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Abstract

We outline a two-stage estimation method for a Markov-switching GARCH model

modulated by a hidden Markov chain. The first stage involves the estimation of

a hidden Markov chain using the Vitberi algorithm given the model parameters.

The second stage employs the maximum likelihood method to estimate model pa-

rameters given the estimated hidden Markov chain. Applications to financial risk

management are discussed via simulated data.
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1 Introduction

The volatility of prices measures the variability of price changes. Volatility is defined

as the standard deviation of the return of an asset. Since Engle (1982) in his Nobel

Prize winning work introduced the concept of conditional heteroscedasticity and the well

known ARCH models, this method of measuring volatility has expanded. Taylor (1986)

suggested the GARCH (1,1) model and Bollerslev (1986) independently extended ARCH

to GARCH (p, q). Following this work, GARCH models are regarded as the most powerful

models for analyzing volatility dynamics.

Regime switching models were introduced to economics in 1972 when researchers

recognized that parameters may switch due to structural shifts which divide the sample

period into different regimes. Hamilton (1989) introduced Markov switching models to the

econometric mainstream. Gray (1996) combined GARCH effects with Markov switching

and gave estimates of the parameters by introducing a recombining method and collapsing

the conditional variances in each regime into a single variance at each point of time. Haas

et al. (2004) solved the path dependence problems by separating the GARCH dynamics

from the Markov chain. All of these models employed the maximum likelihood method

to estimate parameters, though sometimes the expression for the log maximum likelihood

function is difficult to obtain.

Filtering is a commonly used technique, particularly in engineering problems. Using

filtering, the estimates of parameters of a model can be continuously updated on the ba-

sis of currently available information. The most frequently used filters are the Wonham

filter for Markov chain and the Kalman filter. Elliott (1993, 1994) considered a finite-

state Markov chain partially observed in Gaussian noises in both the continuous-time and

discrete-time frameworks. They used the Expectation Maximization, (EM), algorithm to

update parameter estimates. Bhar and Chiarella (1995) used Kalman filtering techniques

to estimate the HJM (Heath-Jarrow-Morton) model by reducing it to Markovian dynam-

ics. Chiarella et al. (2001) considered the HJM model and proposed a framework which

provides a recursive filtering algorithm. Elliott et al. (2002) applied a robust form of
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filtering equations for a continuous time hidden Markov model to estimate the volatility

of a risky asset. They improved the classical filtering formulae by eliminating stochastic

integration. Chiarella et al. (2005) proposed a three-factor volatility specification and

analyzed the volatility structure of inter-bank offered rates in three different markets

using the extended Kalman filter. Bauwens et. al. (2006) developed univariate regime-

switching GARCH (RS-GARCH) models in which the conditional variance switches in

time from one GARCH process to another.

In this paper, we outline an estimation method for a Markov-switching GARCH model

modulated by a hidden Markov chain using filtering together with the Viterbi algorithm.

The proposed estimation method has two stages. At the first stage, we adopt the filtering

method and the Viterbi algorithm to estimate the hidden Markov chain. We first derive

a recursive equation for the unnormalized filter for the hidden Markov chain using a

reference probability and a version of the Bayes’ rule. Then the Viterbi algorithm is used

to approximate the recursive equation and to estimate the hidden Markov chain given

the model parameters. At the second stage, given the estimated hidden Markov chain

from the first stage, we adopt the maximum likelihood method to estimate the model

parameters. These estimates can then be used to update the inputs at the first stage.

Using simulated data, we discuss some applications of the switching GARCH(1,1) model

in financial risk management.

This article is organized as follows. In Section 2 we describe the model and state

the underlying assumptions. Section 3 gives the recursive filter and discusses the Viterbi

algorithm to approximate the recursive equation as well as to estimate the hidden Markov

chain. In Section 4, we discuss the maximum likelihood method to estimate the model

parameters, given the estimated hidden Markov chain. Applications to financial risk

management are discussed in Section 5. The final section summarizes the paper.
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2 A Markov Switching GARCH Model

In this section, we present a Markov-switching GARCH model for describing the volatility

of a risky asset. To model uncertainty, we consider a complete probability space (Ω,F , P ),

where P is the historical probability measure. Suppose the price process of an individual

risky asset follows:

St = St−1 exp

(
µ− σ2

t

2
+ σtvt

)
where v = {vt, t = 1, 2, ...} is a sequence of i.i.d. N (0, 1) random variables defined on

(Ω,F , P ). Then its return at time t is

Yt = logSt − logSt−1 = µ− σ2
t

2
+ σtvt, (2.1)

where St and St−1 are the prices of the individual asset at times t and t− 1.

Given σt, the return of the asset is a Gaussian function of mean µ and volatility σ2.

Volatility forecasts are important for hedging risky assets and pricing options. Although

the conventional GARCH models are applied in forecasting volatility, they provide fore-

casts which are too high following above-normal periods. In our model we allow the

volatility to be influenced by the “state of the world”. Its dynamics can experience

discrete jumps in the parameters. That is, the volatility of the asset follows different

dynamics in different states of the world, or different conditions of the market. However,

the states of the world are not observable directly. They are hidden in the observed return

process. We represent the states of the world by a Markov chain with a transition matrix

A. We estimate the “state of the world” by observing the returns of the risky asset. Let X

be the state of the world. We suppose that X and v are independent under P . Following

the canonical representation of a Markov process introduced in Elliott (1993), without

loss of generality, we can take the state space of X to be the set S = {e1, e2, ..., en}, where

ei is a column vector in Rn with unity in the ith position and zero elsewhere.

In our model, we assume that the world has two states, say, a “good” state and a

“bad” one. Consequently, the state space of X is taken to be the set of unit vectors
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S = {e1, e2}, where e1 = (1, 0) and e2 = (0, 1). It is straightforward to generalize our

model to any number of states.

Suppose pji = P (Xt = ej|Xt−1 = ei), and write A = (pji) , 1 ≤ i, j ≤ 2, for the

transition matrix of the chain X. Then, as in Elliott et al. (2008), the dynamics of the

chain can be written as:

Xt = AXt−1 +Mt. (2.2)

where {Mt, t = 1, 2, · · · } is a martingale increment process under P .

We suppose that the volatility of the return has dynamics given by a Markov-switching

GARCH (1, 1) model as follows:

σ2
t = α (t) + β (t)E[σ2

t−1|FYt−1] + θ (t)E[σ2
t−1|FYt−1]v

2
t−1. (2.3)

Here the coefficients α (t), β (t) and θ (t) are given by:

α (t) = 〈α,Xt−1〉 ,

β (t) = 〈β,Xt−1〉 ,

θ (t) = 〈θ,Xt−1〉 ,

where

α =

 α1

α2

 , β =

 β1

β2

 , θ =

 θ1

θ2

 .

Write ht = σ2
t , so that σt =

√
ht. Introducing the state process X, we have the

following dynamics:

ht = α (t) + β (t)E[ht−1|FYt−1] + θ (t)E[ht−1|FYt−1]v
2
t−1

= 〈α,Xt−1〉+ 〈β,Xt−1〉E[ht−1|FYt−1] + 〈θ,Xt−1〉E[ht−1|FYt−1]v
2
t−1, (2.4)

Yt = µ− ht
2

+
√
htvt. (2.5)

Consequently the volatility dynamics change between two different regimes. The shifts
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are determined by the state process X.

When there is only one regime in the model, the Markov-switching GARCH (1, 1)

model becomes the standard GARCH (1, 1) model:

ht = α + βht−1 + θht−1v
2
t−1, (2.6)

Yt = µ− ht
2

+
√
htvt. (2.7)

Define the following filtrations:

FXt = σ {X0, X1, ..., Xt} ,

FYt = σ {Y1, Y2, ..., Yt} ,

FX,Yt = σ {X0, X1, ..., Xt, Y1, Y2, ..., Yt} .

Then for the Markov-switching GARCH(1, 1) model,

E
[
Yt|FX,Yt−1

]
= E

[
µ− σ2

t

2
+ σtvt|FX,Yt−1

]
= µ− σ2

t

2
= µ− 1

2
ht.

Since vt ∼ N (0, 1),

V ar
[
Yt|FX,Yt−1

]
= E

[(
Yt − E

[
Yt|FX,Yt−1

])2

|FX,Yt−1

]
= E

[
(σtvt)

2|FX,Yt−1

]
= σ2

t = ht.

Note that σt (and ht) is FX,Yt−1 -measurable. Consequently, to estimate the Markov-

switching GARCH (1, 1) model, we must estimate the hidden Markov chain X and

the unknown model parameters µ, αi, βi and θi, i = 1, 2. We shall propose a two-stage

estimation method, where we estimate the hidden Markov chain given the model param-

eters at the first stage and estimate the unknown parameters given the estimated hidden

Markov chain at the second stage.
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3 Filtering: The First-Stage of Estimation

In this section, we discuss the first stage of the estimation method, where the filtering

approach is used to estimate the hidden Markov chain X given the model parameters

µ, αi, βi and θi, i = 1, 2. In particular, given the returns data Y1, Y2, · · · , Yt up to

and including time t, we wish to estimate the state Xt of the hidden Markov chain X.

To derive the filter for Xt given FYt , we use the change of measure technique and start

with a “reference” probability P̄ . We suppose that under the probability measure P̄ ,

{Y1, Y2, · · · , Yt} is a sequence of independent and identically distributed, (i.i.d.), random

variables each of which is N (0, 1), the standard Normal distribution. Write

φ(x) :=
1√
2π
e−

x2

2 ,

for the density function of N(0, 1).

Define, for each k = 1, 2, · · · ,

λk :=
φ((hk)

− 1
2 (Yk − µ+ 1

2
hk))√

hkφ(Yk)
,

with λ0 = 1.

Consider an FX,Y -adapted process {Λt, t = 0, 1, · · · } defined by putting:

Λt :=
t∏

k=1

λk , Λ0 = 1 .

We now define a measure P by setting

dP

dP̄

∣∣∣∣
FX,Y

t

:= Λt .

Then as shown in the following lemma, P is the “real world” probability.

Lemma 3.1. Under P, {vt, t = 0, 1, 2, · · · } is a sequence of i.i.d. N (0, 1) random vari-
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ables, where

νt =
Yt − µ+ 1

2
ht√

ht
.

Proof. Let f be a real-valued, measurable test function on <. Then by a version of the

Bayes’ rule and the FX,Yt−1 -measurability of Λt−1,

E[f(vt)|FX,Yt−1 ] =
Ē[Λtf(vt)|FX,Yt−1 ]

Ē[Λt|FX,Yt−1 ]

=
Ē[λtf(vt)|FX,Yt−1 ]

Ē[λt|FX,Yt−1 ]
.

Note that

E[λt|FX,Yt−1 ] = E

[
φ((ht)

− 1
2 (Yt − µ+ 1

2
ht))√

htφ(Yt)
|FX,Yt−1

]
=

∫ ∞
−∞

φ((ht)
− 1

2 (y − µ+ 1
2
ht))√

htφ(y)
φ(y)dy

=

∫ ∞
−∞

φ((ht)
− 1

2 (y − µ+ 1
2
ht))√

ht
dy

=

∫ ∞
−∞

φ(z)dz = 1 .

The second last equality follows by letting z := (ht)
− 1

2 (y−µ+ 1
2
ht), for each t = 1, 2, · · · .

Now

Ē[Λtf(vt)|FX,Yt−1 ] =

∫ ∞
−∞

φ((ht)
− 1

2 (y − µ+ 1
2
ht))√

htφ(y)
f

(
y − µ+ 1

2
ht√

ht

)
φ(y)dy

=

∫ ∞
−∞

φ((ht)
− 1

2 (y − µ+ 1
2
ht))√

ht
f

(
y − µ+ 1

2
ht√

ht

)
dy

=

∫ ∞
−∞

f(z)φ(z)dz .

Consequently,

E[f(vt)|FX,Yt−1 ] =

∫ ∞
−∞

f(z)φ(z)dz .

This does not depend on FX,Yt−1 , so the result follows. �
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We wish to estimate Xt given FYt under the ”real world” probability P . That is,

we evaluate E[Xt|FYt ] which is an optimal estimate of Xt given FYt in the mean-square

sense. Again by a version of the Bayes’ rule,

E[Xt|FYt ] =
Ē[ΛtXt|FYt ]

Ē[Λt|FYt ]
. (3.8)

Write, for each t = 1, 2, · · · ,

qt := Ē[ΛtXt|FYt ] ∈ <2 .

Instead of evaluating E[Xt|FYt ] directly, it is more convenient to evaluate qt. Then from

(3.8),

E[Xt|FYt ] =
qt
〈qt,1〉

.

Here 1 := (1, 1)′ ∈ <2 and q0 = E[X0], which is the initial distribution of X0.

The following theorem gives a recursion for qt, t = 1, 2, · · · .

Theorem 3.1. Let hit = αi + βiE[ht−1|FYt−1] + θiE[ht−1|FYt−1]v
2
t−1, for each t = 1, 2, · · ·

and i = 1, 2. Write

B(Yt) :=

 φ((h1
t )−

1
2 (Yt−µ+ 1

2
h1

t ))√
h1

tφ(Yt)
0

0
φ((h2

t )−
1
2 (Yt−µ+ 1

2
h2

t ))√
h2

tφ(Yt)

 .

Then q satisfies the recursion:

qt (z) = AB(Yt)qt−1 , t = 1, 2, · · ·
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Proof. For each t = 1, 2, · · · ,

qt = E[ΛtXt|FYt ]

= E[Λt−1λt(AXt−1 +Mt)|FYt ]

= E

[
Λt−1AXt−1

φ((ht)
− 1

2 (Yt − µ+ 1
2
ht))√

htφ(Yt)
|FYt

]
=

2∑
i=1

E

[
Λt−1Aei

φ((hit)
− 1

2 (Yt − µ+ 1
2
hit))√

hitφ(Yt)
〈Xt−1, ei〉 |FYt

]

=
2∑
i=1

A 〈qt−1, ei〉
φ((hit)

− 1
2 (Yt − µ+ 1

2
hit))√

hitφ(Yt)
ei

= AB(Yt)qt−1 .

�

We now describe the Viterbi algorithm to estimate the hidden Markov chain X.

The main idea of the Viterbi algorithm is that the expected values represented by the

summations in the recursion in Theorem 3.1. are replaced by the corresponding maximum

likelihoods. In other words, the sums are replaced by the maxima.

Let [B(Yt)]ii be the (i, i)-element of the matrix B(Yt), for each k = 1, 2, · · · and i =

1, 2. Then using the Viterbi algorithm, a new unnormalized estimate q∗t = (q∗t (1), q∗t (2))′ ∈

<2 is given by the following recursion:

q∗t (i) = max{pi1[B(Yt)]11q
∗
t−1(1), pi2[B(Yt)]22q

∗
t−1(2)} , i = 1, 2 .

It is obvious that q∗t (i) > 0, for each i = 1, 2.

The Viterbi probabilities are then defined as:

ρt(i) :=
q∗t (i)

q∗t (1) + q∗t (2)
, i = 1, 2 ,

so ρt(1) + ρt(2) = 1.

Since q∗t is an approximation to qt, ρi(i) is an estimate of the conditional probability

that Xt = ei given FYt−1, for each i = 1, 2 and t = 1, 2, · · · .

10



We can then estimate the state Xt of the hidden Markov chain X at time t by

maximizing the approximated likelihood function by the Viterbi algorithm. That is, the

estimate X̂t is ek if

k = arg max{ρt(1), ρt(2)} .

4 Maximum Likelihood Estimation: The Second-Stage

of Estimation

In this section, we estimate the model parameters using the maximum likelihood estima-

tion. Suppose we have estimated the hidden Markov chain X using the method described

in the last section. Given the estimated hidden Markov chain X̂, we wish to estimate the

transition matrix A = (pji), the mean return µ and the GARCH parameters αi, βi and

θi, for i = 1, 2, where

1. pji ≥ 0 and
2∑
j=1

pji = 1;

2. αi, βi, θi ∈ <+;

3. for each state ei, the peristence parameter αi + βi < 1.

For the estimation of the transition probabilities pji, i, j = 1, 2, we resort to the simple

counting method. Define, for each i, j = 1, 2,

N̂ ji
t :=

t∑
k=1

〈
X̂k, ej

〉〈
X̂k−1, ei

〉
,

which represents an estimate of the number of transitions of the estimated hidden Markov

chain X̂ from state ei to state ej up to and including time t given the observed returns.

Note that N̂ ji
t is FYt -measurable.
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Similarly, we define the estimated occupation time of the estimated hidden Markov

chain X̂ in state ei up to time t as:

Ôi
t :=

t∑
k=0

〈Xk, ei〉 .

Note also that Ôi
t is FYt -measurable.

For each i, j = 1, 2, an estimate of the transition probability pji given FYt is:

p̂ji(t) :=
N̂ ji
t

Ôi
t

.

We now estimate the mean return µ and the GARCH parameters αi, βi and θi, for

i = 1, 2 using maximum likelihood estimation. Write η := (µ, α1, α2, β1, β2, θ1, θ2), for the

vector of unknown parameters. Then it is easy to show that the log likelihood function

of η given FYt and the estimated hidden Markov chain X̂ is:

l(η|FYt , X̂1, X̂2, · · · , X̂t)

:=
t∑

k=1

[ 2∑
i=1

(
− 1

2
ln(2πhk(αi, βi, θi))−

(Yt − µ)2

2hk(αi, βi, θi)

)
〈Xk−1, ei〉

]
,

where

hk(αi, βi, θi) := αi + βiE[hk−1|FYk−1] + θiE[hk−1|FYk−1]v
2
k−1 .

We estimate η given FYt , X̂1, X̂2, · · · , X̂t as follows:

η̂t := arg max
η
l(η|FYt , X̂1, X̂2, · · · , X̂t) .

After we determine η̂t, we use it as an input in the first stage of estimation in Section 3.

We repeat the two stages iteratively until convergence is achieved.

Here we outline the main idea and some theoretical results of the two-stage estimation

scheme based on filtering. For practical implementation of the proposed method, there
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are some remaining issues to be discussed. For example, what are the conditions for

the convergence of the two-stage iterative scheme? What is the rate of convergence

of the scheme? What are the statistical properties of the estimators of the scheme,

such as asymptotic properties? These are open issues and represent potential topics for

further econometric and statistical research. Intuitively, one may discuss the convergence

and statistical properties of the estimators for the two-stage scheme by looking at these

issues at each stage of the scheme. The underlying principle for this strategy is divide-

and-rule; this breaks down a complex procedure into more simpler sub-procedures and

analyses the properties of each. At the first-stage of the estimation, we adopt the filtering

approach together with the Viterbi algorithm to estimate the states of the hidden Markov

chain. There is previous work which discuss the convergence and statistical properties

of filtering hidden Markov models, or related models, and the Viterbi algorithm. For

example, the convergence of filtered estimates for hidden Markov models is discussed

in Elliott and Moore (1997). Dufour, Elliott and Tsoi (1995) provided an asymptotic

study for filtering linear systems with jump parameters. The convergence of the Vitberi

algorithm was discussed in Elliott, Aggoun and Moore (2008). These works provide some

insights into developing convergence results and statistical properties for the estimators

in the first stage of the scheme. The second-stage of the estimation scheme involves the

the maximum likelihood estimation of the model parameters in regime-switching GARCH

models with observable regimes given by the estimated states of the hidden Markov chain.

There is some published work on asymptotic properties and convergence of the maximum

likelihood estimates of, (regime-switching), GARCH models. Examples include Francq

and Zakoian (2004), Bauwens, Preminger and Rombouts (2006) and Winker and Maringer

(2009). These references provide some indication how to develop convergence results and

statistical properties for the estimators in the second stage of the scheme.
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5 Applications to Financial Risk Management: Sim-

ulated Data

In this section we discuss some applications of the switching GARCH (1, 1) model con-

sidered here to financial risk management using simulated data. In particular, we apply

the switching GARCH (1, 1) model for evaluating Value at Risk, (VaR), and compare

the VaR evaluated from the switching GARCH (1, 1) model with that from the GARCH

(1, 1) model.

For the simulation study, we adopt the following values of the model parameters in

the switching GARCH (1, 1) model:

µ1 = 0.11; µ2 = −0.005; α1 = 0.0073; α2 = 0.11; β1 = 0.91; β2 = 1.45;

θ1 = 0.012; θ2 = 0.43; p11 = 0.9066; p22 = 0.0917 ,

and in the GARCH(1,1) model:

µ = 0.082; α = 0.022; β = 0.85; θ = 0.15.

These parameters are consistent those used in Bauwens et al. (2006).

We first simulate the hidden Markov chain X over a time period with T = 10, 000

using transition probabilities p11 and p22 as well as an initial probability P (X0 = e1) =

0.5. The simulated sequence of the hidden Markov chain is treated as if it were the

“true” underlying sequence of the hidden Markov chain X. Then given the simulated

hidden Markov chain, we simulate the return data process Y and the conditional variance

process h over a time period with T = 10, 000. These simulated sequences of return data

and conditional variances are also treated as if they were the “true” returns data and

conditional variance process.
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Figure 1. trace plot [left] and histogram [right] of a series generated from the GARCH(1,1) Markov switching model
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Figure 2. trace plot [left] and histogram [right] of a series generated from the GARCH(1,1) model

From the simulated time series of returns, it appears that the effect of volatility

clustering is more significant in the GARCH (1, 1) model than in the switching GARCH

(1, 1) model. By looking at the return distributions, it seems that the return distribution

generated from the switching GARCH (1, 1) model has a heavier tail than that generated

from the GARCH (1, 1) model. The additional amount of tail risk in the switching

GARCH (1, 1) model may be attributed to the presence of the regime-switching effect.

5% VAR 1% VAR

MS-GARCH(1,1) 3.0815 9.1205

GARCH(1,1) 3.0675 7.6644

Table 1. Value at Risk for the two models

From Table 1, we can see that the switching GARCH (1, 1) model gives a more

prudent, or conservative, estimate for the VaR at each of the two probability levels than

the GARCH (1, 1) model.

6 Conclusion

A two-stage method for estimating a switching GARCH model based on filtering theory

was given. In the first stage, the hidden Markov chain was estimated using a filtering
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method and the Viterbi algorithm, while, in the second stage, the maximum likelihood

method was used to estimate the model parameters given the estimated hidden Markov

chain at the first stage. Applications of the switching GARCH (1, 1) model in financial

risk management were discussed using simulated data.
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