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ABSTRACT 

 

THE RELATIONSHIP BETWEEN GREENHOUSE AND FIELD PERFORMANCE OF DIVERSE CULTIVARS 

OF SUMMER SQUASH AND WATERMELON GROWN UNDER MOISTURE STRESSED CONDITIONS  

 

Drought stress poses a major threat to the global food supply, and most domestic 

vegetable growers lack cultivar-specific information that would allow them to adopt best 

management practices to limit the impacts of these stressors. Summer squash (Cucurbita pepo) 

and watermelon (Citrullus lanatus) are two crops in the Cucurbitaceae family that are 

commonly grown and consumed in the U.S. Heirlooms and modern cultivars of these crops with 

reports of “drought resistance” are currently available on the market without concomitant 

recommended modifications to irrigation management. Many published greenhouse 

experiments have been used to screen cultivars and breeding lines for drought resistance, but 

often lack paired field trials to confirm results. We conducted a greenhouse dry-down study on 

nine summer squash and 10 watermelon cultivars, and sustained deficit irrigation (SDI) field 

trials on a selected 13. Our objective was to determine if crop characteristics identified in the 

greenhouse studies could be predictive of season-long field success under drought conditions. 

Colorado-bred conventional hybrids were used as control cultivars in both studies, and were 

hypothesized to have a more drought-sensitive response than cultivars with reports of drought 

resistance. Parameters evaluated in the greenhouse study included: days to death, percent soil 

moisture at death, root:shoot ratio, and root system characteristics. The cultivars that were 

then evaluated in the field study received one of three sustained deficit irrigation treatments: 
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control, deficit, or drought, using a drip irrigation system in a split-plot design with three 

replications. Control treatments were reduced to approximately half the average 

recommended number of acre-inches of water per season for each crop, averaging 5.9 and 4.8 

inches for summer squash and watermelon, respectively. Deficit and drought irrigation 

treatments were reduced 50% beyond the control during the treatment interval, which began 

after flowering and extended over the course of 12 weeks for the squash, and six weeks for 

watermelon. The deficit treatment plots received irrigations of equal frequency to the control, 

in half the amount, and the drought treatment plots received irrigations at half the frequency 

of the control, with the same volume of water as the control applied at each irrigation event. 

Squash were grown under rain exclusion and watermelons were grown in an open field with 

rainfall amounts factored into total water application calculations. Soil moisture and 

environmental conditions were monitored, and yield and quality measures were taken in both 

crops. Photosynthetic activity was also evaluated twice each season in the summer squash plot 

using a MultispeQ. Our results revealed that greenhouse performance was often not indicative 

of field performance, and that almost all squash cultivars produced acceptable levels of 

marketable yield under severe water deficits in the field. Watermelon cultivars produced 

marketable fruits in both years, but performance was inconsistent from year to year, and yield 

was low across all cultivars and treatments. Modern cultivars and heirlooms with reports of 

drought resistance, such as ‘Desert King’ watermelon and ‘Desert F1’ zucchini, did not 

necessarily out-perform hybrids or open-pollinated cultivars without such reports, such as 

‘Amiga’ watermelon, and ‘Jasper’ and ‘Dark Star’ summer squash. By imposing a sustained 

deficit of more than 50% below recommended season-long rates, we identified five best-
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performing cultivars of summer squash that experience an approximate yield penalty of 30% 

under these conditions. The results of this study offer a prescriptive weekly method of irrigation 

management combined with recommendations for currently available cultivars that can be 

readily adopted by local, fresh-market growers to enable significant water savings without 

reductions in quality. 
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1. INTRODUCTION 

 

Water limitation is one of the single largest threats to agricultural production and the 

global food supply (Farooq et al., 2009). Therefore, the future of global food security depends 

partly on the identification and breeding of crop species and cultivars that can produce 

acceptable yields with reduced irrigation. The need for conserving the resources of the 

Colorado River, which supplies irrigation for seven of the 17 Western states has begun receiving 

public attention (Elliott, 2019). While extensive research has been conducted in the interest of 

reducing water use in agronomic crops and breeding drought-resistant grain crop cultivars, such 

experiments and breeding in annual horticultural food crops remains relatively limited in the 

United States (Jiang et al., 2019; Kuşçu et al., 2015; Mashilo et al., 2018; Yuan et al., 2006). 

Within the Cucurbitaceae family, cucumbers, melons, and watermelons have been more 

frequently studied than summer squash. In addition, the target environment of most available 

studies is outside of North America, even though watermelon is one of the top vegetable crops 

produced in the U.S. and summer squash continues to gain popularity (Agricultural Marketing 

Service, 2018; Kirnak and Demirtas, 2006; YuJue et al., 2011; Singh et al., 2019). The 

consumption of fruits and vegetables is considered essential for public health, so ensuring our 

ability to produce these crops into the foreseeable future is an important goal in the face of 

global climate change (Tuomisto et al., 2017).  

Summer squash and watermelon are annual vegetable crops with an extensive 

distribution and natural history in North America (Blake, 1981; Paris, 2015; Smith, 2006). 

Irrigation recommendations for these two crops are variable, and though some cultivars are 
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reported by seed companies to be drought-resistant, little specific information exists to assist 

growers in appropriately reducing irrigation inputs in these cultivars, and published studies in 

these crops are not always cultivar-specific (Daniello, n.d.; Molinar et al, n.d.; Kuşçu et al., 2015; 

Shrefler et al., 2017). It is important for this gap in research to be filled so that vegetable 

growers have access to information on cultivar-specific responses to reduced irrigation in 

conditions that vary across time, so that they may better understand crop yield and 

physiological consequences of these management decisions.  

A large collection of terms is used to describe the way crop plants respond to sub-

optimal moisture conditions in agricultural production systems. In order to understand the 

body of research on this subject, the terms surrounding it must be clearly defined and 

appropriately applied. Agricultural drought applies to any extended period of reduced soil 

moisture that negatively impacts crop yields and profitability (Vergni, 2004). While agricultural 

drought involves climatic and soil conditions, the term drought stress also involves the crop’s 

response to such conditions. Drought stress refers to the moderate loss of water, which 

ultimately leads to a decrease in growth due to stomatal closure, a reduction in gas exchange 

and photosynthetic rate, and a loss of turgor. Desiccation involves a more extensive loss of 

water than drought stress and leads to the arrest of photosynthetic processes, and eventually 

plant death. Water stress is a general term which applies to any limitation of cell enlargement 

and reduction in growth caused by insufficient moisture conditions that negatively impact 

photosynthesis, respiration, and other metabolic processes (Jaleel et al., 2009). Therefore, 

water stress may occur before the onset of true drought stress, and may not significantly 

impact crop yields unless it progresses into drought stress. Drought stress, however, may lead 
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to suboptimal yields without causing total desiccation. This reduction below optimal yield is 

referred to as a yield penalty, the degree of which may vary among cultivars grown under the 

same conditions (Costa et al., 2007). Overall water productivity applies to the harvestable crop 

production per unit of water used, which can vary by crop and cultivar as well (Fereres & 

Soriano, 2006). By contrast, water use efficiency is the ratio of total biomass produced per unit 

of water applied (Hatfield & Dold, 2019). In cases where drought stress severely reduces plant 

productivity, but does not inhibit reproduction altogether, the crop may produce a subsistence 

yield. Subsistence yield is the production of economically important plant parts as a result of 

drought resistance strategies that allow the plant to survive for a greater length of time under 

water limitation (Basu et al., 2016). Survivability is the length of time that a plant lives through 

stressful conditions, including drought, with or without the production of subsistence yield 

(Moradi et al., 2014). The presence of traits that contribute to crop survivability are not always 

indicative of a crop’s ability to maintain yield potential under drought, however. The most 

directly observable and relevant trait contributing to success under drought is yield stability 

under drought, which should be observed in a field setting (Basu et al., 2016). Season-long 

success under drought will be used hereafter to refer to the production of economically 

important plant parts under reduced irrigation from flowering and through multiple harvests 

until the end of the growing season.  

Another class of terminology refers to types of irrigation management that focus on 

reducing water use, which, at times, could lead to controlled moisture stress or drought stress. 

Fereres and Soriano (2006) concisely define deficit irrigation (DI) as “the application of water 

below full crop-water requirements”, those water requirements often being determined by 
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calculating evapotranspiration (ET) rates.  Sustained deficit irrigation (SDI) is a specific pattern 

of deficit irrigation where a uniform application of water is given throughout the season so that 

the crop undergoes an increasing deficit as it reaches maturity, giving the plant time to adapt to 

more severe drought stress. This method is best used in areas with a high capacity for water 

storage (Fereres and Soriano, 2006). An example of SDI is provided by Mashilo et al. (2016) in a 

drought study conducted on breeding lines of bottle gourd. Rainfed conditions (26.2cm, 10.3 

inches) were used as the drought stress treatment and the non-stressed treatment received 

fixed-schedule sprinkler irrigation totaling 35cm (13.8 inches) throughout the season in this 

field study. Under these conditions, they observed yield reductions that varied by genotype 

from 24-74%, thus allowing the authors to identify candidate breeding lines for drought 

resistance.  

The adaptations which allow plants to respond to and overcome the negative impacts of 

drought stress fall into three categories: escape, avoidance, and tolerance, all of which can be 

referred to as drought resistance. Drought tolerance is mediated at the cellular and molecular 

levels and is sometimes referred to as “true” tolerance to drought because it allows plants to 

survive under periods of low cellular water potential. Adaptations that fall into the category of 

drought escape allow plants to respond to low soil moisture by expediting their life cycle in 

order to reproduce before the onset of more severe drought conditions. Drought-avoidance 

strategies, on the other hand, prevent the plant from undergoing drought stress through either 

water-saving or water-spending methods. Water-saving methods entail conservative water use 

and regulation of transpiration, which allows plants to maintain leaf water status under drought 

conditions. Water-spending methods involve the development of deep and extensive root 
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systems which enable the plant to excavate soil moisture reserves (Basu et al., 2016). In 

contrast, drought sensitivity is the gravity of a plant’s negative response to drought stress on a 

molecular, physiological, or morphological level, and typically has a negative impact on yield 

stability as well (Lobell, 2008). We will use the term drought response to characterize the 

degree of impact of drought on crop plants, which may have a positive or negative effect on 

yield stability.  

Cucurbita pepo, which includes yellow crookneck, scallop, zucchini squash and others, 

has two centers of domestication in North America; one in what is now the Eastern United 

States, and one in Southern Mexico. These domestication events took place five and ten 

thousand years ago, respectively (Smith, 2006). Because of this vegetable crop’s native status 

and extended history in North America, it was widely used by Native North Americans and has 

become adapted to a wide range of habitats, including the Southwest where water resources 

are naturally limited. Watermelon was first cultivated in semi-arid regions of Northern Africa 

over 3,500 years ago (Blake, 1981; Paris, 2015; Renner et al., 2019). While their center of origin 

is not in North America, watermelons were first brought to this continent by Spanish settlers in 

the 1600s and were quickly adopted by tribes throughout the U.S. and Mexico. Over the course 

of the past 400 plus years, this crop was grown in traditional farming systems throughout the 

semi-arid Southwestern U.S, allowing for region-specific selections to be made (Blake, 1981). 

The history and genetic diversity of these two crops makes them prime crops of interest in the 

study of drought adaptation and future breeding for improved response to water stress.  

The demand for summer squash and watermelon among U.S. growers and consumers 

has increased in recent years. The Agricultural Marketing Resource Center (2018) cites an 
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upward trend in watermelon consumption with an average of 7.3 kilograms (16.1 pounds) per 

person each year in the U.S. in 2017.  45,729 hectares (113,000 acres) of watermelon were 

grown in the U.S. in 2017, valued at $578.8 million. Total land area of all squash crops reached 

15,135 hectares (37,400 acres) in 2016 and was valued at $149 million. Annual consumption of 

squash, including both summer and winter squashes, totaled 2.3 kilograms (5.1 pounds) per 

person in 2016 (Agricultural Marketing Resource Center, 2018). Summer squash are also 

regularly sold by diversified vegetable producers at Farmer’s markets in Fort Collins and 

throughout Northern Colorado (Colorado State University Extension, n.d.). Rocky Ford, CO has 

been famed for its high quality watermelon and cantaloupe production since 1887 (“Our 

History | Rocky Ford Growers Association,” 2019.) Consumers state that increased cultivar 

availability and the use of sustainable farming practices, including reduced water use, are two 

of the most important drivers for shopping at farmer’s markets (Bond et al., 2006). Because of 

this, small-scale and fresh market growers are more likely to be receptive to unique cultivars 

and adopting alternative management strategies such as reduced irrigation. 

The University of California Small Farms Program estimates typical summer squash yield 

at 37,659.8 kilograms per hectare (33,600 pounds per acre), with a planting density of 12,140 

plants per hectare (4,915 plants per acre). This equates to about 3.1 kilograms (6.8 pounds) of 

squash per plant under optimal conditions in a growing season of about 150 days, starting in 

March and ending in August (Molinar et al., n.d.). A study on high tunnel summer squash 

production in Utah reported yields between 0.82 and 0.93 kilograms (1.86 and 2.04 pounds) per 

plant. These lower yields were assumed to be due to lack of pollinator activity within the high 

tunnel (Drost, 2011). Watermelon yield estimates are often reported in tons per hectare and 
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vary widely depending on what region they are grown in, whether they are hybrid, open-

pollinated, seeded or seedless, and size class (Schrefler et al., 2017). Nationwide average yield 

in 2014 was 35,643 kilograms per hectare (31,800 pounds per acre) (Agricultural Marketing 

Service, 2018). In the Arkansas Valley of Colorado, a typical 9.1 kilogram (20-pound) 

watermelon cultivar yields between two and four melons per plant, but harvesting only one 

watermelon per plant is still considered acceptable yield with a planting density of 4,942 

watermelons per hectare (2,000 watermelons per acre). Because it is common for watermelons 

to not reach full weight, this averages out to a yield of 33,612-44,816 kg/ha (30-40,000 lbs/ac), 

slightly above the national average (Mike Bartolo, personal communication, 2019).  

Supplemental irrigation is required to produce acceptable yields of fruit and vegetable 

crops in semi-arid regions, including on the Front Range where annual precipitation has ranged 

from 233-556 millimeters (9.2-21.9 inches) per year over the past 20 years (High Plains Regional 

Climate Center - CLIMOD, 1998-2018). The average effective precipitation for summer crops in 

Northern Colorado is just 165.1 millimeters (6.5 inches), less than half of estimated needs for 

many crops. Moisture that occurs during a crop’s growing season and directly benefits the crop 

is considered effective precipitation. Therefore, since much of this moisture comes in the form 

of snowfall during the winter and spring, which recharges soil moisture reserves but has limited 

use in crop production later in the summer, supplemental irrigation is required for the 

production of a successful vegetable crop (Schneeckloth and Andales, 2017).  

Irrigation recommendations for fruit and vegetable crops, including summer squash and 

watermelon, are often general and likely over-estimate the true water needs of the crop in an 

effort to avoid advising growers to reduce irrigation beyond what is necessary for optimal yields 
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(Singh et al., 2019). The high cosmetic and quality-related standards included in the USDA 

grading system in addition to those imposed by produce buyers makes any amount of crop 

stress potentially economically harmful (Agricultural Marketing Service, 2006; 2016). Oklahoma 

State extension recommends between 203 and 254 miliimeters (eight and ten acre-inches) of 

irrigation per hectare for watermelon crops, while TAMU AgriLife Extension recommends 

watermelon crops receive 254 to 381 millimeters (10 to 15 inches) per hectare per growing 

season (Shrefler et al., 2017; Daniello, n.d.). Texas A&M recommends summer squash be given 

178 to 254 millimeters (7 to 10 inches) of irrigation at a uniform rate throughout its life cycle, 

and The University of California Small Farms Program recommends a minimum of 457 

millimeters (18 inches) of irrigation for summer squash crops, adjusted based on ET (Masabni, 

n.d.; Molinar et al, n.d.). More generous estimations from The University of California Small 

Farms Program estimate summer squash water needs at 762 mm (30 inches) per season 

(Molinar et al, n.d.). The closest irrigation recommendation for a cucurbit crop in Fort Collins is 

an estimate for cantaloupe crops grown in Greeley, which require an estimated 437 millimeters 

(17.2 inches) of irrigation per growing season (Schneeckloth & Andales, 2017). The estimated 

mean ET rate for Fort Collins between 1971-2000 was 31-40 centimeters, while rates in 

California ranged from zero to 70 centimeters, depending on the county, making statewide 

irrigation recommendations of limited use (Sanford & Selnick, 2013).  

Irrigating based on ET is a commonly recommended practice and results in irrigation 

management regimes that are adapted to each region and its precipitation rates. However, this 

is not a tool commonly employed by diversified vegetable crop producers. For example, field 

crop grower irrigation decisions in Utah were found to be made based on a variety of factors, 



 

 

9 

 

from crop development stage, to evidence of plant stress, to following the behaviors of 

neighboring farms (Andriyas, 2012). It has also been shown that cultural management 

strategies, such as the use of plastic mulch, may be effective at reducing drought stress without 

increasing irrigation amounts, further reducing the accuracy of ET estimations in these contexts 

(Bartolo, 2019; Kirnak and Demirtas, 2006). While estimates made based on total millimeters or 

inches per season or volume of water per plant can be less precise, this prescriptive approach 

can more readily be adopted by growers with adjusted amounts each season based on cultural 

management practices and observed crop needs. 

The USDA Economic Research Service (2013) reports that 225,420 (557,025) irrigated 

horticulture crop hectares (acres) exist across the Western U.S., to which over 148,018 hectare-

meters (1.2 million acre-feet) of irrigation water is applied annually. Nearly half of this water 

comes from ground water sources, both in Colorado and throughout the 17 Western states.  

Reducing irrigation water inputs is most desirable in situations where the grower is obtaining 

ground water from aquifers that are in danger of overdraft, and in years when low snow-pack 

limits surface irrigation water availability from the Colorado River (Elliott, 2019; Barta et al., 

2004). Well pumping costs, unpredictable water-delivery schedules, and saline irrigation water 

in the West further add to the complexity of vegetable crop irrigation management decisions. 

Farms with junior water rights and those facing aquifer overdraft will benefit from knowing 

what the consequences of reduced irrigation inputs are for their crops, and which cultivars are 

the most reliable under reduced irrigation regimes.  

The search for drought resistance in the Cucurbitaceae family has revealed a series of 

typical drought-sensitive crop responses. A decrease in leaf chlorophyll content, biomass 
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accumulation, stomatal conductance, water use efficiency, and photosynthetic rate were 

observed in squash seedlings studied under drought in a greenhouse setting (Ors et al., 2016). 

Similar results were observed in pumpkin seedlings grown in a greenhouse (Sure, 2011).  Yield 

penalties were also observed in both grafted and non-grafted watermelons once irrigation was 

reduced to 50% ET. ET rates were calculated for watermelons grown in this study for the 

purpose of irrigation management, but the total volume of water applied was not reported 

(Proietti et al., 2008). YuJue et al. (2010) reported that drought stressed greenhouse-grown 

cucumber seedlings had reduced photosynthetic rates (Pn), activity of photosystem II (Phi2), 

and photochemical quenching (PhiNO). Non-photochemical quenching (PhiNPQ) increased 

under drought stress. Bottle gourd was observed to decrease gas exchange and water use 

efficiency under drought stress in both field and greenhouse conditions. However, Phi2, PhiNO, 

and PhiNPQ were not impacted by drought stress in these bottle gourd landraces  (Mashilo et 

al., 2016; 2018). These drought effects, except for the resilience of photosynthetic processes in 

bottle gourd, are similar to those generally observed in other crop species (Anjum et al., 2011). 

The depth and distribution of a plant’s root system is well-known to impact drought 

response. Deep root systems with many fine roots, especially those that develop quickly during 

the seedling stage, are beneficial in allowing plants to extract moisture deep from the soil 

profile and thereby survive periods of low precipitation or lack of irrigation (Anjum et al., 2011). 

Having a finer average root diameter has also been identified as a root trait that contributes to 

success under drought conditions (Comas et al., 2013). Summer squash is a moderately deep-

rooted crop, with an estimated rooting depth of between 91-122 centimeters (36-48 inches). 

Watermelons are deep-rooted,  with a root system that extends 122 centimeters (48 inches) or 
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deeper into the soil profile (Maynard et al., 2007). Rooting depth of some vegetable crops, such 

as tomatoes, can also be further impacted by cultural practices such as transplanting, field 

conditions, and irrigation management (Miller et al., 2013). It has been demonstrated in 

ornamental plants that transplanting may improve fine root development and plant stress 

response even after being moved to field conditions (Judd et al., 2015). Cultivar-specific 

differences in root system distribution under drought in a field setting has been documented in 

melons and in watermelons grafted to cucurbit rootstocks as well (Miller et al., 2013; Sharma et 

al., 2018). However, to date, cultivar-specific differences in root system development in 

summer squash and watermelon in relation to drought stress has not been investigated in a 

greenhouse setting.  

Season-long success under drought in the field may provide the most practically useful 

results, but such studies are resource-intensive and are subject to fluctuations in rainfall and 

temperature from year to year, which does not always guarantee that the desired degree of 

stress is induced. Experiments on deficit irrigation in cucumber in an open field setting (Amer, 

Midan, & Hatfield, 2009) showed that any reduction in irrigation below 100% ET resulted in a 

yield penalty. A deficit of 50% ET in open field conditions resulted in a 31% yield penalty for one 

watermelon cultivar (not named) in a sub-humid environment in Turkey (Kuşçu et al., 2015). In 

a field-based root system evaluation of melon, rainfall fluctuations resulted in the induction of 

moderate stress in year two, but not year one, which resulted in differences in root system 

development between the two years (Sharma et al., 2018). 

Rain out shelters are commonly used in agronomic studies evaluating season-long 

success under drought to exclude rainfall from crops grown in otherwise typical field 



 

 

12 

 

conditions. Any structure used for the purpose of rain exclusion which help ensure that the 

desired degree of drought stress is induced is considered a rain out or rain exclusion structure 

(Blum, 2010). These structures provide more control over the moisture applied, but often 

restrict the experimental plot size due to infrastructure limitations (Blum, 2010). For this 

reason, rain exclusion is still a relatively uncommon method of studying irrigation management 

in horticultural crops (Yuan et al., 2006). Greenhouse drought studies allow more control, 

require less space, and can be completed at any time of year, but are typically conducted at the 

seedling stage and therefore results are not necessarily applicable to the behavior of mature 

plants in a field setting (Zhang et al., 2011; Hameed et al., 2009).  

As small and large-scale growers alike face dwindling water resources, additional tools 

and information are needed to inform irrigation reduction decisions. Squash and watermelon 

are ideal crops for the exploration of drought resistance potential in currently available 

cultivars, both due to the wide variety of genetic resources available, and due to these crops’ 

popularity among farmers and consumers in Colorado and the United States. Direct markets are 

increasingly important to both growers and consumers and provide opportunities to introduce 

unique cultivars and more sustainable management practices on a smaller scale. Sustained 

deficit irrigation practices can more readily be followed by small-scale local growers than 

irrigating based on ET in these crops and is more closely aligned with the methodology of 

irrigation decisions on some farms.  Experimental results have informed us of what to expect 

from drought sensitive cucurbits but has not fully revealed the range of responses in the 

diverse cultivars that are currently on the market.  
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Based on available research, we know that currently available cultivars of summer 

squash and watermelon that are appropriate for Northern Colorado growing conditions may 

experience differing yield penalties under drought conditions that have not yet been fully 

elucidated.  We hypothesize that traits that contribute to survivability in these cultivars, such as 

days to death and seedling root system development, can be measured in a greenhouse setting 

and further evaluated as potential indicators for season-long success under drought under field 

conditions. Furthermore, moisture reduction below 50% of recommended rates will impact 

cultivars described as drought resistant differently than those bred for conventionally irrigated 

systems. Defining these differences in terms of expected yield penalty can assist growers in 

managing both irrigation reductions and cultivar selection.  
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2. MATERIALS AND METHODS 

 

2.1 Overview and Cultivar Descriptions 

 

Greenhouse studies were conducted to evaluate morphological traits of squash and 

watermelon seedlings under induced moisture stress. These potential indicators of drought 

resistance were then compared to season-long field performance. Heirlooms and modern 

cultivars of squash and watermelon were selected based on seed companies’ reports of 

drought resistance, a record of performance with reduced irrigation, and demonstrated success 

in dryland systems. Control cultivars were bred for conventional growing conditions in close 

proximity to the target environment of Northern Colorado. Our choice to evaluate both 

heirlooms and modern cultivars with unique physical characteristics was also based on farmer’s 

market customers’ interest in more sustainable and unique produce, and growers’ desire to be 

able to choose from both open-pollinated and hybrid cultivars (Bond et al., 2006). 

Nine squash cultivars with a range of traits and adaptations were chosen for inclusion in 

a greenhouse seedling dry-down study (Table 1). ‘Jasper’, ‘Obsidian’, HZS-03-849’, and ‘Daisy 

Mae’ were all selected from a Colorado-based vegetable breeder and used as control cultivars. 

These cultivars were assumed to yield well under optimal moisture conditions, and were not 

reported to be drought resistant. These control cultivars were zucchini types, apart from ‘Daisy 

Mae’ (Daisy), a yellow crookneck summer squash (NE Seeds, 2019). ‘Early Summer Crookneck’ 

(Crook) was another yellow summer squash chosen for its earliness, which is a trait that can 

contribute to drought escape (Terroir Seeds, 2019; Basu et al., 2016). ‘Rugosa Friulana’ 

(Rugosa), a yellow summer squash with an irregular, bumpy rind, was selected based on its 
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inclusion in dry-farming trials conducted by the Oregon State University (OSU) Dry Farming 

Collaborative (DFC) (Nebert and Garrett, 2019; Baker Creek Heirloom Seeds, 2019). ‘Genovese’ 

(Geno), a gray or light green Italian summer squash, was also selected on this basis (Adaptive 

Seeds, 2018; Seeds From Italy, 2019). ‘Dark Star’ (DkStar) is an organic, open pollinated zucchini 

reported to be “vigorous” by seed companies and successful in OSU DFC trials (Nebert and 

Garrett, 2019; Siskiyou Seeds, 2019). ‘Desert F1’ (Desert) was included in this study because it is 

the only currently available organic hybrid zucchini specifically reported to be drought tolerant 

(High Mowing Organic Seed, 2019) (Table 1). True “drought tolerance” involves a variety of 

complex cellular and molecular mechanisms that allow a crop to be successful under drought 

conditions. Unless specifically observed, drought resistance is a more appropriate and general 

term to describe any of a variety of adaptations that would lead to increased success under 

drought conditions. Drought resistance will be used to refer to cultivars with reported success 

in low-water conditions unless reports of “drought tolerance” are specifically made. 

Ten cultivars of watermelon were evaluated in greenhouse studies, and six were carried 

forward and studied under field conditions. ‘Jemez’, ‘Rio Grande Red-seeded’ (RGRS), ‘Tohono 

O’odham Yellow-meated’ (TOY), and ‘Manzano Sandia’ (Manzano) were chosen from the Native 

Seeds/SEARCH collection of heirloom crop seeds from the Southwestern U.S. and Northern 

Mexico (Table 2) (Native Seeds/SEARCH, 2019). Another Southwestern heirloom, ‘Ancient’, was 

“cultivated in Arizona for generations before being made commercially available through Baker 

Creek Heirloom Seeds” (Baker Creek Heirloom Seeds, 2019). ‘Desert King’ (DesKing) is one of 

the most commonly known watermelon cultivars that is claimed to be drought-resistant and is 

grown on a commercial scale (Baker Creek Heirloom Seeds, 2019). This cultivar has also been 
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successful in OSU DFC trials (Nebert and Garrett, 2019). ‘Chin Sun’ (ChinSun) is an heirloom 

cultivar made available through High Desert Seed+Gardens, a small-scale Colorado-based seed 

company focused on selecting seeds that are adapted to the semi-arid climate of Colorado 

(High Desert Seed+Gardens, 2019).  

 

Table 1: Squash cultivar information for greenhouse and sustained deficit irrigation field studies 

in Northern Colorado, 2018-2019. 
 

  Cultivar 
 

Seed Source 
 

Fruit Type 
Days to 

Maturity 

Seed Company 

Description 

Additional 

Notes 

Environment/ 

Year(s) 

 

‘Daisy Mae’ 
 

NE Seed 

 

Yellow 

crookneck 

 

40-45 

 

High yielding 

Colorado-

bred, check 

cultivar 

 

Greenhouse/ 

2018-2019 

 

‘Dark Star’ 
 

Siskiyou 

Seeds 

 

Zucchini 

 

50 

 

“Remarkably 

vigorous” 

 

Organic OP, 

OSU DFC 

Greenhouse, 

Field/ 2018-

2019 

 

‘Desert F1’ 

 

High Mowing 

Organic Seed 

 

Zucchini 

 

50 

 

“Drought-

tolerant” 

 

 Organic 

hybrid 

Greenhouse, 

Field/ 2018-

2019 

‘Early 

Summer 

Crookneck’ 

 

Terroir Seeds 

 

Yellow 

crookneck 

 

42-60 

 

“Early squash” 

 

Selected in  

AZ 

Greenhouse/ 

2018-2019, 

Field/ 2018 

 

‘Genovese’ 
Adaptive 

Seeds, Seeds 

from Italy 

 

Gray/light 

green 

 

55 

 

Seed produced in 

Oregon 

 

OSU DFC 

Greenhouse, 

Field/ 2018-

2019 
 

‘HZS-03-

849’ 

 

NE Seed 

 

Zucchini 

 

40-45 

 
 

High yielding 

Colorado-

bred, check 

cultivar 

Greenhouse, 

Field/ 2018-

2019 

 

‘Jasper’ 
 

NE Seed 

 

Zucchini 

 

40-45 

 
 

High yielding 
Colorado-

bred, check 

cultivar 

Greenhouse/ 

2018-2019, 

Field/ 2019 

 

‘Obsidian’ 
 

NE Seed 

 

Zucchini 

 

45-50 

 

 

High yielding 

Colorado-

bred, check 

cultivar 

 

Greenhouse/ 

2018-2019 

 

‘Rugosa 
Friulana’ 

Baker Creek 

Heirloom 

Seeds 

Yellow 

crookneck, 

irregular 

 

60 

 

Long-season 

OSU DFC, 

long season 

comparison 

Greenhouse, 

Field/ 2018-

2019 
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Table 2: Watermelon cultivar information for greenhouse and sustained deficit irrigation field 

studies in Northern Colorado, 2018-2019. 
 

Cultivar 
 

Seed Source 
Flesh 

Color 

Days to 

Maturity 

Seed Company 

Description 

Additional 

Notes 

Environment

/Years 

 

‘Amiga’ 
 

NE Seed 

 

Red 

 

95 

 

High-yielding, 

disease tolerant 

 

CO-bred 

check 

Greenhouse, 

Field/ 2018-

2019 

 

‘Ancient’ 
 

Baker Creek 

Heirloom Seeds 

 

Red 

 

n/a 

 

Dry-farmed in 

Arizona 

 

Water 

management 

Greenhouse, 

Field/ 2018-

2019 

 

‘Chin Sun’ 
 

High Desert Seed 

+ Gardens 

 

Red 

 

n/a 

Produces in CO 

at high 

elevations 

OSU Dry 

Farming 

Collaborative 

 

Greenhouse/ 

2018 

 

‘Cypriot’ Baker Creek 

Heirloom Seeds 

 

Red 
 

n/a 
“Thrives with 

little irrigation” 

Water 

management 

Greenhouse/ 

2019 
 

‘Desert 
King’ 

 

Baker Creek 

Heirloom Seeds 

 

Yellow/

Orange 

 

85 

“One of most 

drought resistant 

cultivars” 

 

Grown 

commercially 

Greenhouse, 

Field/ 2018-

2019 

 

‘Jemez’ 
 

Native 

Seeds/SEARCH 

 

Red 

 

n/a 

High desert, 

“native 
watermelon” 

 

Elevation, 

history in SW  

Greenhouse, 

Field/ 2018-

2019 
 

‘Kaho’ Baker Creek 

Heirloom Seeds 

 

Orange 
 

75 
 

“Short season” 
Early-

maturing 

Greenhouse/ 

2018-2019 
 

‘Manzano 
Sandia’ 

 

Native 

Seeds/SEARCH 

 

Red 

 

n/a 

“Dry-farmed in 

Manzano 

mountains” 

Elevation, 

water 

management 

 

Greenhouse/ 

2018-2019 

‘Tohono 
O’odham 
Yellow-

meated’ 

 

Native 

Seeds/SEARCH 

 
 

Yellow 

 
 

n/a 

 

“Grows with 

monsoon rains”, 

high desert 

 

Elevation, 

water 

management 

 

Greenhouse, 

Field/ 2018-

2019 

 

‘Rio Grande 
Red Seeded’ 

 

Native 

Seeds/SEARCH 

 

 White 

 

n/a 

 

High desert, 

“grows wild” 

High 

elevation, 

vigor 

Greenhouse, 

Field/ 2018-

2019 

 

 

2.2 Greenhouse Experiments 

 

A lack of established methods for optimally studying drought response and root systems  

in annual fruit and vegetable crops led to our adoption of methods similar to those used in 

agronomic crop species (Becker et al., 2015). Greenhouse dry-down studies were conducted in 

order to study the root system development of squash and watermelon cultivars under 

increasingly drought stressed conditions. Seeds were first germinated on a misting bench 
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(2018) or in a growth chamber (2019) in rock wool plugs to ensure seedling uniformity. Once 

their first true leaves had developed, seedlings were transplanted into 10x10x30cm (4x4x12”) 

pots filled with Profile® Greens Grade™ (Profile Products, Buffalo Grove, Illinois) growing 

medium that had been fully saturated with a 6ml/L (1.5 tbsp/gal) fish emulsion (Alaska, 5-1-1, 

Pennington Seed Inc.) solution. The pots were drained to field capacity before planting. 

Seedlings, pots, dry medium, and dry medium with fish emulsion solution were all weighed so 

the gravimetric soil moisture content could be determined for each pot. Experimental units 

were defined as one plant of one cultivar in one pot. Pots were arranged in stands that fit 9 

pots per stand (one of each cultivar) in a randomized complete block design. Six replications of 

each cultivar were planted, except in cases where germination rates limited the sample size; a 

minimum of three replications were included in these cases. Squash and watermelon cultivars 

were physically separated, but studies for both crops took place over the same time frame (22 

May 2018-22 July 2019) in the same controlled environment greenhouse. In 2018, greenhouse 

conditions were set to a minimum temperature of 11°C (52°F), a maximum temperature of 22°C 

(72°F), and 72% humidity. In 2019, the minimum temperature of 19°C (67°F), the maximum 

temperature was 25°C (77°F), and 50% humidity was maintained. No additional irrigation or 

fertility was applied for the duration of the study, and the growing medium gradually dried 

down. Photos were taken weekly, and data was collected on each pot until total desiccation 

(plant death) was reached. Days to death, percent soil moisture at death, and dry weight of 

above-ground biomass were all recorded.  

Once desiccation occurred, roots were washed and carefully collected for scanning. 

Roots were preserved in a 18% ethanol solution and stored in a 4°C cooler until they were 
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scanned (Smit et al., 2013, p.200). An EPSON Expression 11000XL scanner was used to capture 

images of the root system of each plant in the dry-down study. Roots were suspended in 

deionized water for scanning and then re-collected for dry weight determination. Images of the 

roots were then analyzed using WinRHIZO (Regent, 2013) to determine total length of fine (0.0-

0.5mm) roots and total root length. Above and below ground biomass was dried in an oven at 

65°C for up to one week and weighed. Using the root and shoot dry weights, root:shoot ratio 

was determined for each cultivar by dividing root dry weight by shoot dry weight.  

 

2.3 Field Studies 

 

Field studies were conducted in Fort Collins, Colorado at Colorado State University’s 

Agricultural Research, Development, and Education Center, South (ARDEC South) (40.610012, -

104.993979, Altitude: 1523 m). Squash were grown in a retractable-roof A-frame Cravo (Cravo 

Equipment Ltd., Brantford, Ontario, Canada) structure and watermelon were grown in a 

certified organic open field. Both plots were managed using inputs approved for certified 

organic farms by the Organic Materials Review Institute (OMRI). Soil test results determined the 

soil type to be sandy clay loam, containing 2.4-3.0% organic matter. In year one, soil in the field 

and in the Cravo was amended with the addition of a one-inch layer of compost. Plots were 

rototilled prior to planting in both years. 

Transplants for field studies were grown in greenhouse conditions with a minimum 

temperature of 18°C (65°F), a maximum temperature of  27°C (80°F), and an average humidity 

of 50% using Berger OM Series growing medium (Berger, Saint-Modeste QC) with three gallons 

of vermicompost, three cups of Down to Earth Fish Bone Meal (3-16-0) and three cups of Down 
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to Earth Blood Meal (12-0-0) incorporated into each 3.8 cubic-foot bag of soilless potting mix. 

Seeds were planted at 1-2 cm depth in six-packs and watered daily as needed. Starts were 

transplanted to field conditions after hardening under shade cloth two to three weeks from 

seeding between 24-May and  6-July in both years. Plots were given fish emulsion (Alaska, 5-1-

1, Pennington Seed Inc.) fertilizer by fertigation every three to four weeks following crop 

establishment in accordance with product label guidelines. Insect and disease pressures were 

monitored throughout the season. Following hail damage in the watermelon field in both years, 

damaged vines and damaged developing fruits were pruned off uniformly across the plot to 

encourage re-growth.  

Squash were sown in a 8x24 meter (25x80’) A-frame Cravo (Cravo Equipment, Ltd.) 

structure with a retractable roof and sides, similar to rainout structures described by Blum 

(2010) (Figure 1). Roof and sides were left open in order to maintain ambient environmental 

conditions except in cases of rain or hail. CRAVO was closed to exclude all precipitation during 

the treatment interval (5 July 2018-14 Sept. 2018; 28 June 2019-12 Sept. 2019). Drip irrigation 

was installed using Irritec P1 Ultra 5/8" drip tape with a flow rate of 1.2 liters per hour (0.33 

gph) and plants were spaced on 61cm (24”) centers, aligned with 61cm (24”) spaced emitters. 

Beds were spaced one meter (three feet) apart within treatments and 1.3 meters (four feet) 

apart between irrigation treatments. Landscaping fabric was used for weed suppression and to 

limit soil moisture losses to evaporation. A total of six cultivars were used, and three irrigation 

treatments applied in a split-plot design with three blocks and 4-6 experimental units per block.  
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Figure 1- Summer squash planted in a Cravo structure with sides and roof partially closed. 

 

 

 
Figure 2- Watermelon field layout with 3-meter spaced beds to separate irrigation treatments.  
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Watermelons were planted in open field conditions using Irritec P1 Ultra 5/8" drip tape 

with a flow rate of 0.33 GPH subsurface drip and plastic mulch on one meter (3’) wide raised 

beds. Watermelon seedlings were planted 91cm (36”) apart, aligned with 91cm (36”) spaced 

drip emitters. Three-meter (ten foot) aisles (Figure 3) were left between beds to prevent 

irrigation treatment carryover and to allow space for weed cultivation. A total of six cultivars 

were used and three irrigation treatments applied in a split-plot design where row 

corresponded to treatment in each of the three blocks. 8-10 experimental units (plants) were 

planted per plot.  

Soil moisture sensors (Irrometer WaterMark Technology, Riverside, California) were 

installed at 30cm (12”) in 2018 and 20cm (8”) in 2019 and 91cm (36”) in both years to monitor 

soil matric potential in centibars. Watermark sensors were attached to 1.3cm (½”) schedule 200 

PVC pipe with PVC glue and a drainage hole was drilled above the attachment site. Sensors 

were installed by removing soil cores with a 1.3cm (1/2”) soil corer and pouring a soil/water 

slurry into the hole to ensure good soil contact. A total of seventy-two sensors were installed in 

both fields, with one sensor per depth in each treatment/cultivar combination within block 

two. Twenty-one out of thirty-six sensors in the squash Cravo were connected to dataloggers 

(Irrometer WaterMark Monitor, Riverside, California) and calibrated using connected soil 

temperature sensors. The remaining fifteen sensors in squash Cravo and thirty-six sensors in 

watermelon field were hand checked three times weekly using a FieldScout Soil Sensor Reader 

(Spectrum Technologies, Aurora Illinois). HOBO 4-channel external data loggers (Model U12-

008, Onset Computer Corporation, Bourne, MA) were installed to log canopy temperature 

inside and outside squash Cravo, in watermelon field, and soil temperature at 20cm depth (8”) 



 

 

23 

 

in the watermelon field. A portable time domain reflectometry (TDR 150) meter (Spectrum 

Technologies Inc., Aurora, IL) was used to check volumetric soil moisture in the top 20cm (8”) of 

soil against the matric potential readings given by WaterMark sensors.  

Irrigation treatments in squash and watermelon fields began after a well-watered 

establishment period that lasted from transplanting until flowering. Treatments began between 

28-June and 5-July in the squash plot and between 3-Aug. and 16-Aug in the watermelon plot. 

Treatments were defined as control (Ctrl), deficit (Def), and drought (Drt). Irrigation 

applications were made on a recurring schedule, taking into account readings from WaterMark 

sensors and TDR, evidence of crop stress, and a target reduction of at least 50% from average 

recommended rates in the Western states for each crop, the average recommendation being 

16 acre-inches for summer squash, and 11 acre-inches for watermelon  (Masabni, n.d.; Molinar 

et al, n.d.; Shrefler et al., 2017; Daniello, n.d.). The control treatment received the “full” 

irrigation amount on a weekly schedule, with a season-long target reduction of 50% or more 

from average recommended rates in the Western states.  Natural rainfall amounts were 

factored into irrigation decisions in the watermelon field, but not in the squash Cravo since 

rainfall was excluded during the treatment interval. Drought treatment plots received the same 

amount of water as the control at each irrigation event, but with two weeks between irrigations 

as opposed to the one week between irrigation events in the control treatment. Water was 

delivered through the system at 22-24 psi in accordance with drip line capacity in order to 

maintain a 1.2 liters per hour (0.33 gph) flow rate. Reduced irrigation treatments were applied, 

and yields compared to that of typical commercial crops in order to quantify yield penalties 
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incurred. The deficit treatment received irrigations at the same time as the control treatment, 

but in half the control amount. 

 
Figure 3- Average number of irrigation gallons of water applied per week to squash and 

watermelon crops during pre-treatment interval (four weeks for squash and 10 weeks for 

watermelon) and treatment interval (11 weeks for squash and six weeks for watermelon) in 

2018-2019. 

 

 

Table 3- Summer squash irrigation and rainfall amounts in Cravo rain-exclusion structure in 

2018.   
Pre-treatment z Treatmenty Season Total 

Treatment Inchesx GPPw Inches GPP Inches GPP 

Control 4 14.8 1.5 5.6 5.5 20.4 

Deficit 4 14.8 0.7 2.6 4.7 17.4 

Drought 4 14.8 0.8 3 4.8 17.8 

z Pre-treatment interval lasted from transplanting to flowering and was a non-stressed period of crop 

establishment where rainfall was not excluded 
y Treatment interval began at 50% flowering and continued through the end of the growing season. 

Rainfall was excluded during this interval by closing the roof and sides of the Cravo structure 
x Inches of water include rainfall (pre-treatment) and irrigation (pre-treatment and treatment). Irrigation 

was converted from gallons per plant (GPP) to inches using a 6ft2 effective crop area. All rainfall values 

taken from CoAgMet. 
w GPP: gallons per plant of irrigation water (pre-treatment and treatment) and rainfall (pre-treatment). 

Rainfall values in inches were converted to gallons per plant using a 6ft2 effective crop area.  

Full Season Irrigation Schedule 
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Table 4- Summer squash irrigation and rainfall amounts in Cravo rain-exclusion structure in 

2019.  

Pre-treatment z Treatmenty Season Total 
Treatment Inchesx GPPw Inches GPP Inches GPP 

Control 4.6 17.1 1.6 6 6.2 23.1 

Deficit 4.6 17.1 0.9 3.2 5.5 20.3 

Drought 4.6 17.1 0.8 3 5.4 20.1 

z Pre-treatment interval lasted from transplanting to flowering and was a non-stressed period of crop 

establishment where rainfall was not excluded. 
y Treatment interval began at 50% flowering and continued through the end of the growing season. 

Rainfall was excluded during this interval by closing the roof and sides of the Cravo structure. 
x Inches of water include rainfall (pre-treatment) and irrigation (pre-treatment and treatment). Irrigation 

was converted from gallons per plant (GPP) to inches using a 6ft2 effective crop area. All rainfall values 

taken from CoAgMet. 
w GPP: gallons per plant of irrigation water (pre-treatment and treatment) and rainfall (pre-treatment). 

Rainfall values in inches were converted to gallons per plant using a 6ft2 effective crop area.  

 

 

Table 5-Watermelon irrigation and rainfall amounts in 2018. 
 Pre-treatmentz Treatmenty Season Total 

Treatment Inchesx GPPw Inches GPP Inches GPP 

Control 3.3 37 1.2 13.5 4.5 50.5 

Deficit 3.3 37 0.9 10.1 4.2 47.1 

Drought 3.3 37 0.9 10.1 4.1 46 

z Pre-treatment interval lasted from transplanting to flowering and was a non-stressed period of crop 

establishment. 
y Treatment interval began at 50% flowering and continued through the end of the growing season.  
x Inches of water include rainfall and irrigation. Irrigation amounts were converted from gallons per 

plant (GPP) to inches using a 18ft2 effective crop area. All rainfall values taken from CoAgMet.  
w GPP: gallons per plant of irrigation water and rainfall. Rainfall values in inches were converted to 

gallons per plant using a 18ft2 effective crop area.  
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Table 6- Watermelon irrigation and rainfall amounts in 2019. 
 Pre-treatment z Treatmenty Season Total 

Treatment Inchesx GPPw Inches GPP Inches GPP 

Control 4.3 48.2 0.9 9.6 5.2 57.8 

Deficit 4.3 48.2 0.6 6.9 4.9 55.1 

Drought 4.3 48.2 0.6 6.4 4.9 55.1 
z Pre-treatment interval lasted from transplanting to flowering and was a non-stressed period of crop 

establishment. 
y Treatment interval began at 50% flowering and continued through the end of the growing season.  
x Inches of water include rainfall and irrigation. Irrigation amounts were converted from gallons per 

plant (GPP) to inches using a 18ft2 effective crop area. All rainfall values taken from CoAgMet.  
w GPP: gallons per plant of irrigation water and rainfall. Rainfall values in inches were converted to 

gallons per plant using a 18ft2 effective crop area. 

 

 

2.4 Field Study Data Collection 

 
 

 Season-long harvest data was collected in squash and watermelon crops. Squash were 

harvested three times per week from the first harvest (7 July 2018, 28 June 2019) through the 

end of the growing season (14 Sept. 2018, 11 Sept. 2019) for a total of 33 harvests in each year. 

Watermelons were harvested once fruit ripened (12 Sept. 2018, 5 Sept. 2019) and weekly until 

first frost/end of growing season (3 Oct. 2018, 3 Oct. 2019) for a total of four harvests in both 

years. Number of marketable and unmarketable fruits from each plot were counted at each 

harvest, and weights collected. Marketability in the squash crop was visually assessed based on 

the presence or absence of physical defects, fruit shape, uniformity of pollination, size, 

firmness, and dullness/luster. Fruits were considered ripe following pollination and once they 

reached the desired size based on cultivar, typically 13-18 centimeters (5-7 inches). Overripe 

fruits that were too large, firm, and/or dull were classified as unmarketable. Watermelons were 

considered unmarketable if they had two or more of the following characteristics: moderate to 

severe pock marks from hail or other mechanical damage, sunscald, damage from cucumber 
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beetle feeding, misshapen, or too small for type. Marketable fruits were ripe, true to type and 

size, and had no or minor defects/damages.  

Data was also collected on quality characteristics of squash and watermelons. Squash 

firmness was assessed using a penetrometer over the course of four consecutive mid-season 

harvests between 29 July and 29 Aug. in each year. Firmness of each cultivar and treatment was 

compared to the check cultivar in the control treatment. Data was collected over the course of 

a week in order to include multiple representatives of each plot. Watermelon quality was 

assessed by measuring total soluble solids (°Brix) using a digital refractometer (Milwaukee 

Instruments Inc. MA871 Digital Brix Refractometer, Rocky Mount, NC). Samples were collected 

by combining one uniform sample of flesh from the center of the melon, and one sample of 

flesh near the rind. Samples were refrigerated at 4°C until measurements were taken, and then 

homogenized so that watermelon juice could be filtered through cheese cloth and measured.  

Photosynthetic parameters were measured in all squash plots both mid-season (8-10 

Aug. 2018; 2 Aug. 2019)  and late-season (24-29 Aug. 2018; 15-16 Aug. 2019) using a PhotosynQ 

MultispeQ v1.0. Main measures of interest were relative chlorophyll (SPAD), quantum yield of 

photosystem II (Phi2), light lost to non-photochemical quenching (PhiNPQ), and photochemical 

quenching (PhiNO).  Phi2, PhiNPQ, and PhiNO are the three categories of uses of incoming light 

and are measured as a ratio of total incoming light. The youngest fully expanded leaf in full sun 

was selected from each sampled plant for measurements. Two plants were measured per plot 

at each time point. Two representative plants per plot were collected at the end of the growing 

season for dry-weight biomass measurements. Plants were oven-dried at 65°C for 10-14 days 

until fully dehydrated and then weighed.  
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z: All date ranges include dates from both the 2018 and 2019 growing season. The 2019 growing 

season began approximately one week earlier than the 2018 growing season, so management 

measures, treatments, and data collection events were adjusted accordingly.  

 

Figure 4: Squash and watermelon SDI field trial general timeline 2018-2019. 

 

 

2.5 Statistical Analysis 

 

 All data were analyzed using R version 3.6.1 in R Studio. Two-way ANOVA was used to 

identify the significance of main effects of cultivar and irrigation treatment. Interactions 

between treatment and cultivar were also evaluated and reported when present. The emmeans 

package was used to compare adjusted marginal means, and the ggplot2 packaged was used 

for data visualization. Standard errors were calculated, and error bars added to bar plots. 

Outliers were identified in each model using the outlierTest function. A Bonferroni adjusted p-

value for the data points with the largest residuals was generated to determine outlier status. 

Once identified, outliers were removed from the model. 
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3. RESULTS  

 

 

 

3.1 Greenhouse Results: Squash 

 

 

Cultivar was the significant predictor of days to death for squash in 2018 and 2019 of 

the greenhouse studies. ‘Rugosa’ lived significantly longer than three other cultivars in 2018, 

(48 days vs. 37 days) and could be differentiated from all other cultivars in 2019 (93 days vs. an 

average of 62 days). All squash lived longer, on average, in 2019 due to an early start to the 

experiment in March 2019 vs. May 2018, and slightly different greenhouse set points (see p.17). 

Percent soil moisture values at death were comparable in both years (Figures 7 and 8). ‘Rugosa 

Friulana’ withstood the lowest soil moisture conditions on average in both years (23.4% in 

2018, 17.5% in 2019), and ‘Genovese’, ‘Jasper’, ‘Obsidian’, and ‘HZS-03-849’ died at the highest 

soil moisture levels in both years (25.2-26.9% in 2018, 22.6-23.7% in 2019). No significant 

differences were found between root:shoot ratio in squash cultivars in 2018 or in 2019 (data 

not shown).  

 



 

 

30 

 

 
Figure 5: Days to death of nine summer squash cultivars in the 2018 greenhouse study.  

 

 

 
Figure 6- Days to death of nine summer squash cultivars in the 2019 greenhouse study. 
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Figure 7- Percent soil moisture at death of nine summer squash cultivars in the 2018 

greenhouse study. 

 

 

 
Figure 8- Percent soil moisture at death of nine summer squash cultivars in the 2019 

greenhouse study. 
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Figure 9- Total root length in cm of nine cultivars of summer squash in the 2018 greenhouse 

study. 

 

 
Figure 10- Total root length in cm of nine cultivars of summer squash in the 2019 greenhouse 

study. 
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Fine root length was significantly different between cultivars in 2018, following the 

same trend as total root length. Only total root length results are presented (Figures 9 and 10). 

In 2018, ‘Jasper’ had significantly longer total root length than ‘Dark Star’, ‘Desert F1’, ‘HZS-03-

849’, and ‘Obsidian’ (Figure 9). In 2019, ‘Jasper’ still had relatively high root growth, but this 

cultivar along with ‘HZS-03-849’, ‘Desert F1’, and ‘Daisy Mae’ could only be significantly 

differentiated from ‘Early Summer Crookneck’ (Figure 10). 

 

 
Figure 11- Average root diameter in cm of nine cultivars of summer squash in the 2019 

greenhouse study. 
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Cultivar was a significant predictor of average root diameter in 2018 and 2019, but 

pairwise comparisons in 2018 were not significant. The cultivar with the lowest average root 

diameter, ‘Early Summer Crookneck’ was not more successful than other cultivars based on 

other response variables evaluated in the greenhouse study. In 2019 ‘Early Summer Crookneck’ 

had a significantly finer average root diameter than  ‘Dark Star’, ‘HZS-03-849’, and ‘Obsidian’ 

(Figure 11). 

 

3.2 Greenhouse Results: Watermelon 

 

 

 
Figure 12- Root:shoot ratio of nine cultivars of watermelon in the 2018 greenhouse study. 
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There were no significant differences between root:shoot ratios of different watermelon 

cultivars in 2019. In 2018, ‘Kaho’ and ‘TOY’ had a root:shoot ratio significantly higher than 

‘DesKing’. None of the other cultivars could be differentiated from these two groups. There 

were no significant differences between days to death or percent soil moisture at death of 

watermelon cultivars in the greenhouse in 2018 or in 2019.  

 

 
Figure 13- Total root length in centimeters of nine cultivars of watermelon in the 2018 

greenhouse study. There were no significant differences detected.  
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Figure 14- Total root length in centimeters of nine cultivars of watermelon in the 2019 

greenhouse study. 

 

 

 

Cultivar-level differences in total root length were significant in both years. However, in 

2018 (p=0.0423) no pairwise comparisons were significant. In 2019, ‘Tohono O’odham Yellow-

Meated’ (TOY) had significantly longer total root length than ‘Kaho’ and ‘Amiga’. Fine root 

length results were very similar to total root length results, but with only a borderline 

significant (p=0.05825) main effect of cultivar in 2018. In 2019 there was a significant cultivar 

main effect (p=0.01227) with the same cultivar ranking as with total root length. Overall root 

length of all cultivars was greater in 2018 than 2019 due to slight changes in environmental 

conditions in the greenhouse from year one to year two (p.17). There were no significant 

differences in average root diameter between cultivars in 2018 or in 2019.  
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3.3 Field Results: Squash 

 

 

 
z Pairwise comparisons made between treatments within each cultivar, not between cultivars. Different 

letters indicate statistically significant differences. Error bars on bar plots indicate standard errors.  

 

Figure 15- Yield per plant in kg of six summer squash cultivars in the field trial, 2018.  

 
 

     
Figure 16- Yield per plant in kg of six summer squash cultivars in the field trial, 2019.  
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The main effects of cultivar and treatment were significant for yield per plant in 2018 

and 2019. Therefore, pairwise comparisons were made between treatments within each 

cultivar. In 2018, the drought plot in block three was flooded due to rain seepage into the 

Cravo. This was prevented in 2019, and yield data from this plot was excluded in 2018. The 

conventional hybrid check cultivar, ‘HZS-03-849’, had no significant yield differences between 

irrigation treatments in either year. ‘Desert F1’, the “drought tolerant” organic hybrid, did 

similarly well in all treatments in 2018, but in 2019, plots in the deficit treatment yielded 

significantly less. In 2018, ‘Rugosa Friulana’ did significantly better in the control treatment than 

in deficit or drought, but in 2019, ‘Rugosa Friulana’ performed poorly overall and there were no 

differences between yields across treatments. When comparing cultivars to one another, 

averaging over treatment, ‘Dark Star’, ‘Desert F1’, ‘Genovese’, and ‘HZS-03-849’ yielded 

significantly higher than ‘Early Summer Crookneck’ in 2018. ‘Rugosa Friulana’, however, could 

not be differentiated from any of the other cultivars. Yields for the more successful cultivars 

ranged from 1.5-1.7 kilograms (3.3-3.7 pounds) per plant in 2018. In 2019, yields were generally 

higher, and ‘Jasper’ yielded significantly more than ‘Rugosa Friulana’, ‘Dark Star’, ‘HZS-03-849’, 

and ‘Genovese’, with a mean yield of 1.9 kilograms (4.2 pounds) per plant, which is less than 

the average yield of 3.1 kilograms (6.8 pounds) per plant cited by the University of California 

Small Farms Program (Molinar, 2005). ‘HZS-03-849’ also yielded significantly more than ‘Rugosa 

Friulana’, with an average yield of 1.4 kilograms per plant. In the OSU Dry Farming Collaborative 

trials, ‘Dark Star’ also yielded much higher than ‘Rugosa Friulana’ (Nebert and Garrett, 2019). 

There were no significant differences between unmarketable yields in any treatments or 

between any cultivars in 2018 or 2019.  
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Figure 17- Firmness in pounds per square inch (psi) of six summer squash cultivars in the field 

trials 2018-2019.  
 

 

 

 A similar trend was apparent between the firmness of squash cultivars in both years. 

Cultivar differences were highly significant at (P<2.2x10-16). The check cultivar, ‘HZS-03-849’ had 

an average firmness of 11.9 pounds per square inch (psi). ‘Genovese’, ‘Dark Star’, and ‘Jasper’ 

had a similar mean firmness, and ‘Early Summer Crookneck’ was punctured at a lower psi and 

so was significantly less firm than the other cultivars, but still firm enough to be considered 

“fairly firm”. ‘Desert F1’, and ‘Rugosa Friulana’  were significantly firmer than the control 

cultivar (Figure 17). According to the USDA Agricultural Marketing Service (2019), a lack of 

firmness is considered a defect in squash, but having increased firmness is not formally 

considered a negative characteristic.  
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Figure 18- Mid-season relative chlorophyll values (SPAD) of six summer squash cultivars in the 

2018 field trials measured with a handheld photosynthetic measurement system (MultispeQ).  

 

 

  
z: Means compared across treatments within a cultivar. Different letters denote statistical 

significance at α=0.05 

 

Figure 19- Mid-season relative chlorophyll values (SPAD) of six summer squash across 

treatments within cultivars in the 2019 field trials measured with a handheld photosynthetic 

measurement system (MultispeQ).  
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Figure 20- Late-season relative chlorophyll values (SPAD) of six summer squash cultivars in the 

2018 field trials measured with a handheld photosynthetic measurement system (MultispeQ).  

 

 

 

 
Figure 21- Late-season relative chlorophyll values (SPAD) of six summer squash across 

treatments within cultivars in the 2019 field trials measured with a handheld photosynthetic 

measurement system (MultispeQ).  
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There were no clear trends in Phi2, PhiNO, or PhiNPQ in 2018 or 2019, though there 

were isolated instances of statistical significance (data not shown). Squash had similar 

photosynthetic responses to reduced irrigation across treatments and cultivars, both mid and 

late season, in 2018 and 2019.  In 2018, cultivar was the significant predictor of relative 

chlorophyll, a unitless measure of “greenness”, both mid and late season. The ranking of 

relative chlorophyll values among cultivars changed slightly from mid-season to late season 

(Figures 18 and 20). In 2019, main effects of treatment and cultivar were significant, with no 

interaction. Pairwise comparisons were made between treatments within each cultivar (Figures 

19 and 21). Differences in relative chlorophyll between treatments in ‘HZS-03-849’ were not 

significant at mid-season or late-season.  ‘Dark Star’, ‘Desert F1’ and ‘Rugosa Friulana’ had the 

lowest relative chlorophyll estimate (49.3, 53.1, and 49.1, respectively) in the control treatment 

mid-season. In the late-season data, ‘Rugosa Friulana’ and ‘Dark Star’ continue to follow this 

trend, only then ‘Rugosa Friulana’ had similar readings in the deficit plots and only the drought 

readings could be differentiated as higher. ‘Genovese’ and ‘Jasper’ went from being not 

significantly different between treatments mid-season, to having the highest relative 

chlorophyll content in the drought plots late-season, at 58 and 57.9, respectively.  
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3.4 Field Results: Watermelon 

 

 

 
 

Figure 22-  Watermelon yield by irrigation treatment in field trials, 2019.  

 

 

For watermelon, cultivar was not a significant predictor of yield per plant in 2018 but 

was a borderline (p=0.0517) significant predictor of yield in 2019. In both years, however, 

‘Amiga’ had the lowest mean yield (1.54 kg/plant in 2018, 2.76 kg/plant in 2019), and ‘Tohono 

O’odham Yellow-Meated’ had the highest mean yield (2.85 kg/plant in 2018, 4.75 kg/plant in 

2019). 2019 yields more than doubled those of 2018 due to hail damage and severe cucumber 

beetle damage in 2018. Hail damage also occurred in early July of 2019, but the crop 

successfully recovered after pruning vines to remove damaged tissue. In 2019, treatment was 

the significant predictor of yield. The control plots yielded significantly higher than the deficit 

plots for all cultivars, with a mean yield of 4.33kg/plant vs. 2.69 kg/plant. Drought plot yields 

could not be differentiated from the other treatments, even though they received the same 

amount of water as the deficit treatment (55.1 gallons per plant) in 2019. This indicates that the 
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depth and timing of irrigation application may be as consequential as the amount of water 

applied to these watermelon cultivars, and deep infrequent irrigations are preferable. Irrigation 

treatment was not a significant predictor of total unmarketable yield in either year, indicating 

that drought stress alone does not cause an increase in unmarketable fruits. By contrast, in 

2018, ‘Rio Grande Red Seeded’ had more unmarketable yield by weight than any of the other 

cultivars, and in 2019, ‘Desert King’ and ‘Tohono O’odham Yellow Meated’ had the most 

unmarketable weight per plant. Watermelons were counted as unmarketable most often due 

to a combination of sunscald, mechanical damage, wildlife/insect feeding, and 

shriveled/misshapen fruits. ‘Rio Grande Red Seeded’ was a uniquely small, white fleshed 

watermelon with an average weight of 0.4-0.5 kg per fruit compared to an average weight 

between 2.0 and 4.0 kg per fruit among all other cultivars evaluated.  

°Brix measurements were not impacted by irrigation treatments in 2018. Cultivar main 

effects were significant, with ‘Amiga’, ‘Ancient’, and ‘TOY’ having the highest °Brix values with 

averages ranging from 9.3-9.7 (Figure 23). ‘Desert King’ and ‘Jemez’ had mid-range Brix values, 

and ‘RGRS’ had the lowest °Brix readings with a mean of 6.8, making it an undesirable cultivar 

for fresh market growers despite its convenient small fruit size.  
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Figure 23: °Brix (total soluble solids) of 6 cultivars of watermelon measured by a digital 

refractometer in the 2018 and 2019 field trials.  

 

3.5 Environmental Monitoring  

 

Soil moisture readings in centibars from WaterMark monitors (Appendix, Figures 24, 27-

34) were soil-temperature calibrated and allowed graphical representation of irrigation events 

as well as the dry-down pattern of each cultivar in block 2 of the squash plots and the 

watermelon plots. A horizontal line is marked on each graph at -100 centibars, the 

recommended threshold for irrigating a high-clay soil (Irrometer, 2019) (Figures 27-34 in 

appendix, Figure 24 as a representative). Measurements ranged from zero (saturated with 

water) to -239 centibars. Data from additional WaterMark soil moisture sensors that was 

manually recorded is presented in Figure 25 and in the Appendix (Figures 33-44). Canopy 

temperature sensors compared canopy temperatures from each of the treatments in block two 

of the squash plot, as well as outside of the Cravo. These four temperature measurements are 

indistinguishable from one another, showing that similar temperature conditions existed in all 
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four locations (Figure 26). In 2019, data from the control plot had to be removed due to a faulty 

sensor (Figure 52). In the watermelon field, canopy temperature and soil temperature were 

recorded in both years.  

 

z “Def HZS3” soil moisture sensor buried at 90cm depth instead of 30cm depth in ‘HZS-03-849’.  
y “Soil Tmp” soil temperature sensor buried at 30cm depth and used to calibrate soil moisture 

readings. 

Figure 24: Soil moisture in centibars at 30cm (12”) depth in the deficit squash plot in 2018. 

 

       
Figure 25: Soil moisture in centibars at 20cm (8”) depth in block two of the deficit watermelon 

plot in 2019. 
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Figure 26: Canopy temperature of squash plots inside and outside of Cravo in 2018. 
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4. DISCUSSION 

 

 

 

In this series of experiments, differences can be identified between cultivar reports from 

seed companies, overall cultivar performance in the greenhouse, and yield success under 

sustained deficit irrigation in the field trials. Based on seed company reports and OSU DFC trials, 

‘Desert King’ watermelon was expected to be the most successful in drought conditions, and 

because of the lack of reports of drought-resistance, ‘Amiga’ was included as a presumably 

drought-sensitive modern hybrid check cultivar. Among the summer squash cultivars, the 

organic hybrid ‘Desert F1’ zucchini was the only cultivar claimed to be “drought tolerant”. ‘HZS-

03-849’ our conventional hybrid zucchini, had reports of high yield potential, but no claims 

related to drought response and so was hypothesized to be sensitive to drought conditions.   

‘Rugosa Friulana’ was more successful than all other squash cultivars in the greenhouse 

trials in terms of the number of days it survived. This cultivar also had the greatest ability to 

extract moisture from the substrate and to persist in low moisture conditions. However, this 

survivability did not correspond to statistically greater overall root growth. Two of the cultivars 

with the most extensive (longest) root systems in the dry down study (‘Jasper’ in both years, 

and ‘HZS-03-849’ in 2019) tended to die faster (37 days in 2018, 62-63 days in 2019) than 

‘Rugosa Friulana’ (48 days in 2018, 93 days in 2019), and had a significantly higher percent soil 

moisture at death in 2019. There appeared to be a tradeoff between survivability and root 

system development, as ‘Jasper’ and ‘HZS-03-849’ had better yield in the field studies than 

‘Rugosa Friulana’. This was not always the case, though, as ‘Genovese’ had similar root growth 

and survivability in the greenhouse studies but comparably low yields in the field studies.  
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Overall yield averages were slightly lower in the field in 2019, likely due to severe pest 

pressure from squash bugs (Anasa tristis). Populations were controlled by physical removal and 

destruction of eggs, nymphs, and adults. Powdery mildew, grasshopper feeding, cucumber 

beetle feeding, root rot, and rodent feeding caused additional damage to the squash crop in 

both years. Damage was quantified and accounted for where possible. Late in the 2019 growing 

season, squash bug damage prevented the growth of some developing fruits, but incomplete 

pollination or lack of pollination was the primary cause of unmarketable fruits in the squash 

crop.  

Control treatments received an average of 5.9 inches of water per season, and the 

drought and deficit treatments received an average of 5.1 inches of water. This difference of 

0.8 inches was enough to result in yield differences in some cultivars (‘Rugosa Friulana’ and 

‘Genovese’ in 2018, and ‘Desert F1’ in 2019) due to the extended period that the treatment 

interval lasted, more than two months. Only between 0.7-1.6 inches of water were applied 

based on treatment over the course of drought-sensitive period of flowering and reproductive 

growth. The conventional hybrid ‘Jasper’ was the most successful cultivar overall, with an 

average yield of 1.9 kg/plant in 2019, but organic hybrid ‘Desert F1’ had statistically similar 

yields overall (1.7 kg/plant in 2018, 1.4 kg/plant in 2019), though this was impacted by 

treatment. A similar, but not statistically significant trend was observed in ‘Desert F1’ in 2018. 

‘Jasper’ and ‘Dark Star’ also remained more tender at a larger size than ‘Desert F1’, which was 

generally firmer than the check cultivar, ‘HZS-03-849’ at a smaller average size. Even though 

‘Desert F1’ was one of the few cultivars to experience a statistically significant yield penalty in 

the deficit treatment and a decreased mean yield in the drought treatment, this cultivar is a 
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good choice for reduced moisture conditions due to its ability to reach its high yield potential in 

the control plot, in which irrigation was still restricted to an average of 5.9 inches of water per 

season. The highest yielding open-pollinated cultivar was ‘Dark Star’, which had a lower mean 

yield but was statistically similar to ‘Desert F1’ in 2018 and 2019. This cultivar’s yield was not 

impacted significantly by the different irrigation treatments, and neither was ‘Jasper’. Among 

the seven cultivars total evaluated in the field trials, only ‘Desert F1’ had reports of drought 

resistance. The success of ‘Jasper’, ‘Dark Star’, and ‘HZS-03-849’ shows that currently available 

cultivars without reports of drought resistance have an ability to succeed under sustained 

deficit conditions that was previously unknown. It is also evident that high-yielding cultivars 

with drought-sensitive responses may still be preferable to lower-yielding cultivars that are 

more resilient to additional water deficits.  

Greenhouse performance of the watermelon cultivars was inconclusive. Differences in 

root:shoot ratio were not significant in 2019, but in 2018 ‘TOY’ had a significantly higher 

root:shoot ratio than ‘Desert King’. Due to field conditions in 2018, no yield differences could 

be identified, but in 2019 all cultivars had a similar response to deficit irrigation treatments. 

While cultivar variation for root:shoot ratio was significant in 2018, differences in total root 

length and fine root length were not. In 2019, ‘TOY’ had significantly more total root length and 

fine root length than ‘Kaho’ and ‘Amiga’. ‘Kaho’ was not included in the field trials, but those 

that were, ‘TOY’ and ‘Amiga’, had statistically similar yield and °Brix. The traits evaluated in the 

greenhouse had no assumed relationship to °Brix, and this quality measure ended up being the 

best tool to identify suitable cultivars in the field studies since yield responses were similar 

across cultivars.  
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Though the watermelon cultivars included in these studies were from different regions 

and had individual reports of unique traits, there were no statistically significant interactions 

between the main effects of treatment and cultivar for any of the response variables evaluated. 

In most cases (Figures 17, 18, 20, and 23), cultivar was the significant predictor of crop success, 

or cultivar and treatment were significant as main effects, without an interaction between the 

two variables. However, in the case of the 2019 watermelon crop (Figure 22) only the 

treatment main effect was significant which indicates that all cultivars behaved similarly in 

response to treatment despite differences in genetics and historical management.  

Sustained deficit irrigation conditions of 50% or more below recommended season-long 

rates (4.7 inches vs. 12 inches of water) did not prevent marketable yield from being obtained 

from any plots, indicating that a sustained irrigation deficit of over 50% may not be detrimental 

to the quality of watermelon fruits in general, but can cause yield reductions. In 2019, when 

yields were higher and all plots received on average 0.7 inches of additional water, the deficit 

treatment plots yielded significantly lower than the control or drought plots in all cultivars. 

Deficit plots received a nearly identical overall amount of water to the drought plots in both 

years (46 vs. 47.1 GPP in 2018, 55.1 GPP in 2019), and it is important to note that the deficit 

plots received more frequent, shallow irrigations than the drought plots, which led to a yield 

penalty. Therefore, it appears that when water resources are scarce, fewer, deeper irrigations 

are preferable to more frequent shallow irrigations in both modern hybrids and open pollinated 

heirloom watermelon crops, whether these cultivars have reports of drought resistance or not.  

While the watermelon field data does not conclusively suggest that any of the cultivars 

studied are preferable from a yield standpoint, the °Brix data indicates that ‘Amiga’, ‘Ancient’, 



 

 

52 

 

and ‘TOY’ produced watermelon fruits with the highest total soluble solids in both years. In 

2019, none of the ‘Ancient’ watermelons ripened until the final harvest, nearing the frost date, 

making it less suited to Northern Colorado growing conditions. It was also observed that, 

though ‘TOY’ began flowering later than other cultivars, it reached maturity within the same 

time frame, and this late flowering resulted in less mechanical hail damage to fruit from early 

season hail storms. ‘TOY’ also yielded fruits with a more uniform shape and size than some 

other cultivars, such as ‘Amiga’ and ‘Desert King’. Ripeness was easiest to determine for ‘TOY’, 

based on size for weight, rind feel, and sound. However, this cultivar was the most prone to 

splitting if mishandled. The orange-fleshed ‘Desert King’ experienced the most plant losses 

resulting from hail damage in 2018. Though it produced a wide range of sizes of watermelons, 

and some of them were misshapen, it ripened consistently within the same time frame 

regardless of size. ‘Jemez’ had lower °Brix than ‘Ancient’ and ‘TOY’, but higher than ‘Desert 

King’ and ‘RGRS’. However, this heirloom cultivar produced watermelons with five or more 

different rind patterns seen across the plot. A single vine regularly produced three watermelons 

with three distinct rind patterns. Flesh was pink-red in general, but a few watermelons with 

yellow flesh were also found. The inconsistency of this cultivar’s phenotype, combined with its 

lower °Brix value, makes it less desirable as a crop for market growers. ‘RGRS’ was another very 

unusual cultivar, with fruits ripening at the size of a softball. It was white-fleshed, red-seeded, 

and not very sweet, so though its size makes it an interesting novelty, this cultivar would be 

difficult to market. Many of these cultivars were still flowering at the last harvest and had 

young pollinated fruits that would not reach maturity. Though our season began in early June 

with month-old transplants, early frost dates on the Front Range make it difficult to bring a 
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watermelon crop to its full yield potential. This may not have been the case if the vines and 

early fruits had not needed to be pruned due to hail damage, but because of the frequency of 

hail storms in Northern Colorado this must be take into account. Physiological leaf roll was 

observed to a greater extent in some cultivars than others, namely ‘Desert King’ and ‘Ancient’, 

but there were no yield differences between these cultivars and the others. All things 

considered, the red-fleshed hybrid ‘Amiga’ and the yellow-fleshed open-pollinated ‘Tohono 

O’odham Yellow-meated’ had some of the highest °Brix and were observed to perform more 

consistently than the four other cultivars in the field trials.  

  All soil moisture readings revealed that soil dried beyond recommended thresholds for 

both crops (Figures 24, 25, 27-50), and in many cases reached the driest reading measurable 

with this sensor, without resulting in crop loss. However, WaterMark sensors can lose soil 

contact in clay-dominant soils that become very dry and shrink, and therefore these sensors 

may not be ideal for drought studies in such conditions. An alternate soil moisture 

measurement system using Time Domain Reflectometry (TDR) to measure volumetric soil 

moisture content was tested during 2019 field trials and is being evaluated for use in future 

studies, though the shrinking of high-clay soils in very dry conditions can become problematic 

with any type of soil moisture sensor. The squash were grown in a Cravo which was used for 

rain and hail exclusion, and inside and outside canopy temperature data reveal that the use of 

the Cravo did not lead to differences in environmental conditions and therefore is a good 

choice for future studies on drought response and deficit irrigation. 

These results demonstrate that the most successful cultivars of summer squash in these 

experiments experience an approximate yield penalty of 30% in conditions of more than 50% 
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water reduction from average recommended rates. While a yield penalty was incurred, no 

significant changes in quality or marketability were observed. All watermelon cultivars were 

equally sensitive to irrigation reductions from the control in 2019, and even in the control plot 

yields per plant and per area were below the range of expected watermelon yields. However, 

the consequences of drastically reduced irrigation in these cultivars are now known, along with 

which cultivars are the best fit if irrigation inputs are reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

55 

 

5. CONCLUSIONS 

 

 

 

These results indicate that more summer squash cultivars than originally assumed have 

the potential to produce acceptable levels of marketable yield with drastically reduced 

irrigation. In the case of the watermelons, this crop was surprisingly resilient to decreases in 

quality as a result of sustained irrigation deficits. However, cultivars with a reputation for 

drought resistance, such as ‘Desert King’, did not out-perform cultivars without any drought-

related claims and fell short in other measures such as °Brix. Cultivars without claims of drought 

resistance need to be evaluated on a case-by case basis in field trials, as cultivar greenhouse 

outcomes did not always align with field trial outcomes. Strong drought-resistant traits may 

exist in cultivars that have already been bred for overall vigor and high yields, such as in the 

open-pollinated ‘Dark Star’ and hybrid ‘Jasper’ zucchinis. While selective breeding for drought 

resistance would likely give us new cultivars that are successful with severe water deficits, other 

cultivars already on the market may have undiscovered potential in these conditions.  

The difference in total root growth and average days to death between the 2018 and 

2019 greenhouse studies reaffirms the importance of consistent environmental conditions 

(light, temperature, humidity) in greenhouse studies. However, the sensitivity of these studies 

to environmental conditions makes it even less likely that they will produce results that align 

with season-long field performance. Neither year of the greenhouse study produced results 

that were consistent with both seed company reports of drought resistance and field outcomes, 

however total root length was a better indicator of field success than metrics related to 

survivability. Because of the weak relationship between cultivars that were successful in 
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greenhouse trials and those that yielded highest in field trials, it is important to continue to rely 

on field studies to identify crop cultivars with season-long success under drought.  

Prior to planting, growers may have limited information on how much water will be 

available to them throughout the growing season, and while ideal irrigation amounts may vary 

from year to year depending on rainfall and average temperatures, crop producers do not 

necessarily have an extra supply of irrigation water to respond to these changing conditions. 

Crop producers may be able to reduce irrigation in summer squash crops beyond what was 

applied in this study by including rainfall for the full growing season. Growing summer squash 

cultivars such as ‘Jasper’, ‘Desert F1’, or ‘Dark Star’, and watermelon cultivars such as ‘Tohono 

O’odham Yellow-meated’ and ‘Amiga’ can help ensure growers that they will still harvest 

marketable yields, and in the case of the squash, acceptable overall yields, even in years of low 

precipitation or limited irrigation water availability. These results demonstrate that growers 

may plant ‘Desert F1’, ‘Dark Star’, or ‘Jasper’ zucchini, and apply an average of 19.9 

gallons/plant (5.4 inches) including rainfall, and expect yields of 1.2-1.9 kg/plant over the 

course of the growing season.  
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Figure 27- Soil moisture in centibars for squash control plot in 2018, 20cm (8”) depth unless otherwise stated. 
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Figure 28- Soil moisture in centibars for squash deficit plot 2018, 20cm (8”) depth unless otherwise stated. 
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Figure 29-  Soil moisture in centibars for squash drought plot 2018, 20cm (8”) depth unless otherwise stated. 
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Figure 30- Soil moisture in centibars for squash control plot in 2019, 20cm (8”) depth unless otherwise stated. 
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Figure 31- Soil moisture in centibars for squash deficit plot in 2019, 20cm (8”) depth unless otherwise stated. 
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Figure 32- Soil moisture in centibars for squash drought plot in 2019, 20cm (8”) depth unless otherwise stated 
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2. Manually Recorded WaterMark Soil Moisture Readings: Squash 

 

 

   
Figure 33- Season long soil moisture in centibars at 90cm depth in block two of the squash 

control plot in 2018. 

 

 

 
Figure 34- Season-long soil moisture in centibars at 90cm depth in block two of the squash 

deficit plot in 2018. 
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Figure 35- Season-long soil moisture in centibars at 90cm depth in block two of the squash 

drought plot in 2018. 

 

 

 
Figures 36- Season-long soil moisture in centibars at 90cm depth in block two of the squash 

control plot in 2019. 
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Figure 37- Season-long soil moisture in centibars at 90cm depth in block two of the squash 

deficit plot in 2019. 

 

 

 
Figure 38- Season-long soil moisture in centibars at 90cm depth in block two of the squash 

drought plot in 2019. 
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3. Manually Recorded WaterMark Readings: Watermelon 

 

 

 
Figure 39- Season-long soil moisture in centibars at 30cm depth in block two of the watermelon 

control plot in 2018. 

 

 

 
Figure 40- Season-long soil moisture in centibars at 30cm depth in block two of the watermelon 

deficit plot in 2018. 
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Figure 41- Season-long soil moisture in centibars at 30cm depth in block two of the watermelon 

drought plot in 2018. 

 

 

 

 
Figure 42- Season-long soil moisture in centibars at 90cm depth in block two of the watermelon 

control plot in 2018. 
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Figure 43- Season-long soil moisture in centibars at 90cm depth in block two of the watermelon 

deficit plot in 2018. 

 

 

 

 
Figure 44- Season-long soil moisture in centibars at 90cm depth in block two of the watermelon 

drought plot in 2018. 
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Figures 45- Season-long soil moisture in centibars at 20cm depth in block two of the watermelon 

control plot in 2019. 

 

 

 

 
Figure 46- Season-long soil moisture in centibars at 20cm depth in block two of the watermelon 

deficit plot in 2019. 

 

0

50

100

150

200

250

Watermelon Control 20cm (8") WaterMark Readings 2019

Jemez Amiga RGRS Ancient Desert King TOY

0

50

100

150

200

250

Watermelon Deficit 20cm (8") WaterMark Readings 2019

RGRS Jemez Desert King TOY Ancient Amiga

C
e

n
ti

b
a

rs
 

C
e

n
ti

b
a

rs
 

Cultivar: 

Cultivar: 



 

 

76 

 

 
Figure 47- Season-long soil moisture in centibars at 20cm depth in block two of the watermelon 

drought plot in 2019. 

 

 

 

 
Figure 48- Season-long soil moisture in centibars at 90cm depth in block two of the watermelon 

control plot in 2019. 
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Figure 49- Season-long soil moisture in centibars at 90cm depth in block two of the watermelon 

deficit plot in 2019. 

 

 

 

 
Figure 50- Season-long soil moisture in centibars at 90cm depth in block two of the watermelon 

drought plot in 2019. 
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Figure 51- HOBO canopy temperature readings inside and outside of squash Cravo in 2018. 
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Figure 52- HOBO canopy temperature readings inside and outside of squash Cravo in 2019. 

 *control treatment inside Cravo malfunctioned, data removed. 
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Figure 53- HOBO air and soil temperature readings in watermelon field in 2018. 
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Figure 54- HOBO air and soil temperature readings in watermelon field in 2019. 
 


