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ABSTRACT OF THESIS

FORECASTING OF ATLANTIC TROPICAL CYCLONES USING A KILO-MEMBER
ENSEMBLE

The past 30 years have witnessed steady improvements in the skill of tropical cyclone
track forecasts. These increases have been largely driven by improved numerical weather
prediction models and increased surveillance of the storm environment through aircraft
reconnaissance and satellite remote sensing. The skill of deterministic track forecasts from
full-physics models is gradually approaching the theoretical limit of predictability that arises
due to the atmosphere’s chaotic nature and limitations in determining the initial state. To
make further progress, it is necessary to treat the uncertainty of the initial condition. One
practical approach is to sample this uncertainty by perturbing the initial state. The resulting
suite of forecasts that result from integrating such perturbations is known as an ensemble.

This thesis describes the design, implementation, and evaluation of a semi-operational
ensemble forecasting system using an efficient multigrid barotropic vorticity equation model
(MBAR). Five perturbation classes are used to simulate uncertainties in the storm environ-
ment and vortex structure. Uncertainties in the storm environment are simulated by using
the background environmental flow evolutions provided by the NCEP Global Forecasting
System (GFS) ensemble forecasts. Several deep layer-mean wind averages account for un-
certainty in the depth of the storm steering layer. Uncertainties in the decomposition of the
tropical atmosphere’s vertical modes are simulated by varying the model equivalent phase

speed. Finally, uncertainties in the vortex structure are simulated by varying the vortex
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size and storm motion vector. Each perturbation in a given class is cross-multiplied with
all other perturbations of other classes to obtain an ensemble with 1980 members. One of
the fundamental questions addressed by this research is whether such cross-multiplication
increases the degrees of freedom in the ensemble.

The ensemble is run for 294 cases from the 2001-2003 Atlantic hurricane seasons.
Theory dictates that a properly-perturbed ensemble should, on average, be more accurate
than any single ensemble member, but it was found that the kilo-ensemble mean forecast
did not demonstrate substantial improvement over the control forecast. However, the en-
semble mean did show substantial skill relative to the five-day climatology and persistence
model (CLP5) throughout the 120-h forecast period. The ensemble mean spread (the mean
distance of the individual members from the ensemble mean), xz-bias, and y-bias statistics
are also evaluated.

Probabilistic interpretations are valid with an ensemble of this size, so cumulative
strike probabilities are calculated explicitly from the kilo-ensemble output. In a related
possibilistic interpretation, the ensemble can be looked upon as mapping out the subspace
of all possible storm tracks, so the reliability of this ensemble envelope is examined. Finally,
if the ensemble can accurately simulate the uncertainties in the dynamical system, then
there should be a positive relationship between ensemble mean spread and the error of the
ensemble mean forecast. A strong relationship allows useful forecasts of forecast skill to be
made at the time of the forecast. The kilo-member ensemble was found to have a weak

spread-error relationship that peaks at 60 h.
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Department of Atmospheric Science
Colorado State University

Fort Collins, Colorado 80523-1371
Summer 2004
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Chapter 1

INTRODUCTION

1.1 Motivation: The hurricane problem

Hurricanes' pose a great threat to society. Their violent winds, flooding rains, coastal
storm surges, and waves have caused economic upheaval and human tragedy throughout
recorded history. Hurricane impacts on society are increasing due to population growth and
several economic and societal factors. Recent disasters and near misses further underscore
the need for better forecasts so that further tragedy can be avoided.

Research on multidecadal atmosphere-ocean circulation regimes suggests that the lull
in Atlantic tropical cyclone activity from 1971-1994, reflected most strikingly by the scarcity
of “major” hurricanes,? has given way to a period of increased activity that may last for
the next 10-40 years (Goldenberg et al. 2001). The 23 major hurricanes observed from
1995-2000 make this 6-year period the most active on record.® In contrast, only 36 major
hurricanes were observed during the previous 24-year period. During the quiescent period
of the past couple decades, coastal populations have swelled. Combined with economic
growth and social trends, more wealth and property are now at risk from hurricanes than

ever before. Since major hurricanes are responsible for 83 percent of all United States

L A hurricane has a 1-min surface wind speed of at least 64kt. In this chapter, the term ‘hurricane’ is
used generically for tropical cyclones (TCs) of all intensities.

2 A major hurricane has a 1-min surface wind speed of at least 100 kt.
3 Reliable statistics on the numbers and intensity of Atlantic tropical cyclones only extend back to 1944

when aircraft reconnaissance began. Further care must be taken in considering basin wide statistics before
the era of continuous satellite surveillance, which began in 1966 (Jarvinen et al. 1984).



hurricane damage, we are likely entering a period of substantial economic losses (Pielke and
Landsea 1998).

While hurricane-related economic losses increased substantially during the twenti-
eth century, U.S. death tolls have shown a marked downward trend. Since much of the
coastal population growth occurred during a relative lull in hurricane activity, many coastal
residents have never experienced the core of an intense hurricane. At the same time, a
social trend toward urbanization has concentrated large numbers of people in vulnerable
cities along the East and Gulf Coasts. Transportation infrastructure has not kept pace
with population growth in most cities, resulting in congestion and decreased mobility. As a
result, the lead times required for evacuation of some cities have increased faster than the
rate of improvement in hurricane forecasts, raising the potential for future storms to exact
large human tolls (Sheets 1990). Societal vulnerabilities have also increased in the devel-
oping nations of the Caribbean and Central America, but for different reasons. Exploding
populations with associated poverty and deforestation have lead to staggering death tolls,
primarily from inland flooding. In 1998, Hurricane Georges hit the Dominican Republic and
Haiti, killing 602. Several months later, Hurricane Mitch pounded Honduras and Nicaragua,
causing 9086 direct deaths (with an additional 9191 persons reported missing), making it
one of the deadliest Atlantic hurricanes in history (Pasch et al. 2001). If the trend toward
increasing vulnerability continues, future storms may cause unprecedented death tolls both
in the United States and abroad.

In order to avoid such an undesirable outcome, better forecasts are needed to provide
enough warning time for evacuations and other mitigation activities such as structure hard-
ening.* To be useful for mitigation purposes, such forecasts should be timely and accurate.
Foreknowledge of the intensity at landfall, and details of the wind field, rainfall, and surge

effects are important, but the future storm track is probably the most basic and critical

4 Long term mitigation strategies are also vital in preventing massive casualties in the future. Such
strategies include tougher building codes, restrictive zoning to prevent additional development in flood-
and surge-prone areas, increased transportation capacity where evacuation choke points currently exist, and
greater public education on what actions to take for various storm scenarios.



component of a hurricane forecast.

1.2 Limits of predictability

Track errors of the official National Hurricane Center/Tropical Prediction Center
(NHC/TPC) forecasts have shown a slow but steady decrease over the past three decades.
According to McAdie and Lawrence (2000), official track errors (adjusted for forecast dif-
ficulty) have decreased each year by an average of 1.0% at 24h, by 1.7% at 48h, and by
1.9% at 72h for the period 1970-1998. The rate of improvement has accelerated during the
most recent 5-year period in their study (1994-1998), with yearly decreases of 2.1%, 3.1%,
and 3.5%, respectively. They suggest that the reductions in official forecast track errors are
due primarily to the steady increase in skill of global numerical weather prediction (NWP)
models, coupled with the improved ability of forecasters to correctly identify the initial
storm position using satellite imagery and aircraft reconnaissance data. It is unknown how
long this beneficial trend can be sustained through incremental model improvements, bet-
ter remote sensing platforms, and increased forecaster sophistication. At some point in
the future, the practical limit of predictability (as evidenced by the state-of-the-art nu-
merical models at that time) will approach the atmosphere’s inherent predictability limit,
which arises from nonlinear scale interactions and instability mechanisms coupled with an
incomplete knowledge of the initial state (i.e. chaos).

The inherent predictability limit can be defined as the performance of a perfect model
with perfect initial conditions. Leslie et al. (1998) have estimated the inherent and practical
(simply the performance achieved by current NWP models) predictability limits and shown
that there is still plenty of room for further improvement in NWP models. Nevertheless,
it behooves the research community to develop methods that can improve forecast skill by
recapturing skill normally lost to the inherent predictability limit. As the models become
closer to “perfect”, further sophistication of the model physics, increased resolution, and

better data assimilation will no longer lead to incremental improvements in forecast skill.



Brooks and Doswell (1993) suggest that future developments in computer technology may
be more effectively put to use in an ensemble framework, where many model realizations are
conducted based on perturbations that try to simulate the uncertainties in the dynamical
system of interest. In this manner the ensemble approach uses the uncertainties (both in the
initial state and in formulation of the model) to its advantage, thus providing information
on the possible range of future atmospheric states, including low probability events. In
application to the problem of TC track forecasting, the ensemble information could provide
the forecaster with the geographical range of probable (or possible) track forecasts and allow
estimation of the uncertainty in the forecast. In contrast, a single model realization only

provides one forecast track, which may be right or wrong.

1.3 Research goals

This research aims to develop an ensemble method for predicting hurricane tracks
using a simple nondivergent barotropic model. The recent development of an extremely
efficient nondivergent barotropic model using multigrid methods (Fulton 2001) has opened
the door to forecast methods that utilize very large ensembles, but are computationally
inexpensive enough to run on a personal computer (PC). Various metrics are employed to
interpret the results and gauge the efficacy of such methods. Some of the questions we seek

to answer are:

Can a well-perturbed ensemble give a better forecast than any single model
realization?

How many ensemble members are necessary to get the “right” answer?
Is there a relationship between ensemble spread and forecast error?

Can information about the ensemble spread be used to provide a meaningful
forecast of forecast skill?

How accurately does the ensemble envelope of all track possibilities encom-
pass the actual tracks observed?

Can a barotropic model provide a useful framework for ensemble forecasts
of TC tracks, or is it necessary to include baroclinic dynamics?



It is our hope that this research will verify that ensemble methods have great utility in
maximizing the benefits of increasing computer power, and lead to more accurate forecasts
that may prevent devastating loss of life in the future. The rest of this paper is arranged
as follows: in Chapter 2, a literature review on ensemble methods is presented. Chapter 3
reviews the details of the multigrid barotropic model used in the ensemble, discusses the
process by which an optimum configuration is obtained, and compares its performance to
that of a current operational barotropic model. Chapter 4 discusses the design philosophy
of the ensemble, the choice of perturbation classes and magnitudes, and the implementation
of the ensemble in a semi-operational framework. Methods of verification and results are
presented in Chapter 5, while several case studies are given in Chapter 6. Chapter 7 closes

with conclusions and interpretation of the results.



Chapter 2

LITERATURE REVIEW

2.1 Forecasting and predictability

The application of forecasting the future state of the atmosphere has a rich and varied
history. The earliest examples of forecasting the weather relied on rules of thumb (e.g.,
“Red sky in the morning, sailors take warning.”) derived from empirical observation. The
invention of the telegraph led to routine synoptic observations of the atmosphere, which
were plotted onto daily weather maps. From these maps, forecasts were made based on
pattern recognition and conceptual knowledge of the atmosphere’s behavior (e.g. advection,
modification of airmasses, and storm motion).

Vilhelm Bjerknes (1904) conceived the notion of numerical weather prediction, by
which the physical laws governing the atmosphere could be used to predict its future state.
The first attempt at numerical weather prediction was made by Lewis Fry Richardson
(1922). Although Richardson’s single 6-h integration failed due to an incomplete under-
standing of what was required for a successful forecast (e.g. the importance of geostrophic
balance between the mass and motion fields in the initial condition), he correctly foresaw
the tasks that would be necessary in order to make a numerical weather prediction, namely
data acquisition, processing procedures, and forecast dissemination.

The invention of the electronic computer in the mid-1940s spurred further efforts in
numerical weather prediction. In 1948, Jule G. Charney established a Meteorology Group
for this purpose within the Electronic Computer Project at the Institute for Advanced

Study in Princeton, New Jersey. By 1955, operational numerical weather prediction (NWP)



commenced. A more complete history of NWP is chronicled by Shuman (1989).

The practical experience gained through operational NWP spurred rapid gains in
knowledge that led to improved models, so that by 1960, the model skill for some products
surpassed that of human forecasters. H