, the Bric della Croce C-band polarimetric radar, operated by

ARPA Piemonte, observed the same storm from its location near Turino. This upgraded

Gematronik 400C radar, however, only has a range resolution of about 350 m with azimuth

spacing at 1°. With the storm observation at approximately 80−100 km, the spatial resolu-

tion limits detection of small scale features. Having multiple polarizations, though, allows

for hydrometeor classification to improve the conversion of ground measurements to those

spaceborne SAR. Thus, the models and methodology developed in Chapters 4 and 5 can

be deployed, although complexities induced by the real world environment require some

simplifications.

The first two steps of the procedure to simulate the SAR observations from ground data

detailed in Section 5.3.1 are Kdp estimation and attenuation correction. C-band weather

radars suffer from attenuation, and are notorious for oscillations in Zdr due to Mie effects,

so the correction is necessary here. In addition, ground backscatter can adversely impact

the measurements as seen in the lower two elevation scans in Fig. 6.23 for reflectivity. The

part of the storm cell imaged by the CSK is seen in Fig. 6.23d, within the approximate SAR

acquisition swath in pink, after applying a basic clutter filter and attenuation correction

algorithm from Kdp estimates [Testud et al. (2000)]. Fig. 6.23a shows the level of ground

clutter visible to the radar at the lower left of the image pointing at -0.1° from its perch

near Turino, with the filtered version in Fig. 6.23c. Considering that most of the storm

cell of interest was removed by the filter, this scan was discarded in processing, and data

were projected to the surface from the lowest level available. Attenuation correction was

still needed for differential reflectivity, although only modest increases were realizable.
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(a) (b)

(c) (d)

Figure 6.23: Reflectivity of the June 29, 2010 storm as observed and processed by the Bric
della Croce C-band weather radar located in the lower left corner of the panels. (a) At the
lowest possible elevation angle (-0.1°), ground clutter overwhelms the precipitation returns.
(b) Ground clutter subsides a lot at the next elevation (0.5°), but is still present. (c) Much
of the ground clutter is removed and reflectivity corrected for attenuation, but there is not
much left of the storm cell in the right half that is within the SAR swath. (d) The storm
cell on the right is now visible after clutter filtering and attenuation correction, but there
is still a chance of over-filtering and under-correcting from the close-range cell effects. The
pink square shows the approximate boundaries of the CSK image frame.
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6.3.1 Multi-temporal SAR Acquisitions

Before continuing to simulate SAR precipitation observations from the ground radar

data, it is helpful to examine the SAR data itself. In an effort to capture data containing

precipitation and take advantage of multiple satellites in the same orbit, all satellites were

scheduled to collect HH and VV data over the same region in Pavia. Two of the satellites

can repeat an acquisition within 24 hours, which could provide a rain versus no rain pair if

one imaged a storm. Unfortunately, data was not collected at the requested interval for an

undisclosed reason.

Five acquisitions did occur, however, on May 13, May 20, May 28, June 21 and June 29,

2010 as seen in Fig. 6.24 at an incidence angle of approximately 25°. After obtaining the

data, all channels were converted to radar brightness (β0) from the digital number (DN)

format followed by co-registration to the May 28 data. Theoretically, direct comparisons of

power can be made between the HH and VV data if the calibration parameters supplied are

accurate. The images in Fig. 6.24 were created from the HH, VV and complex difference β0

channels, but because the HH and VV channels are not coherent, the images lack much color.

The histograms for all channels and images have the same limits, allowing for a qualitative

comparison of relative power changes between horizontal and vertical polarization overall.

From the first date of May 13 to the last of June 29 there appears to be a monotonic

increase in received power, with a slightly higher increase in the HH channel. It turns out

this region of Italy is reknowned for growing rice, hence the low backscatter from flooded

fields in mid-May to a significant increase by late June as the rice grew. The urban areas

seen in Fig. 6.24, on the other hand, maintain a relatively constant power level as expected.

The consequence of data acquired from this region is that a “no-rain” average backscatter

image can not be created, exacerbating the challenge of evaluating the storm impact seen

in Fig. 6.24e.
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(a) (b)

(c) (d)

(e)

Figure 6.24: The northern half of the CSK acquisitions in Pavia shown as composite RGB
images created from |HH|, |V V |, and

√
T22 of the slant range NRCS (β0) co-registered data.

There is not much color due to lack of coherence between HH and VV. All of these images
were created with identical histogram limits for every channel in order to compare relative
power levels from colors. The reason for such a drastic change is because the region is home
to Italy’s reknowned rice patty fields that began flooded and became nearly full grown. The
acquisition dates are (a) 2010/05/13 (b) 2010/05/20 (c) 2010/05/28 (d) 2010/06/21 and
(e) 2010/06/29.

177



6.3.2 Simulation of SAR Observations from Ground Radar Data

Two dimensional histograms of the three observed variables, Zh, Zdr and Kdp, are

shown in Fig. 6.25a and 6.25d for rain. This radar operates in a simultaneous H and V

transmission mode, as opposed to alternating polarizations on each pulse, meaning that the

linear depolarization ratio LDR is not available. Simulated data histograms are shown in

Fig. 6.25b and 6.25d for comparison. In general, the real data has the same trend as the

theoretical parameters, but the figure shows that a lot of Zdr is negative as well as some Kdp

despite attempts to correct for attenuation. Due to the resolution of the radar and the fairly

large spatial gradients in Zh, it is likely that the Kdp estimates were not able to capture

the true features evident when they decreased to 0 at Zh levels above 45 dBZ. Therefore,

Kdp values in these regions were recalculated using the following power law relation [Wang

and Chandrasekar (2009)]:

Kdp = aZb
h (6.2)

where the coefficients are estimated from the theoretical relationship shown in 6.25d.

6.3.2.1 Gridding and hydrometeor classification

In order to eliminate one resampling step, the data were resampled on a georeferenced

Cartesian grid that was aligned to the CSK swath rather than compass directions. The

ascending orbit direction was approximately 349° pointing slightly NNW. Thus, a vertical

slice corresponding to lines of the SAR image is simply one row at all depths in this weather

radar data volume. The storm reflectivity and corresponding hydrometeor classification

results at three slice planes within this gridded volume are shown in Fig. 6.26. Constant

altitude slices at 2.5 km MSL are shown in Figs. 6.26a-b while Figs. 6.26c-d depict vertical

slices at 78.5 km cross-track range and Figs. 6.26e-f are vertical slices at 16.5 km along-track

range. Of particular interest are the lower two high intensity “cells” within 20 km from the

radar in the northerly direction and 75 to 95 km toward the east. These resulted in the

attenuation visible in the SAR image. Parts of the eastern cell were classified as hail plus

rain, but below the melting layer is almost all rain. The empty region seen in Fig. 6.26c-d
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Figure 6.25: 2D histograms of rain from the 100629 data (left panels) and simulated C-band
data used to train the NN (right panels). This shows the similarities and differences among
three polarimetric observations: (a) real Zdr vs. Zh, (b) simulatedZdr vs. Zh, (c) real Kdp

vs. Zh and (d) simulated Kdp vs. Zh. The BRIC radar transmits simultaneous H and V,
so LDR is not available.

near 20 km was filtered out due to ρHV < 0.88 which was probably influenced by ground

clutter.

Similarly, Fig. 6.27 depicts Zdr and the recalculated Kdp at the same slice locations as

Fig. 6.26. The areas of high Zdr and Kdp correspond well with the high Zh regions in Fig.

6.26. The associated melting layer estimation is depicted in Fig. 6.28. Due to Zdr < 0 near

the surface as seen in Fig. 6.27c and 6.27e, which could be caused by attenuation, ground

clutter or resonance, the algorithm determined the melting layer went down to the ground

in some locations. This is highly unlikely in late June on the plains of northern Italy, so

the melting layer was clipped at 3.5 km MSL (about 2.75 km AGL).
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Figure 6.26: Reflectivity slices (left column) and hydrometeor classification (right column)
for the gridded 100629 storm observed by the Bric della Croce C-band radar with the grid
aligned to the COSMO-SkyMed swath. (a) and (b) are horizontal slices at 2.5 km MSL, (c)
and (d) are northerly slices at 78.5 km from the radar and (e) and (f) are easterly slices at
16.5 km from the radar.
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Figure 6.27: Zdr (left column) and Kdp slices (right column) for the gridded 100629 storm
observed by the Bric della Croce C-band radar with the grid aligned to the COSMO-SkyMed
swath. (a) and (b) are horizontal slices at 2.5 km MSL, (c) and (d) are northerly slices at
78.5 km from the radar and (e) and (f) are easterly slices at 16.5 km from the radar.
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Figure 6.28: The melting layer height measured above MSL. The original output had the
melting layer at ground level (0.75 km MSL), which was clipped to 3.5 km as shown.
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Figure 6.29: Simulated 25° incidence angle X-band observations of rain vs. real horizontal
C-band 2D histograms of the 100629 storm overlaid on the pure simulation results (gray
x’s) (a) Zh, (b) Zdr, (c) Kdp and (d) Ah vs. Zh,S .
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Figure 6.30: Simulated 25° incidence angle X-band attenuation due to rain vs. real hori-
zontal C-band 2D histograms of the 100629 storm overlaid on the pure simulation results
(gray x’s) (a) Ah, (b) Adp
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6.3.2.2 Conversion to X-band

In order to convert the C-band ground observations into expected X-band spaceborne

data, models of the relationship are applied depending upon the hydrometeor type. For

frozen and melting particles, excluding hail, a simple least squares regression will determine

coefficients for polynomial or power law models detailed in Chapter 4. For both hail and

rain, a novel adaptive radial basis function neural network (A-RBFN) model was developed

(see Section 4.7), and the output for the rain portion of this storm are shown in Figs. 6.29

and 6.30. These figures show 2D histograms of the A-RBFN output overlaid on the pure

simulation output, and they show areas where some noisy input data results in noisy results.

More importantly, however, Figs. 6.29d and 6.30a indicate that the specific attenuation is

below 1 deg km−1 for most data. This is due mostly to low estimation of Kdp as seen in

Fig. 6.29c. Following the data conversion via the models, theoretical SAR observations are

generated by resampling the converted volume in the reference frame of the CSK satellite.

6.3.2.3 Simulated X-band SAR

Using the models defined in Chapter 4, the conversion to 25° incidence angle X-band

(Step 5 in Section 5.3.1) can be performed. Fig. 6.31 displays the reflectivity VMI after

conversion, plus the border of the overlapping portion of the CSK swath. The dotted

lines simply indicate six locations of vertical slices to use for analysis and validation. Fig.

6.32 shows the corresponding SAR image with white lines marking the same slice locations.

While the high intensity portions of the storm as seen by the ground radar do have a spatial

correspondence to the SAR attenuation, the eastern part of the storm seems to be slightly

further south in the SAR image. There are many reasons for this that include advection,

alignment errors and resolution. The issues surrounding the differences will be discussed in

the subsequent sections.

Fig. 6.33 through Fig. 6.35 depict the vertical slices of the resulting simulated X-band

data for reflectivity, specific attenuation and specific differential phase with lines indicating

the SAR observation beam. From Fig. 6.33, the highest reflectivity observed from the SAR

should occur around 9 and 10 km along-track, although stronger returns should be seen

near 12 km as well. Referring to Fig. 6.32, the faint whitish cloud between 8 and 10 km
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Figure 6.31: The Vertical Maximum Intensity (VMI) image showing the outline of the
overlapping SAR acquisitions and 6 cross-track slices for analysis.
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Figure 6.32: The region of the 100629 storm within the weather radar grid showing dimen-
sions in km. The white lines indicate the cross-track slices shown in Fig. 6.31.
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Figure 6.33: Simulated X-band reflectivity at the 6 slice locations of Fig. 6.32.

along-track and 10 km cross-track gives an indication that this is correct. Likewise, the

Ah seen in Fig. 6.34 shows that higher attenuation should be detectable in these regions

as well. Fig. 6.34f does not indicate the high attenuation seen in Fig. 6.32, but this issue

will be discussed below. Finally, the Kdp that the SAR should see is depicted in Fig. 6.35.

The values are relatively low except in panel (b). Also visible in the figure is the boundary

between several hydrometeor classes. While the models may be fairly accurate in and of

themselves, Fig. 6.35 provides evidence that the overall model should consider transition

boundaries and constrain the results to be continuous across them.
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Figure 6.34: Simulated X-band horizontal attenuation at the 6 slice locations of Fig. 6.32.
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Figure 6.35: Simulated X-band Kdp at the 6 slice locations of Fig. 6.32.
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Figure 6.36: Simulated path integrated attenuation and differential attenuation within the
SAR swath

Integrating along the SAR beam path, and considering the whole wavefront, the simu-

lated data can be projected to the ground. Path integrated attenuation (PIA) is shown in

Fig. 6.36a with a peak attenuation level of close to -8 dB. The two high intensity storm

cells are clearly visible in the PIA image as well as in the differential PIA depicted in Fig.

6.36b. Differential PIA, however, is only around -0.25 dB in these regions. The volumetric

horizontal RCS etah that the SAR would observe due to the storm is given in Fig. 6.37a.

Meanwhile Fig. 6.37b considers the effect of the PIA and Fig. 6.37 shows the difference

between horizontal and vertical volumetric RCS after attenuation is applied. Using the Kdp

in Fig. 6.35, Φdp projected to the surface is shown in Fig. 6.38, although most of it is

almost negligible at less than 3°. These results can then be added to a real SAR image to

show the propagation effects of this storm.

6.3.3 Comparison of Simulated to Actual Observations

Ideally, a rain free SAR surface backscatter image could be estimated from the multiple

acquisitions over the region of the storm. Unfortunately, due to the drastic changes in this

particular region, as discussed in Section 6.3.1, such an estimation is not feasible. However,

the 100621 acquisition was only 8 days prior to the 100629 storm and the surface changes

are minimal relative to the others, so this was selected to incorporate the simulated storm

effects. Once the attenuation and volumetric backscatter are added, comparisons to the

case without rain can be made. Fig. 6.39 shows the power span ratio between the rain

and no-rain cases where the attenuation overcomes the backscatter in most of the region

except to the near-range side of the swath. This figure also indicates why the eastern

cell appeared more attenuated in the real SAR image (Fig. 6.32) as we see that the level
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Figure 6.37: (a) The simulated volumetric radar cross section ηh from SAR with swath
indicated in Fig. 6.31. (b) The attenuated ηh for the same swath. (c) The attenuated
ηh − ηv.
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Figure 6.38: Simulated differential phase Φdp in the SAR swath.

of attenuation is reduced for the western cell between 10 and 15 km cross-track due to

backscatter. Differential reflectivity changes from propagation effects are displayed in Fig.

6.40. Here we see that the western cell has a decrease of Zdr of approximately 4−7 dB and

in general, a decrease occurred throughout the area affected by precipitation. From Fig.

6.41 a higher HH is indicated by the fact that much of the scene has more red than green.

Therefore, the storm decreases this Zdr toward that of the storm itself. The ∆Zdr shown

in Fig. 6.40 is not solid like the attenuation because it is more dependent on the surface
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Figure 6.39: The span power ratio of the data with the storm over the original 100621 scene.
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Figure 6.40: Differential reflectivity caused by the storm.

features and decreases more over the agricultural fields that had a higher HH return.

Color composite images of the 100621 acquisition with and without the simulated storm,

plus the actual storm image of 100629 are shown in Fig. 6.41. As mentioned previously,

the histogram limits for each channel were set to the same level for all acquisitions for

comparison, resulting in reduced contrast with the simulated storm once it was added as

seen in Fig. 6.41b. However, we can still see that the simulated version is not drastically

different than the real one, although the location of the eastern cell is slightly further north

than then real one. A power span of the simulated storm SAR and the real version is

given in Fig. 6.42 where a better qualitative comparison can be made in a decibel scale.

Considering that propagation effects visible in SAR images are always relative to the surface

backscatter, the visual illusion can be somewhat deceiving.
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Figure 6.41: The simulated storm was added to the acquisition just prior to the one where
the real storm occurred. (a) CSK data on 100621 (b) the storm added to 100621 (c) the
real storm on 100629
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Figure 6.42: The power span of 100621 with the storm added (top) and the span of the
100629 data with the real storm.

Fig. 6.43 provides smoothed 1D slant range NRCS (β0) values at four of the slices for

a more quantitative analysis. At each slice indicated, the HH data is shown above the VV

and a simple moving average filter with a window length of 7 was applied after averaging

data to a resolution of approximately 150 m2 grid cells. The blue lines indicate the original

100621 data while the green represents 100629 data with the real storm. In red is the

100621 data plus the simulated storm effects. At 7.2 km along-track, Fig. 6.43a shows

the real storm decreasing HH power by roughly 5 dB from 10 to 15 km cross-track if we

assume about a 1 dB increase from backscatter. In the simulated version, it only drops

by 4 dB, but is obviously close to the real level. In Fig. 6.43b, however, the decrease is

much closer at 8.8 km along-track , and 12 to 16 km cross-track, considering that the rain

free case drops about 2 dB, as well as 19 to 26 km. At 10.2 km along-track, the simulated

193



attenuation is larger in the region from 20 to 30 km cross-track in Fig. 6.43c, but this is

likely due to the combination of misalignment of the simulated data to the real storm and

the low resolution of the simulation that causes a spreading effect. On the other hand, the

slice at 14.8 km along-track shown in Fig. 6.43 indicates much stronger backscatter and

attenuation, potentially up to 12 dB below the peak, than does the simulated data. This

severe attenuation is also seen in Fig. 6.32 between 13 and 16 km along-track however, is

not indicated by any of the ground radar measurements, including the raw data. Obviously,

a feature not observed by the ground radar cannot be simulated, but this provides strong

evidence that spaceborne high frequency SAR can be used to aid the study of meteorology

as they might measure effects not seen on the ground.
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Figure 6.43: The averaged slant range HH and VV normalized radar cross-section at four
of the 6 slices for the storm date (100629 in green) and the previous acquisition (100621 in
blue). In addtion, the 100621 data with the simulated storm added is shown in red. While
the simulated version did not line up exactly with the the real one, parts were very close
and attenuation and backscatter similar. (a) 7.2 km (b) 8.8 km (c) 10.2 km (d) 11.8
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6.4 Summary

Analyzing real simultaneous observations of convective storms by X-band satellite based

SAR and ground-based weather radars provides validation for the theoretical models and

simulated results presented in earlier chapters. The TerraSAR-X (TSX) and COSMO-

SkyMed (CSK) SAR systems captured data of storms in HH and VV polarizations, while

horizontal polarization S-band or fully polarimetric C-band weather radars operated on

the ground. The theoretical relationship between S-band horizontally polarized reflectivity

at low elevation angles with fully polarized X-band observations was then given for the

TerraSAR-X and WSR-88D scenario.

Following the theory was the presentation of two cases, 8 and 19 August 2008, where the

TSX observed storms over central Florida, USA using HH and VV polarized signals in the

same operating mode. These two acquisitions, and the subsequent one on 30 August 2008,

were co-registered for temporal comparisons between rain and no-rain states. The resulting

images were shown to exhibit strong attenuation and even some noticeable backscatter,

which was occasionally stronger in the HH channel. By comparing the georeferenced TSX

data with a gridded 3D volume of ground-based S-band weather radar reflectivity, associa-

tions between precipitation levels and SAR observations were made. Attenuation was only

apparent at reflectivity values above approximately 40 dBZ. Meanwhile, backscatter was

not consistently visible, but it exists along the near-range side close to values reaching 50

dBZ. At other near-range locations, backscatter may go unnoticed without comparison to

additional acquisitions in the same region.

A quantitative analysis of the TSX radar brightness and NEXRAD radar reflectivity

provided more detailed evidence of the effect of rain on X-SAR images. Several cross-track

zones and three larger rectangular zones were identified for analysis. By slicing the 3D

reflectivity volume at the same location as the cross-track zones, it becomes more clear

what the SAR wave travels through en route to and from the surface. In slant range space,

observations from adjacent TSX acquisitions without severe rainfall were subtracted from

that of the storm to provide a better indication of backscatter and attenuation, although

they also include surface changes. When the near-range side of a convective cell was within
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the SAR swath, backscatter most likely due to precipitation was present as predicted by

the spatial model. However, in some cases backscatter was observed well into the highly

reflective core as opposed to near the ice to water transition zone. In addition, the theoretical

PIA based on the reflectivity slice showed reasonable similarity to the actual attenuation in

most cases even though the entire reflectivity volume was modeled as rain without frozen

particles.

Polarization related parameters were also quantitatively analyzed for further evidence

of precipitation effects on the TSX observations. The convective squall line on 8 August

2008 in particular exhibited polarization dependent backscatter and attenuation. Beyond

the histogram analysis, direct spatial comparison between rain and no-rain acquisitions re-

veals effects than cannot be attributed to surface change alone, although there exists some

spatial correlation with surface features. The higher HH backscatter seen in Zones F and

H near the high ground-based radar reflectivity is also indicative of oblate hydrometeors.

All rectangular zones, except for D, also show an increase in co-polar correlation magni-

tude, and a reduction in extreme (close to 180°) co-polar phase shifts which also reduces

observations |Shh − Svv|. These trends are both consistent with radar wave propagation

through precipitation. Zone D, however, showed a reduction in |ρco| and a nearly uniform

distribution of phase difference between channels in addition to drastic attenuation. These

are all signs that the signal is in or near the noise floor which was confirmed by the noise

parameters supplied with the TSX data.

The second part of the chapter analyzed the CSK data with polarimetric C-band ground

radar measurements. Using the theoretical models developed in Chapter 4 and the proce-

dure outlined in Chapter 5, a simulation of X-band SAR observations was generated from

the ground radar at the same incidence angle as the CSK acquisitions. Aligning the grid

of weather radar data to the SAR image simplified the process of comparison between the

two, although the georeference process will not be exact and is dependent on the accuracy

of SAR geolocation parameters and the earth model used. Attenuation correction was also

applied due to the wavelength, and near zero Kdp estimates were recalculated in the areas

of high reflectivity to account for the low resolution. After converting the gridded volume to
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X-band, parameters were integrated to obtain PIA and backscatter due to the precipitation

and added to the CSK acquisition 8 days prior to the storm by more than 4 dB in some

areas. Despite the fact that the surface backscatter was lower on this date, the storm sim-

ulated from ground radar data was comparable. Without data to create a “rain free” SAR

image it was more challenging to ascertain the accuracy of the simulation. Further analysis

at specific slice locations, however, showed that while the simulated storm did not exactly

align with the real one, attenuation and backscatter were similar in most cases. By taking

the ratio of power span and differential reflectivity from the simulated storm to the original

data, a clearer picture emerged supporting the case that the model can be effectively used

to recreate the SAR observations from ground radar data.

Certainly, alterations in the surface will exhibit polarimetric and backscatter fluctu-

ations as demonstrated by using more than one “no-rain” reference case for the Florida

storms and CSK acquisition prior to the storm date. However, with the aid of simultaneous

ground-based weather radar observations, the results presented here show strong evidence

of both propagation and backscatter effects from severe storms. This evidence provides

further motivation for investigating meteorological phenomena using space-based X-band

or Ku-band SAR systems, especially if they are polarimetric. These results also highlight

the challenges in extracting precipitation effects and parameters over heterogeneous land

with highly variable natural cover and high dynamic range. In cases where the differ-

ences between observations and theoretical PIA were more pronounced, there are numerous

contributing factors. These factors include data quality from both systems, relatively low

resolution of weather radar data and inaccuracies in the reflectivity corresponding to the

precise SAR acquisition time that does not account for advection and inaccuracies in geo-

reference locations. In addition, surface changes, incorrect hydrometeor classification and

possible displacement of attenuation due to the hydrometeor Doppler velocity in the cross-

track direction will all contribute to differences between the simulated values and the real

ones. Overall, however, these results indicate that it is reasonable to accomplish and present

the case for further research to improve the process.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

Today’s scientists have substituted mathematics for experiments,

and they wander off through equation after equation, and

eventually build a structure which has no relation to reality.

- Nikola Tesla

7.1 Summary

The primary goal of this research was to characterize the impact of precipitation on

synthetic aperture radars operating in the X band and higher in a quantitative fashion

that has previously not been done to this extent. This was demonstrated by providing the

theoretical foundation using a microphysical model of electromagnetic scattering of hydrom-

eteors and the methodology to simulate SAR observations of a storm from real polarimetric

ground-based radar measurements. Model validation was achieved by analyzing real SAR

acquisitions of precipitation with coincident weather radars on the ground. Several cases

were investigated with various degrees of polarized radars considering that the ideal case of

fully polarimetric ground and space-based radar does not yet exist.

Chapter 2 presented the background of radar, polarimetry and SAR. The radar range

equation was derived and the differences between weather radar and SAR were shown, and

the radar cross section was discussed, especially in terms of Rayleigh and Mie scattering

effects. Definitions of polarimetric weather radar observations were given as well as the

construction of the scattering and covariance matrices. This was followed by the fundamen-

tals of polarimetric SAR and a brief description of the instruments used in this research.

Finally, a basic presentation of the minimal resource allocation radial basis function neural

network applied to the modeling problem was discussed.



In Chapter 3, results from a study of precipitation induced land backscatter change were

presented. Changes in the σ0 caused by (near) surface water has implications for TRMM

and potentially future missions that utilize a surface reference technique to estimate rain

rate. The results shown, however, are preliminary, but the data covers one of the more

challenging terrain types: coastal and inland lakes regions. SAR exhibits the potential to

better characterize the surface change in order to improve rain rate estimates.

Following the σ0 study, the microphysical model was presented in Chapter 4 allowing

transformation of ground-based low elevation angle measurements to high elevation (low

incidence) angle observations at shorter wavelengths. This model includes small frozen and

melting particles as well as rain and hail with radar cross-sections beyond the Rayleigh

scattering limit. Smaller particles can use simple least squares regression analysis to deter-

mine coefficients of polynomial and power law models. For rain and hail, a novel approach

was developed using an adaptive neural network (ANN) to account for the oscillations that

occur when the particle size approaches and exceeds the wavelength. For rain, this model

was compared to common curve fit models to show that it performs equally as well for

simulated data. The results applied to real data may have appear noisier; however, this

occurs because it accounts for the inter-relation of multiple observation variable. The com-

parable attenuation model, however, had problems when Kdp < 0 vs. the ANN which

assured Ah ≥ 0 with little variation at lower reflectivity levels. The chapter wrapped up

by presenting wavelength conversion results to X and Ku bands for real storms that were

analyzed in more detail.

In Chapter 5, the methodology for using ground-based radar measurements of precip-

itation to simulate spaceborne SAR observations of the same storm was presented. Two

real storms observed by the CSU-CHILL radar were used to simulate X-band SAR data: a

supercell case from the STEPS experiment and a squall line with hail that melted before

hitting the ground. For the supercell, two scenarios were devised by only using the con-

vective region in one case and then by effectively looking at the opposite side of the storm

for the other, including the stratiform region. The procedure to calculate the attenuation,

backscatter and differential phase was then executed and the results added to rain free TSX
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acquisitions over Florida with qualitative comparison to real storm observations in the same

region.

Chapter 6 then investigated several real cases of multi-polarization SAR observations of

storms and simultaneous ground radar data. Real data from TSX over Florida were ana-

lyzed, although only single polarization ground radar observations were available. However,

using two ground radars with nearly opposite viewing angles of the storm allowed for an

improved estimate of meteorological parameters at the time of SAR acquisition. Observed

attenuation showed close resemblance to the theory when all ground measurements were

considered to be rain. Following this case was a storm in June, 2010 observed in HH and

VV by a COSMO-SkyMed SAR and a C-band polarimetric ground radar. Although the two

SAR channels were not coherent, they did provide relative power information. In addition,

the surface of the specific region had very low temporal coherence so a good “rain free”

surface backscatter response was not possible. Despite the lace of a no-rain case, the use of

a polarimetric ground radar allowed for the application of the modeling procedure detailed

in Chapter 5 to simulate the SAR observations and then compare them.

7.2 Conclusions

The primary goal of this research was to establish how precipitation effects multi-

polarization SAR imagery at frequencies in X-band and higher in a quantitative fashion. To

meet the primary goal, three secondary goals of this research were to develop a microphysics

based model to simulate storm observations from a short wavelength spaceborne radar using

real ground-based polarimetric radar data, analyze and compare model results to real polari-

metric X-SAR observations of storms with simultaneous data from ground-based weather

radars and characterize surface backscatter changes caused by recent or active precipita-

tion as seen from spaceborne radar. Other researchers have investigated this problem, and

some have created basic models of precipitation as viewed by a spaceborne SAR, but this is

the first to define the methodology and models to simulate spaceborne SAR precipitation

observations using real ground radar data. It is also the first to investigate storm effects on

high frequency polarimetric SAR measurements. Chapter 4 achieved the first goal, which

demonstrated the simulation of any X or Ku band spaceborne radar observations at lower
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incidence angles from either S or C band ground radar data. This can be applied to us-

ing SAR satellites for meteorology and it has implications for the off-nadir view angles of

TRMM and GPM. Even hail models are included using the ANN approach, which is even

more applicable at frequencies above X-band, and the results with real data fall well within

the expected theoretical values. In addition, no modifications to the models were necessary

to accommodate different input data from very different storms and radars, although a

different set of network weights and biases are needed for each pair (e.g., horizontal S-band

to 25° incidence angle Ku-band or horizontal C-band to 35° X-band).

While the model presented in Chapter 4 has applications for all high frequency space-

borne radars with beams pointed at off-nadir angles, it is applied to simulate SAR obser-

vations at X-band with promising results using the procedure spelled out in Chapter 5. A

variation of this model is used when only single polarization data were available from the

ground, but the estimated attenuation was within a few dB when the alignment between

space and ground data was good. When polarimetric ground radar data was available, the

and the simulated results from applying the full model are very similar to the real obser-

vations accounting for a much lower resolution and a spatial offset for part of the storm.

Overall, however, the model demonstrated robustness as it is able to handle very noisy

data without resulting in unrealistic output. There is also a region that was much more

intense, i.e., causing higher attenuation and backscatter, in the SAR data than was observed

by the ground radar indicating that SAR could improve the overall analysis of convective

precipitation over a single ground radar alone.

Chapter 3 presented results of C-band SAR and TRMM observations of surface backscat-

ter. These results provide strong evidence of the correlation of recent rainfall and increased

surface backscatter that can be analyzed in detail with regular high resolution SAR acqui-

sitions to characterize the change. However, this can vary dramatically between geographic

regions and requires regular, short interval acquisitions to accurately characterize the sur-

face. For regions such as Florida that have significant inland bodies of water or easily

saturated soil, though, SAR can provide valuable information to improve the accuracy of

the TRMM SRT result when it is known to vary significantly.
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As a whole, the research presented here makes significant progress toward the study of

precipitation from spaceborne SAR systems. It also establishes a precedent for modeling

the propagation characteristics using polarimetric ground-based weather radars.

7.3 Suggestions for Future Work

There are a number of ways to carry this research forward with the ultimate goal of

creating algorithms to estimate rain rate from high frequency spaceborne SAR by improv-

ing the model of the forward problem. These fall into four general categories: frequency

conversion model improvements, SAR data processing, weather radar data processing and

new data. More details are provided below.

1. Frequency conversion model

� Optimize the A-RBF training algorithm to achieve the best result for the quickest

training time.

� Use spatial relationships for the final converted product to avoid discontinuities

at the boundaries of hydrometeor classes, and/or

� Modify the output of the hydrometeor classification to create transitional bound-

aries between classes.

� Investigate allowing the ANN to adapt to the real data. This requires a target

value which could be determined by the median of adjacent grid cells that have

already been calculated, e.g., the graupel and snow particles that do not use a

neural network.

2. SAR data processing

� Apply a/the real antenna pattern to weight the data when resampling into the

SAR coordinate system versus the ideal beam used in this work.

� Process the SAR data through the orthorectification step to determine an ac-

curate georeferenced location of each pixel in the slant range. This requires

the SAR processing software to save the affine transform applied to each pixel.
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Simply projecting the slant range coordinates to one of the standard elliptical

models (e.g., WGS84) is not accurate enough for some data such as those from

COSMO-SkyMed.

� Investigate the storm effect on co-polar phase shift. The theoretical estimates did

not correspond well with the real ones, potentially due to the image formation

processing.

� Process from raw SAR data and consider system parameters (e.g., noise). The

results presented here essentially assumed the SAR data came from a real aper-

ture without considering system noise and processing for image formation (i.e.,

matched filtering). While this is the best starting point, the next step would be

to consider that the real beam is very wide, which is a potential cause of the

problems matching co-polar phase. Attenuation could reduce signal strength to

the noise floor and the scattering affects make the Doppler Centroid estimation

much more challenging. Processing from what is commonly referred to as “raw

phase history” (the complex voltage for each pulse) and using the backprojection

algorithm to form the SAR image could provide a deeper understanding of the

precipitation impact on SAR observations. It is also possible that modifications

to the SAR image formation processing could yield better “focus” on the storm

itself versus the surface. An investigation into SAR processing for moving target

identification (MTI) or traffic monitoring applications would be warranted.

3. Weather data processing

� Explore advection correction algorithms to account for the ground radar volume

collection time relative to the SAR acquisition time

� Explore the Doppler shift in SAR observations due to hydrometeor motion rela-

tive to the SAR platform

� Improve the geo-location of the gridded data, possibly incorporating a Digital

Elevation Model (DEM)

� Investigate improvements from a network of ground-based radars
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� Improve data filtering. Filtering too much can reduce the peaks of backscatter

and attenuation, but not filtering enough can result in unrealistic gaps. The ANN

could potentially help in this regard considering it is a model of the relationship

between radar observation types for a given hydrometeor class. Using the ANN

would fall under the category of model-based processing and could also identify

mis-classified data.

4. New data

� Acquire and analyze more data of X-SAR observations of storms with simultane-

ous ground radar measurements, ideally with fully polarimetric radars for both

space and ground

� Investigate surface backscatter change relative to precipitation events using a

higher frequency SAR, ideally with regular acquisitions that will overlap with a

TRMM observation

� If the data becomes available, investigate additional aspects such as bistatic SAR,

along-track interferometry or cross-track interferometric phase change induced

by the precipitation
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