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ABSTRACT 

CLIMATE CHANGE IMPACTS ON POPULATION DYNAMICS IN TALLGRASS 

PRAIRIE: IMPLICATIONS FOR SPECIES CODOMINANCE 

Two grass species, Andropogon gerardii and Sorghastrum nutans, together account for the great 

majority of individuals, biomass, and possibly genetic diversity in plant communities of the tallgrass 

prairies of the Great Plains, US. As competitors with similar functional traits and what appears to be 

overlapping niches, it is not clear what mechanisms facilitate their co-dominance, but it may rely on the 

high variability of environmental conditions that characterize grassland ecosystems. Because these 

abundant grasses strongly influence plant community structure and ecosystem function, it is critical that we 

understand the factors influencing the population dynamics of these species, and how climate change might 

alter those relationships. We found an asynchrony in population dynamics in which A. gerardii begins each 

growing season at higher tiller densities, with attrition of tillers starting mid-season. Concurrent gains of S. 

nutans tillers results in A. gerardii becoming the less abundant by the end of most growing seasons. We 

hypothesized that this differentiation in tillering strategies causes each species to be vulnerable to 

unfavorable environmental conditions during different parts of the growing season, thus enabling their 

coexistence by preventing an inter-annually consistent competitive advantage of either species. We found 

that greater tiller density asynchrony was associated with higher population densities of S. nutans and of 

aggregate tiller densities of both species. Experimental increases in temperature and rainfall variability 

reduced population-level asynchrony while exacerbating population declines and overall community 

productivity, suggesting this mechanism of co-dominance may rely on current levels of environmental 

variability, and may be vulnerable to projected increases in that variability with climate change. 
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CHAPTER 1. CLIMATE CHANGE IMPACTS ON POPULATION DYNAMICS IN TALLGRASS PRAIRIE: 

IMPLICATIONS FOR SPECIES CODOMINANCE  

INTRODUCTION 

 For more than a century, the factors that promote coexistence have received considerable 

attention in the ecological literature (Grinnell, 1904; Gause, 1934; MacArthur, 1958; Hutchinson, 1961; 

Grant, 1972; Chesson, 2000; Adler, et al., 2007; Hubbell, 2008; Tilman, 1990; Angert, et al., 2009). Most 

investigations have limited their focus to species that are asymmetric in their abundances, often revisiting 

the question of how rare species avoid competitive exclusion by a dominant species (MacArthur, 1958; 

Hutchinson, 1961; Chesson, 2000). However, many communities include two or more competing species 

that are found in similarly high abundances within and between sampling locations, leaving open the 

question of how species not only coexist, but co-dominate.  

One factor used to explain coexistence is temporal niche partitioning, or more specifically 

temporal asynchrony in resource use (Anten & Hirose, 1999; Chesson, 2000; Silvertown, 2004). In 

temperate regions where plant growth cannot occur year-round, it is logical to assume that the dominant 

species will be those that can maximize the length of time during which they are actively 

photosynthesizing. To do otherwise risks being overtaken by similarly productive species that can take 

advantage of a greater proportion of the growing season (Carothers & Jaksic, 1984). In mixed grass 

prairie, C3 grasses partition their growth early and late in the growing season when temperatures and 

moisture are favorable for growth, whereas C4 grasses are active during the hottest and driest months of 

the growing season (Williams, 1974; Kemp & Williams, 1980; Singh, et al., 1983). This results in co-

existence of both C3 and C4 grasses via partitioning of use of space and other resources in time. Yet, this 

raises an interesting challenge for species that are concurrently abundant or co-dominant, as their period 

of resource use overlaps. In this case, it may be that a subtler temporal niche partitioning or asynchrony in 

resource use may be sufficient for facilitating co-dominance. 
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In the mesic regions of the Great Plains, the two perennial, rhizomatous C4 grasses, Andropogon 

gerardii (Big Bluestem) and Sorghastrum nutans (Yellow Indiangrass), are generally the first and second 

most abundant species (Freeman, 1998), respectively. Together, they contribute >80% of community 

aboveground productivity (ANPP) and canopy cover (Smith & Knapp 2003). While A. gerardii is 

regionally more abundant than S. nutans (Smith & Knapp, 2003), either species can have greater 

population densities on a local scale (Brown, 1985; Hartnett, 1996; Smith & Knapp, 2003), and both are 

consistently found well-mixed within the same local communities. They also have many traits in 

common, both qualitative (Lauenroth & Adler, 2008; Brown, et al., 2010) and quantitative (Forrestel, et 

al., 2014), including tall stature (>1 m tall when flowering) and maintaining and recruiting primarily 

vegetatively from an extensive belowground bud bank (Hartnett & Keeler, 1995; Benson & Hartnett, 

2006).  In addition, both grasses respond positively to spring fires (Weaver & Rowland, 1952; Knapp & 

Hulbert, 1986; Silletti & Knapp, 2002; Towne & Kemp, 2003; Benson & Hartnett, 2006; Towne & 

Kemp, 2008) and nitrogen addition (Berg, 1995; Silletti & Knapp, 2001; Mulkey, et al., 2008), but 

negatively to shading (Lett & Knapp, 2003; Bowles, et al., 2011) and grazing by large mammals 

(Hartnett, 1996; Silletti & Knapp, 2002; Forrestel, et al., 2015).  

Given their similarities in physiology, morphology, and resource requirements, niche 

differentiation alone appears not to be sufficient to explain the coexistence of these grasses. The co-

dominant relationship of A. gerardii and S. nutans is therefore enigmatic, but may in part result from 

relatively subtle differences in temporal niche partitioning facilitated by differing tillering strategies. 

Under current climate conditions, A. gerardii tiller emergence begins and ends during a relatively brief 

period in Late-April to Early-May (Ott & Hartnett, 2012). In contrast, although most their tillers emerge 

concurrently with those of A. gerardii, S. nutans bud activation is maintained at a steady but reduced rate 

for the remainder of the growing season (Benson & Hartnett, 2006). If these contrasting patterns result in 

intra-annually asynchronous tiller densities, they may play an important role in co-dominance by 

generating subtle differences resource use and in vulnerability to growing season environmental 

variability, while enabling both species to remain photosynthetically active for the entirety of the growing 
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season. Indeed, the tallgrass prairie is subject to high inter- and intra-annual variation in precipitation 

(Goudie & Wilkinson, 1977). Within season, precipitation varies because of differences in the size of 

rainfall events, their pattern and the length of dry periods (Knapp, et al., 2002). The subtly different 

tillering strategies may therefore promote coexistence of the dominant grasses as climate conditions vary 

from one year to the next.  

The potential asynchronous tillering response of the co-dominant grasses may have other 

consequences as well. The insurance effect hypothesis states that functionally redundant species stabilize 

community function, as any decline in function that results from the loss of one species can be offset by a 

compensatory increase in function of another (Naeem & Li, 1997). However, this stabilizing effect should 

only occur when those species have asynchronous responses to environmental variability, such that they 

do not decline in parallel to unfavorable conditions (Chesson, 2000; Loreau & de Mazancourt, 2013). 

This effect should be most apparent among co-dominant species, as they contribute the most to ecosystem 

function and are the most capable of replacing lost functionality (Smith & Knapp, 2003; Chang & Smith, 

2014; Forrestel, et al., 2015). It may then be that if asynchronous dynamics promote co-dominance 

between A. gerardii and S. nutans, those effects may extend beyond the population level to enhancing 

overall ecosystem function and stability. 

Climate change projections indicate that temperatures and variability in intra-annual precipitation 

in the Great Plains are likely to increase over the next half-century, with the latter leading to both longer 

periods between rainfall events and larger volumes of rainfall during those events (IPCC, 2012). If 

coexistence between A. gerardii and S. nutans relies on asynchronous tillering responses to the current 

variability in intra-annual precipitation, that relationship may be vulnerable to change particularly if the 

future conditions are more variable and compounded by warmer temperatures. Because of the importance 

of these species, we began monitoring their population dynamics in 2005 within an experiment that both 

increased temperatures and altered intra-annual variability of growing season precipitation, while keeping 

the total volume of rainfall consistent with that of ambient conditions (Fay, et al., 2000; Fay, et al., 2011). 

Over the study period, this increased-variability treatment resulted in extended dry periods and larger 
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rainfall events, with both occurring at times during the growing season differing considerably from 

ambient conditions (Knapp et al. 2002).  

The expectation was that if climate variation plays a role in influencing co-dominance of A. 

gerardii and S. nutans, then increased variability in precipitation, when combined with climate warming, 

may alter population dynamics of these two species with potential consequences for their coexistence. To 

address this, eight years of measurements of population size, collected as tiller densities, were analyzed to 

determine (1) if under ambient conditions the two species demonstrated population-level asynchrony 

intra-annually as a result of different tiller recruitment patterns, (2) whether that asynchrony is muted or 

amplified when precipitation variability and/or temperatures are increased, (3) if changes in intra-annual 

population-level asynchrony with altered precipitation and warming are associated with inter-annual 

changes in population densities of either species or their aggregate density, (4) and if overall community-

level function is likewise affected by such changes. 

METHODS 

STUDY SITE: 

 This study took place at the Konza Prairie Biological Station, located in northeastern Kansas, 

USA, within the Rainfall Manipulation Plots (RaMPs) experiment (Fay, et al., 2000). Mean monthly air 

temperature during mid-growing season (July) is 27°C, and intra- and inter-annual variability in both 

temperature and precipitation is considerable for the region (Hayden, 1998).  The study site encompasses 

intact, tallgrass prairie dominated by C4 grasses, particularly Andropogon gerardii and Sorghastrum 

nutans (Knapp, et al., 1998; Fay, et al., 2000). The area encompassing the experiment is ungrazed and has 

been burned annually in mid-March, prior to any sampling, since 1979.  

EXPERIMENTAL DESIGN AND SAMPLING METHOD 

 The RaMPs experiment was begun in 1998 to assess the effects that predicted climate change-

induced alterations in rainfall variability (IPCC, 2012) will have on tallgrass prairie plant community 
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structure and ecosystem function (Fay, et al., 2000). RaMPs consists of 12 rainfall-exclusion structures 

placed over intact, native tallgrass prairie. Each of these structures includes a 9 x14m fixed roof that 

encloses a 6 x 6m experimental area (termed “RaMP”). This area was divided into 4 plots, each 

measuring 2x2m. Each plot was further divided into four 1x1m subplots. All rainfall incident on the 

shelter during the growing season was collected and then immediately applied to the six control (ambient) 

structures. Rainfall incident on the six altered precipitation treatment structures was collected and 

aggregated from multiple precipitation events prior to application, such that the altered precipitation 

treatment would have 50% longer periods between rainfall events without changing the total amount of 

water applied during the full length of the growing season. Through this rainfall event aggregation, 

treatment plots experienced statistically extreme rainfall patterns that included longer dry periods and 

rainfall events that were both larger in volume and fewer in number than in ambient patterns (Knapp, et 

al., 2002; Smith, 2011). This treatment application was limited to the growing season (approx. mid-Apr to 

early Sept). The altered precipitation treatment resulted in a reduction in average soil moisture and an 

increase in soil moisture variability, compared to the ambient-precipitation treatment plots over the course 

of the experiment (Fay, et al., 2011).   

In 2003, a warming treatment was added to each of the ambient and altered RaMPs in one of the 

2 x 2 m plots to determine if the effects of increased variability in precipitation might interact with the 

increasing temperatures also expected with climate change within the region (Fay, et al., 2011; IPCC, 

2012). Overhead heat lamps provided continual infrared radiation to the heated plots, resulting in an 

average 1°C increase over ambient temperatures. Dummy lamps were placed over unheated 2 x 2 m plots 

(ambient temperature treatment) to control for shading effects. The heat treatment was applied 

continuously, and year-round. Overall, there were six replicates of each of the four treatment 

combinations, with the two heating treatments nested within the two precipitation variability treatments. 

Population densities of all species were monitored using 20 x 50 cm permanent sampling quadrats 

located in opposite 1 x 1 m subplots within each heated and unheated 2 x 2m plot. The same subplots 

were sampled twice each growing season from 2005 to 2013, with the exceptions of 2008, when no 
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sampling took place, and 2011, when sampling took place only in the early season. Early-season surveys 

took place over 1-5 days between late May and early July. Late-season surveys took place over 1-8 days 

between late August and early September. Tiller counts from the two survey frames in each plot were 

averaged to give an average number of tillers per 100cm2 (tiller densities).   

All collected data were categorized as either early or late season. Early-season measurements 

included surveys, temperatures, and rain events that occurred on days between the date of the yearly 

spring burn and the first tiller density survey. Temperatures and rainfall events that occurred on days 

between the first and second tiller density surveys were considered late-season. Due to weather 

constraints, the length of defined early- and late-seasons varied somewhat from year to year (early-season 

range: 73-115 days, average: 92 days; late-season range: 68-88 days, average: 80 days). Aboveground net 

productivity (ANPP), estimated by clipping, drying, and weighing, was measured only once yearly from 

areas adjacent to tiller density survey locations, after each growing season, and those measurements were 

included in both early- and late-season analyses. ANPP sampling locations were moved from year to year 

to avoid introducing the effects of repeated clippings. 

DATA ANALYSIS  

 All statistical analyses were performed in R version 3.3.1 (R Core Team, 2016). All linear 

regression models were generated with the base package function lm() with weights set to ordinary least 

squares. Groups were checked for equal variance using Levene’s test before using the function aov() to 

perform analysis of variance (ANOVA). 

To determine if A. gerardii and S. nutans demonstrated differential intra-seasonal tiller dynamics 

(i.e., differences in early season vs. late season tiller densities), and whether tiller dynamics were affected 

by the altered precipitation and warming treatments, a repeated measures (year), mixed model analysis 

was performed, with species, season (early vs. late), and the heat treatment nested within the precipitation 

treatment. Treatment groups were compared for differences in means following a Tukey adjustment. 
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 Asynchrony of population dynamics was assessed by calculating a modified version of Loreau 

and de Mazancourt’s synchrony (�) (Loreau & de Mazancourt, 2013), that replaces the variances of 

biomass with the variances in the number of stems, such that  

� = ���2ሺ∑ ���� ሻ2 

where ���2  is the variance in the aggregate number of A. gerardii and S. nutans tillers in a plot over the 

course of the study, and ���2
 is the variance in the number of stems of species �. If all variance in the 

aggregate number of tillers is accounted for by variance in the tiller densities of the component species, 

then the dynamics of those species can be considered to be synchronous. However, if the dynamics of the 

species counter-balance one another, such than increases in tiller density of one species from each time 

point to the next is matched by declines in tiller density of another species over the same time periods, the 

aggregate tiller density should have low variance, and the dynamics can be considered to be 

asynchronous. Perfect synchrony is indicated when � = ͳ, and perfect asynchrony when � = Ͳ. 

Synchrony was calculated for each plot and averaged across plots within each treatment. An ANOVA was 

used to determine if there were differences in mean synchrony between treatment groups.    

To determine whether plot-level, inter-annual trends in tiller densities for either species, or their 

aggregate tiller densities, were associated with intra-annual asynchrony, we used the values of synchrony �, as calculated above, for each plot, as the independent variable in a linear regression model predicting 

the season-maximum tiller densities observed in the final year of the study, 2013. Season-maximum tiller 

densities were always those that were recorded in the spring for A. gerardii, while the date of maximum 

tiller density for S. nutans depended on both year and plot.  

To determine whether increased temperature and/or rainfall variability affected population 

densities over longer periods, one-way ANOVA was used to test whether the treatment groups had 

reached a difference in their average year-maximum number of tillers of each species per plot, or of their 

aggregate number of tillers, by the final year of the study.  
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 To determine if community-level function is affected by changes in population-level, intra-annual 

asynchrony between A. gerardii and S. nutans, we looked for associations between plot-level synchrony �, and either plot-level community above-ground net primary productivity (ANPP) averaged over 2005-

2013, or plot-level ANPP measured only in 2013, the final year of the study. The former was done to 

minimize the influence of inter-annual variability in our analysis, while the latter was done to more 

directly examine whether synchrony might affect long-term trends in community productivity. The same 

was done for the plot-level coefficient of variability (CV) of ANPP across years of the study to determine 

if  synchrony was associated with the stability of productivity from year-to-year. One-way ANOVAs were 

also used to determine if productivity averaged across years, or in 2013, differed by treatment, or if the 

CV of productivity differed by treatment. 

RESULTS 

TILLER DYNAMICS UNDER CURRENT CONDITIONS  

Analysis of average tiller density dynamics using two-way ANOVA indicated that there was 

significant interactive effect of species and survey date (p < 0.01), and post-hoc comparisons found a 

significant difference between the number of early and late season tillers of A. gerardii under ambient 

conditions (estimated late density – early = -16.24 tillers/0.1m2, p < 0.01, Fig. 1A). However, no 

significant difference between the number of early- and late-season tillers of S. nutans was found under 

ambient conditions (estimated late density – early = 5.76 tillers/0.1m2, p=0.66) after Tukey adjustment. 

Likewise, while the average number of tillers of A. gerardii were significantly lower than those of S. 

nutans by late season (estimated late S. nutans density – A. gerardii = 14.11 tillers/0.1m2, p = 0.028), their 

densities were not significantly different during the early season (estimated early A. gerardii density – S. 

nutans = 7.88 tillers/0.1m2, p = 0.40). Overall, while the number of A. gerardii tillers significantly 

decreased from early to late season, there was only a marginal trend of increase in S. nutans. The tiller 

densities were only marginally different early in the season, but these dynamics resulted in significantly 

different tiller densities by the late season.  
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Figure 1: Stem densities at early and late growing seasons. Averaged across both plots within treatments, 
and across years of the study. While A. gerardii typically is the more abundant species in the early season 
under ambient conditions, it declines in number to become the lower-density species by season’s end. 
Sorghastrum nutans typically increases in density over the growing season, despite the loss of some tillers 
that were recruited during the early season. Under treatment conditions, the amplitude of the dynamics is 
muted, particularly when both increased temperature and rainfall variability are applied. 

IMPACTS OF INCREASED PRECIPITATION AND WARMING ON TILLER DYNAMICS 

 A one-way ANOVA found a significant difference in synchrony � among treatment groups (p = 

0.045) Post-hoc comparisons of treatment groups did find a significant difference between the altered-

heated (average � = 0.51) and the ambient-unheated (average � = 0.80) treatment groups, with an 

increase in average synchrony in the altered-heated plots of 28% over ambient. No other significant 

differences in synchrony were found between treatment groups.  

Two-way ANOVAs and post-hoc comparisons indicated that there were significant differences 

between early- and late-season tiller densities in ambient-heated plots (estimated 12.2 A. gerardii tillers 

lost / 0.1m2 / season, p < 0.01, Fig. 1B), and altered-unheated plots (estimated 11.4 A. gerardii tillers lost / 

0.1m2 / season, p <0.01, Fig. 1C), but not in the altered-heated plots (Fig. 1D). No significant differences 

were detected between sampling periods for either species in either the ambient-heated or altered-

unheated treatments. Nor were any significant differences detected between the tiller densities of A. 

gerardii and S. nutans within either part of the growing season under the heated and/or altered rainfall 

treatments.  However, two-way ANOVAS using data sets including only the altered-unheated and altered-

heated plots did not meet the assumption of equal variance among groups, so it is possible there were 

differences among some groups that could not be detected. 
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 Linear regression analysis revealed that the association between plot-level synchrony � and tiller 

densities in 2013 was species dependent (Fig. 2A). Greater synchrony � was associated with lower tiller 

density of S. nutans (coeff = -54.38, adj. R2 = 0.30, p < 0.01), but no significant association was detected 

between A. gerardii tiller density and synchrony. The aggregate stem density of the two species in 2013 

had a significant negative relationship with plot-level synchrony (coeff = -95.26, adj. R2 = 0.34, p < 0.01).  

 Analysis of variance did not find a significant effect of the treatments, and after a Tukey 

adjustment for multiple comparisons, no significant differences in tiller densities were found between any 

of the treatments for either species. Non-overlapping standard errors in mean S. nutans and aggregate 

tiller densities were observed when comparing ambient and altered-unheated plots (Fig. 2B). 

 

Figure 2A: Plot-level, season-maximum tiller density observed in the final year of the study, 2013, as a 
function of plot-level synchrony calculated from observations from 2005-2013. As synchrony increases, 
the variability in aggregate tiller density becomes more similar to the sum of variabilities of the component 
species. With greater synchrony, the stability of coexistence between the species is expected to decline. The 
observed negative relationship between synchrony and is statistically significant for S. nutans, but not for 
A. gerardii.  

Figure 2B: Average plot-level season-maximum tiller densities observed in the final year of the study, 2013, 
by treatment type. Error bars are standard errors of the means. While standard errors are non-overlapping, 
after correcting for multiple comparisons, no significant differences were found between treatments for 
either species, or for their aggregate tiller density. 

 Linear regression analysis indicated that there were no significant relationships between plot-

level average synchrony ሺ�ሻ and overall average community above-ground net primary productivity 
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(ANPP), either averaged across years, or in the final year of the study (2013), nor was there a significant 

relationship with the CV of productivity across years (Fig. 3).  

 One-way ANOVAs did not find significant differences between treatment groups in either 

average ANPP, 2013 ANPP, or the CV of productivity.  

 

Figure 3: Average whole-community, plot-level productivity (ANPP) as a function of the tiller density 
dynamic synchrony between A. gerardii and S. nutans within those plots. No significant relationship was 
observed between the tiller density dynamic synchrony of the dominant species and community 
productivity. 

 
DISCUSSION  

 The factors that control plant population dynamics in the tallgrass prairie have received thorough 

consideration over the past century (Hartnett & Fay, 1998). Factors that have been associated with 

variability in the population densities of warm-season grass species like A. gerardii and S. nutans include 

variabilities in fire frequency (Knapp & Hulbert, 1986; Hulbert, 1986; Hulbert & Wilson, 1983; Svejcar, 

1990), grazing intensity (Vinton & Hartnett, 1992; Hartnett, et al., 1996; Hartnett, 1989), competition 

(Hartnett, 1993)  and climate (Hartnett & Keeler, 1995; Silletti & Knapp, 2002; Knapp, 1984). While 
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responses to these factors contribute to variability in population densities of dominant C4 grasses, their 

dynamics are stable relative to those of C3 grasses and forbs (Hartnett & Fay, 1998). It is the nature of 

this stability that this study sought to address, as the principles provided by modern coexistence theory for 

explaining the coexistence between dominant and subdominant species do not appear sufficient for 

describing how functionally redundant, co-dominant species maintain stable coexistence. While long-

lived species may appear to have stable population densities on relatively short time scales, and  

 We found mixed evidence that the population-level intra-annual tiller density dynamics of 

Andropogon gerardii and Sorghastrum nutans are asynchronous with one another (Fig. 1A). While the 

tiller densities of S. nutans may increase from early to late season, the trend is not statistically significant. 

In contrast, a large proportion of A. gerardii tillers are consistently lost over the course of the growing 

season, providing the primary driving force behind the asynchronous relationship with S. nutans. It should 

be noted, however, that the tiller dynamics of A. gerardii depend only on mid-season tiller losses, while 

the dynamics of S. nutans represents the net result of mid-season recruitment and loss of tillers, which 

may mask the degree to which S. nutans invests in late-season tiller population growth. On average, there 

does appear to be an exchange abundance over the course of the growing season, as A. gerardii begins at 

higher tiller density, but ends at lower densities than S. nutans, though the difference between the species 

in the early season is only marginally significant. This suggests that if intra-annual environmental 

variably results in either early- or late-season conditions unfavorable for growth, the two species may be 

affected asymmetrically.  

 The amplitude asynchrony of tiller dynamics was reduced by both the increase of temperature and 

rainfall variability, and was most severely altered in plots that received both treatments (Fig. 1B-D). 

While A. gerardii tiller densities declined during the growing season under the altered precipitation and 

heat treatments, they did not tend to do so when both of the treatments were applied. Further, though the 

intra-annual rise in tiller densities of S. nutans was not statistically significant under ambient conditions, 

that increase was even more doubtful under each of the treatment conditions (Figs. 1B-D). Overall, these 

analyses suggest that changes in variability in precipitation, particularly under warmer conditions, 
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destabilized the average asynchrony of tiller population dynamics of A. gerardii and S. nutans. This trend 

becomes even more clear when examining the tiller densities of the altered-heated plots during the final 5 

years of the experiment, during which, in contrast with other treatments, they apparently became largely 

synchronous in their dynamics (S. Fig. 1). 

 We looked for associations between tiller densities in the final year of our study, 2013, and the 

interspecific asynchrony of their dynamics for the prior 8 years, using linear regression analysis. We also 

looked for associations between 2013 densities and experimentally increased temperature and rainfall 

variability treatments using analysis of variance. This was done to determine if change in asynchrony 

resulting from altered environmental conditions could potentially lead to long-term population trends. In 

our linear regression models, we found that greater synchrony between the population dynamics of A. 

gerardii and S. nutans was associated with a more severe decline in the number of tillers of both species 

(Fig 2A). The results from the analysis of variance were less clear. After adjusting for multiple 

comparisons, we did not find a significant difference between treatment groups for either species, or for 

the sum of their tiller densities, but there appears to be a negative trend in the tiller densities of S. nutans 

under heating and increased rainfall variability, particularly when they are both applied. This appears to 

also be true of the aggregate tiller densities of the two species (Fig 2B). The partial disagreement between 

these analyses may indicate that factors other than those experimentally imposed may also result in 

reductions in plot-level asynchrony, but that lowered asynchrony, regardless of its cause, likely stills 

result in long-term population destabilizations.  

 Alternatively, the lack of a clear difference in tiller densities between the treatment groups may 

have been a result of differential densities among plots within treatments at the onset of the experiment. 

Unfortunately, tiller density measurements did not begin until 7 years after the altered rainfall variability 

treatment began, and 2 years after the heat treatment began. As such, we do not know what the tiller 

densities were before either of the treatments were imposed, nor how or if they changed in the years 

before observations began. Nevertheless, in a follow-up analysis of tiller density declines from 2005 to 

2013, relative to observed densities in 2005, we did find a significant difference between ambient plots 
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and altered-unheated plots in severity of decline of S. nutans (39% more tiller loss estimated in 

altered/heated, p = 0.032). We also found a marginally significant difference in declines between ambient 

and altered-heated plots and (36% more tiller loss estimated in altered-heated, p = 0.052, S. Fig. 2A, B). 

While there was no such significant difference in declines in A. gerardii tiller densities, there was a 

striking increase in variability among plots within each treatment over that among the ambient treatment 

plots (S. fig 2A). This increased variability might be accounted for as a result of differences in community 

composition among plots. In the final years of the experiment, some of the plots experienced a rapid, 

pathogen-generated decline in an abundant forb (Solidago canadensis, personal observation), and part of 

the lost canopy coverage was recovered by tiller population expansions of A. gerardii. This resulted in a 

tiller population increase in some plots where S. canadensis was previously abundant, and a decline 

elsewhere.  

 This difference among plots may have also been a result of the spatial heterogeneity in genotypes 

and phenotypes described by Avolio et al. (2013). If this was the case, it would suggest that A. gerardii 

populations in this experiment were less susceptible to the treatment conditions compared to the more 

uniformly-declining S. nutans, not only because of characteristics intrinsic to the species, but also as a 

result of variability in those characteristics among genets. 

 Our analyses to determine whether variability in plot-level tiller dynamic synchrony, or our 

treatment conditions, were associated with differences in community function and/or stability were not 

indicative of such. Linear regressions did not find a significant relationship between tiller dynamic 

synchrony in either community productivity (ANPP), or year-to-year variability in productivity, and 

analysis of variance did not detect any differences in productivity between treatments. Given the high 

proportion of annual community biomass production accounted for by the productivity of A. gerardii and 

S. nutans, and the lower aggregate tiller densities associated with greater synchrony in their tiller density 

dynamics, we found this to be a surprising result. Three possible explanations may account for this 

inconsistency.  
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 Firstly, it may be that forbs and other grasses within the communities increased their productivity 

in response to population declines of the dominants. To examine this possibility, we examined 

community productivity trends from 2005 to 2013, averaged across plots within each treatment, and 

compared those to the trends in relative productivity of the dominant species.  While average productivity 

was variable from year to year, there was no long-term trend in any of the treatments (Fig. S4A). Within 

the altered-heated treatment, however, there was a strong decline in the average relative productivity of S. 

nutans (-0.13g/g/m2/year, adj. R2 = 0.53, p = 0.038), but not of A. gerardii during that time (Fig. S4B). 

This suggests that at least the decline in S. nutans productivity in altered-heated plots was compensated 

for by increases in productivity of other species, but not increases in A. gerardii productivity.  

 Secondly, because tillers sizes can vary, there may not be as strong a correlation between tiller 

density and species-specific ANPP as might be assumed. Variability in flowering rates from year-to-year 

would also contribute to the noise in such a correlation (La Pierre, et al., 2011). Lastly, because tiller 

densities and biomass were measured in nearby, but non-overlapping subplots, any spatial heterogeneity 

in either measure would blur signals of association between them. To test for both possibilities, we looked 

for correlations between plot-level biomass and season-maximum tiller densities for each species across 

all years and treatments. While there was considerable variability in the relationships, they were 

significant for both A. gerardii (p < 0.01, R2 = 0.05) and S. nutans (p < 0.001, R2 = 0.17). This suggests 

that there might be a relationship between loss of tillers and a loss in species-specific biomass, and that 

spatial heterogeneity is not fine enough to preclude detection of that association, but that relationship may 

be too weak to detect higher scale associations between tiller dynamic synchrony and community ANPP 

using our methodology and level of replication. Given that plant population densities are maintained 

mainly by highly localized regeneration from belowground bud banks (Hartnett & Keeler, 1995; Ott & 

Hartnett, 2012), and those population densities have long been considered more important than tiller sizes 

in driving ANPP (Hartnett & Fay, 1998; Dalgleish & Hartnett, 2009), spatial heterogeneity in ANPP 

between subplots seems a more likely explanation for a lack of correlation between tiller dynamic 
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asynchrony, but direct testing using ANPP measured from the same plots as tiller densities should be 

conducted. 

   Overall, we found that A. gerardii and S. nutans tiller densities shift asynchronously, relative to 

one another, over the average course of a growing season. Those asynchronous dynamics appear to 

partially rely on the current average temperatures and level of variability in precipitation that are typical 

of the region, and they may become muted when these climatic conditions are altered. If the dynamics do 

become less asynchronous, our results suggest that the populations of A. gerardii, and of S. nutans in 

particular, could decline and because these two species are co-dominant and highly productive, those 

declines can have broader impacts on community function. Moreover, the loss of either species would 

represent a severe reduction in functional redundancy, negating an insurance effect (Smith & Knapp, 

2003). Moreover, as Fay et al. (2011) concluded from their study of the RaMPs experiment, increased 

intra-annual variability in precipitation results in longer periods of water limitation, and that this shift may 

cause tallgrass prairie ecosystems to become more sensitive to inter-annual precipitation variability. Our 

findings indicate that this interaction between increases in intra- and inter-annual precipitation variability 

may also be manifest through more synchronous population dynamics of the dominant species. If their 

dynamics occur more in parallel intra-annually, they may be more vulnerable to inter-annual variability, 

particularly if both species population nadirs occur in tandem during a drought year.  

Codominance among competitors implies that the species involved do not evade exclusion 

through temporal or spatial avoidance, but instead co-occur in a proximity that necessitates sharing of 

resource pools during periods that are both favorable and unfavorable for growth. Our results suggest a 

possible mechanism through which this could occur, an asynchrony that does not preclude exploitation of 

the full length of a limited growing season. Such a dynamic could represent a partitioning of 

environmental vulnerabilities, such that stable coexistence becomes a result of non-coinciding peaks in 

asset-leveraging and natural intra-annual environmental variability. This would allow each species to be 

less exposed to some of the periods of unfavorable conditions, while also benefiting asymmetrically from 

some of the periods of favorable conditions. Provided these types of conditions do not always occur 
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during the same part of the growing season from year to year, neither species would consistently have the 

advantage over the other, and therefore neither would be able to exclude the other. 

 Alternatively, asynchrony could promote coexistence between dominant species by reducing the 

aggregate tiller densities that occurs during any isolated part of the growing season, and through that 

reduction assuage the intensity of competition between the two species at all times. For example, if both 

species had peak tiller densities at the outset of the growing season, the sum of their tiller densities during 

that time would be greater than what we observe at any point in the growing season under ambient 

conditions. Such a pattern would result in enhanced resource demand compared to a pattern in which the 

peak tiller densities of the dominant species are temporally offset. If altered rainfall variability results in 

more synchronous tiller density dynamics, we might expect to see the dominant species reach peak tiller 

densities simultaneously, resulting in enhanced competition under the altered rainfall treatment.  

To account for this possibility, we examined the relationship between relative tiller densities of A. 

gerardii and S. nutans within plots across the years of the experiment. If more synchronous tiller density 

dynamics resulted in harsher competition, we would expect that the relationship between the relative tiller 

densities of competing species to become more strongly negative, as each exerts a more deleterious effect 

on the other. If, on the other hand, less favorable conditions resulted in greater facilitation between the 

two species, as has been shown by others (Callaway, 1995; Stachowicz, 2001), we would instead expect a 

shift to a positive relationship between relative tiller densities. We used Spearman’s tests for significant 

within-plot correlations between early-season relative tiller densities of A. gerardii and S. nutans for each 

of the treatment conditions (Fig. 4). However, we found that while their relative tiller densities were 

highly negatively correlated under current precipitation patterns (ambient-unheated R2 = -0.91, p < 0.001; 

ambient-heated R2 = -0.73, p < 0.001), there was no significant correlation between relative tiller 

densities under the altered rainfall pattern (altered-heated or altered-unheated) (Fig. 4). These results were 

similar for late-season measures of relative tiller densities. This suggests that while competition is likely 

playing a major role in structuring communities under ambient rainfall patterns, under altered 

precipitation variability, which we have shown to be associated with more synchronous tiller density 
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dynamics (Fig. 2), competition was not a driving force in determining relative tiller densities. In our view, 

this leaves vulnerability partitioning the more likely explanation for stable co-dominance between A. 

gerardii and S. nutans in this region. 

 

Figure 4: Tiller densities of S. nutans, relative to whole-community tiller densities, as a function of A. 
gerardii relative tiller densities. If negatively correlated, a higher densities of A. gerardii are associated 
with lower densities of S. nutans, implying that competition between the two species is playing a role in 
shaping community composition within plots. Under increased-rainfall variability treatments, where 
interspecific tiller dynamic asynchrony is lower, there is no significant relationship between relative tiller 
densities, indicating that competition between A. gerardii and S. nutans within these plots is not determining 
species composition.  

CONCLUSION 

 Codominance between A. gerardii and S. nutans appears to be facilitated by their intra-annually 

asynchronous tiller dynamics. We believe this pattern enables both species to capture resources for the 

entirety of the growing season, but partially isolates their vulnerabilities to unfavorable growing 

conditions to only a portion of that season. Because those vulnerabilities occur at different times of the 

season for each species, and the climate in the region is characterized by both inter- and intra-annual 
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climatic variability, neither species can enjoy a consistent advantage over the other. If this mechanism is 

functioning to facilitate co-dominance, it appears to rely on current levels of climatic variability, and 

breaks down when that variability is increased in the way that is projected to occur under climate change. 

This population-level destabilization likely has negative implications for overall ecosystem productivity. 
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CHAPTER 2. FUTURE DIRECTIONS: TESTING GENERALITY OF OBSERVATIONS AND VALIDITY OF THE 

PROPOSED MECHANISM OF CO-DOMINANCE 

This experiment was situated within an ungrazed, lowland site that had been burned annually since 

1979. However, the grazing pressure, topography and the fire frequencies in the Flint Hills and other regions 

surrounding the Konza Prairie vary. While the infrastructure of the RaMPs experiment was considerable, 

and cannot be replicated elsewhere within the Konza Prairie Biological Station, it will be important to 

establish whether the tiller dynamics we observed under current climatic conditions are consistent across 

these other variables. This will help to establish whether asynchronous tiller density dynamics operate under 

the range of conditions that the dominant species of this region experience, and therefore whether it is 

possible that those dynamics play a role in coexistence and/or codominance across that range. To 

accomplish this objective, we will propose to establish semi-permanent 0.1m2 plots at sites with differing 

grazing histories, topographies, and fire frequencies, with levels of replication at each site resembling that 

in the RaMPs experiment. These plots will be surveyed for tiller densities twice each season, at times within 

the range of those of this study, for at least two consecutive growing seasons. At the end of the second 

growing season, biomass will be clipped and weighed for estimates of productivity, facilitating a more 

direct comparison of synchrony and community productivity than was possible in the RaMPs experiment. 

In this study, we also observed a decline in aggregate tiller densities, and of one of the two dominant 

species, with increasing synchrony, and there were indications that density declines may have been greatest 

in the plots with increased heat and rainfall variability. It will be important to know the nature of those 

declines. We see 3 possibilities, 1) that the amount of rhizome tissue is declining, 2) that the density of 

meristems on rhizomes is declining, or 3) that the proportion of available meristems that are being activated 

during the growing season is declining. Some combination of these possibilities may also be occurring. 

Because each of these scenarios offers different long-term implications, we will propose to obtain standard-

volume soil core samples surrounding individual tillers of A. gerardii and S. nutans from each plot in the 

RaMPs experiment at time points both before and after early-season bud break. From each sample, we will 
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measure total rhizome mass, bud density relative to rhizome mass, and proportion of buds that have been 

activated. We will then compare the observations between the RaMPs treatments. 

While Silletti and Knapp demonstrated an asymmetric competitive relationship between A. gerardii 

and S. nutans using plant removals from natural tallgrass prairie (Silletti, et al., 2004), it remains to be seen 

whether and if either species would outcompete and exclude the other given consistently ideal conditions. 

Because eventual exclusion under such a scenario represents an important assumption of the mechanism of 

codominance proposed here, I will use a greenhouse to test whether exclusion occurs when ideal conditions 

are provided only early in the season, late in the season, or over the full growing season, when starting from 

equal proportions of both species. 
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APPENDIX: SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1: Tiller density dynamics, averaged over plots, for each of the experimental 
treatments. A. gerardii demonstrates a consistent decline from early- to late season each year under current 
conditions. That pattern becomes less consistent under increased temperatures and rainfall variability, 
losing amplitude, and in some cases, direction. In the altered-heated plots, the two species dynamics became 
completely synchronous, increasing and decreasing in parallel, for the last 5 years of the study.  
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Supplemental Figure 2A: Changes in tiller densities from 2005 to 2013, relative to tiller densities observed 
in 2005. S. nutans consistently experienced sharper declines under increased rainfall variability, and those 
declines were more severe when also heated. A. nutans responded variably to both treatments, as density 
increased in some plots and declined in others within the same treatment. A confounding factor of a decline 
in an abundant forb in some plots, and its replacement with A. gerardii possibly accounts for this variability.  
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Supplemental Figure 2B: Decline in season-maximum tiller densities from 2005 to 2013, relative to 
maximum tiller densities observed in 2013, as a function of synchrony �. Each data point represents a 
species’ tiller density decline within a single plot. Declines of both species were significantly related to 
plot-level synchrony from 2005-2013.  
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Supplemental figure 3A: Community above-ground net primary productivity over time, averaged across 
plots within each treatment. No long-term trend is apparent in the amount of biomass produced by the plant 
communities under any of the experimental treatments. 
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Supplemental figure 3B: While no long-term trend in ANPP occurred in any of the treatments (S. Fig. 3A), 
in the altered-heated treatment there was a decline over time in the proportion of that ANPP represented by 
S. nutans. No trend was observed in the proportional ANPP of A. gerardii. This suggests that the decline in 
productivity of S. nutans was compensated by increases in productivity of other species within the same 
communities, but no by A. gerardii. 
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Supplemental Figure 4: Species-specific above-ground net primary productivity (ANPP) of A. gerardii and 
S. nutans as a function of their respective tiller densities. While the ANPP of both species were significantly 
and positively related to their tiller densities, those relationships were quite variable. The weak relationship 
may be result of both variabilities in the mass of individual tillers, and the distance between subplots from 
which tiller density and productivity measurements were taken. 

 


