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ABSTRACT 
 
 
 

INTER-INDIVIDUAL VARIATION WITHIN SOCIAL GROUPS: HOW METABOLIC RATE 

SHAPES THE PACE OF LIFE 

 
 

Metabolic rate (MR) is often cited as the fundamental rate which determines the rate of all 

biological processes by shaping energetic availability for the various physiological, behavioral, 

and life-history traits that contribute to performance. Furthermore, the metabolic theory of ecology 

posits that performance at any level of biological organization is a function of the MR of its 

constituent units. It has therefore been suggested that MR drives the widely observed covariance 

among these different levels of phenotypic traits. However, much of the work on this topic has 

relied on pairwise correlational analysis on a handful of traits at a time, leaving an important gap 

in our understanding regarding the functional links that shape this phenotypic covariance, often 

referred to as pace-of-life. Furthermore, at a collective level, this has led to significant attention 

regarding how MR scales across group size, but considerably less attention has been paid to how 

heterogeneity in MR among constituent units shapes collective outputs.  

Using honeybees as a model, we measured a large number of behavioral, physiological, 

and life-history traits in individual bees and used a path analysis to demonstrate that variation in 

metabolic rate plays a fundamental proximate role in driving the covariance among these traits. 

We combined this with a factor analysis in a structural equation model framework to characterize 

the overall phenotypic covariance or the pace-of-life axis in honeybees. We discuss the importance 

of these findings in the context of how interindividual variation in terms of slow–fast phenotypes 
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may drive the phenotype of a group and the functional role metabolic rate might play in shaping 

division of labor and social evolution.  

Building on this work, we leveraged the well-characterized differences in MR associated 

with ‘F’ (‘fast’) and ‘S’ (‘slow’) malate dehydrogenase (MDH) alleles to breed homozygous 

genotypes of bees expressing high (FF) and low (SS) MR in addition to heterozygotes (SF), 

thought to express an intermediate phenotype. We then mixed progeny from these lines to create 

experimental groups with four different phenotype compositions: monomorphic FF, monomorphic 

SS, monomorphic SF, and a polymorphic group type at a 1 FF: 1 SS ratio. We then measured MR, 

energetic intake, thermoregulation in cold and heat stress, and survival of these groups in a high 

and low resource environment. Monomorphic fast groups outperformed monomorphic slow and 

polymorphic groups, which performed worse than expected on most traits. We quantified the effect 

of heterogeneity on polymorphic group performance using the ‘diversity effect,’ an analytical 

technique often used in ecosystem ecology to compare the productivity of diverse ecosystem 

assemblages to null expectations set by the constituent species when living alone. Diversity effects 

can be partitioned selection and complementarity effects and understand the mechanisms through 

which biodiversity acts on ecosystem productivity. We applied this technique in a novel way to 

show how each group-level performance trait is influenced by MR morph diversity through 

different processes. We also found that MR was strongly correlated to the other traits, especially 

in the low resource environment. We discuss these results in the context of how MR plays an 

important role in shaping division of labor and social evolution. 

These studies provide empirical support for the theoretical idea that metabolic rate acts as 

a proximate driver of phenotypic covariance among a number of physiological, behavioral, and 

life-history traits at the individual level, and that behavior acts as a mediator for how metabolic 
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rate affects life history. In addition, using honeybees as an experimental model for these studies 

establishes a framework for asking questions regarding how these individual-level phenotypic 

covariance patterns lead to observed phenotypic covariance patterns at the colony level that have 

functional consequences for division of labor and social evolution. The results of these studies 

therefore contribute toward a better understanding of the rules of life that shape processes across 

different levels of biological organization. Our use of different structural equation modeling 

approaches for inferring heuristics and proximate causal relationships among multiple phenotypic 

traits also informs future research efforts on this topic. We also present a novel approach to 

experiments that explore functional group level performance traits through partitioning the effects 

of inter-individual heterogeneity.  
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CHAPTER 1: METABOLIC RATE SHAPES PHENOTYPIC COVARIANCE AMONG 

PHYSIOLOGICAL, BEHAVIORAL, AND LIFE-HISTORY TRAITS IN HONEYBEES 

 
 
Introduction  

 

Metabolic rate (MR) is often considered to be the fundamental biological variable which 

determines the rate at which organisms acquire, process, and expend energy (Brown et al. 2004). 

However, the functional significance of both interspecific and intraspecific differences in MR is 

far from clear and has long been a topic of wide interest. In terms of within-species variation, two 

hypotheses predict how MR, by influencing energy acquisition and energy allocation, may in turn 

influence behavior and life-history (Biro and Stamps 2010). A higher MR, by acting as a metabolic 

engine, can allow for greater energy acquisition, making possible higher levels of behavioral 

performance and growth rates. However, a higher MR may also require higher energy allocation 

toward its maintenance and thereby exert a negative effect on these same performance variables 

(Careau et al. 2008). This dichotomy shows how MR can have a central but complex role in driving 

the widely observed covariance among physiological, behavioral, and life-history traits (Biro and 

Stamps 2008; Glazier 2015; Krams et al. 2017), often referred to as the pace-of-life syndrome 

(POLS) model (Ricklefs and Wikelski 2002; Réale et al. 2010). This model integrates the entire 

covariance pattern into a single slow – fast phenotypic axis, wherein ‘slow’ individuals live longer 

but more cautious lives, are shyer, more social, and have lower MR, whereas ‘fast’ individuals 

adopt a life-fast, die-young lifestyle, engaging in riskier, bolder behaviors, and a higher MR. 

 

The putative central role of MR in driving such covariance and shaping the POLS axis has, 

however, rarely been empirically investigated in an integrative fashion using large suites of traits 
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(Careau and Garland 2012; Glazier 2015). In fact, the focus has remained largely on ultimate 

causation – framed around a trade-off between current and future reproduction, or between 

survival and current reproduction (Wolf et al. 2007). Functionally, such life history trade-offs have 

been suggested to be mediated through risk-taking behaviors, defined as behaviors that increase 

resource acquisition but with costs such as increased mortality, disease exposure, energy 

expenditure, or lost mating opportunities (Dammhahn et al. 2018; Mathot and Frankenhuis 2018), 

a prediction that is supported by some empirical studies (Sol et al. 2018; Jacques-Hamilton et al. 

2017; Careau et al. 2009). However, most of these studies are based primarily on pairwise 

correlational analysis on a handful of traits, leaving an important gap in our understanding 

regarding how these traits are functionally integrated through an underlying set of causal 

relationships, in particular the putative proximate role of MR in shaping the slow–fast axis. 

 

More recently, structural equation model approaches have been increasingly used to 

simultaneously assesses the strength and directionality of the relationships among the large number 

of traits that constitute the POLS model (Goulet et al. 2017; Krams et al. 2017; Santostefano et al. 

2017; Jablonsky et al. 2018; Debecker and Stoks 2019). However, the limited data regarding the 

covariance between different phenotypic traits and MR have been fairly mixed – MR has been 

shown to be both positively and negatively associated with important life-history traits in different 

species (see Arnqvist et al. 2017; Royauté et al. 2018), indicating the need for further studies. 

  

In this context, social insect colonies, which express considerable variation in MR, 

behavior, and life history among individual workers (Harrison and Fewell 2002; Jeanson and 

Weidenmüller 2014), present an opportunity for understanding how these different types of 
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phenotypic variation might be functionally linked and contribute to variation in terms of the 

position of an individual on the slow – fast phenotypic axis. The phenotypic diversity among 

individuals in social insect colonies is considered functionally critical to division of labor and its 

adaptive plasticity (Oster and Wilson 1978), features that are often credited for their tremendous 

ecological success. Understanding how MR covaries with slow – fast worker phenotypes in terms 

of behavior and life history in social insect colonies can therefore provide insights into the 

functional mechanisms that have contributed to social evolution. Social insects also present an 

intriguing case for POLS theory because little is known about how variation with respect to the 

various pace-of-life traits at the individual level translates to the observed variation in the same 

traits at the colony level (Segev et al. 2017; Blight et al. 2016; Bengston et al. 2017). 

 

The honeybee (Apis mellifera) as an experimental model allows enormous opportunities to 

address how MR is related to the covariance among different levels of phenotypic traits. A number 

of traits such as sensorimotor responses, gustatory responsiveness, associative learning and the 

rate of behavioral development such as age polyethism, are known to be associated with aspects 

of foraging behavior such as preference for pollen or nectar (Page et al. 2006), a few of which also 

show a significant association with MR in other studies (Harrison and Fewell 2002; Feuerbacher 

et al. 2003). In this study, we therefore measured MR (routine and flight metabolic rate) and 

multiple other physiological (gustatory responsiveness), behavioral (energetic consumption, 

activity level, nursing and social behavior), and life-history (eclosure weight, age of first foraging 

and lifespan) traits that constitute the POLS model (see Réale et al. 2010) and are also relevant for 

honeybees, to characterize the covariance among them. Using a structural equation model (SEM) 

framework, we first compared a set of path models to test the proximate causal role of MR in 
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driving the observed phenotypic covariance among these traits and then used a factor analysis to 

characterize the nature of the overall covariance across all the traits or the POLS structure at the 

phenotypic level. 

 

Methods  

A common garden experimental design was created by periodically introducing eight 

cohorts of 100–200 newly emerged bees from four source colonies of Apis mellifera into a single, 

free-foraging, queen-right colony housed in a 3-frame observation hive. Combs with brood were 

extracted from the source colonies just prior to adult emergence and kept in an incubator at 32°C 

and 60% RH and newly hatched bees were individually weighed, marked with a unique number 

tag on their thorax before being introduced into the observation colony (Fig. S1.1A). 

 

The within-nest behavioral profile was measured as the proportion of time an individual 

bee was observed in each of the following states: activity (walking), rest (sitting or autogrooming), 

sociality (exchanging food with another adult or allogrooming), and brood care (head inside a 

brood cell). These were calculated from scans conducted on tagged bees in the observation hive 

every 15 minutes for 3 hours each in the morning and afternoon when these bees were 4-5 days 

old, resulting in a total of 48 possible scans (4 per hour x 3 hours x 2 sessions x 2 days) for each 

bee. Since every tagged bee could not be located in every scan and the actual number of scan 

samples was different for each bee, a bootstrapping procedure was used to randomly select and 

average across 100 iterations of 10 random scan samples for each bee, and only for those bees that 

had more than 10 scan samples (totaling 780 bees). The hive entrance was observed every other 

day in two 3-hour periods during normal foraging times to record the age of first foraging (AFF) 
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for each bee which became a forager, but this variable was collapsed into a conservative weekly 

measure due to the limited sample size in each sampling interval. 

 

Tagged bees were collected randomly as they departed the hive on foraging trips after they 

initiated foraging, and their flight metabolic rate (FMR) was measured using a FoxBox 

respirometry setup (Sable Systems). Each bee was placed in a clear 250 mL sealed glass chamber 

maintained at 22.4 ± 0.8 °C and ambient air scrubbed of H2O and CO2 was run through the chamber 

at a constant rate of 750 mL/min for 10 minutes (Fig. S1.1B). The CO2 concentration in the 

excurrent airflow was recorded every second and corrected for drift by subtracting baseline CO2 

readings taken prior to each recording. Flight was stimulated by shining a light above the chamber 

and lightly agitating the chamber as necessary. The behavior of the bee was monitored constantly 

throughout the assay and FMR was calculated only during the 60 seconds of continuous flight with 

the most stable (lowest variance) CO2 production (Fig S1.2). Bees that did not fly for 60 continuous 

seconds were discarded. Each bee was weighed immediately and mass-specific FMR was 

calculated as the weight corrected mean CO2 production (mL hr-1 g-1) which was transformed into 

a weight-corrected power output (mW g-1) by multiplying it by 21.4 J mL-1 CO2 and dividing by 

3600 J hr-1 W-1 (Feuerbacher et al. 2003). 

 

Following the FMR assay, each bee was harnessed in a plastic straw using a small wire, 

satiated with 30% sucrose, and maintained in an incubator at 25°C overnight. Each bee was then 

assayed for its gustatory responsiveness score (GRS) by touching its antennae with sucrose 

solution in an ascending series of concentrations (0.1%, 0.3%, 1.0%, 3.0%, 10%, 30%) and 

recording each instance of proboscis extension (Page et al. 1998). Each bee was then satiated with 
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30% sucrose and placed in the incubator for 2 hours to ensure a post-absorptive state in each bee. 

Following this, the routine (standard) metabolic rate (RMR) of each bee was measured by placing 

each bee in a dark 50 mL chamber through which ambient air scrubbed free of CO2 and H2O was 

passed at a constant rate of 250 mL/min. CO2 production was recorded as described above and 

RMR was calculated for the continuous 2 minute period with the lowest average CO2 production 

– a period which in all our samples included more than one cycle of CO2 production, representing 

one respiration cycle (Fig. S1.3). Mass-specific RMR (mass independent data in Fig. S4) was then 

calculated as a weight-corrected power output as described above. 

 

Following the RMR assay, each bee was individually housed in a small wooden cage (4 x 

2 x 1.5 cm) fitted with a modified centrifuge tube and fed ad libitum a 30% sucrose solution and 

placed in an incubator at 25°C and 40% RH. Daily sucrose consumption was calculated for 5 days 

by measuring weight change of the feeder after correcting for any evaporative weight loss. This 

average daily consumption was transformed into a weight-corrected energetic equivalent 

representing energetic intake (1 mg sugar = 16.7 J). The survival of each bee was monitored daily 

until its death, and lifespan data were used only for those bees that survived for more than 2 days 

to discount any stress related death. 

 

Data Analysis  

All statistical analyses were performed in R (version 3.4.1, R core team). Structural 

equation models (SEM) were used to analyze the covariance and causal relationships among life-

history, behavioral and physiological traits for the 148 bees on which at least eight of the ten traits 

were measured. The covariance structure depicting the correlation among all traits is calculated 
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using single, not repeated, measures for a given bee owing to the limitation of the number of traits 

measured in each individual within the relatively short honeybee lifespan. Therefore, since 

between- and within- individual variance components could not be parsed, the covariance observed 

here is at the level of the phenotype rather than being reflective of the underlying genetic structure. 

That said, any environmental components of the observed variation are expected to be minimal 

given our common garden design. 

 

First, in order to test the hypothesis that metabolic rate drives differences in the observed 

phenotypic covariance structure, path analysis, a specific application technique of SEMs, was used 

to test multiple alternative putative causal pathways among the various traits. With ten traits that 

were measured, the number of possible path models is very large and so only a subset of them was 

tested. Path models were selected a priori as two general classes: models in which physiology 

influences life-history and behavior (Class A) and models in which behavior influences physiology 

and life history (Class B). In all models, life-history traits were considered as the final dependent 

variables or endpoints in the causal pathway. Within each class, we postulated three a priori model 

schemas with paths that integrated the traits in different ways: a fully-integrated Schema 1 that 

integrates all the behavior, physiology, and life-history variables, e.g. in class A, physiology 

influences behavior and both in turn influence life-history, a separate endpoints Schema 2 in 

which, e.g., physiology drives both behavior and life-history but behavior and life-history are 

themselves unrelated, and a mediator Schema 3 in which, e.g. physiology acts on life history 

through behavior acting as a mediator (see Figs. 1, S1.5–S1.11). We used hypothesis testing to 

sequentially drop non-significant relationships from a priori models to better fit the data. All 

models, including a null model in which all traits were independent of each other, were ranked 
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using AIC model selection. The top models of each schema are presented in the supplement (Fig. 

S1.5–S1.11) and the overall top model across all schema is presented in Fig. 1.1. 

 

We then employed factor analysis, another specific application of SEM, to characterize the 

overall phenotypic covariance among observed traits, or a pace-of-life axis, absent the 

complexities of a causal path model. First, a hierarchical SEM was constructed that separately 

assessed the phenotypic covariance among all physiological traits (a physiological axis), all 

behavioral traits (a behavioral axis), all life-history traits (a life-history axis) as three separate latent 

factors, and then assessed the overarching covariance across these three axes as a further latent 

factor, which we interpret as representing the phenotypic pace-of-life axis (Fig. 1.3A). A second 

SEM was then constructed with a more parsimonious approach, in which the covariance among 

all physiological, behavioral and life-history traits was simultaneously assessed as a latent factor 

representing the phenotypic pace-of-life axis without first grouping the traits into separate 

categories (Fig. 1.3B). All the measured trait variables were appropriately transformed for 

normality and scaled to achieve more uniform residual variance measures with models being 

estimated using the full information maximum likelihood estimator. 

   

All SEMs were built and tested using the R package ‘lavaan’ (version 0.6-2, Rosseel 2018). 

To test for the effect of source colony from which the experimental bees came, linear models of 

those relationships found to be significant in the top supported path model were re-run separately 

with colony as a covariate (Table S1.1). 

 

 



 

 9 

Results 

The top supported model in our path analysis (∆AIC = 0, Fig. 1.1) shows how metabolic 

rate could shape behavior, and in turn affect life-history traits, with additional direct effects of 

RMR on life-history. RMR had a significant positive effect on GRS and FMR while negatively 

influencing the proportion of time spent in brood care and positively affecting activity levels. FMR 

positively affected consumption, which in turn negatively influenced lifespan. Activity had a 

negative influence on brood care, which in turn had a negative influence on lifespan. RMR 

negatively influenced AFF, indicating that bees with higher RMR began foraging earlier in life. 

Other models tested, including the null model, garnered weaker statistical support based on AIC 

model selection (Fig. S1.5–S1.11). Linear models on all significant relationships from the top path 

model with colony included as a covariate revealed similar strength and statistical significance to 

the path model approach, with colony having no significant effect on any response variable (Fig. 

1.2, Table S1.1). 

 

Figure 1.1. The top supported path analysis model tested for the role of metabolic rate on 
behavioral and life-history traits (∆AIC = 0; additional models in Fig. S1.5–S1.11). Lines represent 
significant partial correlation coefficients (positive in green and negative in orange) with standard 
errors in parentheses, at p ≤ 0.001 (***), 0.001 < p ≤ 0.01 (**), or 0.01 < p < 0.05 (*) level.  
 
 
 

FMR 

Activity 

Sociality 

Brood Care 
Lifespan 

Age of First 
Foraging 

Consumption 

GRS 

Eclosure Weight 

a    0.203 (0.0728) ** 
b    1.289 (0.340) *** 
c    0.850 (0.282) ** 

d   -0.788 (0.352) * 
e    0.046 (0.0201) * 

f    -0.0661 (0.0210) ** 
g   -0.255 (0.117) * 
h   -0.160 (0.0667) * 

i    -0.874 (0.313) ** 

RMR 

AIC = 6105.981 

∆ AIC = 0 

a ** 

b *** 

c ** 
d * 

e * 

f ** 

g * 
h * 

i ** 

P B LH 
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Figure 1.2. Relationships depicting the statistically significant paths from the top path model (Fig. 
1.1), shown with untransformed raw data from source colonies 1-4 in red circles, green triangles, 
blue squares, and purple crosses, respectively, with regression lines shown in the same colors (print 
version: solid, short dash, long square dash, and long rounded dash, respectively). Each of these 
relationships (except FMR and consumption) upholds the patterns of the overall path model and 
source colony does not have a significant influence in any model (Table S1.1). 
 

The structural equation model grouping behavioral, physiological, and life-history traits 

into separate categories showed support for a behavioral and a physiological axis, but not a life-

history axis, nor an overarching phenotypic pace-of-life axis integrating all the three (Fig. 1.3A). 

FMR and GRS loaded significantly on the physiological axis, but RMR did not. None of the 

measured life-history parameters loaded significantly on the life-history axis. The more 

parsimonious SEM on the other hand, with a less restrictive structure that integrates all the traits 

simultaneously (Fig. 1.3B), showed significant positive loadings of RMR, FMR, GRS, activity 
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and consumption, indicating positive correlations among these traits, and significant negative 

loadings of AFF and brood care, indicating negative correlations with the aforementioned traits, 

directly on the phenotypic pace-of-life axis. The strength of the loadings indicates this pace-of-life 

axis to have a strong positive association with metabolic rate and activity and a strong negative 

association with brood care and AFF. The more parsimonious SEM (Fig. 1.3B) also exhibited a 

covariance structure among the traits that more closely resembled the nature and direction of the 

significant relationships seen in the top path model (Fig. 1.1) than the more restrictive SEM (Fig. 

1.3A). 

 

Figure 1.3. Structural equation models depicting the phenotypic covariance structure among 
measured variables (rectangles) manifested through unmeasured latent variables (ovals), with (A) 
the model in which traits are first grouped into assumed categories that were then loaded separately 
on a phenotypic pace-of-life axis, and (B) the model with a more parsimonious approach that 
simultaneously loads all traits on a phenotypic pace-of-life axis. Solid lines represent significant 
correlation coefficients with standard errors in parentheses, at p ≤ 0.001 (***), 0.001 < p ≤ 0.01 
(**), or 0.01 < p < 0.05 (*) level. Orange arrows indicate negative correlation coefficients, green 
arrows indicate positive correlation coefficients while dotted lines represent non-significant 
correlation coefficients. 
 

Discussion  

The phenotypic covariance among the various traits shown here follows many, though not 

all, of the theoretical predictions of a phenotypic slow–fast pace-of-life axis linking behavioral, 
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physiological, and life-history traits in honeybees. The respective loadings of these traits on this 

phenotypic slow–fast axis indicate a ‘fast’ phenotype being manifested by higher MR, greater 

activity, engaging in less brood care, and making the risky life-history decision to leave the nest 

and begin foraging at an earlier age (Fig. 1.4). Conversely a ‘slow’ phenotype corresponds to lower 

MR, less activity, more brood care, and delaying foraging onset. 

 

Figure 1.4. The phenotypic slow–fast axis in honeybees with solid boxes indicating traits which 
significantly covary along the axis and dotted boxes indicating traits which do not align with the 
axis. 

 

By pairing a path analysis that assesses the causal relationship among a set of phenotypic 

traits with an assessment of the overarching nature of the phenotypic covariance that describes 

pace-of-life axis using a factor analysis, our study provides a comprehensive and robust description 

of the overall phenotypic pace-of-life axis than the more limited approach used in most previous 

studies. The factor analysis primarily provides a useful heuristic description of the nature of the 

covariance among all observed traits as the pace-of-life axis, while the path analysis provides a 

Low RMR 

Low FMR 

Low Activity 

Sociality 

High Brood Care 

Lifespan 

Later AFF 

Low Consumption 

Low GRS 

Eclosure Weight 

High RMR 

High FMR 

High Activity 

Sociality 

Low Brood Care 

Lifespan 

Early AFF 

High Consumption 

High GRS 

Eclosure Weight 

SLOW FAST 
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more detailed picture of the proximate pathways that generate such a pattern. Some studies have 

interpreted pace-of-life as the covariance among three separate axes of physiology, behavior, and 

life-history (Debecker and Stoks 2019), which in our view ends up making unnecessarily 

restrictive assumptions, such as suggesting that all behavioral variables are more closely linked to 

one another than they are to any physiological or life-history variable, and so on. Our comparison 

of two model structures with and without such groupings and the higher support for the more 

parsimonious model suggests that it may be better to view the contribution of each trait to the 

slow–fast axis independently. 

   

The best supported path model in our study suggests that variation in RMR is the causal 

variable underlying the variation in behavioral and life-history traits associated with the 

phenotypic pace-of-life axis. Furthermore, this path model indicates that behavioral traits primarily 

act as mediators influencing life-history, which is consistent with both theoretical predictions and 

empirical data regarding the pace-of-life theory (Réale et al. 2010; Santostefano et al. 2017; 

Dammhahn et al. 2018; Mathot and Frankenhuis 2018). Metabolic rate has often been cited as the 

fundamental biological rate that drives pace-of-life (Biro and Stamps 2010; Careau and Garland 

2012; Arnqvist et al. 2017) and our results provide strong evidence in favor of this hypothesis. Our 

observation of a positive link between RMR and food intake also agrees with the prediction of this 

hypothesis regarding the association between the idling cost of metabolic rate and energetic 

demands (Nilsson 2002). These results provide support for the performance or acquisition model 

linking energetics to behavior in which the size of the metabolic machine, as expressed by RMR, 

determines energetic availability, in turn fueling activity levels (Careau et al. 2008). In this model, 

peak energetic output is also predicted to correlate with the baseline metabolic rate, seen here in 
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the positive association between FMR and RMR. Our results therefore suggest that RMR, by 

shaping energetic availability and idling costs, acts as the proximate driver of the behavioral and 

life-history axis that defines the variation in slow–fast pace-of-life phenotypes. 

 

In honeybees, foraging behavior has been shown to be correlated with metabolic rate such 

that bees with higher FMR are more likely to engage in pollen foraging (Feuerbacher et al. 2003), 

a behavior that is also correlated with higher gustatory responsiveness (Pankiw and Page 2000). 

Our results showing the positive association between gustatory responsiveness and FMR as well 

as the positive effect of RMR on activity and its negative effect on brood care indicate how 

metabolic rate, by influencing both intranidal and foraging behavior, could be the fundamental 

determinant of how an individual contributes to colony performance. Our results therefore suggest 

that division of labor in social insect colonies could be shaped by variation in worker metabolic 

rate, underscoring how such variation might play a fundamental functional role in social evolution. 

Sociality, measured here as adult–adult contact through allogrooming and food exchange, was 

surprisingly not a part of the pace-of-life axis as expected. In retrospect, it however seems that our 

measurement of sociality in terms of social contacts, borrowed from general POLS theory, may 

have been somewhat narrow within our system, and that the contribution to the colony via foraging 

and brood rearing, both of which were found to be a part of the pace-of-life axis, are the more 

primary aspects of sociality. 

 

Our study did not find support for a covariance between lifespan and other traits in the 

phenotypic pace-of-life axis, which could be due to how lifespan was measured by maintaining 

individuals in cages with ad libitum food. This likely minimized energetic demands and removed 
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the mortality risk associated with the natural environment. Lifespan may also be related to factors 

not measured here, such as oxidative damage, the effects of which can only be realized in the 

natural environment. Our lifespan measure therefore is more accurately a measure of senescence 

rather than survival which would require observations on free foraging bees, though the value of 

the lifespan measured here is quite similar to that measured in other studies (Rueppell et al. 2007). 

That said, our path analysis indicated that RMR acts as a proximate negative driver of brood care 

and positive driver of consumption behaviors (through FMR), both of which have a negative 

influence on lifespan. Although an inverse relationship between consumption and lifespan may 

seem somewhat counterintuitive at first, there is a large body of work regarding how caloric 

restriction positively contributes to lifespan in a wide variety of animals, including insects (Sohal 

and Weindruch 1996; Masoro 2005; Sinclair 2005). This shows how complex relationships among 

a large network of correlated traits can be revealed through path analytical approaches. The data 

also support previous findings that bees which engage more in brood care exhibit shorter lifespans 

(Amdam et al. 2009) and that the AFF of a honeybee worker exhibits a strong trade-off with 

survival and lifespan (Rueppell et al. 2007; Dukas 2008) and is therefore a risky life-history 

decision with a clear survival cost. Our data showing a strong covariance of AFF with the 

phenotypic pace-of-life axis is consistent with these findings and our path analysis indicating how 

RMR drives variation in AFF, potentially shaping the life-history trade-off observed between 

lifespan and AFF in other studies, shows how metabolic rate might be the underlying proximate 

mechanism shaping the pace-of-life axis. 

 

It has been proposed that inter-individual differences in terms of a set of correlated traits, 

described as a foraging syndrome, in honeybees are based on sensorimotor differences, which in 
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turn reflect differences in signaling pathways, such as through biogenic amine cascades (Page et 

al. 2006). Biogenic amines such as octopamine, tyramine, dopamine, and serotonin play a major 

role in modulating gustatory responsiveness (Scheiner et al. 2002), a key variable associated with 

a number of behavioral differences and one that was a part of the pace-of-life axis measured here. 

The levels of the same biogenic amines have also been shown to change with age, suggesting that 

they are part of the signaling network that regulates age polytheism and division of labor in 

honeybees (Wagener-Hulme et al. 1999) and therefore could also be central to the pace-of-life 

axis. Similarly, juvenile hormone (JH), which is a key regulator of behavior in all insects and 

regulates age polyethism in many social insects (Robinson 1992), has in fact been referred to as a 

hormone which paces behavioral development in honeybees (Sullivan et al. 2000). How such 

hormonal and signaling pathways covary with MR are therefore key questions that can be explored 

further to provide an even more comprehensive picture of the causal pathways that shape the pace 

of life axis. 

 

In social insects, the observed variation among colonies along the slow–fast axis 

(Bengston, Shin and Dornhaus 2017; Segev et al. 2017) suggests that selection can act on the 

phenotypic covariance structure at the group level. This leads to the interesting question of how a 

slow–fast phenotype at the group level emerges from the multitude of individual slow–fast 

phenotypes comprising the group since phenotypic variation with respect to the various pace-of-

life traits, such as risk sensitivity and exploration tendency, is expressed at both the individual 

(Mayack and Naug 2011; Katz and Naug 2015) and the group level (Wray, Mattila and Seeley 

2011; Blight et al. 2016). This question aligns well with the main thesis of the metabolic theory of 

ecology that the structural and functional properties at any level of biological organization are 
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explained by the variation in the metabolic rate of its components (Brown et al. 2004). Given our 

finding that the metabolic rate of an individual could play a fundamental proximate role in driving 

its behavioral profile and life-history trajectory, the question therefore becomes how the functional 

properties of a social group are emergent outcomes of the variation in metabolic rate among its 

members, a question that remains largely unexplored (Katz and Naug 2020). 

 

The covariance structure across a set of traits that defines the slow–fast pace-of-life axis 

demonstrates biological constraints that may restrict the range of responses of an individual to 

environmental perturbation. However, social living concomitant with the inter-individual variation 

among the group members along the slow–fast axis, can make it possible to override some of these 

restrictions, allowing the group a greater range of responses. This interesting interplay of 

phenotypic covariance structures across different scales in social systems is a complex 

phenomenon that lacks a strong coherent framework. Future experimental work focusing on 

studying the functional properties of experimental groups with known distributions of slow–fast 

phenotypes can make important contributions to our understanding about group living and social 

evolution. 
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CHAPTER 2: METABOLIC RATE DIVERSITY INFLUENCES GROUP PERFORMANCE 

IN HONEYBEES 

 
 
 
Introduction 

The metabolic theory of ecology (Brown et al. 2004) argues that the metabolic rate (MR) 

at any level of biological organization, from cells to societies and ecosystems, is a composite 

function of the MR of its constituent parts. Extensive work has explored the widely observed 

allometry with respect to the scaling relationships between MR and size (Gillooly et al. 2001; West 

et al. 2002; White et al. 2019; Waters et al. 2010). In contrast, much less attention has been paid 

to the heterogeneity in MR among the constituent parts of a biological unit and to questions 

regarding how variation in MR among lower level units influences performance at a higher level 

of organization (Konarzewski and Diamond 1995; Konarzewski and Książek 2013; Woods 2014). 

This is an important consideration in the context of the large heterogeneity in MR that is common 

among biological units at any level of organization, whether they are different organs and tissues 

comprising an organism, or the different species that constitute an ecosystem. 

 

At the level of a single organism, MR has been hypothesized to determine the rate at which 

it acquires and processes energy and is often considered the fundamental driver of its performance 

and productivity, or its pace of life (Careau et al. 2008; Glazier 2015). Performance or acquisition 

models of pace of life predict performance to be positively associated with the output of the 

metabolic engine (MR), while alternative allocation models predict negative associations based on 

trade-offs set by allocating a fixed energetic output towards different tasks, both of which 

functionally link MR to a suite of behavioral and life-history traits (Biro and Stamps 2010; Careau 
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and Garland 2012). MR has recently been shown to be associated with intraspecific differences in 

behavior and life-history in a variety of animals (Burton et al. 2011; Petterson et al. 2016; Krams 

et al. 2017; Mugel and Naug in review). However, how such interindividual differences in behavior 

and life history linked to variation in MR can shape performance parameters at the group level has 

rarely been addressed. Furthermore, since MR is directly related to energy demand and 

expenditure, the relationship between MR and performance is likely to show a strong interaction 

with resource availability, in turn suggesting that heterogeneity in MR within a group will interact 

with the resource environment to determine group-level performance (Katz and Naug 2020). 

 

The effect of heterogeneity on group performance can be quantified as the ‘diversity 

effect,’ or the deviation in performance of a polymorphic group from the null expectation set by 

the performance of the same morphs in monomorphic groups (Loreau et al. 2001). This effect can 

be partitioned into two additive components: (1) a selection effect, or the disproportionate effect 

of a single morph, and (2) a complementarity effect, or the manner in which interactions between 

the different morphs influence the performance of the group. Both these effects can be either 

positive or negative, the former being indicative of asymmetric performance of one morph while 

the latter showing the action of niche partitioning or interference between the two. The diversity 

effect has been a major focus of community and ecosystem level questions regarding the benefits 

of biodiversity in terms of resilience, productivity and stability (Petchey and Gaston 2002; Cadotte 

et al. 2013), but has seldom been used as a framework for understanding how behavioral or 

physiological variation within a group contributes to collective performance (Takahashi et al. 

2018). By partitioning the effects of group composition with respect to interindividual differences 
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in MR (and any co-varying traits) on group performance, productivity, and life-history, this 

approach lends itself extremely well to exploring the role of MR in shaping sociality. 

 

Social insect colonies are often thought of as superorganisms in which the constituent 

individuals express considerable diversity in physiology, behavior, and life-history (Jeanson and 

Weidenmuller 2015), and yet contribute to fitness at the group level through their collective 

performance (Kennedy et al. 2017). Social insects are also seen to exhibit between-group variation 

at the colony level with respect to a number of behavior and life-history traits (Wray et al. 2011; 

Blight et al. 2016), which are outcomes of differences in this collective performance. Since 

selection primarily acts at the colony level in these groups (Seeley 1997; Fewell and Page 2000), 

how heterogeneity shapes division of labor and collective behavior is a question of significant 

interest in social evolution. Despite such phenotypic variability at multiple scales, research 

regarding the role of MR on sociality in insect colonies have almost exclusively focused on the 

question of metabolic scaling with size (Fewell and Harrison 2016; Waters et al. 2010), leaving 

unanswered the important question regarding the effects of metabolic diversity. 

 

In the honeybee, Apis mellifera, workers exhibit considerable covariation in behavior, life-

history, and physiology (Page et al. 2006; Tait and Naug 2020), including those related to 

differences in energetics and MR (Mayack and Naug 2011; Katz and Naug 2015; Harrison and 

Fewell 2002; Feuerbacher et al. 2003; Mugel and Naug in review). Using this as a background, in 

the current study we use genetic lines of honeybees with low and high MR, to explore how 

heterogeneity within a group in terms of MR interacts with the resource environment to shape 

group performance. 
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Methods 

Experimental Design 

Genetic lines of honeybees with different metabolic rates (MR) were raised based on the 

well-known slow (S) – fast (F) variation in malate dehydrogenase (MDH-1) allotypes (Coehlo and 

Mitton 1988; Harrison and Fewell 2002), in which the S and the F allele are associated with low 

and high MR, respectively. The allotypes of queens were determined by sampling and assaying 

the MDH-1 allele of six haploid drone offspring using gel electrophoretic techniques (providing a 

95% chance of correctly identifying queen genotype; Feuerbacher et al. 2003). Six to ten different 

drones of known allotypes from multiple source colonies were then used to artificially inseminate 

queens of known allotypes to create crosses of the following 4 types: SS x S, FF x F (hereafter 

called SS and FF queens for the respective types of brood they produce), SS x F and FF x S 

(hereafter called SF queens that produce SF brood). The allotypes of these queens were verified 

from the young larvae produced from the first set of eggs laid by these queens. Colonies of each 

allotype were then set up using standard package bees of Apis mellifera and a queen of a specific 

type (FF, SS, SF). Frames with mature brood were extracted from multiple colonies of each type, 

kept in an incubator at 35 °C and 60 % Relative Humidity (RH) and newly emerged adults of each 

allotype from these were mixed together to create replicates of the four experimental group 

compositions described below. 

 

The following experimental group compositions were created: monomorphic FF, 

monomorphic SS, monomorphic SF, and polymorphic SS and FF (1:1 ratio). Each group was made 

up of 50 newly emerged bees and housed in two conjoined plastic cages separated by a 0.3 cm 

gauge wire mesh with 25 bees on each side of the mesh, allowing contact and exchange of food 
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and pheromones across the entire group (Fig. S2.1). In the polymorphic group, the FF and the SS 

bees were separated on each side of the mesh, which allowed us to measure the performance of 

each morph separately in a polymorphic context. Each cage was made out of darkened plastic so 

that the bees were minimally disturbed by outside light and had a dimension 10 cm x 10 cm x 5 

cm with wax comb material on the inside walls, holes for air circulation and attached with a 

modified syringe filled with sucrose solution from which the bees could feed ad libitum. One day 

prior to the performance assays, all groups were standardized to a size of 40 bees (20 bees per side) 

to allow an opportunity to supplement those groups with any early mortality with additional bees 

of the same age and allotype. Any group with 50% or higher mortality was discarded from the 

performance measurements. All groups were housed in an incubator maintained at 28 °C and 60% 

RH. Different replicates of each group composition were further assigned randomly to one of two 

resource environment treatments: a high resource environment of 30% w/w sucrose solution 

(HRE) and a low resource environment of 15% w/w sucrose solution (LRE). Thus, there were a 

total of 8 experimental treatments (4 group compositions x 2 resource environments). 

 

Performance assays  

MR was measured for each group by separately measuring each of the two halves of the 

group using flow through respirometry when the bees were 10 ± 2 days old. Each cage side with 

20 bees was placed in a 380 mL sealed glass chamber and dry, CO2 free air was run through the 

chamber at a rate of 800 mL/min and CO2 was measured in the excurrent airstream with a FoxBox 

gas analyzer (Sable Systems). Each subgroup of bees was weighed immediately after respirometry 

and its mass-specific MR was calculated as the mean CO2 production (in mL hr-1 g-1) for the most 

stable 4 continuous minutes of CO2 production (i.e. the 4 minutes with the lowest variance). This 
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MR value was transformed into a power output for all analyses (in mW g-1) by multiplying it by 

21.4 J per mL-1 CO2 and dividing by 3600 J hr-1 W-1 (Feuerbacher et al. 2003; mass independent 

data shown in Fig. S2.2-2.3). Since the MR of each subgroup was measured separately to quantify 

the contribution of each morph in the polymorphic context, MR of the whole group was calculated 

as the sum of the two power outputs. 

 

Food consumption of each subgroup was measured for 3 days following the MR 

measurement by recording the volume change in the feeding syringe in each cage and correcting 

for any evaporation and the actual number of bees alive on that day. The consumption volumes 

were converted to an energetic intake equivalent using concentrations and a conversion factor of 

1 mg sugar = 16.7 J. Once again, the energetic intake of the whole group was calculated as a sum 

of the consumptions of the two subgroups. 

 

The thermoregulatory performance of each group was measured over two periods of 45 

minutes each, by placing each group of 40 bees in an incubator set to 18° C for a cold stress assay, 

and 38° C for a heat stress assay (± 10° C of the thermal neutral housing temperature at 28° C), in 

a random order. All assays were performed during daytime and remained the same across all 

treatments. A thermal probe (HOBO Systems) was inserted adjacent to the wax foundation in each 

side of the cage, which recorded the temperature every 10 seconds for 45 minutes (270 data points) 

for each subgroup. The temperature within an empty cage was measured simultaneously as a 

control and was subtracted from the measurement for each subgroup to produce a temperature 

residual. The thermoregulatory performance of the whole group was calculated by averaging the 

mean residual temperatures of each subgroup over the 45-minute period. Since better 
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thermoregulation in the heat stress assay is indicated by lower residual temperatures, for ease of 

interpretation and alignment with other traits in which greater values indicate better performance, 

these values were multiplied by -1. 

 

The number of surviving bees in each group was checked daily and groups were terminated 

at the end of 35 days or when fewer than 10 bees remained alive (< 25% remaining), whichever 

occurred earlier. The repeatability of MR and thermoregulatory performance was assessed two 

days following their first measurement in only those groups in which fewer than 4 bees had died 

since the first measurement. 

 

Data analysis 

A total of 225 groups were assembled from 16 source colonies of the 3 allotypes with < 

10% mortality on day 10 for the MR and thermoregulation assays, yielding a final sample size of 

19-31 groups for each of the 8 treatments. 

 

First, a linear model was used to test the interaction and main effects of group composition 

(monomorphic SS, FF, SF and polymorphic 1 SS: 1 FF) and resource environments (high and low) 

on MR, thermoregulatory performance under cold and heat stress, food consumption, and median 

survival. Post-hoc Tukey-adjusted t-tests were performed using the ‘emmeans’ R package. See 

supplement for follow-up Kaplan-Meier survival analysis and Cox proportional hazard models on 

data pooled by treatment (Figs. S2.3-S2.4). Pearson’s correlation tests were used to explore the 

correlations between the different traits within each environment after pooling data across the 

group compositions. 
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The effect of group composition on performance was further examined by calculating a 

diversity effect: the deviations in performance (∆P) of a polymorphic group from a null 

expectation based on the performance of the same morphs in monomorphic groups. The expected 

performance of a 1 SS: 1 FF polymorphic group is the mean of that for SS and FF monomorphic 

groups. This expected value was compared to the observed polymorphic group performance values 

with a one-sample t-test. ∆P can be further partitioned into a complementarity effect (the effect of 

interactions between different morphs, !∆#$%%%%%%&') and a selection effect (the disproportionate effect 

of any one morph, !()*(∆#$,&)): 
∆$ = !∆#$%%%%%%&' + !()*(∆#$,&) 

where, 

0∆R$!&!

!

=0R$",!
!

&! 	–	0R
!

$$,! 	 

where N is the number of morphs, &'  is the mean performance of all monomorphic groups, and 

∆#$%%%%%% is the mean deviation in observed relative performance of all morphs in polymorphic groups 

as compared to their performance in monomorphic groups. ∆RPi is calculated as the difference 

between the expected relative performance of morph I (RPE,i) and the observed relative 

performance of morph I (RPO,i) in the polymorphic group, (RPO,I – RPE,i). RPE,I, is determined by 

the ratio of morph I in the polymorphic group, and RPO,I, is the observed performance of I in the 

polymorphic groups (PO,i) divided by the performance of morph I in its monomorphic group (Mi). 

All data analyses were completed in R. 
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Results 

Metabolic Rate 

A linear model indicated a significant interaction between group composition and resource 

environment influencing MR (F3, 217 = 5.41, p = 0.001; main effects of resource environment: F1,217 

= 49.51, p < 0.001; group composition: F3,217 = 10.62, p < 0.001, Fig. 2.1). Post-hoc tests revealed 

that in the LRE, the monomorphic FF groups exhibited a significantly higher MR than the 

monomorphic SS groups (t217 = 2.69, p = 0.03), but was similar to monomorphic SF and 

polymorphic groups (see Table S1 for all comparisons). The MR of the monomorphic SS groups 

was significantly lower than polymorphic groups (t217 = 2.77, p = 0.03) though similar to 

monomorphic SF groups, the two of which were statistically similar to each other (Fig. 2.1). 

  

 Post-hoc tests revealed that compared to the LRE, MR was significantly higher in the HRE 

for all groups except the polymorphic group (FF: t217 = 7.04, p < 0.001; SS: t217 = 5.04, p < 0.001; 

SF: t217 = 5.44, p <0.001; Polymorphic: t217 = 1.49, p = 0.14). In the HRE, the monomorphic FF 

groups exhibited a significantly higher MR than all other groups (SS: t217 = 4.21, p < 0.001; SF: 

t217 = 3.43, p = 0.004; Polymorphic: t217 = 5.31, p < 0.001), while the monomorphic SS, SF, and 

polymorphic groups were not significantly different from one another (Fig. 2.1). 
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Figure 2.1. Group level MR is affected by an interaction between group composition and resource 
environment. Points represent mean ± SE in high (filled) and low (open) resource environments. 
Asterisks denote a significant difference across resource environments for a group composition (* 
0.01 < p < 0.05; ** 0.001 < p < 0.01; *** p < 0.001). Different letters represent significant 
differences between different group compositions within a resource environments (a,b for low, c,d 

for high). Crosses (+) denote a significant deviation in performance of the polymorphic group from 
null expectation based on a one-sample t-test. 
 

 In the LRE, the observed polymorphic group mean MR of 114.5 mW g-1 was significantly 

higher than the expected MR of 87.75 mW g-1 (t28 = 2.68, p = 0.01, Fig. 2.1), and in the HRE, the 

observed polymorphic group mean MR of 139.4 mW g-1 was significantly lower than the expected 

MR of 192.75 mW g-1 (t27 = 4.28, p < 0.001, Fig. 2.1). These significant deviations from 

expectation, or diversity effects, were comprised of a non-significant selection effect (t28 = 0.79, p 

= 0.43), and a significant positive complementarity effect (t28 = 2.63, p = 0.01; Fig. 2.6) in the 
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LRE, and a non-significant selection effect (t28 = 1.89, p = 0.07) and a significant negative 

complementarity effect (t28 = 3.58, p = 0.001) in the HRE (Fig. 2.6). 

 

Energetic Intake 

Energetic intake was not significantly predicted by an interaction between resource 

environment and group composition (F3, 218 = 0.92, p = 0.43), nor the main effect of group 

composition (F3, 218 = 1.59, p = 0.19) but was predicted by resource environment (F1, 218 = 17.9, p 

< 0.001; Fig. 2.2). Therefore, all group types were statistically similar within each resource 

environment (see Table S2.2 for post-hoc tests). Energetic intake was significantly higher for all 

groups in the HRE (FF: t218 = 4.24, p < 0.001; SS: t218 = 3.94, p < 0.001; SF: t218 = 4.49, p < 0.001; 

Polymorphic: t220 = 2.37, p = 0.02; Fig. 2.2). 

 

In the LRE, the energetic intake of 16.6 mW g-1 in polymorphic groups was not 

significantly different from the expected value of 14.5 mW g-1 (t28 = 1.26, p = 0.22). However, in 

the HRE, the energetic intake of 21.15 mW g-1 in polymorphic groups was significantly lower than 

the expected value of 24.05 mW g-1 (t28 = 2.30, 1.78, p = 0.02; Fig. 2.2). The non-significant 

diversity effect in LRE was comprised of non-significant selection and complementarity effects 

(t28 = 0.41, p = 0.69, and t28 = 1.28, p = 0.21, respectively).  The significant negative diversity 

effect in HRE was comprised of both non-significant selection and complementarity effects (t26 = 

1.19, p = 0.24, t26 = 1.56, p = 0.13, respectively; Fig. 2.6). 
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Figure 2.2. Group level energetic intake is affected by resource environment but not group 
composition. Points represent mean ± SE in high (filled circles) and low (open circles) resource 
environments. Asterisks (*) denote a significant difference across resource environments for a 
group composition, and crosses (+) denote a significant deviation in performance of the 
polymorphic group from null expectation. Different letters represent significant differences across 
different group compositions within a resource environment (a for low, b for high). 
 

Thermoregulatory performance in cold and heat stress  

 Thermoregulatory performance of the group under cold stress was not influenced by a  

resource environment by group composition interaction (F3, 213 = 2.58, p = 0.05), nor a group 

composition main effect (F3, 213 = 0.66, p = 0.58) but was influenced by the resource environment 

(F1, 213 = 21.41, p < 0.001). Post-hoc t-tests revealed that in the LRE, the monomorphic FF groups 

had significantly better thermoregulatory performance with a higher mean residual temperature 
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than the monomorphic SS groups (t213 = 2.83, p = 0.02) and the polymorphic groups (t213 = 2.73, 

p = 0.03), but was not different from the monomorphic SF groups, the performance of which was 

similar to the other two groups (Table S2.3, Fig. 2.3). For all groups, performance was significantly 

better in the HRE (FF: t213 = 4.63, p < 0.001; SS: t213 = 7.46, p < 0.001; SF: t213 = 6.38, p < 0.001; 

Polymorphic: t213 = 6.84, p < 0.001; Fig. 2.3). In the HRE, all groups were statistically similar 

(Table S2.3). 

 

In the LRE, the observed mean residual temperature of 0.53 °C for polymorphic groups 

was significantly lower than the expected value of 0.70 °C (t28 = 2.15, p = 0.04), indicating a 

significant negative diversity effect on thermoregulatory performance (Fig. 2.3). In the high 

resource environment, the observed mean residual temperature of 1.59 °C for polymorphic groups 

was not significantly different from the expected mean of 1.72 °C (t27 = 1.15, p = 0.26), indicating 

a non-significant diversity effect on thermoregulatory performance (Fig. 2.3). The significant 

negative diversity effect on thermoregulatory performance under cold stress in the LRE is 

comprised of a significant negative selection effect (t28 = 2.45, p = 0.02), and a non-significant 

complementarity effect (t28 = 1.34, p = 0.19; Fig. 2.6). The non-significant diversity effect in the 

HRE is comprised of a significant selection effect (t28 = 2.95, p = 0.006), and a non-significant 

complementarity effect (t28 = 1.41, p = 0.17; Fig. 2.6). 
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Figure 2.3. Thermoregulatory performance under cold stress is affected by resource environment 
but not group composition. Points represent mean ± SE in high (filled) and low (open) resource 
environments. Asterisks (*) denote a significant difference across resource environments for a 
group composition. Different letters represent significant differences across different group 
compositions within a resource environment (a-b for low, c for high). Crosses (+) denote a 
significant deviation in performance of the polymorphic group from null expectation. 
 

Thermoregulatory performance under heat stress was not influenced by resource 

environment (F1, 212 = 0.71, p = 0.40), group composition (F3, 212 = 1.21, p = 0.16), nor an 

interaction between the two (F1, 212 = 0.57, p = 0.63). All groups performed similarly both within 

and across the two resource environments (Table S4; Fig. 2.4). In the LRE, the observed (inverted) 

mean residual temperature of 0.17 °C for the polymorphic groups was not significantly different 

than the expected value of 0.23 °C (t27 = 1.48, p = 0.15), indicating a non-significant diversity 
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effect (Fig. 2.4). In the HRE, the observed (inverted) mean residual temperature of 0.12 °C in the 

polymorphic group was significantly lower than the expected value of 0.24 °C (t25 = 2.63, p = 

0.01), indicating poorer than expected performance due to a significant diversity effect (Fig. 2.4). 

 

In the LRE, the non-significant diversity effect was driven by a non-significant selection 

effect (t27 = 1.88, p = 0.07) and a non-significant complementarity effect (t27 = 1.42, p = 0.17, Fig. 

2.6). The significant diversity effect on thermoregulatory performance under heat stress in the 

HRE was driven by a non-significant selection effect (t27 = 0.33, p = 0.74) and a significant 

negative complementarity effect (t26 = 2.74, p = 0.01, Fig. 2.6). 

 

 
Figure 2.4. Thermoregulatory performance under heat stress is not affected by either resource 
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environment or group composition. Points represent mean residual temperatures ± SE (inverted 
for ease of understanding) in high (filled) and low (open) resource environments. Different letters 
represent significant differences across different group compositions within a resource 
environment (a for low, b for high). Crosses (+) denote a significant deviation in performance of 
the polymorphic group from null expectation. 
 

Survival 

The linear model on median survival time (longevity) revealed significant effects of group 

composition (F3, 217 = 9.52, p < 0.001), resource environment (F1, 217 = 17.99, p < 0.001), but not 

an interaction between the two (F3, 217 = 1.41, p = 0.24). In the LRE, the monomorphic FF groups 

had significantly higher survival than all other group compositions, which were all statistically 

similar to each other (FF-SS t217 = 6.99, p < 0.001; FF-SF t217 = 6.14, p < 0.001; FF-Polymorphic 

t217 = 5.42, p < 0.001; SS-SF t217 = 1.63, p = 0.36; Table S2.5; Fig. 2.5). All group compositions 

survived longer in the HRE than their counterparts in the LRE (FF: t217 = 4.42, p < 0.001; SS: t217 

= 6.34, p < 0.001; SF: t217 = 6.21, p < 0.001; Polymorphic: t217 =5.67, p < 0.001; Fig. 2.5). In the 

HRE, the monomorphic FF groups had significantly higher survival than all other group 

compositions, which were all statistically similar to each other (FF-SS t217 = 4.80, p < 0.001; FF-

SF t217 = 4.18, p < 0.001; FF-Polymorphic t217 = 3.83, p < 0.001; Table S2.5; Fig. 2.5). 

 

In the LRE, the observed median survival of 14.6 days for the polymorphic groups was 

significantly lower than the expected 15.7 days (t28 = 2.94, p = 0.006), while in the HRE the 

polymorphic groups exhibited similar median survival of 19.0 days to the expected 20.05 days (t27 

= 1.83, p = 0.07; Fig. 2.5). The significant negative diversity effect on survival in the LRE was 

comprised of selection and complementarity effects that were both non-significant (t28 = 1.84, p = 

0.07; t28 = 0.34, p = 0.74, respectively). The non-significant diversity effect in the HRE was 
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comprised of non-significant selection and complementarity effects (t28 = 1.61, p = 0.12; t28 = 1.04, 

p = 0.31, respectively; Fig. 2.6). 

 

Figure 2.5. Median survival is affected by resource environment and group composition. Points 
represent mean ± SE in high (filled) and low (open) resource environments. Asterisks (*) denote 
a significant difference across resource environments for a group composition. Different letters 
represent significant differences across different group compositions within a resource 
environment (a-b for low, c-d for high). Crosses (+) denote a significant deviation in performance 
of the polymorphic group from null expectation. 
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Figure 2.6. The diversity effects for all measured traits parsed into selection (orange) and 
complementarity (blue) components across low and high resource environments with SE bars. 
Components significantly different from 0 are depicted with asterisks (one sample t-tests, * 0.01 
< p < 0.05, ** 0.001 < p < 0.01). Y-axes represent deviations from null expectation of the 
polymorphic groups based on 1 FF: 1 SS composition. 
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Table 2.1. Summary of diversity effects and their components for all measured traits across the 
two resource environments. Significant diversity effects, or the deviation of polymorphic 
performance from null expectation, and their selection and complementarity components are 
shown at the * 0.01 < p < 0.05, ** 0.001 < p < 0.01, and *** p < 0.001 levels. 

Performance 

Measure 

Resource 

Environment 

Diversity 

Effect 

Selection 

Component 

Complementarity 

Component 

MR Low * Positive n.s. * Positive 

High *** Negative n.s. ** Negative 

Energetic Intake Low n.s. n.s. n.s. 

High * Negative n.s. n.s. 

Thermoregulation 

(Cold stress) 
Low * Negative ** Negative n.s. 

High n.s. * Negative n.s. 

Thermoregulation 

(Heat stress) 

Low n.s. n.s. n.s. 

High * Negative n.s. * Negative 

Median Survival Low ** Negative n.s. n.s. 

High n.s. n.s. n.s. 

 

Correlation between traits 

Pearson’s pairwise correlations on data pooled across group compositions, separated by 

resource environment, revealed that in the LRE, MR was significantly positively correlated with 

energetic intake (r = 0.22, t107 = 2.33, p = 0.02), thermoregulatory ability in cold stress (r = 0.21, 

t106 = 2.13, p = 0.03) and survival (r = 0.38, t107 = 4.22, p < 0.001). Survival was also significantly 

positively correlated with thermoregulatory ability in cold stress (r = 0.55, t106 = 6.83, p < 0.001) 

and heat stress (r = 0.22, t106 = 2.15, p = 0.03), and significantly negatively correlated with 

energetic intake (r = -0.25, t107 = 2.57, p = 0.01). No other traits were significantly correlated (Fig. 

2.7A). In the HRE, MR was significantly positively correlated with energetic intake (r = 0.29, t114 

= 3.1, p = 0.003) and survival (r = 0.32, t114 = 3.74, p < 0.001), and survival was significantly 

positively correlated with thermoregulatory ability in cold stress (r = 0.26, t112 = 2.96, p = 0.004), 

while no other traits were correlated (Fig. 2.7B). 
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Figure 2.7. Pearson’s correlation coefficients between traits pooled across group compositions in 
low (A) and high (B) resource environments. Significant coefficients shown with * 0.01 < p < 
0.05, ** 0.001 < p < 0.01, and *** p < 0.001. 
 

Discussion 

The experimental design of our study substantiates and extends theoretical arguments that 

MR at any level of biological organization is a composite function of its component units (Brown 

et al. 2004). In this context, one striking result of this study is that the MR and the performance on 

every trait are statistically similar for the polymorphic 1 SS: 1 FF and the monomorphic SF groups. 

This is interesting because these two groups are similar with respect to the MDH allelic diversity, 

differing only in how the S and the F allele are allocated among individuals. From the framework 

of such a perspective, in this study we focus on how the performance of a biological unit is shaped 

by the heterogeneity in MR among its constituent units. 

 

In the HRE, all groups exhibited a significantly higher MR and energetic intake, as well as 

better cold stress thermoregulation and longer survival than their counterparts in the LRE. While 
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the finding that performance is dependent on energetic availability is not itself surprising, the fact 

that there appears to be a robust group-level syndrome correlating all these traits that is more 

noticeable during resource restriction suggests these links to have energetic considerations at their 

root. Indeed, the positive association of MR with survival and thermoregulation traits extends the 

predictions of the acquisition or performance model, wherein the size of the metabolic engine, 

fueled by energetic intake, determines the energetic availability for thermoregulation and long-

term survival (Careau et al. 2008; Biro and Stamps 2010) to the group level. Furthermore, in both 

environments, MR and energetic intake are positively correlated, extending the idea that higher 

MR is accompanied by higher maintenance costs for the upkeep of the metabolic engine (Nilsson 

2002), to the group level. 

 

The support for the performance model therefore suggests that morphs with a higher MR 

should outperform others, and indeed, the FF groups outperformed the SS groups on nearly every 

performance measure here, in both resource environments. This raises the provocative question as 

to the advantages conferred by the ‘slow’ (S) allele that maintain its presence in the population. 

Among natural honeybee populations, a latitudinal and thermal cline in F and S allele frequencies 

has been reported, suggesting a role of temperature mediated selection for MR (del Lama et al. 

2004; Nielsen et al. 1994; Hatty and Oldroyd 1999). Given our results that ‘fast’ high MR workers 

are better thermoregulators per capita, though also demand more food, an intriguing possibility 

worth studying in greater detail is whether the ‘slow’ workers with lower MR and energetic 

demands are better equipped as a group to survive the long over-wintering period in higher 

latitudes without foraging through group-level thermoregulation and clustering a larger number of 

bodies that can be maintained with a lower total energy consumption. 
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Heterogeneous groups consisting of both ‘slow’ and ‘fast’ workers may therefore be better 

able to meet the complexity of demands faced by a honeybee colony over its annual colony cycle. 

Previous work has found MR negatively correlates with brood care and positively correlates to a 

longer intranidal period (Mugel and Naug in review), suggesting that slow workers with a lower 

MR serve other critical social roles in the colony division of labor. Fast workers perform more 

energetically demanding tasks, such as pollen foraging (Feurerbacher et al. 2003) and might be 

involved in scouting new resources (Tait and Naug 2020) while slower workers provide the 

workforce of recruits for extracting resources more efficiently from known locations. Honeybees 

often maximize foraging efficiency rather than gain rate (Schmid-Hempel et al. 1985), but whether 

individuals with different MR maximize different foraging currencies, or how colonies maximize 

energetic efficiency through division of labor among workers with different MR remains an 

interesting question. Such heterogeneity in the behavior of honeybee workers with different MR 

would suggest that colonies with mixed distributions of low and high MR phenotypes would 

outperform more monomorphic colonies. 

 

Contrary to expectation, however, we did not find a positive diversity effect in the 

polymorphic group for nearly all traits in any of the two resource environments tested here. A 

number of studies have demonstrated the benefits of genetic diversity to population fitness 

(Takahashi et al. 2018), including in honeybees (Tarpy 2003; Jones et al. 2004; Oldroyd and Fewell 

2007; Mattila and Seeley 2007), albeit for a handful of traits. However, it has also been shown that 

groups with too much heterogeneity may lack coordination in certain contexts, resulting in worse 

than expected collective output (Page et al. 1995; Neumann and Moritz 2000; Arathi & Spivak 
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2001; Jolles et al. 2020), and the polymorphic group tested here with a 1:1 ratio of the two MR 

allotypes represents the highest possible heterogeneity for a dimorphic scenario. The significant 

selection effects observed here suggest asymmetric performance of the two morphs, which can 

also lead to polymorphic populations to underperform under positive frequency dependent 

processes (Takahashi et al. 2018). However, the more intuitive appeal for the positive effects of 

diversity have led to such mechanisms remaining underexplored. While the polymorphic groups 

generally underperformed expectations, they did outperform the lowest performers, the 

monomorphic SS groups, suggesting a competitive advantage of heterogeneity against certain 

types of groups. It has been suggested that complex frequency-dependent processes may be 

involved in conferring an advantage to groups with a diversity of MR phenotypes, especially in a 

changing environment (Katz and Naug 2020), and empirical work testing this idea is needed. 

  

Each trait responded differently to heterogeneity across the two resource environments, 

and significant diversity effects were shaped by both selection and complementarity components. 

Indeed, six of the ten trait measurements (5 traits x 2 environments) showed significant diversity 

effects, one of which was driven by selection effect, three by complementarity effects, and 

interestingly, two driven by the additive effect of both nonsignificant selection and 

complementarity effects. Significant selection effects suggest disproportionate performance of one 

of the morphs shapes group output, often referred to as ‘keystone individuals’ (Jolles et al. 2020). 

Here, negative selection effects indicate group thermogeneration ability conforms to its lowest 

performing members. Significant complementarity effects indicate complex feedback processes 

such as niche partitioning or facilitation for positive effects, or interference when negative. The 

negative complementarity in thermoregulation under heat stress suggest fanning behavior, used by 
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bees to lower hive temperature, to be a positive-frequency dependent process such that certain 

levels of heterogeneity could downregulate performance, which supports previous findings about 

the complexity of the fanning response (Garrison et al. 2018). Such group level processes 

interacted with the resource environment such that polymorphic group MR was significantly lower 

in the HRE and significantly higher in the LRE than expected, indicating the importance of 

understanding how group composition can show complex interactions with environmental 

parameters to shape performance. The significant negative diversity effect on survival was shaped 

by highly variable but negative complementarity and a marginally non-significant selection effect 

suggesting that in a group, survival may too conform to the lowest performing members, without 

consistent patterns of interaction between MR morphs.  

 

This study uses a novel experimental and analytical framework for asking questions about 

how heterogeneity in a trait at the individual level shapes performance at the group level and parses 

any observed diversity effect into selection and complementarity components. We demonstrate 

that a number of important group-level performance measures are influenced by an interaction 

between the diversity in MR phenotypes within a group and the resource environment. Social 

insects provide excellent models to ask such questions regarding the influence of metabolic 

diversity at a higher level of biological organization as a large number of parameters can be 

measured in terms of individual and group level performance in experimentally created groups of 

different compositions. A natural extension of this study would be to create experimental colonies 

with known composition of MDH allotypes that allow for studying the foraging and life history 

dynamics at the colony level. Additionally, understanding how colonies with different levels of 

heterogeneity compete against one another at a landscape level in different types of resource 
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environments would be informative regarding the mechanisms that maintain the variation in MR 

both within and across populations in different environments. 
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APPENDIX 1: SUPPLEMENTARY MATERIAL FOR CHAPTER 1 
 

 
 

Figure S1.1. Photographs of (A) tagged bees in the common garden observation hive; (B) a bee 
in the FMR flight chamber; and (C) the RMR set-up with the FoxBox in the background, darkened 
chamber and strapped bee in the foreground.  
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Figure S1.2. Example FMR VCO2 trace over the entirety of the FMR assay. Vertical bar represents 
when flight was initiated, which continued for the rest of the assay.  
 
 

  
Figure S1.3. Example CO2 production trace of RMR data. The main figure shows the VCO2 
produced over the entire 10 minute trial including the beginning reading from baseline chamber to 
correct for drift and zero the readings, and the CO2 spike when the gas analyzer was switched from 
reading the baseline chamber to the experimental chamber (discarding  the first two minutes 
following that). The insert panel shows the VCO2 during the selected two minutes with the lowest 
variance. 
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Figure S1.4. RMR as a function of body mass with points representing individual bees, and the 
regression line representing a linear model on log-transformed data (F1,132 = 2.3, p = 0.136, y = -
0.48x + 0.096, r2 = 0.017).  
 

 

For figures S1.5–S1.11 AIC and ∆AIC scores are presented adjacent to each diagram. 
 

 

Figure S1.5. Null model wherein all measured variables are unrelated to one another.  
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Figure S1.6. Class A, Schema 1: Physiology influences behavior and in turn both influence life-
history. This is the overall top model and is presented in the main text (Fig. 2). Solid lines represent 
significant partial correlation coefficients (positive in green and negative in orange), at the p < 0.05 
(*), ≤ 0.01 (**), and ≤ 0.001 (***) level. 
 

 

Figure S1.7. Class A, Schema 2: Physiology influences both behavior and life-history, and 
behavior and life-history are unrelated. Solid lines represent significant partial correlation 
coefficients (positive in green and negative in orange), at the p < 0.05 (*), ≤ 0.01 (**), and ≤ 0.001 
(***) level. 
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b    1.289 (0.340) *** 
c    0.857 (0.282) ** 

d   -0.742 (0.348) * 
e    0.0515 (0.0195) ** 

f    -0.259 (0.113) * 
g   -0.0651 (0.0212) ** 

a ** 

b *** 

c ** 
d * 

e ** 

f * 

g ** 

P B LH 
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Figure S1.8. Class A, Schema 3: Behavior acts as a mediator between physiology and life-history. 
Solid lines represent significant partial correlation coefficients (positive in green and negative in 
orange), at the p < 0.05 (*), ≤ 0.01 (**), and ≤ 0.001 (***) level. 
 

 
 
Figure S1.9. Class B, Schema 1: Behavior influences physiology and in turn both influence life-
history. Solid lines represent significant partial correlation coefficients (positive in green and 
negative in orange), at the p < 0.05 (*), ≤ 0.01 (**), and ≤ 0.001 (***) level and dashed gray lines 
represent non-significant correlation coefficients (p ≥ 0.05). 
 

 
 

RMR 

FMR 

Activity 

Sociality 

Brood Care 

Lifespan 

Age of First 

Foraging 

Consumption 

GRS 

Eclosure Weight 

AIC = 6112.406 

∆ AIC = 6.425 

P B LH 

a ** 

b *** 

c ** 
d ** 

e * 

f * 
g * 

h ** 

a    0.189 (0.0713) ** 
b    1.279 (0.342) *** 
c    0.865 (0.283) ** 

d   -0.957 (0.354) ** 
e    0.0450 (0.0201) * 

f    -0.259 (0.118) * 
g   0.0178 (0.0064) * 
h   -0.664 (0.316) ** 

RMR 

FMR 

Activity 

Sociality 

Brood Care 
Lifespan 

Age of First 

Foraging 

Consumption 

GRS 

Eclosure Weight 

AIC = 6111.587 

∆ AIC = 5.606 

B P LH 

a    0.205 (0.0727) * 
b    1.145 (0.341) *** 
c    0.0722 (0.0311) * 

d   -0.0556 (0.0248) * 
e   -0.0663 (0.0209) ** 

f    -0.326 (0.113) ** 
g   -0.1564 (0.0662) * 
h   -0.8597 (0.313) ** 

a * 

b *** 

c * 
d * 

e ** 

f ** 
g * 

h ** 

RMR 

FMR 

Activity 

Sociality 

Brood Care 

Lifespan 

Age of First 

Foraging 
Consumption 

GRS 

Eclosure Weight 

AIC = 6116.658 

∆ AIC = 10.677 

B P LH 

a    0.205 (0.0727) * 
b    1.201 (0.339) *** 
c    0.0689 (0.0307) * 

d   -0.0624 (0.0242) ** 
e   -0.338 (0.115) ** 

f    -0.8113 (0.314) ** 
g    0.0150 (0.0067) * 

a * 

b *** 

c * 
d ** 

e ** 
f ** 

g * 
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Figure S1.10. Class B, Schema 2: Behavior influences both physiology and life-history, and 
physiology and life-history are unrelated. Solid lines represent significant partial correlation 
coefficients (positive in green and negative in orange), at the p < 0.05 (*), ≤ 0.01 (**), and ≤ 0.001 
(***) level and dashed gray lines represent non-significant correlation coefficients (p ≥ 0.05). 
 
 

 
Figure S1.11. Class B, Schema 3: Physiology acts as a mediator between behavior and life-history. 
Solid lines represent significant partial correlation coefficients (positive in green and negative in 
orange), at the p < 0.05 (*), ≤ 0.01 (**), and ≤ 0.001 (***) level and dashed gray lines represent 
non-significant correlation coefficients (p ≥ 0.05). 
  

RMR 

FMR 

Activity 

Sociality 

Brood Care 

Lifespan 

Age of First 

Foraging 

Consumption 

GRS 

Eclosure Weight 

AIC = 6114.957 

∆ AIC = 8.976 

B P LH 

a    0.203 (0.0730) ** 
b    1.145 (0.341) *** 
c    0.0717 (0.0309) * 

d   -0.0583 (0.0246) * 
e   -0.0670 (0.0210) ** 

f    -0.331 (0.114) ** 

c * 
a ** 

b *** 

d * 

e ** 

f ** 
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Table S1.1. Linear and generalized linear model results of significant phenotypic relationships 
from the best-supported path model (Fig. 1.1), with colony included as a covariate. Regression 
coefficients are shown for significant predictors. Transformed values were used in these analyses, 
and because each of these variables is tested independently of the rest, the exact values of the 
coefficients are less meaningful and therefore should be interpreted with caution. Source colony 
was used as a covariate in all these models and was found to have no significant effect on any of 
the relationships. All relationships tested from the top supported path model with the exception of 
FMR and consumption were found to have the same approximate significance and strength as in 
the integrative approach of the path SEMs, which upholds the strength and validity of the path 
SEMs as an integrative approach to understanding how multivariate relationships are related to 
one another in a causal manner. 
 

Response Predictor F df p β 

FMR RMR 11.6 1 < 0.001 *** 1.32 

Colony 0.202 3 0.894  

GRS RMR 4.21 1 0.0433 * 0.156 

Colony  3 0.216  

Activity RMR 4.60 1 0.0347 * 0.637 

Colony 0.426 3 0.735  

Brood care RMR 11.2 1 0.00121 ** -1.22 

Colony 1.90 3 0.135  

AFF RMR 5.47 † 1 0.0194 * -0.0530 

Colony 5.85 † 3 0.119  

Consumption FMR 3.55 1 0.0633 n.s.  

Colony 1.07 3 0.367  

Brood Care Activity 9.03 1 0.00334 ** -0.354 

Colony 0.715 3 0.545  

Lifespan Brood Care 4.27 1 0.0429 * -0.145 

Colony 2.10 3 0.110  

Lifespan Consumption 5.77 1 0.0189 * -0.703 

Colony 1.41 3 0.248  

† Chi-square statistic from generalized linear model rather than F statistic 
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APPENDIX 2: SUPPLEMENTARY MATERIAL FOR CHAPTER 2 
 
 
 
Methods 
 
Experimental design 

 

 

 

 

 
 
 
 
 
 
 

Figure S2.1. Schematic of housing and experimental group composition treatments. This novel 
experimental cage design allowed for separate measurements to be taken as each subgroup (each 
set of 20 bees on either side of the wire mesh) could be separated for a brief time sufficient to 
characterize each morph type’s contribution to total group performance and still maintain a 
functionally unified social group of 40 bees. FF bees (red) and SS bees (blue) could be separated 
on each side of the wire mesh (dotted line) in a polymorphic group yet exchange pheromones and 
food and contact one another across this mesh divide. FF, SS, and SF (purple) groups were also 
separated by the wire mesh to maintain uniformity in experimental design across composition 
treatments. 
 
Analysis 

 

Median survival analysis using a linear model framework was followed by fitting a Cox 

proportional hazard regression in which groups in each treatment combination were pooled into a 

single cohort for a total of eight cohorts (4 composition types x 2 resource quality levels), using 

composition type and resource environment as fixed effects. This analysis pools the bees of 

replicate groups and treats the individual bee as the unit of analysis for time to death, and thus 

comparisons are intended only to highlight proportional hazards between the eight treatment 

categories and should be interpreted with caution as variation within treatments is not accounted 

Monomorphic FF  Monomorphic SS Monomorphic SF  Polymorphic  

1 FF: 1 SS ratio 
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for as it is in the median survival analysis. A Kaplan-Meier plot was also generated to visualize 

the survival differences between these pooled cohorts of each treatment combination (Fig. S2.3). 

 

Results 

 
Metabolic Rate 

 

 
Figure S2.2. Group mass-independent MR of experimental groups (mW) is affected by an 
interaction between group composition and resource environment (interaction: F3, 217 = 3.76, p = 
0.01; main effects of resource environment: F1,217 = 48.57, p < 0.001; group composition: F3,217 = 
7.94, p < 0.001). Points represent mean ± SE in high (filled) and low (open) resource environments. 
Asterisks denote a significant difference across resource environments for a group composition (* 
0.01 < p < 0.05; ** 0.001 < p < 0.01; *** p < 0.001). Different letters represent significant 
differences between different group compositions within a resource environments (a,b for low, c,d 

for high). Crosses (+) denote a significant deviation in performance of the polymorphic group from 
null expectation based on a one-sample t-test. 
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Figure S2.3. Log-log plot of group MR (mW) as a function of group mass. Points represent group 
values of monomorphic FF (red), monomorphic SS (blue), monomorphic SF (green), and 
polymorphic (purple) in both high (circles) and low (triangles) resource environments. Mass was 
not a significant predictor of MR (F1, 223 = 2.85, p = 0.09), thus mass-specific MR was used for 
further analyses.  
 

Table S2.1. Post-hoc Tukey-adjusted t-test comparisons from the linear model on mass-specific 
Metabolic Rate (mW/g) with predictors of an interaction between composition type and resource 
level as well as main effects of each factor (‘emmeans’ R package). Compact letter display (CLD) 
represent statistically similar performance measures within low (a-b), and high resource 
environments (c-d), which are depicted on Fig. 2.1. Bolded comparisons are significant at the 0.05 
level. 
 
 

Factor Level 
Estimate  

(95% CI) CLD 

Factor Level 

Comparison t df p 

Low 

Resource 

Environment 

Monomorphic 

FF 

112.7  

(89.9, 

135.5) 

b 

Monomorphic SS 2.69 217 0.038 

 

 

 

 

Monomorphic SF 1.81 217 0.27 

 

 

 

 

Polymorphic 0.11 217 0.99 

 

 

 

 
Monomorphic FF (High 

Resource)  7.04 217 <0.001 

 

Monomorphic 

SS 62.8  

a 

Monomorphic SF 1.12 217 0.68 
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(34.2, 

91.4) 

 

 

 

 

Polymorphic 2.77 217 0.031 

 

 

 

 
Monomorphic SS (High 

Resource) 5.04 217 <0.001 

 

Monomorphic 

SF 

83.4 

(61.0,105.

9) 

a ,b 

Polymorphic 1.90 217 0.232 

 

 

 

 
Monomorphic SF (High 

Resource) 5.44 217 <0.001 

 

Polymorphic 114.5 

(91.3, 

137.7) 

b 

Polymorphic (High 

Resource) 1.49 217 0.138 

High 

Resource 

Environment 

Monomorphic 

FF 

227.8  

(205.0, 

250.6) 

d 

Monomorphic SS 4.21 217 <0.001 

 
  

 Monomorphic SF 3.43 217 0.004 

   

 

Polymorphic 5.31 217 <0.001 

 

Monomorphic 

SS 

157.7 

(134.1, 

181.3) 

c 

Monomorphic SF 0.84 217 0.835 

 

 

 

 

Polymorphic 1.08 217 0.703 

 

Monomorphic 

SF 

171.7 
(148.9, 

194.5) 

c 

Polymorphic 1.94 217 0.216 

 

Polymorphic 139.4  

(115.8, 

163.0) 

c 

    

 
 
Energetic Intake 

 

Table S2.2. Post-hoc Tukey-adjusted t-test comparisons from the linear model on energetic intake 
(daily consumption in mW/g) linear model with predictors of an interaction between composition 
type and resource level as well as main effects of each factor (‘emmeans’ R package). Compact 
letter display (CLD) represent statistically similar performance measures within low (a), and high 
resource environments (b), which are depicted on Fig. 2.2. Bolded comparisons are significant at 
the 0.05 level.  
 

Factor Level 
Estimate  

(95% CI) CLD 

Factor Level 

Comparison t df p 

Low 

Resource 

Environment 

Monomorphic 

FF 
13.1 

(10.1, 16.2) 

a 

Monomorphic SS 1.12 218 0.68 

 

 

 

 

Monomorphic SF 1.17 218 0.64 

 

 

 

 

Polymorphic 1.59 218 0.39 

 

 

 

 
Monomorphic FF (High 

Resource)  4.24 218 <0.001 

 

Monomorphic 

SS 

15.9 
(12.1, 19.7) 

a 
Monomorphic SF 0.10 218 0.99 
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Polymorphic 0.29 218 0. 99 

 

 

 

 
Monomorphic SS (High 

Resource) 3.94 218 <0.001 

 

Monomorphic 

SF 

15.7 

(12.7, 18.6) 

a 

Polymorphic 0.44 218 0.97 

 

 

 

 
Monomorphic SF (High 

Resource) 4.49 218 <0.001 

 

Polymorphic 16.6 

(13.5, 19.7) 

a Polymorphic (High 

Resource) 2.37 218 0.019 

High 

Resource 

Environment 

Monomorphic 

FF 
22.4 

(19.3, 25.4) 

b 

Monomorphic SS 1.52 218 0.43 

 
  

 Monomorphic SF 1.37 218 0.52 

   

 

Polymorphic 0.21 218 0.99 

 

Monomorphic 

SS 

25.7 

(22.6, 28.8) 

b 

Monomorphic SF 0.16 218 0.99 

 

 

 

 

Polymorphic 1.70 218 0.33 

 

Monomorphic 

SF 

25.4  

(22.3, 28.4) 

b 

Polymorphic 1.56 218 0.41 

 

Polymorphic 21.9 

(18.8, 25.0) 

b 

    

 

 
Thermoregulation 

 
Table S2.3. Post-hoc Tukey-adjusted t-test comparisons from the linear model on 
thermoregulation in cold stress (mean residual temperature in ˚C) linear model with predictors of 
an interaction between composition type and resource level as well as main effects of each factor 
(‘emmeans’ R package). Compact letter display (CLD) represent statistically similar performance 
measures within low (a-b), and high resource environments (c), which are depicted on Fig. 2.3. 
Bolded comparisons are significant at the 0.05 level.  
 

Factor Level 
Estimate 

(95% CI) CLD Factor Level Comparison t df p 

Low  

Resource  

Environment 

Monomorphic 

FF 

0.950  

(0.741, 1.158) b Monomorphic SS 2.83 213 0.026    

Monomorphic SF 1.14 213 0.66    

Polymorphic 2.73 213 0.034 

   Monomorphic FF 

(High Resource) 4.63 213 <0.001 

 

Monomorphic 

SS 

0.453  

(0.18, 1.16) 

a, 

Monomorphic SF 1.87 213 0.24 

 

   

Polymorphic 0.477 213 0.96 

 

   Monomorphic SS 

(High Resource 7.46 213 <0.001 

 

Monomorphic 

SF 

0.781  
(0.58, 0.99) 

a,b 
Polymorphic 1.63 213 0.367 

 

   Monomorphic SF 

(High Resource) 6.38 213 <0.001 
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Polymorphic 0.538  

(0.33, 0.75) 

a Polymorphic (High 

Resource) 6.83 213 <0.001 

High 

Resource 

Environment 

Monomorphic 

FF 

1.65  

(1.44, 1.86) 

c 

Monomorphic SS 0.93 213 0.79 

   Monomorphic SF 0.522 213 0.95 

   Polymorphic 0.38 213 0.98 

Monomorphic 

SS 

1.79  

(1.57, 2.01) 

c 

Monomorphic SF 0.42 213 0.97 

 
   Polymorphic 1.31 213 0.56 

 

Monomorphic 

SF 

1.73  

(1.52, 1.94) 

c 

Polymorphic 0.92 213 0.80 

 

Polymorphic 1.59 

(1.37, 1.80) 

c 

    

 
 
 
Table S2.4. Post-hoc Tukey-adjusted t-test comparisons from the linear model on 
thermoregulation in heat stress (mean residual temperature in ˚C, multiplied by -1 such that better 
thermoregulatory performance corresponds to higher values) linear model with predictors of an 
interaction between composition type and resource level as well as main effects of each factor 
(‘emmeans’ R package). Compact letter display (CLD) represent statistically similar performance 
measures within low (a), and high resource environments (b), which are depicted on Fig. 2.4. 
Bolded comparisons are significant at the 0.05 level. 
 

Factor Level 

Estimate  

(95% CI) CLD 

Factor Level 

Comparison t df p 

Low  

Resource  

Environment 

Monomorphic 

FF 

0.22 

(0.13, 0.30) a Monomorphic SS 0.51 212 0.96 

   Monomorphic SF 1.22 212 0.61    

Polymorphic 0.67 212 0.91 
   Monomorphic FF 

(High Resource) 0.84 212 0.40 

 

Monomorphic 

SS 

0.25 

(0.14, 0.36) 

a 

Monomorphic SF 1.57 212 0.40 

 

   

Polymorphic 1.10 212 0.70 

 

   Monomorphic SS 

(High Resource) 0.31 212 0.76 

 

Monomorphic 

SF 

0.14 

(0.06, 0.23) 

a 

Polymorphic 0.53 212 0.95 

 

   Monomorphic SF 

(High Resource) 0.75 212 0.46 

 

Polymorphic 0.174 
(0.09, 0.26) 

a Polymorphic (High 
Resource) 0.69 212 0.49 

High 

Resource 

Environment 

Monomorphic 

FF 

0.67 

(.018, 0.35) b Monomorphic SS 0.60 212 0.93 

 
   Monomorphic SF 1.29 212 0.57 

 
   Polymorphic 2.17 212 0.14 
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Survival  

 
Table S2.5. Post-hoc Tukey-adjusted t-test comparisons from the linear model on median survival 
(days) linear model with predictors of an interaction between composition type and resource level 
as well as main effects of each factor (‘emmeans’ R package). Compact letter display (CLD) 
represent statistically similar performance measures within low (a-b), and high resource 
environments (c-d), which are depicted on Fig. 2.5. Bolded comparisons are significant at the 0.05 
level.  
 

 

Monomorphic 

SS 

0.23 

(0.14, 0.32) 

b 

Monomorphic SF 0.67 212 0.91 

 
   Polymorphic 1.55 212 0.41 

 

Monomorphic 

SF 

0.18 
(0.10, 0.27) 

b 
Polymorphic 0.91 212 0.80 

 

Polymorphic 0.13 

(0.04, 0.22) 

b 

    

Factor Level 

Estimate  

(95% CI) CLD 

Factor Level 

Comparison t df p 

Low  

Resource  

Environment 

Monomorphic 

FF 

18.7 

(17.6, 19.8) b Monomorphic SS 6.99 217 <0.001    

Monomorphic SF 6.14 217 <0.001    

Polymorphic 5.42 217 <0.001 

   Monomorphic FF 

(High Resource) 4.24 217 <0.001 

 

Monomorphic 

SS 

12.7 

(11.4, 14.0) 

a 

Monomorphic SF 1.63 217 0.36 

 

   

Polymorphic 2.15 217 0.14 

 

   Monomorphic SS 

(High Resource) 6.34 217 <0.001 

 

Monomorphic 

SF 

14.1  

(13.0, 15.1) 

a 

Polymorphic 0.62 217 0.93 

 

   Monomorphic SF 

(High Resource) 6.21 217 <0.001 

 

Polymorphic 14.6 

(13.5, 15.6) 

a Polymorphic (High 

Resource) 5.67 217 <0.001 

High 

Resource 

Environment 

Monomorphic 

FF 

21.9 

(20.9, 23.0) d Monomorphic SS 4.80 217 <0.001 

   Monomorphic SF 4.18 217 <0.001 

 
   

Polymorphic 3.83 217 0.001 

 

Monomorphic 

SS 

18.2 

(17.1, 19.3) 

c 

Monomorphic SF 0.69 217 0.90 

 
   Polymorphic 0.96 217 0.77 

 

Monomorphic 

SF 

18.8 
(17.7, 19.8) 

c 
Polymorphic 0.28 217 0.99 

 

Polymorphic 19.0 

(17.9, 20.1) 

c 
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Figure S2.4. Kaplan-Meier plot comparing survival probabilities through time for pooled 
treatment groups within high (left panel) and low (right panel) resource environments. Cox 
regression hazard ratios for the same model are depicted in Fig. S2.5.  
 
  

The Cox hazard ratio model revealed that compared to the high resource environment, the 

low resource environment had a 2.26 times higher survival risk (Wald z = 35.04, p < 0.001). 

Compared to the monomorphic FF group, which had the highest survival, the monomorphic SS 

group had a 2.60 times greater survival risk (Wald z = 28.03, p < 0.001), the monomorphic SF 

group had a 1.99 times higher survival risk (Wald z = 22.09, p < 0.001), and the polymorphic group 

had a 1.65 times higher survival risk (Wald z = 15.69, p < 0.001; Fig. S2.5). A non-significant 

interaction term was dropped from the model prior to analysis presented here. 
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Figure S2.5. Survival hazard ratios ranked lowest to highest for pooled Cox regression analysis. 
Reference groups were the high resource environment and the monomorphic FF composition for 
resource level and composition type, respectively.  
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Table S2.6. All diversity effects and components. 

  Diversity Effect Selection Component 

Complementarity 

Component 

Performance 
Measure 

Resource 
Environment 

Expected 
Value 

Observed 
Value 
(SE) t df p 

Observed 

Value 

(SE) t df p 

Observed 

Value 

(SE) t df p 

MR 
(mW/g) Low 87.75 

114.5 
(11.8) 2.68 28 

0.012 
* 

-4.17 

(5.30) -0.79 28 0.44 

28.81 
(11) 2.63 28 

0.014 
* 

  High 192.75 139.4 (12) 4.28 27 
<0.001 
*** 

-4.93 

(2.62) -1.89 25 0.07 

-42.29 
(11.8) 3.58 25 

0.0015 
** 

Energetic 
Intake 
(mW/g) Low 14.5 16.6 (1.6) 1.26 28 0.22 

-0.020 

(0.049) 0.41 28 0.69 

0.293 

(0.23) 1.28 28 0.21 

  High 24.05 
21.15 
(1.6) 2.3 28 0.03 * 

-0.0515 

(0.043) 1.19 26 0.24 

-0.462 

(0.30) 1.56 26 0.13 

Thermo-
regulation 
(Cold stress, 
˚C) Low 0.702 

0.538 
(0.108) 2.16 28 0.04 * 

-0.177 
(0.072) 2.45 28 

0.021 
* 

-0.239 

(0.178) 1.34 28 0.19 

  High 1.72 

1.59 

(0.109) 1.15 28 0.26 

-0.0265 
(0.009) -2.95 28 

0.006 
** 

-0.337 

(0.238) 1.41 28 0.17 

Thermo-
regulation 
(Heat stress, 
˚C) Low -0.233 

-0.174 

(0.045) 1.48 27 0.15 

0.0089 

(0.0047) 1.88 27 0.071 

0.114 

(0.081) 1.42 27 0.17 

  High -0.248 
-0.129 
(0.046) 2.63 25 

0.014 
* 

-0.0013 
(0.004) 0.33 26 0.75 

0.239 
(0.87) 2.74 26 

0.011 
* 

Median 
Survival 
(days) Low 15.7 

14.6 
(0.55) 2.94 28 

0.006 
** 

-0.439 

(0.238) 1.84 28 0.076 

-0.305 

(0.91) 0.34 28 0.74 

 High 20.05 19 (0.56) 1.83 27 0.078 

-0.228 

(0.141) 1.61 28 0.12 

-1.25 

(1.2) 1.04 28 0.31 

 


