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ABSTRACT

ON THE FORMULATION AND USES OF SVD-BASED GENERALIZED

CURVATURES

In this dissertation we consider the problem of computing generalized curvature values

from noisy, discrete data and applications of the provided algorithms. We first establish a

connection between the Frenet-Serret Frame, typically defined on an analytical curve, and

the vectors from the local Singular Value Decomposition (SVD) of a discretized time-series.

Next, we expand upon this connection to relate generalized curvature values, or curvatures,

to a scaled ratio of singular values. Initially, the local singular value decomposition is centered

on a point of the discretized time-series. This provides for an efficient computation of

curvatures when the underlying curve is known. However, when the structure of the curve

is not known, for example, when noise is present in the tabulated data, we propose two

modifications. The first modification computes the local singular value decomposition on

the mean-centered data of a windowed selection of the time-series. We observe that the

mean-center version increases the stability of the curvature estimations in the presence of

signal noise. The second modification is an adaptive method for selecting the size of the

window, or local ball, to use for the singular value decomposition. This allows us to use

a large window size when curvatures are small, which reduces the effects of noise thanks

to the use of a large number of points in the SVD, and to use a small window size when

curvatures are large, thereby best capturing the local curvature. Overall we observe that

adapting the window size to the data, enhances the estimates of generalized curvatures. The

combination of these two modifications produces a tool for computing generalized curvatures

with reasonable precision and accuracy. Finally, we compare our algorithm, with and without
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modifications, to existing numerical curvature techniques on different types of data such

as that from the Microsoft Kinect 2 sensor. To address the topic of action segmentation

and recognition, a popular topic within the field of computer vision, we created a new

dataset from this sensor showcasing a pose space skeletonized representation of individuals

performing continuous human actions as defined by the MSRC-12 challenge. When this data

is optimally projected onto a low-dimensional space, we observed each human motion lies

on a distinguished line, plane, hyperplane, etc. During transitions between motions, either

the dimension of the optimal subspace significantly, or the trajectory of the curve through

pose space nearly reverses. We use our methods of computing generalized curvature values

to identify these locations, categorized as either high curvatures or changing curvatures. The

geometric characterization of the time-series allows us to segment individual,or geometrically

distinct, motions. Finally, using these segments, we construct a methodology for selecting

motions to conjoin for the task of action classification.
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CHAPTER 1

INTRODUCTION

The work in this dissertation was originally inspired by a popular problem in computer

vision: How can we determine the actions of humans through algorithmic methods? In

particular, we have been working with time-series human skeletal data collected from Kinect

and Kinect 2 sensors. We observed that the optimal projection of the time-series from an

associated continuous human motion may be characterized by a distinguished linear space,

e.g., a line or hyperplane. This geometric model suggests human actions exist in contiguous

low-dimensional linear spaces, despite numerous degrees of freedom the human body allows.

This further suggests that if we had the ability to detect the transition from a n-dimensional

space of best fit to a m-dimensional space of best fit, then we could automatically segment

continuous human actions without a priori information about the number of, or description

of, actions performed.

Figure 1.1. An illustration of selected frames from a Kinect 2 video as dis-
played on the original 75D curve, optimally projected into 3D.
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One method of determining the region of transition is to look at locations in the time-

series which have high or changing generalized curvature values, or curvatures; terms we

use interchangeably in this dissertation. A geometric interpretation of curvature in two

dimensions is the amount of deviation of a curve from a straight line and torsion is the

amount of deviation of a curve from a plane. These concepts have been expanded into n-

dimensions by Camille Jordan [2] in 1874. In this dissertation we develop the interpretation

of curvature in n-dimensions as a useful method of searching a time-series for points of best

fit dimensional transitions.

Figure 1.2. Example of a discretely sampled, smooth, noise-less curve (left),
and the associated curvature, κ1 (middle), and torsion, κ2 (right) profiles.

When working with real, possibly noisy sampled data in high-dimensions, curvatures can

be challenging to characterize. Traditionally methods of computing generalized curvature

values rely on having the analytical version of the curve. Numerical approximations of

derivatives grow increasingly inaccurate as the dimension of the curvature increases. Even

sophisticated techniques for computing numerical derivatives based on tabulated values, such

as Richardson Extrapolation, which are designed to reduce the error term on high order

derivatives, have significant limitations to the types of data we are interested in analyzing

[3]. In particular, this, and similar methods are prone to large sources of errors when ∆t

is large, or when the tabular data contains a high amount of noise. In the case of human

motion data via the Kinect sensor, this noise is from the skeletonization algorithm. To our
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knowledge, prior to this work, there is no numerically robust method of computing high

dimensional curvatures on sampled data.

In this dissertation, we explore the connection of the Frenet-Serret Frame (sometimes

called the Frenet Frame) to the singular vectors produced from the local singular value

decomposition, a common numerically stable numerical analysis technique. From this con-

nection, we have devised a new formula for computing generalized curvatures.

Through an investigation on synthetic data, we found this new formula was excellent for

accurately computing curvatures when the data was both noise-free (an exact sampling of a

continuous, smooth function) and the curvature values were constant. Deviation from either

of these two highly restrictive conditions produces inaccurate curvature estimations. By

exploiting some of the mechanics behind this new equation, we created a couple modifications

to overcome these limitations.

Armed with these new techniques, we turn our attention back to the motiving problem:

given skeletal representations of human actions, can we automate a process to classify the

data? The task of action classification has been studied for decades on a variety of data

types. In general, the most common approach is to take a video, or video stream, as an

input and apply some method to classify pieces of the stream. Based on this labeling, the

video is then broken up into the identified segments (a top-down approach).

As we started to approach this problem, our intuition lead us to adopt a bottom-up

methodology; given a video, or video stream, can we first segment the data into actions

(with no prior knowledge of those actions)? Then, after the videos are segmented can we

classify those segments? This approach means we need a very robust method of segmenting

the data. As discussed above, an initial observation relating curvature to stages of human
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motion, combined with our new techniques of computing curvature on noisy data, gives us

a method to start this bottom-up approach.

For this dissertation, we provide accuracies for the task of segmentation on a skeletal

based, Kinect 2 dataset we collected. Then we use these segments, combined with some

standard (and advanced) techniques used within the computer vision community to obtain

preliminary classification results. Our analysis of the data using this approach is strong

enough to warrant more investigation.

In Chapter 2, we provide the background information leading up to the formulation of the

Frenet-Serret apparatus. This includes starting with the basic definition of a curve, building

to the subjects of curvature and torsion, common properties of a curve in R
3, and ending

with the Frenet-Serret equations. Through starting with examples which can be visualized,

and computed, in R
3, we give geometric interpretations that will allow us to more easily

understand the R
n case.

In Chapter 3, we start by defining the local singular value decomposition in terms of the

on the curve covariance matrix. By looking at the Taylor expansion of this problem, we prove

the singular vectors are equivalent to the Frenet frame, up to a sign change. For dimensions

n ≤ 6, we then construct a relationship between the local eigenvectors and generalized

curvature values via the Frenet Equations. Finally, we make a conjecture, based upon this

construction and additional numerical evidence for a new numerically stable formula for

computing generalized curvature values.

In Chapter 4, we extend the work in Chapter 3 to the case when the curve is given by

discrete data samples. We introduce two additional extensions: a formulation for off-the-

curve generalized curvatures, and a method for selecting the appropriate local adaptive ball,

i.e., time-window, to perform the SVD calculations.
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In Chapter 5, we present applications comparing the various methods of computing gen-

eralized curvature. By working with an array of small and large data sets from a Kinect 2

sensor, we explore the computation of generalized curvatures. Using observations about the

high-dimensional curve formed by Kinect 2 human activity data and the generalized curva-

ture techniques developed in prior chapters, we give human motion segmentation results.

In Chapter 6, we explore an application of the human motion segmentation to establish

preliminary action-based classification results. To do this, we introduce the use of multiple

Dynamic Time Warping (DTW) algorithms which gives a similarity measure between two

curves that are not necessarily synced temporally. By creating a set of Hidden Markov

Models (HMM), we are able to use the DTW distances with the segmented motions to

determine which motion segments combine to form individual actions.

Finally, in Appendix A we introduce the Pattern Analysis Laboratory Kontinuous Ac-

tions (PALKA) data set, the collection criteria, and hand-labeled ground truth used in the

evaluation of Chapters 5 and 6. Other publicly available data sets used in this dissertation

are also explained in this appendix. In Appendix B, we provide important pieces of code

developed in this thesis including, but not limited to, the practical computation of general-

ized curvature values evaluated on the curve, and the practical computation of generalized

curvature using the mean subtraction and adaptive window size extensions from Chapter 4.
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CHAPTER 2

THEORY OF CURVES

In this chapter we introduce basic concepts involving curves, the Frenet Frame, and

generalized curvature in a differential geometry context. The material in this chapter follows

from several sources [3], [4], [5], and [6]. The rest of this dissertation will assume familiarity

with this material as we expand on these concepts.

2.1. Introduction to Curves

To build up the foundation of the work presented in this dissertation, we begin to study

the simplest of geometric objects: curves. Our approach for this study will be highly geo-

metric. After a formal definition of a curve, in order to facilitate a visual understanding, we

will typically present the material in a low dimensional space, such as R3 before generalizing

the topics to R
n.

Definition 2.1.1. A curve, γ, is defined to be a continuous mapping from an interval

γ : [a, b] ⊆ R → R
n.

This is a very basic definition of a curve, and provides us with few mathematical tools.

However, by adding the additional constraint of non-vanishing differentiability we can start

to analyze curves in many ways.

Definition 2.1.2. A curve, γ : I → R
n is regular if its derivatives up to γ(t)(n) 6= 0 for

all t ∈ I.

Definition 2.1.3. A regular curve γ : [a, b] → R
n is smooth given that γ′(t)(i) 6= 0 for

all t ∈ [a, b] and for all i ≤ n ∈ N
+.
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Figure 2.1 shows the canonical examples of regular and non-regular curves, a circle and

cycloid respectively.

Figure 2.1. Example of a regular curve (left) and a non-regular curve (right).
The cycloid (right) is smooth everywhere x 6= 4πn, n ∈ Z.

Definition 2.1.4. Let γ : (a, b) → R
n be a regular curve. Let h : (c, d) ⊂ R → (a, b) ⊂ R

be a diffeomorphism, or an invertible function that maps one differential manifold to another

such that both the function and the inverse are smooth. Then γ̃ = γ ◦ h : (c, d) ∈ R
n is a

regular curve, called a reparameterization of γ.

γ̃(u) = γ ◦ h(u) = γ(h(u))

In other words, start with a curve γ = γ(t), make a change of parameter t = h(u), and

obtain a reparameterized curve γ̃ = γ(h(u)) where u is the new parameter.

With the ability to reparametrize curves, a common reparametrization based on arc

length is widely employed. First, we recall the definition of arc length from calculus.
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Definition 2.1.5. If γ : [a, b] → R
n is a parametrized curve, then for any a ≤ t ≤ b, the

arc length from a to t is defined as

s(t) =

∫ t

a

||γ′(u)||du.

Thus, the total arc length of a curve is such that b = t.

To elaborate on this definition, the norm of the derivative of the curve over an interval

describes the length of that segment of the curve. Since this is a continuous operation, as

we vary the length of the segment, the length of the curve (assuming non-zero derivative)

varies the arc length in a monotonically increasing manner.

Theorem 2.1.6. Every regular parametrized curve, γ, can be parametrized by its arc

length, s(t) by γ̃ = γ(t(s)) where t(s) is the inverse arc length function.

Proof. Let γ : [a, b] → R
n be a regular parametrized curve and let s(t) be defined as

the arc length

s(t) =

∫ b

a

∣

∣

∣

∣

∣

∣

∣

∣

dγ

dt

∣

∣

∣

∣

∣

∣

∣

∣

dt.

By definition, since γ is regular,

s′(t) = ||γ′(t)|| > 0.

Then s(t) is a monotonically increasing function. From this, we can establish that t(s), the

inverse function of s(t) exists. Thus:

γ̃′(s) = γ′(t(s))t′(s) =
γ′(t(s))

s′(t(s))
=

γ′(t(s))

||γ′(t(s))||
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Clearly, γ̃(s) is now parametrized by arc length as

||γ̃′(s)|| =
∣

∣

∣

∣

∣

∣

∣

∣

γ′(t(s))

||γ′(t(s))||

∣

∣

∣

∣

∣

∣

∣

∣

= 1

�

For the remainder of this chapter, we will use the following notation:

• γ(t) denotes an arbitrary regular parametrization

• γ(s) denotes an parametrization by arc length

• γ(s0) denotes a point on a curve parametrized by arc length

Example 2.1.1. Consider the curve γ(t) =< cos(t), sin(t), t > from 0 ≤ t ≤ T . Then

γ′(t) =< − sin(t), cos(t), 1 > .

The arc length of this curve is then

s(t) =

∫ t

0

√

sin2(u) + cos2(u) + 1dt =

∫ t

0

√
2dt = t

√
2.

Solving for t gives us

t =
s√
2

Now substituting this back into the original curve,

γ(s) =

〈

cos

(

s√
2

)

, sin

(

s√
2

)

,
s√
2

〉

.

We can test to make sure this curve has been parametrized by arc length:

||γ′(s)|| =
∣

∣

∣

∣

∣

∣

∣

∣

〈

− 1√
2
sin

(

s√
2

)

,
1√
2
cos

(

s√
2
,
1√
2

)〉∣

∣

∣

∣

∣

∣

∣

∣
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=

√

1

2
sin2

(

s√
2

)

+
1

2
cos2

(

s√
2

)

+
1

2

=1

We also make the note that while we can consider a curve as a single object, it also makes

sense to discuss the local properties of a curve. We will use the word “local” to discuss the

behavior of a curve around a neighborhood of a point γ(s0). For instance, the local behavior

of a curve parametrized by arc length can be studied by means of the Taylor expansion:

γ(s) = γ(s0) + sγ′(s0) +
s2

2
γ′′(s0) +

s3

6
c′′′(s0) +O(s3)

of the curve γ(s) about the point s0.

2.2. Introduction to Properties of Curves in R
3

Since we now have the tools we need to start to discuss properties of a curve, let us

develop the standard nomenclature to describe curves in R
3. Curves in this low dimensional

space will allow us to visualize concepts important to the Frenet-Serret Frame in Section 2.3.

Definition 2.2.1. Let γ ⊆ R
3 be a regular parametrized curve (not necessarily parametrized

by arc length). Then:

• T is the unit tangent vector of γ(t), points in the direction of motion on the curve,

and is defined as

γ′(t)

||γ′(t)|| .
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• N is the unit normal vector of γ(t), points in the direction that the tangent vector

is changing, and is defined as

T ′(t)

||T ′(t)|| .

• B is the unit binormal vector or γ(t), points in the remaining orthogonal direction,

or the direction which no motion is occurring, and is defined as

T ×N.

We can think of T , N , and B as uniquely determined positively oriented orthonormal basis

vectors which span R
3.

Example 2.2.1. Consider the curve γ(t) = 〈cos(t), sin(t), t〉. Then

γ′(t) = < − sin(t), cos(t), 1 >

||γ′(t)|| =
√
2

T =
1√
2
〈− sin(t), cos(t), 1〉

T ′(t) =
1√
2
〈− cos(t),− sin(t), 0〉

||T ′(t)|| = 1√
2

N(t) =
1

2
〈− cos(t),− sin(t), 0〉

B(t) =

〈

1

2
√
2
sin(t),− 1

2
√
2
cos(t),

1

2
√
2

〉
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Figure 2.2. Three dimensional curve, γ(t) ⊂ R
3 (black), with the unit tan-

gent (blue), unit normal (red), and unit binormal (green) vector at a single
instance, γ(t0) on the curve.

2.2.1. Curvature. The primary subject of interest in this dissertation involves the

derivation, and subsequent use, of curvature and the higher dimensional equivalents (torsion,

etc.). These properties of curves are well-known and established for continuous functions.

Here, we introduce the subject of curvature using the notation and properties of curves we

have just established.

Definition 2.2.2. Let γ ⊂ R
n be a smooth curve parametrized by arc length, s. The

curvature, κ, of γ is defined as

κ =

∣

∣

∣

∣

∣

∣

∣

∣

dT

ds

∣

∣

∣

∣

∣

∣

∣

∣
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where T is the unit tangent vector.

Example 2.2.2. The arc length parametrization of a circle (in R
2) is

γ(s) =
〈

a cos
(s

a

)

, a sin
(s

a

)〉

.

It is easy to verify ||γ′(s)|| = 1 and therefore

T (s) = γ′(s) =
〈

− sin
(s

a

)

, cos
(s

a

)〉

.

It follows that

dT

ds
=

〈

−1

a
cos

(s

a

)

,−1

a
sin

(s

a

)

〉

.

and therefore

κ =

∣

∣

∣

∣

∣

∣

∣

∣

dT

ds

∣

∣

∣

∣

∣

∣

∣

∣

=
1

a

In other words, the curvature of a circle is the inverse of the circle’s radius.

We can think about the concept of curvature using the same idea: the curvature of a

curve, γ, at a point, s0, is the inverse radius of the circle of best fit touching the point s0.

We also make a special note here that since κ =
1

r
where r is the radius of the circle of best

fit, this implies κ ≥ 0.

Theorem 2.2.3. A regular curve in R
2 has non-zero constant curvature κ if and only if

it is part of a circle of radius
1

|κ| .
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Figure 2.3. Curve, γ, with curvature defined at the point s0 to be
1

r
of the

osculating circle. Modified from Image source: [1]

Definition 2.2.4. Two functions have a contact of order k at point s0 if they have the

same value and equal derivatives, up to derivative of order k.

From Theorem 2.2.3, we get the geometric interpretation of curvature. Additionally, we

can us this opportunity to define the osculating circle [7]:

Definition 2.2.5. Given a curve with non-vanishing curvature, the osculating circle of

γ at the point γ(s0) is the circle centered at γ(s0) +
1

κ(s0)
N(s0).
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We make the note that this circle is uniquely determined by having the property it has

contact of order two with the curve. Furthermore, with this geometric interpretation, we

can also think of curvature as fitting the equation of the form

T (s) = (cos(α(s)), sin(α(s)))

N(s) = (− sin(α(s)), cos(α(s)))

where α(s) needs to be found. This also implies that curvature can be thought of as the

deviation of a curve from a straight line. We will make particular use of this observation

later in Section 2.3.

For the sake of completion, we mention one more, traditional, formulation for curvature.

This is put in terms of the derivatives of the original curve (assuming the curve is in R
3):

κ =
|γ′ × γ′′|
|γ′|3 .

Notice, if the curve is not in R
3 the cross operation is not defined and this formulation

cannot be used. This formula is generalized without the constraint of γ ⊂ R
3 in Section 2.3.

However, it does allow us to see that curvature is directly related to the derivatives of the

curve.

2.2.2. Torsion. We have seen that curvature describes a curve using a two-dimensional

structure (a circle). When γ ⊂ R
3, a one-dimensional structure cannot capture all of the

information of the curve. Now we introduce the concept of torsion to help define the curve

γ in more dimensions.
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Definition 2.2.6. Let γ ⊂ R
3 be a smooth curve parametrized by arc length, s. The

torsion, τ , of γ is defined as

τ = −N · B′

We can think of torsion as measuring the speed of rotation of the binormal vector at a

point, s0. If τ = 0 then, γ lies in some plane. From this, we get the geometric interpretation

of curvature. Additionally, we can us this opportunity to define the osculating sphere:

Definition 2.2.7. Given a curve with non-vanishing curvature and torsion, the os-

culating sphere of γ at the point γ(s0) is the sphere centered at γ(s0) +
1

κ(s0)
N(s0) −

κ′(s0)

τ(s0)κ2(s0)
B(s0).

We make the note that this sphere is uniquely determined by having the property it has

contact of order three with the curve. Furthermore, with this geometric interpretation, we

can also think of curvature as fitting the helix of the form

T (s) = (cos(α(s)), sin(α(s)), β(s))

N(s) = (− sin(α(s)), cos(α(s)), β)

B(s) = (− cos(α(s)),− sin(α(s)), 0)

where α(s) and β(s) needs to be found. In other words, by ensuring at a point s0, the value of

the curve is equal to the point defined by the equations above, and the derivatives of the curve

are equal to the derivatives of the fitted helix, then we can use that helix as a substitution

for the curve at that one point. This will allow us to perform computations on this helix,

with known equations, instead of requiring continuous information of the curve. From this,
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we can think of torsion at a point as the deviation of a curve from the 2-dimensional plane

of best fit. This is another important observation we will make use of later.

Once again, and only for the sake of completion, we can also relate torsion to the deriva-

tives of the curve, as well as curvature in the following formula (assuming the curve is in

R
3):

τ =
< γ′ × γ′′, γ′′′ >

||γ′ × γ′′||2 =
< γ′ × γ′′, γ′′′ >

κ2
.

Again, if the curve is not in R
3 the cross operation is not defined. However, this formula

is also generalized in Section 2.3 for the case when γ ⊂ R
n.

2.2.3. Frenet Frame in Three Dimensions. The Frenet Frame is a set of spanning

orthonormal basis vectors in Euclidean space and is associated with a point on a curve, γ(t).

This frame is commonly presented in 3 dimensions as the TNB Frame in R
3.

The frame formed by these vectors are used in the Frenet-Serret Equations, a system

of differential equations which describe the geometric properties of a curve irrespective of

rotation and translation. In particular, for R3, the Frenet-Serret Equations are:

dT

ds
= κN,

dN

ds
= −κT + τB,

dB

ds
= −τN

where
d

ds
is the derivate with respect to the arc length

s(t) =

∫ t

0

||r′(σ)||dσ,

17



where κ is curvature, and τ is torsion. Given the original curve γ(t) we can solve the

Frenet-Serret Equations for κ and τ at any point t along the curve.

The 3 dimensional case is a common space to work with these concepts in due to the

possibility of visualization. However, it is possible to extend these concepts into higher

dimensions (i.e. parameters of the curve which measure the deviation of a curve from the best

3d-space, 4d-space, ..., nd-space). In 1874, Camille Jordan [2] expanded the Frenet Frame

and subsequently, the Frenet-Serret equations into higher dimensional Euclidean spaces.

2.3. The Frenet-Serret Frame and Curves in R
n

Definition 2.3.1. Let γ(s) be a regular parametrized smoothed curve in R
n which has

been parametrized by arc length. If the derivatives γ(i) are linearly independent, the curve,

γ, is called a Frenet Curve.

Definition 2.3.2. Given a Frenet Curve, γ, the Frenet-Serret frame at any point, s0, on

the curve is determined computing the Frenet vectors by applying the Gram-Schmidt process

to the derivates of γ:

e1 = γ(1)(s0)

e2 =
P1γ

(2)(s0)

||P1γ(2)(s0)||

and

ei+1 =
Piγ

(i+1)(s0)

||Piγ(i+1)(s0)||

where the projector at each step is

Pi = I − eie
T
i

Note, from this point on, we will be using the above notation to discuss the Frenet

vectors. However, it is worth pointing out that, by definition, T = e1, N = e2, and B = e3.
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From these definitions we make the note that every Frenet Curve uniquely induces

through its Frenet-Serret n-frame, a curve in the Stiefel manifold of all n-frames in R
n.

The vectors of the n-dimensional Frenet Frame are related to the generalized curvature

values in a similar manner with the 3-dimensional case. It is easier to display this system of

differential equations in matrix form:

(1)























e′1(s)

...

...

e′n(s)























=























0 κ1(s) 0

−κ1(s)
. . . . . . 0

. . . 0 κn−1(s)

0 −κn−1(s) 0













































e1(s)

...

...

en(s)























where

e1(s) = γ′(s)

and

ej(s) =
γ(j)(s)−∑j−1

i=1

〈

γ(j), ei(s)
〉

ei(s)

||γ(j)(s)−∑j−1
i=1 〈γ(j), ei(s)〉 ei(s)||

.

Additionally, the real-valued functions for generalized curvature are defined by solving the

above system of equations. The closed-form solution for these values are:

(2) κj(s) =
< e′j(s), ej+1(s) >

||γ′(s)|| .

As an interesting and relevant side-note, from this system of equations, if the generalized

curvatures are constant then these equations have been shown to have the general solutions

(3) γe(t) = 〈a1 cos(α1t), a1 sin(α1t), ..., ak cos(αkt), ak sin(αkt)〉
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where n is even and

(4) γe(t) = 〈a1 cos(α1t), a1 sin(α1t), ..., ak cos(αkt), ak sin(αkt), bt〉

where n is odd.

In the same way that we can think of curvature at a point being determined by the size

of the circle of best fit, and torsion at a point being determined by the size of the helix of

best fit, we can think of the ith generalized curvature as being determined by the size of the

generalized circle / generalized helix given by Equations 3 and 4.

Finally, we present the Fundamental Theorem of Curve Theory [8], [5], which allows us

to construct a curve from generalized curvature values.

Theorem 2.3.3. Let κi(s), s = 1, ..., n−1, s ∈ I, be smooth functions satisfying κj(s) > 0

for j = 1, ..., n−2. Then there exists a generally curved curve with parameter representation

γ(s) ∈ Rn such that s is an arc length parameter and given functions κi(s) are its curvatures.

Two oriented curves in the Euclidean space, Rn, having the same curvature functions are

congruent under an orientations preserving motion.

Proof. Define γ(s0) = q0, e
(0)
1 , ..., e

(0)
n as the Frenet n-frame of γ at the point q0, and

define F (s) = (e1(s), ..., en(s))
T . Then the Frenet equations are equivalent to the matrix

equation given by Equation 1 which is a system of linear differential equations of first order.

We will refer to Equation 1 in simplified terms: F (s)′ = K(s) · F (s).

From the existence and uniqueness theorems for solutions of linear differential equations

[6] and given K(s) with an initial condition F (s0), then F ′ = K · F has a unique solution,

F (s), which is defined for all s ∈ I.
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Noting that K is a skew-symmetric matrix, and therefore 0 = K +KT , we can take

(FF T )′ = F ′F T + F (F T )′ = F ′F T + F (F ′)T = KFF T + FF TKT

Then, the differential equation

(FF T )′ = K(FF T ) + (FF T )KT

when viewed as a differential equation for the unknown function FF T has a unique solution

[6] for the given initial conditions F (s0)(F (s0))
T = E (where E denotes the identity matrix).

And, due to the uniqueness of the solution, we must have FF T = E on the entirety of the

interval I. Hence, F (s) is an orthogonal matrix as the continuity of the determinant along

the interval I is one.

From this, we establish F (s) determines a unique vector-valued function e1(s). Using the

initial conditions

γ(s0) = q0,

we can find a unique curve c(s) with

γ′ = e1

by setting

γ(s) = q0 +

∫ s

s0

e1(t)dt.

From the relation given by the Frenet Equations

e′1 = κ1e2 6= 0
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in Equation 1 and κ1 > 0 from the statement of the theorem, we establish e2 as defined by

F , must coincide with the second vector of the Frenet n-frame of γ at event point. This

pattern continues for each other ei. Since F (s) represents the Frenet n-frame of γ at each

point, and because F ′ = KF , the given functions κi coincide with the Frenet curvatures of

γ.

γ′ = e1

γ′′ = κ1e2

γ′′′ = (κ1e2)
′ = (−κ2

1e1 + κ′
1e2) + κ1κ2κ3

...

γ(i) = (linear combination of e1, ..., ei−1) + κ1 · κ2 · · · · · κi−1ei

Then, from κj(s) > 0 for j = 1, ...n−2, the orthogonality of F which we extract the ej’s,

and the construction of the derivatives of γ (which involve the concatenation of orthogonal

directions for each successive derivate), we establish that γ′, γ′′, ..., γn−1 are linearly indepen-

dent. We note, that without the constraint, κj(s) > 0, this methodology would still function

to produce a linearly independent Frenet Frame, but it would only be unique up to the sign

on each basis vector.

�

With this theorem and prerequisite background information on curves, curvatures, and

the Frenet-Serret apparatus, we have established most of the necessary tools required to

understand the remainder of this thesis.
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CHAPTER 3

GENERALIZED CURVATURE ANALYSIS VIA SINGULAR VALUES

3.1. Introduction

Consider a curve γ(t) in R
n.1 Recall that if γ(t) is parameterized by arc length then

γ(t) is a solution to the differential equation E ′ = EK. We would like to understand the

associated frame e1(t), . . . , en(t) and curvature functions κ1(t), . . . , κn−1(t) from a different

point of view. Specifically, consider points on the curve within an ǫ-ball centered at a point

s0 = γ(t0). The tangent line at s0 is approximated by taking the span of two points on γ(t)

in an ǫ-ball centered at s0 while the osculating plane at s0 is approximated by taking the

span of three points on γ(t) in an ǫ-ball centered at s0. However, points on the curve in a

small ǫ-ball are nearly linear. The value of κ1(t0) can be seen as a measure of the failure of

the linearity of such points. In a similar manner, the value of the second curvature function,

κ2(t0) is a measure of the failure of planarity of points in an ǫ-ball on the curve. This point

of view will be considered more closely in the next section through the local singular value

decomposition. In order to make this connection, it is helpful to replace the curve with an

idealized version which agrees, to high order, with the curve at γ(t0).

3.1.1. Local approximation of curves in R
3 and R

4. Consider a curve γ(t) in R
3.

The helix of best fit to γ at γ(t0) is the solution to the differential equation E ′ = EKt0

where Kt0 denotes the curvature matrix K evaluated at t0. Thus the curvature functions for

the helix will be constants κ1 = κ1(t0) and κ2 = κ2(t0). The general solution, g(t), to the

differential equation, E ′ = EKt0 , has the form

g(t) = (a cos(αt), a sin(αt), bt) + Constant.

1Note, the majority of this chapter is taken verbatim from [9].
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The helix of best fit to γ(t) at γ(t0) is given by

h(t) = g(t)− g(t0) + γ(t0).

If ||γ(1)(t0)|| = 1 then we get the condition that

(5) a2α2 + b2 = 1

The relationship between the curvature functions of the helix and the parameters a, b, α is:

(6) κ2
1 = a2α4

(7) κ2
2 = b2α2

Following this pattern, if we solve the differential equation E ′ = EKt0 for a curve γ(t) in

R
4 then we obtain a toroidal curve of best fit at γ(t0) of the form

h(t) = g(t)− g(t0) + γ(t0)

where

g(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt)) + Constant.

We can relate a, b, α, β to the curvature functions as

(8) κ2
1 = a2α4 + b2β4

(9) κ2
1κ

2
2 = a2α6 + b2β6 − κ4

1
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(10) κ2
1κ

2
2κ

3
3 = a2α8 + b2β8 − κ2

1(κ
2
1 + κ2

2)
2

where again we have assumed that the curve is parameterized by arc length so

(11) a2α2 + b2β2 = 1

These equations are derived for κ1, κ2, κ3 in [5]. Next we give the corresponding equations

for curves in R
5 and R

6. The derivation is straightforward but tedious.

3.1.2. Curvature relations n = 5. If we solve the differential equation E ′ = EKt0

for a curve γ(t) in R
5 then we obtain a curve of best fit at γ(t0) of the form

h(t) = g(t)− g(t0) + γ(t0)

where

g(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt), ct) + Constant.

We can relate a, b, c, α, β to the curvature functions as
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1 = a2α2 + b2β2 + c2

κ1
2 = a2α4 + b2β4

κ1
2κ2

2 = a2α6 + b2β6 − κ1
4

κ1
2κ2

2κ3
2 = a2α8 + b2β8 − κ2

1(κ
2
1 + κ2

2)
2

κ1
2κ2

2κ3
2κ4

2 = a2α10 + b2β10 − κ2
1((κ

2
1 + κ2

2 + κ2
3)(κ

2
2 + κ2

3) + κ2
2κ

4
3)

3.1.3. Curvature relations n = 6. If we solve the differential equation E ′ = EKt0

for a curve γ(t) in R
6 then we obtain a curve of best fit at γ(t0) of the form

h(t) = g(t)− g(t0) + γ(t0)

where

g(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt), c cos(δt), c sin(δt)) + Constant.

Letting Fk = a2αk + b2βk + c2δk, we can relate a, b, c, α, β, δ to the curvature functions as
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1 = F2

κ2
1 = F4

κ1
2κ2

2 = F6 − κ1
4

κ1
2κ2

2κ3
2 = F8 − κ2

1(κ
2
1 + κ2

2)
2

κ1
2κ2

2κ3
2κ4

2 = F10 − κ2
1((κ

2
1 + κ2

2 + κ2
3)(κ

2
2 + κ2

3) + κ2
2κ

4
3)

κ1
2κ2

2κ3
2κ4

2κ5
2 = F12 − F10(κ

2
1 + κ2

2 + κ2
3 + κ2

4) + F8(κ
2
1κ

2
3 + κ2

4κ
2
1 + κ2

4κ
2
2)

3.2. The Local Singular Value Decomposition

Recall that at each point γ(t) ∈ γ, the Frenet-Serret frame is determined by applying the

Gram-Schmidt process to the vectors γ(1)(t), γ(2)(t), . . . , γ(n)(t) (where γ(k)(t) denotes the

kth derivative of γ evaluated at t). We denote this ordered orthonormal basis e1(t), . . . , en(t)

and let E denote the orthonormal matrix whose columns are the ei(t). The main intuition

behind a local singular value analysis is to exploit the idea that the Frenet-Serret frame may

be viewed as finding the subspace of best fit at a point on the curve. We consider the canonical

solution of the Frenet-Serret formula where κi is assumed to be constant, i.e., the solutions

to E ′ = EK given by Equations (3) and (4) where K is constant. We use an integral

formulation of the singular value decomposition, often referred to as the Karhunen-Loève

transformation, at a given point on the curve. We then use a Taylor series approximation

for γ(t) to determine particular eigenvalues of the Karhunen-Loève transformation in the
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ǫ-ball. These relationships can be combined with the relationships between the curvature

constants and the curve parameters to determine a formula for computing κi locally from

the singular values of the Karhunen-Loève transformation.

3.2.1. Formulation. Broomhead et al showed that the local singular value decomposi-

tion could be used to compute the topological dimension of a manifold from sampled points

lying on the manifold [10]. This provided a powerful tool for many applications that involved

modeling data on manifolds. The original setting of [10] concerned the reconstruction of a

manifold, via Takens’ theorem, from scalar valued time series statistics of a dynamical system

on the manifold. The local singular value decomposition is also useful for applying manifold

learning algorithms for geometric data analysis, e.g., local models such as charts [11], or

global models based on Whitney’s embedding theorem [12]. A more detailed discussion may

be found in [13, 14].

Following [15, 10], the mean centered covariance matrix of γ(t) at t is the matrix

Cǫ(t) =
1

2ǫ

∫ t+ǫ

t−ǫ

(γ(s)− γǫ(t))(γ(s)− γǫ(t))
Tds

where

γǫ(t) =
1

2ǫ

∫ t+ǫ

t−ǫ

γ(s) ds

However, we will consider the closely related on the curve covariance matrix

Cǫ(t) =
1

2ǫ

∫ t+ǫ

t−ǫ

(γ(s)− γ(t))(γ(s)− γ(t))Tds

By the singular value decomposition, we have a factorization

Cǫ(t) = Uǫ(t)Σǫ(t)U
T
ǫ (t)
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where we assume that the diagonal elements in Σǫ(t) are in monotone decreasing order. We

call the columns of Uǫ(t) the singular vectors of Cǫ(t). Note that such singular vectors are

only defined up to a factor of ±1. Let U(t) = limǫ→0 Uǫ(t). The columns of U(t), written

u1(t), . . . , un(t), are called the local singular vectors at γ(t). In a similar manner, one can

define the local singular vectors u1(t), . . . , un(t) at γ(t) by considering the limiting behavior

of the singular vectors in the singular value decomposition of Cǫ(t) as ǫ tends towards zero.

Theorem 3.2.1. Let γ : I → R
n be a parametric curve of class Cn+1, regular of order

n. Let e1(t), . . . , en(t) denote the Frenet-Serret frame at γ(t). Let u1(t), . . . , un(t) denote the

local singular vectors at γ(t). Then for i = 1, . . . , n, ei(t) = ±ui(t).

Proof. Let Γ(t) denote the matrix whose columns are γ(1)(t), . . . , γ(n)(t). The Frenet-

Serret frame, e1(t), . . . , en(t), is obtained by applying the Gram-Schmidt process to the

columns of Γ(t). Thus ei(t) is a unit vector orthogonal to the span of γ(1)(t), . . . , γ(i−1)(t) but

lying within the span of γ(1)(t), . . . , γ(i)(t). Let v be the n×1 vector whose kth component is

(s−t)k/k!. Then Γ(t)v is the nth order Taylor series expansion for γ(s)−γ(t) at t. Replacing

γ(s)− γ(t) with its Taylor series expansion leads to the nth order approximation

Cǫ(t) =
1

2ǫ

∫ t+ǫ

t−ǫ

(γ(s)− γ(t))(γ(s)− γ(t))Tds ≈ 1

2ǫ

∫ t+ǫ

t−ǫ

(Γ(t)v)(Γ(t)v)T ds

We rewrite this as

Γ(t)
1

2ǫ

∫ t+ǫ

t−ǫ

vvT ds Γ(t)T = Γ(t) E Γ(t)T

By the definition of E , we compute that

Ei,j =
ǫi+j

i!j!(i+ j + 1)
if i+ j is even and Ei,j = 0 if i+ j is odd.
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We can express Γ(t) E Γ(t)T in terms of the columns of Γ(t) and the entries of E as

ǫ2

3
(c1c

T
1 ) +

ǫ4

5

(

1

6
c1c

T
3 +

1

4
c2c

T
2 +

1

6
c3c

T
1

)

+ · · ·+ ǫ2k

2k + 1

2k−1
∑

i=1

1

i!(2k − i)!
cic

T
2k−i + . . .

where ci = γ(i)(t). As ǫ tends towards zero, this expression behaves more and more like

the rank one matrix ǫ2

3
c1c

T
1 . Noting that c1 = γ(1)(t), thus is a multiple of e1(t), we get

u1(t) = ±e1(t). Let P1 = I − e1(t)e1(t)
T . Pre and post multiplying Γ(t) E Γ(t)T with P1

deflates away all terms involving c1. More precisely,

P1 Γ(t) E Γ(t)T P1 =
ǫ4

5

(

1

4
P1c2c

T
2 P1

)

+ · · ·+ ǫ2k

2k + 1

2k−2
∑

i=2

1

i!(2k − i)!
P1cic

T
2k−iP1 + . . .

As ǫ tends towards zero, this deflated matrix behaves more and more like the rank one

matrix ǫ4

5
(1
4
P1c2c

T
2 P1). Noting that P1c2 = P1γ

(2)(t), we see that P1c2 is orthogonal to γ(1)

and is in the span of γ(1), γ(2) thus is a multiple of e2(t). This leads to u2(t) = ±e2(t).

We now pre and post multiply P1 Γ(t) E Γ(t)T P1 with P2 = I − e2(t)e2(t)
T . Note that

since e1(t) is orthogonal to e2(t), we have P2P1 = I − e1(t)e1(t)
T − e2(t)e2(t)

T . As ǫ tends

towards zero, this doubly deflated matrix behaves more and more like the rank one matrix

ǫ6

7
( 1
36
P2P1c3c

T
3 P1P2). Noting that P2P1c3 = P2P1γ

(3)(t), we see that P2P1c3 is orthogonal to

the span of γ(1), γ(2) but in the span of γ(1), γ(2), γ(3) thus is a multiple of e3(t). This leads

to u3(t) = ±e3(t). Continuing to deflate away previously found singular vectors, we obtain

the relationship ei(t) = ±ui(t) for all i. Note that for this to work, Ei,i must be non-zero

and PiPi−1 · · ·P1γ
(i+1)(t) must be non-zero for each i. These conditions are satisfied since

Ei,i = ǫ2i

(2i+1)i!i!
and γ is regular of order n thus γ(1)(t), . . . , γ(n)(t) are linearly independent. �
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The previous theorem considered the relationship between the local singular vectors of a

curve and the Frenet-Serret frame of a curve. We now consider the relationship between the

local singular values of a curve and values of the curvature functions. More precisely, in the

singular value decomposition

Cǫ(t) = Uǫ(t)Σǫ(t)U
T
ǫ (t)

we considered the limiting behavior of Uǫ(t), as ǫ tends towards zero, in order to obtain the

local singular vectors. We now consider the limiting behavior of Σǫ(t) as ǫ tends towards

zero. Note that the entries of Σǫ(t) are the eigenvalues of Cǫ(t) and that they tend towards

zero as ǫ tends towards zero. Let λi,ǫ(t) denote the i
th diagonal entry of Σǫ(t). We show that

for some constant ci, we can write

λi,ǫ(t) = ciǫ
2i +O

(

ǫ2i+2
)

The local singular values of γ(t) are then defined as σi(t) =
√
ciǫ

i.

In Section 2, we have explicitly expressed the curvature, for curves with constant curva-

ture functions, in terms of the parameters of the curves. We now express the leading terms

of the eigenvalues λi,ǫ(t) in terms of the parameters of the curves. This allows us to derive

a relationship of the form

κ2
i (t) = ai lim

ǫ→0

λi+1,ǫ(t)

λ1,ǫ(t)λi,ǫ(t)

where ai is a constant with known value. From this we obtain

κi(t) =
√
ai

σi+1(t)

σ1(t)σi(t)

31



3.2.2. Two Dimensions. Consider a two dimensional curve with constant curvature

κ1 = 1/a. This will be a circle of radius a. Up to translation, its parameterized form is

γ(s) = (a cos(αs), a sin(αs)). If we assume that the circle is parameterized by arc length

then we obtain the constraint a2α2 = 1. The components of the covariance matrix Cǫ(0) are:

C11 =
1

2ǫ

∫ ǫ

−ǫ

(a cos(αs)− a)2ds

C22 =
1

2ǫ

∫ ǫ

−ǫ

a2 sin2(αs)ds

with

C12 = C21 =
1

2ǫ

∫ ǫ

−ǫ

(a cos(αs)− a) sin(s)ds = 0

since the integrand is an odd function.

We follow the usual convention of ordering the eigenvalues by decreasing magnitude so

λ1,ǫ(0) =
1

3
a2α2ǫ2 +O(ǫ4)

λ2,ǫ(0) =
1

20
a2α4ǫ4 +O(ǫ6)

(12) lim
ǫ→0

λ2,ǫ(0)

λ2
1,ǫ(0)

=
9

20a2

Given that the curvature κ1 = 1/a, we obtain the following expression for κ1 in terms of the

local singular values of the circle:

(13) κ1 =

√

20

9

σ2

σ2
1

=

√
20

3

σ2

σ2
1
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3.2.3. Three Dimensions. Here we consider curves in R
3 with constant κ1, κ2. Up to

translation, such a curve will have the form

γ(s) = (a cos(αs), a sin(αs), bs)

Assuming the curve is parameterized by arc length we have a2α2+b2 = 1. The covariance

matrix, Cǫ(t), is a 3× 3 matrix with eigenvalues

λ1 = 1
3
ǫ2 +O(ǫ4)

λ2 = 1
20
a2α4ǫ4 +O(ǫ6)

λ3 = 1
1575

a2α6b2ǫ6 +O(ǫ8)

Recalling from Section 2 the equations for κ1, κ2 in terms of the parameters a, α, b, we

obtain

(14) κ2
1 =

20

9
lim
ǫ→0

λ2,ǫ(t)

λ2
1,ǫ(t)

κ2
2 =

105

4
lim
ǫ→0

λ3,ǫ(t)

λ1,ǫ(t)λ2,ǫ(t)

This leads to the expression of κ1, κ2 in terms of the singular values as:

κ1 =

√
20

3

σ2

σ2
1

and κ2 =

√
105

2

σ3

σ1σ2
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3.2.4. Four Dimensions. Here we consider curves in R
4 with constant κ1, κ2, κ3. Up

to translation, such a curve will have the form

γ(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt))

This leads to the following formulas:

1 = a2α2 + b2β2

λ1 = 1
3
ǫ2 +O(ǫ4)

λ2 = 1
20
a2α4 + b2β4ǫ4 +O(ǫ6)

λ3 = 1
1575

a2b2α2β2(α2 − β2)2ǫ6 +O(ǫ8)

λ4 = 1
63504

a2b2α4β4(α2−β2)2

a2α4+b2β4 ǫ8 +O(ǫ10)

Using elimination theory we establish the following representations of the κi in terms of

the local singular values:

κ1 =

√
20

3

σ2

σ2
1

, κ2 =

√
105

2

σ3

σ1σ2

, κ3 =

√
336

5

σ4

σ1σ3

3.2.5. Patterns in higher dimensions. Given that many of the entries of Cǫ(0) are

odd functions, the covariance matrix has a special structure with many zero entries. For

instance, the structure of the covariance matrix for n = 6 is
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

















































C11 0 C13 0 C15 0

0 C22 0 C24 0 C26

C31 0 C33 0 C35 0

0 C42 0 C44 0 C46

C51 0 C53 0 C55 0

0 C62 0 C64 0 C66



















































We can permute the columns and rows of this matrix an even number of times to obtain

the block matrix


















































C11 C13 C15 0 0 0

C31 C33 C35 0 0 0

C51 C53 C55 0 0 0

0 0 0 C22 C24 C26

0 0 0 C24 C44 C46

0 0 0 C26 C46 C66



















































Thus we observe the more computationally efficient approach to computing the eigenval-

ues by computing the eigenvalues of the block submatrices.

3.2.6. Five and Six Dimensions. First we consider curves in R
5 with constant κ1, κ2, κ3, κ4

which, up to translation, will have the form

γ(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt), ct)
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Letting Fk = a2αk + b2βk, we obtained the following formulas:

1 = a2α2 + b2β2 + c2

λ1 = 1
3
ǫ2 +O(ǫ4)

λ2 = 1
20
F4ǫ

4 +O(ǫ6)

λ3 = 1
1575

(a2b2α2β2(α2 − β2)2 + c2F6)ǫ
6 +O(ǫ8)

λ4 = 1
63504

a2b2α4β4(α2−β2)2

F4

ǫ8 +O(ǫ10)

λ5 = 1
9823275

a2b2α6β6(α2−β2)2

a2b2α2β2(α2−β2)2+c2F6

ǫ10 +O(ǫ12)

Using elimination theory, we establish the following representations of the κi in terms of

the local singular values:

κ1 =

√
20

3

σ2

σ2
1

, κ2 =

√
105

2

σ3

σ1σ2

, κ3 =

√
336

5

σ4

σ1σ3

, κ4 =

√
825

4

σ5

σ1σ4

In a similar manner, for curves in R
6 of the form

γ(t) = (a cos(αt), a sin(αt), b cos(βt), b sin(βt), c cos(δt), c sin(δt))

we obtain these same expressions for κ1, κ2, κs, κ4 plus the additional relationship

κ5 =

√
1716

7

σ6

σ1σ5

.
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Throughout this section, we have assumed the curve to be parameterized with respect

to arc length. The local computations can still be made without this assumption. What

would change in the formulas in the previous section is that we would replace the assumption

that ||γ(1)(t0)|| = 1 with ||γ(1)(t0)|| = r. We obtain the same connection between the higher

curvature functions and ratios of singular values. We summarize the results of the previous

pages in the following:

Theorem 3.2.2. Let γ : I → R
n be a parametric curve of class Cn+1, regular of order

n with n ≤ 6. Let κi(t) denote the ith curvature function of γ evaluated at t and let σi(t)

denote the ith local singular value of γ at t. For each t ∈ I and each i < n,

κi(t) =
√
ai

σi+1(t)

σ1(t)σi(t)
with a1 =

20

9
, a2 =

105

4
, a3 =

336

25
, a4 =

825

16
, a5 =

1716

49

It is easy to check that the formula

ak−1 =

(

k

k + (−1)k

)2
4k2 − 1

3

is consistent with the first 5 values of ai given above. Perhaps surprisingly, the numerator

of this series arises in the number of Kekulé structures in benzenoid hydrocarbons [16] and

the degrees of projections of rank loci [17]. We suspect Theorem 3.2.2 holds more generally.

In particular, we make the following conjecture:

Conjecture 3.2.3. Let γ : I → R
n be a parametric curve of class Cn+1, regular of order

n. Then for each k ≤ n,

(15) κk−1(t) =
k

k + (−1)k

√

4k2 − 1

3

σk(t)

σ1(t)σk−1(t)
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Theorem 3.2.2 shows that the conjecture is true for κ1, . . . , κ5. We have numerically

verified the conjecture for κ6, κ7, κ8. This was done by generating curves with prescribed

non-constant curvature and solving the system E ′ = EK numerically. Then, the local

singular values were numerically approximated from the numerically generated curves.

3.3. Algorithm: Curvature Estimation on Discretely Sampled Smooth Curve

The theoretical contributions of this chapter provide the framework necessary to develop

an algorithm for estimating generalized curvature values given a time-series approximation

of a curve. Algorithm 1 contains pseudocode related to this algorithm. A full MATLAB

implementation is given in Appendix B.
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Algorithm 1 Curvature on Discretely Sampled Smooth Curve

procedure double curvatureSmooth(TimeSeries ts[1...N], double percent-
age)

AL =
∑N−1

i=1 of d(ts[i],ts[i+1]) // d is the l2-distance measure
for int i from 1 to N do

w1 = argmax(arclength(ts[i-w1]...ts[i])) ≤ AL*percentage
w2 = argmax(arclength(ts[i]...ts[i+w2])) ≤ AL*percentage
window = [ts[i-w1]...ts[i]...ts[i+w2]]
for int j from 1 to length(window) do

window[j] = window[j]-ts[i]
end for

window = window*(windowT ) / size(windowT , 1)
E = Matlab::flipud(Matlab::eig(window))

end for

dimensionOfData = size(ts,1)
for int i from 1 to dimensionOfData do

constantList[i] =
i+ 1

i+ 1 ∗ (−1)i
∗
√

((4(i+ 1)2 − 1)

3
)

end for

Initialize GC
for int i from 1 to N do

for int j from 1 to dimensionOfData-1 do

GC[j,i] = constantList[j] *

√

E[j + 1, i]

E[1, i] ∗ E[j, i])

end for

end for

return GC
end procedure

3.4. An example

We consider the twisted cubic curve in R
3 given parametrically as γ(t) = [t, t2, t3]. The

Frenet-Serret frame can be shown to be:

e1(t) =















1√
1+4t2+9t4

2t√
1+4t2+9t4

3t2√
1+4t2+9t4















e2(t) =















t(2+9t2)√
1+4t2+9t4

√
1+9t2+9t4

1−9t4√
1+4t2+9t4

√
1+9t2+9t4

3t+6t3√
1+4t2+9t4

√
1+9t2+9t4















e3(t) =















3t2√
1+9t2+9t4

−3t√
1+9t2+9t4

1√
1+9t2+9t4














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while the functions κ1(t), κ2(t) can be shown to be

κ1(t) =
2
√
1 + 9t2 + 9t4

(1 + 4t2 + 9t4)3/2
κ2(t) =

3

1 + 9t2 + 9t4

Figure 3.1. Twisted Cubic example −1 ≤ t ≤ 4. Point t = 3 (black dot).
First singular vector (red). Second singular vector (magenta). Third singular
vector (green).

Let ǫ = .001 and let t = 3. If we consider the singular value decomposition Cǫ(t) =

Uǫ(t)Σǫ(t)U
T
ǫ (t) for γ(t) then we can consider the singular vectors of Cǫ(t) as a proxy for the
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local singular vectors of γ(t) at t = 3 and compare to the exact value for ei(t) at t = 3. For

instance, comparing the first singular vector to the first frame vector, we get

u1,ǫ(3) =















.036131465

.216788800

.975549656















e1(3) =















.036131468

.216788812

.975549654















The other singular vectors, u2,ǫ(3), u3,ǫ(3) are similarly close to e2(3), e3(3). If we consider

√
ai

√

λi+1,ǫ(t)
√

λ1,ǫ(t)
√

λi,ǫ(t)
as a proxy for κi =

√
ai

σi+1(t)

σ1(t)σi(t)

then we obtain the following estimates:

κ1(3) ≈ .0026865640, κ2(3) ≈ .0036991369

whereas using the exact formulas, we can compare these values to

κ1(3) = .0026865644..., κ2(3) = .0036991368...

For these approximations, we used ǫ = 10−3. With a choice of ǫ = 10−6, for this example,

we observed about 13 digits of accuracy. This example illustrates how the theorems of the

previous section can be used to obtain very good approximations of both the Frenet-Serret

frame and values of the curvature functions by considering small values of ǫ.

3.5. Conclusion

In this chapter, we established the close connection between the Frenet-Serret apparatus

and the local singular value decomposition of regular curves in R
n. The local singular value

41



decomposition was defined as the limit of the singular value decomposition of a family of

covariance matrices defined on the curve. In particular, we showed in Theorem 3.2.1 that the

Frenet-Serret frame and the local singular vectors of regular curves in R
n agree (up to a factor

of ±1). In addition we showed in Theorem 3.2.2 that values of each of the curvature functions

can be expressed in terms of ratios of local singular values for regular curves in R
n with n ≤ 6.

Conjecture 3.2.3 concerns an extension of Theorem 3.2.2 to arbitrary dimension. We have

numerically checked this conjecture for curves lying in R
n with n ≤ 9. The techniques also

allow for highly accurate approximations for the Frenet-Serret apparatus.
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CHAPTER 4

A PRACTICAL METHOD FOR ESTIMATING GENERALIZED

CURVATURES FROM NOISY SAMPLE CURVES IN N-DIMENSIONS

4.1. Introduction

The traditional method for estimating curvature from discrete samples is to compute

local derivatives from point differences, and then compute curvature from the derivatives.1

This method is highly susceptible to noise. Solis was the first to suggest that curvature could

be estimated from local singular values [19]. In Chapter 3 we reached a similar conclusion

by a different path [20], and our work yielded both a convergence proof and an equation for

estimating curvature from local samples. Curvature results in Chapter 3 were theoretical in

nature, and not presented as a practical computational method of estimating curvature. It

estimates curvature at points known to lie on the curve and assumes the optimal window size

is fixed. Neither of these assumptions can be assumed in real-world situations. This chapter

presents a practical method for estimating curvature assuming the data points are noisy

samples, and for adjusting the scale of the data window to the underlying curvature [21].

Combined, these methods create Algorithm 4, the first SVD-based approach for accurately

estimating curvatures from noisy high dimensional points.

The end of this chapter compares Algorithm 4 to other curvature estimation approaches

on synthetic data. We show that Algorithm 4 is 10 times more accurate than Algorithm 1,

and 40 times more accurate then estimating derivatives with local point differences, Algo-

rithm 5 (which is also described in this chapter).

1Note, parts of this chapter have been taken verbatim from [18].
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4.2. Curvature from Eigenvalues

The curvature of any n-dimensional curve may be determined by finding the circle of best

fit to the curve in an infinitesimally small region (see Chapter 2). This approximation is

known in differential geometry as the osculating circle. It resides in the plane of best fit to the

data, also referred to as the osculating plane. The Karhunen-Loève decomposition allows one

to determine an optimal basis where the data correspond to points in a function space. The

theory is analogous to Principal Component Analysis for determining best approximations

to sampled data; see, e.g., [13] and references therein. In this section we establish a formula

for curvature modeling our data as values on a curve γ(t) exploring n-dimensional space

where t is continuous. We then show how this can be converted into a robust algorithm for

discrete data which is optimized using an adaptive window scheme.

4.2.1. Formulation. We are motivated by the fact that the osculating circle determines

the curvature at a point on a given n-dimensional curve. Our formulation exploits the fact

that the circle of interest resides in a plane of best fit to the data locally. This observation

permits us to simplify our theoretical considerations to the two-dimensional setting.

The circle is parameterized by t via the function

r : [0, 2π] → R
2

where

γ(t) = (a cos(αt), a sin(αt)).

Our analysis starts at the arbitrary point on the circle

(a cos(αt0), a sin(αt0))
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where it is assumed that the segment of interest is local in the sense that t ∈ [t0 − ǫ, t0 + ǫ].

The mean value of any curve in an ǫ-ball about this point is given by

γ =
1

2ǫ

∫ t0+ǫ

t0−ǫ

γ(t)dt

and hence for the circle

γ =

(

a sin(αǫ) cos(αt0)

αǫ
, 0

)

The components of the curve-mean centered covariance matrix C defined along the in-

terval t ∈ [t0 − ǫ, t0 + ǫ] can be written as

Cij =
1

2ǫ

∫ t0+ǫ

t0−ǫ

(γi(t)− γi)(γj(t)− γj)dt

We shall show that evaluating the eigenvalues of C in an ǫ ball on this curve will provide

a relationship between the eigenvalues and curvature κ for n-dimensional curves. In this

setting the circle of best fit, residing in the plane of best fit, can be used to characterize

curvature for a curve in n-dimensional space.

We proceed by computing the mean centered covariance matrix on the osculating circle.

On the diagonal we have

C11 =
1

2ǫ

∫ t0+ǫ

t0−ǫ

(

a cos(αt)− a sin(αǫ) cos(αt0)

αǫ

)2

dt

C22 =
1

2ǫ

∫ t0+ǫ

t0−ǫ

a2 sin2(αt)dt

The off diagonal terms are especially simple, i.e.,

C12 = C21 =
1

2ǫ

∫ t0+ǫ

t0−ǫ

(

a cos(αt)− a sin(αǫ) cos(αt0)

αǫ

)

sin(t)dt = 0
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since the integrand is an odd function.

Given that the covariance matrix is diagonal, the eigenvalues of the Karhunen-Loève

transformation are given by C11 and C22. We follow the usual convention of ordering the

eigenvalues by decreasing magnitude so

λ1 =
1

3
a2α2ǫ2 +O(ǫ4)

λ2 =
1

45
a2α4ǫ4 +O(ǫ6)

(16) lim
ǫ→0

λ2

λ2
1

=
1

5

1

a2

Hence, given the curvature κ

κ =
1

a

we obtain the expression for curvature in terms of the eigenvalues of the covariance matrix

in the limit, i.e.,

(17) κ2 = 5 lim
ǫ→0

λ2

λ2
1

.

In the next section we outline how to adapt this formula to a practical algorithm for

determining the curvature of an n-dimensional curve. We forgo the formulation of higher

dimensional generalized curvature values since they parallel the formulations in Chapter 3.

However, we show results of higher dimensional computations in Section 4.3.

4.2.2. The Curvature Algorithm. The formula given in Equation 17 is theoretical.

However, it provides the ingredients for a robust algorithm for computing curvature for an
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n-dimensional curve. The formula was derived in the setting of a shrinking ǫ-ball about a

point t0 where the domain of the curve is a continuous variable. In practice, we can’t actually

achieve ǫ → 0 on a computer so we have to implement the usual discretization and associate

this with the application.

Assume we have P samples of the curve γ(t) collected at times ti, i = 1, . . . , P , i.e.,

{γ(ti)}. We will assume that the indices of the first and last points in the ith ball are given

by li and ri, respectively, corresponding to times tli and tri . The ball is taken to be centered

at the discrete mean of the points in this interval ti ∈ [tl, . . . , tr] denoted by γ̄(ti).

We define the local data matrix as

X(ti) = [γ(tli)− γ̄(ti)| . . . |γ(ti)− γ̄(ti)| . . . |γ(tri)− γ̄(ti)]

Once li and ri have been determined we may compute the eigenvalues of the matrix

C(ti) = X(ti)X(ti)
T/P

i.e., the discretization of the equation for the covariance matrix C evaluated via integration

in the previous section. The eigenvalues in our formula for curvature then come from the

eigenvector problem

C(ti)e = λe.

Our formula for curvature κ requires the first two eigenvalues λ1 and λ2, associated with

the eigenvectors e1 and e2 spanning the osculating plane. The question that needs to be

answered is how to actually select the window size. We address this below.
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4.3. Generalized Curvature from Noisy Points

The main contribution of this section is the extension of the method created in Chapter

3 (Algorithm 1) for the purpose of computing generalized curvature values for noisy data

where the underlying curve is not known. To extend this method to the case of noisy data,

we introduce the following modification. Assume we are computing the curvature at time ti.

Now we view the Frenet frame as being centered at the point γ̄(ti), the row average of the

points [γ(tl)| . . . |γ(ti)| . . . |γ(tr)] sampled at times tl, . . . , ti, . . . , tr.

We define the local data matrix as

X(ti) = [γ(tli)− γ̄(ti)| . . . |γ(ti)− γ̄(ti)| . . . |γ(tri)− γ̄(ti)]

This modification does not change the directions of any of the Frenet bases vectors. How-

ever, it changes the constants in front of the ratios of eigenvalues. We can show through

analytical methods that the constants for κ1, . . . , κ5 are
√
5,
√

35/3,
√
21,

√
33, and

√

429

9

, respectively. From the Fundamental Theorem of Curves [22] we know that given a set of

curvatures, a unique curve is formed up to rotation and translation. Using this to construct

a curve with known generalized curvature values and the numerically computed square root

of eigenvalue ratios of this curve, we numerically solved for these constants. Additionally, we

are able to establish the numerical constants up to κ8, which suggests the following formula

for generalized curvature using an average of points:

(18) κj−1 =

√

4j2 − 1

3

√

λj

λ1λj−1

Note that this equation is consistent with the analytical values for κ1, . . . , κ5. More impor-

tantly, by centering the data around the mean of the samples rather than on a point on
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the actual curve, this equation makes it possible to compute curvatures at ti using Equa-

tion 18, without knowing the position of the curve at ti a-priori. Section 4.5 will illustrate

this method significantly reduces noise in the curvature estimates, since sampled points are

rarely exactly on the curve.

4.3.1. Algorithm: Estimating Curvature on Noisy Sampled Curve. The the-

oretical contributions of this chapter provide the framework necessary to develop an algo-

rithm for estimating generalized curvature values given a noisy time-series approximation

of a curve. Algorithm 2 contains pseudocode related to this algorithm. A full MATLAB

implementation is given in Appendix B.
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Algorithm 2 Curvature on Discretely Sampled Curve

1: procedure double curvatureNoisy(TimeSeries ts[1...N], double percent-
age)

2: AL =
∑N−1

i=1 of d(ts[i],ts[i+1]) d is the l2-distance measure
3: for int i from 1 to N do

4: w1 = argmax(arclength(ts[i-w1]...ts[i])) ≤ AL*percentage
5: w2 = argmax(arclength(ts[i]...ts[i+w2])) ≤ AL*percentage
6: window = [ts[i-w1]...ts[i]...ts[i+w2]]
7: for int j from 1 to length(window) do
8: window[j] = window[j]-mean(window)
9: end for

10: window = window(windowT ) / size(windowT , 1)
11: E = Matlab:flipud(Matlab::eig(window))
12: end for

13: dimensionOfData = size(ts,1)
14: for int i from 1 to dimensionOfData do

15: constantList[i] =

√

(2(i− 1) + 3)(2(i− 1) + 5)

3
16: end for

17: Initialize GC
18: for int i from 1 to N do

19: for int j from 1 to dimensionOfData-1 do

20: GC[j,i] = constantList[j] *

√

E[j + 1, i]

E[1, i] ∗ E[j, i]

21: end for

22: end for

return GC
23: end procedure

4.4. Optimizing Data Windows

We have outlined a procedure above for determining the curvature of an n-dimensional

curve that requires the computation of the eigenvalues associated with data in a local ball.

In practice, we anticipate that the optimal size of a discrete data ball will depend on the

curvature. If the curvature is small at γ(ti), then we expect to be able to include more data

by extending the radius of the ball. In contrast, for large curvatures, the size of the ball will

need to be reduced. Experiments suggest that adapting the size of the data ball to reflect

curvature leads to better performance of the method.
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Hence, instead of using a fixed window size, we present an automated method for com-

puting an adaptive window size at every discrete time ti. Our goal is to determine the integer

values l∗i and r∗i which will be used in the formation of a local window, from [γ(tl∗
i
)| . . . |γ(tr∗

i
)],

to be used in the local principal component analysis. For numerical reasons we compute the

SVD of X and use the singular values squared, i.e., λi = σ2
i .

A natural basis for determining the window size is given by the first b left singular vectors

e1(ti), e2(ti), ..., eb(ti) of X(ti), i.e.,

X(ti) = E(ti)Σ(ti)(F (ti))
T

The idea is that we are going to let the window size around the point γ(ti) grow as we

compare the ratio between the distance of the furthest point(s) in the window from the space

spanned by {e1(ti), e2(ti), ..., eb(ti)} and the distance from the projected point. This plane is

a best approximation to the osculating plane and is illustrated in Figure 4.1.

For a given sampled point on the curve γ(ti), candidate boundary points for the i’th

interval are the times tl and tr. For each ti, define the line segments

pl = γ(tl)− γ̄(ti)

pr = γ(tr)− γ̄(ti)

where optimal values for l and r are to be determined.

Now we construct the projection matrix onto the osculating plane, i.e., the range of the

n× b matrix Eb = [e1(ti) | e2(ti)|...|eb(ti)] as P = EbE
T
b . The desired index values are found
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by solving the optimization problems

l∗ = arg min
l

∣

∣

∣

∣

(I − P)pl
Ppl + ǫrat

− h

∣

∣

∣

∣

r∗ = arg min
r

∣

∣

∣

∣

(I − P)pr
Ppr + ǫrat

− h

∣

∣

∣

∣

where h > 0 is a suitably chosen cutoff which ensures that the set of points

{γ(tl∗), . . . , γ(tr∗)}

represents a local region of the curve γ. ǫrat ensures if the curve is locally linear, we extend

beyond that region. Through extensive empirical tests, we have found that any value of

γ in the range 0.05 ≤ h ≤ 0.5 produces robust bounding intervals and ǫrat = 10−4. These

optimization problems are solved at each point ti for l
∗
i and r∗i . Once we have the appropriate

window size for each point along the curve the eigenvalues are recomputed and the curvature

at time ti, i.e., κ(ti) is estimated.
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Figure 4.1. Illustration of the adaptive windowing algorithm. (Left) To
compute the window size to use around point pi, select a window using an
equal and fixed number of points surrounding pi: [pi−a|...|pi|...pi+a]. Compute
the mean, µs of the data in this window. (Middle Left) Compute the two-
dimensional subspace of best fit, given by the eigenvectors {e1, e2} of [pi−a −
µs|...|pi−µs|...pi+a−µs]. (Middle Right) Project data points onto the subspace
of best fit on the left side of the curve. Compute the ratio of (I−P)pl/(Ppl+ǫrat)
where ǫrat is a small offset to keep the denominator from vanishing. Compare
this to the cutoff value selected. Do the same for points on the other side of
pi. (Right) Use the results of these ratios and the cutoff value to determine
the number of points to include in the computation of generalized curvatures.
Note, the mean of this window, µm is not necessarily the same as µs.

4.4.1. Algorithm: Adaptive Windowing. Algorithm 3 shows pseudocode for se-

lecting the window size for a single point of the time-series.
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Algorithm 3 Adaptive Window Size Selector

1: procedure double curvatureSmooth(ts[1...N], cutOffValue, frameNum-
ber)

2: dimension = size(ts,1)
3: Initialize L,R // L contains the beginning frame number and R contains the ending

frame number for each generalized curvature dimension
4: for int k from 1 to dimension-1 do

5: tWindow = ts[frameNumber-ceiling(k/2)]...ts[i+ceiling(k/2)]
6: Mean-subtract tWindow
7: [U,S,V] = Matlab::svd(tWindow)
8: // Search over c. d is point to subspace distance.
9: leftP(c) = d(ts[fn-c]-ts[i],U[1:k])
10: rightP(c) = d(ts[fn+c]-ts[i],U[1:k])

11: L[k] = argmin





leftP
√

|leftP2 − ||ts[fn− c])2|||+ ǫ
− cutoffValue





12: R[k] = argmin





rightP
√

|rightP2 − ||ts[fn+ c])2|||+ ǫ
− cutoffValue





13: end for

return L,R
14: end procedure

4.4.2. Algorithm: Noisy Sampled Adaptive Windowing. Algorithm 4 combines

Algorithm 2 and 3 into a complete algorithm for estimating the curvature of noisy time-

series approximations of curves. To make this pseudocode easier to read, it is written to

estimate curvature at a single location within the time-series. A version of this algorithm,

implemented in MATLAB, is found in Appendix B.
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Algorithm 4 Curvature Estimation on Noisy Data using Adaptive Windowing

1: procedure double curvature(ts[1...N], cutOffValue, fn) fn is an integer re-
ferring to the frame number

2: dimension = size(ts,1)
3: for int k from 1 to dimension-1 do

4: tWindow = ts[fn-ceiling(k/2)]...ts[i+ceiling(k/2)]
5: Mean-subtract tWindow
6: [U,S,V] = Matlab::svd(tWindow)
7: // Search over c. d is point to subspace distance.
8: leftP(c) = d(ts[fn-c]-ts[i],U[1:k])
9: rightP(c) = d(ts[fn+c]-ts[i],U[1:k])

10: L[k] = argmin





leftP
√

|leftP2 − ||ts[fn− c])2|||+ ǫ
− cutoffValue





11: R[k] = argmin





rightP
√

|rightP2 − ||ts[fn+ c])2|||+ ǫ
− cutoffValue





12: window(k) = [ts[fn-L[k]] | ... | ts[fn+R[k]]]
13: Mean subtract window
14: window(k) = window(k)*(window(k)T ) / size(window(k)T , 1)
15: E = Matlab::flipud(Matlab::eig(window(k)))
16: end for

17: for int j from 1 to dimension-1 do

18: GC[j] =

√

(2(j − 1) + 3)(2(j − 1) + 5)

3
*

√

E[j + 1]

E[1] ∗ E[j]

19: end for

return GC
20: end procedure

4.4.3. Algorithm: Numerical Derivative Curvature Estimation. Algorithm

5 presents a basic algorithm to estimate curvature based on the Frenet-Serret equations

(see Chapter 2, Equation 2). Since the algebraic curve is not known, we must approximate

the derivatives. For the purposes of this dissertation, we consider the simple technique of

subtracting neighboring frames to use as these approximations.
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Algorithm 5 Numerical Derivative

1: procedure double numericalDerivative(ts[1...N], fn) fn is an integer referring
to the frame number

2: dimension = size(ts,1)
3: Initialize nd
4: for int j from 2 to dimension+1 do

5: for int i from 2 to N-1 do

6: nd[:,i,j] = nd[:,i,j-1] - nd[:,i+1,j-1]
7: end for

8: end for

9: Initialize evs
10: for int i from 1 to N do

11: [Q,R] = Matlab::qr(nd[:,i,:])
12: evs[:,i,:] = Q[:,1:dimension+1]
13: end for

14: Initialize GC
15: for int j from 1 to dimension+1 do

16: for int i from 1 to N-1 do

17: GC[j,i] = | (evs[:,i,j] - evs[:,i+1,j]) · evs[:,i,j+1]) | / ||nd[:,i,1]||
18: end for

19: end for

return GC
20: end procedure

4.5. Synthetic Example

To compare curvature estimation algorithms, we generated a 3D synthetic curve with

curvature and torsion defined by the equations

(19) κ(t) = 5t2 + 5t, τ(t) =
100

2t+ 1

We then sampled 1000 points in the range from t = 1 to t = 3, and added 0.00015 uniform

noise to each sample. We estimated the curvature at each point using Algorithms 1, 2, 1+3,

4, and 5.

The results are shown in Figure 4.2. The blue lines shows the signed error at every data

point when the curvature is estimated using local derivatives. Even though the added noise
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is very small (0.00015), the error in the estimated curvatures can be as large as 187. The

average error magnitude is 25.2. None of this is surprising, given that estimating derivatives

by subtracting noisy samples is known to be error prone. The red lines show the signed error

at every data point when Algorithm 1 is used to estimate curvature. The average magnitude

of the error is much smaller (9.6 vs. 25.2). Nonetheless, 9.6 remains a significant error,

particularly considering how little noise was added. Finally, the black lines show the signed

error when curvatures are estimated using Algorithm 4. The error is now much smaller, with

an average magnitude of 0.8. In fact, the black lines almost look like we just drew a thick

horizontal axis.

Algorithm 4 is defined by Equation 18 applied to adaptive data windows, as described

in Section 4.4. Algorithm 4 advances the previous state of the art, namely Algorithm 1 (the

algorithm derived in Chapter 3), in two ways. The first is Equation 18, which estimates the

curvature of the principal curve. By way of contrast, Algorithm 1 computed the curvature

for a data point assumed to be on the true curve. Any noise in the data point therefore

contributes noise to curvature estimate. The second advance is the method for adaptively

selecting the window size based on the underlying curvature, as opposed to Algorithm 1 and

2 which uses a fixed scale. Figure 4.3 decomposes the impact of these two contributions.

The blue curve shows the result of applying Equation 18 to estimate curvature assuming a

fixed scale window. As a result of Equation 18, the variance in the error becomes very small,

meaning that there is very little difference in error between one point and its neighbor. This

shows that the assumption that data samples lie on the curve adds a large but unbiased error

to Algorithm 1 that is fixed by using Equation 18 instead of Equation 15. What remains

is bias caused by the fixed window size. The error represented by the blue lines is small at

the beginning of the sampled curve, where t is near 1 and the curve is nearly linear. As t
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gets larger and the curvature increases, however, the estimates from Equation 18 begin to

systematically underestimate the curvature. The bias grows to 34.2 when the value of t is

approximately 2.5. Different fixed window sizes yield different versions of the blue curve,

but the problem of bias always remains.

The red lines in Figure 4.3 show the result of estimating curvature using Equation 15

but adding an adaptive window as suggested in Section 4.4. The adaptive window removes

the bias that is evident in the blue lines. Since it assumes data points are on the curve, we

still see the random errors from Algorithm 1. As before, the black line represents Algorithm

4, which is the combination of adaptive windows and Equation 18.

Figure 4.2. Curvature estimation errors. The blue lines show the signed
errors in curvature when curvatures are estimated from local derivatives, or
Algorithm 5. The red lines show the errors when curvatures are estimated
using Algorithm 1. The black lines show the residual errors using Algorithm
4.
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Figure 4.3. Decomposing Algorithm 4. The blue lines show the result of
computing curvatures using Algorithm 2. The red lines show the result of
adapting the window size to the underlying curvature, or Algorithm 1+3. The
combination of these two techniques, shown in black, is Algorithm 4.

4.6. Conclusion

In this chapter, we established two algorithms designed to more accurately compute

generalized curvature values on noisy, discrete, time-series data. Expanding on the theory

presented in the previous chapter, we began by establishing a relationship between the local

singular value decomposition of regular, mean-subtracted curves in R
n and the Frenet-Serret

apparatus. When using the SVD, a commonly employed technique is to mean-subtract the

data in order to remove bias from the coordinate system. This approach differs from the

method established in Chapter 3 and as a result, a new equation for computing generalized

curvature as a function of the singular values was established. The other major contribution

from this chapter is an algorithmic approach to selecting the optimal window size to use for

the local singular value decomposition. In the example provided, we show evidence that a

small window size is needed when the generalized curvature value is large. Conversely, a

large window size better approximates the generalized curvature value when the generalized

59



curvature value is small. The combination of these two proposed algorithms, referred to

as Algorithm 4, provides much more accurate and precise estimates of generalize curvature

than the method in Chapter 3 or other numerical techniques.
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CHAPTER 5

HUMAN MOTION SEGMENTATION VIA GENERALIZED CURVATURE

5.1. Introduction

Recent advances in depth sensor technology have created a new type of signal to be

analyzed: streams of high-dimensional pose data. The best-known example is the Microsoft

Kinect [23]. The Kinect II outputs (x, y, z) coordinates for 25 body parts at approximately

30 frames per second. The Asus Xtion Pro Live [24] also produces real-time body poses,

while the LeapMotion [25] and Intel RealSense [26] produce detailed hand poses. Figure 5.1

shows example poses extracted by the Microsoft Kinect II (left side) and Intel RealSense

(right side).

Streams of body poses are usually analyzed in terms of actions, while hand poses are

analyzed for gestures. In both cases, the goal is to determine when motions occur and

Figure 5.1. Example poses. The left side shows 25 body pose points ex-
tracted by a Microsoft Kinect II. The right side shows 44 hand points (22 per
hand) extracted by the Intel RealSense.
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what motions occur. This requires segmenting pose streams into motions and classifying the

motions. When the set of possible actions is known a-priori, segmentation and classification

can be solved jointly, as in [27–30]. However, there are applications where the actions are

not known in advance. Examples include labeling tools, where the goal is to segment a

stream prior to labeling, and some healthcare applications, where the goal is to measure

the frequency, duration and magnitude of motions rather than to identify actions. In these

cases, pose streams must be segmented into sets of unknown motions.

This chapter presents the first practical algorithm for segmenting unconstrained pose

streams into arbitrary motions. It is based on two fundamental observations. The first is

that human motions have three distinct stages: initialization, transport, and conclusion.

The initialization and conclusion stages are relatively brief, but involve complex changes in

direction. The transport stage is longer but involves comparatively smooth trajectories. The

second observation is that bodies trace out continuous curves in pose space over time, and

3D sensors sample points along these curves. Together, these observations suggest that pose

streams can be segmented by separating the low-curvature transport phases of motions from

the high-curvature transitions (initializations and conclusions) between motions. Moreover,

this approach should work even when subjects do not pause or slow down between actions.

To go into more detail, the body parts tracked by a sensor like the Microsoft Kinect

define a pose space. For example, the Kinect II tracks 25 points in 3 dimensions, so each

pose is a point in a 75 dimensional space. Over time, a person’s body traces out a smooth,

continuous curve in pose space, and the body positions detected by 3D sensors are noisy

discrete samples of this curve.

By using the curvature estimation methods developed in Chapters 3 and 4, specifically,

Algorithm 4, we will develop within Algorithm 6 a method to segment these pose streams.
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When the curvature can be approximated to a high degree of accuracy, we will be able

to identify key structures within the generalized curvature profiles for each video. This

dimensionality reduction provides new techniques for extracting continuous, non-smooth

motions from skeletal data.

To test the idea of using curvatures to segment Kinect 2 pose streams, we apply Algorithm

4 to a set of continuous action data streams. We show that Algorithm 4 estimates curvatures

which when combined with Algorithm 6 partitions frames into motion frames and transition

frames with 83.8% accuracy and recognizes 90% of all transitions. For comparison, curvatures

based on Algorithm 1 and Algorithm 5 yields accuracies of 69.8% and 63.6% respectively,

and recognize 35.1% and 3.1% of transitions.

5.2. Related Work

This section touches on kinesiology, pose stream segmentation, computer vision, and

computational geometry. We briefly discuss human motion below, with the goal of clarifying

terminology. We then discuss different approaches to temporal segmentation, the role of dif-

ferential curves in computer vision, and curvature estimation techniques from computational

geometry.

5.2.1. Human Motion. As stated above, human motions can be divided into three

phases. The initial phase recruits muscles to overcome the inertia of the previous state,

whether the previous state was at rest or the remnants of a previous motion. Once the

motion is initiated, the majority of the movement is relatively smooth. Finally, there is a

conclusion to the motion where the body either stops or transitions to the next motion.

Although these three basic phases apply to all human motions, the phases go by different

names. Biomechanical engineers may call them acceleration, motion and decceleration, or
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sometimes take-off, motion and rest. Kinesiology textbooks use initialization, preparation

or even anticipation for the first phase, and action, execution or transport for the second.

Conclusion, completion or termination are acceptable for the final phase. Where possible,

we adopt the most rcommon kinesiology terms, most notably initialization for the first phase

and conclusion for the last. To avoid confusions, however, we use transport instead of the

more common action or execution to describe the middle part of a motion.

5.2.2. Segmenting Pose Streams. Many applications require segmenting pose streams

and labeling the resulting segments. When the set of actions is finite and known in advance,

segmentation and labeling can be solved jointly, as in [27–30]. When the actions or motions

are not known in advance, the problem gets harder. There are two basic approaches to open-

set motion segmentation. One is to look for minima in kinetic energy [31, 32]. The other

is to segment the stream into fragments that cluster, on the theory that motions tend to

repeat [33–38]. Along these lines, Zhou et al 2008 pose temporal clustering as an energy min-

imization problem and use dynamic time warping (DTW) as the distance measure [39]. Zhou

et al 2013 extend this work to hierarchical decompositions at multiple scales [40]. Kruger et

al. propose unsupervised segmentation based on self-similar structures using neighbourhood

graphs [41, 42]. Koppula et al. use the sum of Euclidean distances between skeleton joints

as edge weights for graph-based segmentation [43].

Temporal segmentation techniques that rely on kinetic changes are assuming that sub-

jects pause or at least slow down between motions. This may not always be true, particularly

for motions that are parts of familiar actions. Techniques that rely on clustering work well

for repeated, rhythmic motions such as walking, but may not work as well for less regular

motions. The approach proposed here is based on curvature, and separates motions even in

the absence of pauses or when motions do not repeat themselves.
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5.2.3. Differential Curves in Computer Vision. Differentiable curves have a long

history in computer vision. Generally, 3D differentiable curves are described in terms of their

curvatures in a local frame of reference, called the Frenet frame, defined by the tangent, nor-

mal and binormal vectors. Koenderink analyzed Frenet frames in the context of computer

vision [44], and Faugeras further developed this analysis [4]. Zucker gives the most thor-

ough explication of the role of differential geometry in computer vision [45], including the

differential geometric description of curves in more than 3 dimensions. Generalized cylin-

ders were one popular representation defined in terms of smooth differentiable curves, for

example Pegna [46], Bronsvoort & Klok [47], and Zerroug & Navatia [48]. Wagner & Ravani

described rational generalized cylinder models as Frenet curves [49]. Differential curves have

also been used to describe the motion of cameras through stationary environments [50], the

motion of tools as seen from stationary cameras [51], and the motion of moving cameras in

complex domains [52]. More recently, Kim et al. analyzed space-time curves in terms of cur-

vatures and torsions [53]. Differentiable curves have also been used to compare trajectories.

Chern [54] and Qu [55] solved kinematics using Frenet frames. Wang et al. [56] and Vochten

et al. [57] propose invariant trajectory descriptors based on Frenet-Serret formulae.

5.3. Experiment: Preliminary Human Motion

Poses over time trace out a curve in pose space, and Chapter 4 describes new techniques

for robustly estimating its multi-dimensional curvature at any discrete sample time ti. The

derivation of this technique was strictly mathematical, however, so the goal of this section

is to evaluate it on real data, in particular data from the Microsoft Kinect II sensor.

There is a challenge to evaluating this technique experimentally, namely the lack of

ground truth data. The purpose of this algorithm is to robustly estimate curvatures by
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overcoming the noise in the Kinect and related sensors. Therefore we cannot use data from

these sensors to evaluate the results. Instead, we rely on indirect measures such as the

smoothness of estimated curvatures, as described below.

5.3.1. Evaluation Methodology. The goal of the algorithm presented above is to

robustly extract n−1 dimensional curvatures from noisy data samples. Unfortunately, since

all pose sensors have at least some noise, there is no ”ground truth” data to compare results

to. Instead, we have to rely on indirect measures of quality based on the mechanics of human

motion.

We define a human motion (as opposed to an activity) as a movement during which

no joint changes direction. Consider, for example, the motion ”duck down”. It involves

almost every major joint in the body. To duck, people bend at the hips, knees and ankles,

while curving their spine and lowering their head. They also bend their elbows while raising

their arms to keep their balance. Nonetheless, ducking down is a single motion because no

joint changes the angle of its ego-centric trajectory, although different joints accelerate or

decelerate at different times during the motion. Rising up again is then another motion.

Motions have the property that they create smooth trajectories in pose space with rel-

atively low curvatures, since muscles don’t start pulling in different directions mid-motion.

Transitions between motions, on the other hand, produce sharp curves. When a person

ducks down and then comes back up, for example, their curvatures in pose space spikes

at the transition, as almost every joint reverses direction. Transitions between less-related

motions also produce curvature spikes. If a person rises up and then pushes to the right, for

example, their shoulders and arms change directions while their knees and hips come to an

approximate stop. As a result, we expect methods of estimating curvature to produce small

and smooth curvature values during motions with sudden spikes in curvature between them.
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We therefore collected ten Kinect II pose trajectories of people performing sequences of

three actions from the Microsoft gestural challenge [58], and hand-labeled the data at the

level of motions rather than actions. For example, the action ”duck” is split into two motions,

one for ducking down and one for rising up. Figure 5.6 shows a 3D projection of one of the

75 dimensional pose trajectories, with motions shown in blue and the transitions between

motions shown in red. The idea is that the curvature estimates for the blue segments should

be small, although possibly noisy, while the red segments should contain curvature spikes.

In the experiments below, we therefore compare the ratio of κ1 curvatures during transitions

to the κ1 curvatures during motions, with the idea that good curvature estimations should

yield high ratio values.
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Figure 5.2. 3D projection of a 75 dimensional pose stream showing three
actions (Push Right, Kick and Push Right). Sections of the trajectory shown
in blue represent atomic motions, while sections shown in red represent tran-
sitions between motions. As seen here, motion trajectories tend to have low
curvature, whereas the trajectories of transitions between motions are highly
curved.

5.3.2. Experiment Design. Using the evaluation methodology above, we compare five

curvature estimation techniques. The first is the traditional method of estimating numerical

derivatives from data samples and then using those derivatives to compute curvatures as

described in [22]. This represents the state of the art prior to the technique presented

in Chapter 3, and we refer to it as Algorithm 5. The second method is the technique in

Chapter 3, as described in Algorithm 1. The third method extends the method in Chapter 3

by centering the data and altering the curvature formula as proposed in Algorithm 2. This
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algorithm estimates curvatures without knowing the exact position of the curve. The fourth

method adds adaptive data window sizes as described by Algorithm 3. Finally the fifth

technique applies both extensions to the results in Chapter 3, Algorithm 4.

Figure 5.7 shows the κ1 curvature estimates of the five techniques over the course of a

single pose stream (video). The red vertical lines mark the beginning of a motion, while the

blue lines mark the end of a motion. Thus motion sequences begin at a red line and end at

a blue one, while transition sequences begin at blue line and end at a red one. As predicted,

the κ1 estimates of our method tend to be relatively lower than the κ1 estimates of the other

techniques during smooth motions, and higher than the estimates of other techniques during

transitions between motions. Note also the changes in scale on the vertical axes in Figure 5.7;

the ratios between the estimated κ1 values during transitions compared to motions becomes

much stronger for the more refined estimation methods.
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Figure 5.3. Estimated κ1 curvatures over time as person performs a sequence
of three actions with six atomic motions. The figure is organized vertically into
five plots, one for each curvature estimation method. The top plot shows the
traditional numerical derivative method, Algorithm 5. The second plot shows
the method described by Algorithm 1. The third plot shows the off-curve
extension in Chapter 3, Algorithm 2. The fourth plot shows the Chapter
3 (Algorithm 3) method with adaptive windows. The fifth (bottom) plot
shows both the off-curve and adaptive window extensions, Algorithm 4. The
horizontal axes are time (at 30fps), while the vertical axes are estimated κ1.
Vertical red bars indicate the start of a motion, while vertical blue bars indicate
the end of a motion. Therefore, sequences from a red bar to a blue one should
be low-curvature motions, whereas sequences from a blue bar to a red one
should be high-curvature transitions.

To quantify this observation, we measured the mean and median κ1 values over the

course of a motion for each technique, and we did the same over the course of the transitions

that followed. We then computed the ratios of these values (transition over motion), and
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computed the means and medians of these ratios for the 59 motion/transition pairs in the ten

pose streams (videos). The results are shown in Table 5.1. Our extension of mean centering

the data to avoid needing to know the position of the curve (and subsequently replacing

Equation 15 with Equation 18) improves performance over the method in Algorithm 1. This

is true whether you look at the mean of mean ratios, or the median of the median ratios.

Using an adaptive window size, however, is the more significant extension. Together, these

two refinements produce the best curve estimates.

Table 5.1. Comparison of in-motion to in-transition curvatures estimated by
five techniques. The technique names (algorithms) are described in the first
paragraph of Section 5.3.2. The measures are ratios of estimated curvatures
during transitions between motions over curvatures within motions. Since
curvatures should be high during transitions and low during motions, high
values are better.

Mean of Median of Mean of Mean of
Method means medians max’s st. dev.’s

Algorithm 5 2.76 2.88 2.84 3.19
Algorithm 1 2.04 1.53 1.90 2.72
Algorithm 2 2.70 2.41 2.38 3.46
Algorithm 3 6.11 4.65 5.43 6.81
Algorithm 4 7.43 5.62 6.55 9.68

Table 5.1 also shows the mean of the ratios of standard deviations. Whereas the mean

of ratio means and median of ratio medians show that the estimated curvatures are higher

during transitions than motions, the mean of the ratio standard deviations shows that the

estimated curvatures are “spikier” (less uniform) during transitions and smoother during

motions. Again, the results are as predicted, with both extensions improving on the method

in Chapter 3 Algorithm 1, and their combination performing the best. Finally, Table 5.1

shows the mean of the ratio of maximum values between the transition and motion segments.

This number is particularly interesting if the goal is to segment pose streams based on peaks

in the estimated curvatures.
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Table 5.1 shows a very strong trend, but there is some question as to whether the mean

of ratio means (or median or ratio medians) is the appropriate statistic. The problem is that

while all motions have low curvature, some have slightly higher true curvatures than others.

Similarly, while all transitions have high curvatures, some may be higher than others. As a

result, although high ratios are better than low ratios, every motion/transition pair has a

different ”true” ratio. As an alternative statistic, we look at every motion/transition pair

and ask which technique produced the highest ratio. As shown in Table 5.2, once again

the versions with both extensions outperforms the alternatives. Interestingly, the numerical

derivative is very sensitive to noise so it does poorly on average (see Table 5.1) but it

occasionally succeeds (see Table 5.2).

Table 5.2. Counts of motion/transition sequence pairs for which each tech-
nique had the highest (best) ratio. The first set of comparisons are among
all five techniques: numerical derivatives (Algorithm 5), method in Chapter
3 (Algorithm 1), extended off-curve (Algorithm 2), extended with adaptive
windows (Algorithm 3), and with both extensions (Algorithm 4). The second
set of comparison compares numerical derivatives (the previous state of the
art), to the method proposed in Chapter 3 (Algorithm 1) for on-the-curve
and off-the-curve proposed here with and without adaptive window size. The
values being compared are ratios of means, medians or maximums.

Method Mean Median Max
Algorithm 5 6 7 11
Algorithm 1 2 2 4
Algorithm 2 6 10 6
Algorithm 3 12 16 12
Algorithm 4 32 23 25

Algorithm 5 8 8 13
Algorithm 1 7 9 7
Algorithm 4 43 41 36

Finally, we were interested in whether the grand means and grand medians hid significant

differences among the pose streams. Figure 5.4 shows the median of ratio medians over

72



each of the ten streams. There are significant variations based on the specific motions and

transitions, but the relative ordering of quality among the techniques is fairly stable.

Figure 5.4. κ1 values computed by all five curvature estimation methods
over all ten pose streams.

5.3.3. Preliminary Higher-Dimensional Curvatures. So far, we have evaluated

the quality of curvature estimation in terms of κ1, the first direction of curvature. Curves

73



in high-dimensional spaces have many dimensions of curvature, however, and one of the ad-

vantages of the framework in Chapter 3 is that it can be used to calculate curvatures in n

dimensions. Having extended in Chapter 3 to handle noisy data, we are interested in how

many dimensions of curvature might be extracted from a real-world signal. Figure 5.5 shows

the estimates of κ1 through κ12 for a single pose stream. Not surprisingly, the curvature

estimates are highly correlated across dimensions. The argument that motions have low

curvature while transitions have high curvature holds across dimensions. Also not surpris-

ingly, the signal to noise ratio decreases as the index of the curvature dimension increases.

In particular, many of the transition segments lose their higher curvature estimates. This

could be because the curvature estimates beyond six dimensions are no longer reliable, or

alternatively it could be because the transitions between atomic motions are rarely more

than six dimensional.
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Figure 5.5. 12 dimensions of curvature (κ1 through κ12) as estimated using
the proposed extensions (Algorithm 4) to the method in Chapter 3 (Algorithm
1). Roughly the first six dimensions of curvature (shown in the top two bars)
seem reliable (see Table 5.3 for statistics). Dimensions 7 through 12 still
seem to contain some signal, but many transitions no longer show elevated
curvatures. (Remember, we expect low curvatures between red bars and blue
bars, and higher ”spiky” curvatures between blue bars and red bars.)

Table 5.3 shows the same quality measures as in the previous sections, except this time we

compare the quality of κ1 to κ2 to ... to κ12. The quality of the curvature estimates is highest
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with κ1 but slowly degrades. When the median of median ratios drops below 2, we discard

the data as being no longer generally useful (although this depends on the application). We

suggest that our method extracts approximately 6 useful dimensions of curvature from a

Kinect II pose stream. Whether this limit is because of the curvature estimation technique

or the degrees of freedom in transitions between human motions remains to be determined.

Table 5.3. Comparisons of quality measures for κ1 through κ12, as computed
using both proposed extensions to the method in Chapter 3.

Mean of Median of Mean of
N means medians st. dev.’s
κ1 7.41 6.34 9.80
κ2 6.64 5.70 6.07
κ3 5.12 4.10 7.92
κ4 4.55 3.52 7.79
κ5 3.62 1.95 8.79
κ6 3.90 2.03 9.90
κ7 3.33 1.48 13.34
κ8 3.21 1.30 12.47
κ9 2.93 1.20 20.60
κ10 3.07 1.18 23.62
κ11 2.77 1.07 28.91
κ12 2.74 1.06 26.55

5.4. Experiment: Full PALKA Dataset

The 10 videos used for the prior set of experiments illustrate the usefulness of the Algo-

rithm 4, the algorithm proposed in Chapter 4 to the problem of human action segmentation.

We showed the validity of our assumption: human motions, in their native high-dimensional

pose space, have low generalized curvature values during smooth continuous motions and

high generalized curvature values during motion transitions. Furthermore, from the exper-

iment in Section 5.3.3 we conclude that κ1 values will give us a feature with the highest

level of contrast between motions and transitions. This section expands on those ideas. We

consider an entire dataset (PALKA) and use the curvature algorithms proposed in Chapters
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3 and 4 (Algorithms 1-4) along with rudimentary curvature estimates to segment human

action skeleton videos into individual motions and transitions.

5.4.1. Algorithm: Temporal Segmentation. Human body positions trace out smooth

curves in pose space over time, and sensors like the Kinect 2 sample this curve. Our goal is

to segment pose curves into individual motions, without knowing the set of possible motions

in advance or requiring that actions are repeated. Our approach is to segment pose streams

into sequences of smooth motions separated by high-curvature transitions using the simple

algorithm shown in Algorithm 6.

Algorithm 6 A simple segmentation algorithm based on curvature.

1: procedure Segment(Video X, minPeakHeight, minSizeDetections)
2: // D[i] == 0 indicates frame i is motion; D[i] == 1 indicates transition
3: k[] = Curvature (X) // any discrete curvature estimation method
4: peaks = Matlab::findpeaks(k, minPeakHeight)
5: Initialize D to array of zeros of length (X)
6: For every peak
7: assign D[peak - peak.width] through D[peak + peak.width] the value 1.
8: Set isolated motion frames to be transitions // (i.e. D[i] = 1)
9: Remove detections that are not part of a run of length minSizeDetections.
10: Output D // D is a vector indicating transition frames.
11: end procedure

We tested the algorithm above on the PALKA data set, which contains pose streams

from 234 videos recorded by a Kinect 2 sensor. Every video shows a person performing

three actions drawn from the MSCR-12 [58] action set, with no pauses between actions. The

videos are scripted to make sure that every possible transition between actions occurs the

same number of times, and the videos are hand-labeled to mark the start and end of every

motion. Additional information about this dataset has been included in Appendix A.

Figure 5.6 illustrates part of one PALKA video. This example contains two MSRC-12

actions, but four basic motions. The first MSRC-12 action, wave arms, is two motions: the

subject raises their arms, and then lowers them. Similarly, the second MSRC-12 action, kick,
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is two motions: kicking out, and then bringing the leg back. The right side of Figure 5.6

shows the 75-dimensional pose curve projected onto its first two eigenvectors. Low curvature

sections of the curve (as estimated by Algorithm 4) are colored blue, while high curvature

sections are colored red. The left side of the figure illustrates selected poses along the curve,

including poses during transitions.

Figure 5.6. (Right) 3D Smoothed Projection of 75D curve of two sequential
actions; Lift Outstretched Arms followed by Kick. (Left) 1) Raising Arms 2)
Transition between Raising Arms and Lowering Arms 3) Lowering Arms 4)
Transition between Lift Outstretched Arms and Kick 5) Raising Left Leg 6)
Transition between Raising Left Left and Lowering Left Leg 7) Lowering Left
Leg 8) Transition between Kick and next action.

Figure 5.7 shows the estimated curvatures for a complete PALKA video, computed us-

ing local derivatives, Algorithm 5 (top), Algorithm 1 (middle), and Algorithm 4 (bottom).

Because the extreme curvature at the end of the video distorts the scale of the vertical axis,

part of the video is broken out in the box to the left. There are five transitions in this data

(not counting the end of the video), and curvatures computed from local derivatives clearly

identify two of them (the third and fifth). There are also high curvatures around the first

transition, but they are not well localized. Algorithm 1 does better, finding an increase in
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curvature near all transitions, but none of the transitions are well localized. Algorithm 4,

on the other hand, clearly predicts all five transitions with no false positives.

Figure 5.7. Estimated curvatures over time as person performs a sequence of
three actions with six atomic motions. The figure is organized vertically into
three plots. The top plot shows the traditional numerical derivative method.
The second shows the Algorithm 1. The third plot shows the proposed cur-
vature estimation method. The horizontal axes are time (at 30fps), while the
vertical axes are estimated curvature magnitudes. Vertical blue bars indicate
the start of a motion according to the hand-labeled data, while vertical red
bars indicate the end of a motion. Therefore, sequences from a blue bar to
a red one are motions, whereas sequences from a red bar to a blue one are
transitions between motions.

Table 5.4 summarizes performance across the entire data set. We tested curvature-

based temporal segmentation (Algorithm 1) with all three curvature estimation techniques.

The segmentation algorithm takes two parameters (minPeakHeight and minSizeDetection),

and Algorithm 4 requires one more (the adaptive cutoff threshold). We therefore divide

the 234 videos into a training set (156 videos) and a test set (78 videos), making sure

that no subject appears in both the training and test sets. For every curvature estimation

technique, we exhaustively searched for the best parameters over the training set, and then

used those parameters when the technique was applied to the test set. Table 5.4 also includes

a baseline algorithm that labels all frames as motion frames. While the baseline is useless

as a segmentation algorithm, it provides a basis for analyzing frame-based percentages.
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Table 5.4. Segmentation results on PALKA dataset.

Motion Frame Transition Frame Total % of Transitions
Accuracy Accuracy Accuracy Detected

Algorithm 4 91.4% 70.5% 83.8% 90.0%
Algorithm 1 91.8% 31.8% 69.8% 35.1%
Algorithm 5 99.9% 1.2% 63.6% 3.1%
Baseline 100% 0% 63.2% 0%

As shown in Table 5.4, the baseline algorithm labels 63.2% of the frames correctly, since

63.2% of all frames in the test set are motion frames. Curvature-based segmentation using

numerical derivatives, Algorithm 5, to estimate curvature is only slightly better, at 63.6%

correct. When Algorithm 1 is used to estimate curvatures, 69.8% of frames are correctly

labeled. When Algorithm 4 is used to estimate curvature, however, 83.8% of all frames are

labeled correctly.

Looking at the accuracies broken out by motion frames and transition frames, we see that

all curvature estimation techniques do a good job identifying motion frames. In essence, it

is rare for any technique to overestimate curvature. Numerical derivatives (Algorithm 5),

however, rarely identify segments of high curvature. Algorithm 1 does better, but only

Algorithm 4 finds the majority of transition frames. The last column in Table 5.4 shows

the percent of transitions, as indicated by the hand-labeled ground truth data, that were

detected automatically. (For this table, a ground-truth transition is considered detected if

it overlaps an automatically-detected transition.) Algorithm 4 detects 90% of transitions

bottom-up, whereas Algorithm 1 and Algorithm 5 detect 35.1% and 3.1% respectively. False

positive transitions are not reported, because they did not occur in practice.

5.4.2. Adaptive Parameter on Segmentation Results. The algorithm for opti-

mizing the data windows (Algorithm 3) to use in Algorithm 4 (see Section 4.4) is a function

of the parameter, h. When presenting that algorithm, we noted that through empirical tests,
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using a h value in the range 0.05 ≤ h ≤ 0.5 produces robust bounding intervals. That qual-

itative result was from observations made on experiments using synthetic data. To strength

the validity of those claims, now that we have a quantitive method for testing the use of the

curvature algorithm (for the task of motion segmentation as described in the prior section),

we vary h and observe the change of segmentation accuracy of Algorithm 6 using Algorithm

4.

Figure 5.8. Accuracy of Algorithm 6 using Algorithm 4 algorithm used to
measure motion segmentation on the PALKA dataset as the parameter h (or
adaptive cutoff value), used in optimizing the data windows varies.

From Figure 5.8 we note that as h, the Adaptive Cutoff Value varies, the change in

accuracy of the segmentation algorithm is less that 0.2%. The best accuracy on the PALKA
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dataset is 83.8% which is achieved when h = 0.25. This segmentation accuracy is the value

reported in Section 5.4.1, Table 5.4.

5.5. Conclusion

This chapter shows the extensions of the theoretical results in Chapters 3 and 4 for the

use in the applied problem of motion segmentation by estimating generalized curvatures from

discretely sampled noisy data. At any discretely sampled time ti, the approached proposed

here estimates the n − 1 generalized curvatures of a pose trajectory in n dimensions. Our

indirect, preliminary experiments, measures indicate that Algorithm 4 produces more reliable

curvature estimates than Algorithm 1, and much more reliable curvature estimates than

traditional techniques based on estimating numerical derivatives (Algorithm 5). Experiments

also suggest that meaningful curvatures can be estimated for up to 6 dimensions from Kinect

II pose streams.

Accurate curvature estimates in turn allow us to segment pose streams without know-

ing the set of action or motions in advance. The beginnings and endings of human mo-

tions are marked by high curvatures in pose space, while the body of the motion – the

so-called transport phase – is characterized by low curvature. We therefore present a simple,

curvature-based temporal segmentation algorithm that divides pose streams into motions

with intervening transitions, without assuming that subject pause between motions or that

all motions rhythmically repeat. We use these techniques to robustly segment pose streams

into atomic motions for use in subsequent action analysis.
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CHAPTER 6

HUMAN ACTION CLASSIFICATION

6.1. Introduction

In this final content chapter, we conclude with the exploration of our initial motivation

task of action classification.1 This widely studied task has been performed on a wide variety

of data types such as RGB, RGB-D , skeleton data, point cloud, etc. [59] [60] [61] [62] [63].

The overall goal for this line of research is to develop a robust method to identify all human

activities in real-time. Accomplishing this task has obvious security applications. However,

these systems are often explored for use within medical establishments.

Building on the best set of segments obtained in Chapter 5 (which were segmented using

Algorithms 4 and 6) we will construct a system to label these segments. To do this, we

use a common computer vision techniques of separating the data into a training and testing

datasets. Within the training data, we use the ground truth labels to establish a baseline

of what each action class “looks” like. The testing data is then compared to the labeled

training data. Based upon the similarities, the testing data is labeled and the accuracy of

the labels are compared with the ground truth data.

The system we showcase in this dissertation is built on four major components. The

first component is segmenting the original videos (as described in previous chapters). The

remaining components are well-established techniques combined with new work in Hidden

Markov Models. First, we compare the similarities of segments using a dynamic time warping

algorithm. Based on these distances, we use an agglomerative clustering algorithm to group

1Part of this work is in collaboration with Pradyumna Kumar.
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similar motions together. Finally these groups are pieced together into complete actions

using Hidden Markov Model techniques developed by Pradyumna Kumar [64].

Applying all these techniques on the PALKA dataset, a dataset collected for this project,

yields an 82% classification rate. To determine the quality of this classification accuracy,

since there are no other classification results on this dataset, we ran multiple experiments to

determine the effects of our segmentation algorithm, the distant measures, and the classifi-

cation techniques have on the final accuracy results.

6.2. Algorithm: Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm designed to measure the similarity be-

tween two curves, or time-series, which are not necessarily synced in velocity or time. A

common example looks at the walking patterns to two individuals. While these two sam-

ples may accelerate or decelerate at different times, DTW can determine if (and how much)

similarity there is between the two walking patterns.

There are many versions of this technique as it has been the source of many studies

[65] [66] [67] [68] and is commonly used in the fields of time-series analysis [69] [70], speech

recognition [71] [72] [73], and more recently image- and video-based computer vision [74]

[72].
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Figure 6.1. Dynamic Time Warp counter example. The points on the top
signal (blue) are paired with points on the bottom signal (red) by time. This
linear based Euclidean distance measure does not align signals based on time
and will only compute the distance up to the length of the smallest (in time)
curve or time-series. .
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Figure 6.2. Dynamic Time Warp example. The points on the top signal
(blue) are paired with points on the bottom signal (red). Paired points are
described by black lines. This non-linear based Euclidean distance measure
aligns signals based on time and provides a better similarity measure.

Consider two signals, X = {xi}ni=1 and Y = {yj}mj=1. Construct a n-by-m matrix, D such

that

D(i, j) = d(xi, yj)

where

d(xi, yj) = (xi − yj)
2

(the standard l2 distance). We will define a warping path

W = {wk}Kk=1
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where

max(m,n) ≤ K < m+ n− 1.

The kth element of W is defined as wk = (i, j)k. This warping path will take the elements of

signal X and match them with elements of signal Y . By imposing additional constraints, we

can optimize the path taken such that the euclidean distance between all matched pairs are

minimized while maintaining monotonically increasing indices from X and Y . In particular,

we note several common constraints that are used in the remainder of this chapter:

• Boundary Conditions: Define w1 = (1, 1) and wK = (n,m).

• Continuity: If wk = (a, b) then wk−1 = (a′, b′) where a− a′ ≤ 1 and b− b′ ≤ 1.

• Monotonicity: If wk = (a, b) then wk−1 = (a′, b′) where a− a′ ≥ 0 and b− b′ ≥ 0.

Finally, to find the desired path, we wish to solve the optimization problem:

DTW(X, Y ) = min





√

∑K
k=1 wk

K





An efficient method of solving this optimization problem is achieved through dynamic pro-

gramming. Lying at the core of the algorithm is finding the cumulative distance

γ(i, j) = d(xi, yj) + min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}.

Pseudocode for this procedure is found in Algorithm 6.2. We take note that this algorithm

runs in O(nm).
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Algorithm 7 Dynamic Time Warping Algorithm without Locality Constraint

1: procedure double DTW(array1[1..n], array2[1..m]
2: Initialize Dmatrix
3: for int i from 1 to n do

4: Dmatrix[i,0] = Inf
5: end for

6: for int i from 1 to m do

7: Dmatrix[0,i] = Inf
8: end for

9: Dmatrix[0,0] = 0
10: for int i from 1 to n do

11: for int j from 1 to m do

12: cost = d(array1[i], array2[j]) // where d(x1, x2) is a distance measure
13: Dmatrix[i,j] = cost + minimum(Dmatrix[i-1,j], insertion
14: Dmatrix[i,j-1], // deletion
15: Dmatrix[i-1,j-1]) // match
16: end for

17: end for

return DTW(n,m)
18: end procedure

By including additional constraints, we see a special case of this algorithm may be used

to compute the distance between two signals, X and Y , where a non-linear warping path is

not allowed. In particular, if n = m and w is constrained as

wk = (i, j)k where i = j = k,

then we achieve a distance, DTW (X, Y ), as shown in Figure 6.1. Note, for testing purposes,

if n 6= m, we perform a simple linear interpolation of the shorter signal until the condition

n = m is met.

With limited a priori knowledge of the data, it might be necessary to impose a local-

ity constraint to the algorithm. In particular, if the two signals are very large in length

(n,m >>> 0) and we wish to determine if the signals have a similar amplitude within small
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regions, then the modification presented in Algorithm 8 can be used with greater effective-

ness than the algorithm (Algorithm 7) presented above. When computation time is of great

importance, the use of this locality constraint can greatly speed up the run time if n > m

and m >>> window.

Algorithm 8 Dynamic Time Warping Algorithm with Locality Constraint

1: procedure double DTW(array1[1..n], array2[1..m], int window
2: Initialize Dmatrix
3: window = max(window, abs(n-m))
4: for int i from 1 to n do

5: for int j from 1 to m do

6: Dmatrix[i,j] = Inf
7: end for

8: end for

9: Dmatrix[0,0] = 0
10: for int i from 1 to n do

11: for int j from max(1,i-window) to min(m,i+window) do
12: cost = d(array1[i], array2[j]) // where d(x1, x2) is a distance measure
13: Dmatrix[i,j] = cost + minimum(Dmatrix[i-1,j], insertion
14: Dmatrix[i,j-1], // deletion
15: Dmatrix[i-1,j-1]) // match
16: end for

17: end for

return DTW(n,m)
18: end procedure

6.3. Clustering

For the past several decades, clustering has been a commonly employed technique for

computer scientists [75], [76]. In essence, clustering is the process of labeling samples such

that the number of labels is less than the number of samples where similar samples have the

same label.

From Chapter 5 we have small segments extracted from larger videos. Each segment con-

tains a collection of sequential frames that describe the human structure and the movement
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of that structure through some time interval. We desired to cluster these segments in such

a manner that similar segments (in pose space) are grouped together.

The primary method we use to determine which segments are similar is the dynamic time

warping algorithm presented in Section 6.2. Starting with each segment labeled as its own

cluster, an agglomerative clustering algorithm - a type of bottom-up clustering mechanic -

is used to group segments depicting similar skeleton representation sequences. Figure 6.3

outlines this bottom-up approach.

Figure 6.3. Agglomerative clustering example. Beginning with each signal,
{A,B,C,D,E, F} in its own cluster, clusters combine until all elements are
in a single cluster.

To describe this process, we begin by constructing a distance matrix between all pairs

of elements x1, ...xn. In order to obtain a desired number of clusters, we will merge the two

closest elements together and recompute the distance matrix. Obviously, depending on the

data type of each element, we can compute the distance matrix using any appropriate norm,
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d(x, y), given each element is a single signal (which we can consider to be a cluster of one

element). However, once we start merging data, there are a number of common techniques

for computing the distance between clusters, A and other clusters B. In particular:

• K-medoids: Use a k-means algorithm to estimate the center of the cluster. Use

these centers as the new positions.

• Complete-linkage Clustering: Use the maximum distance between elements in

the clusters

max{d(x, y) : x ∈ A, y ∈ B}.

• Single-linkage Clustering: Use the minimum distance between elements in the

clusters

min{d(x, y) : x ∈ A, y ∈ B}.

There are, of course, additional methods to compute the distance between clusters. How-

ever, for this dissertation, we only consider these basic techniques for our application of action

classification.

Combining clusters one at a time, we continue with the same chosen method until we

arrive at the desired number of clusters. In situations that we are training data, the cluster

will be labeled as the mode of the labels of the individual segments in each cluster.
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Algorithm 9 Agglomerative Clustering

1: procedure double agglomerativeClustering(samples[1...N], desiredNum-
Clusters)

2: while N 6= desiredNumClusters do
3: Initialize Distances = Inf
4: for int i from 1 to N do

5: for int j from i+1 to N do

6: measure = d(samples[i], samples[j]) where d is a distance measure
7: if measure < Distances then
8: Distances = measure
9: index1 = i
10: index2 = j
11: end if

12: end for

13: end for

14: Update samples such that samples[index1] and samples[index2] are treated as a
single sample (K-medoids, Complete-linkage, Single-linkage, etc.)

15: end while

16: end procedure

6.3.1. Algorithm: Agglomerative Clustering.

6.4. Hidden Markov Models

The description in Chapter 5 illustrates the observation that each human action is com-

prised of one or more atomic motions. Each action class may contain a variable number of

segments depending on how the action is performed, the curvature estimates from Algorithm

4 of Chapter 4, and the segmentation results of Chapter 5.

From the clustering algorithm (Algorithm 9), we have separated each segment into a

predetermined number of clusters. Each cluster contains segments which are similar, as

determined by our dynamic time warping algorithm. The final step to classify these segments

is to determine which cluster to combines, and in what order to form conjoined cluster which

are pieces of the original actions. The method we have chosen to explore is a conditional

probabilistic approach known as Hidden Markov Models (HMMs).
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A simple understanding and example of Hidden Markov Models is as follows. Assume

for some set of data, there are a total of N possible states, s1, s2, ..., sN . During every tth

time-step, a piece of data is identified as one of these Nth states. Given a sample is in

State j at time-step t, we know the next state is randomly chosen. The current state j will

determine the probability of entering each other state at time t+ 1. However, it is only the

current state that impacts the probabilities of entering other states. Another way to say this

is that given qt ∈ {s1, ..., sN}, qt+1 is conditionally independent of {qt−1, qt−2, ..., q1}.

6.4.1. A Basic HMM Example. Consider the following situation: while working on a

project, you find your productivity increases when sampling beverages. The possible choices

are beer, wine, or whiskey. While working 18 hour days, you will understandable consume

more than one beverage. However, there are some conditions (based on personal preferences)

placed on the order {w1, w2, ...wt} in which you enjoy these drinks. The following probability

table (Table 6.4.1) describes your preferences.

Table 6.1. Probabilities between all possible states in a Markov Model Ex-
ample. Current state (left) future state (top).

Beer Wine Whiskey
Beer 0.5 0.1 0.4
Wine 0.05 0.8 0.15

Whiskey 0.15 0.15 0.7
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Figure 6.4. Probability plot of moving from one state to another in Markov
Model Example.

From this we can determine the probability that if you are currently drinking whiskey,

you will next drink beer, followed by another whiskey as

P (w2 = beer, w3 = whiskey|w1 = whiskey)

= P (w3 = whiskey|w2 = beer, w1 = whiskey) ∗ P (w2 = beer|w1 = whiskey)

= P (w3 = whiskey|w2 = beer) ∗ P (w2 = beer|w1 = whiskey)

= (0.4)(0.15)

= 0.06

This process describes a Markov Model. To extend this example to an example of a

Hidden Markov Model, start by assuming that the type of drink you are enjoying is unknown

to you (for one reason or another). However, by observing the color of the liquid, you can

assign probabilities based solely upon this color (for example, a light brown liquid is 60%

likely to be beer, 30% whiskey, and 10% wine). Using these probabilities and without knowing

94



the type of current liquid, we can still construct the probabilities of any sequence of drinks.

Since the current state is unknown (but based on probabilities of an outside observation)

our model is now considered to be an HMM.

6.4.2. HMMs on PALKA. In order to use HMMs to classify unknown segments, we

need to first build a set of HMMs for each action class. Using training data (where the

labels are known) we can determine which cluster segments are identified with each action

class. Given the similarities between different clusters (due to the large number of clusters

and the fact that cluster segments may be used for multiple actions) we can determine the

probability of going from one cluster to another using the ground truth labeling.

For example, consider the actions of ‘Lift Outstretched Arms’ and ‘Had Enough’. Let

an instance of lift outstretched arms be segmented into 4 pieces. The first piece starts from

the base state and contains segments that show the arms rising followed by the second state

of the hands meeting above the hear. The first piece of goggles also shows the arms rising

followed by the second state of the hands meeting on top of the head while the head is

extended forward. The cluster containing similar segments of the arms raising can then be

followed by either a cluster containing the hands meeting above the head or by the hands

meeting on the head while the head lowers. By knowing the true labels in each cluster, we

can determine the number of times those labels go into the first cluster or the second. This

creates a probability distribution based on only the initial ‘raising arms’ cluster.

Once we build probabilities from each state (or cluster) to every other state based upon

ground truth labeling we can then bring in the data from the testing set. By clustering these

testing videos in the same manner, we use the probabilities we determined between cluster

to apply labels obtained from the training probability distribution web. Finally, since the
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purpose is to determine the quality of these labels, we use ground truth on the testing data

to see if the assigned labels match with the ‘true’ or known labels.

6.5. Classifying PALKA Human Actions

Tying together the entire of work presented in this dissertation, we finally perform the

task of action classification using the full PALKA dataset (see Appendix: A). Given several

of the algorithms presented in this body of work depend on sets of parameters, for our final

classification results, we choose the parameters found to give the best classification results.

Figure 6.6 displays classification accuracies using several different methods of segmenting

the original PALKA videos as well as different methods of computing clusters. For all of

these techniques, we first establish a set of preprocessing steps. In each frame of every video

in 3-dimensional pose space...

(1) ...the skeleton is translated such that base spine joint is centered at (0, 0, 0).

(2) ...the skeleton is rotated so the vector formed by the base spine joint and mid spine

joint points in the direction of the vector < 0, 1, 0 >.

(3) ...the skeleton is rotated such that the vector normal from the plane formed by the

base spine, right shoulder, and left shoulder is pointed in the direction of the vector

< 1, 0, 0 >.

(4) ...we ensure the skeleton is facing the correct direction by testing to see if the z-

coordinate of the left hip is always smaller than the z-coordinate of the right hip.

If it is not, the skeleton is rotated along the appropriate axis by π.
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Figure 6.5. Diagram of Skelton produced by skeletonization algorithm from
the Kinect 2 sensor. Labels for all 25 identified body points as defined by the
Kinect SDK.

From these initial pre-processing steps, we then start to perform the computations leading

to classification results (see Figure 6.6).

6.5.1. Curvature Classification. Curvature classification uses the curvature algo-

rithm (Algorithm 4) to help define motion segments (Algorithm 6) which are then clustered

and assigned an action label.

(1) Starting with the preprocessing steps above, we use the ACE-PC curvature algo-

rithm with the adaptive cutoff value set to h = 0.25. These curvature profiles are

then used to segment the videos.
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(2) All peaks above a threshold value of 19 are found. The motion transitions are de-

termined to be the location of the peaks ± the width of the peaks. All isolated

motion-declared frames are set as transitions. If there are any transition sequences

(including sequences of length 1) less than 4 frames long, these sequences are rede-

fined as motions. Segmentation occurs on the boundaries between declared motions

and transitions.

(3) Using d(x, y) = (x− y)2, a DTW score is computed for all pairs of segments.

(4) These distances are clustered using a k-medoids agglomerative clustering technique

with a number of different output clusters {50, 100, 150, 200, 250}. Since the k-

medoids technique relies on randomly generated initial conditions, for each set of

declared output clusters, experiments were performed 10 times and the results were

averaged together.

(5) Hidden Markov Models were trained for all action classes within the PALKA dataset

using a leave-one-person-out scheme. The left-out person was then tested on these

models. All combinations of one-person-left-out were tested and the accuracy of the

classifications were averaged as a function of the number of declared clusters from

the prior step.

6.5.2. Frame Classification. Frame Classification ignores the use of curvature com-

putations on the data. Instead, segmentation is performed by setting each individual frame

as its own segment. Steps 3− 5 from Subsection 6.5.1 were performed on these single-frame

segments. Noting here, due to each segment containing only one frame, the DTW score for

each pairwise segment is the standard euclidean distance.
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6.5.3. Random Length Classification. Random Length Classification also ignores

curvature results for segmentation purposes. Instead, for each video, the number of segments

given by motion-based ground-truth is computed. The video is then segmented into that

many segments of random length. Steps 3−5 from Subsection 6.5.1 were performed on these

random length segments.

6.5.4. Interpolation Classification. Interpolation Classification starts by using ACE-

PC found curvatures to segment each video as described in Steps 1−2 from Subsection 6.5.1.

We eliminate the use of a dynamic time warping algorithm by performing a linear interpola-

tion of each segment to achieve a uniform segment length of 150 frames. The distance matrix

used by the clustering algorithm is computed as the special case identified in the Section

6.2 where a non-linear warping path is not allowed. Steps 4− 5 from Subsection 6.5.1 were

performed using this averaged, direct frame euclidean distance matrix.

6.5.5. Random Results. For completion, and to compare these various methods, we

state that given the PALKA dataset contains 12 action classes, a completely random classi-

fication assignment would yield an accuracy of

100

12
= 8.3̄%.

6.5.6. Classification Results. The methods shown in Figure 6.6 were chosen such

that we could perform an analysis of the numerous algorithms that were used to classify

human actions from the skeleton data of the PALKA dataset.

An examination of the 5 methods presented above describe the various effect of the

contributions to this dissertation. Starting with the most basic approach, if we ignore any

logical efforts to correctly classify data, we mathematically end up with a 8.3% chance of
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correctly classifying the data. It is easy to see that using data containing a greater number

of action classes will decrease random guessing in a predictable manner.

The driving force behind our theories of using proper segmentation as a precursor to

action classification is demonstrated by comparing the frame, random length, interpolation,

and curvature results. By segmenting the videos into pieces of random length, the only tools

used for classification are pre-existing, and well-established, techniques common to the field

of computer vision. The 72% accuracy results seen from this method, when compared to

high accuracies of curvature segmented videos, illustrates that proper segmentation can be

used to great affect for this task. We note the 76% and 82% accuracies of interpolation and

curvature resp. both use curvature based segmentation.

The difference between interpolated (76%) and curvature (82%) are all based on the

method used to compute distances between segments. By interpolating each segment to a

prescribed number of frames, we over emphaize the temporal importance of the curvature

based segmentation.

For example, consider two instances of the action ‘Wind It Up’. This action is performed

by “With initial motion to the back, swing the arm in three full circles without stopping”.

Due to inherent errors in the Kinect SDK skeletonization algorithm, one instance of this

action may have 2 spots of high curvature (where part of the arm is obstructed from the

sensor). In the second instance of this action, the person is at a slight angle to the sensor

and therefore the arm is not obstructed. This results in a constant curvature for the entire

action. Segments in the first case would natively be about 40 frames where in the second

case, the segment is around 120 frames. Despite the highly similar nature between the two

instances of the action, by interpolating the segments to equal length, the linear warping

map computes a euclidean distance between the two segments that is extremely high. On
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the other hand, using a dynamic time warping algorithm on the two segments, especially if

the boundary conditions are not enforced, the result would be a near perfect match (small

distance).

Finally, we consider the frame-by-frame method. As a counter to the pattern formed

by the other method, this appears to excel when coarsely clustered. A more detailed in-

vestigation is needed to understand this approach. However, a working theory is the action

performed in the PALKA dataset can largely be defined by unique poses. By segmenting

each video into individual frames, we have created a pose detector. Given a dataset with

more similar actions, we expect the accuracy of this method to decrease. We do note that the

accuracy from the curvature experiments (82%) is still higher than the maximum obtained

by the frame method (80%).

Figure 6.6. Comparison of various techniques to classify PALKA actions as
a function of the number of declared clusters. The blue line shows the accuracy
as the original videos are segmented by method described in Chapter 5 using
Algorithms 4 and 6 to compute curvature. The green line shows classification
accuracy using each individual frame as its own segment. The red line shows
the accuracy if each of the original videos are divided into random segments.
And the teal line takes each segment as defined by the method described in
Chapter 5 using Algorithms 4 and 6 to compute curvature. Then each segment
is extended to a fixed length using linear interpolation. An averaged euclidean
distance is used instead of a DTW algorithm. Also, not shown is completely
random results. As there are 12 action classes in PALKA, perfectly random
results are computed as 8.3̄%.
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6.6. Conclusion

This chapter of this dissertation was designed to show the completion of our initial

motivating task: action classification using a bottom-up curvature-based approach. Starting

with curvature segmented motions, we employed a common computer vision techniques of

creating a testing and training data set. Then, we used curvature estimations to segment

large videos, curve-based distance measure (DTW), agglomerative clustering techniques and

finally Hidden Markov Models to automate the assignment of action labels to individual

motions.

Our preliminary results on the PALKA dataset, a Kinect 2 dataset which only contain

skeleton data describing a highly restrictive list of human actions, is very promising (82%

accuracy). Through a detailed study on this dataset, we identified the importance of using

properly segmented data. We also identified the role the pure classification techniques (DTW

and clustering) are to the final accuracy results. From our final experiments, we conclude

the methodology established in this dissertation for the task of motion segmentation and

action classification is worthy of future attention and exploration.
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CHAPTER 7

CONCLUSIONS

This dissertation presents the research and necessary background information related to

the formulation and use of a numerically stable method of computing, and using, generalized

curvature values based upon the singular value decomposition.

In Chapter 2 we built up the background concepts required to understand the properties

of curves relating to the rest of the dissertation. While the concepts of curvature, and by ex-

tension, generalized curvatures, have been well-known for over 150 years, these formulations

require having an analytical, smooth function to work on.

Chapter 3 introduced the idea of estimating generalized curvature values when an ana-

lytical, smooth function is not known. Starting with the continuous case, we established a

method using the KL-transform to compute generalized curvature values using a closed-form

equation using scaled eigenvalues. The discrete form of the KL-transform is the Singular

Value Decomposition (SVD). Using this algorithm, we transformed the closed-form equation

using scaled eigenvalues to a closed-form equation using local singular values. Finally, by

generating a time-series by discretely sampling a known curve with known generalized cur-

vature values, we provided an example showcasing the accuracy of this method where the

signal has a lack of noise.

However, when the discrete approximation to a curve contains noise, the estimates pro-

duced by the algorithm in Chapter 3 are both noisy and inaccurate. By varying the window

size used in the local SVD, we discovered a significant increase in accuracy by reducing the

number of points used by the SVD in segments of the time-series characterized by high

generalized curvature values. We also found a significant increase in accuracy by increasing
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the number of points used by the SVD in segments of the time-series characterized by small

generalized curvature values. Chapter 4 contains the formulation of two modifications to the

algorithm proposed in Chapter 3. One modification is the development and inclusion of an

adaptive window size selector to increase accuracy of the curvature estimations as just de-

scribed. The second is a modification to the generalized curvature algorithm which assumes

the underlying curve is not known. By changing the properties of the data fed into the local

SVD, we are able to increase the precision of the estimates. Using a toy problem, we show-

case the error in estimates as produced by the method described in Chapter 3 alongside the

errors from both proposed modifications in Chapter 4, as well as the prior SOA technique of

computing derivatives numerically. Here, we show our numerical techniques for computing

generalized curvature values to be several orders of magnitude more precise and accurate

than previous methods.

The initial goal of this project was to create techniques to be used for the task of human

action segmentation; a non-traditional first step for the application of human action classifi-

cation/detection. Using human action data collected from a Kinect 2 sensor, we applied the

mathematical algorithms developed in Chapters 3 and 4. In Chapter 5, we explore various

uses of curvature in human activity data. While some results of the simulations we ran, such

as the use of higher dimensional curvatures have not yet been fully understood, we found

compelling evidence to suggest we can segment data streams of human activity to the human

motion level. After creating our own, challenging, dataset (as described in Appendix A), we

used our curvature algorithms, in part, to segment the data with a 83.8% accuracy.

We recognize the computer vision community has not shown any interest in motion

segmentation or motion recognition. A common problem of interest within the community,

instead, is action recognition/classification. In Chapter 6, we started with the results of the
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human motion segmentation of Chapter 5 and used a Dynamic Time Warping algorithm to

compare motion segments. A clustering algorithm was used on the distance matrix from

comparing all pairs of motion segments. Then these clusters were used to develop a set of

Hidden Marvok Models. This allowed us to group temporally adjacent motions together into

actions. It also allowed us to create a training/testing system which will classify any human

activity data streams (collected by the same sensor) into recognized human actions. While

work on this task is still fairly new, and only preliminary results have been reported, the

output shows enough promise to continue pursing this goal in future work.

This dissertation describes a lot of new and exciting techniques which we have already

introduced to computer vision applications. However, in creating the new mathematical

techniques with the desire to use them in this project, there are still many unanswered

questions suitable for future research topics. In particular: can the Frenet Frame generated

by the subspace of best fit in a local region provide any useful information? can these

subspaces, or generalized curvature values be of use to areas outside of the computer vision

community (such as an analysis of time-series on Grassmannians)? can the conjuncture in

Chapter 3 be proven? and when looking at human activity data, why are higher dimensional

curvature estimations so highly correlated? These are examples of questions posed by this

dissertation which call for a further study.
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APPENDIX A

DATASETS

A.1. MSRC-12

In 2012, Microsoft issued an action recognition challenge using a dataset called MicroSoft

Research Challenge 2012 (MSRC-12) [58]. This dataset is comprised of body-joint coordinate

videos of people performing one of twelve actions. The list of these actions are found in Table

A.1.

Table A.1. MSRC-12 Ordered Human Action List
1. Lift Outstretched Arms 5. Wind it Up 9. Had enough
2. Duck 6. Shoot 10 Change Weapon
3. Push Right 7. Bow 11. Beat Both
4. Goggles 8. Throw 12. Kick

Each video of the MSRC-12 dataset contained a person performing one of these action

8 − 10 times each, with a rest, or pause, in-between each action. With this dataset, the

problem of segmenting the data, so that each instance of an action is its own video, is

trivial. When using a simple computation of the l2 distance between neighboring frames (to

approximate the velocity of the actor), it is obvious, based upon a threshold of that velocity,

where each action begins and ends. However, this technique cannot be used with as much

success when actions do not have a substantial pause separating actions.
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Figure A.1. Diagram of Skelton produced by skeletonization algorithm from
the Kinect 2 sensor. Labels for all 25 identified body points as defined by the
Kinect SDK.

A.2. Pattern Analysis Laboratory Kontinuous Actions (PALKA)

The Pattern Analysis Laboratory Kontinuous Actions (PALKA) dataset was created to

test new algorithms in motion/action segmentation and classification. Common publicly

available dataset at the time of creation (late-2014) were not suitable for this task due to a

lack of appropriate ground truth. This dataset contains two forms of ground truth: action-

and motion- based. Each video contains multiple actions. The action-based ground truth

gives the frame numbers which describes a temporal location where the entirety of an action

begins and/or ends. These locations are labeled using the 12 action classes described by the
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MSRC-12 dataset. The motion-based ground truth splits the video into “inAction” segments

or “inTransition” segments. The “inAction” segment are the frames where there is significant

motion related to an action. The “inTransition” segments describes temporal locations where

the actor is changing between atomic motions. The “inAction” and “inTransition” segments

span the entirety of each video.

A.2.1. Collection Details. This dataset contains a total of 47,644 frames in 234

videos. Videos contain between 102 and 382 frames each. Each video contains 3 actions

(as described in the Data Action Descriptions section) in the form Action A > Action B >

Action A. For example, video 4 has the actor performing Lift Outstretched Arms, followed

by Duck, followed by Lift Outstretched Arms. Each set of A>B>A were performed by

3 different actors. Before performing these actions, actors were verbally instructed which

actions to perform and each actor saw a visual demonstration of the actions in order to

minimize variability. In order to make the action segmentation problem hard, actors were

instructed not to pause between individual motions or actions. The actions chosen for this

dataset are uniformly described versions of the actions shown in the MSRC-12 dataset.

Data was collected using a Microsoft Kinect 2 device. The skeletons were extracted from

RGB-D data using the Kinect for Windows SDK 2.0.

Ground truth was labeled in two separate ways. The traditional method of labeling

human activity dataset, that is, to label each frame by the action, has been performed.

However, we have also labeled the data at the motion level as well. This involved the author

spending 28 long, tedious hours hand labeling the 47, 644 frames contained in the 234 videos.

As described above, motion-based ground truth marks the temporal locations of the start

of motions and the start of transitions between motions. However, only the action-class
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was provided for these motion and transition segments. Motion-class information was not

collected.

A.2.2. Data Action Descriptions. Neutral State: Relaxed standing position with

arms by the side facing forward.

• Lift Outstretched Arms: Abduct both arms out to the side bringing both the hands

overhead. Reverse the process to return to a neutral state.

• Duck: Flex the knees and hips, lowering the body. Slightly flex the shoulder forward

to keep balance. Then immediately extend the knees and hips while extending the

shoulders to return to the neutral state.

• Push Right: Raise the right arm, bringing it as far across the front of the body near

shoulder level while keeping the elbow extended. Reverse the process to return to

a neutral state.

• Goggles: Simultaneously flex both shoulders and elbows to raise the hands to the

eyes. Reverse the process to return to a neutral state.

• Wind it Up: With initial motion to the back, swing the arm in three full circles

without stopping.

• Shoot: Raising both arms sim. while keeping the elbows extended. Bring the hands

together, mimicking the shooting of a pistol with kickback, producing slight elbow

flexion. Return to a neutral state.

• Bow: Keeping the legs extended, flex the hips and spine, lowering the upper body

forward to a bowed position. Reverse the process to return to a neutral state.

• Throw: Using only the left arm, raise the hand above and behind the left shoulder

with a flexed elbow. Then extend the elbow and shoulder to move the hand as far

forward as possible. Return to a neutral state.
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• Had Enough: Simultaneously flex both shoulders and elbows, raising the hand to a

bowed forehead. Reverse the process to return to a neutral state.

• Change Weapon: Flexing the shoulder and elbow, raise the left arm bringing the

hand over the opposite shoulder. Mimic grabbing a weapon from the back. Next

simultaneously move the right hand to the mid-chest in the front by extending the

elbow while raising the left hand to the same forward position. Once both hands

have joined, mimic attaching the weapon then return to a neutral state.

• Beat Both: Bring both hands to mid-upper chest by raising arms to the front. Lower

both hands at the same speed about 6 inches, beating an imaginary drum. Reverse

the process to return to a neutral state.

• Kick: Flexing the left hip, raise the left leg towards the front. Reverse the process

to return to a neutral state.

A.2.3. Skeleton Data Example. The file PALKAdata.mat is a Matlab file which

contains the following variables:

• actionGT: This is ground truth information which describes where each action be-

gins and ends. This is given as a cell array where the number of each cell corresponds

with the same cell number of masterData, masterListOfActions, and motionGT.

• masterData: This is a cell array where each cell contains a single video in matrix

form. The matrix in each cell has 75 rows and N columns (where N is the number

of frames in the video).

• masterListOfActions: This is a cell array where each cell contains a matrix with 1

row and 3 columns. The entries of the matrix are integer values between 1 and 12

which correspond to actions in the variable stringActionList.
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Figure A.2. Action 1,2,3,4 - Lift Outstretched Arms. Action 5,6,7,8 - Action:
Kick. Motion 1 - Raising Arms. Motion 2 - Transition between Raising Arms
and Lowering Arms. Motion 3 - Lowering Arms. Motion 4 - Transition between
Lift Outstretched Arms and Kick. Motion 5 - Raising Left Leg. Motion 6
- Transition between Raising Left Leg and Lowering Left Leg. Motion 7 -
Lowering Left Leg. Motion 8 - Transition between Kick and next action.

• motionGT: This is a cell array. In each cell is a [2 1] cell array. motionGT{#}{1}

contains a [1 M] matrix. Each entry in the matrix defines the beginning frame of

a motion. motionGT{#}{2} contains a [1 M] matrix. Each entry in the matrix

defines the beginning frame of a transition.

• stringActionList: This is a cell array with 12 rows and 1 column. In each cell is a

string which labels action performed.
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Figure A.3. Example Matlab code to show how to access variables in the
provided data files.
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The sample code in Figure A.2.3 gives an example of how to examine the content of the

64th video. After loading the data, by calling masterListOfActions, we see the 64th video

contains actions 2, 11, and 2.

Calling stringActionList tells us that action number 2 is Duck and action number 12 is

Kick. Hence, in video 64, the actor performs Duck, followed by Kick, followed by Duck.

Looking at size(masterData{64}), we get there are 173 frames in this video, and the

video (like all the videos in this data set) have 75 dimensions.

By calling actionGT{64}, we see where each action begins and ends. For example, the

first action begins on frame number 2 and ends on frame 44. The second action begins on

frame number 44 and ends on frame 98. The final action begins on frame number 98 and

ends on frame 149.

The 64th cell in motionGT contains two cells (all videos contain two cells). The variable

motionGT{64}{1} contains the frame numbers of each beginning motion. The variable

motionGT{64}{2} contains the frame numbers of each beginning transition. For example,

frame 83 starts the beginning of a motion while frame 98 starts the beginning of a transition.

The length of motionGT{X}{1} is always the same length as motionGT{X}{2}.
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APPENDIX B

CODE

B.1. SVD-based generalized curvature using on the curve subspaces with a

fixed window size

The code presented here will compute generalized curvature values using the method

described in Chapter 3.

function [generalizedCurvature] = curvaturesFixedOn(points, ...

eballPercentage)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% FUNCTION:

% curvaturesFixedOn.m

%

% INPUT:

% points - a matrix where each column is a point

%

% OUTPUT:

% generalizedCurvature - a matrix where each row is a particular gc

% value (i.e. curvature, torsion, etc.). Each column corresponds to

% the center of the window based on the input points.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%close all

curveOriginal = points;

sizeCurveOriginal = size(curveOriginal);

dimensionOfData = sizeCurveOriginal(1,1);

%Init the singular value matrix

eigenvalues = zeros(sizeCurveOriginal(1,1), sizeCurveOriginal(1,2));

%Compute the total arc length of the curve

distanceBetweenPoints = zeros(1, sizeCurveOriginal(1,2));

for i = 1:sizeCurveOriginal(1,2)-1

distanceBetweenPoints(1,i) = norm(curveOriginal(:,i) - ...

curveOriginal(:,i+1));

end

totalArcLength = sum(distanceBetweenPoints);

%Determine desiredDiameter

desiredDiameter = totalArcLength*eballPercentage;

for i = 1:sizeCurveOriginal(1,2)

beginningFrame = i;

lastFrame = i;

stillLookBefore = 1;
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stillLookAfter = 1;

beforeDistance = 0;

afterDistance = 0;

beforeCounter = 0;

while(stillLookBefore == 1)

if(i-beforeCounter < 1)

beginningFrame = 1;

break

end

newBeforeDistance = beforeDistance + ...

distanceBetweenPoints(1,i-beforeCounter);

if(newBeforeDistance >= desiredDiameter/2)

stillLookBefore = 0;

beginningFrame = i-beforeCounter;

else

beforeDistance = newBeforeDistance;

end

beforeCounter = beforeCounter + 1;

end

afterCounter = 0;

while(stillLookAfter == 1)

if(i+afterCounter > sizeCurveOriginal(1,2))

lastFrame = sizeCurveOriginal(1,2);

break
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end

newAfterDistance = afterDistance + ...

distanceBetweenPoints(1,i+afterCounter);

if(newAfterDistance >= desiredDiameter/2)

stillLookAfter = 0;

lastFrame = i+afterCounter;

else

afterDistance = newAfterDistance;

end

afterCounter = afterCounter + 1;

end

windowData = curveOriginal(:, beginningFrame:lastFrame);

sizeWindowData = size(windowData);

val = ceil((sizeWindowData(1,2)-1)/2);

if(val == 0)

val = 1;

end

%Use the point on the curve as the "mean" data point

meanData = windowData(:,val);

for j = 1:sizeWindowData(1,2)

windowData(:,j) = windowData(:,j) - meanData;

end
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windowData = windowData';

windowData = windowData'*windowData/size(windowData,1);

%Compute the eigenvalues

evs = eig(windowData);

eigenvalues(:,i) = flipud(evs);

end

%If on the curve

constantList = ones(1, dimensionOfData);

for i = 1:dimensionOfData

constantList(i) = ((i+1)/(i+1-(-1)ˆi) ) * sqrt( (4*(i+1)ˆ2 - 1) / 3);

end

generalizedCurvature = zeros(sizeCurveOriginal(1,1)-1, ...

sizeCurveOriginal(1,2));

for i = 1:sizeCurveOriginal(1,2)

for j = 1:sizeCurveOriginal(1,1)-1

generalizedCurvature(j,i) = constantList(j)*...

sqrt(eigenvalues(j+1,i)/...

(eigenvalues(1,i)*eigenvalues(j,i)));

end

end
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B.2. SVD-based generalized curvature using off the curve subspaces with

adaptive window sizes

The code presented here will compute generalized curvature values using the methods

described in Chapter 4.

function [generalizedCurvature, fullEigenvectors]

= curvaturesAdaptiveOff(data, lastCurvatureDimension)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% FUNCTION:

% curvaturesAdaptiveOff.m

%

% INPUT:

% data - [m n] matrix where m is the dimension of the data and n is

% the number of frames of the time-series.

%

% lastCurvatureDimension - integer value, must be less than m. This

% will be the last generalized curvature value computed and the last

% set of eigenvectors returned.

%

% OUTPUT:

% generalizedCurvature - [lastCurvatureDimension n] matrix. Each row

% represents a generalized curvature value (i.e. the first row is

% curvature, the second is torsion, etc.)

%

% fullEigenvectors - [lastCurvatureDimension 1] cell array. The first
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% cell contains, for each point along the curve, 1 m-dimensional

% vector, representing the 1st eigenvector of a local svd. The second

% cell contains, for each point along the curve, 2 m-dimensional

% vectors, representing the first 2 eigenvectors of a local svd, etc.

%

% DESCRIPTION:

% Given a video in time-series format, this will compute all

% generalized curvature values up to lastCurvatureDimension.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define the cutoff value. Initial tests show cutoffValue = 0.005

% produces good results.

cutoffValue = 0.5;

% Compute the dimension of the data

sizeVideo = size(data);

dataDimension = sizeVideo(1,1);

dataFrames = sizeVideo(1,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Edit this area with constants %%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

constantList = zeros(1, lastCurvatureDimension);

128



for i = 1:lastCurvatureDimension

constantList(i) = sqrt(((2*(i-1) + 3)*(2*(i-1) + 5) / 3));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Edit this area with constants %%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Init the generalizedCurvature and fullEigenvectors, and eigenvalues

% structures

generalizedCurvature = zeros(lastCurvatureDimension, dataFrames);

eigenvalues = zeros(dataDimension, dataFrames);

fullEigenvectors = cell(lastCurvatureDimension,1);

% We are only going to attempt the generalized curvature computations on

% frames that have enough points on each side to allow us to compute the

% necessary eigenvectors (i.e. to compute curvature, we need the tangent

% vector, this requires at least 3 points, so the computation will start

% on frame number 2).

% This for loop works over each frame of the original data.

for i = ceil(lastCurvatureDimension/2)+1:dataFrames- ...

ceil(lastCurvatureDimension/2)
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% This for loop works over each generalized curvature dimension we

% care about.

for k = 1:lastCurvatureDimension

%Create a small window around the ith frame which will be used to

%compute the smallest amount of data to get reliable singular

%vectors.

tDistance = ceil(k/2);

tWindow = data(:,i-tDistance:i+tDistance);

%Subtract the center point (so the ith frame is on the origin).

meanT = mean(tWindow,2);

sizeTwindow = size(tWindow);

for j = 1:sizeTwindow(1,2)

tWindow(:,j) = tWindow(:,j) - meanT;

end

%Take the SVD of the windowed data and store the singular vectors

[U,~,~] = svd(tWindow);

%Create an epsilon ball around frame i. Grow the ball

%asymmetrically with respect to the number of points (so it is

%not really a ball) until the ratio between the B and A side of a

%right triangle first gets larger than the cutoff value.

%stillLoop will control the while loop.
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stillLoop = 1;

%radiusCounter will be used to modify the size of the "ball"

%within the while loop

radiusCounter = 1;

%Init the variables useableLeft and useableRight which stores the

%final solution for this particular frame (i) and generalized

%curvature value (k)

useableLeft = [];

useableRight = [];

while(stillLoop == 1)

%Define the left and right most frames to test around point

%(i).

firstFrame = i-radiusCounter;

lastFrame = i+radiusCounter;

%If the declared frames to test are outside of the range of

%the data, reset the values to either the first frame or

%last frame

if(firstFrame < 1)

firstFrame = 1;

end

if(lastFrame > dataFrames)

lastFrame = dataFrames;
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end

%Create a small window (containing only 2 points - the left

%and right most points as defined by firstFrame and

%lastFrame). Then, in order to compare these points with the

%singular vectors in U, subtract the (i)th point from this

%small window of 2 points.

testingWindow = data(:,firstFrame) - data(:,i);

testingWindow = cat(2,testingWindow, data(:,lastFrame) ...

- data(:,i));

%Given a right triangle, A and B are the sides of the

%triangle making a right angle and C is the hypotenus of the

%right triangle.

%Compute side B of a right triangle

leftB = distanceBetweenPointAndSubspace(...

testingWindow(:,1), U(:,1:k));

rightB =distanceBetweenPointAndSubspace(...

testingWindow(:,2), U(:,1:k));

%Compute side C of a right triangle

leftC = norm(testingWindow(:,1) );

rightC = norm(testingWindow(:,2) );

%Compute side A of a right triangle

leftA = sqrt(abs(leftBˆ2 -leftCˆ2));
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rightA =sqrt(abs(rightBˆ2-rightCˆ2));

%Ratio between sides B and A of a right triangle

leftSide = leftB/leftA;

rightSide = rightB/rightA;

%Conditions to check

if(leftSide > cutoffValue && isempty(useableLeft) == 1 )

useableLeft = firstFrame;

end

if(rightSide > cutoffValue && isempty(useableRight) == 1)

useableRight = lastFrame;

end

if(firstFrame == 1)

useableLeft = firstFrame;

end

if(lastFrame == dataFrames)

useableRight = lastFrame;

end

if(isempty(useableRight) == 0 && isempty(useableLeft) == 0)

stillLoop = 0;

end

radiusCounter = radiusCounter + 1;
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end

%fprintf('Frame %d. Number Frames %d \n', i, useableRight -

%useableLeft) Now that we have the left and right most points

%around (i) to use to compute the generalized curvature values,

%lets compute them.

%Form a window from useableLeft to useableRight, either subtract

%point (i) or mean subtract from every point in the window.

window = data(:,useableLeft:useableRight);

meanWindow = mean(window,2);

sizeWindow = size(window);

for j = 1:sizeWindow(1,2)

window(:,j) = window(:,j) - meanWindow;

end

%Make the matrix square a normalize so we can compare singular

%values with eigenvalues.

window = window';

window = window'*window/size(window,1);

%Compute the eigenvalues

[evs] = eig(window);

eigenvalues(:,i) = flipud(evs);

%Store the eigenvectors from the matrix U (at the beginning of
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%the for loop - note this piece of code could have come much

%sooner).

fullEigenvectors{k} = cat(3,fullEigenvectors{k}, U(:,1:k+1));

%Using the eigenvalues and the constants, compute the generalized

%curvature value.

generalizedCurvature(k,i) = constantList(k) * ...

sqrt(eigenvalues(k+1,i) / (eigenvalues(1,i) * ...

eigenvalues(k,i)) );

end

end

B.3. Numerical Derivative Based Curvature

function [gc] = numericalCurvature(curve, lastCurvatureDimension)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% FUNCTION:

% numericalCurvature.m

%

% INPUT:

% curve - [m n] matrix where each columns is a point in m-dimensional

% space

%
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% lastCurvatureDimension - the last desired generalized curvature value

%

% Computes the generalized curvature values based on numerical

% derivatives, a qr factorization, and the standard formula.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sizeCurve = size(curve);

nd = zeros(sizeCurve(1,1), sizeCurve(1,2), lastCurvatureDimension+2);

nd(:,:,1) = curve;

for j = 2:lastCurvatureDimension+1

for i = 2:sizeCurve(1,2)-1

nd(:,i,j) = nd(:,i,j-1) - nd(:,i+1,j-1);

end

end

nd(:,:,1) = [];

evs = zeros(sizeCurve(1,1), sizeCurve(1,2), lastCurvatureDimension+1);

for i = 1:sizeCurve(1,2)

temp(:,:) = nd(:,i,:);

[Q,~] = qr(temp);

evs(:,i,:) = Q(:,1:lastCurvatureDimension+1);

end

gc = zeros(lastCurvatureDimension, sizeCurve(1,2));
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for j = 1:lastCurvatureDimension

for i = 1:sizeCurve(1,2)-1

gc(j,i) = abs(dot(evs(:,i,j)-evs(:,i+1,j),evs(:,i,j+1)))...

/norm(nd(:,i,1));

end

end

B.4. Dynamic Time Warping

function [distance] = dtw(signal1,signal2,window)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% FUNCTION:

% dtw.m

%

% INPUT:

% signal1 - size is ns1*k. Each row for time. Each column is for channel

%

% signal2 - size is ns2*k. Each row for time. Each column is for channel

%

% window - searches for best match within this window size. If this

% parameter is not given, it is set to Inf

%

% OUTPUT:

% distance - distance (based on l2-norm) using the warped path between
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% signals

%

% Creates the best non-linear warping path between the two signals such

% that the l2-distance between paired frames are minimized

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin<3

window=Inf;

end

ns1=size(signal1,1);

ns2=size(signal2,1);

if size(signal1,2)~=size(signal2,2)

error('Error in dtw(): dimensions of the two signals do not match.');

end

window=max(window, abs(ns1-ns2)); % adapt window size

%% initialization

D=zeros(ns1+1,ns2+1)+Inf; % cache matrix

D(1,1)=0;

%% begin dynamic programming

for i=1:ns1

for j=max(i-window,1):min(i+window,ns2)

oost=norm(signal1(i,:)-signal2(j,:));

D(i+1,j+1)=oost+min( [D(i,j+1), D(i+1,j), D(i,j)] );
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end

end

distance=D(ns1+1,ns2+1);
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