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ABSTRACT

MATHEMATICAL MODELING OF CIRCULATION
IN OPEN CHANNELS

An investigation of depth-averaged open channel flow is performed
to determine the physical processes which contribute to the occurrence
of circulating currents. To this end, a mathematical model capable of
resolving secondary flow is derived by integrating the three-dimen-
sional turbulent flow equations over flow depth. An important
feature of the model is the numerical representation of the closure
term for the effective stresses. The finite difference solution pro-
cedure is multi-operational, i.e., consisting of explicit computational
schemes used in conjunction with the alternating-direction implicit
(ADI) method. Two problem configurations are tested in this study:
(1) a channel-pool system; and (2) a channel expansion. Results
from the numerical experiments appear to be reasonable. In this
study, the mechanisms of the effective stresses, convective inertia,
and friction are found to be important factors in the circulation
phenomenon. Additionally, the numerical specification of the modeled
problem is shown to be a major consideration in the simulation of

circulating flow.



PREFACE

The clarification of the physical nature of circulation in a free
surface flow context has eluded the engineering profession. Herein,
a numerical model is used as the tool to investigate the interaction of
the wvarious contributing forces, i.e., convective inertia, effective
stresses, and bottom friction. The study seeks answers to fundamental
questions, and therefore, is within the realm of basic research. Its
findings will hopefully pave the way for a better understanding of
circulating flow in particular, and of two-dimensional numerical models
in general.

This study was made possible by a grant from the National
Science Foundation, grant No. CME-7805458. The support of this

institution is gratefully acknowledged.

V. M. Ponce
S. B. Yabusaki
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CHAPTER 1
INTRODUCTION

The study of depth-averaged open channel flow is essential for
the solution of contemporary problems which face those who manage the
utilization of waterways, harbors, and estuaries. Potential changes in
boundary geometry or discharge will undoubtedly disturb the
established pattern of currents relied upon for navigation. Localized
effects of sediment deposition and degradation are of primary concern
in the development of alluvial channels. The siting of cooling facilities
will have a significant effect upon the biological community in the area.
Dilution of industrial wastes depends on the dispersion provided by
currents at the point of injection. All the above are problems which
lend themselves to the application of two-dimensional mathematical
modeling.

Mathematical models have been developed in response to the
absence of analytical solutions for the turbulent fluid flow equations.
Previous to the development of efficient high-speed computer hard-
ware, physical models were wused exclusively where complex flow
phenomena was to be investigated. However, as advances were made
in computer technology, economies in time and effort soon made
computer modeling a viable alternative. Presently, mathematical models
of various levels of sophistication are available.

Two-dimensional plane flow models have existed since the mid
1960's. These models offer a compromise between the simple one-dimen-
sional routing of water and the cumbersome and expensive three-dimen-
sional formulation. An important consideration in the selection of a

two-dimensional model is the ability of the model to simulate secondary



flow, 1i.e., circulation. Although such models do exist, a
comprehensive analysis of the individual mechanisms which interact to
produce circulation has not been attempted with a numerical model.

The objectives of this study are twofold: (1) the clarification of
the physical processes leading to the generation of circulation; and (2)
the identification of important factors in the numerical specification of
circulation problems. Of particular interest in the physical process
investigation are the actions of the effective shear stresses, convective
inertia, and bed resistance. Earlier studies have pointed out the
probable links between these terms and the occurrence of secondary
flow. In a discrete representation of a continuum problem, a variety
of computational procedures and boundary conditions are available.
This study seeks to identify the behavioral differences caused by a
particular selection of discretization parameters and boundary condi-
tions.

In accordance with the outlined objectives, a review of research
efforts prior to this study is presented in Chapter 2. The governing
equations of depth-averaged turbulent fluid flow are derived in Chapter
3. By integrating the general three-dimensional Navier-Stokes equa-
tions over the flow depth, the resulting mathematical model consists of
two momentum equations and one continuity equation. In Chapter 4,
the three equations are expressed in a finite difference formulation
amenable to numerical solution. A multi-operational procedure utilizing
both implicit and explicit computational schemes is selected to solve for
the dependent variables. Specific application of the numerical model to
several geometric configurations and boundary conditions is described

in Chapter 5. An extensive testing program designed to isolate



individual processes of the circulation phenomena is performed on two
configurations: (1) a channel-pool system; and (2) a sudden channel
expansion. Results of these experiments are analyzed and evaluated in
Chapter 6. Chapter 7 summarizes the contributions of this study and
recommends areas of future research. A listing of the FORTRAN

computer code is given in Appendix IV.



CHAPTER 2
REVIEW OF LITERATURE

2.1 INTRODUCTION

The mathematical modeling of open channel flow is a relatively
recent development in the field of hydraulic engineering. Before the
computer became available, extensive use was made of physical models
since analytical methods could only handle the highly simplified cases.
These physical hydraulic models provided engineers with reasonably
good answers to complex problems, but required large amounts of
effort and time. In addition, the finished models were inflexible, and
costly modifications were needed if different conditions were to be
tested. As developments in the technology of high speed digital
computers increased the computational efficiency and memory storage
space, there was a parallel advance in mathematical models and a
stronger research effort in the refinement of such models. Mathematical
models require smaller development and operating costs while offering
almost unlimited flexibility in the simulation of alternatives. Certain
specialized problems still remain within the realm of physical modeling,
but the use of mathematical models continues to grow.

The mathematical description of open channel flow is best
accomplished in a three-dimensional spatial framework. However, the
complexity of a formulation in three dimensions and the associated
effort in constructing and operating a numerical model may be tremen-
dous, and therefore, the cost prohibitive. Thus, simplifications in the
model specification which are reasonably wvalid for the prototype situa-
tion are continuously being sought. Often, a considerable reduction in

complexity and cost can be achieved by removing a spatial dimension



from consideration. Fortunately, many instances exist in which less
complex two- and one-dimensional models are sufficient to properly
describe the problem under consideration.

Early success in the mathematical modeling of open channel flows
occurred in the one-dimensional flood routing in rivers. The objective
of these models was the calculation of flood stages in stream channels.
Initially, flood routing models were based on lumped parameters and
simplified forms of the Saint Venant equations of unsteady open channel
flow. Thus, these simulations were limited not only to the accuracy
with which a one-dimensional formulation could describe a three-dimen-
sional phenomena, but also to the specific range of applicability dictated
by the simplifying assumptions to the Saint Venant equations.

Hydrologic (or storage) routing is a lumped parameter approach
to the flood routing problem. In this method of routing, a simple
algebraic relationship between flow and storage is used in lieu of the
more complex governing partial differential equations. In the case of
flood waves passing through reservoirs, the dominance of storage
effects over the resistance and inertia forces allows the use of the
water continuity equation alone. This is the basis of the level pool
routing procedure.

In the case of flood waves through stream channels, the reach
storage is shown to depend not only on the outflow as in the reservoir
case, but also on the inflow. Therefore, in stream channel routing,
both the equations of water continuity and motion need to be included
in the formulation of a one-dimensional unsteady flow model. In this
case, it is often advantageous from the practical standpoint to omit

terms of negligible magnitude in the equation of motion. This gives



rise to several approximate wave models, each possessing a range of
applicability associated with the omitted terms. The Kkinematic wave
model is the simplest of these approximate models, describing flood
wave travel by a balance of friction and gravity forces, neglecting all
other forces.

Another approximate model widely used in practice is the diffusive
wave model. By including the pressure force in addition to the friction
and gravity forces, this model is capable of simulating both flood wave
travel and attenuation. A general treatment of one-dimensional open
channel flow is given by the dynamic wave model in which all terms of

the Saint Venant equation are included in the analysis.

2.2 TWO-DIMENSIONAL MODELS

Many open channel flow problems cannot be adequately described
in one space dimension. Among these are flow in estuaries, lakes, and
embayments. Two-dimensional modeling is, in many instances, appro-
priate to describe some of the important features of these flows. 1In
general, a two~dimensional model can be either of the plan-view or
vertical-view type. In a plan-view model, the flow properties are
averaged in the vertical direction, while in a vertical-view model they
are averaged in one of the horizontal directions. In the context of this
work, a two-dimensional model will be understood to refer to a plan-
view model, unless specifically stated otherwise. Models of the plan-
view type are used in the cases where the channel width is several
times the average flow depth, enabling the bottom roughness to effec-
tively generate a uniform velocity distribution in the vertical direction.

Two-dimensional numerical models of open channel flow are

relatively recent developments, and thus, most of the work in this field



dates back to the last two decades. In essence, two-dimensional models
are formulated by integrating the three-dimensional equations of fluid
dynamics over the flow depth. The two-dimensional depth-integrated
system of equations is not without its pitfalls: there is a closure pro-
blem associated with the effective shear stresses which act tangentially
on vertical sides of a fluid element. No rigorous relation between these
stresses and the depth-averaged variables is currently available. In
addition, some other terms of the depth-integrated equation set are
often omitted for reasons of mathematical expediency.

Two-dimensional modeling of flow in lakes is sometimes
accomplished without some of the terms included in the depth-integrated
equation set. By nature, lake circulation is driven primarily by the
surface wind stresses and the geostrophic Coriolis acceleration. Thus,
it is not uncommon for modelers to neglect the convective inertia, fric-
tion, or effective shear stresses, although the basis for these deletions
is sometimes open to question. A further simplification which appears
fully justified for lake circulation models is the assumption of a planar
water surface, referred to in the literature as the "rigid lid" approxi-
mation.

The early research on depth-averaged two-dimensional mathematical
models was in connection with studies of the ocean environment.
Hansen (9) is widely credited for being the first to outline the depth-
averaged two-dimensional formulation as it is known today. Later,
several other researchers, most notably Leendertse (13,14), followed
Hansen in applying two-dimensional modeling concepts to the study
of estuarine and coastal hydrodynamics. Using a depth-averaged

two-dimensional model, Leendertse (13) satisfactorily calibrated a



simulation of currents and water depths in several estuaries.
Particular emphasis was given in Leendertse's work to the numerical
properties of the two-dimensional model, as evidenced by the linear
analysis of stability and convergence following the wvon Neumann
technique (17).

In the last decade, an increased awareness of environmental
aspects has led to the inclusion of pollutant, sediment and thermal
transport in the numerical modeling of two-dimensional flows. An
important feature of these models is the accurate description of
secondary currents. It is often these currents that carry heat and
pollutants away from coasts, and influence the natural morphologic
processes of erosion and accretion. Accordingly, it is necessary that
the physical processes governing these currents be correctly under-
stood and properly accounted for in the numerical model.

Kuipers and Vreugdenhil (10) extended Leendertse's model to
accomodate steady circulating flow by considering the physical mecha-
nism responsible for vorticity generation. A salient feature of the
Kuipers and Vreugdenhil model is that the turbulent diffusion
necessary to transfer energy from the main flow to the secondary flow
is not explicitly included in the finite difference equations. Rather, it
appears as a byproduct of the spatial smoothing which is necessary to
control nonlinear instability. In a companion report, Flokstra (6)
emphasized the need to explicitly account for the effective shear
stresses in modeling circulating flow. The specification of a no-slip
condition at closed boundaries was deemed necessary by Flokstra,
reasoning that the wall shear was more important than bottom shear in

generating and maintaining vorticity in the flow. Abbott and Rasmussen



(2) verified Kuipers and Vreugdenhil's finding that convective inertia
is absolutely necessary for the generation of secondary flow, and
acknowledged that "pseudo-circulation" in some models could be due to
the effect of numerical diffusion inherent in first order finite difference
approximations.

More recently, attention has been focused on ways of improving
the representation of the effective shear stresses in two-dimensional
models. In the past, if these stresses were included at all, a constant
turbulent diffusivity (23) was used as a way of closing the equation
set. McGuirk and Rodi (16) have recently cast doubts on the validity
of such an approximation for the case of jet flows in which the
turbulent diffusion processes become very important. Following
Launder and Spalding (11), they used a turbulence model in which the
transport properties were expressed as a function of the mean flow
variables. Lean and Weare (12) have identified two turbulent contribu-
tions to the dominant effective shear stress: (1) bed-generated
turbulence, and (2) shear layer turbulence. Each of these contribu-
tions can be expressed in terms of an eddy viscosity dependent on
flow conditions. Criteria was then established by which a simplified

analysis, using just one type of eddy viscosity, could be applied.

2.3 THREE-DIMENSIONAL MODELS

For certain applications, a two-dimensional representation of open
channel flow may not be adequate to describe the flow in question.
This is the case, for instance, of stratified flows and flows with
vertical secondary currents. In order to properly describe such
three-dimensional features, it is necessary to resort to a three-dimen-

sional model. Several of these models have been developed over the
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last few years, but the attendant complexity and low cost effectiveness
has hindered their further use.

Examples of three-dimensional models of free surface flows are
those of Leendertse and Liu (15) and Rastogi and Rodi (22).
Leendertse and Liu (15) extended the two-dimensional modeling concept
to three-dimensions, by layering planes of two-dimensional models to
provide a reasonable description of the variation of flow properties in
the vertical direction. Their formulation was fully explicit, and there-
fore, limited in the grid size by the Courant criterion.

Rastogi and Rodi (22) developed a model for three-dimensional free
surface flow by expressing the Navier-Stokes equations for flows that
are parabolic in the longitudinal direction. Therefore, in the Rastogi
and Rodi model, downstream effects cannot influence the upstream flow.
Such parabolic-type equations are amenable to the particularly economic
solution method of marching forward integration developed by Patankar
and Spalding (18). However, the solution can proceed in the down-
stream direction only when the longitudinal distribution of the flow
depth is known a priori, since the latter is normally controlled by
downstream events. A particular feature of the Rastogi and Rodi
model is the use of a turbulence model originally due to Launder and
Spalding (11). In this model, the local state of turbulence is charac-
terized by two-parameters: the kinetic energy k1 of the turbulent
motion, and its rate of dissipation €1- The parameter k1 is a meas-
ure of the intensity of the turbulent fluctuations, while €4 is closely
related to a length scale L characterizing the turbulent motion. The
variation of k1 and g, over the flow field is determined by semi-

empirical transport models based on the Navier-Stokes equations.
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2.4 DEPTH-AVERAGED TWO-DIMENSIONAL MODELS

In a comprehensive analysis of free surface flow in two horizontal
directions, Leendertse (13) developed a computational model for long
period wave propagation in well-mixed estuaries and coastal seas. With
this application in mind, the effect of flow nonuniformity was not
significant, rendering the effective stresses negligible when compared
with bottom friction. Therefore, a reasonably accurate representation
was possible without including the effective stresses in the governing
equations. The numerical properties of the computational model were
determined through a linear analysis of the finite difference equations.
The nonlinear resistance and convective terms were omitted and studied
separately. The scheme was classified as second order accurate with
good convergence characteristics. In an effort to find a stable and
accurate difference scheme, the von Neumann linear stability criteria
was applied to several discrete representations of the partial differen-
tial equations, resulting in the selection of a multi-operational solution
scheme, with alternating-direction and mixed explicit-implicit formula-
tion. An amplitude and phase error analysis associated with the com-
plex propagation technique used to assess numerical stability, found
that while large time increments were satisfactory with respect to
stability, computed wave velocities under these conditions were smaller
than physical wave velocities. A similar dispersive numerical effect
occurred when too few discrete grid points were used to resolve the
continuum problem. The forward difference implicit method was identi~
fied as strongly diffusive, damping out both physical and error waves
in the computational process. The difficulty in analyzing the nonlinear

terms, as mentioned above, led to a separate treatment. Energy
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transfer from long waves to short waves is interrupted when the size
of the physical wave is twice that of the spatial grid increment, i.e.,
at the minimum grid resolution. Nonlinear terms feed these accumulat-
ing short waves back into the system until the computation becomes
unstable. Thus, some dissipation function, physical or otherwise,
must be used in the calculation in order to arrest the explosive growth
of energy. Instabilities also occurred when an off-centered finite
difference representation of the convective terms was used at the
closed boundaries of the model. For this reason, the convective
inertia terms were eliminated from calculations adjacent to boundary
points. The magnitude of these terms was considered to be small and
therefore, their neglect justified for the sake of improved model
stability .

Kuipers and Vreugdenhil (10) extended Leendertse's 1967 model to
the realm of secondary flows. By imposing a steady condition at the
open boundaries, they were able to use the unsteady character of
Leendertse's model as an iterative technique to approach steady circu-
lating flow in certain specified boundary configurations. A theoretical
analysis of the vorticity-generating mechanisms was performed in order
to throw additional light onto the causes of circulating flow in depth-
averaged two-dimensional models. Excluding wind stresses, vorticity
can be created either by the convective term, interacting with converg-
ing or diverging flow; or through the effective shear stresses. The
importance of these two mechanisms was found to be dependent on the
distance over which changes in the velocity profile took place. If that
distance is less than "a few hundred times the water depth," the effec-

tive stresses and convective inertia are significant. Three components
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of effective shear stresses were identified: (1) viscous stresses; (2)
turbulent stresses; and (3) large-scale momentum transfer due to the
departure of the local velocity from the depth-averaged velocity. This
last contribution is considered to be the most important, arising
primarily as a byproduct of the depth-integration of the original three-
dimensional equations. Numerical experiments showed the necessity of
including the convective inertia terms in order to model two-dimensional
circulating flow. Oscillations of a numerical nature are attributed to
nonlinear interaction, and are filtered out using artificial viscosity to
dissipate the energy piled up at the subgrid scale. The observed
circulation in the model is attributed to the combined effect of the
convective inertia terms and the artificial viscosity, since no explicit
account of the effective stresses was made. In fact, the artificial
viscosity is used in lieu of the effective stresses, in an extension to
two-dimensions of the well-known one-dimensional numerical diffusion
effect (4). An analog of the eddy diffusivity associated with the
effective stresses is identified, but apparently there is no physical
basis with which to select its magnitude.

In a companion report to Kuipers and Vreugdenhil (10),
Flokstra (6) directed attention to the importance of correctly modeling
the effective shear stresses. Without actually resolving the closure
problem associated with the modeling of these stresses, Flokstra made a
detailed study of the relevant physical mechanisms in generating circu-
lating flow. Building on the factors identified by Kuipers and
Vreugdenhil as important to secondary flow, Flokstra made use of a
vorticity balance to further investigate the combined effect of these

factors. According to this analysis, it is theoretically impossible to
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generate circulating flows without modeling the effective shear stresses.
Additionally, the cross term was singled out as the most important of
the three effective stresses, since the turbulent part of these terms
can be shown to transfer energy into the eddies, while the convective
part transfers energy out. Although both Leendertse and Kuipers and
Vreugdenhil eliminate the effective shear stresses from the respective
equation set, circulation occurs in the latter model as a direct conse-
quence of spatial smoothing. In free shear layers, the effective shear
stresses dominate the vorticity-dissipating effects of bottom friction.
In such cases where a single type of turbulence mechanism is preva-
lent, a simplified turbulence model of the effective shear stresses is
recommended. In addition, Flokstra's analysis leads to the conclusion
that a no-slip condition at the closed boundaries is essential to the
generation of eddy circulating patterns.

Abbott and Rasmussen (2) described circulation in rapidly
expanding and contracting flow using a depth-averaged model where
convected momenta and bottom friction were the primary considerations.
They verified Kuipers and Vreugdenhil's conclusion that the convective
inertia terms are necessary for the generation of circulation. However,
in contradiction with the previous authors, Abbott and Rasmussen
concluded that the resistance effects are important in the generation of
circulation. Using physical reasoning, they attributed the circulatory
patterns to a direct consequence of the resistance effects dominating
the inertial effects. The use of two separate dispersion coefficients to
handle momentum transfers that are resolvable with the grid and those
that are not, is recommended. These coefficients are related to the

amount of bottom friction. When the convective terms are modeled
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accurately, strong dispersion smooths the effects of a rough grid while
leaving the flow field virtually unaffected. Abbott and Rasmussen
concluded that "pseudo-circulations," occurring strictly due to the
truncation errors of the first order difference schemes were possible in
depth-averaged two-dimensional models.

Flokstra (7) studied the closure problem in depth-averaged
two-dimensional flow, and concluded that the mechanism of energy
transfer in two-dimensional models is significantly different from that
found in the real three-dimensional world. According to Flokstra, the
three-dimensional energy transfer is from larger scales to smaller
scales, while the opposite is true for two-dimensional flow. Thus, the
use of three-dimensional turbulence models to simulate the effective
shear stresses in depth-averaged two-dimensional flow is not justified.
The problem is complicated by the presence of three-dimensional compo-
nents in the depth-averaged effective shear stresses. More research
remains to be carried out in order to clarify the importance of this
problem.

The occurrence of nonlinear instability in two-dimensional
numerical models was also studied by Flokstra. Three approaches were
cited to handle this problem: (1) a spatial smoothing process similar
to that used by Kuipers and Vreugdenhil; (2) the explicit introduction
of an eddy viscosity term in the equations of motion; and (3) the use
of a difference scheme that generates numerical viscosity. Considerable
care must be exercised in order to prevent the dissipative mechanisms
from masking the accuracy of the overall computation.

Rastogi and Rodi (22), emphasizing the importance of an accurate

portrayal of turbulent flow in mathematical models, presented two- and
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three-dimensional open channel flow models that contained turbulent
transport parameters coupled with the main flow. In each case, a
law-of-the-wall was used in conjunction with the two-parameter turbu-
lent transport model of Launder and Spalding (11). Empirical transport
constants, not problem-specific, were used in order to evaluate the
transport terms. Due to the strict two-dimensional representation
used, circulation is not described by the Rastogi and Rodi model.

McGuirk and Rodi (16), upon the same lines of Rastogi and Rodi
(22), developed a depth-averaged velocity and contaminant distribution
model of open channel flow. They considered the problem of a recircu-
lation region immediately downstream of a side discharge into a flowing
river. The model idealized the free surface with the "rigid lid"
approximation, neglecting the variation of flow depth. This assumption
is valid provided water level variations are small compared with the
flow depth, and is not justified for long stretches of gradually varied
flow in which large variations in flow depth can occur in the streamwise
direction. However, the effects of a lateral surface slope are accounted
for by allowing the pressure to vary at the water surface. Considering
the constant turbulent diffusion coefficient and nonexplicit representa-
tions of the turbulent structure too crude for the side jet phenomena,
McGuirk and Rodi (16) utilized an extension of Launder and Spalding's
(11) two-dimensional turbulence model. A closure analysis indicated
that the amount of numerical diffusion introduced by an upwind differ-
encing scheme for the convective terms, was significantly smaller than
the turbulent diffusion in regions in which diffusion was important.

Lean and Weare (12) tested Flokstra's theoretically-based conclu-
sions using a depth-averaged circulation model of flows past a break-

water. The effective stresses are shown to have contributions from
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shear layer turbulence and turbulence generated at the bed. Criteria
is presented to delimit the conditions under which the shear layer
turbulence will predominate. Since only bed-generated turbulence can
be represented in terms of mean flow variables, a turbulence model is
required to model the effective stresses. An observation of numerical
circulation (8) similar to that experienced by Abbott and Rasmussen (2)
but caused by a coarse computational grid, is used to dispute
Flokstra's argument that the effective stresses are necessary for circu-
lating flow to occur. Numerical experiments of secondary flow genera-
tion verified the importance of the convective inertia terms and the

no-slip condition at closed boundaries.

2.5 SUMMARY

At present, many uncertainties exist in the mathematical modeling
of depth-averaged two-dimensional open channel flow. Clearly, the
main obstacle to reliable modeling in two-dimensions is the accurate,
physical description of the effective shear stresses. Although indis-
putably tied to the vorticity phenomena, these stresses have been
represented by a wide variety of approaches, ranging from total
neglect to sophisticated three-dimensional turbulence models. However
successful each of these methods purports to be, until the physical
nature of the effective stress terms is further clarified, the modeling
will have to rely strongly on the calibration phase.

Convective inertia is also important to the vorticity-generating
mechanism. Apparently, these terms interact with the effective
stresses to produce circulation in two-dimensional flow. While the
structure of the convective inertia terms is readily identified in the

governing equations, their nonlinearity complicates the formulation and
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often leads to numerical stability problems. The control of nonlinear
instability requires the wuse of some artifice to smooth out error
growth. Unfortunately, the additional viscosity created by the smooth-
ing procedure can sometimes cause the numerical solution to deviate
from the physical solution.

There is an apparent confusion regarding the effect of bed
resistance in two-dimensional circulation. The opposing views
expressed in the literature may reflect the manner in which the effec-
tive stresses were defined in these models. Similarly, Flokstra's
conclusion regarding the need for a no-slip condition at closed
boundaries may be suspect in view of the circulation under a partial-
slip velocity profile observed in the Kuipers and Vreugdenhil model.

The occurrence of numerical circulation (1,8,20) should temper
hasty interpretations regarding the success of modeling circulating
flow. Unless a complete closure analysis is performed, the effect of
truncation error will tend to mask the physical problem. The problems
associated with this aspect of two-dimensional modeling are indeed
complex. The objective of current research in this area is to contri-
bute to the understanding of the model behavior and its relation to the
physical problem, i.e., the closure of two-dimensional numerical diffu-
sion in a manner similar to the closure of one-dimensional numerical

diffusion (4).



CHAPTER 3
GOVERNING EQUATIONS

3.1 INTRODUCTION

This chapter describes the derivation of equations applicable to
the mathematical modeling of depth-averaged two-dimensional open
channel flow. Essentially, the turbulent flow phenomena is described
only in the horizontal plane, with all fluid and flow properties invariant
along a vertical line. Beginning with a presentation of the general
three-dimensional equations of turbulent flow in section 3.2, the
analysis proceeds in section 3.3 to detail the integration process leading
to the special case of depth-averaged two-dimensional flow (10,21,24).
The assumptions and limitations inherent in the derivation are clearly
noted in order to ensure proper application of the model. Closure pro-
blems associated with the representation of the effective shear stresses
and the bottom stresses are discussed in section 3.4. Finally, various
terms in the momentum equation are reviewed in section 3.5, with the
aim of clarifying their physical contribution to the circulation

phenomenon.

3.2 GENERAL EQUATIONS OF TURBULENT FLOW

In describing general three-dimensional flow, basic principles of
mass and momentum conservation are used to derive the governing
equations that relate the flow variables. For the case of mass conser-
vation, the net mass flux through a control volume is balanced by a

changing fluid density as illustrated by the following equation:

d a(pu) , 3a(pv) , a(pw) _
§ftg+ 5x T dy T 5z =0 .1

in which p = fluid density; u, v, w = velocity components; x, y, 2z =

coordinate system; and t = time. This equation is valid provided there
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is an absence of internal mass sources and the fluid is continuous in
space.

If instead of a mass flux balance, a momentum flux balance is
performed on the control volume, the following equations can be deter-

mined:

d(pu) + a(puz) + d(puv) + d(puw)

ot ax dy 5z + pfw - ofv
at 9 9t
- _9p XX tyx ZX
ox T Tox oy * B2 (3.2)

a(pv) , 3a(puv) . a(pvz) + 9Cpvw)

ot ox dy 5zt pfu - pfw
o1 3] oT
_ .o, xy , Yy, Ttz
ay T ox T By T oz (3.3)

d(pw) + d(puw) + d(pvw) + 8(pw2)

at 9% 3y 5zt PV - pfu
ot aT It
- _9p _ X2 yz 22
T5z TPET 5 T ey Tz (3.4)

in which f = Coriolis parameter, (f = 2 wsin¢); w = angular velocity of
the earth's rotation; ¢ = geographical latitude; p = average pressure;
and g = gravitational acceleration.

The surface stress txy is defined as:

_ ou , 9V, _ o
txy = py v +ax) pu'v (3.5)
in which v = kinematic wviscosity; and u'v' = average correlation of

turbulent velocity fluctuations. Other surface stresses are defined
similarly. The components of the surface stress represent contributions

from molecular viscosity and turbulent momentum transfer (Reynolds
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stress), respectively. In addition to the foregoing assumptions,
internal sources of momentum have been excluded from the equations.
The presence of the gravitational body force in the z-component of the
momentum equation implies the selection of the z-coordinate to be posi-
tive extending perpendicularly outward from the earth's surface.

A basic assumption of the flow considered in this study is that
vertical accelerations and velocities are negligible compared to that of
gravity; therefore, the assumption of hydrostatic pressure distribution
in the vertical is valid. As a result of this, Coriolis terms containing
the wvertical wvelocity become negligible compared to the remaining
Coriolis terms. The magnitude of the gravitational body force in the
z-component momentum equation is many times larger than the remaining
terms except for the vertical pressure gradient. Therefore, this
reduces the conservation of momentum in the z-direction to an expres-
sion of hydrostatic pressure distribution in the vertical. The resulting

momentum equations are expressed as follows:

a(pu) . a(puz) + 2(puv) | a(puw) _

ot ax ay 9z ptv

= - g% + 8;?{ + Z?:X + a;zzx (3.6)
8(2;7) + 8({;)}1{1v) + 8(3;;2) + 8(8£>ZVW) + pfu

-2, Txy :gy v zy (3.7)
3 - . g (8.8)

0z

The kinematic and dynamic boundary conditions are useful in the

formulation of the depth-integrated form of the governing equations.
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These two sets of conditions constitute a statement of mass and
momentum principles applied to surface and bottom control volumes
Figure 3.1 illustrates the equilibrium of mass fluxes at the water
surface under the assumption of incompressible flow. Similarly, the
bottom element is shown in Figure 3.2.

If small terms are neglected, the mass flux balance generates the

kinematic boundary conditions:

on an _ an -
Ul 5% + v 3y w| + 5t = 0 (3.9)
n n
9z 8z
u —a—}}% + Vv ’a—yl‘)' - W =0 (3.10)
%p %b %
in which n = water surface elevation, (n = 2y + h); 2, = bottom

elevation; and h = flow depth. Inherent in these two equations are
the assumptions of negligible precipitation and evaporation at the water
surface, while at the bottom, the bed is considered to be fixed and
impermeable.

Using a similar procedure that enabled the Kkinematic boundary
conditions to be determined, a stress balance is performed on the
surface and bottom control volumes as shown in Figures 3.3 and 3.4,
yielding the dynamic boundary conditions:

at the surface

an -] o on o
Ps ax * Tsx " P| &% Txx Ix tYX oy * Yox (3.11)
n n n n
an S| . o _ on
Ps dy + rsy P 3y T,Xy 5% '[yy, By + tzy (3.12)
, n n n n
; an an .| . on _ an
Fs * Tex ox * Tsy 9y~ pl Txz| 3x " YWz | 3y T Tzz (3.13)
n n n n
at the bottom
0z az 9 o9z
b - b Zb b
Pb X + th =P 5% IXX 5% yx 5{;‘“ IZX (3.14)
Zb Zb zb
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0

9y
2y
0z o

b % _

Pyt %y 5x T hydy - P

azb

sz
Pba_erTby=p

yy}Z By Xy
b

8zb

-1 (3.15)

— + T
90X zy
2y, z

b

I (3.16)

XzZ|_ 9X vz 9y 2z

in which PS = pressure on water surface; Pb = pressure from bed;

T T = surface shear stresses; and Thx? rby = bottom shear

sX’ sy
stresses. Equations 3.11 to 3.16 are based on the assumption that the
direction of action of surface and bottom shear stresses deviates very

little from the coordinate directions.

3.3 VERTICAL INTEGRATION

The assumptions made so far have not seriously impaired the
general applicability of the two-dimensional formulation. Integrating
the governing equations over the flow depth, however, places a severe
limitation on the applicability of the model because in so doing, the
information on the vertical distribution of wvelocities is partially lost.
Fortunately, the shallow water levels found in most rivers and estuaries
often do not require such detailed information for a satisfactory repre-
sentation. Several successful estuarine models reported in the litera-
ture operate under the constraint of a depth-integrated formulation.
On the other hand, three dimensional phenomena such as stratified
flows and buoyancy effects cannot be accurately described under these
conditions.

At this point, it may be instructive to clarify the difference
between a two-dimensional idealization of flow and the depth-averaged
formulation used in this study. A strictly two-dimensional flow ideal-
ization does not account for the wvariation of the horizontal velocities

over the flow depth, thus relying solely on turbulence as the energy
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transfer mechanism. Integrating the three-dimensional equations over
the flow depth results in terms which do consider the nonuniform
velocity distribution in the vertical. These three-dimensional
characteristics are found in the effective shear stress terms which
occur as a byproduct of the vertical integration of the convective
inertia and surface stress terms in the momentum equations. Further
details of the nature of these effective shear stresses are presented in
the following section.

The depth-averaging process begins with the integration of the

mass conservation equation, leading to the following equation:

n n n n
% gz v g AW gy 4 g —La(a;’) az+f X0 ;=0  (3.17)
2, 2y, R 2
Using Liebnitz's rule, the order of integration and differentiation

are reversed, yielding:

n 9z n 3z
3 - ol b, 3 - an _b
atfzpdz pat+pza +axfzp“dz Pul 5x T PN Bx
b n b b n b
n 3
+g-3-,f pv dz - pv g—;‘+pv —é—§+pw -pw| =0 (3.18)
Zb n Zb n Zb

The kinematic boundary conditions, the assumption of incompress-
ibility and a fixed bed, allow Equation 3.18 to be simplified to:

an , dhu) | 3(hv) _
T <t 3y =0 (3.19)

in which F = 1—1; J F dz; F = any property; and F = any average
property. Physically speaking, this depth-averaged form of the mass
conservation equation balances the net outflux of water from a control
volume by a decrease in storage volume, i.e., a falling water surface.

Similarly, the equations of conservation of momentum in integrated

form are given below:
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9z n 9z
a 3 b, 2 2 2| 9 2| “%p
spd pudz-pu)\gireu) g v gy f el dz-pu®) g et 5
b n b @ d b
t oy J puv dz - puv 5y tPUV| 5y teuw| -puw| - f [ pvdz
2y, n zy n 2, 2y
9z n 9z
8 A . | oan b _ 9 on _ b
tox JPAZ - Pl 5ot Pl 5 7 oax d Tkx9Zt iy | 5x T Txx | 3%
%b L %y b L b
9z
9 an b -
- = dz + 1 = -1 —_— - T + 1 =0 (3.20)
oy y Tyx x| 9y yx y zZX ZX
b L b L b
9z n 9z
3 N 3 ) b
3t J pvdz - pv sr}: + pv —§f§+ g—x | puvdz - puv 5—?{ + puv 3%
@ L Zp % d p
3 N 9| an 2| 9% n
+ '8—3—7 _r pv %Z - pVv L s—g; + pv 'é—y—+ PVW | - pVw + f f pu dz
z Z n Z Z
b b b b
9z n dz
s an b 2 an b
+5= [ pdz - p +p - 5o J 1, dz+ -1
9y Jy Jy ox Xy xy| 9x xy|_ 9x
@ d @ p e b
oz
2 an b
" 5y dz + - =0 (3.21
oy . Tyy%2 * Tyy| oy T Yyy| By " Tay|. t Tay (3.21)
Zph n Z n zy

In addition to the kinematic boundary conditions and the
assumptions used previously, the dynamic boundary conditions are also

employed here, resulting in the following equations:
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n n n
9 - d 2 9 = 19
5T (uh)+——-aX fz udz+a——y£ quZ'th+Ea_—fo pdz
b b b
13 A 13 N 1
_BBXI txxdz_ﬁayf 1:yxdz_ﬁw(tsx Tox)
Z Z
b b
oz
1 b 1 an _
+ 5 Pb 5% 5 PS 5% = 0 (3.22)
n n n
9 - 3 3 2 - .13
a'—f(Vh)*"a—XfZ quZ+5—§£ VdZ+f'LIh+55§;£ p dz
b b b
-1a fn‘t dz - 1 & ot dz - =(v__ - 1 )
p X 7, Xy POy, VY sy by
3z
1 b 1 an _

Further simplification is possible as a consequence of earlier
approximations. The air pressure at the water surface, PS, is zero
since the water pressure is gage-referenced., The assumption of

hydrostatic pressure distribution enables the following expressions:

n
if pdz

5 5% . = ghsi- (324)
b
P, 3y
Pb = pgh (3.26)

If the convective inertia terms are manipulated using the algebraic

relations:
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wl = (u-)2 + 2ud - a2 (3.27)
uv = (u-u)(v-v) + uv + uv - uv (3.28)
v2 = (v-9)2 + 2vv - 2 (3.29)

the momentum equations can be written as follows:

(uh) + f (u- u)zdz + (u h) + 7 fn (u-u)(v-v)dz
z

%p b
+2 Givh) - foh + gn21 - 12 1 o g
Iy g1 3x paxz XX
b
I L TNt (3.30)
pay -, yx p *'sx bx’ ’
b

(vh) + 2 f (u-u)(v-v)dz +~—- (uvh) + 2 59 f (v- V)zdz

% %h
3 - - on 13 N
+ 53—7 (Vz h) + fuh + gh 3y —b—é—x f '[Xy dz
%
19 N 1
- 19 - = - = 3.31
poy I Ty 5 (Tey = Tpy) = 0 (3.31)

The notation can be shortened by defining the effective stresses

as follows:

T. =1 fn [t.. - p(u-ﬁ)zldz (3.32)
XX h 5 XX )
b
- _1 7 =\ oo s
Txy = Tyx = -flfz [tyX - p(u-u)(v-v)ldz (3.33)
b
T =1 M e az (3.34)
yy h vy

2y
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Therefore, the resulting equations are:

& i+ why + & = (Gvh) - fvh + gh § )

1(1:

19 _
" p SX-IbX) p ax (hT ) p dy (hT_ ) =0 (3.35)

Xy
- (%h) + I (ivh) + —g, (+#h) + fuh + gh %!317

1('£

- 5 (gt - an(T )y-22 Ty =o0 (3.36)

p 3y yy

If the derivatives of the first three terms in each equation are
expanded, terms found in the equation of mass conservation appear,
and can, therefore, be canceled. The final form of the momentum

equations is determined by dividing through by the water depth, h, to

give:

u

Q

- - du ~ 1
ot T Usx T Vsy -fV+g5i-f)—fl(tsx—tbx)
1 1 3 -
oh ax (hT ) " Oh 9y (hTXy) =0 (3.37)
97, GO, 52 4 g4 g 20 -
6t+u8x+vay tfu+ By ph (ts“y )
1 9 1 3 _
" oh 3% (hTXy) - Sh 3y (hTyy) =0 (3.38)

3.4 SIGNIFICANCE OF THE VARIOUS TERMS IN THE MOMENTUM
EQUATIONS

Certain features of the equations derived in section 3.3 can be
dispensed with in order to clarify the nature of the mechanisms being
tested. For the purposes of this study, the wind stress and
geostrophic effects will be removed from the analysis. Flokstra (6) has
pointed out that these terms are, in part, responsible for the genera-

tion of wvorticity in the flow. Thus, an explanation is necessary in
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order to justify the formal neglect of these terms. For the type of
flow under consideration, i.e., open channel flow, the magnitude of
wind and geostrophic effects is insignificant as compared to the driv-
ing forces found in the mean flow currents. These two terms can be
easily incorporated into the model if desired, and their absence does
not detract from the generality of the conclusions of this study.

The present equation set, although containing many approximations
and simplifications, is not closed. Historically, turbulent flow theory
has suffered from an incomplete physical representation of the turbulent
momentum transfer (Reynolds stresses), i.e., those stresses due to
the correlations of turbulent velocity fluctuations. Depth-averaging
the formulation further complicates the problem by creating an
additional stress due to the nonuniform velocity distribution in the
vertical. These two stresses and the viscous shear stress combine
into the term previously identified as the effective stress. The three
components of the effective stress (viscous, turbulent, and velocity
nonuniformity) each apply a lateral tangential stress on fluid elements
and are inherently tied to the three-dimensional character of the flow.
The viscous shear stress is significant only near walls in the laminar
sublayer and does not generally affect the large scale eddy flow. The
Reynolds stress provides the momentum transfer necessary to drive the
secondary flow, and, according to Flokstra, the nonuniformity compo-
nent of the effective stress dissipates energy, removing momentum
from secondary flow. Lean and Weare (12) include bed-generated
turbulence as a contribution to the effective stress and determine the
criteria under which bed-generated turbulence will dominate shear

layer turbulence.
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Representing the effective stresses in terms of the main flow
variables is by far the largest impediment to the accurate modeling of
circulating flow. Since this problem remains to be solved, the use of
empirical parameters and calibration techniques is unavoidable. Methods
currently used in the literature range from the assumption of a con-
stant turbulent diffusion coefficient, to "field models" which include an
uncoupled turbulence model to calculate turbulent transport terms at
each computational node (22).

In this study, the procedure developed by Kuipers and
Vreugdenhil (10) will be adopted. They used a numerical eddy diffu-

sivity, &, to account for the effective stresses in their model, such

that:
LR a1y +2 (hT, )] = o(20,20
ph '9x XX oy Xy axz ayz (3.39)
L@ mr 3+ e, ) = s34 20 (3.40)
ph "8x Xy Jy vy 8x2 ayz ’
(ax)?
in which € = a s A > OF weighting factor used in the spatial

smoothing by velocity-averaging; Ax = spatial increment; and At =
temporal increment.

The selection of the value of « is not physically-based, and the
need for flow calibration is gpparent. This particular technique does
not explicitly contain the effective shear stresses in the equations
used, but introduces them in a velocity-averaging routine which
simulates the contribution of the effective stresses. In this routine,
an averaging procedure occurs after each set of new dependent

variables has been computed, as follows:

-k

_ - g - - - -
Uy g u].’k(l a) + 3 (uj-l,k U P g uj+1,k) (3.41)
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-k - o - _ )
Vik© V]-,k(l-a) t 7 (Vj-l,k Vg1t Vke Y Vj+1,k) (3.42)

in which ﬁik = new ﬁj,k; {};k’k = new v, 1 and j,k = spatial indices.
When these substitutions are made in the governing equations, the
extra diffusivity terms appear.

The bottom shear stress, like the effective stress, has not been
rigorously related to flow properties. However, years of experimenta-
tion has resulted in the availability of several satisfactory empirical
resistance equations. Any of the applicable resistance equations can
be used to relate the bottom shear stress to the flow velocity, assuming
the validity of a steady uniform flow roughness. The Chézy expression

is preferred for simplicity, due to the dimensionless friction factor, f o

associated with it, as follows:

. =s2.-2.% 3 43
th—pfru(u+v) (3.43)
- =92 9L
Ty = Pl F(av2)? (3.44)
in which f - 5‘2’ and C = Chézy coefficient.

C
3.5 FACTORS INFLUENCING CIRCULATING FLOW
This section will discuss the significance of various terms in the
momentum equation with respect to the generation and maintenance of
circulating flow. Previous modeling attempts have sometimes resorted
to the omission of the effective stress, convective inertia, or friction
terms, due, in part, to the uncertainty or nonlinearity associated with
these terms. The physical reasoning to justify these approximations
was often not very clear.
Flokstra (7), in an analytical evaluation of the vorticity
phenomenon, concluded that the presence of the effective stresses in a

two-dimensional model formulation was a necessary but not sufficient
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condition for the occurrence of secondary flow. These stresses were
considered to be the primary mechanism of momentum exchange between
the shear flow and the circulating flow. Leendertse (13) neglected the
effective stress term, reasoning that it was very small compared to the
bottom stress effects associated with long-period wave behavior in
estuaries. The absence of circulation in Leendertse's model tends to
support the findings of Flokstra. Kuipers and Vreugdenhil (10) were
not conclusive with their experimental testing of the importance of
effective stresses, but claimed that an order of magnitude argument
shows these stresses to be relatively unimportant.

The convective acceleration terms in the momentum equation are
often omitted in numerical modeling because of the nonlinearity intro-
duced into the partial differential equation system. Leendertse
included convective accelerations in his 1967 model but was forced to
remove the nonlinear terms to perform the von Neumann linear stability
analysis. Kuipers and Vreugdenhil theoretically and empirically
established the need to include the convective acceleration in the
analysis of secondary flow. Essentially, the convective acceleration
supplies the mechanism necessary to transport vorticity in the mean
flow. Flokstra (6), with theoretical arguments, and Abbott and
Rasmussen (2), in experiments, have concurred in these findings.

The importance of bottom and closed boundary friction has not
been clearly established in the literature. As noted earlier, Leendertse
believed that the bottom stress effects dominated other stress contribu-
tions for long period waves. Abbott and Rasmussen (2) described the
circulation phenomenon as a competition between inertial and resistance

forces. Flokstra (6) found both the effective stresses and the wall
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stresses to be of more significant influence on vorticity generation than
the bottom shear stress. Thus, a no-slip condition at the wall was
considered to be a necessary requirement for circulation to occur.
Lean and Weare (12) discovered that each of the various shear stresses
could be dominant under different flow conditions. The latter appears
to be the most cogent analysis available when considering the relative
importance of the various shear stresses in generating circulating flow

in depth-averaged two-dimensional models.



CHAPTER 4
NUMERICAL MODELING

4.1 INTRODUCTION

This chapter describes the development of a mathematical model of
open channel flow based on the equation set derived in the previous
chapter. An explanation of the difficulties found in the analytical
treatment of the problem as well as the conversion to a numerical
formulation is presented in section 4.2. Basic concepts and definitions
are introduced in section 4.3 to help the reader become familiar with
the notation of the finite difference method. Section 4.4 provides an
overview of the operational procedure used in the model. In section
4.5, the equations derived in Chapter 3 are replaced with finite differ-
ence analogs, while section 4.6 describes the algorithm used to solve
the numerical representation. Boundary types and their treatment are
discussed in section 4.7. Section 4.8 is devoted to a discussion of the

numerical properties of the model.

4.2 MATHEMATICAL MODELING

Depending on the manner in which the effective stresses are
expressed, the partial differential equations derived in Chapter 3
comprise either a hyperbolic or parabolic set. In each case, initial and
boundary conditions are required to fully specify the problem, assuming
that the various empirical parameters have already been determined.
As happens in every instance in which turbulent open channel flow is
considered, no closed form solution exists for the analytical equation
set. This leads to a search for a numerical technique that can over-

come the intractable nature of the analytical problem posed. Among the
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various mathematical approaches available, the finite difference and the
finite element methods are the most widely used. This study utilizes
the finite difference approximation to the partial differential equation
set in the solution procedure.

The conversion of an analytical statement to a numerical statement
begins with the application of a difference scheme to the differential
equations.  Calculus operations then become algebraic relations of
dependent variables defined at discretely spaced locations in the inde-
pendent variable domain. Although providing solutions to problems
that could not be otherwise solved, mathematical models are hampered
by certain limitations not encountered in calculus. The discrete nature
of the variable domain acts in such a way as to control the stability
and accuracy of the model. Often the discretized form of the differen-
tial equations does not represent the original problem due to the
inadvertent creation of artificial terms. Conversely, increased accuracy
in the specification of the finite difference scheme does not guarantee
a stable solution.

The difficulties associated with the finite difference method are not
insurmountable, as shown by the large number of successful modeling
efforts documented in the literature. Mathematical modeling is now
firmly established as an indispensable tool, and the parallel advance-
ments in numerical analysis and computer technology can only increase

the present range of application.

4.3 FINITE DIFFERENCE PRELIMINARIES
The basis of the finite difference method is the substitution of a
computational grid for the continuous domain of the independent

variables. Since the present problem has been specified in three
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independent variables (x, y, and t), a three-dimensional solution
network results, with dependent variables defined at the nodal points.
In order to visualize the computational structure used in this model,
the reader must imagine levels of horizontal x-y spatial grid domains
layered in the vertical time dimension. Conceptually, the four
variables, u, v, n, and 2y should all be defined at every node loca-
tion. However, practical limitations in the computational procedure
make it more convenient to define a separate grid system for each of
these variables. These four grid systems are staggered in space
in a form originally due to Platzman (19), as shown in Fig. 4.1.

By definition, the distance between adjacent nodes is controlled by
the space and time increments Ax, Ay, and At. It is not necessary for
Ax to be equal to Ay. However, the representation of the effective
stresses used in this model does depend on this assumption. Specify-
ing the location of a dependent variable is based on the following
notation: F?,k; in which F = a dependent variable; j = x-coordinate,
(jAx); k = y-coordinate, (kAy); and n = t-coordinate, (nAt). A typical
time level n would then have the appearance shown in Fig. 4.1. As
can be seen from this figure, the interlocking nature of the grid
system reduces the distance between adjacent nodes to one half the
spatial increment, although identical wvariables remain one spatial
increment apart. Since each dependent variable location is unique, it
is not necessary to use half increments when subscripting, i.e., the
same subscripts imply different locations for different dependent
variables.

Among the several types of finite difference schemes available, the

central difference approximations provide second order accuracy. For
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this reason, central differences are used wherever possible in the
computational representation of the derivatives. Examples of central

difference schemes are:

F. -F.
oF _ itk tj-1,k
9xX - 2Ax (4.1
F.
ik
.a_F_ = Fjsk"'l-%;k'l (4 2)
y 27y ’
F.
i,k
pitl _ pn
?E - ]’k J,k 4 3)
ot At (4.
Fn+1/2
ik

Generally speaking, spatial derivatives can always be expressed in
terms of a central difference as shown above. However, temporal
derivatives cannot be represented in this fashion unless iterations are
performed, because both the nt+% and n+l1 time levels are unknown.
The additional computational effort required by an iterative formulation
is usually not warranted. Consequently, a less accurate but more

expedient backward difference scheme:

n+s n
OF Pk " Ex »
3t T (4.4)
pits
ik

is used for all temporal derivatives.

Two types of solution schemes exist for problems expressed in
terms of finite differences: (1) explicit; and (2) implicit. Explicit
schemes propagate a direct solution for unknown dependent variables
from one grid point to the next by calculating new values exclusively

in terms of known neighboring values. The explicit scheme requires a
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simple formulation but is generally subject to a strict numerical stability
criterion, which effectively places an upper limit on the magnitude of
the time step, At, that can be used in practice.

An implicit scheme is characterized by the presence of more than
one unknown variable in the difference equation, requiring the solution
of a set of simultaneous equations in order to generate an array of new
values. No stability conditions are usually imposed on the time step
size in implicit solutions, and therefore, considerable economies in
computer time are possible. However, implicit schemes are difficult to
formulate and, in the case of nonlinear equations, suffer from problems

of iterative convergence.

4.4 OVERVIEW OF THE COMPUTATIONAL PROCEDURE

The computational procedure used in this model is a multi-opera-
tional mode solution based on the division of each time step, At, into
two stages of a half-time step each. Leendertse (13) modified the well-
known "alternating-direction implicit" or ADI method, by including two
explicit schemes in such a way that each stage contained an implicit
scheme followed by an explicit scheme. The advantage of the ADI
method, in addition to those attributable to implicit schemes, lies in the
solution procedure which solves the x-momentum equation separately
from the y-momentum equation, permitting the two-dimensional problem
to be solved as a sequence of two one-dimensional problems. After
each implicit step, a single dependent variable remains unknown and
can be efficiently solved for by an explicit method. Thus, the multi-
operational solution procedure enables an optimum exploitation of the

best features of both implicit and explicit schemes.
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The introduction of the effective stress terms is accomplished by
the spatial smoothing performed at the conclusion of each stage. A
summary of the general operations in sequential order follows.
First Stage

nt+s

. . . L . -
1. Implicit solution of u and nn+2 using the continuity

and x-momentum equations.

.. . L . .
2. Explicit solution of vyt using the y-momentum equation.
1 L .
3. Spatial smoothing of u™%  ang V02 using a velocity-
averaging scheme.
Second Stage
n+l n+l

1. Implicit solution of v and n using the continuity

and y-momentum equations.

nt+l

2. Explicit solution of u using the x-momentum equation.

n+l n+1l

3. Spatial smoothing of u and Vv using a velocity-

averaging scheme.

4.5 FINITE DIFFERENCE EQUATIONS
The numerical model is based on the set of governing equations
derived in Chapter 3 (throughout this chapter, the overbars denoting

depth-integrated variables have been omitted for simplicity):

1
2..2.%

au | du (u”+v?)
St ua—i-+v—?+g§-r}1{+fru—(—————)—n_zb =0 (4.5)

9
W, gV, yv, m+fv(uz+vz)2 0 (4.6)
st Mox T Vay  Bay T T(nzy) '
S+ oz lnmzpdul + 5 [z )v] = 0 4.7)

The first two equations express the conservation of momentum, while

the third equation expresses the conservation of mass.
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The finite difference method replaces the partial differential
operators with algebraic operations defined at the nodal grid points.
Each of the three equations has a difference scheme centered about a
unique location on the grid system. The x-momentum equation is
referenced to the node occupied by wu,

ik

tion is centered about node location v]. K’
b

tion for the continuity equation. As mentioned in section 4.3, a

while the y-momentum equa-

n: is the reference loca-
ik

second-order accurate representation of a differential equation is
possible by the use of central differences. Applying this scheme to
the x-momentum and continuity equations yields:

X-Momentum Equation (Nonlinear Implicit)

un+1_un
ou - LK ",k (4.7)
| L. At :
u.
ik
n+s _ n+k
dul  _ n¥s [“j+1,k “j-l,k] (4.8)
| o DK 2AX :
Uik
um;é -un+;'2’
du _ 1, n+s  nth n+s | onth [ k+1 j,k—l]
Yoy | a8 ikt ko1t Vi # Vil k- Zy 49
P4
Uik
r]n+;2 _nn+1§
N ,
n+s
ik
(u +v )2 _
f (n-z,) -
b un+¥§
ik
9 n+s n+s nt+k: Vr}+lf 9.k




41

Continuity Equation (Nonlinear Implicit)

n+tl_n
on Mk TMk (4.12)
at - At )
T
is
BTE M) Cn ez )
5 i1, k* MKk P T
2 [(n-z u - 1 1 Uy
ax L(n-zpul [ AX 15
i,k
;(nm.l%k*- rln+2) . ;é(zb + Zy ) ks
) - Ik i-1,k-1  5-1,k ]uj-fk (4.13)
Ax ?
1 n+;§ n+;é -1
2(nj,k+1+ n i 2(Zb. + Zb._ ) n+s
.3__ [(n-z V] :[ J)k Rj 1,k ]V] k
ay b) n+y Ay ?
ik
L
L2+ “*2> - %(z +z I
_[ i k-1* P k-1 B-1,k-1 ]vjn‘f_l (4.14)
Ay ?

Each of the finite difference representations given by Eqgs. 4.7 to
4.14 is a centered approximation. Apart from the stability problems
usually associated with centered differences, the presence of nonlinear
terms renders numerical solutions unmanageable. Nonlinear equations
can only be solved by using iterative methods, which can often be
plagued by convergence problems. On the other hand, linear equations
enable a direct computation, and are, therefore, capable of economical
solution schemes. By the judicious specification of known and unknown
values in the finite difference equations, a representation that is linear
in the unknowns is possible. The particular way in which the equa-
tions are linearized is not rigid, depending to some degree on the

algorithm chosen to solve the equations. It should be noted that a
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certain amount of error is introduced into the analysis by the

linearization process, because the temporal derivatives are replaced by

off-centered difference approximations. The difference equations used

in the linearized model corresponding to the first stage-implicit com-

putation are the following:

X-Momentum (Linear Implicit)

un+¥2_un
e u
g}ti = _J_zi/;A_t_lLIE (4.15)
nts
Y.k
uwl L -u
@. - n+;é I 3+1>k ] 1>k
U o = u].’k ] (4.16)
n+k
Uik
n n n n n n
au VR k-1 T Lk Y ke 7Y k-1
gu = 1 jrl, 1, Jti, r 3 1 4.17
y n+;é y
Y,k
AltE | Dt
an - itl,k ',k
g 5o =g 1 (4.18)
9x un’% Ax
ik
£ u (uz+vz);é -
r (n-z)
n+:
ik
n n n n
£+t PPy LR e Y kY e e 2
L j’k j+1)k][l.’k ],k 4 ]
n n A + Z
rn]+1ak+ n]>k - b]>k bj9k_1]
2 2 (4.19)
Continuity (Linear Implicit)
r]n+¥é_nn
-2—’3 - Lk "jk (4.20)
nts LAt

Nj,k
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n n Z +z
Mk Pk kel ne
9—' - = - 2 2 ]’k
5% [(n zb)u] n+1§— A
5,k
nn ‘H'ln %b +Zb. n+s
rd.k 'j-1,k -1,k 7J-1,k-1 2
ot - 5 Tu 1 x @.an)
AX .
A +Z
Mk ™ik Pyk Lk P
9 2 2 i,k
ik
Ny 0 Zy, . Y7y n
LK j,k-1 i, k-1 5-1,k-1
_ ! 5 " 7 1 v k1 (4.22)
Ay .

A simplified notation collecting known and unknown values will
assist in the construction of the solution algorithm. Thus, the first-
stage implicit step equations become:

X-Momentum (Implicit)

nts _

ou - ik (ve) (4.23)
ot 4 LAt )
ik
udu - ™% (DCT) (4.24)
OX | n4n ik )
ik
u -
vy +g_ (VAV)(CCT) (4.25)
n
Y,k
) ”r'ﬁiz k- ”p?
j. - f J+ bl ]’
£ 5x ny 55 BX ] (4.26)
I,k
f u (“2’”"2)1/2 = (FR) (FRT) s (4.27)
r W n+15— uj’k .
u.
1k
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in which
_.n
UC = u].,k (4.28)
u. -u
= ]+1)k -1;k
DCT OAX (4.29)
_1 n n n n
VAV = oy (Vj,k 1 + Vj+1,k—1 + Vj,k + Vj+1,k) (4.30)
un -un
j>k+1 j>k'1
CCT = 98y (4.31)
FR = 5 (f,  +f (4.32)
ik jtlLk
L
FRT = [(UC) (v av)?® (4.33)
r]n +nn Zb +Zb )
L j+1,k j’k - ]»k ]:k_l]
t 2 2
Continuity (Implicit)
n+s
n. .>~-WL
an - LK (4.34)
ot n+k At
i,k
3 - _DE nts DW nts
ax L(zpull | = hx Yk T ax Y1k (4.35)
N,k
% [(n-2, )v] = DDV (4.36)
n+%
.k
in which
_.n
WL = N5k (4.37)
DE =% (n. + 1. z -z ) (4.38)
j+1,k i,k bj,k bj,k-l
DW =% (r].n + r].r_1 z -z ) (4.39)
bk LR Thi g e "B k-1



45

tz

n n Z
Pk ik Pk B1kg on
t 2 2 ik
DDV = A :
Y
n n Z +2
MLE ke Pkl Be1,k-1y o0
- - 2 2 j,k-l
5

(4.40)

The presence of three unknown variables in the formulation of the

x-momentum and continuity equations verifies the implicit nature of this

The

representation. linearization of the

y-momentum equation

is

. . +% +%
straightforward, since all the u™% and nn 2 wvalues are known from

the previous implicit half-stage.

Y-Momentum (Explicit)

vm';é-vn
v - Lk i,k
ot - LAt (4.41)
nt+s
V]- K
nt, n+s | onds n+ n _.n
ov My e -1 ke TY-1,k,  VirLLk Vi-1,k .
vt
i
n n
av _oonts Y,k Y, k-1
V 5y R 98y ] (4.43)
Av k2
is
nn+% _nn+%
oy - g PRIl Lk 4.44
£ 5y s g Ay ) (4.44)
ik
L
f V7——~5~(u2+vz)2 =
r n-2y, n+s
V.
1,k
n n n n 1
. . + . 5
2 nty - n+s RN .
Jikr” ik o %k -1k,
2 2
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Known and unknown variables can be expressed in a simplified
notation similar to that of the implicit step:

Y-Momentum (Explicit)

n+2
'(VC)
o _]%A—t_ (4.46)
n+1/2
ik
ov _
u 5% = CCT (4.47)
vn"&2
ik
ov _ _ntk
V5o = Vg (DCT) (4.48)
Vik
g gg = PRT (4.49)
vn#2
ik
2 2%
(u+v “ )2 _ _nts
f = v. FRT 4.50
v j—n_zb) e V],k ( ) ( )
V.
ik
in which
vC = V] Kk (4.51)
n+¥§ n+s n+15 n+s n n
+Uu, U, AvA -V.
] k j, k+1" ] -1,k+1 “j-1,k j+1,k "j-1,k
CCT = ¢ i ) € OAR ) (4.52)
vh -
_ Vi,k+1 7Y, k-1
DCT Ay (4.53)
n-f-l« n+/
PRT = [ k+1 Lk, (4.54)
n n n L
£ +f 2 Sk e TP T ke 22
L5k Ty K+l [(ve) + a ) ]
FRT = G . 5 : ) Il'f';é lr Z + zb. (4.55)
IRl ik -1,k
( ) - 2 )
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Due to this selection of variables, the y-momentum equation is
expressed in terms of a single unknown and can easily be solved by
an explicit solution procedure. Applying the same techniques to the
second-stage operations results in the following expressions:

Y-Momentum (Implicit)

n+l
v].,k-(VC)

BT = TLAL (4.58)
ot n+1 t
V.
ik
v _
u 5% = (UAV)(CCT) (4.57)
Vn+1
ik
v = v (peT) (4.58)
Vik
r}n+1 _nn+1
N = g (LR_LK 4.59
g 5y 1 g Ay 1 (4.59)
Vik
9 1
(u P )? _ n+1
fov g | o (FR) (FRT) vy (4.60)
V.
ik
in which
1
Ve = V;sz (4.61)
-1, n+s n+s n+% n+s
UAV =z (u ik Yk T Yerker t uj,k+1) (4.62)
n+s ntks
V. -V .
= .]i-l’k ]-13k
CCT s (4.63)
n+s nt+k
V. -V.
DCT = LK.kl (4.64)
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FR =% (f. +f, ) (4.65)
ik ikl
[(VC) % (UAV)2]%
FRT = A (4.66)
n+s n+s zy  t 2z
cLkd Tik o Pk -1k
t 2 2
Continuity (Implicit)
n+1
N: 1. -WL
o - Ji%%—— (4.67)
n+1
N5,k
2 [(n-z,)u] = bDU (4.68)
nt+
3,k
2] DN _n+l DS _n+l
9 r(n- = DN ool DS or .6
oy (23l &y Vik T ay Vikel (4.69)
5,k
in which
1
WL = n?+k2 (4.70)
n+; | nh zy,  tZy
Lk Mk Pk Ykely o
DDU = 2 2 LK
Ax
n+ks + n+s 2y tzy
cik - lk o 2Lk §-1k-l) ok
_f 2 2 Yi-1,k (4.71)
AX ’
nts . nts oz 42
. n. b, h_
DN = I'nbk":zl J,k ]ék ] 1:k] (472)
n+s nts z +z
N: oo +N; b, 1 b, _
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X-Momentum (Explicit)

n+l1
u, .. -(UC)
g% - I,I;At (4.74)
un+1
ik
u g}‘-;‘- = uf.””é (DCT) (4.75)
nt1 1
Y,k
Ju —
V5o = CCT (4.76)
y un+1
ik
0 _
g 53 = PRT (4.77)
un+1
ik
2,2y
f oy ) = u™! (FRT) (4.78)
ro o (g,) g4 DK
u.
ik
in which
1
Uc = u?*kz (4.79)
n+hs _ n+s
u. -u.
DCT = }“1’212}{ -1,k (4.80)
n+l, n+l  _n+l n+l nts _ nts
V. +v +Vv. +v, u. -u .
ceT = LK LK #Lk-T 7jk-1y (7 jkH1 jk-1y oy g7
4 27y
r]n+1 _nn+1
- Lk Tk
f +f n+hs o on+s | onth nts
r. r. A2 + v. + v. # V., 2 2%
( ]+1,1§ ],k){(UC) +%},k ]+12Lk ]+1,k ]. ],k 1] }
FRT = W m a7 (4.83)
ALK ik o Pk ke,
\ 2 2
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4.6 SOLUTION ALGORITHMS
In the first-stage, the x-momentum and continuity equations as
derived in section 4.5 are the following:

X-Momentum

n+s_
uo (UC)

Ll + ultE o) + (vavyeem) (4.84)
n+2 nts
+g Hﬂ—kHJ—] + (FR) (FRT) u n+2- 0 (4.85)
Continuity
Il DE n*”” %g u?_*llé,k + DDV = 0 (4.86)

These equations can be rearranged and simplified to the following
form:

X~-Momentum

nt+ks n+l~é n+s  _
T n] K + A]u] X T r]].+1,k = B]. (4.87)
in which
- . 8At
T OAR (4.88)
A]. =1 + At [(FRY(FRT)+(DCT)] (4.89)
B]. = UC - % At (VAV)(CCT) (4.90)
Continuity
n+s n+s nts _
C]. uj-l,k + nj,k + Di u].,k = E]. (4.91)
in which
C]. = 2AX (DW) (4.92)
D]. = 2Ax (DE) (4.93)
E. = WL - % At (DDV) (4.94)
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The subscript j on the coefficients A, B, C, D, and E, indicates
that a single line solution procedure is to be used, i.e., unknowns will
be solved along one x-grid line at a time. Additionally, all variables
are specified at the (nt%)At time level. Placing both equations into one

matrix produces:

ng B Ny Wy .o .. .. .. Oy Uy Ny Uy
T A, -T - B,
c, 1 D = E,
T A, -T = B,
c, 1 D, = E,
T Ay, ~-T = By_,
Cn-1 1 Dy-1 = By

in which N is the number of grid points along the x-direction.

Two characteristics of this matrix are essential to its successful
inversion. The first is the availability of 2(N-1) equations to solve
for 2N unknowns. Thus, in order to adequately specify the problem
before inversion of the matrix, two boundary conditions must be
provided, one at the beginning of the line of unknowns and another at
the end.

The second important characteristic of this matrix is the
tridiagonal structure of its nonzero entries. This enables the use of
the efficient tridiagonal algorithm to invert the matrix. Two manipula-

tive "sweeps" through the tridiagonal matrix are required to determine
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the solution. After the specification of the "upstream" boundary
condition, the first sweep generates four internal arrays as it moves
through the matrix. The last sweep proceeds in the opposite direction
using the arrays from the first sweep to calculate the unknown
velocities and surface elevations. A detailed account of the tridiagonal
algorithm is given below.

The linear nature of Eqs. 4.87 and 4.91 permit the following

assumptions to be made:

. =P ou, +Q, 4.95
n, = Prus+Q (4.95)

= R.n..+S. 4.96
b T TR 3 B (4.96)

in which P]., Q]., R]. and S]. are internal solution vectors. These

solution vectors are derived by substituting the above expressions into

the indicial equations of continuity and momentum. If uj_1 K
b

4.91 is replaced with a representation of the type in Eq. 4.96, the

in Eq.

following equation results:

C. (R, .+ S. +n. + D, u =E, 4.97
j Rjog My + Sjop) + 0+ Dy = Ey (4.97)
rearranging,
D, Ei- GS; g
N TR . T Y YR+ 1 (4.98)

D.
- o J
E- - C-S-_l
Q. = R R N (4.100)

j C.R. , +1

Similarly, if n]. from Eq. 4.95 is substituted into Eq. 4.87, R].

and S]. are defined:

T

Ri=TP +& (4.100)
] ]
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B. -T Q.

S = TP 7 A,
it

(4.102)

The recursive formulas, Eqs. 4.99 to 4.102, interact in such a
way that all the elements of each vector can be determined if a pair of
values, either Pj and Q]. or R]. and S]., are known. Fortunately,
one of these two pairs is always defined when the "upstream" boundary
condition is specified. Once arrays P, Q, R, and S are computed,
the "downstream" boundary condition is substituted into the appropriate
equation, Eq. 4.95 or 4.96, depending on whether a velocity or surface
elevation condition is being used as a "downstream" boundary specifica-
tion.  Coordinating this pair of equations allows the remaining
unknowns to be calculated. An example will serve to demonstrate the
mechanics of the tridiagonal algorithm.

Let Uy be the initial boundary condition so that Eq. 4.96 becomes
u; = R1 Ny + S1 (4.103)

With Ngy unknown, the only known possible combination of R1 and

S1 is: R1 =0 and S1 =uy. Therefore, P2 can be determined from

Eq. 4.99:
Dy
Pp=-TRr+1 " D2 (4.104)
while Q2 can be found by Eq. 4.100:
E -
Q = “ng—ﬁfzr“sﬁ = By - Cp (up) (4.105)
From Rl’ Sl’ PZ’ and QZ’ all other values can be found by

repeated applications of the four recursive formulas. It should be

noted that P1 and Q1 are necessary only to calculate Ny, a value
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which lies outside the boundary configuration. Since Ny is not
relevant to the tridiagonal algorithm, P1 and Ql are not computed.
If the "downstream" boundary condition is UIND Egs. 4.95 and 4.96

can be used recursively to calculate the remaining unknowns, as

follows:
Uy = RN-j MN-je1 SN-j (4.106)
nN_}. = PN—j uN_}. + QN-]’ (4.107)
in which i=1,2,...,(N-1).

Proceeding from row to row with the repeated use of the

1
tridiagonal algorithm will identify all unknown velocities, urjl+1:, and

1
water surface elevations, ansz, in the first half-time step. The solu-
b

tion for each velocity, vrjﬁlié, in the first-stage is by the direct applica-

tion of the y-momentum equation derived in section 4.5:

V.n']iﬁ_ (Ve) 0tk ek
g+ (CCT) + 12 (DCT) + (PRT) + v["}® (FRT) = 0 (4.108)

1
Solving for the single unknown, V?+k2, the following expression is

obtained:

1 -
o0t - VC- %At [PRT+CCT] (4.109)

i 1 + %At [DCT+FRT]

w

Eq. 4.109 enables the point-by-point explicit calculation of the wvalues
n+:
ik

The formulation for the second stage is derived in a manner

v

similar to that of the first stage. Implicit calculations are based on the
y-momentum and continuity equations in their simplified indicial form at

time level (n+1)At.



55

Y-Momentum

ntl n+l n+l _
T nj,k + Ak Vj,k - T nj,k+1 = Bk (4.110)
in which
Ak =1+ % At [(FR)(FRT) + DCT] (4.111)
Bk = VC - % At (UAV)(CCT) (4.112)
Continuity
n+l n+l n+l _
Ck Vj,k-l +n ik + Dk Vj,k = Ek (4.113)
in which
c, = -4 (ps) (4.114)
k 2Ay )
_ At
Dk = —2——A~y(DN) (4.115)
Ek = WL - % At (DDU) (4.118)

The subscript k implies that, unlike the first stage which
computed values along a constant y-coordinate, the implicit solution of
a variable string in the second stage is performed along a constant
x-coordinate.

Explicit determination of the velocity, u, is accomplished by the
following equation:

n+s _ UC - %At [PRT + CCT] (4.117)
1K 5 4 1At [DCT + FRT]

u

which is a simplified form of the x-momentum equation as determined in
section 4.5.
The four operations described in this section constitute the basic

procedural loop of the mathematical model. Ancillary routines are also
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necessary in order to provide the information necessary for the
execution of the multi-stage solution method. These routines include
the spatial smoothing process, the boundary relocation, and the time
relocation. The spatial smoothing has already been described in
Chapter 3. Boundary relocations are covered in the following section
of this chapter.

4.7 BOUNDARY SPECIFICATION AND RELOCATION

Two boundary types can be specified in the model: closed and
open boundaries. At closed boundaries, the most convenient specifica-
tion is the condition of zero mass flux (i.e., zero velocity) in a direc-
tion perpendicular to the boundary. This makes it necessary for the
model boundary to closely follow the x-y grid. At open boundaries,
either mean velocity or water surface elevation may be specified,
depending on which one better satisfies the modeling needs.

Centered finite differences such as those used in this model
require information which lies outside the boundaries of the computa-
tional model. When faced with this problem, Leendertse (13) chose to
exclude from the computation the terms requiring information outside
the boundaries, i.e., the difference analogs of the convective inertia
terms at points neighboring the closed boundaries. Although a zero
velocity tangential to the wall is a realistic assumption (the no-slip
velocity condition), a zero water level at the boundary can be grossly
inaccurate and may lead to numerical stability problems. A satisfactory
alternative is the relocation of interior values. A simple relocation
technique was chosen in which exterior values were defined to be equal
to those interior values adjacent to the boundaries. This is tantamount

to a perfect slip condition, a reasonable assumption in turbulent flows
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in which the viscous effects have little influence on the horizontal
velocity distribution. Flokstra's theoretical argument (6) that the
no-slip condition is a requisite for the generation of secondary currents
is in disagreement with the boundary relocation method used in this
model.

4.8 NUMERICAL STABILITY

A pervasive problem in two-dimensional mathematical modeling is
the lack of adequate theoretical numerical stability criteria. Physically
speaking, instability occurs when small discontinuities in velocity
generate short waves. The explicit-mode pressure term then becomes
very significant, increasing the velocity discontinuity. After a few
time steps, both velocities and water surface elevations increase
unbounded, spoiling the entire calculation.

Linear stability theory classifies the multi-operational mode
computation procedure as unconditionally stable. However, experience
(25) has shown that it is only weakly stable. Two types of instability
are associated with the procedure: nonlinear and Courant condition.
Although this model is solved by a linearized scheme of finite differ-
ences, instabilities occur due to the nonlinear nature of the continuum
system of equations. The nonlinear terms in the governing equations
interact in such a manner as to transfer energy to progressively
smaller scales. In the numerical model, characteristic lengths less than
twice the spatial increment, 2Ax, cannot be resolved by the grid, thus
interrupting the energy cascade. The accumulation of energy at the
grid level is thought to cause the numerical instabilities that occur

during simulations of long duration. This type of error growth can be
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handled by the introduction of a sufficient amount of numerical
diffusion in the formulation, in order to dissipate the energy piled up
at the grid scale. Flokstra (7) has pointed out that three techniques
are available to generate numerical diffusion. The first method
implicitly creates diffusion by the selection of a difference scheme
affected with numerical viscosity. A second method involves the
explicit inclusion of an extra dissipation term in the difference
equations. The technique used in this model introduces numerical
diffusion by a velocity averaging routine which also happens to mimic
the contribution of the effective stresses. Since this routine is not
included in the equations defining the problem, the amount of numerical
diffusion produced is dependent on the discretization parameters of the
model, i.e., on Ax and At.

Courant stability criteria apparently does exist, although it is not
clear how the physical and numerical variables interact to define the
stability conditions. The variables that contribute to instability appear
to be the mean velocity, flow depth, weighting factor for spatial
smoothing, spatial increment, and time increment. A comprehensive
theoretical stability criteria taking into account these parameters has

yet to be formulated.



CHAPTER 5
NUMERICAL EXPERIMENTATION

5.1 INTRODUCTION

This chapter is a presentation of test results from numerical
experiments performed with the depth-averaged model described in
Chapter 4. A detailed discussion of the entire testing program is
given in Chapter 6.

The objective of these experiments is the clarification of the
circulation mechanism found in free surface water flow. Organization
of this chapter basically reflects the manner in which the actual test-
ing took place. Two hypothetical configurations are used and comprise
the major headings (5.2 and 5.3) of this chapter. Subheadings are
devoted to differences in handling the initial and boundary conditions,
each subheading containing the results of a fairly standard battery of
tests. These tests fall into three categories: (1) term, (2) parameter,
and (3) combined. Term and parameter tests are sensitivity analyses
of individual elements in the problem, terms being quantities found in
the equation set, e.g. convective inertia; parameters being single
variables, e.g., depth. Combined tests are simply experiments in
which more than one element has been varied from the baseline to
determine the interaction between components of the problem.

A computer plotting routine has been designed to facilitate
visualization of all results from the testing program. The plots
displayed are velocity vectors emanating from each grid point in the
configuration. For the most part, plots are available at intervals of 50

time steps.
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The purpose of this study is a fundamental investigation of the
circulating flow mechanism, not the depiction of circulation in the con-
text of a particular geometry. No attempt has been made to indepen-
dently verify the magnitudes of the flow wvelocities observed. Con-
firmation of modeled phenomena is especially a shortcoming attendant
to studies where secondary flow is involved. Indeed, the paucity of
available field data has required physical model studies to evaluate the
acceptability of numerical simulations.

Another limitation to the applicability of these test results is the
steady nature of the problem considered. Although the unsteady
capability of the mathematical model allows an arbitrary initial specifica-
tion to achieve steady state, no tests have been performed which
retain time dependent boundary conditions. Intuitively, the general
derivation of the mathematical model would lead to the conclusion that a
full range of application is possible. However, without detailed testing
of unsteady flow situations, no such statement can be made.

5.2 POOL MODEL

The bulk of the testing program consists of experiments performed
on the pool-channel system shown in Fig. 5.1. Channel dimensions are
4 meters in width by 30 meters in length while the pool is a 14 meter
by 15 meter rectangle. Four series of tests are executed on this con-
figuration, differing only in the initial and boundary conditions
specified.

5.2.1 <Channel Velocity Specified
In this testing series, a 0.5 meter per second velocity is
specified in the channel as an initial condition and at the upstream end

as a steady boundary condition. A water depth of 2.5 meters serves
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as both the initial condition and the steady downstream boundary
condition. There is no velocity in the pool initially. Closed boundaries
are represented by zero velocities perpendicular to walls. Without bed
slope, the water in the configuration is driven solely by the upstream
entrance velocity. Numerical parameters used in the baseline are
weighting factor « = 0.1; spatial increment Ax = Ay = 1.0 meter; and
temporal increment At = 1.0 second.

The use of a completely specified velocity distribution in the
channel as an initial condition is in response to difficulties encountered
in introducing an entrance velocity into a motionless system. Waves
which eventually lead to instability, set up immediately when such a
boundary condition is attempted.

The development of circulation in the baseline case is seen in
Figs. 5.2 to 5.6. Flow diverges from the mainstream as increasing
velocities in the shear layer at the south end of the pool drive a weak
circulation. Time step 80 reveals a well-developed circulation centered
at coordinates (16.5,9). From time step 80 to time step 200, the
center of circulation drifts to (18,10), a position two meters to the
right of the pool centerline. A well developed circulation requires
little or no divergence from the mainstream as the later plots illustrate.

A detailed analysis of the velocities and surface elevations
indicates that a steady state has yet to be attained at the 200th and
final time step. Velocities in the exit channel farthest from the pool
increase to 0.58 meters per second while those nearest the pool
decrease to 0.43 meters per second. Water levels in the pool increase
in a general fashion from 2.50 to 2.52 meters with the highest depths
found at the north and east sides of the pool. Entrance levels,

however, fall continuously from 2.50 to 2.44 meters.
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The first group of tests performed on the channel velocity-
specified pool model is with terms found in the hydrodynamic equations.
More specifically, the effective stresses, convective inertia, and friction
are tested in this section.

Effective Stresses

In this numerical model, the representation of the effective
stresses is not explicit in the discretized equation set found in Chapter
4. Rather, the action of the effective stresses is simulated by a
velocity averaging technique which employs a weighting factor a to
vary the magnitude of the effect. The necessity of modeling the
effective stresses where physical circulation is present has been
explained theoretically by Flokstra (6).

This test is designed to completely remove the effective stresses
from the model by setting the weighting factor o to zero. Figure 5.7
is a plot taken at 150 time steps (seconds). There is negligible
transfer of momentum from the mainstream to the pool. With no flow
divergence into the pool, the initial conditions are virtually preserved.
Data from the 190th (final) time step exhibit a tendency toward
instability manifested by discontinuities in velocity and depth.

Convective Inertia

The convective inertia terms, u g—;, v g—;f-, u %, and v g—;—, are
often neglected in numerical modeling because the nonlinearity intro-
duced by these terms is difficult to handle. Various authors have
commented on the necessary presence of the convective inertia terms in
the equation set when secondary flow is to be resolved.

To test this conclusion, all four convective inertia terms were set

to zero. The plot at 100 time steps is presented in Fig. 5.8. Diver-

gence of the flow from the channel into the pool is strong; however,
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no circulation sets up. As water in the channel reaches the upstream
end of the pool, flow immediately is directed into the pool along the
boundaries, preventing circulation from occurring. During the 100
second study period, velocities in the exit channel farthest from the
pool have generally fluctuated between 0.50 and 0.52 meters per second
while those velocities nearest the pool exited at 0.47 to 0.49 meters per
second. Entrance water levels oscillated between 2.50 and 2.51 while
the pool was steady at 2.50 meters.

In an attempt to further clarify the phenomenon of convective

inertia, the effects of the cross~convective inertia terms, vaa—yg and

ov ov

u 55, were isolated from those of the direct-convective terms, v 3y and
u g—g— This was accomplished by setting only the cross-convective

terms to zero in one test, and only the direct-convective terms to zero
in another test. Figures 5.9 to 5.11 are plots at 50 time step intervals
reflecting the omission of the cross-convective inertia terms. At 50
time steps, no circulation is apparent although momentum transfer in
the shear layer is being accompanied by divergence from the main flow.
More curvature and a crude circulation are visible in the plot at 100
time steps. A weak but well formed circulation has set up at (15,10)
in the last plot, with mainstream divergence decreasing. Exit velocities
are stable with the channel velocity farthest from the pool equal to 0.56
meters per second and the velocity nearest the pool equal to 0.43
meters per second. Over the duration of the study period, the
entrance elevation drops slowly from 2.50 meters to 2.49 meters, while
the pool elevation rises slowly from 2.50 to 2.51 meters.

The results of the converse test, with the direct convective

inertia removed, are illustrated in Figs. 5.12 to 5.14. At 50 time steps
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a weak circulation is centered at coordinates (14,9). Divergence from
the main flow is strong and the velocities in the shear layer are
comparatively higher than the previous test. Time steps 100 and 150
display well formed circulation not unlike the baseline, with mainstream
divergence decreasing.

Quantitative results show that exit velocities are fairly steady,
0.55 meters per second farthest from the pool and 0.45 meters per
second nearest to the pool. Like the baseline, the entrance water level
dropped steadily from 2.50 to 2.44 meters, while the pool increased
slowly from a water level of 2.50 to 2.52 meters with the highest levels
found at the north and east sides of the pool.

Friction

In the Iliterature, the role of friction in circulation is a
controversial subject. Leendertse removed the modeling of effective
stresses from his 1967 model by claiming that the magnitude of the
friction terms far exceeded those of the effective stress terms. Abbott
believes the occurrence of circulation to be the result of the resistance
forces overcoming the dynamic forces. However, Flokstra considers the
bottom resistance to be of secondary importance when compared with
the no-slip condition at the wall. As mentioned earlier, the relocation
routine for dependent variables at closed boundaries in this model is

tantamount to a perfect slip velocity condition.

2.2 2, 2
The friction terms, f u @ and f v g‘l_ﬂ’T are eliminated
r (n-zy r- (n-z,

from the computation by setting fr = 0. Figure 5.15 is the plot at
100 time steps for this frictionless experiment. Both the plot and the
detailed quantitative results are virtually indistinguishable from the

baseline.
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The next section is a collection of tests performed on the channel
velocity-specified pool model by varying single parameters; essentially,
a sensitivity analysis. Physical parameters, specifically velocity,
depth, and friction factor, are tested first to identify and verify
previously reported observations. Then, the numerical parameters, a,
Ax, and At, are experimented with to reveal the effects of a discrete
representation of reality.

Channel Velocity

This series of tests is designed to explore the effects of using a
wide range of channel velocities in the model. Three velocities were
tested: 1.0, 0.75, and 0.25 meters per second. All three tests
developed circulating patterns in the pool area, however, the 1.0
meter per second and 0.75 meter per second velocities became unstable
at 60 and 140 time steps, respectively. Plots of these runs before
instability set in are shown in Figs. 5.16 and 5.17. These plots show
that despite impending stability problems, strong and well developed
circulations do occur. Characteristically, the instabilities found in the
first two runs begin in the channel with discontinuities in water
surface and velocity. The effect is pervasive as the entire computation
is soon spoiled. Figures 5.18 to 5.20 are plots of circulation develop-
ing in the case of channel velocity equal to 0.25 meters per second.
Compared with the baseline in real time, the smaller velocity sets up
as quickly, with a more round and symmetrical circulation. The
channel exit velocities are very steady, 0.28 meters per second farthest
from the pool and 0.21 meters per second nearest the pool. Entrance
and pool water levels are also very stable at the originally specified

2.50 meters.



66

Depth

The effect of an increase in depth has been documented by
Bengtsson (3) following experiments performed on a lake model. His
conclusion was that the influence of the horizontal turbulence terms was
reduced with increasing depth. Horizontal dispersion of momentum is

simulated by the effective stress terms in this model, i.e., the closure

., v, #v

—5 2) and ¢ (——~ +
ax ay ax oy
how depth should affect these terms.

terms It is therefore not obvious

Many tests were performed in this series due to the relative
insensitivity of this parameter to stability criteria. Depths ranging
from 0.04 to 50 meters were used in this experiment with instability
occurring only in the 0.04 meter run. Single plots of salient results
from the 0.16, 10.0, and 30.0 meter depths are shown in Figs. 5.21 to
5.23, while complete sets of plots for 0.04, 0.62, and 50.0 meter depths
are shown in Figs. 5.24 to 5.31. Shallower depths have more diver-
gence from the channel, larger velocities in the shear layer, and faster
set up of circulation. In the extreme, however, the shallow depth is
also subject to instability. Larger depths have less energy transfer to
the pool and consequently little or no circulation. Although increased
depth has a stabilizing influence on the computations, both large and
small depth tests exhibit minor oscillations which are nonconvergent.
At the entrance to the channel, depths vary between 49.95 to 50.04
meters and 0.623 to 0.644 meters in two extreme cases. Exit velocities
for the 50 meter depth range from 0.573 to 0.580 meters per second at
the south side of the channel to 0.391 to 0.398 meters per second at

the north side, while the 0.62 meter depth velocities were 0.550 to
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0.569 meters per second and 0.441 to 0.450 meters per second at the
same locations. In the pool area, the location of deeper water
alternates from west and south to east and north with an absolute
variation of about 0.01 meters, irrespective of depth.
Friction

In earlier testing, the omission of friction was found to have a
negligible effect as compared to the baseline data. This series of
experiments is designed to determine what magnitude of friction factor,
f r would be necessary to alter the baseline flow pattern. To this
end, the nondimensional friction factor, f r is increased to roughly two
and four times the baseline value, i.e. 0.01 and 0.02. The selection
of 0.02 as the upper limit for this test is based on practical constraints
of possible channel roughness. Plots for these two runs at time step
100 are shown in Figs. 5.32 and 5.33. A comparison of the baseline
plot with these figures shows no detectable differences. Closer
examination of the quantitative results show that higher friction

increases water levels slightly and mildly damps wvelocity.

Weighting Factor

In this model, the velocity averaging routine serves a dual
purpose: 1) a spatial smoothing device, and 2) a numerical analog of
the mechanism for turbulent momentum transfer. The latter is usually
attributed theoretically to the effective stresses and represents the
closure assumption necessary in turbulence models. The parameter «,
the weighting factor of the averaging routine, controls the intensity of
the averaging effect. However, other than the theoretical limits of
0.0 and 1.0, no physical basis is available to choose the value of a.
The purpose of this test is to assess the manner in which the averag-

ing routine affects the computation.
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Two sets of experiments are designed. The first set consists of
six tests, each with a different «a specified. The second set contains
two tests in which o is changed during the simulation.

In the first set of tests, a was varied from 0.01 to 10.0. Both
extremes became unstable, the 0.01 run at 170 time steps and the 10.0
run almost immediately. Figures 5.34 to 5.43 are plots at 50 and 100
time steps for o« = 0.01, 0.2, 0.4, 0.8, and 1.0.

For a = 0.01, a crude circulation sets up in the southeast corner
of the pool and then disintegrates into a gradually developing instabil-
ity. Generally speaking, the other plots with a = 0.2 to 1.0 are not
very different from each other. Strong, well formed circulation is
present in each case. As o is increased, divergence from the main-
flow increases, shear layer velocities increase, and circulating
velocities increase. Characteristically, large G runs possess
flattened, less circular flow patterns in the pool where the center of
circulation is higher and more west of center than the smaller «
runs. Examination of the quantitative results shows that higher «
reduces the range of extreme velocities at the exit. The a = 1.0 run
is extremely steady in all aspects. Whereas the baseline (a = 0.1)
entrance elevation falls continuously, runs with « greater than 0.1
and less than 1.0 have an oscillating entrance level with amplitude
decreasing for increasing «. The maximum amplitude is 0.03 meters
for the a = 0.2 case. Similarly, pool elevations increase in an oscillat-
ing manner for this range of «a, with the highest and most convergent
water levels associated with the largest a.

Results from previous o testing led to questions concerning the

nature of the circulation that formed in the pool. Once the circulation
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sets up, is there a continuous dependence on the effective stresses to
maintain that circulation? If so, could the intensity of the effective
stresses be reduced upon the advent of circulation? The first question
is answered by running baseline conditions for 100 time steps and then
setting a to zero for the remaining time steps. Results of this test
appear in Figs. 5.44 to 5.48. At time step 80, a well formed circula-
tion sets up as expected. After 20 time steps without the influence of
the effective stresses, i.e. time step 120, the circulation has moved
towards the east boundary and is still strong and well formed. How-
ever, at time step 160 the circulation has moved too near the wall and
is rapidly losing the original flow structure. By time step 200,
instability has set in and the computation is on the verge of being
completely spoiled.

The second question is tested by using o = 1.0 for the first 100
time steps and a = 0.01 for the remainder of the study period. Plots
of this experiment appear in Figs. 5.49 to 5.52. The circulation sets
up before a is reduced. At time step 120, 20 time steps under the
o = 0.01 weighting factor, the circulating velocities have increased,
accompanied by a rounder flow pattern in the pool. As time step 160
takes place, it is obvious that instability once again destroys the
circulation and eventually the entire computation.

Time Increment

The time increment, At, like the space increments, Ax and Ay,
is fundamental to the understanding of the numerical properties of a
discrete model. Although found only in the local acceleration term,
the time increment has important ramifications upon model stability.
Particularly in explicit schemes, strict stability criteria involving the

discretization parameters often renders an experiment economically
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infeasible. The fact that this numerical model does contain explicit
computational schemes behooves an investigation into Ax, Ay and At.

In this experiment, two values of At are run, 0.5 and 2.0
seconds. Figures 5.53 and 5.54 are plots at 50 and 100 time steps
with At = 0.5 seconds. Compared with the baseline, this run sets up
a stronger, better formed circulation in less real time. Generalizing
the detailed data from this test, runs with smaller time increments
have less spatial velocity variation at the exit and are very steady
with respect to velocity and water levels at all locations.

Figure 5.55 is the result at 50 time steps when At is set to 2.0
seconds. A well formed circulation, weaker than the real time baseline
equivalent, sets up only to become completely unstable at the 100th
time step. The shear layer for this large At is quite weak and with-
out noticeable flow divergence from the channel.

Space Increment

Despite being a numerical parameter by nature, the space
increment has a profound physical effect upon the spatial derivatives,
inasmuch as the problem size has changed. To determine the magnitude
of this effect, three tests varying the space increment from 0.1 to
10.0 meters were performed. The 0.1 meter space increment became
unstable at 15 time steps, before circulation could set up. Instability
also plagued the run with Ax = Ay = 0.5 meters at 100 time steps.
However, as Fig. 5.56 illustrates, a well formed circulation did occur
prior to the onset of instability. The final test, setting Ax = Ay = 10
meters appears in Fig. 5.57. The run was completely stable
although only a weak, incoherent circulation occurred at 100 time

steps. These results look very similar to the test in which the
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convective inertia terms were omitted from the simulation. Increasing
the size of the problem tends to damp velocity and gradually
increase water level throughout the configuration. The resulting
water slope at 100 time steps in the channel is 0.00067.

The following section contains the final tests performed on the
channel velocity-specified pool model. After the behavior of the model
was identified for individual terms and parameters in previous sections,
numerous questions arose as to the nature of these results. The
search for unifying theories was a foremost consideration in the
development of this phase of the testing program. All tests have at
least two elements which deviate from the baseline.

Weighting Factor

Results of the experiments on the weighting factor, «a, indicate
that « is important to the circulation phenomenon and has a stabiliz-
ing effect upon the computations. It is these attributes that have
provoked this series of tests.

Up until this point, circulation has not taken place where either
the velocity averaging routine or the convective inertia has been
absent. This test removes both elements simultaneously by setting a
and the convective inertia terms to zero. The plot at time step 100
appears in Fig. 5.58. For all practical purposes there is no change
from the initial conditions as momentum from the channel has not trans-
ferred to the pool.

The next test involves the diffusivity & of the closure terms
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behavior when a and Ax are varied in such a manner as to preserve
the baseline value of diffusivity. To produce this effect, a is
reduced to 0.001 and Ax is increased to 10 meters. Results of this
test at 150 time steps are plotted in Fig. 5.59. Only a negligible
effect is visible in the pool as a slight divergence of flow from the
channel and relatively small velocities in the shear layer are not
sufficient to transfer momentum. The data indicate a very steady
water level of 2.51 meters in the pool and at the channel entrance.
Exit velocities show an increasing trend.

Large o has been shown to increase energy transfer to the pool
area in earlier tests. However, the ability of a to overcome the
velocity and circulation damping effects of large depth is unknown.
This experiment seeks to provide information to determine the potential
of the weighting factor in the context of strong damping.

Two sets of conditions are tested. The first test sets a to 1.0
while the depth is 50 meters. Figure 5.60 is the plot at 50 time steps.
A well formed circulation sets up rapidly with high velocities in the
pool. The run is very steady; plots at 100 and 150 time steps are not
included since they were identical to the one plot presented. Exit
velocities are 0.60 meters per second on the south side of the channel
and 0.37 meters per second on the north side. The entrance elevation
is 50.06 meters while the pool elevations range from 49.96 meters on
the west side to 50.03 meters on the east side.

The second test was designed to balance the instability of an
extremely large weighting factor with the damping effects of large
depth. For this test 50 meters was again used as the depth while an

a of 10.0 was specified. A value of 10.0 1is outside the theoretical
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range of «, but it was desired to learn about such behavior. The
simulation was highly unstable, lasting for less than 10 time steps.

The final weighting factor experiment in this section concerns the
spatial smoothing properties of the velocity averaging routine.
Observations from the sensitivity analysis with o, indicate that higher
a tends to improve convergence to a steady state. Could a previously
unstable set of conditions become stable merely by increasing the
weighting factor? To answer this question, the unstable channel
velocity 1.0 meters per second was treated with three weighting
factors: 0.2, 0.4, and 1.0. In the original test with a 1.0 meter per
second velocity, circulation set up before the computation became
unstable at the 60th time step. The weighting factor used was the
baseline value of 0.1.

Figure 5.61 is a plot at 50 time steps of the a = 0.2 run. A
strong well-formed circulation, which is strikingly similar to the base-
line plot at 100 time steps, sets up before instability spoils the result
at 80 time steps. This is 20 time steps longer than the a = 0.1 test
performed earlier.

The results for the « = 0.4 test are in Figs. 5.62 to 5.64. At
50 time steps, a strong, perfectly centered circulation has set up.
The current structure is still intact at time step 100 but increasing
divergence from the channel and very large velocities in the shear
layer soon disrupt the symmetry of the circulation. Quantitative
results indicate that the last time step (190 seconds) is tending toward
instability, judging from the discontinuities in velocity and water
surface that are present.

A plot from the third test with « = 1.0 appears in Fig. 5.65.

Although the result displayed is from the 50th time step, it is identical
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to all subsequent plots. Circulation has set up strongly centered high
in the pool at coordinates (15,11). The flow structure is well formed
and extremely steady despite the presence of small flow inconsistencies
in the southeast corner of the pool. Water level at the channel
entrance is gradually rising to 2.57 meters while exit velocities are
stable at 1.15 meters per second at the south wall and 0.92 meters per
second at the north wall. Pool elevations are very steady, 2.55 meters
at the west wall and 2.56 meters at the east wall.

Stability Criteria

Three parameters from the single parameter experiments, U, Ax,
and At, displayed high sensitivity to instability. The fact that large
stream velocities and time increments, as well as small space incre-
ments, caused stability problems, encouraged investigation into a
Courant-type stability condition. According to this theory, if a given
ratio of physical celerity to grid celerity results in a stable simulation,
all other simulation with that particular ratio will also be stable. The
converse argument with unstable simulations is also true. Normally,
the physical celerity is taken to be the relative inertial wave celerity,
Jgd. However, previous testing indicates channel velocity, U, to be
the celerity of interest. Grid celerity is always Ax/At. Thus, the
Courant number for this model is U At/Ax, e.g., 0.5 for the baseline
case.

In an earlier test, a time increment of 2.0 seconds caused
instability. If a Courant condition does exist, then any At could be
used as long as Ax and/or U was changed so as to create a Courant
number within known stable constraints. This idea was tested by
increasing At to 10 seconds and increasing Ax to 10 meters, pre-

serving the stable baseline Courant number of 0.5. Plots at 50 and
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100 time steps are in Figs. 5.66 and 5.67. Circulation sets up much
as the baseline at similar time steps. Flow divergence from the channel
into the pool is strong with high velocities in the shear layer. Detailed
data show steady exit velocities of 0.55 meters per second along the
south wall and 0.44 meters per second along the north wall. Entrance
water levels oscillate between 2.50 and 2.53 meters while pool levels
have increased in an oscillating manner to 2.52 meters.

To fully test the numerical stability theory described in this
section, two other tests are proposed, both utilizing a channel velocity
of 1.0 meter per second. This velocity in the context of the baseline
conditions results in unstable representations. The first test reduces
the baseline At to 0.5 seconds to restore the Courant number back to
the "stable" value, 0.5. Results of this test appear in Figs. 5.68 to
5.70. At time step 50, a well formed circulation accompanied by high
velocity shear flow and divergence from the channel takes place. In
the next plot, circulating velocities have increased as the vorticity
center has moved towards the east wall of the pool. The final plot at
150 time steps shows increased velocity in the north and east pool area
with divergence from the channel increasing once more. Quantitative
results reveal a diverging oscillation of exit velocities at the last time
step: 1.07 to 1.16 meters per second along the south wall and 0.83 to
0.91 meters per second along the north wall. A similar phenomenon
occurs at the entrance, where the final oscillation in water level is
from 2.34 to 2.68 meters, and in the pool, where the range is 2.47 to
2.56 meters. High points on the pool surface oscillate from southwest

to northeast.
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The final test of the stability criteria matches a spatial increment
of 2.0 meters with the previously used 1.0 meter per second channel
velocity. U %{ is again equal to 0.5. Plots for this test are in Figs.
5.71 to 5.73. Circulation at time step 50 is not strong but well formed
at coordinates (15,9). As circulating velocities increase, the center
moves to (18.5,9.5) at 100 time steps. The final plot displays increas-
ing velocities near the east wall of the pool as channel flow divergence
is reasserted. Explicit results are very similar to those found in the
previous test. Oscillation characterizes all dependent variables:
velocities of 1.07 to 1.16 meters per second and 0.83 to 0.92 meters
per second at the extremes of the exit, 2.33 to 2.70 meter depths at
the entrance, and water levels 2.47 to 2.57 meters in the pool. All

values are taken from the last 20 time steps of the simulation.

Large Scale Friction

This is the final experiment performed on the channel velocity-
specified pool model. Previous experiments with friction appear to
dismiss the importance attached to it by some authors. However, no
friction-related tests have been attempted on problems where the
spatial increment was larger than 1.0 meter. To this end, three tests
are run.

The first test increases Ax = Ay to 10.0 meters and the
nondimensional friction factor fr to 0.04. Figures 5.74 to 5.76 are
plots at 50,100, and 150 time steps. Apparently, this combination of
friction and scale precludes the generation of circulation. Flow from
the channel diverges immediately into the west side of the pool only to
exit at the southeast corner. As the simulation continues, channel

divergence sends currents deeper into the pool with increasing velocity



77

but still without circulation. Data from this run suggests that a
steady state has not been achieved. Exit wvelocities are increasing
continuously from 0.34 meters per second at the 60th time step to 0.52
meters per second at the final time step (190). Water levels at the
entrance increase steadily, though a convergence to 2.60 meters is
seen in the last 50 time steps. In the pool, water levels rise through-
oyt the simulation to 2.57 meters, however, the location of the deeper
water fluctuates from west to east.

The next test consists of removing frictional effects in a large
scale model. Experience from the stability analysis testing led to the
use of a time increment of 100 seconds to accompany the scale increase
to 100 meters per space interval. The friction factor was set to zero.
Figures 5.77 to 5.79 are plots taken at 50, 100, and 150 time steps of
this run. The development and structure of the circulation is for all
practical purposes identical to the baseline, even in the detailed
numerical results.

The results of the previous test encouraged the final test of this
series. Baseline friction, fr = 0.0045, is used with the same numerical
parameters as before, Ax = Ay = 100 meters and At = 100 seconds.
Results at the 50th time step are plotted in Fig. 5.80. The steadiness
of this run permitted the omission of plots at 100 and 150 time steps.
Flow diverges immediately into the pool near the upstream wall, pene-
trating to the center, before leaving the pool along the downstream
wall. The flow pattern is very similar to that seen in an earlier test
in which convective inertia was removed. Exit velocities across the
channel range from 0.54 to 0.49 meters per second. Stream elevations

display a slope of 0.00033 starting with 2.60 meters upstream and
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ending with 2.50 meters downstream. The pool surface is perfectly
horizontal at 2.56 meters.
5.2.2 Slope Specified
In a mathematical model, the interaction of the initial and

boundary conditions with the partial differential equation set is what
determines the unique solution. Therefore, to be consistent with the
fundamental objectives of this study, the numerical experiments per-
formed must include various combinations of initial and boundary
conditions.
Baseline

A bed slope and new specifications for the channel are introduced
into the configuration used in section 5.2.1. The 0.0005 bottom slope
in this testing series applies to the entire channel-pool system. A
water slope parallel to the bed at a depth of 2.5 meters replaces the
velocity specification previously used as the initial condition. Open
boundary conditions at the channel end points are water levels which
correspond to the initial slope condition. Closed boundaries remain to
be defined by zero perpendicular velocities. All other parameters are
the same as in the channel velocity-specified testing baseline, i.e. a =
0.1, Ax = Ay = 1.0 meter, At = 1.0 second, and fr = 0.0045.

Plots of the baseline at various stages of development are in Figs.
5.81 to 5.83. In the first plot at 50 time steps, flow from the channel
diverges strongly into the pool and exits without circulating. As
velocities increase at time step 100, divergence of flow into the pool
occurs only on the downstream half of the shear layer causing a crude
circulation to set up in the southwest corner of the pool. In the final

plot, a perfectly centered circulation develops at coordinates (16,9.5).
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The detailed output displays a very stable and continuous water
surface despite continually increasing velocities. Although the initial
water slope is preserved in the channel for the most part, higher
slopes are noticed at the downstream junction of the pool and channel.
The pool surface is horizontal with an average depth of 2.50 meters.
Channel velocities increase throughout the simulation without achieving
a.steady state. There is an upstream effect on the distribution of
velocity across the channel entrance. Higher velocity occurs along the
north wall while the opposite behavior is found at the channel exit. It
should be noted that the steady channel velocity associated with this
configuration and friction factor is 1.1 meters per second. The final
velocity observed during the 190 time steps simulation is 0.70 meters
per second, which implies that a steady state has not developed.
However, the time required to obtain steady conditions is prohibitive
from a computer resources viewpoint and thus, the decision was made
to base the analysis on the formative stages of flow structure develop-
ment.

The testing program designed for this section is essentially an
abbreviated replication of the channel velocity-specified experiments.
First, terms from the hydrodynamic equations will be tested for
physical significance in the circulation phenomenon. Then, single
parameters will be varied in a sensitivity analysis. Finally, combina-
tions of various factors will be tested. In section 5.2.1, the conclu-
sions drawn were based on comparisons with the baseline. Although a
baseline does exist for the slope-specified pool model, the primary
objective of testing in this section is a verification of behavior

observed in similar tests performed earlier.
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Effective Stresses

In the previous section, removal of the effective stress closure
terms resulted in the loss of momentum transfer from the main stream
flow to the pool area. Without this transfer, circulation did not occur.
Figures 5.84 to 5.86 are plots of the same test with the slope-specified
conditions. At 50 time steps, a strong divergence of flow into the
pool occurs with velocities larger than those found in the baseline.
Unlike earlier tests however, a strong spiraling circulation appears in
the southwest corner of the pool after 100 time steps. Evidence of
impending instability in the guise of velocity and water surface
discontinuities is also present in the channel area. By the 150th
time step, the circulation has completely dissolved into a collection of
disarray. The instabilities present in the previous plot are aggravated
by the increasing velocities. At time step 190, the channel velocities
range from -0.4 to 2.6 meters per second.

Convective Inertia

Earlier testing with the convective inertia revealed that its
omission prevented the occurrence of vorticity. Flow would enter and
exit the pool strongly without the development of a shear layer. The
plot at 100 time steps for slope-specified conditions is presented in
Fig. 5.87. Other plots taken at different times in this experiment
were similar in character, differing only in the velocity magnitudes
displayed. Perfectly symmetrical flow structure takes place without
circulation as water enters the pool along the west wall and leaves
along the east wall. Quantitative results show very stable and contin-
uous water levels with the pool possessing a horizontal surface averag-

ing 2.50 meters in depth. Velocities in the channel increase
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throughout the study period with the highest velocities occurring along
the south wall. At the 200th time step, the highest entrance velocity
is 0.81 meters per second.
Friction

Results of tests performed on the velocity-specified pool model
suggest that frictional effects in small scale problems are negligible.
Plots from the friction omission test under slope-specified conditions
appear in Figs. 5.88 to 5.90. All three plots correspond almost
perfectly to the baseline plots. The only difference between the base-
line and this run is found in the detailed output of velocities which
show slightly higher velocities for the frictionless run.

The next series of tests represent the sensitivity analyses of
single parameters.
Depth

Previous experiments indicate that depth is linked directly to the
transfer of momentum. Additionally, the damping effects of large
depth were identified for their stabilizing influence on the computation.
To verify these conclusions with the present model representation, the
extreme case of a 50 meter depth was chosen. Figures 5.91 to 5.93
are the plots for this test. The plot at 50 time steps reveals negligible
current magnitudes in the pool while flow divergence from the channel
is barely noticeable. At 100 time steps, a weak but noncirculating
flow pattern develops in the pool. By time step 150, it is apparent
that a circulation will eventually set up in the pool albeit a feeble
circulation. The channel velocities are comparable to the baseline
values; however, the velocities in the pool are substantially less than

baseline values. Highest entrance velocities are not found along the
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north channel wall but near midstream. The pool is horizontal with an
average depth of 49.99 meters.
Friction

Increases in bed resistance at the baseline length scale have not
demonstrated a visible influence on the velocity-specified testing of the
pool model. This experiment seeks to determine whether the slope-
specified boundary conditions will alter this result. Figures 5.94 to
5.96 are plots from a test where the magnitude of the friction factor,
fr’ is increased by an order of magnitude to 0.04. Flow patterns are
quite similar to the baseline with a circulation appearing at 150 time
steps, centered about coordinates (15,10). Velocities are significantly
lower than those in the baseline. At the final time step (190), channel
velocities are damped by about 30% while pool velocities experience
even greater differences. There appears to be a time lag in the
development of the flow structure although the water surface is steady

and continuous matching the baseline throughout the simulation.

Weighting Factor

Earlier in this section, the absence of the effective stresses, as
modeled by the velocity averaging routine, did not prevent the genera-
tion of secondary flow. At the time, this was a unique result. To
develop a clearer understanding of the effects produced by the
averaging routine, two more weighting factors are tested, 0.4 and 1.0.
Results from the 0.4 run are shown in Figs. 5.97 to 5.99. The nature
of this sequence of plots appears to be very similar to the baseline;
however, the development of current patterns is much slower.
Velocities at all locations in the configuration are roughly 40% less than

the baseline values of comparable time periods. The shear layer that
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is setting up is wider than that of the baseline which suggests that
once circulation does set up, it will occur deep in the pool. Although
a strong circulation is not visible in the last plot, data from time step
190 indicate a well formed pattern is eventually produced. Quantitative
results show stable and continuous water surfaces and slowly increasing
velocities. The horizontal pool is steady at 2.50 meters depth while
the largest velocity entering the channel is 0.43 meters per second.

Plots from the o = 1.0 test are given in Figs. 5.100 to 5.102.
The increased weighting factor has damped velocities to about one-third
of the baseline velocities. Consequently, no circulation is observed
due to the time constraints of the experiment. Some flow is present
in the pool adjacent to the channel, but for the most part, all velocities
are directed from west to east. Detailed data show that the velocity in
the channel increases at an almost imperceptible rate to 0.21 meters
per second in the final time step (190). The pool is level at an
average depth of 2.50 meters and the channel water slope and is fairly
continuous except for a 0.02 meter elevation increase at the upstream
pool entrance.

Time Increment

Experiments on the velocity-specified pool model demonstrated the
sensitivity of the At parameter to instability. The two time increment
tests performed in that section were repeated on the slope-specified
pool model. In the first run, At is equal to 0.5 seconds, one-half the
baseline value. Plots at 50, 100, and 150 time steps are reproduced in
Figs. 5.103 to 5.105. The development of currents in the pool area
closely follows the baseline sequence if compared in terms of real time.

As flow diverges into the pool, high velocities occur in the southeast
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corner without circulating. Although actual circulation is not observed
in the plots, the shift of large velocities to the downstream end of the
pool is the typical prelude to the generation of circulation. The
simulation simply was not carried out long enough to permit the set up
of circulation to be seen. Detailed results show that while channel
velocities are slightly smaller than those in the baseline, pool velocities
are larger. Water levels are identical for the two cases.

The second test in this series doubles the baseline At to 2.0
seconds, a previously unstable result. Figures 5.106 to 5.107 are
plots at 50 and 100 time steps. At 50 time steps a concentration of
diverging flow from the channel is seen in the southeast corner of the
pool. As velocities increase in the channel, a strong, well-formed
circulation sets up about coordinates (17,9.5) at time step 100. Strong
v-component contributions to the entrance velocities signal possible
stability problems. The simulation remained stable for 20 more time
steps.

Space Increment

Tests performed earlier indicate that the space increment
influences both the physical and numerical behavior of the mathematical
model. While smaller space increments were subject to stability pro-
blems, the larger values induced an effect similar to that observed on
the removal of convective inertia. The first test in this series sets
Ax = Ay = 0.5 meters; results appear in Figs. 5.108 to 5.110. A well~
formed circulation develops in the 150th time step in a manner similar
to the baseline sequence. At comparable times however, the velocities
found in the pool and shear layer are noticeably smaller. At time step

150, relatively large v-component contributions to the entrance
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velocities are present which normally precede the onset of instability.
This test becomes unstable at the 180th time step.

The last test of the space increment involves an increase from 1.0
to 10.0 meters. Flow patterns for the various plots are all similar in
character, varying only in velocity magnitude. For this reason, only
the plot at 100 time steps is presented in Fig. 5.111. Flow from the
channel diverges immediately up the west wall of the pool and exits in
much the same fashion without circulating. Channel velocities are
obviously larger than those from the baseline at comparable times, the
largest entrance velocity being 0.91 meters per second. The water
slope in the channel is well behaved while the pool displays fluctuations
which reverse the high water levels from west to east. The magnitude
of these fluctuations is about 0.01 meter.

Large Scale Friction

An important result from the velocity-specified testing program
was the effect of neglecting friction at large scales. Circulation in
large scales occurred only when friction was not present in the equa-
tions. A confirmation of this observation was sought with the present
testing series. Two tests were proposed. The first test set the space
and time increments to 100 meters and 100 seconds, respectively. The
second test used the same increments but omitted the friction term
from the computation. Both tests were highly unstable with the fric-
tionless run lasting 10 time steps, 10 time steps less than the run
including friction.

5.2.3 No Slip Condition at the Wall
In previous tests, a perfect slip velocity condition has been
implemented at all closed boundaries with physically realistic results.

This is in direct contradiction to Flokstra's theoretical determination
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that the no-slip velocity condition is essential for the occurrence of
circulating flow. Despite this discrepancy, there is instructive value
in performing experiments under the influence of a no-slip boundary
condition.

The computational specification of this problem is exactly the same
as the slope-specified pool model except for the wvelocity relocation
scheme used at the walls of the configuration. Actually, a true no-slip
condition cannot be specified because velocity tangential to the wall
surface does not exist under the subgrid scheme used in this model.
However, the condition can be approximated by setting all velocities
located outside of the physical boundaries to zero.

The results of this experiment appear in Figures 5.112 to 5.114.
Compared with the baseline under slope-specified boundary conditions,
the no-slip model experiences strong damping of velocity although the
development of circulation is apparent. At the entrance, highest
velocities occur along the north wall while at the exit, highest
velocities are found in midstream. The detailed output indicates that
circulation does set up by the 190th time step. A fairly steady
velocity of 0.28 meters per second occurs at the entrance which yields
an effective friction factor 15 times larger than the specified 0.0045.
Water surfaces are steady and continuous.

5.2.4 Cold Start

The final testing on the channel-pool geometry is with initial
and boundary conditions which offer the most realistic specification
of the problem than previous attempts. The bottom slope of 0.0005
used in the previous section is retained; however, the initial condition
is now a horizontal water surface with no velocity. Flow is driven by

the gradual lowering of the downstream water level over 20 time steps,
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after which the upstream and downstream depths are both specified to
be 2.5 meters. All other boundary conditions and parameters remain
as before.

Three tests are performed in this section to clarify the effect of
the wvelocity averaging routine on the simulation results. The first
test can be regarded as the baseline for this series, with the weighting
factor, a, equal to 0.1. Plots for this test appear in Figs. 5.115 to
5.118. In the first plot at 50 time steps, flow from the channel enters
the pool along the upstream half and exits through the downstream
half; no circulation takes place. The next plot shows a concentration
of flow entering and leaving the southeast corner of the pool. At 150
time steps, a perfectly formed circulation sets up as flow divergence
from the channel declines. Finally, at 200 time steps, the center of
circulation has shifted slightly from (16,9.5) to (17,10) while all
velocities have increased. Data from the detailed output reveals a well
behaved and stable water surface in the channel. The pool elevations
are horizontal with an average depth of 2.50 meters. Largest channel
velocities are found along the north wall at the entrance and the south
wall at the exit. Velocities in the channel increase continuously
throughout the simulation. In the last time step, 0.72 meters per
second is the largest velocity observed.

The next test uses a weighting factor of zero, i.e. omitting the
representation of the effective stresses. In the previous section, a
spiraling circulation was generated but not maintained in a similar test.
Results for the present testing series are in Figs. 5.119 to 5.122.
The first plot at 50 time steps displays a strong current entering and

leaving the pool much as the baseline did. After 100 time steps, a
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crude circulation appears in the southwest corner accompanied by
general disarray. The next two plots at 150 and 200 time steps
illustrate a gradually developing instability which destroys any
semblance of the circulation seen previously.

The final test of the weighting factor is performed with «a = 1.0.
An earlier experiment disclosed a strong velocity damping effect with
such a high weighting factor. For the test in this series, only the
plot at 200 time steps is presented in Fig. 5.123. All velocities are
damped substantially to one third the baseline magnitudes. The shear
layer, as defined by the horizontal velocities in the bottom of the pool
area, 1is relatively wide. Other areas of the pool are virtually
unaffected. Channel velocities are increasing at the rate of about
0.0001 meters per second at the 200th time step. The pool and channel
water surfaces are stable and continuous at 2.50 meters in depth
except for an anomaly near the upstream entrance to the pool where an
increase of 0.02 meters in depth is found.
5.3 EXPANSION MODEL

Testing of the pool model under the wvarious sets of initial and
boundary conditions provided the basis for many conclusions. How-
ever, the generality of these conclusions is quite suspect if they are
gleaned from the testing of a single configuration. For this reason, a
second configuration, an abrupt channel expansion which is known to
generate secondary flow, is designed and tested.

Secondary flow in sudden expansions is of a slightly different
nature than the channel-pool system tested earlier. This is due in
part to the bending of currents into the expansion and the increased

exposure of the vorticity to mainstream effects. Abbott and
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Rasmussen (2) developed an expansion model from which results and
conclusions were presented. An attempt is made here to verify these
conclusions using a similar geometry.

Figure 5.124 is a sketch of the channel expansion used in this
testing section. The entrance channel is 9 meters wide and 7.5 meters
long while the expanded channel is 17 meters wide and 22.5 meters
long. A fixed bed slope of 0.0005 is specified for the entire con-
figuration.

5.3.1 Slope Specified

In this testing series, the initial condition is a water slope
parallel to the bed at a depth of 2.5 meters. All velocities are set to
zero in the beginning of the simulation. Open boundary conditions at
both upstream and downstream ends are water levels which match the
initial conditions. Closed boundaries are zero velocities perpendicular
to walls enclosing the expansion. Friction in this model is governed
by a dimensionless friction factor, fr’ which is equal to 0.0045. The
weighting factor is set to 0.1 while the space increment is 1.0 meter
and the time increment is 1.0 second.

Essentially, the testing of the slope-specified expansion model will
consist of the same experiments performed on the slope-specified pool
model. The baseline run for this series is represented by two plots in
Figs. 5.125 and 5.126. At time step 50, flow from entrance channel
veers into the expansion, without circulation, and becomes uniform
upon reaching the channel exit. Entrance velocities vary from 0.32
meters per second at the bottom wall to 0.33 meters per second at the
top wall. At the exit, the distribution is 0.19 to 0.16 meters per

second from bottom to top. The second plot features a well-formed
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circulation in the corner of the expansion. Entrance velocities now
range from 0.72 meters per second at the bottom wall to 0.77 meters
per second at the top wall while exit velocities vary from 0.44 to 0.30
meters per second, bottom to top. Water levels throughout the simula-
tion are continuous and stable. The largest water slope occurs at the
junction of the expansion and entrance channel where the surface falls
0.01 meters over the space increment; however, this is a very isolated
point.  Slightly lower elevations are found within the circulation.
Velocities increase steadily throughout the computation with an
attendant increase in the downstream length of the circulation.

Effective Stresses

The effective stresses, as modeled by the velocity averaging
routine, have yielded different results for different boundary condi-
tions. In the velocity-specified pool model, the absence of the effective
stresses resulted in no circulation being produced. However, the same
configuration with a bottom slope was able to generate a spiraling
secondary flow. Testing in this series proceeds exactly as previous
tests by setting the weighting factor, o, to zero.

Figures 5.127 and 5.128 are plots at 50 and 100 time steps. The
first plot is the typical beginning flow pattern at low velocities, not
very different from the baseline. In the second plot, a strong spiral-
ing secondary current, displaying velocities two and three times those
found in the baseline, has developed. An instability develops in the
next 30 time steps, spoiling the computation. Channel velocities were

slightly higher than the baseline until the instability began to develop.
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Convective Inertia

Results from tests where convective inertia is removed have been
very consistent. Flow tends to follow the geometry without shear
layers developing; consequently, no circulation has been observed in
conjunction with this particular test.

All plots exhibit the same pattern of current, thus only the plot
at. 100 time steps is reproduced in Fig. 5.129. As the water moves
into the expansion, flow nearest the top wall of the entrance channel
immediately diverts along the expansion boundaries. No circulation
ever sets up. Water levels are very consistent throughout the run
with channel velocities damped by about 30% when compared with the
baseline at comparable time steps.

Friction

Small scale testing of friction in this study has been
very consistent up to this point. Deletion of friction has simply not
affected baseline results where the space increment is of the order 1.0
meter. Results from this testing series are shown in Figs. 5.130 and
5.131. The two plots are indistinguishable from the baseline plots at
the same time steps. Detailed output reveals a slightly higher set of
channel velocities as the only difference detectable between this run
and the baseline.

Depth

In extreme cases, the depth parameter has been shown to cause
significant changes in the model behavior. Large depths appear to
damp the lateral transfer of turbulent momentum, slowing the develop-
ment of secondary flow. This experiment is designed to test the effect

of large depth, 50 meters, specifically, on the expansion model.
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Figures 5.132 and 5.133 are plotted results from time steps 50 and 100.
The first plot reveals a marked difference between the flow structure
in the expanded area along the north wall of the channel, and the
current proceeding from the entrance channel along the south wall.
Velocities in the expanded portion are just a fraction of those in the
mainstream while flow divergence in this area is much larger than in
the mainstream. At the exit, two separate uniform flows exist
adjacently. The second plot is merely a reprise of the first plot with
larger velocity magnitudes. No circulation is visible in either plot;
however, quantitative results at time step 150 indicate that circulation
does occur. Entrance velocities range from 0.91 meters per second at
the south wall to 1.44 meters per second along the north wall, roughly
0.5 meters per second slower than the baseline. The water surface is
reasonably steady and continuous except for high levels along coor-
dinate j = 8.
Friction

Based on the outcome of earlier testing, the omission of friction at
the baseline scale apparently is not significant. However, the effects
of very high friction have not been completely defined. In this test,
the influence of friction is increased by setting the nondimensional
friction factor, fr’ to 0.04. Figures 5.134 and 5.135 are the results of
this test. The plot at time step 50 is practically identical to the base-
line. A circulation does set up in the corner of the expansion at the
100th time step; however, the circulating wvelocities are a fraction of
the baseline values. Although channel velocities increase continually,
the baseline velocities are considerably larger at every time step. The
behavior of the water surface is very stable and consistent with that

found in the baseline.
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Weighting Factor

Weighting factor tests performed on the pool model demonstrate
that high a 1is responsible for at least two different effects upon the
current structure. One is a capacity for energy transfer and the
other is a damping of velocities. To test the expansion model for the
presence of similar behavior, an experiment using a 1.0 weighting
factor is proposed.

Plots of this test at 50 and 100 time steps appear in Figs. 5.136
and 5.137. The first plot shows noticeably smaller velocities than the
baseline and the presence of negative v-component contributions in the
entrance channel. In the second plot, a very weak circulation is
visible in the expansion corner. Water elevations in the circulation
area are slightly higher than the baseline but the total surface is more
continuous and stable.

Time Increment

A sensitivity to stability problems was identified for the time
increment in tests done on the pool configuration. To confirm this
behavior in the expansion model, the experiment will be performed with
the same values of At used in earlier sections.

The first test specifies At to be equal to 0.5 seconds; a plot of
the result at 100 time steps is in Fig. 5.138. In real time, the flow
pattern in virtually identical to the baseline. Quantitative results
indicate that a circulation is beginning to develop at time step 150, the
last time step in the simulation. Less variation in velocity is seen at
the entrance than with the baseline. The water surface in this test is

continuous at all points and very stable.
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The second test of the time increment, At = 2.0 seconds, has
proved to be unstable in all previous attempts. Figure 5.139 shows
that at time step 50 a circulation which is rounder but weaker than the
baseline circulation has set up. Entrance and exit velocities are also
less uniform than the baseline counterparts. Eventually, the entire
computation becomes unstable at the 70th time step.

Space Increment

The space increment, like the time increment, appears to be
contrained by a stability condition which in this case, limits the mini-
mum interval between spatial nodes. Additionally, when large space
increments increase the problem size, the physics of the problem also
changes.

The first test in this experiment is with a space increment of 0.5
meters. Plots at 50 and 100 time steps are presented in Figs. 5.140
and 5.141.

The first plot is similar to the baseline; currents bend into the
expansion without circulating and leave the configuration in an almost
uniform flow. Closer examination reveals that the divergence of flow
into the expansion is slightly more gradual than the baseline. At 100
time steps, a large elongated circulation has set up at coordinates
(17.5, 14.5). \Velocities in the circulation are almost three times the
magnitude of the baseline values. A very large velocity has developed
along the north boundary of the entrance channel which is over 40%
larger than the adjacent values. Both ends of the configuration display
extreme ranges of velocity, 0.828 to 1.317 meters per second from
south to north at the entrance and 0.595 to 0.104 meters per second

south to north at the exit. An instability at time step 120 has been
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foreshadowed by the presence of significant y-direction component
velocities at the entrance.

A space increment of 10.0 meters is used in the second and last
test of this series. Previous testing with large space increments
resulted in flow patterns which resembled those found when the con-
vective inertia terms were omitted. Figures 5.142 and 5.143 are plots
of the expansion test. At 50 time steps, the plot is similar to the
baseline except that there is more velocity in the corner of the expan-
sion. The only difference in the next plot at 100 time steps is an
increased velocity. However, all velocities are considerably less than
corresponding baseline velocities especially as the simulation continues.
Water levels are consistent and well behaved at all locations in the
configuration.

5.3.2 Cold Start with Increased Resolution

The final experiment with the channel expansion is designed to
determine whether the spiraling circulation, which occurred without the
benefit of effective stress modeling, has a numerical or physical nature.
Theoretically, numerical effects should be minimized as the discretiza-
tion of the problem domain is made exceedingly small. To this end,
both space and time increments are reduced although the problem size
remains constant. The values of these parameters for this test are
Ax = Ay = 0.5 meters and At = 0.5 seconds.

A horizontal water surface without velocity is specified as the
initial condition. As the simulation begins, the downstream water level
will be lowered in 40 time steps to a depth of 2.5 meters, the same
depth as the upstream boundary condition. Thus, a line drawn

through the end point water levels will be parallel to the bed slope.
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The weighting factor for this experiment is zero while the non-
dimensional friction factor is 0.0045. Four plots are generated at 50
time step intervals, and are shown in Figs. 5.144 to 5.147.

Velocities in the first plot are very uniform as flow gradually
enters the expansion along the boundaries. The second plot displays
the inception of secondary flow at the corner where the entrance
channel joins the expansion. At time step 150 a strong "circulation"
has set up. The character of this "circulation” is somewhat similar to
those seen in previous slope-specified experiments, where no actual
separation from the main flow occurs. Velocities in the vorticity seem
to be spiraling, not circulating, about a central point. In the last
plot, increased channel velocities have shifted the vorticity downstream.
Deviations in the v-component of entrance channel velocities are
precursors of instability. Water surface data indicate that depths are
shallower within the circulation by 0.02 meters, while depths are

consistent and continuous elsewhere.



CHAPTER 6
ANALYSIS AND EVALUATION
6.1 INTRODUCTION

This chapter contains an analysis and interpretation of the
experimental results reported in Chapter 5. The large numbers of
tests performed on the numerical model, varying both boundary condi-
tions and configuration, have created a large bank of information from
which to draw general conclusions. Such an extensive testing program
was justified in order to assess the behavior of the model under a wide
range of conditions. Consistent with the objectives of this study,
conclusions delineating the secondary flow phenomena comprise the
major portion of this chapter. Additionally, a discussion of the
numerical properties attributable to the mathematical model formulation
is also included.

A detailed evaluation of all terms found in the partial differential
equation set has been performed, and the results are tabulated in
Table 6.1. Magnitudes of each term are determined at different loca-
tions and times in selected tests. These results have proven to be an
invaluable tool in the understanding of the individual mechanisms which
interact to produce the flow phenomena.

The analysis begins in section 6.2 where the effect of boundary
conditions and channel configuration are considered. Section 6.3 is an
interpretation of the physical processes involving quantities found in
the governing equations. In section 6.4, model stability is separated
into the contributing elements and then recombined into a coherent

theory of general applicability.
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6.2 CONFIGURATION AND BOUNDARY CONDITIONS

Unique solutions for the mathematical model used in this study
can be obtained only after the boundary conditions for a given config-
uration are fully specified. The degree to which the model behavior is
altered by changes in the boundary treatment then becomes a topic of
the highest importance. To this end, the testing program was designed
to reveal the effects of an assortment of boundary conditions on the
two selected configurations.

For the most part, the response of the channel expansion was not
different from that of the channel-pool system. Of the discrepancies
that did exist, at least one was anticipated: the presence of higher
velocity in the expansion model. This was a result of the wider
channel used, effectively reducing the resistance effects encountered
in the pool model. Unexpected behavior did occur, however, in
response to the removal of convective inertia. Although the primary
phenomenon of noncirculating flow was found in both configurations,
damped velocities occurred in the channel expansion while accelerated
velocities were found in the channel-pool system. This probably is the
result of the sudden bending of flow into the expansion, requiring
more energy than the baseline flow which enters a gradual expansion
around a separation zone. When convective inertia is not present,
congestion occurs at the point of expansion with a backwater effect,
evidenced by higher water levels in the entrance channel. This
reduces the velocity of water entering the configuration. Of course,
similar behavior will occur in the channel-pool system, but in this case
the baseline experiences an even larger backwater effect due to the

diversion of energy to the circulation in the pool area.



99

Boundary conditions and the computational treatment of boundaries
in this model are responsible for modifications in behavior occurring
under similar testing procedures. The use of specified water levels at
the open boundaries proved to be a better boundary condition than the
velocity specified in the first testing series. When a difference in
water levels is the driving force for flow through the configuration,
both velocity and water surface are steady and continuous, with few,
if any, anomalies. This is in contrast to the channel velocity-specified
model which requires a special initial condition before simulation can
begin. In addition, oscillating water levels and velocities plague many
of the velocity-specified simulations.

Specific differences in model behavior due to a change in boundary
conditions are found only in the testing of «, the weighting factor
used in the velocity-averaging routine. In the velocity-specified model,

circulation did not occur without the presence of the closure terms,

2 2
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spiraling secondary flow did appear in all water slope models when
tested without the effective stresses represented. This does not
invalidate Flokstra's theory that circulation cannot occur without the
modeling of the effective stresses because his analysis was based on
the existence of a closed streamline separating the circulation from the
main flow. This is not the case with the spiraling flow structure found
in these tests. In each instance, the phenomenon could not be
sustained.

The '"no-slip" velocity condition at physical boundaries has been

professed by Flokstra to be a requisite for the modeling of circulating

flow. While acknowledging the "no-slip" condition in nature, testing of
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this model has been performed primarily with a "perfect slip" boundary
specification for computational reasons. The discrete scheme describing
the physics of this problem is incapable of resolving tangential
velocities at the location of closed boundaries. For this reason,
numerical derivatives at nodes adjacent to these boundaries require the
value of dependent variables located outside the physical problem
domain to enable the spatially-centered derivative scheme to be used.
Generation of these "outside" wvalues has been achieved by a boundary
relocation routine. This routine assigns the value of dependent
variables situated adjacent to walls, to a fictitious location directly
across the wall, outside the configuration. Velocities and water levels
on either side of physical boundaries are thus identical; a perfect slip
condition.

In the experiment involving the specification of zero velocities
outside the boundary geometry, strong resistance effects resulted.
Obviously, any consideration of a no-slip boundary condition must be
coordinated with an accompanying reduction in the bed resistance
effects. This amounts to a calibration problem since the effect of the
boundaries is dependent upon the distance between boundaries.

6.3 PHYSICAL PROCESSES

Mathematical models intended for wide application are normally
designed with meticulous attention directed at the important physical
processes of the modeled phenomena. It is not sufficient to merely
calibrate a result which matches the natural behavior; the generation
of the result must proceed with a modeling of the physical interactions
which are responsible for the phenomenon.

In the depth-averaged mathematical model used in this study, a

strong emphasis was placed on the accurate fundamental derivation of
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the equations governing open channel flow in two dimensions. The
rigorous theoretical basis inherent to this model permits an analysis of
the individual mechanisms contributing to the displayed flow structure.
Of particular interest is the examination of the role played by the
effective stresses, convective inertia, and bed resistance. The com-
bined action of these processes is largely responsible for the presence
or absence of secondary flow in nature. With the aid of Table 6.1,
this section presents an interpretation of the manner in which each of
the aforementioned processes influences secondary flow behavior.

6.3.1 Effective Stresses

The effective stress terms
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are actually the agglomeration of three rather distinct processes: 1)

viscous shear stress; 2) turbulent momentum transfer; and 3) the
effect of vertical nonuniformity. Ideally, a separate closure assumption
relating flow parameters to each process involved should be established.
However, the importance of the three mechanisms is not the same.
Viscous shear forces become significant only at locations close to the
laminar sublayer adjacent to boundaries. At best, only a minor
influence on the large scale flow considered in this study, the viscous
effects have traditionally been dispensed with. Probably the most

important process found in the effective stresses is the exchange of
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turbulent momentum, i.e. the Reynolds stress. This is because the
existence of secondary flow is largely dependent on the energy transfer
mechanism provided by turbulence. Finding a closure assumption for
the effects of velocity nonuniformity in the vertical is a problem unique
to two-dimensional modeling. Flokstra (6) has theoretically determined
that the nonuniformity effects are responsible for the dissipation of
vortex energy. Information as to the importance of this process is
virtually nonexistent, although the type of problems considered by this
study does not include those with strongly nonuniform distributions of
velocity in the vertical. Such problems are best coped with in a three-
dimensional formulation. The theoretical expressions of the effective
stresses in Eqs. 6.1 to 6.3 contain an averaging process which includes
a division by the depth of flow. This would seem to confirm
Bengtsson's (3) observation that the effective stresses are inversely
dependent on the fluid depth.

For a closure assumption representing the effective stresses to be
deemed acceptable, the important processes must be reproduced in a
reasonable fashion. A velocity averaging technique has been selected

to fill this assignment. The closure terms which result from this method
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numerical analog of the effective stresses satisfactorily exhibited the
traits judged essential in earlier discussion.

Results from the testing program are reasonable and encouraging,
despite the presence of two flaws traceable to the representation of the
effective stresses. First, there is yet to be found a physical basis to
choose the appropriate weighting factor, a, in the velocity averaging

routine. There are instances in the literature where physical processes
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have been replaced successfully by numerical techniques in a general
manner. Although the selection of the weighting factor is presently a
manageable calibration task, a physical link to the turbulence process
remains to be identified.

The second drawback in the effective stress representation is
somewhat more serious than the first. Much of the success in fulfilling
the required profile of traits by the closure terms is due to the effect
of numerical viscosity. As the weighting factor is increased, the model
reacts as if the fluid is becoming more viscous, thus increasing the
exchange of lateral momentum and increasing viscous damping.
Essentially, viscosity is used to model a turbulence effect. Therefore,
care must be exercised when using the velocity averaging routine; a
balance must be struck between the simulation of the effective stresses
and the associated change in fluid properties. Not surprisingly,
different fluids in identical circumstances display dissimilar flow
patterns.

This study has experimentally verified Flokstra's conclusion that
true circulation, i.e. a flow pattern possessing a separation zone with
circular streamlines, requires the modeling of effective stresses. Table
6.1 shows that in all instances where circulation occurs, the magnitude
of the effective stresses is significant and greater than the bed
resistance term. As mentioned earlier, a spiraling secondary current
did appear when the closure terms were absent, but this is judged to
be a temporary phenomenon confined to the early stages of developing
flow in sloping models.

Table 6.1 also illustrates that the effective stress behavior

changes with location in the configuration. In the channel, the
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effective stress magnitudes are increasing negative as circulation
develops, while the shear layer exhibits decreasing positive wvalues.
The latter result is a manifestation of the secondary flow development.
Prior to the set up of steady circulation, the divergence of the velocity
vectors into the pool or expansion is very large. As the flow pattern
stabilizes, divergence is reduced almost completely. Within the
vorticity, the effective stresses are significant though considerably
smaller than the values found in the shear layer and channel.

Circulation requires a continuous exchange of turbulent energy
across the shear layer to be maintained. Withdrawal of the effective
stresses after a steady flow pattern has set up dissolves the circulation
and ultimately leads to instability.

The physical response of an increase in the action of the effective
stresses is a higher rate of lateral momentum transfer and the damping
of velocity throughout the configuration. Accompanying the increase
in momentum transfer is a widening of the shear layer which moves the
circulation deeper into the pool or expansion. Damping effects of
depth and scale can, in many cases, be overcome by comparable
increases in the effective stress magnitude.

6.3.2 Convective Inertia
Convective inertia in this model study is described by the
ou Ju 3v v

5%’ Vj)?’ u 5 and v 3y A consensus exists

in the literature to the effect that the convective inertia terms are

following four terms: u

absolutely necessary if circulating flow is to be resolved. This conclu-
sion has also been verified by this study.

The nonlinear nature of the convective inertia terms makes it
difficult to use in conjunction with efficient linear numerical solution

schemes. For this reason, these terms are often neglected. Although
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there are circumstances where convective inertia is not significant and
can be omitted, this would not normally be known unless a full equa-
tion set was modeled.

Table 6.1 reveals that convective inertia is significant in the
channel and shear layer for all instances where circulation occurs.
Conversely, no circulation occurs in the absence of convective inertia.
In this case, flow closely follows the contour of the boundary geometry,
even where sudden changes exist. The presence of inertia allows flow
to retain uniform structure for a distance beyond the location of a
configuration change, enabling the development of a separation 2zone
adjacent to the free extension of the uniform flow. Ultimately, this
separation of flow develops into a circulating flow pattern.

Merely including the convective inertia in a mathematical model
will not ensure the generation of secondary flow. Even with the
additional stipulation that the effective stresses and all other quantities
be precisely described, circulation may yet be inhibited by frictional
effects. Table 6.1 effectively demonstrates the capacity of bed
resistance to overwhelm convective inertia. In every case where
secondary currents do not occur, the resistance term is significant and
larger than the convective inertia terms.

The fact that the convective inertia terms contain spatial gradients
of velocity makes them particularly sensitive to scale effects. In small
scale problems, lateral differences in velocity occur over relatively
small distances, creating large velocity gradients. The large magni-
tudes of the convective inertia terms render the bed resistance effects
negligible. Conversely, large scale problems reduce the magnitude of

both the convective inertia and the effective stresses to such a degree
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that the friction terms becomes significant. The result is a flow
pattern similar to that displayed in the absence of convective inertia,
i.e. no circulation.

A finer distinction of the convective inertia terms can be made by

examining the cross terms, u %‘}—7{ and v%;—l, as opposed to the direct
terms, u %{3 and v % Controlling influence of the convective inertia is

found to lie in the cross terms, as very little change can be detected
when the direct terms are left out of the simulation. Since part of the
effective stress cross term is derived from the cross convective inertia
term in three dimensions, a plausible extension would confer similar

significance to the effective stress cross term, TX This is in agree-

v’
ment with Flokstra's analysis regarding the relative magnitude of the
effective stresses.

Data from Table 6.1 allow a detailed interpretation of the
convective inertia mechanism. In channels, the direct terms are always
significant and increase negatively as circulation develops. However,
it is the cross terms which are consistently among the dominant
quantities in the shear layer. The cross terms are also negative, but
the tendency here is for a decrease in magnitude over the duration of
the study period. Unexpectedly, convective inertia is not significant
within the vortex flow structure.

6.3.3 Bed Resistance

Turbulence effects due to bottom roughness are modeled with
the Chézy resistance equation. This is actually a closure assumption,
although the validity of this empirical expression has been thoroughly
verified in practice. The Chézy equation was designed for steady
uniform flow, but it is used in this model in the absence of a formula-

tion to account for unsteady flow resistance effects.
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Resistance effects are quite controversial in mathematical modeling
of circulation. Leendertse cited the relatively large magnitude of fric-
tion, which allowed him to omit the effective stresses from his estuary
model. Abbott described the onset of circulation as the resistance
forces overcoming the dynamic forces. Flokstra believes that in com-
parison to the no slip velocity specification at vertical boundaries, bed
resistance is unimportant.

This study has found that bottom friction is the largest deterrent
to the existence of circulating flow. A competition seems to exist
between the convective inertia and the bed resistance forces. Table
6.1 illustrates this principle concisely; no circulation is found where
the magnitude of the resistance term exceeds both types of convective
inertia. In small scale problems, i.e. where changes in wvelocity or
water level take place over small distances, resistance is entirely
superfluous to the appearance of circulation. No reasonable friction
factor can affect this mechanism. Large scale problems display con-
trasting behavior; convective inertia is effectively reduced to the point
where the resistance effects totally inhibit the generation of secondary
flow. The requirements for plane flow circulation in large scale con-
figurations are quite severe, and a question may be posed as to the
actual existence of very large scale circulation.

The presence of the flow depth variable in the denominator of the
resistance terms leads to an expectation that the friction effects should
become negligible where large flow depths occur, thus permitting the
occurrence of circulating flow in large scale problems. Magnitudes of
the convective inertia and resistance terms reflect this effect. How-
ever, increases in flow depth result in much lower turbulent momentum

exchange rates which preclude secondary flow development.
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6.4 CONSIDERATIONS OF NUMERICAL STABILITY

The problems of numerical stability derive from the representation
of a continuous phenomena in a discrete grid domain. Due to an
unfortunate combination of model parameters, the numerical model is
incapable of resolving the physics of the problem.

In practice, numerical instability is a term encompassing various
types of numerical effects which lead to a complete disruption of the
computational process. This model displays at least two different
instability mechanisms: nonlinear and Courant. Techniques to correct
stability problems are tailored to the specific type of instability. Non-
linear instability is treated with smoothing techniques while Courant
instability is alleviated by a judicious selection of numerical parameters.
6.4.1 Nonlinear Instability

Nonlinear instability is theoretically described as the inability to
resolve energy at scales smaller than twice the spatial grid increment.
Physically, energy is "cascaded" to smaller and smaller scales by the
action of the nonlinear terms in the governing equations. At the very
smallest scales, energy is dissipated by viscous effects. The discrete
formulation of the numerical model interrupts the energy cascade at the
resolution of the grid. Thus, energy accumulates at this scale and
eventually spoils the computations.

Nonlinear instability is characterized by gradually developing
water surface discontinuities accompanied by a similar behavior in the
calculated velocities. The process is usually slow, and can take as
many as 100 time steps to develop.

Smoothing techniques can be used to improve all types of
instability, although these techniques are especially well suited to treat

nonlinear instability. Bed resistance provides a smoothing effect on



109

the computation; however, this is not a practical technique due to the
physical limitations of a friction factor selection. The smoothing pro-
cedure used in this model is the velocity-averaging routine used here
primarily as an analog of the effective stress terms.

Velocity averaging after each computational half-time step has the
effect of smoothing extreme values which could otherwise create discon-
tinuities eventually leading to instability. Physically speaking, the use
of the velocity averaging routine introduces a stronger viscous dissipa-
tion mechanism into the fluid. Energy no longer must be transferred
to scales smaller than the grid resolution for viscous effects to act.

In this numerical model, nonlinear instability requires the velocity
averaging technique to be present in all simulations although the
weighting factor need not be very large. Most runs were stable with
o = 0.1. This is rather fortunate because the use of larger weighting
factors significantly alters the behavior of the fluid. As it might be
expected, the large weighting factors provide the most stable results.
If a small weighting factor proves to be insufficient in alleviating non-
linear instability, this cannot be changed by allowing a stable flow
pattern to set up under a higher weighting factor and then introducing
the small «.

6.4.2 Courant Instability

Courant instability occurs when the ratio of physical celerity to
numerical celerity defined as the Courant number, exceeds a character-
istic value. The physical celerity for this model is the maximum channel

while the numerical celerity is always defined ﬁ%— = %%

At
max Ax

velocity, U max’

Thus, the criteria involved is of the form U < &, where § is the

characteristic limit.
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Courant instability is normally associated with explicit
computational schemes which tend to have a somewhat restrictive
stability criteria. The two explicit operations contained in the calcula-
tion procedure are presumably the origin of the Courant stability
condition found in this model.

Courant instability is characteristically a very rapid process.
The simulation proceeds without noticeable difficulty until a sudden
discontinuity appears in one of the dependent variables. Within a few
time steps the entire computation is spoiled. These problems arise in
response to large velocity, large time increment, and small space
increment, as can be seen from the structure of the Courant criterion.

The limiting wvalue of the Courant number is dependent on the
weighting factor used in the velocity-averaging routine. This is to be
expected since large weighting factors can smooth instabilities that
would otherwise occur if smaller weighting factors were used. For
a = 0.1 the Courant number in this model must be less than or equal to

0.5.



CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

A mathematical model for the depth-averaged two-dimensional flow
considered here is derived from basic principles under the assumption
of negligible vertical velocity and acceleration. In essence, the mathe-
matical model is based on the integration over the flow depth of the
three-dimensional equations of turbulent flow, to yield the continuity
and momentum equations in a two-dimensional spatial framework. Of
particular interest in the description of circulation is the appearance of
the effective stresses in the momentum equations. These stresses
consist of three contributions: (1) viscous stresses; (2) turbulent
stresses; and (3) stresses arising from the vertical integration of the
corrective inertia terms. No rigorous physically-based relation exists
to model the effective stresses; therefore, a closure assumption must
be made. In this study, an eddy viscosity term is used to close the
equation set.

The computational procedure is based on the method of finite
differences. A discrete grid replaces the continuous independent
variable domain, and the function and partial derivatives are defined
on this grid. The numerical solution of the discretized equation set
consists of a multi-operational method, utilizing both implicit and
explicit components. The alternating-direction implicit (ADI) method is
used to enable the separation of the two-dimensional problem into a
sequence of two one-dimensional problems. In addition, an explicit
mode is used after each implicit computation.

Two problem configurations were tested in this study: (1) a

channel-pool system; and (2) a channel expansion. For each set of
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boundary conditions applied to a particular geometry, a standard

series of experiments were performed. These tests were designed to

identify the flow behavior resulting from the parameters and terms

found in the equation set. Additionally, the interaction of two or more

problem elements were also studied to a limited extent.

7.1 CONCLUSIONS

Major conclusions from this study are as follows:

1.

In the mathematical modeling of depth-averaged flow, a
simplified representation of the effective stresses produces
results which appear to be reasonable. Modeling of the
energy transfer properties attributable to the effective
stresses is a requirement for the resolution of steady,
closed-streamline circulation. Secondary flow phenomena,
without separation streamlines, are possible when effective
stresses are not modeled; however, the structure of these
secondary currents cannot be maintained. Although the
behavior produced by the velocity averaging routine is
consistent with theoretical characteristics of the effective
stresses, it is possible that these effects are the result of a
numerically increased fluid viscosity.

The inertia provided by the convective acceleration terms in
the momentum equation permits secondary currents to develop
in the area near sudden changes in boundary configuration.
In the absence of inertia, flow will simply follow along the
perimeter of the enclosure without circulating. The spatial
gradient found in each convective inertia term results in a

strong sensitivity to the scale of the problem being
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considered. Large scale problems simply do not possess the
large velocity variations necessary for the convective inertia
to make a significant contribution; thus, the occurrence of
cirulation is precluded in these instances. When secondary
flow does occur, it is the action of the cross term which
dominates the physical process of convective inertia.

A competition exists between convective inertia and the
resistance effects at the bed. Circulating flow is possible
only where bed resistance is absent or of minor influence,
e.g., at small length scales. Conversely, at large length
scales, circulation is inhibited by the overwhelming action of
the bed resistance. At the walls of the configuration, a no
slip velocity condition is a physical reality though not a
modeling necessity as circulation can be resolved with or
without such a boundary specification. If the no slip condi-
tion at the wall is specified, the increased resistance effects
must be corrected by reducing the friction factor used in the
modeling of bed resistance.

The choice of boundary condition specification for a given
problem can have a significant effect on the resulting flow
patterns. In this study, the most consistent and physically
reasonable results were obtained in tests in which the driving
force for the flow was due to a difference between upstream
and downstream water elevations.

Stability problems in this model fall basically into two
categories: (1) nonlinear; and (2) Courant. Nonlinear

instability is characterized by gradually diverging velocities
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and water levels which result from the inability of the
discrete model to dissipate energy at the subgrid scale.
These effects can be eliminated by spatial smoothing techni-
ques which introduce numerical viscosity into the calculation.
The Courant instability found in this study is thought to
originate in the explicit computational modes used in the
solution procedure. Unlike nonlinear instability, Courant
instability is very sudden and results from the inability of a
discretized representation to resolve characteristic celerities

occurring in the model.

7.2 RECOMMENDATIONS

The following recommendations are offered for future research:

1.

Within the realm of depth-averaged flow, the derivation of
the mathematical model considered here is intended to be of
general applicability. The greatest source of uncertainty is
the modeling of the effective stresses. Although simplified
methods of representing the effective stresses have yielded
reasonable results, it is surmised that a higher level of
sophistication will be needed in order to handle complex flow
phenomena. In such cases, it may prove of necessity to
separately account for the three components of the effective
stresses. At present, individual closure assumptions are not
available.

Additional studies are needed in order to identify the
numerical effects of various discretization schemes and

techniques used to represent the physical boundaries.
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Although not directly benefiting the formulation of
mathematical models, the compilation of physical data on
various circulating flows would certainly be instrumental in
the development of management models capable of high
accuracy simulation.

Most importantly, the ultimate aim of the modeling effort is
the simulation of pollutant dispersion, sediment transport and
heat dissipation in rivers and estuaries. Once a reasonably
accurate solution of the water phase is obtained, including
secondary flow phenomena such as circulation, the solution
of these pressing problems can be attempted with a increased

level of confidence.
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APPENDIX II. - TABLES

Table 6.1 Significance of terms found in the momentum equation?

Fig. B.C. Time Loc Circ ACCEL DCT CCT PRESS FRIC EFF
Step

5.83 S 150 C +  25000% -38400% -2000 0 5400% -12500%
5.79 V 150 C + -10 -154% -5 9811 0 -150%
56 V 10 C +  -1500% -4980% 70 0 L460% -85001
5.6 V 20 C +  -3000% -7460% -200 0 -4440%  -140001
5.6 V 150 C + -1000 -17800% =680 981001 4700 -14500%
5.31 V 150 C + 500 -32200% ~-4300 981001 260 -21000%
5.80 V 150 C - 0 -290% -14 -980% 13701 15
5.128 S 150 C 0 97500% =-62800% 7100 1962001 8000 0
5.83 S 150 S +  10000% 8400% -386001 0 1000 35000%
5.79 V 150 S + -5 135% -99% 9811 0 365%
5.6 V 10 S +  78000% -2400 -9200% 0 250 785001
5.6 V 20 S +  29000% -3100 -20400% 0 400 450001
5.6 V 150 S + -1000 14600% -11000% 981001 4700 36500%
5.31 V 150 S + 500 -1320 -40000% 0 2 1310001
5.80 V 150 S - -5 -88 -234%  -9811 699% 135%
5.128 S 150 S 0 76000 198700% -7802001 392400% 5500 0
5.83 S 150 v +  -3000% ~370% -130 0 -20 35001
5.79 V 150 v + 0 7.8% 14.0% 0 0 401
5.6 V 10 v +  =25001 -45 20 0 0 ~-1000%
5.6 V 150 v +  -500% 570% 1300% 0 -30 30001
5.31 V 150 v + =500% =60 -370 0 0 20001
5.80 V 150 \Y - 0 22.5% -19% 0 461 0
5.128 S 150 Y 0 -131500% -51800* 1500 2943001  -400 0

B.C. (Boundary Conditions)

1. S = Slope-specified

2. 'V = Velocity-specified
Loc (Location in Configuration)

1. C = Channel

2. S

3. V = Vorticity
Circ (Circulation)

"oy

Shear layer

1. + = Closed streamline circulation

2, 0

P

3 - = No circulation

ACCEL (Local Acceleration Term)

DCT (Direct Convective Term)
CCT (Cross Convective Term)

PRESS (Pressure Term)
FRIC (Friction Term)

EFF (Effective Stress Term)

llargest magnitude
*significant magnitude

T

Open streamline circulation

magnitudes are based on an arbitrary scale



123

FIGURES
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Figure 3.1. Surface volume element.
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Figure 3.2. Bottom volume element.



Figure 3.3.

Surface stress element.
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Figure 3.4.

Bottom stress element.
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Omission of cross-convective terms:

time step 50.
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time step 100.
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Omission of direct-convective terms:

time step 50.
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Channel velocity, U = 1.0 m/s:

time step 50.
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Depth, d =

0.16 meters:

time step 150.
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Depth, d = 10.0 meters:

time step 100.
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Depth, d =

0.4 meters:

time step 50.
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Figure 5.25.

Depth, d = 0.04 meters:

time step 100.
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Figure 5.26. Depth, d = 0.04 meters:

time step 150.
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Figure 5.95. Friction factor, fr = 0.04: time step 100.
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Figure 5.103. Time increment, At = 0.5 seconds: time step 50.

1€2



*wa DIMENSIGNHL? ? z X
C]RCULQTION MUDEL |
‘SERIES L |
DX=DY=1. oo METEHS N |
DT=0.50 secaan
WMWENTHRNCEWQE.dCITT 3 .
0,0 METERS PER SECOND ; )
.................. DEPTH=2.50.METERS...... i
TIME| STEP=100 v
ALPHA=0..100 7 - Lo
ARROW scm.s B \
} D.50 Hg‘IEﬁS PTEB SECOND ,

Figure 5.104. Time increment,

ie 19 20 21 22 23 24 25 26 27

At = 0.5 seconds: time step 100.

28

29

30

at

(A% A



19 y .
% .
"] TNB DIMENSI@NFIL Pl
C I RCULFIT I ON MUDEL

17 S .

SERIES L
15 * g
ishoi0X=0Y -1 .08 METERS ,

DT= 50 SECUNDS
, EmiaﬂNch ,,,,,, }’J.EL‘OC,I.T';T
? 0.0 METEBS EER SECOND

12! ! ;
" DEPTH 2 50 MEIEBﬁ

TIME: STEP= 150 |
10 :
g ALPHA=0..100 -
8 SCALE N KETERS -
! U AnmoW ScaLE 1 X A
. p.S0 n?1ans PER SECOND ;/,z’” v
.l ‘ B o g i L .;

: —
3 ? % 5 e e E

! % § i E_A % ]
? : T ; ; R =~
L Eobd i j o] i

2 I % s 6 7 s 10 i1 12 13 1 15 16 17 i 18 2 21 2 23 24 25 26 27 28 29 30 3l

Figure 5.105.

Time increment, At = 0.5 seconds:

time step 150.
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Time increment, At = 2.0 seconds:

time step 50.
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Figure 5.107.

Time increment, At = 2.0 seconds:

time step 100.
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Figure 5.112.

No slip condition at the wall:

time step 50.
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Figure 5.113. No slip condition at the wall: time step 100.
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Figure 5.115.

Slope-specified cold start baseline:

time step 50.
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Slope-specified cold start baseline:

time step 150.
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Figure 5.118.

Slope-specified cold start baseline: time step 200.
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Figure 5.119.

Omission of effective stresses:

time step 50.
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Omission of effective stresses:

time step 100.
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Omission of effective stresses:

time step 150.
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Weighting factor, «o

1.0:

time step 200.
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Slope-specified baseline:

time step 100.
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Figure 5.127.

Omission of effective stresses:

time step 50.
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Omission of effective stresses:

time step 100.
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Figure 5.130. Omission of bed resistance: time step 50.
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Figure 5.145. Cold start with increased resolution: time step 100.
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Figure 5.146. Cold start with increased resolution: time step 150.
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PROGRAM TWOD TW0d
Cﬁi####ﬁ#b#ia%ﬁQ#&QU#QQQO*‘G#G%&‘O##i#l!;w&*#ﬂiﬂ**ﬁih*&&Qéibbbiblidiﬁﬁ#iTleQ
Ce TWd2
ce TW0D
(o] TWOD TWod
ce TWO)
ce TWO)D
Cﬁ}Gqﬁ“ﬁlﬁ*&b&#!ﬁ#ii##iﬁilinﬁ!lﬁ#..iq@.GQ#.GGQ#G#&QQD#Q}é&#ii!ccﬁbo*@:&ﬂ]'“!OD
ce TW0D
CesuavDEVELOPED Vs M, PONCE AND Se B, YABUSAKIs COLORADO STATE W02
o UNIVERSITY FORT COLLINS»COLORADO 80523 TWO2
Ce TWO0D
C#aeneDESCRIPTION  TWOD IS A TWO~DIMENSIONAL OPEN CHANNEL FLOW TWOD
c# MODEL CAPABLE OF SIMULATING FLOW CIRCULATION, TWOD
cw TW0D
CQ(HﬂtaQi&&&“hi.i#lﬂlll&#i..“n*.&i.#&‘ﬂitpﬁiéﬁﬁ&GQ#GOQ.#GQQ“Q!Q#' OQQ#QQ&DTHOQ

1(INPUT OUTPUTy TAPES=INPUT»TAPE6=0UTPUT s TAPET ¢ NPARAM) TW0D

COMMON/AZ U(31+1992)9VI(3191992)9W(3191992)9Z(31+19) TWOD

COMMON/B/ A(30)98(30)9C(30)+0(30)4E(30) TW0d

COMMON/C/ P(31)9Q(31)9sR(31)95(31) TWOD

COMMON/D/ IW(19)41E(19)9IJL{19)sIJR(1O) TWOD

COMMON/E/ IS(31)+IN(31)9IKL(31)sIKR(3]) Tw0D

COMMON/P/ GRyNPRyNPL TWOD

COMMON/Q/ JSeKSeJT9gKTeNT TWod

COMMON/R/ DXsDYeDToTsDT2 TW0)

COMMON/S/ 18WyIBEsIBSeIBNeJLsJRYIMeJQsKLs KRy KMeKQ TWOD

COMMON/T/ ALPHAYUAVE (30918) s VAVE(30+18) Twdd

COMMON/U/ UR»VRyWRySLyFRyUE TWo2

COMMON/X/ X1(30917)»Y1(30s17)sX2(30917)9Y2(30017)sDEGREES(20417) TW0I

CALL INDA TWOd

CALL IBOU TW0)

CALL INCO TWOD

00 50 N=leNT TwWdd

DO 10 K=24KS TWOD

CALL INBX(XyN) Tw0?

CALL INDX(X) TWOD

CALL COEX({KsN) TW0?D

10 CALL DSPX(KyN) Two)

CALL BSRX TWOD

CALL EXPX TW0D

CALL BREX TW0D

CALL AVELCTY(N) TW0)

CALL RLOX TWOD

DU 20 J=2.JS TW0D

CALL INBY(JoN) ICOP)

CALL INDY (W) TW0D

CALL COEY(JaN) TW0)

20 CALL DSPY(JsN) TW0D

CALL BSRY TW0D

CALL EXPY TWOD

CALL BREY TWOD

CALL AVELCTY(N) Tw00

IF (MOD(NyNPR) ¢EQ4 0) CALL PRIN(N) Twod

CALL RLOX TWOD

IF (MOD(NsNPL) ¢NE40) GO TO 50 TW0D

CALL PLTDATA Tw00

CALL PLOTTER(N) TW0D2

50 CONTINUE TWOD
sfoP TWOD

END TWOD

10

30
40
50
60

80

90
100
110
120
130
140

160
170
180
150
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
330
400
410
420

510

540
550
560
570
580
590
600



c

278

Coaead INPUT OF PROGRAM PARAMETERS

c

c

100
200
300
400
500

SUBROUTINE INDA

COMMON/P/ GReNPReNPL
COMMON/Q/ JSeKSe»JT4KToNT
COMMON/R/ DXsDYsDT,TeDT2
COMMON/T/ ALPHA9UAVE(30+18)9VAVE(30918)
COMMON/U/ URyVRyWRySLyFRyUE
WRITE(64+100)

READ(7+200) DXeDYsDT
WRITE(69300)UXeDY»DT
READ(79400) JSyKSyNT
WRITE(6+500) JSeKSeNT
READ(7+200) URsVReWR9SLeFRIUE
WRITE(69300)URyVReWRsSLeFRYUE
GR= 9,81

ALPHA=0,1

NPR=10

NPL=50

JT= JSel

KI= KSe¢)

T= =0.5#0T%GR/DX

0T2= 0.,5%DT

FURMAT (//% TWOD13y» A TWO-DIMENSIONAL IMPLICIT RIVER MODEL*//)

FORMAT (8F10.0)
FURMAT (8E15,6)
FORMAT(8I10)
FORMAT (8115)
RETURN

END

Ceseua INPUT OF BOUNDARIES AND BOUNDARY TYPES

c

10

20
100
200

SUBROUTINE I80U

COMMON/D/ TW(19) 9 JE(19)oIUL(19)9IJURI(19)
COMMON/E/Z 1S5(31)9IN(31)+IKL(31)9sIKR(31)
COMMON/Q/ JSeKSsJTyKTeNT

D0 10 K=1,KT

READ(7+100) IW(K)»IE(K) 9 IJL(K)yIJR(K)
WRITE(6+9200) IW(K) » IE(L) » IJL(K) 4 IUR(K)
CUNTINUE

DO 20 J=1.31

READ(79100) IS(J) 92 IN(J) 9 IKL(J) yIKR(J)
WRITE(6+200)IS(J) 9 IN(J) 9 IKL(J) 4 IKR(J)
CONTINUE

FORMAT (412)

FORMAT (1X+413)

RETURN

END

TWOD
TWw0d
TWoD
TW02
Tw02
TWdD
TW0D
TW0D
TW0d
Tw0d
TW0D
TWOD
Tw0od
TWw0D
Tw0D
TwWw0od
TW02
TW02
Twdd
TWwdd
Tw0d
TW02
TW02
TW0D
TW0d
TW0J
TWOD
TW0D
TW0d
TWOoD
TW0D
TWod
TWwod
TWOD
TWw02
TW02
TWOD
TW02
Tw0d

610
520
630
640
550
660
670
680
690
700
710
720
730
T40
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
390

Tw0o1000
TW021010
Tw00l020
Tw0J1030
TW0D1040
TW021050
Tw021060
TW001070
TWw001080
TWw0210%0
Tw001100
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Ceeans INPUT OF INITIAL CONDITIONS
c

c

1v

SUBROUTINE INCO

COMMON/ZA/ U(3191992)9V(3191992)9W(31919942)9Z2(31419)
COMMON/Q/ JSeKSeJTyKTyNT
CUMMON/R/ OXoDYeDT,oTo0T2
CUMMON/U/Z URIVReWRSLeFRYUE
D0 5 J=1le31

DO S K=1,19

UlJeKe2)=9999,
VIUsKe2]1=9999,
WlJeKe2)=9999,

CONTINUE

DU 10 K=loKT

D0 10 U=1e31

UlJdeKel)= UR

V(JexKsl)= V¥R

dAl(JeKel)= wWR
ZUJeK)=10.0=(J=]1) #DX*SL
CONT INUE

RETURN

END

CeesaspPRINTING OF VELOCITIES AND ELEVATIONS

C

C

10

20

30
100
200
300
400

SUBROUTINE PRIN(N)

COMMON/ZA/Z U(3191992)9VI(3191992)9W(3191992)32(31919)
CUMMON/Q/ JSeKSeJToKTeNT

WRITE(69200) N

DO 10 J=1,31

WRITE(64100) (U(JoKy2) 9 K=19KT)

WRITE(6+300) N

D0 20 J=1,31

WRITEC692100) (VIJ9Ky2) 9 K=19KT)

WRITE(6+400) N

00 30 J=1y31

ARITE(69100) (W(JsKy2) 9 K=19KT)
FORMAT(1X919F7,.3)

FORMAT (5Xs# VELOCITY Uy TIME STEP=%]4)
FORMAT(5X.# VELOCITY Ve TIME STEpP=%#14)
FORMAT (S5X9# WATER SURFACE We TIME STEP=®#]4}
RETURN

END

Cesss#BOUNDARY CONDITIONS FOR THE X=DIRECTION

c

SUBROUTINE INBX (KeN)

COMMON/ZA/Z U(3191992)9V(3191992)9W(3191992}¢2(31919)
COMMON/P/ GR9NPRyNPL

COMMON/Q/ JSsKSeJT o KTeNT
COMMON/R/ DXsDYsDT,Ty0T2
COMMON/U/ URsVR9WRySLeFRYUE
IF(KeGT45)GO TO S

W{loKs2)=WR

Wi(JTeKy2) =WR=JSHDXGSLEN/20,
IF(NeGTW20)W(JUTeK92) SWR=JS#OXHGL
RETURN

U(89Ke2)=0.

U(239K92) =0,

RETURN

END

Twodlllo
TWwDI1120
TWw021130
TWw021140
TWw0J1150
Tw0J1160
TWO01170
TW0O1l80
TWOD119¢C
TW0I1200
TW0O1210
Tw0dl220
TW021230
TW021240
Tw0d1250
TW0d1260
Tw021e70
Tw0d1280
Tw0d1290
TW021300
Tw0J1310
TWi21320
TWO21330
TW021340
TW0O1350
Twd21l360
TW0D1370
TW021380
TW021390
Tw0Jl400
TWw0Ol410
TWo0Dl420
TW021430
TW0d1l440
TWdd1450
Tw0OD1l460
TW0D1470
TW021480
Tw021490
Tw0D1500
TwOD1510
Tw0D1520
TW0I1530
TWOI1540
TW001550
Two21560
TwdD1570
TW0J1580
Tw0D1590
TW0J1600
TW0d1610
TW021620
TW0J1630
TW031640
Tw0Dl650
TW0D1660
TWddl670
TW021680
TW001690
TWwo01l700
TWO0l710
TW001720
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CeanawSET BOUNDARIES FOR X=-DIRECTION COMPUTATIONS

C

c

SUBROUTINE INDX(K)

COMMON/D/ IW(19)oIE(1I9)9IJL(19)9IJR(19)
COMMON/S/ IBWeIBEsIBS+IBNsJLIJRIIMyJQ9KL s KR KMy KQ
[BW=IW(K)

IBE=1E(K)

JL= TJL(K)

JR= [JR(K)

JM= JL+]

Jl= JR=]

RETURN

ENOD

CessuaSET BOUNDARIES FOR Y=DIRECTION COMPUTATIONS

c

c

SUBROUTINE INDY (J)

COMMON/E/ IS(31)9IN(31)eIKL(31)sIKR(3])
COMMON/S/ IBWeIBEsIBSIBNeJLsJRIUMeJQ9KLe KRy KMo KQ
IBS=1S(J)

[UN=IN(J)

KL= [KL(J)

KR= [KR(J)

KM= KLe+]

KQ= KR=]

RETUARN

END

CoaaaangOUNDARY CONUITIONS FOR THE Y-DIRECTION

c

SUBROUTINE INBY (JeN)

COMMON/A/Z U(3191992)9V(3191992)9W(3191992)2(31+19)
COMMON/U/ URsVRIWRySLIFRIUE

ViJele2)= 0.

ViJe18s2) =0,

IF(1ABS(16~J) «LT«8)RETURN

V(Je5s2)= 0

RETURN

END

TW021730
TW0OD1740
TW0J1750
TW021760
TW021770
TW001780
TW0J17%0
TW00D1800
Tw031810
Tw001820
TWw021830
TW0O1840
TW021850
TW021860
TW0O1B70
TWw0J1880
TW021890
TW0O15900
TwWw0J1%10
TWdJ1920
Tw0J1330
TW021940
TWwdJ1950
Tw021960
TW0D21370
TwDJ1980
Tw021990
TwWwd22000
Tw002010
TW0D2020
TWw022030
TW0D2040
Tw022050
TW022060
Tw022070
Tw002080
Tw022090
TW002100
TW0d2110
Two02120
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C
Cea4s3GENERATE COEFFICIENTS FOR X=DIRECTION MATRIX INVERSION

c

10

50

SUBROUTINE CUEX(KeN)
COMMON/AZ U(3191992)9V(3191992)9W(3101992)9Z(31419)
COMMON/B/ A(30)¢B8(30)+C(30)+D(30)+E(30)
CUMMON/Q/ JSeKSeJToKTeNT
COMMON/R/Z DXeDY9DToTeDT2
COMMON/S/ IBWeIBEsIBSsIBNeJLeJRIJMyJRsKL e KR KM KO
COMMON/U/ URsVRsWRySLeFRyUE
DO 10 J=dMeJa
uCz= U(JeKyl)
DCT= (UtJU*1lsKel)=U(J=19Ks1))/(2,%DX)
DCT=0.0
VAVE 0,25% (V(JeKol) ¢V (U+loKolloV({JdeloK=19l)eV(JeK=191)}
CCT= (UtJsKelyel)l=U(JsK=191)}/(2,4DY}
CCT=0.0
TEMl= SQRT(UC#®#2 + VAV##2)
TEM22 0.5% (W JeleKyl) ¢W(JoKol)=Z(JgK)=Z(JsK=1))
FRT= TEM1/TEM2
Wk WlJdsleKel)
DE= Qo5 (W(J*29Kol)¢W(JeleKol)mZ(JeloK)=2(Jet1l9K=1))
OW= 0528 (W(J*LoKel) ¢W (UKo 1) =2 (JyK)=Z(JoK=~]1))
DN= QaS#(W(JoloKelgl)+W(UeloKel)wZ(JeleK)=Z(JeX))
DS= 0eS#(W(JeloKyl)¢w({JeloK=l9))=Z (JoloK=]l)=Z(J9K=1})
DOV= (DN#V (J*19Kel) =058V (JeloKaelyl)) /DY
A{J)= 1a ¢ DT2%(DCT*FR#FRT)
BlJ)= UC = OT2%(VAV¥CCT)
ClJ)= =DT2#0w/DX
D(J)= DT2%DE/DX
E(J)= WL = DT2%DOV
CONTINUE
W= W(JUMeIKel)
DE= 0o5%(W{(JUMe19Ks)) ¢W(IMeK9l)mZ (UMsK)=Z (JM9K»]1))
DW= DoS®(W (UMK 1) eW(JL9Ked)wZ (JL9K)=Z(JL9K=1))
ON= QeS®(W(UMeK*Llol) ¢W(UMeKy1)wZ (UMIK)=Z (JLeK)})
DS= 0«S5*{W(JUM9Kel) * W{UMeKolpl)=Z (IMeK=1)=Z (JLsK=]1))
DOV= (DN#V(UMyKy 1) =058V (UMeK=141)) /DY
ClJL)= =DT2*0ON/DX
D(JL)= DT2%DE/DX
E(JL)= WL = DT2%0DV
IF(IBW.NE,1)GO TO 50
DCT=(U(JUMIKe L) =U(JL K1) )/ (2.%DX)
DCT=0.0
VAV=0425% (VIJLeKo 1) ¢V (UMe Ko 1) ¢V (JMgK=191) ¢V (JLoK=191))
CCT={U(JLeK*lsl)=U(JLoK=~191))/(2,%DY)
CCT=0.0
TEM1=SORT(U(JLyKye 1) #22¢VAV#S2)
TEM22045% (W (JMyKol) eW(JLoKe 1) =Z (UL yK)wZ(JLoK=]))
FRT=TEM1/TEMZ
A(JL)Y=1o+DT2% (OCT+FR*FRT)
B(JLY=U(JLIKs 1) =DT2% (VAVECCT)
CONTINUE
RETURN
END

TW0D2130
TW0D2140
TW002150
Tw0d2loe0
TWOd2170
Twdd2180
TW0DJ219¢
TW0D2200
TwW0d32210
TwdD2220
Tw0D2230
TW0d2240
Tw022250
TW022260
TW022270
Tw022280
Tw0d22290
THOD2300
Twdd2310
TW0d232¢
TW022330
TWw0d22340
TW002350
TW022360
TW0d2370
TW022380
Tw0D2390
TW0D2400
TWDI2410
TWoD26e20
TW002430
TwdD2440
Tw002450
TW002460
TW0D2470
TW002480
TW0D2490
TwdD2500
Tw002510
TW0D22520
TW022530
TWOD02540
TW0D2550
Tw092560
TW0O2570
TW022580
TW002590
TADD2500
TW302510
TW022520
TW022630
TW0D2640
TW0D2650
TwdI2660
TW002570
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c
CraaudGENERATE COEFFICIENTS FOR Y=DIRECTION MATRIX INVERSION

c

10

SUBROUTINE COEY(JsN)
COMMON/A/Z U(3191992)9V(3191992) W (3191992)9Z(31+19)
COMMON/B/ A(30)¢8(30)9C(30)+0(30)sE(30)
CUOMMON/Q/ JSeKSeJTKTeNT
COMMON/R/ DXosDYsDT,oTeDT2
COMMON/S/ IBWyIBEsIBSyIBNeJLJR UMy JRsKL KR KMy KQ
COMMON/U/ UR9VReWReSLeFRyUE
00 10 K=KMyKu
vC= V(JyKs 1)
OCT= (V(JeKelol) =V (JoK=191))/(24%DY)
DCT=0.0
UAVE 0.25% (U(JoKol)*U(JoKelsl) eU(J=loKelol)¢U{JU=19Ko1)})
CCT= (V(JeloKyl) =V (J=19Kel))/(2.#DX)
CCT=040
TEMl= SQRT(VC*#2 + YAVE#2)
TEM2= 0,53 (H(JeKelpl) oW (JoKyl)aZ (JyK)=Z(J=19K))
FRT= TEM1/TEM2
wh= W(JsKelel)
DE= 0oS#(WN(J*1eKo1pl) oW (JsKelo])=Z(JeKel)=Z(J9X))
DW= 0eS#(W(JsKelol)oW(JmloKelg]l)=Z(JmloKel)=Z(J=19K))
DN= QS (W(JoK*+291)*W(JoKedpl)aZ(JoKel)=Z(J=1l9Ke]l))
DS= 0«5 (W (JsKelol)*W(JeK)=Z(JgK)=Z(JU=19K))
DDU= (DE*U(JeK+1lsl)=DW®U(J=1sKelyl)) /DX
A(K)= le & DTZ2®(DCT+FR®FRT)
B(K)= VC = DI2%(UAVH#CCT)
C(K)= =DT2#DS/0Y
D(K)= DT2#0N/DY
E(K)= WiL= DT24D0U
CONTINUE
W= WlJeKMel)
DES 0eS#(W(J*1oKMp)) ¢W(Js KMo 1) =Z (JyKM) =Z(J9sKL))
DW= 0eSH(W(JoKMal) oW (JUmlyKMsl)=Z(J=1oKM)=Z(J=29KL))
ON= 0eS*(W(JsKMelpl) ¢n(JoKMol)mZ (JyKM) =2 (J=19KM))
DS= 052 (W(JsKMo L) oW (JoKLo1)=Z(JeKL)=Z(J=1eKL})
DOU=  (DE®U(JoKMsl) ~DWBU(J=19KMs1)) /DX
C(KL)= =DT2%US/DY
DIKL)= DT2#UN/OY
E(KL)= WL = DT2%0DV
RETURN
END

TWdd2680
TWwd22590
Tw0d2700
Twdd2710
Tw022720
TW322730
TW0D2740
TW032750
TWw0D2760
TW022770
TW002780
TwW0D2790
TW002800
Tw002810
TW0D2820
TWoo2830
TW022840
TW022850
TWwdl2860
TWw0d2870
TW002880
TW002830
TW00223%00
TWwoo2s310
TW022%20
TWw002530
TW0D29%40
TW0D22950
TW022960
Tw022970
TW022380
Tw022990
TW023000
TW0od3010
Tw023020
Tw003030
TW0D23040
TW023050
TW003060
TWw0D3070
Tw023080
TW0D3090
Tw003100
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Ceaaunax=-DIRECTION DOUBLE SWEEP MATRIX INVERSION

C

20

30

40

50

60

SUBROUTINE DSPX(KsN)

COMMON/AZ U(3191992)9V(3191992) 9w (3191992)+Z(31419)
COMMON/B/ A(30)98(30)9C(30)sD(30)9E(30)
COMMON/C/ P(31)9Q(31)9R(31)sS(31))
COMMON/Q/ JSeKSeJT9yKTeNT

COMMON/R/ DXoDYsDToToDT2

COMMON/S/ IBWeIBEsIBSsIBNsJLIJRYIMyJQyKL s KR9KMyXQ
P(JL)I= 0.

IF(IBWL,EQ41)GD TO 20

Q(JL)I= 0,

R{JL)= 0o

S(JUL) = U(JLeKe2)

GO TO 30

QEIL) =W (JL oK 2)

ROJLIST/Z(TEP(JL) ¢A(JL))
S(JL)=(BIJL)=T2R(JL) I Z7(T#P(JL) «A(JL))
CONTINUE

DU 40 J= UMeJQ

JX= J=1

PA= 1¢/(C(UX)®R(JX) + 1a)

P(J)= =PQR¥D(JX)

QlJ) = PA*(E(JX) = C(UX)*S(JX))

RS= le/(THP(J) + A(J))

R(J)= RS*T
S(J)=  RS*(B(J)=~ T#Q(J))
CONTINUE

IF(IBE.EQ.1)GO TO 50
PA=1.7(C(JQI*R(JIQ) ¢ 1)

P(JR) ==PQ#D (JQ)

Q(JR)I= PR* (E(JQ) =C(JQ) *S(UQ))
W(JR9K92) =P (JR) #U(JRIK»2) +Q(JR)
CONTINUE

DO 60 J=JdLyJQ

L= JL+JQa=J

UlLesKe2)= RIL)*W(LeloKe2) + S(L)
WlLeKe2)= P(L)®U(LIKs2) + Q(L)
CONTINUE

RETURN

END

TW003110
Tw003120
TW003130
TW0D3140
TW0D3150
TwW0d3160
TW003170
TW0d3180
TW023190
TW023200
Tw003210
TwW003220
TW0D3230
TwW023240
TW003250
TW003260
TW0D3270
TW003280
TW003290
TW023300
TwdJ3310
TWw003320
Tw023330
TW023340
TW0D23350
TW023360
TWw0d3370
TW023380
TW023390
TW023400
TW0J3410
TW0D3420
Tw0D3430
TW0D3440
TW0D3450
TW023460
TAOD3470
TW0o03480
TW023630
TW00D3500
TW0D3510
TW003520
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c
Couonsy=DIRECTION DOUBLE SWEEP MATRIX INVERSION

c
40
5
60

C

Ce#aad@OUNDARY RELOCATION NECESSARY FOR X=DIRECTION EXPLICIT COMPUTATION
C

10

15

20

SUBROUTINE DSPY (JsN)

COMMON/A/Z U(3191992)sVi31s1992)9w(3191992)+2(31+19)
COMMON/B/ A(30)9B(30)»C(30)eD(30)9E(30)

COMMON/C/ P(31)9Q{(31)9R(31)9S(31)

COMMON/Q/ JUSeKS»JT9yKTeNT

COMMON/R/ OXoDY9DT,oTeDT2

COMMON/S/ IBWeIBEIBSsIBNeJLIJRIIMsJQeKL KRy KM XQ

P{KL)= O«
QIKL)I= 0o
RIKL)= 0.

S(KL)= V(JeKLe2)

D0 40 K=KMyKQ

KY= K=]

PU= 1e/(C(KY)¥R(KY) +]1.)

P{K) = =PQA*D(KY)

Q(K)= PQ*(E(KY)~= C(KY)}®S(KY))
RS= 1o/ (TH#P(K)+A(K))

R{K)= RS*®T
S(K)= RS#{B(K) = T#Q(K))
CUNTINUE

IF(IBN.EQ.1)G0 TO 5§
Pa=14/(C(KQ)*R(KQ) *+ 1)

P(KR) ==PQ#D (KQ)

Q(KR)= PU*(E(KQ)~=C(XQ)*S(KQ))
W(JsKRy2) =P (KR} #V (Js KRy 2) ¢Q{KR})
CONTINUE

00 60 K=KLsKQ

L= KL+KG=K

ViJelo2)= RILI*W(JoL*192) + S(L)
Wideblo2)= P(L)®V(JyLe2) + Q(L)
CONTINUE

RETURN

END

SUBROUTINE 8SRX

COMMON/A/Z U(3191992)9Vi(3191922)9W(3191992)92(31,19)
COMMON/P/ GResNPRINPL

DO 10 K=2418

IF{K.GT45)GO TO S
U{30sKe2)2U(299Ke2)

GO TO 10

W(BeK92)=W(99Ks2)
W(269K92)=W(23:Ky2)

CONT INUE

D0 20 J=1930
UlJele2)=U(Je2e2)
WiJele2)=W(Js2e2)
IF(1aBS(16=J)«LT«B)GO TO 15
Wwideb6e2)=W(J9592)
U(Je632)=U(J9592)

CONTINUE
IF(JeLE+7«0ReJoGEL24)G0 TO 20
UJe1992)=U(Jel8e2)
wWilJel9e2)=W(Je18e2)
CONTINUE

U(B96392)3U(996492)
U(2346+2)=U(22+6,2)

RETURN

END

TW033530
TW00D3540
TW02355¢0
TW0J23560
TWw0D3570
TW003580
TW0D3590
TW0D3500
TW023610
TW023620
TW003530
TW0d3540
TW0J3650
TW0I3660
TWw023570
TwWd23580
TWdI369%0
TW0J23700
Tw0JI3710
TW0D3720
TwdD3730
TWwd23740
TW0d3750
Tw023760
TWQOJd3770
TwW0d3780
TW323790
TWd23800
Tw003810
TW0d3820
Tw023830
TwWwdJ3840
TW023850
TWw023860
TW0D3870
TwQ03880
TW003890
Tw003900
TWd23910
TwWd03920
TW0O03930
TW023940
Tw003950
TW0D3%960
Tw003970
TW223980
TwW023990
TW024000
TW0D4010
TW0D4020
TW0J4030
TW0J24040
TWw004050
TWw0O4060
TW0J4070
Tw0D4080
TW024090
TW0D4100
TW0D4110
TW024120
TwW0D4130
TW0D4140
Tw004150
TW0D4160
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¢ TWoD4170
CeausangQUNDARY RELOCATION NECESSARY FOR y~DIRECTION EXPLICIT COMPUTATIONTW0)4180
c TWOD4190
SUBROUTINE BSRY TW0D4200
CUMMON/A/ U(3191992)9V(31+1992)9W(3101992)92Z(31,19) TW0d4210

D0 10 K=1,18 TW0D4220
IF(K.GT+5)6G0 TO 5 TW0d4230
VIileK92) =V (24Ks2) TW0D4240
VI314K92)=V(304K92) =V (294Ks2) TW004250

GU TO 10 TW0D4260

S WiBIK92)=W(99Ke2) TWOD4270
V(81K92)=V(94Ks2) TWDD4280
V(249K92)=v(239Ks2) TWw004290
W(26yKy2) =N (239K 2) TW04300

10 CUNTINUE TW0D4310

DO 20 J=1,+30 TW0D4320
IF(IABS(16=J) LT+8)GO TO 15 TW0D4330
WiJ1692) =W (J95+2) TWOD4340

15 WlJerle2) =W (Js2e2) TH0D4350

IF (JeGEeByAND o JoLEL24) W(Js1992) =W (J9 18y 2) TW0D4360

20 CUNTINUE TW0D4370
RETURN TW0D4380

END TW0D4390

c TWOD4400
Ceonoex-DIRECTION EXPLICIT COMPUTATIONS TW0J4410
c TWDD4620
SUBROUTINE EXPX TW0J4430
COMMON/A/ U(31919+2) 9V (3191992) sW(3191992)9+Z(31919) TW024640
COMMON/D/ IW(19) 0 IE(19) 9 IJL(19) s IJR(19) TW0J4450
COMMON/P/ GRyNPRyNPL TWOD4460
COMMON/Q/ JSeKSeJT9KTeNT TW0J4470
COMMON/R/ DXsDYsDT4Te0T2 TW0J4480
COMMON/U/ UR»VRsWRySLsFRyUE TW0J4490

DU 50 K= 2417 TW0J4500

KY=K TW0D4510

IF (KeEQeS)KY=K+1 TW0D4520
JM=IUL (KY) +} TW0D4530
JR=IJR(KY) TW0)45640

D0 50 J= JMyJR TW0064550

CCT= (U(JsKe2) #U{JgKe192) #U(JUm19Ke192)4U(JmLsKs2))® TW0D4560
(V(Js19Ky1) =V (J=19Ks1))/(8Be2DX) TWOD4570

c CCT=0.0 TW0D4580
DCT= (V(JyKelol)=V(JsK=191))/(24%DY) TW024590

c DCT=0.0 TWOD4600
PRT= GRe(W{JsK+1o1l)~w(JsKys1))/DY TW0D4610
TEMP1= FR TW0D6620
TEMP22 0425¢(U(JsKyl) +U(JoKe1lp1)4U(J=19Kolo1)*U(J=19Ks1)) TW04630
TEMPI= 0¢5#(W(JsK*192) +W(JsK92)~Z(JoK) =2 (J=19K)) TW0D4640
TEMP4= SQRT(V(JeKe1)#22 ¢ TEMPR®##2) TW0D4650

FRT= TEMP1#TEMP4/TEMP3 TW0D4660
V(JrKe2)= (V(JsKsl) = DT2#(CCT+PRT))/(le+ OT2%(DCT+FRT)) TW0D4670

50 CONTINUE TW0D4680
RETURN TWOD4690

END TWOD4T00

c Tw0d4T710
Ceesco30UNDARY RELOCATION NECESSARY FOR Y=DIRECTION IMPLICIT COMPUTATIONTWO0J4720
c TW004730
SUBROUTINE BREX TW0J4740
COMMON/A/ U(3191992)9V(3191992) 9w (3191992)9Z(31,19) TW024750

00 10 J=1,30 TW024760

IF (IABS(16=J) 4GE«B)V(J95921=04 TWDJ4770
V{Je1892)30,40 TWOJ4T78B0

10 VviJsle2)=0. TW004790

DO 20 K=1y18 TWw004800
IF(KeGT45)GO0 TO S TW0J4810
V(l9Ke2)=V(29sKe2) TW0J4B20

G0 TO 20 TW0J4830

S VI(ByKe2)=VI(99Ke2) TW0J4B40
VI(264K92) =V (239K02) Tw024850

20 CONTINUE TWOD4B60
RETURN TW0J4870

END TW004880
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¢ TW004890
Céndaty=DIRECTION EXPLICIT COMPUTATIONS Tw0J4900
[ TWw0D4310
SUBROUTINE EXPY Tw0d4920
CUMMON/A/Z U(3191992)9V(3191992)9eW(31919¢2)92(31+19) TW0J4930
COMMON/E/ IS(31)+IN(31)eIKL(31)9eIKR(3]) TW0J4940
COMMON/P/ GReNPRyNPL TW034950
COMMON/Q/ JUSeKSeJToKToNT TW0J)4960
COMMON/R/Z DXeDYoDT,TeDT2 TW0D4970
COMMON/U/ UReVRIWRySLIFRIUE Tw0I4980

DO 50 JU= 20JS TW0J4990

JX=J TW025000
IF(JeEQa23)UX=U+} TWwdl5010
KM=IKL (JUX)+1l TW025020
KR=IKR (JX) TW005030

DO 50 K= KM¢KR TWdd5040

CCT= (V(J9Ke2) oV I{Jel9K92)+V(Je]19K=102) ¢V (JsKwls2))#(U(JeK*]lo])~ TW035050

$ U(JeK=191))/7(8.%DY) TWOD5060

C CCT=0.,0 TW0D5070
DCT= (U(JeleKsl)=U(J=19Ks1))/(2.2DX) Tw0d5080

[o DCT=0.0 TW0D5090
PRY= GR¥(W(J+1leKsl)=W(JeKs1))/DX Tw0JI5100
TEMP1= FR TW0D5110
TEMP2= 0,259 (V(JeKol) oV (UeloKol) eV (Jt19K=lpl)¢V(JoK=19})) TW0J5120
TEMP3= Q.5%(W(J+1oKe2) ¢W{JoK92)=Z(JoK)=Z(J9K=1)) Tw0I5130
TEMP4= SQRTIU(JeKe 1) ##2 + TEMP2%22) TW0I5140

FRT= TEMPI#TEMP4/TEMP3 TW0I5150
U(JeKe2)= (U(JeKsl)= DT2* (CCT+PRT) I/ (le+ DT22(DCT+FRT)) TWDDI5160

50 CONTINUE Tw0I5170
RETURN TWw005180

END TW0J35190

c TW0J5200
CeseaegOUNDARY RELOCATION NECESSARY FOR X=DIRECTION IMPLICIT COvMPJUTATIONTW0D5210
Cc Tw025220
SUBROUTINE BREY Tw025230
COMMON/A/ U(31919+2)9VI(3191992)9W(3191992)+2(31919%) TWDI5240
CUMMON/P/ GRaNPRyNPL Tw0d5250

00 10 K=2418 Tw015260
IF(KeGT«5)GO TO 5 TW0d5270
U(309Ke2)3U(29eKe2) TW0J25280
W(31leKe2)=W (309K 2) TW02529¢0

GO TO 1o TW0I5300

S U(89K22)=0,0 TW0I5310
U(239K92)=0,0 TW025320

10 CONTINUE TW0D25330

DO 20 J=1+30 TW0I25340
IF(JeBGE+BeANDoJaLEL23)U(U91942)20{Jr18+2) TWw0I5350
IF(JeLEeBeOReJGEL23)U(J9602)=Uu(J9592) TW0I5360
UlJele2)=U(Je2e2) TW025370

20 CONTINUE TwWw025380
RETURN TW0D5390

END TW0J25400

[ TW025410
ChaaweQELOCATION OF COMPUTED VALUES TO LOWEST TIME LEVEL TW0O5420
[ TW005630
SUBROUTINE RLOX TW0D5440
COMMON/A/Z U{3191992)9V(3191992)9W(3191902)92(31419) Tw0I5650
COMMON/ZD/ IW(19)9IE(19)9IJL(19)9IUR(19) TW0D56460
COMMON/Q/ JSeKSeJT 4 KTyNT TW0D25670

DO 10 K= 1loKT TwW0J25480
JL=IJL (K) TW025490
JR=TJR(K) +1] TWw035500
IF(KoNE.6)GO TO S TW025510
JL=IJL (K=1) TW035520
JR=IJR(K=1)+1 TW3J25530

5 CUNTINUE TW0I5540

DO 10 J= JLyJR TW0I5550
UJeKeld= U(JsKe2) TW0I5560
V(JeKel)= VI(JeKe2) TW005570
WldeKel)= W(JeKe2) TW005580

10 CONTINUE TW095590
RETURN TW005600

END TW0D5610
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CeauseGENERATION OF PLOT DATA

c

15
100
10

SUBROUTINE PLTODATA

COMMON/A/Z U(3191992)9VI{3191992)9sW(31919e2)9Z(31+19)
COMMON/U/ UR9VRIWRGSLeFRyUE

COMMON/X/ X1(30917)9Y1(30017)¢X2(30917)9Y2(30917)+DEGREES(3D417)
UEX=UE

IF(UE+EQe0+)UEX=045

Ul23e692)=0.0

DO 10 J=1+30

KM=4

IF(JoGT.B.AND.J.LT.ZMKM=17

DO 10 Kz=1leKM

X1(JeK)=(J=1) *#0.5

Y1(JsK)=0425+(K=1)%#0e5

X2(JoK) =2 0/UEX*U(JsK+192) ¢X1(JeK)

Y2(JeK)=2.0/UEX®V (JoK¢192)¢Y ] {JsK)

IF(U(JaK+192) oeNEeOos0eOReVI(JsK*192) NEWDs)GD TO 5
DEGREES(JeK) =040

GU 10 15

CUNTINUE

DEGREES(JeK) =270 +ATANZ2(V(JsK*192) yU(J9Ke192))#1804/3.14159265359
IF (DEGREES (JoK) «GT43604) DEGREES (J9K) =DEGREES (J9K) =360,
CONTINUE

FORMAT (SF20.6)

CONTINUE

RETURN

END

TW025620
TW025630
TW005640
TWw005650
TW325660
TWwdd5670
TW0JI5680
TWi25690
Tw0o0d5700
TWw025710
TW0d5720
TwdJ5730
Tw025740
TWOO5750
TW025760
TW0I5T70
TW0d5780
TW025750
TWw0J5800
TW0JI5810
Tw0dJ5820
TW025830
Tw0J5840
Tw005850
TW0dd5860
TW0O5870
TW035880
Tw025890
TWdD5300



c

288

Ceausep  OTTING OF VELOCITY VECTORS

c

2o

30

10

SUBROUTINE PLOTTER(N)

COMMON/A/

DIMENSION XX(T)s»YY(T)

COMMON/Q/ JSsKSesJTyKTyNT

COMMON/R/ DXoDYsDT,oT9DT2

COMMON/T/ ALPHAsUAVE(30+18)sVAVE(30s18)
COMMON/U/ URsVRsWRySLyFRyUE

COMMON/X/

CALL
CALL
CALL
caLL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

PLOTS(0e040)

SETMSG(0)

NEWPEN(5)

PLOT(le091e09=3)

PLOT (00904093}

PLOT(15.0904042)

PLOT(0.042.093)

PLOT(3-?5'200’2,

PLOT (3.75984542)

PLOT(11e25¢84592)

PLOT (11¢25924042)

PLOT(15¢0924042)

NEWPEN(1)

GRID(0e09=0e2513090652185059
042104210421042104218)

D0 20 J=1,31

xJ=J

X=(J=1)#0,5

IF(J.

CALL

6Te9)X=X=0,08
NU“BER(X"0045OOQOBIXJ'0.09"1)

CONTINVE
00 30 K=1419

YK=K

Y3 (Kw]l)#0,5=0,29

caLL

NUMBER (=0429Y90e089YK90e0y=1)

CONT INUE

CALL

NEWPEN(2)

00 10 J=130

KM=4

IF (J,

GTeBoANDeJelLT,26)KM=1T

00 10 K=1lyKM

CALL PLOT(X1(JoK)}sY1l(JsK)s3)

CALL SYMBOL(X2(J9K) 1Y2(JeK) 90,05929DEGREES(J9K) 9=2)
CONTINUE

XN=N

DEPTH=WR=Z(1r1)

CALL NEWPEN(4)

CALL SYMBOL(0.46598.2690.2915HTW0 DIMENSIONAL904.0s15)
CALL SYMBOL(0e22597¢9590.291THCIRCULATION MOOEL9040¢17}
CALL NEWPEN(Z2)

CALL SYMBOL(1407537+4904298HSERIES L90.098)

CALL SYMBOL(0e696e¢T7690415917THDOX=DY= METERSy0.0917)
CALL SYMBOL(0.7546,53590415915H0T= SECONDS$0.0915)
CALL SYMBOL (046054769 0e15917HENTRANCE VELOCITY9040017)
CALL SYMBOL(0439553590.15921H METERS PER SECOND»0.,0921)
CALL SYMBOL(0e694¢T7690415¢17THDEPTH= METERS»0.0917)
CALL SYMBOL(06994¢53590.15910HTIME STEP=90,0510)

CALL SYMBOL(140593,7690415411HALPHA= 2040011)

CALL NUMBER(145¢64769061510X00,042)

CALL NUMBER(1¢296¢53590415°0T904002)

CALL NUMBER(04395¢53590.159UE204091)

CALL NUMBER(1¢5094,7690+15¢DEPTHe0,092)

CALL NUMBER(2:¢494¢535904159XNs0e0¢=1}

CALL NUMBER(149593,76904159ALPHA90,003)

XX(1)=XX(2)=XX(T7)=]1.875
XX(3)=XX(4)=2,375
XX(5)=XX(6)=14375
YY(1)=YY(5)=YY(4)=3.125
YY(2)=YY{6)=¥YY(3)sYY(T)=3.00

U(3191992)9sVi3191992)9W(3191992)92Z(31,19)

X1(30917)sY1(30917)9X2(30917)9Y2(30017)9DEGREZS(30,17)

Tw0J35310
TwdJI59%920
TWJI5%230
Twdd5940
TWdJI5950
Tw0J5%60
TW0JS5970
TwWd25980
TW035990
TW0J6000
TWw0J6010
TwdJ6020
TWw026030
TWDJ6040
TW0J6050
TW0I6060
TW0J6070
Td026080
TW0I6050
Tw0J6100
TW0O6110
TwWw0J6120
TW3J6130
TW0J6140
TWdI6150
TwdJd6l60
TW0J6170
TW0l6180
THO0J36150
TW006200
TW0J6210
Twd26220
TwDJ6230
TW0d6240
TW026250
TW026260
Tw006270
Tw006280
TWOD6290
TWOD6300
TW026310
TW026320
Tw006330
TW0D6340
TW306350
TW0d6360
TW026370
Tw006380
TW0D63%0
Tw026400
TW0D66¢10
TW026420
TWOD6430
TWI266440
TW026450
TW026460
TWwdd6470
TWDJI6480
TW036490
TW026500
TW026510
TWdd6520
TW0J6530
TW026540
TW006550
TW006560
TWOD6570
TW006580
TW006590
TW006600
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CALL PLOT(XX(1)sYY(1)e3)

DO 40 J=2,7

CALL PLOT(AX(J)sYY(J)e2)

CONTINUE

00 50 J=1,3

XJ=(J=1)#0X

JJd=J

IF(J.EQe1)UJ=6

XX (JJ)=XX{JJ)=0.08

CALL NUMBER(XX(JJ)+2+3090408¢XJs040+1)}

CONTINUE

CALL SYMBOL(1427593¢15950408915HSCALE IN METERSs0.0+15)
CALL PLOT(U+87592¢593)

CALL SYMBOL(24875¢2¢590¢05929270,9-2}

CALL SYMBOL(1443592¢555+0408+11HARROW SCALE»0.0s11)
CALL SYMBOL(0499592¢36590.08,22H METERS PER SECONDs0Q.0s22!)
JEX=UE

IF(UE+EQaQeJUEX=0.5

CALL NUMBER(0499592+36590,08+UEX,0,042)

CALL PLOT(VUs9049=999%)

IF (N+EQ.NT)CALL PLOT{(0ev049999)

RETURN

END

Coeeaoyel OCITY AVERAGING

c

5

10

15

20

SUBROUTINE AVELCTY(N)

COMMON/AZ U(3191992)9V{3151992)ew(31919+2)92(31419)
CUMMON/E/ I5(31) o IN{31)oIKL(3))sIKR(31)

COMMON/Q/ JSsKSeJToKTeNT

COMMON/T/ ALPHASUAVE(30+18)9VAVE(30+18)

DO 10 J=2,JS

KR=IKR (J)

00 10 K=2¢KR

IF{J,EQ.23)G0 TO 5

UAVE (JsK) =(1e=ALPHA) #U(J9K92) +ALPHA® 0,253 (U(J=19K92) ¢UlJ+14Ks2)
1 +U(JeKel,e2) +U(JrK=1+2))

CONTINUE

IF(KL,EQ.KR)GO TO 10

VAVE (JsK) = (1e=ALPHA) ¥V (JeK92) ¢ ALPHAR0,25% (V(J=13K92) +V(J+14Ks2)
1 *V(JeK+1,2)+V(J1K=102))

CONTINUE

D0 20 J=2yJS

KR=1IKR (J)

00 20 K=24KR

IF{J.EQ.23)6G0 TO 15

U(JyK92) =UAVE (J9eK)

CONT INUE

IF(K.EQ.KR)GO TO 20

V(JeKa2)=VAVE (J9K)

CONTINUE

RETURN

END

TW006610
TH006620
THOD6630
TW006640
TWoD6650
TW0D6560
Tw0d6670
TW0D6680
TW0D6650
Tw0D6700
TWwoD6eT10
TW0J6720
TWDJ6T730
TWOO6T740
TW026750
TW0D6760
TwWwd26770
TWw026780
TW0I6790
TwWwdO6800
TH026810
Twddo6820
TW0J6830
TW0I6840
TW0d6850
TW0D6860
TW026870
TW0D6880
TW0O6890
Twd26300
TWOD6510
TW0D6920
TW006930
TW0D6340
TWDD6950
TW026%60
THWO26970
TW0D63980
TW0D6390
TW027000
Tw0J7010
TW0D7020
TW0D7030
TW0J7040
TW0d7050
TWOO7060
TWoo7070
TW027080
TW0D7090
TW0dT100
TW0ODT7110
TWOO7120
Tw0oD7130
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