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ABSTRACT

DISTRIBUTED MEDIUM ACCESS CONTROL FOR AN ENHANCED PHYSICAL-LINK

LAYER INTERFACE

Current wireless network architecture equips data link layer with binary transmission/idling

options and gives the control of choosing other communication parameters to the physical layer.

Such a network architecture is inefficient in distributed wireless networks where user coordination

can be infeasible or expensive in terms of overhead. To address this issue, an enhancement to the

physical-link layer interface is proposed. At the physical layer, the enhanced interface is supported

by a distributed channel coding theory, which equips each physical layer user with an ensemble of

channel codes. The coding theory allows each transmitter to choose an arbitrary code to encode its

message without sharing such a decision with the receiver. The receiver, on the other hand, should

decode the messages of interest or report collision depending on whether or not a predetermined

reliability threshold can be met. Fundamental limits of the system is characterized asymptotically

using a “distributed channel capacity” when the codeword length can be taken to infinity, and

non-asymptotically using an achievable performance bound when the codeword length is finite.

The focus of this dissertation is to support the enhanced interface at the data link layer. We

assume that each link layer user can be equipped with multiple transmission options each corre-

sponds to a coding option at the physical layer. Each user maintains a transmission probability vec-

tor whose entries specify the probability at which the user chooses the corresponding transmission

options to transmit its packets. We propose a distributed medium access control (MAC) algorithm

for a time-slotted multiple access system with/without enhanced physical-link layer interface to

adapt the transmission probability vector of each user to a desired equilibrium that maximizes a

chosen network utility. The MAC algorithm is applicable to a general channel model and to a wide

range of utility functions. The MAC algorithm falls into the stochastic approximation framework
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with guaranteed convergence under mild conditions. We developed design procedures to satisfy

these conditions and to ensure that the system should converge to a unique equilibrium. Simula-

tion results are provided to demonstrate fast and adaptive convergence behavior of the the MAC

algorithm as well as the near optimal performance of the designed equilibrium.

We then extend the distributed MAC algorithm to support hierarchical primary-secondary user

structure in a random multiple access system. The hierarchical user structure is established in the

following senses. First, when the number of primary users is small, channel availability is kept

above a pre-determined threshold regardless of the number of secondary users that are competing

for the channel. Second, when the number of primary users is large, transmission probabilities

of the secondary users are automatically driven down to zero. Such a hierarchical structure is

achieved without the knowledge of the numbers of primary and secondary users and without direct

information exchange among the users.

Furthermore, we also investigate distributed MAC for a multiple access system with multiple

non-interfering channels. We assume that users are homogeneous but the multiple channels can be

heterogeneous. In this case, forcing all users to converge to a homogeneous transmission scheme

becomes suboptimal. We extend the distributed MAC algorithm to adaptively assign each user to

only one channel and to ensure a balanced load across different channels. While theoretical anal-

ysis of the extended MAC algorithm is still incomplete, simulation results show that the algorithm

can help users to converge to a near optimal channel assignment solution that maximizes a given

network utility.
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Chapter 1

Introduction

1.1 Motivation

Due to dramatic increasing demand of wireless communication and limited availability of com-

munication resources such as transmission energy and bandwidth, efficient access to the shared

wireless channels with multiple wireless users has become a critical issue. Classical information

theory and classical network theory have been investigating this problem from different perspec-

tives. Classical information theory provides guidance to design an efficient communication system

by characterizing the fundamental limits of the systems such as channel capacity [1]. The as-

sumption in deriving limits of the system is that users should coordinate with each other in order

to choose the best possible set of communication parameters to optimize a utility function. Such

a communication model is called "coordinated communication". Because classical information

theory is originally developed for applications with long communication messages and a small

number of users, the overhead of coordination among users is assumed to be negligible.

Communication networks containing varieties of devices with a broad range of applications

have been widely adopted all over the world. To support a diversified range of devices and applica-

tions, a modularized system architecture is essential. Classical network theory suggested a layered

architecture such as the Open Systems Interconnection (OSI) model to achieve desired modular-

ization in communication networks [2]. A layered architecture classifies networking functions into

abstract layers with clearly defined interfaces. Consequently, communication network design and

optimization can be focused on one layer or a few number of neighboring layers without worrying

about whether or not the result can fit into the whole system. The main concern of classical network

theory is connecting a large number of different devices to support a broad range of applications.

Energy and bandwidth performance optimization is often a secondary concern.
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Due to rapid growth of mobile devices and smart sensors, wireless traffics are increasingly

fragmental and bursty. Coordinating a large number of users to jointly choose the best set of com-

munication parameters can become infeasible or expensive in terms of overhead. Consequently,

wireless users send a significant proportion of messages via distributed protocols, where each user

chooses its communication parameters individually. Unfortunately, efficient distributed commu-

nication is neither supported by classical information theory nor by classical network theory. On

one hand, classical information theory does not provide support for efficient distributed commu-

nication because the assumption of joint channel coding design does not apply to the distributed

communication model. On the other hand, classical network theory does not provide effective sup-

port for efficient distributed networking. In current network architecture where each data link user

is equipped with a single transmission option, data link layer can only make decisions on whether

a packet should be transmitted or not. Other communication parameters should be chosen at the

physical layer. In distributed networks where communication optimization cannot be completely

done at the physical layer, data link layer should get involved in communication adaptation. How-

ever, a single transmission option at the data link layer significantly limited effective exploitation

of advanced wireless capabilities such as power and rate adaptations.

In current MAC protocols such as 802.11 DCF, users decrease their transmission probabilities

in response to a collision event [3]. However, it is well-known in classical information theory that

maximum sum throughput of a multiple access channel can be achieved by allowing all users to

transmit in parallel with low information rates. Therefore, it can be more efficient to decrease the

communication rates of the users instead of reducing their transmission probabilities. For instance,

consider a time-slotted multiple access system with K users and one receiver. Each user transmits

with transmission rate r and transmission power P . Assume multiple access channel with additive

white Gaussian noise of power N0. Assume that K users have packets to transmit. If each user

chooses its rate to be slightly less than r = 1
2
log2(1 + P

N0
), then the channel can only support

one user to transmit at a time. In this case, the maximum system throughput is upper-bounded

by r = 1
2
log2(1 +

P
N0

). However, if users can adapt their communication rates to slightly below
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r = 1
2K

log2(1+
KP
N0

), then all users can transmit in parallel with reliable message recovery. In this

case sum throughput of the system is close to 1
2
log2(1 +

KP
N0

), which can be significantly higher

than r = 1
2
log2(1 +

P
N0

).

1.2 The Enhanced Physical-Link Layer Interface

To enable advanced communication adaptation at the data link layer, we propose an enhanced

physical-link layer interface in [4]. The enhanced interface equips a data link layer user with mul-

tiple transmission options, each of them represents a particular combination of values of communi-

cation parameters such as communication rate, transmission power and antenna beam. Advanced

communication adaptation is therefore supported at the link layer by allowing each user to navigate

through the provided transmission options according to the system condition.

To support the enhanced physical-link layer interface, we proposed a new channel coding the-

ory in [5][4][6][7] for the distributed communication model at the physical layer. The coding

theory equips a physical layer user with an ensemble of channel codes each of them corresponds

to a transmission option at the data link layer. Each physical layer user encodes its message using

a code possibly chosen according to a data link layer decision and transmits the codeword through

the channel. To preserve modularity of the network architecture, we assume that a data link layer

user is constrained by the provided transmission options, and a physical layer user, on the other

hand, is not in control of the coding choices. Although the receiver knows the code ensemble of

each user, coding choices of the users are not shared with the receiver or with the other users.

The receiver decodes the received packets if a pre-determined error probability threshold can be

met, and reports collision otherwise. Let coding choices of all users be listed in a vector, termed

the “coding vector”. An achievable region in the space of coding vectors is defined such that,

asymptotically as codeword length is taken to infinity, message recovery is guaranteed for coding

vectors inside the region and collision report is guaranteed for coding vectors outside the region.

A “distributed channel capacity” is defined as the maximum achievable region which coincides

with the Shannon capacity region without a convex hull, as explained in [8]. The new capacity
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notion is enabled by an extended definition of “communication error” from its classical meaning

of erroneous decoding to a generalized meaning of failure in reporting the expected outcome and

with packet collision added as an expected outcome under certain circumstances. A bound on error

performance is derived for the case of a finite codeword length in [6].

1.3 Contribution

Due to lack of coordination among users, packet collision is a natural feature of distributed net-

works. Current MAC protocols use various mechanisms to resolve collision among users equipped

with a single transmission option. For instance, Aloha protocols [9] require each user to transmit

its packets randomly with a pre-determined probability. In tree splitting algorithms, after each

collision event, users are split into two sets, with the first set consisting of users involved in the

collision and with the second set consisting of users not involved in the collision. Users in the first

set will be further split into subsets and only users in one subset should transmit till the collision

is resolved [10][11]. In Back-off algorithms such as the 802.11 DCF protocol, each user with an

available packet randomly transmits its packet according to a probability parameter [3][12] [13].

Users decrease their probability parameters in response to packet collision and increase them in re-

sponse to successful transmission. With the enhanced interface equipping each user with multiple

transmission options, the question is how the system should respond to successful transmission and

packet collision. More specifically, how should a distributed medium access control algorithm be

developed to adapt the transmission schemes of the users with a set of limited and often non-ideal

options to maximize a utility function?

In Chapter 2, we review the basic results of the distributed channel coding theory proposed in

[5][4][6], which supports the enhanced physical-link layer interface at the physical layer. A new

definition of “communication error” is explained, and the performance limitations of the system in

terms of asymptotic achievable regions are derived with this definition. In Chapter 3, we propose

a distributed MAC framework with/without enhanced physical-link layer interface [14] in a multi-

ple access network. The distributed MAC algorithm adapts the transmission schemes of the users
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according to the feedback received from the receiver to maximize a network utility function. Con-

vergence conditions are characterized for the proposed algorithm to converge to a designed unique

equilibrium, which should be close to optimal with respect to the chosen utility. In Chapter 4, we

extend the proposed MAC algorithm to support a hierarchical primary-secondary user structure

in a random multiple access network. With proposed algorithm, we show that hierarchical struc-

ture can be established without knowledge of number of primary and secondary users and without

direct exchange of information between users. In Chapter 5, we propose an extended distributed

MAC algorithm for a distributed multiple access network with multiple non-interfering channels to

lead the system toward the balanced channel loads. While the convergence proof of this algorithm

is not completed yet, we use simulation result to show its performance.
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Chapter 2

Distributed Channel Coding

In this chapter, we review the basic results of distributed channel coding theory proposed in

[5][4]. In a distributed network where users are not fully coordinated due to excessive overhead,

distributed channel coding equips each physical layer user with an ensemble of channel codes.

Each channel code corresponds to a particular combination of communication parameters such as

transmission power and communication rate. When a message becomes available at a user, the

user individually chooses one code to encode its message according to a link layer decision and

then sends the codeword through the channel. Code ensembles, but not coding choices, of the

users are assumed to be known at the receiver. Because users are not fully coordinated, collision

may happen and reliable message decoding may not always be possible. It is the receiver’s task

to detect whether reliable message decoding can be achieved. Then the receiver should decode

the messages of interest or report collision to the data link layer. The definition of communication

error is extended from the classical meaning of erroneous message decoding to the new meaning

of generating an outcome that is different from the expected one (including both correct message

decoding and collision report depending on the coding choices of the users). With this extended

definition, performance limitations in terms of achievable regions are derived in the asymptotic

case when codeword length is taken to infinity.

2.1 Distributed Multiple Access Communication

Consider a time-slotted multiple access system with K transmitters, one receiver and a discrete-

time memoryless channel. The duration of each time-slot equals the length of N symbols. We use

a bold font variable to represent a vector whose entries contain the corresponding variables of all

users. The channel is modeled by a conditional distribution PY |X , where X = [X1, . . . , XK ]
T ∈

X is the channel input symbol vector of all users with X being the vector of input alphabets and

Y ∈ Y is the channel output symbol with Y being the output alphabet. We assume that channel
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input alphabet Xk is known to user k for k = 1, . . . , K and channel distribution function PY |X is

known to the receiver. Whether the channel is known to the transmitters or not does not affect the

results presented in this chapter.

Each physical layer transmitter is equipped with an ensemble of M random block codes, with

each code corresponding to a transmission option at the data link layer. Let G(N) = [G(N)
1 , . . . ,G(N)

K ]T

be the vector of code ensembles of the users with G(N)
k being the code ensemble of user k for

k = 1, . . . , K. Let g be a particular coding choices of the users. We say g ∈ G
(N) if its entry

gk satisfies gk ∈ G(N)
k for all k. The random block coding schemes of the users are described

as follows. For gk ∈ G(N)
k , let L = {Cgkθk : θk ∈ Θ

(N)
k } be a library of codebooks for user k,

indexed by a set Θ
(N)
k . Each codebook contains ⌊eNrgk ⌋ codewords, where rgk is a pre-determined

parameter called “communication rate” of the corresponding code. The jth symbol of the code-

word corresponding to message ωk in codebook Cgkθk is denoted by [Cgkθk(ωk)]j . At the beginning

of each time-slot, each transmitter, say transmitter k, randomly generates a codebook index θk ac-

cording to a distribution γ
(N)
k . The distribution γ

(N)
k and codebooks Cgkθk should be chosen such

that random variables Xgkωkj : θk → [Cgkθk(ωk)]j , for each j, ωk and gk are i.i.d according to an

input distribution PgkX . Note that a random block code gk described above is characterized by its

communication rate rgk and its input distribution PgkX . With an abuse of the notation, we also

regard gk = (rgk , PgkX) as a variable representing a rate and distribution pair. We define “code

space” as a space of the g vectors, which is also a space of the rate and distribution pairs. For any

code ensemble vector G(N), we use G to represent the corresponding vector in the code space.

At the beginning of each time-slot, a random codebook is generated for each user and for

each code. We assume that the receiver knows the randomly generated codebooks, and this can be

achieved by sharing the codebook generation algorithm with the receiver. Note that such algorithm

sharing can be done offline and therefore does not require much online information exchanged with

the receiver. Each physical user chooses one code from the ensemble to encode its message. Let g

denote the coding choices of the users. Because g is determined by the data link layer, we regard it

as “arbitrary” at the physical layer, and should be unknown to the receiver. Given g, users encode
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a message vector ω into an N -length sequence of input symbol vectors, denoted by X(N)
g (ω).

The codewords are then sent through the multiple access channel. Upon receiving the sequence

of channel output sequences Y (N) = [Y1, . . . , YN ], the receiver calculates an estimated message

and code index vector pair (ω̂, ĝ) if a pre-determined error probability threshold can be met and

reports collision otherwise.

We assume that the receiver should choose an “operation region” R in the code space. The

receiver intends to decode the received message if g ∈ R, and to report collision if g /∈ R. Note

that the receiver needs to make decoding and collision report decisions without knowing g. Given

operation region R, communication error probability conditioned on g being the actual code index

vector for codeword length N , denoted by P
(N)
e (g), is defined as follows,

P (N)
e (g) =























maxw Pr{(ŵ, ĝ) 6= (w, g)|(w, g)}, ∀g ∈ R

maxw 1− Pr











“collision” or

(ŵ, ĝ) = (w, g)

∣

∣

∣

∣

∣

∣

∣

(w, g)











, ∀g 6∈ R
. (2.1)

Note that P
(N)
e (g) is a function of g.

Definition 1. An operation region R is said to be achievable if for every M and G, there exist

decoding algorithms for the sequence of coding ensembles G(N) = G to satisfy

lim
N→∞

P (N)
e (g) = 0, ∀g ∈ G. (2.2)

The following theorem is implied by the achievability definition.

Theorem 1. For discrete memoryless multiple access channel PY |X with finite input and output

alphabets, any subset R̃ of an operation region R, i.e. R̃ ⊂ R is also achievable.

The next theorem characterizes the maximum achievable region.

Theorem 2. For discrete memoryless multiple access channel PY |X with finite input and output

alphabets, the region Cd in coding space specified in (2.3) is asymptotically achievable
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Cd =

{

g

∣

∣

∣

∣

∣

g = (rg,P gX), ∀S ⊆ {1, . . . , K},
∑

k∈S

rgk < Ig(XS;Y |X S̄)

}

, (2.3)

where XS denotes channel input symbols of users in S, X S̄ denotes channel input symbols of

users not in S, and Ig(XS;Y |X S̄) denotes mutual information between XS and Y given X S̄

with respect to joint distribution PXY = PY |X

∏K
k=1 PgkXk

.

Let Cc
d be the closure of Cd. Cd is the maximum achievable region in the sense that for any

achievable region R, we must have R ⊆ Cc
d.

The proof of theorem 2 can be found in [5][4].

We define Cd as “distributed capacity” of multiple access channel PY |X . Cd coincides with

Shannon capacity of the same channel [15] in the following sense

Cc = convex hull ({r|∃g ∈ Cc
d, rg = r}) , (2.4)

where Cc is the closure of C.

Error performance bounds in the case of finite codeword length were obtained in [6]. The

corresponding results are skipped here because it is not directly relevant to the focus of this disser-

tation.
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Chapter 3

Distributed MAC Algorithm

Classical network architecture such as the OSI model assumes that each link layer user should

be equipped with a single transmission option plus an idling option [16]. At any moment, a link

layer user can only choose to idle or to transmit a packet. When communication cannot be fully

optimized at the physical layer, which happens often in a distributed wireless network, data link

layer must share the responsibility of transmission adaptation. However, the single transmission

option setting significantly limited the capability of exploiting advanced wireless tools such as rate

and power adaptations at the data link layer.

The new channel coding theory for distributed communication proposed in [5][6][4][7] pro-

vided the basic physical layer support for an enhancement to the physical-link layer interface

[4][7], which allows each link layer user to be equipped with multiple transmission options. These

options correspond to different codes at the physical layer, possibly representing different com-

munication settings such as different transmission power and rate combinations. The interface

enhancement enables data link layer protocols to exploit advanced wireless communication adap-

tations through the navigation of different transmission options. This is a much needed capability

for mitigating architectural inefficiency at the bottom two layers of many wireless networks. How-

ever, to maintain a layered network architecture (or system modularity), a link layer user is con-

strained to the provided options for transmission adaptation. How should a user efficiently exploit

the often limited options to optimize a network utility, is a key question that needs to be answered.

Distributed medium access control (MAC) protocols can be categorized into non-adaptive

ALOHA protocols [9], splitting algorithms [10], and back-off approaches [12][13][3]. ALOHA

protocols have been widely used to investigate fundamental network properties, such as achievable

throughput and stability regions [17]. In splitting algorithms such as the FCFS algorithm [10], each

user maintains a common virtual interval and a randomly generated identity value belonging to the

interval. Users partition the interval and order the sub-intervals based upon a sequence of chan-
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nel feedback messages. Transmission schedule of the users are determined accordingly. While

splitting algorithms can often achieve a relatively high system throughput, their correct function

depends on the assumptions of instant availability of noiseless channel feedback and correct recep-

tion of feedback sequence. Both of these conditions, unfortunately, can be violated in a wireless

environment. Theoretical analysis of a splitting algorithm can be extremely challenging, espe-

cially when wireless-related factors such as channel noise, feedback error, and transmission delay

are taken into account. Back-off algorithms, on the other hand, has proven to enjoy more track-

able analysis [12][13][3]. In back-off algorithms such as the 802.11 DCF protocol, depending on

packet availability, each user transmits its packets randomly according to an associated probability

parameter. A user should decrease its transmission probability in response to a packet collision

(or transmission failure) event, and increase its transmission probability in response to a transmis-

sion success event. Distributed probability adaptation in a back-off algorithm often falls into the

framework of stochastic approximation algorithms [12][13], with rigorously developed mathemat-

ical and statistical tools available for its performance analysis. It is well known that convergence

proof of these algorithms often hold in the existence of measurement noise and feedback delay

[18]. Practical back-off algorithms can also be analyzed using Markov models to characterize the

impact of discrete probability updates [3].

In [13], a stochastic approximation model was proposed for distributed networking over a col-

lision channel with an unknown finite number of users, each having a saturated message queue.

By targeting the transmission probability of each user as a function of a locally measurable system

variable, such as the channel idling probability, it was shown that the system can be designed to

converge to a unique stable equilibrium. In the case of throughput maximization with homoge-

neous users, it was proposed that idling probability of the channel should be controlled toward the

asymptotically optimal value of 1/e. This is similar to the proposal of controlling the total traffic

level toward 1, as discussed in [12] using a stochastic approximation framework for a system with

an infinite number of users. Most of the existing analysis of the splitting and the back-off algo-

rithms either assumes a throughput optimization objective and/or a simple collision channel model.
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While significant research efforts have been made to revise collision resolution algorithms to in-

corporate wireless-related physical layer properties, such as capture effect [19] and multi-packet

reception [20], not much progress has been reported since the 1980s on integrating these exten-

sions with the insightful stochastic approximation-based frameworks, such as those introduced in

[12][13].

With the enhanced physical-link layer interface, a link layer user can be equipped with mul-

tiple transmission options. Link layer networking can face a set of channel models that is much

richer and more complicated than the classical collision channel [21][22]. It is not immediately

clear how collision resolution should be done in such a scenario. For example, if a user can adapt

its transmission power and rate in addition to its transmission probability, what does “back-off”

even mean in this case? Motivated by this and similar simple questions, in this chapter, we in-

vestigate the problem of distributed MAC in a wireless multiple access network with/without the

enhanced physical-link layer interface. To maintain a relatively simple and trackable investigation,

we assume that the network should have an unknown finite number of homogeneous users (trans-

mitters), each being backlogged with a saturated message queue. Other than the user homogeneity

assumption, our choice of problem formulation and analytical tools are similar to those presented

in [13] for the collision channel. First, the assumption of saturated message queues is introduced

to avoid the complication of random message arrivals. While bursty message arrival is rather an

important character of distributed network systems [16][23], it is known to create coupling be-

tween transmission activities of the users. Such coupling often leads to open research problems

in throughput and stability analysis of systems with a relatively small number of users [24][17].

Results obtained with the assumption of saturated message queues can often serve as achievable

bounds to the corresponding results for systems with random message arrivals. Second, because

each user only interacts with the receiver, the assumption of multiple access networking with ho-

mogeneous users mainly represents the communication environment envisioned by each link layer

user. In other words, without further knowledge about the actual networking environment, a link

layer protocol should be designed to help a user to get a fair share of the multiple access channel

12



under the assumption of user homogeneity1. Furthermore, we consider extending the system model

to the case of heterogeneous users in Chapter 4. Third, because users in a distributed network of-

ten access the channel opportunistically, it may not be easy to know how many users are actually

active. We assume that each user should be able to calculate its optimal transmission scheme if the

user number is known, but we would like to develop distributed algorithms to lead the system to a

close-to-optimal operation point without the knowledge of the actual user number. The expectation

is that, if fast adaptation algorithms can be developed accordingly, a system can keep track of the

number of active users even if users frequently join/exit the communication party2.

The rest of this chapter is organized as follows. In Section 3.1, we present a stochastic ap-

proximation framework for a class of distributed MAC algorithms with guaranteed convergence

to a unique system equilibrium. While the results are more or less standard in the stochastic ap-

proximation literature, they characterize the key conditions for convergence and a key approach to

simplify the equilibrium analysis. In Section 3.2, based on a general link layer channel model and

a utility maximization objective, we present a distributed MAC algorithm that adapts the transmis-

sion scheme of each user according to two carefully designed functions. We show that, under a set

of assumptions, the proposed MAC algorithm should lead the transmission schemes of all users to

a designed system equilibrium. Next, in Section 3.3, we consider a simple scenario and present a

closed-form approach to design the two key functions to satisfy the required assumptions and to

place the system equilibrium at a point that is close to optimal with respect to a chosen symmetric

network utility3. We then extend the design approach to the general scenario in Section 3.4 where a

search-assisted approach is proposed to replace the closed-form approach to design part of the two

key functions. Simulation results are provided in Section 5.2 to demonstrate both the optimality

and the convergence properties of the proposed MAC algorithm.

1Note that user symmetry is widely assumed in many channel models such as the collision channel [16] and the

multi-packet reception channel [20].

2This includes the case when users do not have saturated message queues.

3A network utility is “symmetric” if it requires that utility values achieved by different individual users should be

equal.
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3.1 A Stochastic Approximation Framework

Consider a distributed multiple access network with a memoryless channel and K homoge-

neous users (transmitters). Time is slotted. The length of each time slot equals the transmission

duration of one packet. We assume that the number of users K should be unknown to the users and

also unknown to the receiver. Each user is equipped with M transmission options plus an idling

option, and is backlogged with a saturated message queue. We formulate the problem at the data

link layer in the sense of constraining users to the provided transmission options. At the beginning

of each time slot t, a user should either idle or randomly choose a transmission option to send

a message, with corresponding probabilities being specified by an associated probability vector.

Transmission decisions of the users are made individually, and they are shared neither among the

users nor with the receiver. The M -length probability vector associated to user k, k = 1, . . . , K,

is denoted by pk(t) for time slot t. We write pk(t) = pk(t)dk(t), with 0 ≤ pk(t) ≤ 1 being

the probability that user k transmits a packet in time slot t, and with vector dk(t) specifying the

conditional probabilities for user k to choose each of the transmission options should it decide to

transmit a packet. Entries of the dk(t) vector satisfy 0 ≤ dkm(t) ≤ 1 for 1 ≤ m ≤ M , and

∑M
m=1 dkm(t) = 1. We term pk(t) the “transmission probability” of user k, and term dk(t) the

“transmission direction” vector of user k.

At the end of each time slot t, based upon available channel feedback, each user k derives a

target probability vector p̃k(t). User k then updates its transmission probability vector by

pk(t+ 1) = (1− α(t))pk(t) + α(t)p̃k(t) = pk(t) + α(t)(p̃k(t)− pk(t)), (3.1)

where α(t) > 0 is a step size parameter of time slot t. Let P (t) = [pT
1 (t),p

T
2 (t), . . . ,p

T
K(t)]

T de-

note an MK-length vector that consists of the transmission probability vectors of all users in time

slot t. Let P̃ (t) = [p̃T
1 (t), p̃

T
2 (t), . . . , p̃

T
K(t)]

T denote the corresponding target vector. According

to (3.1), P (t) is updated by

P (t+ 1) = P (t) + α(t)(P̃ (t)− P (t)). (3.2)

14



Probability adaptation given in (3.2) falls into the stochastic approximation framework [18][25][26],

where the target probability vector P̃ (t) is often calculated from noisy estimates of certain system

variables, e.g., the channel idling probability.

Define P̂ (t) = [p̂T
1 (t), p̂

T
2 (t), . . . , p̂

T
K(t)]

T as the “theoretical value” of P̃ (t) under the as-

sumption that there is no measurement noise and no feedback error in time slot t. Let Et[P̃ (t)] be

the conditional expectation of P̃ (t) given system state at the beginning of time slot t. The differ-

ence between Et[P̃ (t)] and P̂ (t) is defined as the bias in the target probability vector calculation,

denoted by G(t).

G(t) = Et[P̃ (t)]− P̂ (t). (3.3)

We assume that, given the communication channel, both P̂ (t) = P̂ (P (t)) and G(t) = G(P (t))

should only be functions of P (t), which is the transmission probability vector in time slot t.

The following two conditions are typically required for the convergence of a stochastic approx-

imation algorithm [18][25][26].

Condition 1. (Mean and Bias) There exists a constant Km > 0 and a bounding sequence 0 ≤

β(t) ≤ 1, such that

‖G(P (t))‖ ≤ Kmβ(t), (3.4)

where ‖.‖ denotes the second order norm. We assume that β(t) is controllable in the sense that

one can design protocols to ensure β(t) ≤ ǫ for any chosen ǫ > 0 and for large enough t.

Condition 2. (Lipschitz Continuity) There exists a constant Kl > 0, such that

‖P̂ (P a)− P̂ (P b)‖ ≤ Kl‖P a − P b‖, for all P a,P b. (3.5)

According to stochastic approximation theory [18][26], if the above two conditions are satis-

fied, the step size sequence α(t) and the bounding sequence β(t) are small enough, then trajectory

of the transmission probability vector P (t) under distributed adaptation given in (3.2) can be ap-

proximated by the following associated ordinary differential equation (ODE) in a sense explained
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in [18][26],

dP (t)

dt
= −[P (t)− P̂ (t)], (3.6)

where we used t to denote the continuous time variable. Because all entries of P (t) and P̂ (t) stay

in the range of [0, 1], any equilibrium P ∗ = [p∗T
1 , . . . ,p∗T

K ]T of the associated ODE must satisfy

P ∗ = P̂ (P ∗). (3.7)

Suppose that the associated ODE given in (3.6) has a unique solution at P ∗, then the following

convergence results can be obtained from the standard conclusions in the stochastic approximation

literature.

Theorem 3. For distributed transmission probability adaptation given in (3.2), assume that the

associated ODE given in (3.6) has a unique stable equilibrium at P ∗. Suppose that α(t) and β(t)

satisfy the following conditions

∞
∑

t=0

α(t) = ∞,
∞
∑

t=0

α(t)2 < ∞,
∞
∑

t=0

α(t)β(t) < ∞. (3.8)

Under Conditions 1 and 2, P (t) converges to P ∗ with probability one.

Theorem 3 is implied by [18, Theorem 4.3].

Theorem 4. For distributed transmission probability adaptation given in (3.2), assume that the

associated ODE given in (3.6) has a unique stable equilibrium at P ∗. Let Conditions 1 and 2 hold

true. Then for any ǫ > 0, there exists a constant Kw > 0, such that, for any 0 < α < α < 1

satisfying the following constraint

∃T0 ≥ 0, α ≤ α(t) ≤ α, β(t) ≤
√
α, ∀t ≥ T0, (3.9)

P (t) converges weakly to P ∗ in the following sense
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lim sup
t→∞

Pr {‖P (t)− P ∗‖ ≥ ǫ} < Kwα. (3.10)

Theorem 4 can be obtained by following the proof of [26, Theorem 2.3] with minor revisions.

For simplicity, we assumed the same step size sequence α(t) and the same bounding sequence

β(t) for all users. We also assumed that all users should update their transmission probability

vectors synchronously in each time slot. However, according to the literature of stochastic approx-

imation theory [18], convergence results stated in Theorems 3 and 4 should remain valid, even

if different users use different step sizes and bounding sequences, so long as the step sizes and

bounding sequences of all users satisfy the same constraints given in (3.8) and (3.9). Convergence

results of Theorems 3 and 4 should also remain valid if users adapt their probability vectors asyn-

chronously, so long as users update their probability vectors frequently enough [18]. Note that

information on the asymptotic convergence rate of P (t) → P ∗ can be obtained from the eigenval-

ues of the Hessian matrix
∂(P̂ (P )−P )

∂P

∣

∣

∣

P ∗

[13]. However, convergence rate discussion is outside the

scope of this dissertation.

Theorems 3 and 4 provided convergence guarantee for a class of distributed MAC algorithms.

Within the presented stochastic approximation framework, the key question is how to design a

distributed MAC algorithm to satisfy Conditions 1 and 2 and to place the unique equilibrium of

the associated ODE at a point that maximizes a chosen utility. Because users are homogeneous,

if equilibrium of the system is indeed unique, transmission probability vectors of the users at the

equilibrium must be identical. We choose to enforce such a property by guaranteeing that all users

should obtain the same target transmission probability vector in each time slot. This is achieved

by the following design details.

We assume that, in each time slot, there is a virtual packet being transmitted through the chan-

nel. Virtual packets assumed in different time slots are identical. A virtual packet is an assumed

packet whose coding parameters are known to the users and to the receiver, but it is not physically

transmitted in the system, i.e., the packet is “virtual”. Without knowing the transmission/idling

status of the users, we assume that the receiver can detect whether the reception of a virtual packet
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should be regarded as successful or not, and therefore can estimate its success probability [4][21].

For example, suppose that the link layer channel is a collision channel, and a virtual packet has the

same coding parameters of a real packet. Then, virtual packet reception in a time slot should be

regarded as successful if and only if no real packet is transmitted. Success probability of the virtual

packet in this case equals the idling probability of the collision channel. For another example, if

all packets including the virtual packet are encoded using random block codes, given the physical

layer channel, reception of the virtual packet corresponds to a detection task that judges whether

or not the vector transmission status of all real users should belong to a specific region. Such de-

tection tasks and their performance bounds have been extensively investigated in the distributed

channel coding literature [5][6][4][7].

Let qv(t) denote the success probability of the virtual packet in time slot t. We term qv(t) the

“channel contention measure” because it is designed to serve as a measurement of the contention

level of the link-layer multiple access channel. We assume that the receiver should obtain an

estimate of qv(t) and feed it back to all transmitters. Note that, in the collision channel case

when qv(t) equals the channel idling probability, feeding back an estimate of qv(t) may not be

necessary. So long as each user k knows the success probability of its own packet, denoted by qk(t),

idling probability of the channel can be calculated by (1 − pk(t))qk(t). With a general link layer

channel, however, such calculation of qv(t) at a transmitter is not always possible if an estimate

of qv(t) is not fed back directly by the receiver [21]. Upon receiving an estimate of qv(t), each

user calculates its target transmission probability vector as the same function of the qv(t) estimate.

Denote the theoretical target transmission probability vector of a user by p̂(qv(t)). The theoretical

target transmission probability vector of all users is given by P̂ (t) = 1⊗p̂(qv(t)), where 1 denotes

a K-length vector of all 1’s and ⊗ represents the Kronecker product. Consequently, according to

(3.6), any equilibrium P ∗ of the ODE must take the form of P ∗ = 1⊗p∗. Because qv is a function

of the transmission probability vectors of all users, we must have P ∗ = 1⊗p∗ = 1⊗ p̂(p∗), where

p̂(p∗) denotes the derived target transmission probability vector of a user given that all users have

the same transmission probability vector p∗.
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In a practical system, an estimate of qv(t) is likely to be corrupted by measurement noise. We

assume that, if the transmission probability vectors of all users P is kept at a constant vector,

and qv is measured over an interval of Q time slots, then the measurement should converge to its

true value with probability one as Q is taken to infinity. Other than this assumption, measurement

noise is not involved in the discussion of the design objectives, i.e., to meet Conditions 1 and 2

and to place the unique system equilibrium at the desired point. Therefore, in the following three

sections, we assume that qv(t) can be measured precisely and be fed back to the users. This leads

to P̃ (t) = P̂ (t) = 1⊗ p̂(t). We will also skip time index t to simplify the notations.

3.2 Channel Model, Utility, and A Distributed MAC Algorithm

According to the distributed channel coding theory [5][6][4][7], given any combination of

transmission status of the users, the receiver should be able to reliably detect the success/failure

outcomes of the real and the virtual packets. These outcomes as functions of the transmission

status of the users form the complete model of the link layer multiple access channel. While the

complete channel model can be overly complicated, we require that the channel should satisfy the

following sensitivity assumption.

Assumption 1. (Channel Sensitivity) There exists a finite constant Kc, such that virtual packet

reception should fail if the number of parallel real packet transmissions exceeds Kc.

Because it is usually trivial to satisfy this assumption, in the rest of the dissertation, we will

assume it should hold true.

Given the link layer multiple access channel and the number of users K, channel contention

measure qv(P , K) is a function of the transmission probability vectors of all users P . Under

Assumption 1, qv(P , K) equals the summation of a finite number of terms each representing the

probability of a particular transmission status combination of the users that can support the suc-
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cessful reception of the virtual packet4. Because each of these terms is a polynomial function of

P , we have the following property.

Theorem 5. With Assumption 1, channel contention measure qv is Lipschitz continuous in the

transmission probability vectors of all users P . That is, there exists a finite constant Kqc, such

that for any number of users K and any transmission probability vectors P a, P b, the following

inequality should hold true.

|qv(P a, K)− qv(P b, K)| ≤ Kqc‖P a − P b‖. (3.11)

Proof of the theorem is skipped.

In the rest of the dissertation, we will simplify the complete link layer channel model into two

sets of channel parameter functions, {Crij(d)} and {Cvj(d)}. Assume that all users should have

the same transmission direction vector d. We define {Crij(d)} for 1 ≤ i ≤ M and j ≥ 0 as

the “real channel parameter function set". Crij(d) is the conditional success probability of a real

packet corresponding to the ith transmission option, should the packet be transmitted in parallel

with j other real packets. We also define {Cvj(d)} for j ≥ 0 as the “virtual channel parameter

function set". Cvj(d) is the success probability of the virtual packet should it be transmitted in

parallel with j real packets. We assume that Cvj(d) ≥ Cv(j+1)(d) should hold for all j ≥ 0 and

for any d. That is, with users having the same transmission direction vector d, if the number

of parallel real packet transmissions increases, the chance of a virtual packet getting through the

channel should not increase. Let ǫv ≥ 0 be a pre-determined constant. We define Jǫv(d) as the

smallest integer such that CvJǫv (d) is strictly larger than Cv(Jǫv+1)(d) + ǫv, i.e.,

Jǫv(d) = argmin
j

Cvj(d) > Cv(j+1)(d) + ǫv. (3.12)

4For example, a particular term can represent the probability that K0 users idle, K1 users transmit with the 1st

option, K2 users transmit with the 2nd option, etc, under the constraints that
∑

M

i=0
Ki = K and

∑

M

i=1
Ki ≤ Kc.
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By definition, Jǫv(d) is a function of d. Note that the value of ǫv needs to be carefully chosen to

guarantee the existence of Jǫv(d) for all d. With Assumption 1, we should have Cvj(d) = 0 for

all j > Kc. If the virtual packet is designed properly, we should also have Cv0 > 0, where Cv0

is not a function of d. Therefore, the existence of Jǫv(d) is guaranteed if ǫv is chosen to satisfy

0 ≤ ǫv < Cv0

Kc
. Because both {Crij(d)} and {Cvj(d)} can be derived from the physical layer

channel model and the coding parameters of the packets [5][6][4][7], we assume that they should

be known at the transmitters and at the receiver. Note that, while {Cvj(d)} depends on the coding

detail of the virtual packet, virtual packet is not involved in the calculation of {Crij(d)}.

With the simplified channel model, given the number of users K and under the assumption

that all users should have the same transmission probability vector p = pd, we write channel

contention measure qv(p, K) as a function of p and K. In this case, qv(p, K) can be calculated by

qv(p, K) =
K
∑

j=0

(

K

j

)

pj(1− p)K−jCvj(d). (3.13)

We assume that users intend to maximize a symmetric utility function. Under the assumption

that all users should have the same transmission probability vector, the utility function U(K,p,

{Crij(d)}) is defined as a function of the number of users K, the common transmission probability

vector p = pd, and the real channel parameter function set {Crij(d)}. For example, suppose that

users intend to maximize the symmetric sum throughput of the network. If the ith transmission

option has a communication rate of ri (bits/time slot), then the utility function should be given by

U(K,p, {Crij(d)}) = K

M
∑

i=1

diri

K−1
∑

j=0

(

K − 1

j

)

pj+1(1− p)K−1−jCrij(d). (3.14)

Next, we present a distributed MAC algorithm that adapts the transmission probability vectors

of the users based on the estimated qv fed back from the receiver and according to two carefully

designed functions, both are functions of an estimated number of users K̂. The first function is

the “theoretical transmission probability vector” function p∗(K̂), which denotes the theoretical

transmission probability vector of a user if the number of users equals K̂. The second function
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is the “theoretical channel contention measure” function q∗v(K̂), which denotes the theoretical

success probability of the virtual packet if the number of users of the system equals K̂ and all

users have the same transmission probability vector p∗(K̂).

Assumption 2. (Estimation Continuity) p∗(K̂) and q∗v(K̂) should be defined for both integer and

non-integer K̂ values. Their limits as K̂ → ∞, denoted by p∗(∞) = limK̂→∞ p∗(K̂) and

q∗v(∞) = limK̂→∞ q∗v(K̂), should be well defined. For all integer-valued K̂, the following equality

should be satisfied

q∗v(K̂) = qv(p
∗(K̂), K̂). (3.15)

Assumption 3. (Contention Monotonicity) q∗v(K̂) should be non-increasing in K̂. There exists a

positive constant Kmin, such that q∗v(K̂) should be strictly decreasing for K̂ > Kmin, and p∗(K̂)

should remain a constant vector for K̂ ≤ Kmin.

We are now ready to present the distributed MAC algorithm.

Distributed MAC Algorithm:

1. Each user initializes its transmission probability vector.

2. Let Q > 0 be a pre-determined integer. Over an interval of Q time slots, the receiver

measures the success probability of the virtual packet, denoted by qv, and feeds qv back to

all users.

3. Upon receiving qv, each user derives an estimated number of users K̂ by solving the follow-

ing equation.

q∗v(K̂) = qv, s.t. K̂ ≥ Kmin. (3.16)

If a K̂ satisfying (3.16) cannot be found, users set K̂ = Kmin if qv > q∗v(Kmin), or set K̂ =

∞ otherwise. Each user then sets the target transmission probability vector at p̂ = p∗(K̂).

4. Each user, say user k, updates its transmission probability vector by

pk = (1− α)pk + αp̂, (3.17)
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where α is the step size parameter for user k.

5. The process is repeated from Step 2 till transmission probability vectors of all users converge.

To prove convergence of the distributed MAC algorithm, we need two additional assumptions

presented below.

Assumption 4. (Target Continuity) Given qv, let the target transmission probability vector p̂ be

determined as in Step 3 of the distributed MAC algorithm. p̂(qv) as a function of qv should be

Lipschitz continuous in qv. That is, there exists a constant Kqp, such that for any qv1 and qv2, the

following inequality should hold

‖p̂(qv1)− p̂(qv2)‖ ≤ Kqp|qv1 − qv2|. (3.18)

Assumption 5. (Equilibrium Uniqueness) For any number of users K > Kmin, equation q∗v(K̂) =

qv(p
∗(K̂), K) should have a unique solution at K̂ = K. For any number of users K ≤ Kmin,

equation q∗v(K̂) = qv(p
∗(K̂), K) should hold for all K̂ ≤ Kmin.

Convergence property of the proposed distributed MAC algorithm is stated in the following

theorem.

Theorem 6. Consider the K-user multiple access network presented in this section. Under As-

sumptions 1-5, and with the proposed MAC algorithm, the associated ODE given in (3.6) has a

unique equilibrium at P ∗ = 1 ⊗ p∗(K). The probability target p̂(P ) as a function of the trans-

mission probability vectors of all users P satisfies Conditions 1 and 2. Consequently, transmission

probability vectors of all users should converge to P ∗ = 1 ⊗ p∗(K) in the sense specified in

Theorems 3 and 4.

Proof of Theorem 6 is given in Appendix A.1.

Note that the distributed MAC algorithm guides the adaptation of transmission probability vec-

tors of all users by trying to maintain channel contention measure at an appropriate level. System

equilibrium can be designed as a function of the number of users K even though the actual value
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of K is unknown. While we have not yet provided any optimality argument on how p∗(K̂) should

be designed to maximize a chosen utility U(K,p, {Crij(d)}), because p∗(K̂) and q∗v(K̂) func-

tions need to satisfy the required assumptions, it is quite clear that system equilibrium cannot be

designed freely.

3.3 A Closed-Form Design Approach with Pre-fixed Transmis-

sion Direction

In this section, we consider a simple scenario when all users have the same pre-fixed transmis-

sion direction vector d. We write the theoretical transmission probability vector function p∗(K̂)

as

p∗(K̂) = p∗(K̂)d, (3.19)

where p∗(K̂) is the “theoretical transmission probability” function that needs to be designed. It is

easy to see that the problem becomes equivalent to the case when each user only has a single trans-

mission option, as investigated in [21][22]. We will review the closed-form approach presented in

[21][22] to design p∗(K̂) and q∗v(K̂) functions to maximize the chosen network utility and to sat-

isfy Assumptions 2-5. Most of the design parameters presented in this section should be functions

of d. However, for the sake of simple presentation, we will skip d in some of the notations.

With a fixed transmission direction vector d, for most of the utility functions of interest, such

as the sum throughput function given in (3.14), an asymptotically optimal solution should keep the

expected load of the channel at a constant [13][20]. Therefore, if p∗K is the optimal transmission

probability for user number K, we should have limK→∞ Kp∗K = x∗ with x∗ > 0 being obtained

by the following asymptotic utility optimization.

x∗ = argmax
x

lim
K→∞

U
(

K,
x

K
d, {Crj(d)}

)

. (3.20)

Without knowing the actual number of users K, we design p∗(K̂) as
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p∗(K̂) = min

{

pmax,
x∗

K̂ + b

}

, (3.21)

where b ≥ 1 is a pre-determined design parameter, and pmax is given by

pmax = min

{

1,
x∗

Jǫv(d) + b

}

, (3.22)

with Jǫv(d) being defined in (3.12). According to Theorem 6, such a design implies that we intend

to set system equilibrium at P ∗ = 1 ⊗ p∗(K)d. As shown in [21][22], this equilibrium setting is

not only asymptotically optimal as K → ∞, but also often close to optimal for small K values.

The q∗v(K̂) function, on the other hand, can be calculated as q∗v(K̂) = qv(p
∗(K̂)d, K̂) for

integer-valued K̂. For non-integer-valued K̂, q∗v(K̂) is designed as follows. Let N = ⌊K̂⌋ be the

largest integer below K̂. Define qN(p) and qN+1(p) as

qN(p) = qv(p, N), qN+1(p) = qv(p, N + 1). (3.23)

q∗v(K̂) is designed as a linear interpretation between qN(p
∗(K̂)d) and qN+1(p

∗(K̂)d).

q∗v(K̂) =
p∗(K̂)− p∗(N + 1)

p∗(N)− p∗(N + 1)
qN(p

∗(K̂)d) +
p∗(N)− p∗(K̂)

p∗(N)− p∗(N + 1)
qN+1(p

∗(K̂)d).(3.24)

With p∗(K̂) and q∗v(K̂) functions designed in (3.21) and (3.24), respectively, Assumption 2 is

satisfied. According to the following theorem, Assumption 3 should hold true if design parameter

b in (3.21) is chosen appropriately.

Theorem 7. [21, Theorem 4] Let x∗ > 0 and b ≥ max{1, x∗ − γǫv} with γǫv being defined as

γǫv = min
N̂,N̂≥Jǫv (d),N̂≥x∗−b

∑N̂
j=0 j

(

N̂
j

)

( p∗(N̂+1)

1−p∗(N̂+1)
)j(Cvj(d)− Cv(j+1)(d))

∑N̂
j=0

(

N̂
j

)

( p∗(N̂+1)

1−p∗(N̂+1)
)j(Cvj(d)− Cv(j+1)(d))

, (3.25)
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where N̂ only takes integer values. q∗v(K̂) defined in (3.24) is non-increasing in K̂. Furthermore,

if b > max{1, x∗ − γǫv} holds with strict inequality, then q∗v(K̂) is strictly decreasing in K̂ for

K̂ ≥ Jǫv(d).

According to [21, Theorem 4], Assumption 4 should also hold true. Furthermore, because

p∗(K̂) is non-increasing in K̂, given the number of users K, channel contention measure qv(p
∗(K̂)

d, K) as a function of K̂ is non-decreasing in K̂. According to [21, Theorem 3], qv(p
∗(K̂)d, K)

is strictly increasing in K̂ for all K > Kmin and K̂ ≥ max{Jǫv(d), x∗ − b}. Consequently,

Assumption 5 should hold true due to the monotonicity properties of qv(p
∗(K̂)d, K) and q∗v(K̂).

It is important to note that system design also includes the design of the virtual packet, which

affects the virtual channel parameter function set. In the case of a fixed d, virtual packet should be

chosen to support reasonable sensitivity of channel contention measure to the variation of number

of users. As explained in [21, Section 3], a general principle is to choose a virtual packet design

such that Jǫv(d) and γǫv are both slightly less than x∗ and therefore b ≥ max{1, x∗− γǫv} can take

a value close to 1. Also as explained in [21, Section 4], when the receiver does not feedback qv

and each user only knows the success/failure status of its own packets, the distributed MAC algo-

rithm can be revised to use an interpreted channel contention measure and, according to computer

simulations, the system can still converge to the same designed system equilibrium.

3.4 A Search-Assisted Design Approach

In this section, we consider the general scenario when transmission direction vectors of the

users are not fixed. To understand the challenges in the design of p∗(K̂) and q∗v(K̂) functions, we

first take a look at a simple example.

Example 1. Consider a time-slotted multiple access network over a multi-packet reception chan-

nel. Each user is equipped with two transmission options respectively labeled as the high-rate

option and the low-rate option. If all packets are encoded using the low-rate option, then the chan-

nel can support the parallel transmissions of no more than 12 packets. We assume that one packet

from the high-rate option is equivalent to the combination of 4 low-rate packets. That is, the chan-
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nel can support the parallel transmissions of nh high-rate packets plus nl low-rate packets if and

only if 1
3
nh+

1
12
nl ≤ 1. The utility function is chosen to be the sum system throughput. Suppose that

all users should hold the same transmission probability vector p = [ph, pl]
T where ph and pl denote

the probabilities of a user choosing the high-rate option and the low-rate option, respectively. We

obtain the optimum probability vector as p∗ = [p∗h, p
∗
l ]

T = argmaxp U(K,p, {Crij(d)}). Figure

3.1 illustrates p∗h and p∗l as functions of the number of users. We can see that, if we write p∗ = p∗d∗,
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Figure 3.1: Optimal transmission probabilities of a K-user multiple access system with each user having

two transmission options.

then d∗ is fixed at d∗ = [1, 0]T for K ≤ 4, and is fixed at d∗ = [0, 1]T for K ≥ 10. d∗ transits

from [1, 0]T to [0, 1]T in the region of 4 ≤ K ≤ 10.

According to the above observation, we assume that the theoretical transmission probability

vector function p∗(K̂) = p∗(K̂)d∗(K̂) should be designed to satisfy the following properties

termed the “Head and Tail Condition”.

Condition 3. (Head and Tail) Let ǫv > 0 be a pre-determined constant. Let Jǫv(d) be defined in

(3.12). There exist two integer-valued constants 0 < K ≤ K, such that,

1. K ≥ Jǫv(d
∗(K)) and d∗(K̂) = d∗(K) for K̂ ≤ K.

2. K > Jǫv(d
∗(K)) and d∗(K̂) = d∗(K) for K̂ ≥ K.
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The Head and Tail Condition indicates that, when K̂ is either small enough or large enough,

d∗(K̂) should stop changing in K̂. Consequently, in the “Head” regime defined as K̂ ≤ K, and

in the “Tail” regime defined as K̂ ≥ K, p∗(K̂) and q∗v(K̂) functions should be designed using the

closed-form approach specified in Section 3.3.

Now consider the regime of K ≤ K̂ ≤ K. Because we usually have d∗(K) 6= d∗(K), if the

designed equilibrium needs to be close to optimal, then theoretical transmission probability vector

function p∗(K̂) designed for K ≤ K̂ ≤ K should involve a transition of the transmission direction

vector from d∗(K) to d∗(K). Unfortunately, due to generality of the system model, when users

change their transmission direction vectors, it is difficult to argue whether the outcome should

increase/decrease the channel contention measure. Consequently, it becomes difficult to argue for

monotonicity properties on channel contention measure functions qv(p
∗(K̂), K) and q∗v(K̂). To

overcome such a challenge, we switch to a search-assisted approach whose basic idea is illustrated

as follows. We will first choose several integer-valued K̂ points, termed “Pinpoints”, and assume

that p∗(K̂) and q∗v(K̂) = qv(p
∗(K̂), K̂) should be manually determined for the pinpoints. After

that, an interpolation approach will be used to connect the pinpoints and to determine p∗(K̂)

and q∗v(K̂) functions for all K ≤ K̂ ≤ K. Key objective of the pinpoints selection and their

corresponding design is to make sure that the theoretical transmission probability vector function

p∗(K̂) is close to optimal in terms of network utility optimization at equilibrium for all K ≤ K̂ ≤

K. Key objective of the interpolation approach, on the other hand, is to make sure that p∗(K̂) and

q∗v(K̂) functions designed to connect the pinpoints should satisfy the monotonicity and continuity

requirements presented in Assumptions 2-5.

We require that the following condition should be satisfied by the pinpoints.

Condition 4. (Pinpoints) Let K̂i for i = 0, . . . , L be L + 1 integers such that K = K̂0 < K̂1 <

· · · < K̂L = K. For i = 0, . . . , L and 0 ≤ λ < 1, define
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K̂iλ = (1− λ)K̂i−1 + λK̂i,

d∗
iλ = (1− λ)d∗(K̂i−1) + λd∗(K̂i),

q∗viλ = (1− λ)q∗v(K̂i−1) + λq∗v(K̂i). (3.26)

1. There exists a positive constant ǫq to satisfy q∗v(K̂i−1)− q∗v(K̂i) ≥ ǫq, for all i = 1, . . . , L.

2. There exists a constant ǫv > 0, such that for all i = 1, . . . , L and for all 0 ≤ λ < 1, we have

K̂iλ > Jǫv(d
∗
iλ), where Jǫv(d

∗
iλ) is defined in (3.12).

3. There exist 0 < p < p < 1 to satisfy p ≤ p(K̂i) ≤ p for all i = 1, . . . , L.

4. Let N = ⌊K̂⌋. Define qN(p) and qN+1(p) as in (3.23). Extend the definition of qv(p, K̂) for

non-integer-valued K̂ as

qv(p, K̂) = (N + 1− K̂)qN(p) + (K̂ −N)qN+1(p), (3.27)

The following inequality should be satisfied for all i = 1, . . . , L and for all 0 ≤ λ < 1.

qv(pd
∗
iλ, K̂iλ) ≤ q∗viλ ≤ qv(pd

∗
iλ, K̂iλ). (3.28)

With p∗(K̂) being designed for the L + 1 pinpoints, we propose the following interpolation

approach to complete p∗(K̂) and q∗v(K̂) functions for K ≤ K̂ ≤ K.

Interpolation Approach Assume that p∗(K̂) is designed for K̂i, i = 0, ....L, with K = K̂0 <

K̂1 < · · · < K̂L = K, to satisfy Condition 4. For i = 1, . . . , L and for all 0 ≤ λ < 1, let K̂iλ, d∗
iλ

and q∗viλ be defined in (3.26). Let qv(p, K̂) be defined in (3.27). We choose p∗(K̂iλ) to satisfy the

following equality.

qv(p
∗(K̂iλ)d

∗
iλ, K̂iλ) = q∗viλ. (3.29)

This leads to p∗(K̂iλ) = p∗(K̂iλ)d
∗
iλ. Note that the existence of a solution to (3.29) is guaranteed

by Item 4 of Condition 4.
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Effectiveness of the Interpolation Approach is stated in the following theorem.

Theorem 8. Assume that p(K̂) is designed for a set of L + 1 pinpoints {K̂i}, i = 0, . . . , L, with

K = K̂0 < K̂1, . . . , < K̂L = K, to satisfy Condition 4. After completing the functions using the

Interpolation Approach, p∗(K̂) and q∗v(K̂) functions satisfy Assumptions 2-5 for K ≤ K̂ ≤ K.

The proof of Theorem 8 is given in appendix A.2.

Note that the search-assisted design approach can also be adopted in the simple scenario when

either all users have the same pre-fixed d vector or each user has a single transmission option.

When there is a noticeable gap between the optimal performance, in terms of network utility max-

imization at equilibrium, and the performance of the p∗(K̂) function designed using the closed-

form approach, one can adjust p∗(K̂) at carefully selected pinpoints to further improve its opti-

mality. Also note that when users have multiple transmission options, the system should choose a

virtual packet design such that channel contention measure is reasonably sensitive to the change of

number of users for all transmission option choices. While we did not provide theoretical guidance

on virtual packet design and pinpoint selections for the general scenario, in the next section, we

will use several examples to show that coming up with a reasonably good design should not be a

difficult task.

3.5 Simulation Results

In this section, we provide computer examples to illustrate both optimality and convergence

properties of the proposed MAC algorithm.

Example 1: In [13], a similar stochastic approximation model was proposed for the maximiza-

tion of symmetric sum throughput of a distributed multiple access network over a collision channel.

Assume that there are K users each having a single transmission option and a saturated message

queue. If K is known, the optimum solution that maximizes the symmetric sum throughput is to

set the transmission probabilities of all users at popt =
1
K

[13]. In [13], under the assumption of

an unknown number of users and due to the constraint of certain monotonicity properties, it was

suggested that equilibrium of the distributed MAC algorithm should be set at pa, which is obtained
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by solving the following equation.

eP (idle)− 1− 0.5
√
pa = 0, P (idle) = (1− pa)

K , (3.30)

where P (idle) is the idling probability of the channel that can be measured without knowing the

value of K.

Let us follow the design guideline presented in Section 3.3 of this dissertation. With the col-

lision channel model, the real channel parameter set {Crj} is given by Cr0 = 1 and Crj = 0

for j > 0. With the utility chosen to be the symmetric sum throughput, we get from (3.20) that

x∗ = 1. Assume that a virtual packet should have the same coding parameters of a real packet.

Consequently, the virtual channel parameter set {Cvj} is given by Cv0 = 1 and Cvj = 0 for j > 0.

Choose ǫv = 0.01, we get γǫv = Jǫv = 0. Therefore, we can set b = 1.01 > x∗ − γǫv . This leads

to an equilibrium with p∗ = 1
K+1.01

.

In Figure 3.2, we illustrate the achieved sum throughput of the system in packet/slot as a func-

tion of the number of users under the optimal transmission probability, at the equilibrium of the

proposed distributed MAC algorithm, and at the equilibrium of the approach suggested in [13]. It
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Figure 3.2: Sum throughput as a function of the user number for a multiple access network with a collision

channel.

31



can be seen that, for the classical scenario presented in [12], the distributed MAC algorithm pro-

posed in this dissertation can achieve a throughput performance better than the approach proposed

in [12], although the improvement is indeed marginal.

Example 2: In this example, we consider distributed multiple access networking over a simple

fading channel. Assume that the system has K users and one receiver. Each user only has a single

transmission option. In each time slot, with a probability of 0.3, the channel can support no more

than M1 = 4 parallel real packet transmissions, and with a probability of 0.7, the channel can

support no more than M2 = 6 parallel real packet transmissions5. In this case, the real channel

parameter set {Crj} is given by Crj = 1 for j < 4, Crj = 0.7 for 4 ≤ j < 6, and Crj = 0 for

j ≥ 6. Assume that users intend to maximize the symmetric system throughput weighted by a

transmission energy cost of E = 0.3. With K users all transmitting at the same probability of p,

system utility U(K, p, {Crj}) is given by

U(K, p, {Crj}) = −EKp+
K−1
∑

j=0

K

(

K − 1

j

)

pj+1(1− p)K−1−jCrj. (3.31)

Correspondingly, x∗ can be obtained from asymptotic utility optimization (3.20) as x∗ = 3.29.

Assume that a virtual packet should have the same coding parameters as those of a real packet.

The virtual channel parameter set {Cvj} is therefore identical to the real channel parameter set,

i.e., Cvj = Crj for all j ≥ 0. Choose ǫv = 0.01, we have γǫv = Jǫv = 3. Therefore, we can set

b = 1.01.

In Figure 3.3, we illustrate three utilities, all as functions of user number K. The solid curve

represents the utility achieved by the proposed MAC algorithm at the designed equilibrium, with

all users transmitting at a probability of p∗ = min
{

pmax,
x∗

K+b

}

. The dashed curve represents the

optimum utility under the assumption that number of users K is known. Note that the optimum

utility is not necessarily achievable without the knowledge of K. The dash-dotted curve repre-

sents the utility if we maintain the channel idling probability at its asymptotically optimal value of

5Such a channel can appear if there is an interfering user that transmits a packet with a probability of 0.3 in each

time slot. One packet from the interfering user is equivalent to the combination of two packets from a regular user.
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Figure 3.3: Sum utility as a function of the user number for a multiple access network over a simple fading

channel.

exp(−x∗), or equivalently, if we set the transmission probabilities of all users at 1 − exp
(

−x∗

K

)

.

This is an intuitive extension to the key idea suggested in [13], although a general channel model

was not discussed in [13]6.

Next, we assume that the system has K = 8 users. Transmission probabilities of all users are

initialized at 0. In each time slot, a channel state flag is randomly generated to indicate whether

the channel can support the parallel transmissions of no more than 4 or 6 packets. Each user also

randomly determines whether a packet should be transmitted according to its own transmission

probability parameter. Whether the real packets and the virtual packet can go through the channel

or not is then determined using the corresponding channel model. We use the following exponential

moving average approach to measure qv. qv is initialized at qv = 1. In each time slot, qv is updated

by qv = (1− 1
300

)qv+
1

300
Iv, where Iv ∈ {0, 1} is an indicator of the success/failure reception status

of the virtual packet in the current time slot. While this is different from the approach proposed

in the distributed MAC algorithm, simulations show that an exponential averaging measurement

of qv can often lead the system to convergence in a relatively small number of time slots. The

rest of probability updates proceeds according to the proposed distributed MAC algorithm with a

6Note that, other suggestions of maintaining certain variable at its asymptotically optimal value, as discussed in

[13], do not give a better performance in this example.
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constant step size of α = 0.05. Convergence behavior of the sum utility is illustrated in Figure 3.4,

where sum utility is also measured using the same exponential moving average approach except

that initial value of the utility is set at 0.
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Figure 3.4: Convergence in sum utility of a system with K = 8 users.

Example 3: In this example, we use the system introduced in Example 1 of Section 3.4 to illus-

trate the design procedure of the p∗(K̂) function when users have multiple transmission options.

First, we consider the “Head” and the “Tail” regimes when K̂ is either small or large in value.

We will add subscript “H” (or “T”) to parameters of the “Head” (or the “Tail”) regime. Without

specifying the values of K and K, we first determine the optimal transmission direction vectors

in these two regimes as dH = [1, 0]T and dT = [0, 1]T . In other words, users should only use the

high rate option in the “Head” regime and only use the low rate option in the “Tail” regime. In

the “Head” regime, the channel can support the parallel transmissions of no more than 3 high rate

packets. The real channel parameter set of the equivalent single option system is given by {Crj}H
with Crj = 1 for j ≤ 2 and Crj = 0 otherwise. By following the design guideline of Section 3.3,

we get x∗
H = argmaxx(x + x2 + x3

2
)e−x = 2.27. We design the virtual packet to be equivalent

to a real high rate packet. Consequently, the virtual channel parameter set of the equivalent single

option system is given by {Cvj}H = {Crj}H . Choose ǫv = 0.01, we get γǫvH = JǫvH = 2, and

bH = 1.01. In the “Tail” regime, on the other hand, the channel can support the parallel trans-
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missions of no more than 12 low rate packets. The real channel parameter set of the equivalent

single option system is given by {Crj}T with Crj = 1 for j ≤ 11 and Crj = 0 otherwise. This

leads to x∗
T = argmaxx

∑11
i=0

xi+1

i!
e−x = 8.82. Because we already chose the virtual packet to be

equivalent to a high rate real packet, virtual channel parameter set of the equivalent single option

system in this case is given by {Cvj}T with Cvj = 1 for j ≤ 8 and Cvj = 0 otherwise. Therefore,

with ǫv = 0.01, we have γǫvT = JǫvT = 8. Luckily, this supports bT = 1.01.

Next, we determine the values of K and K. We first compare two schemes named the “high

rate option only” scheme and the “low rate option only” scheme. In the “high rate option only”

scheme, we fix d∗(K̂) at [1, 0]T for all K̂, and set p∗(K̂) = min
{

pmaxH ,
x∗

H

K̂+bH

}

, where pmaxH =

x∗

H

JǫvH+bH
. In the “low rate option only” scheme, we fix d∗(K̂) at [0, 1]T for all K̂, and set p∗(K̂) =

min
{

pmaxT ,
x∗

T

K̂+bT

}

, where pmaxT =
x∗

T

JǫvT+bT
. By comparing utility values and theoretical channel

contention measures of the two schemes, we choose K = 4 and K = 10.

Now consider the “Pinpoints Condition” for K ≤ K̂ ≤ K. For transmission direction vectors

d satisfying d1 > 0, with a small enough ǫv, we generally have Jǫv = 2. Therefore, so long as

d∗(K̂) does not transit too quickly to [0, 1]T , the condition of K̂ > Jǫv(d
∗(K̂)) should hold true.

Consequently, only two other key conditions need to be satisfied. The first condition is that q∗v(K̂)

of the selected pinpoints must be strictly decreasing in K̂. The second condition is that p∗(K̂)

found in the Interpolation Approach should be bounded away from 0 and 1. In addition, from the

optimal scheme, we can see that d∗(K̂) should transit toward [0, 1]T faster than a linear transition

from K̂ = K to K̂ = K. With these considerations, we choose the following 4 pinpoints. At the

edge of the “Head” and the “Tail” regimes, we have K̂0 = K = 4 with p∗(4) =
x∗

H

K+bH
[1, 0]T and

K̂3 = K = 10 with p∗(10) =
x∗

T

K+bT
[0, 1]T . We also choose other two pinpoints at K̂1 = 5 and

K̂2 = 6. We set transmission directions vectors d∗(5) and d∗(6) to be equal to the corresponding

optimal transmission direction vectors, i.e., direction vectors extracted from the optimal p vectors

that maximize the sum throughput at K = 5 and K = 6, respectively. Transmission probabilities of

these two pinpoints are chosen such that the resulting q∗v(K̂) equals K−K̂
K−K

q∗v(K)+ K̂−K

K−K
q∗v(K). Note

that, the purpose of designing pinpoints K̂1 = 5 and K̂2 = 6 is to help d∗(K̂) to transit quickly
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toward [0, 1]T . The rest of the p∗(K̂) function is completed using the Interpolation Approach for

K ≤ K̂ ≤ K. Theoretical channel contention measure q∗v(K̂) of the designed system is illustrated

in Figure 3.5.
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Figure 3.5: Theoretical channel contention measure q∗v as a function of the user number.

In Figure 3.6, we illustrate the theoretical sum throughput of the network as functions of the

number of users K when the transmission probability vectors of all users are set at the following

four different vectors: optimal p(K) that maximizes the sum throughput, designed p∗(K), p∗(K)

from the high rate option only scheme, and p∗(K) from the low rate option only scheme. Note

again that the optimal sum throughput is not necessarily achievable without the knowledge of K.

Assume that the high rate only scheme and the low rate only scheme should be reasonably good

for the “Head” and the “Tail” regimes, respectively. It can be seen from Figure 3.6 that, with the

help of the designed p∗(K̂) and q∗v(K̂) functions, the system can take advantage of the multiple

transmission options and maintain a reasonably good performance in term of sum throughput for

all user number values.

Next, we illustrate the convergence property of the proposed distributed MAC algorithm. As-

sume that the system has 8 users initially. Transmission probability vectors of all users are initial-

ized at [0, 0]T . In each time slot, according to its own transmission probability vector, each user

randomly determines whether a packet should be transmitted or not, and if the answer is positive,
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Figure 3.6: Sum throughput of the system as functions of the user number under different transmission

probability vector settings.

which transmission option should be used. The receiver measures qv using the following exponen-

tial moving average approach. qv is initialized at qv = 1. In each time slot, an indicator variable

Iv ∈ {0, 1} is used to represent the success/failure status of the virtual packet reception. qv is then

updated by qv = (1− 1
300

)qv +
1

300
Iv, and is fed back to the users at the end of each time slot. Each

user then adapts its transmission probability vector according to the proposed MAC algorithm with

a constant step size of α = 0.05.

We assume that the system experiences three stages. At Stage one, the system has 8 users.

The system enters Stage two at the 3001st time slot, when 6 more users enter into the system with

their transmission probability vectors initialized at [0, 0]T . Then at the 6001st time slot, the sys-

tem enters Stage three when 8 users exit the system. Convergence behavior in sum throughput of

the system is illustrated in Figure 3.7. The corresponding optimal throughput and the theoretical

throughput at the designed equilibrium are provided as references. In Figure 3.8, we also illustrate

entries of the target transmission probability vector calculated by the users together with the corre-

sponding theoretical values. Note that the simulated throughput and probability values presented

in the figures are measured using the same exponential averaging approach explained above. From

Figures 3.7 and 3.8, we can see that the proposed MAC algorithm can indeed help users to adapt to

the changes of stages and to adjust their transmission probability vectors to the new equilibrium.
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Figure 3.7: Convergence in sum throughput of the system. User number changed from 8 to 14 and then to

6 over the three stages.
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Figure 3.8: Entries of the transmission probability vector target and their corresponding theoretical values.

According to the Head and Tail Condition, the system degrades to an equivalent single option

system when K ≤ K and K ≥ K. It is generally expected that transmission direction vectors of

the “Head” and the “Tail” regimes should be different, i.e., d(K) 6= d(K). In Example 3.5, we

found one virtual packet design that supports both bH = 1.01 in the “Head” regime and bT = 1.01

in the “Tail” regime. One may think that such a lucky result should be rare. Surprisingly, according

to our observations, in most of the problems of interest, even though one may not always be able to

get the perfect result of bH = bT ≈ 1, a single virtual packet can often be designed to support close

to ideal values on JǫvH , bH , JǫvT , and bT . While it is possible to extend the system design and to
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improve design flexibility by including the transmissions of multiple (different) virtual packets in

each time slot, because performance improvement provided by such an extension is often marginal,

we choose to skip the corresponding discussions in this dissertation.

3.6 Conclusion

We investigated distributed multiple access networking with an unknown finite number of ho-

mogeneous users. An enhanced physical-link layer interface is considered where each link layer

user can be equipped with multiple transmission options. With a generally modeled link layer

channel, we proposed distributed MAC algorithms to adapt the transmission schemes of the users

to maximize a chosen symmetric network utility. Convergence property of the proposed MAC

algorithms is proven under quite mild conditions. While there is no theoretical guarantee on the

optimality of the proposed MAC algorithms, simulation results suggest that performances of the

proposed MAC algorithms are often not too far from optimal.
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Chapter 4

Distributed MAC Algorithm for Hierarchical Users

Diversity of wireless devices and applications often requires wireless networks to provide dif-

ferentiated services to users in the sense of supporting user groups with different priority lev-

els. Take the enhanced DCF (EDCF) protocol in 802.11e for example [27]. Users (or traffics) in

802.11e EDCF can be assigned to four different priority levels with different adaptation schemes

on their backoff windows. A high priority user generally maintains a backoff window smaller in

size than that of a low priority user. Consequently, when messages are available, transmission

probability of a high priority user is always larger in value than that of a low priority user. This

gives high priority users an advantage over low priority users in getting their packets through the

shared wireless channel. However, when the system has a large number of users whose transmis-

sion activities cause a significant level of contention, packet transmission success probability of

each user can still be driven down close to zero, irrespective of the priority level of the user.

Recent trend of dynamic spectrum access (DSA) created the new demand of supporting hi-

erarchical user structure in wireless systems [28][29]. Take channel sharing with the primary-

secondary user structure for example. It is expected that secondary users should access the channel

only if they can guarantee no disturbance to communication activities of the primary users. Ex-

isting DSA literature often assumes that secondary users should be able to identify whether an

existing transmission should belong to a primary user or not. Disruptive interference is often

avoided with online coordinations between primary and secondary users or within the secondary

user group. There is little discussion on how to support hierarchical user groups in a random ac-

cess environment, where users do not exchange information with each other directly and packet

collision is part of the natural transmission outcomes.

In this chapter, we extend the distributed MAC framework proposed in Chapter 3 to support

hierarchical user groups in a time-slotted random multiple access system [30]. The hierarchical

user structure is established in the following senses. First, when the number of primary users is
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small, the MAC protocol guarantees that transmission success probability of each primary user

will stay above a pre-determined threshold no matter how many secondary users are competing for

the channel. Second, when the number of primary users is large, the MAC protocol guarantees that

transmission probability of each secondary user will be driven down to zero. However, the MAC

protocol does not reject channel access to any primary user even though transmission activities of

the primary users naturally lead to a low packet transmission success probability. We introduce

the distributed MAC framework first for random access systems where each user only has a single

transmission option. The MAC framework is then extended to systems where each user is equipped

with multiple transmission options. Simulation results are provided to demonstrate performances

of the distributed MAC algorithms with various system settings.

4.1 Supporting Hierarchical Users with Single Transmission

Option

In this section, we will show that the distributed MAC algorithm presented in Chapter 3 can

be extended to support hierarchical user groups in random multiple access systems. To simplify

the discussion, we assume that each user only has a single transmission option. In this case, each

user is associated with a scalar transmission probability parameter. The two parameter sets used

to model the link layer multiple access channel are simplified to {Crj}, termed the “real channel

parameter set”, and {Cvj}, termed the “virtual channel parameter set” [8, Section 4.2]. If all users

have the same transmission probability p, and the system actually has K users, “channel contention

measure”, which is the success probability of the virtual packet, is given by

qv(p,K) =
K
∑

j=0

(

K

j

)

pj(1− p)K−jCvj. (4.1)

Assume that the system now has Kp primary users and Ks secondary users. The values of

Kp and Ks are unknown to the users as well as to the receiver. However, each user still views

the system as one with homogeneous users. On one hand, a primary user, for example user kp,
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intends to maximize a utility of Up(K̂, pp, {Crj}), under the assumption that the system contains

K̂ homogeneous primary users and all users have the same transmission probability pp. Based on

this objective, as explained in Section 3.3, user kp should design its desired transmission probability

function as

p∗p(K̂) =
x∗
p

max{K̂, K̂pmin}+ bp
, (4.2)

where K̂pmin and bp are design parameters whose values are determined by following the guideline

given in Section 3.3, and x∗
p is obtained from the following asymptotic utility optimization.

x∗
p = argmax

x
lim

K̂→∞
Up

(

K̂,
x

K̂
, {Crj}

)

. (4.3)

With the p∗p(K̂) function given by (4.2), and the qv(p,K) function defined by (4.1), the “theoretical

channel contention measure” function q∗vp(K̂) for the primary users is given by

q∗vp(K̂) =
p∗p(K̂)− p∗p(⌊K̂⌋+ 1)

p∗p(⌊K̂⌋)− p∗p(⌊K̂⌋+ 1)
qv(p

∗
p(K̂), ⌊K̂⌋)

+
p∗p(⌊K̂⌋)− p∗p(K̂)

p∗p(⌊K̂⌋)− p∗p(⌊K̂⌋+ 1)
qv(p

∗
p(K̂), ⌊K̂⌋+ 1), (4.4)

where ⌊K̂⌋ represents the largest integer below K̂.

On the other hand, a secondary user, for example user ks, intends to maximize a utility of

Us(K̂, ps, {Crj}), under the assumption that the system contains K̂ homogeneous secondary users

and all users have the same transmission probability ps. Based on this objective, user ks should

design its desired transmission probability function as

p∗s(K̂) =
x∗
s

max{K̂, K̂smin}+ bs
, (4.5)

where K̂smin and bs are design parameters whose values are determined by following the guideline

given in Section 3.3. The value of x∗
s, however, is determined differently from that of the primary

users. Let Ds ≥ 1 be a pre-determined discount factor. x∗
s for the secondary users is obtained by
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an asymptotic utility optimization, but is also upper bounded by x∗
p/Ds.

x∗
s = min

{

argmax
x

lim
K̂→∞

Us

(

K̂,
x

K̂
, {Crj}

)

,
x∗
p

Ds

}

. (4.6)

Under the assumption that the system contains K̂ homogeneous secondary users and all users have

the same transmission probability ps, with p∗s(K̂) function given by (4.5) and qv(ps, K) function

given by (4.1), the “theoretical channel contention measure” function q∗vs(K̂) for the secondary

users is given by

q∗vs(K̂) =
p∗s(K̂)− p∗s(⌊K̂⌋+ 1)

p∗s(⌊K̂⌋)− p∗s(⌊K̂⌋+ 1)
qv(p

∗
s(K̂), ⌊K̂⌋)

+
p∗s(⌊K̂⌋)− p∗s(K̂)

p∗s(⌊K̂⌋)− p∗s(⌊K̂⌋+ 1)
qv(p

∗
s(K̂), ⌊K̂⌋+ 1). (4.7)

With the above design, the distributed MAC algorithm operates as introduced in Chapter 3, ex-

cept that each primary user should replace q∗v(K̂) and p∗(K̂) functions in the algorithm by q∗vp(K̂)

and p∗p(K̂), respectively, and each secondary user should replace q∗v(K̂) and p∗(K̂) functions in

the algorithm by q∗vs(K̂) and p∗s(K̂), respectively. The proposed MAC algorithm supports the

hierarchical user structure in the following sense.

Theorem 9. Let Kp be the number of primary users in the system. The value of Kp is unknown to

the users as well as to the receiver. With the proposed MAC algorithm, the system should possess

a unique equilibrium. Let channel contention measure at the equilibrium be denoted by qv. If

q∗vp(Kp) ≥ q∗vs(∞), on one hand, qv ≥ q∗vs(∞) must hold at the equilibrium. If q∗vp(Kp) < q∗vs(∞),

on the other hand, transmission probabilities of the secondary users should equal zero at the

equilibrium.

The proof of theorem 9 is given in AppendixB.

Note that, because the discount factor satisfies Ds ≥ 1, transmission probability of a secondary

user should be no larger than that of a primary user at the equilibrium. This consequently implies

that q∗vs(∞) ≥ q∗vp(∞). Also note that, as shown in (4.6), if argmaxx limK̂→∞ Us

(

K̂, x

K̂
, {Crj}

)

>
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x∗

p

Ds
, we should have x∗

s =
x∗

p

Ds
. In this case, the value of x∗

s is set according to the channel yield-

ing requirement. The objective of maximizing utility Us

(

K̂, x

K̂
, {Crj}

)

for the secondary users

becomes irrelevant. This is a disadvantage for the secondary users due to the hierarchical structure.

4.2 Supporting Hierarchical Users with Multiple Transmission

Options

Now assume that all users are equipped with M transmission options plus an idling option.

Each user, for example user k, is associated with a transmission probability vector pk = pkdk,

where pk is the transmission probability and dk is the transmission direction vector. Under the

assumption that all users have the same transmission direction vector d, the link layer multiple

access channel is modeled using two sets of parameter functions, namely the “real channel param-

eter function set” {Crij(d)} and the “virtual channel parameter function set” {Cvj(d)} [8, Section

4.3].

Let the numbers of primary and secondary users of the system be Kp and Ks, respectively. The

values of Kp and Ks are unknown to the users as well as to the receiver. We assume that each user

still views the system as one with homogeneous users. A primary user, for example user kp, intends

to maximize a utility of Up(K̂, ppdp, {Crij(dp)}), under the assumption that the system contains K̂

homogeneous primary users and all users have the same transmission probability vector pp = ppdp.

Based on this objective, user kp should design its desired transmission probability vector function

p∗
p(K̂) and calculate its theoretical channel contention measure function q∗vp(K̂) using the search-

assisted approach presented in Section 3.4. The design guarantees that q∗vp(K̂) should be strictly

decreasing in K̂ for K̂ ∈ [K̂pmin,∞), where K̂pmin is a design parameter explained in Section 3.4.

Let us write p∗
p(K̂) = p∗p(K̂)d∗

p(K̂). It was shown in Section 3.4 that there exists a user number

upper bound Kp, such that for all K̂ ≥ Kp, we have

d∗
p(K̂) = d∗

p(Kp), p∗p(K̂) =
x∗
p

K̂ + bp
, (4.8)
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where bp is a design parameter whose values should be determined by following the guideline

given in Section 3.3, and x∗
p is obtained from the following asymptotic utility optimization.

x∗
p = argmax

x
lim

K̂→∞
Up

(

K̂,
x

K̂
d∗
p(Kp), {Crij(d

∗
p(Kp))}

)

. (4.9)

In other words, for K̂ ≥ Kp, the desired transmission direction vector becomes invariant to the

estimated number of users, and the desired transmission probability takes a form similar to the case

when each user only has a single transmission option.

A secondary user, for example user ks, intends to maximize a utility of Us(K̂, psds, {Crij(ds)}),

under the assumption that the system contains K̂ homogeneous secondary users and all users have

the same transmission probability ps = psds. While user ks still uses the search-assisted approach

to design its desired transmission probability vector function p∗
s(K̂) and to calculate its theoretical

channel contention measure function q∗vs(K̂), we require that p∗
s(K̂) function should satisfy the

following constraints. Recall that p∗
p(K̂) = p∗p(K̂)d∗

p(K̂) is the desired transmission probability

vector function for the primary users. Let p∗
s(K̂) = p∗s(K̂)d∗

s(K̂). Let Ds ≥ 1 be the discount

factor. We require that secondary users should choose a user number threshold Ks ≥ Kp to satisfy

the following constraint for all K̂ ≥ Ks,

d∗
s(K̂) = d∗

p(K̂) = d∗
p(Kp), p∗s(K̂) =

x∗
s

K̂ + bs
, (4.10)

where bs is a design parameter whose values should be determined by following the guideline

given in Section 3.3, and x∗
s is obtained by

x∗
s = min

{

x∗
p

Ds

, argmax
x

lim
K̂→∞

Us

(

K̂,
x

K̂
d∗
s(Kp), {Crij(d

∗
s(Kp))}

)

}

.

In other words, in addition to asymptotic utility optimization, we also make sure that x∗
s is upper-

bounded by
x∗

p

Ds
. As shown in Section 3.4, one often needs to choose several pinpoints first for

the p∗
s(K̂) function and then to complete the function using an interpolation approach. In this
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design procedure, equation (4.11) essentially sets a special pinpoint for p∗
s(K̂) at K̂ = Ks (and

sets the p∗
s(K̂) function for K̂ ≥ Ks). The rest of the function still needs to be designed using

the search-assisted approach to guarantee that the corresponding theoretical channel contention

measure function q∗vs(K̂) should be strictly decreasing in K̂ for K̂ ∈ [K̂smin,∞), where K̂smin is

a design parameter explained in Section 3.3.

With the above design approach, the distributed MAC algorithm operates as introduced in

Chapter 3, except that each primary user should replace q∗v(K̂) and p∗(K̂) functions in the al-

gorithm by q∗vp(K̂) and p∗
p(K̂), respectively, and each secondary user should replace q∗v(K̂) and

p∗(K̂) functions in the algorithm by q∗vs(K̂) and p∗
s(K̂), respectively. The proposed MAC algo-

rithm supports the hierarchical user structure in the following sense.

Theorem 10. Let Kp be the number of primary users in the system. The value of Kp is unknown

to the users as well as to the receiver. Let qv be the channel contention measure at an equilibrium

of the system. With the proposed MAC algorithm, if q∗vp(Kp) ≥ q∗vs(∞), then qv ≥ q∗vs(∞) must

hold. If q∗vp(Kp) < q∗vs(∞), on the other hand, then transmission probabilities of the secondary

users should equal zero at the equilibrium.

Proof of the theorem is quite straightforward and is therefore skipped.

Note that there are two key differences between the MAC algorithms presented in Sections

4.1 and 4.2. First, when users are equipped with multiple transmission options, we can no longer

prove that the system should possess a unique equilibrium, even though we believe this should

be the case under mild conditions. The challenge comes from the fact that, due to generality of

the system model, it is difficult to compare channel contention measures when users change their

transmission direction vectors. Second, in the MAC algorithm presented in Section 4.1, channel

yielding constraint on the p∗s(K̂) function is applied for all K̂ values. In the MAC algorithm pre-

sented in Section 4.2, however, channel yielding constraint on the p∗
s(K̂) function is applied only

for K̂ ≥ Kp. While the latter approach gives more freedom in designing the p∗
s(K̂) function, it

generally requires the search-assisted design approach as introduced in [8, Section 4.3] even when
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each user is only equipped with a single transmission option. The approach presented in Section

4.1, on the other hand, provides closed form expressions for both p∗p(K̂) and p∗s(K̂) functions.

In the DSA literature, hierarchical channel sharing approaches are categorized into “overlay”

and “underlay” schemes [29]. In an overlay scheme, secondary users can access the channel with

significant transmission power but only when primary users are not present. In an underlay scheme,

on the other hand, secondary users can access the channel under the constraint that their aggregated

interference should be controlled below a pre-determined level. The distributed MAC algorithms

introduced in Sections 4.1 and 4.2 of this paper can be viewed as an underlay scheme for ran-

dom access networks where aggregated “interference” of the users is evaluated using the designed

channel contention measure.

4.3 Simulation Results

In this section, we present simulation results to demonstrate effectiveness of the proposed MAC

algorithms in supporting hierarchical user groups.

Example 1: In the first example, we consider a random multiple access system where each user

is equipped with only a single transmission option. The channel is a classical collision channel that

can support the successful transmission of no more than one user in a time slot if all other users

idle. Assume that the virtual packet should be identical to a real packet. Virtual packet reception

should be regarded as successful if and only if all users idle in a time slot. Consequently, channel

contention measure, which is the success probability of the virtual packet, should equal the idling

probability of the collision channel.

Assume that primary users intend to maximize the symmetric throughput if there is no sec-

ondary user in the system. In other words, under the assumption that there are K primary users,

and all users have the same transmission probability p, utility function of the primary users is given

by Up(K, p) = p(1 − p)K−1. According to [8, Section 4.2], we can choose the desired transmis-

sion probability function of the primary users as p∗p(K̂) = 1

K̂+1.01
, for K̂ ≥ 1. This implies that

bp = 1.01 and x∗
p = 1. Consequently, the theoretical channel contention measure function for
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the primary users is given by q∗vp(K̂) =
(

1− 1

K̂+1.01

)K̂

. Let the discount factor be Ds = 1.15.

Assume that the secondary users also intend to maximize the symmetric throughput of the sys-

tem. However, due to channel yielding requirement, the secondary users should choose the desired

transmission probability function as p∗s(K̂) = 1/Ds

K̂+1.01
, for K̂ ≥ 1. This implies that bs = 1.01 and

x∗
s =

x∗

p

Ds
= 1

1.15
= 0.87. Consequently, the function of theoretical channel contention measure for

the secondary users is given by q∗vs(K̂) =
(

1− 0.87

K̂+1.01

)K̂

. Note that q∗vs(K̂) ≥ q∗vs(∞) = e−0.87.

In Figure 4.1, we plotted the theoretical channel contention measure functions for primary users

q∗vp(K̂) and for secondary users q∗vs(K̂). It can be seen that, key idea of supporting the hierarchical
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Figure 4.1: Theoretical channel contention measure functions for primary and secondary users.

user structure is to raise the tail of the q∗vs(K̂) function for the secondary users, such that aggregated

impact of the secondary users on the idling probability of the channel is well controlled no matter

how many secondary users want to access the channel.

In Figure 4.2, we plotted channel contention measure of the system at its unique equilibrium

as functions of the number of primary users Kp and the number of secondary users Ks. The figure

shows that, when the number of primary users is small Kp ≤ 3, we have q∗vp(Kp) > q∗vs(∞) = 0.42.

In this case, secondary users can access the channel. But the system keeps the channel idling

probability above q∗vs(∞) = 0.42 irrespective of the number of secondary users. When the number
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of primary users is large Kp > 3, on the other hand, we have q∗vp(Kp) < q∗vs(∞). In this case

transmission probabilities of the secondary users are kept at zero, and therefore qv is not affected

by the number of secondary users.

Example 2: The second example is extended from Example 1 of Section 3.4. Consider a time-

slotted multiple access network over a multi-packet reception channel. Each user is equipped with

two transmission options where the first option is a high-rate option and the second option is a

low-rate option, respectively. If all packets are encoded using the low-rate option, then the channel

can support the parallel transmissions of no more than 12 packets. We assume that one packet from

the high-rate option is equivalent to the combination of 4 low-rate packets. Therefore, the channel

can support the parallel transmissions of n1 high-rate packets plus n2 low-rate packets if and only

if 1
3
n1 +

1
12
n2 ≤ 1. As explained in 1 of Section 3.4, we design the virtual packet to be equivalent

to a high rate real packet. The two sets of channel parameter functions {Crij(d)} and {Cvj(d)}

can therefore be derived accordingly.

We assume that the primary users intend to maximize the sum system throughput. That is, if

the system has K homogeneous users and all users have the same transmission probability vector

p = [p1, p2]
T = p[d1, d2]

T , utility function of the primary users is given by
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Up(K,p, {Crij(d)}) = K
2

∑

i=1

diri

×
K−1
∑

j=0

(

K − 1

j

)

pj+1(1− p)K−1−jCrij(d), (4.11)

where r1 = 4, r2 = 1 are the rate parameters of the two options.

According to 1 of Section 3.4, the desired transmission probability vector function p∗
p(K̂)

for the primary users is designed as follows. For K̂ ≤ 2, we set p∗
p(K̂) = 2.27

2+1.01
[1, 0]T . For

2 < K̂ ≤ 4, we set p∗
p(K̂) = 2.27

K̂+1.01
[1, 0]T . For K̂ ≥ 10, we set p∗

p(K̂) = 8.82

K̂+1.01
[0, 1]T , which

implies that x∗
p = 8.82. Note that once p∗

p(K̂) function is determined for K̂ ≤ 4 and K̂ ≥ 10,

the theoretical channel contention measure function q∗vp(K̂) can be calculated accordingly. For

4 ≤ K̂ ≤ 10, we choose two pinpoints at K̂ = 5 and K̂ = 6. We set transmission direction vectors

d∗
p(5) and d∗

p(6) for the pinpoints at the same direction vectors corresponding to the probability

vectors that maximize the utility (4.11). With d∗
p(5), d

∗
p(6), and d∗

p(4) = [1, 0]T , d∗
p(10) = [0, 1]T ,

we then set d∗
p(K̂) for 4 ≤ K̂ ≤ 10 such that d∗

p(K̂) transit linearly in K̂ between the neighboring

pinpoints. After that, we choose the transmission probability function p∗p(K̂) for 4 ≤ K̂ ≤ 10 such

that the resulting q∗vp(K̂) function is linear in K̂ for 4 ≤ K̂ ≤ 10.

Let the discount factor be Ds = 1.1. For the secondary users, we assume that they also intend

to maximize sum throughput of the system under the assumption that the system only contains

homogeneous secondary users. With the channel yielding requirement, we design the desired

transmission probability vector function p∗
s(K̂) for the secondary users as follows. Let p∗

s(K̂) =

p∗
p(K̂) for K̂ ≤ 4. For K̂ ≥ 18, we set p∗

s(K̂) = 8.82/Ds

K̂+1.01
[0, 1]T = 8.02

K̂+1.01
[0, 1]T . For 4 ≤ K̂ ≤ 18,

we simply set d∗
s(K̂) = d∗

p(K̂), and then choose p∗s(K̂) such that the resulting theoretical channel

contention measure function q∗vs(K̂) is linear in K̂ for 4 ≤ K̂ ≤ 18.

Figure 4.3 shows the theoretical channel contention measure functions q∗vp(K̂) and q∗vs(K̂),

respectively. In this example, while we raised the tail of the q∗vs(K̂) function for the secondary

users, the section of q∗vs(K̂) for K̂ ≤ 4 remains the same as q∗vp(K̂). Therefore, secondary users

and primary users are treated equally if the total number of users is no larger than 4. Such a design
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Figure 4.3: Theoretical channel contention measure functions for primary and secondary users.

is feasible because of a relatively small-valued discount factor Ds, so that q∗vs(4) > q∗vs(∞) can be

satisfied. The design is also enabled due to the flexibility of the search-assisted design approach.

In this example, although we are not able to prove that equilibrium of the system should be

unique, it is indeed the case according to numerical search. In Figure 4.4, channel contention

measure qv at the equilibrium is plotted as a function of the number of primary users Kp and the

number of secondary users Ks. It can be seen that, when the number of primary users is small

p
K

s
K

v
q

Figure 4.4: Channel contention measure at the equilibrium as a function of the number of primary users

and the number of secondary users.

Kp < 12, we have q∗vp(Kp) > q∗vs(∞) = 0.59. In this case, the system allows secondary users to
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access the channel but keeps the channel contention measure qv above q∗vs(∞) = 0.59 irrespective

of the number of secondary users. When the number of primary users is large Kp ≥ 12, on the

other hand, we have q∗vp(Kp) < q∗vs(∞). In this case transmission probabilities of the secondary

users are kept at zero, and therefore qv is not affected by the number of secondary users.

Next, we assume that the system has 6 primary users and 10 secondary users initially. Trans-

mission probabilities of the users are initialized at [0, 0]T . In each time slot, according to its own

associated probability vector, a user randomly determines whether to transmit a packet or not, and

if the answer is positive, which option should be used. The receiver uses an exponential moving

average approach to measure qv. More specifically, qv is initialized at qv = 1. In each time slot,

an indicator variable Iv ∈ {0, 1} is used to represent the success/failure status of the virtual packet

reception. qv is then updated as qv = (1 − 1
300

)qv +
1

300
Iv, and is fed back to the transmitters at

the end of each time slot. With the updated qv, each user adapts its transmission probability vector

according to the MAC algorithm proposed in Section 4.2 with a constant step size of α = 0.05.

We assume that the system experiences three stages. At the beginning in Stage one, the system

has 6 primary users. The system enters Stage two after the 3000th time slot, when 6 more primary

users enter the system with their transmission probability vectors initialized at [0, 0]T . After the

6000th time slot, the system enters Stage three when 9 primary users exit the system. Throughout

the three stages, the number of secondary users is kept at 10. Convergence behavior in actual

channel contention measure qv is illustrated in Figure 4.5 together with the theoretical qv at the

corresponding equilibria of the three stages. The figure demonstrates that the system can quickly

adapt to the user number changes and keep channel contention at the desired level. In Figure 4.6,

we also illustrated entries of the transmission probability vector targets calculated by the primary

and the secondary users. Note that values of the simulated variables presented in Figures 4.5 and

4.6 are calculated using the same exponential averaging approach explained above. It can be seen

that the system is reasonably responsive to user number changes and can quickly lead transmission

probability vectors of both primary users and secondary users to their corresponding theoretical
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Figure 4.5: Channel contention measure of the system through three stages.
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Figure 4.6: Transmission probabilities of primary and secondary users through three stages. Dashed lines

represent the corresponding values at the equilibrium.

equilibrium values. The hierarchical user structure can be seen clearly in the sense that secondary

users always transmit with a low rate option at a relatively low probability.

4.4 Conclusion

We proposed a distributed MAC framework to support hierarchical user groups in random

multiple access systems. The MAC algorithms do not require direct message exchange among

users. Users do not need to know the number of primary and secondary users in the system.

Users also do not need the capability of identifying whether a transmitted packet should belong

to a primary user or to a secondary user. The proposed MAC algorithm adapts the transmission
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scheme of each user by comparing the actual channel contention measure to a theoretical channel

contention measure function. With the simple idea of raising the tail of the theoretical channel

contention measure function for the secondary users, aggregated impact of the secondary users on

contention level of the channel is well controlled no matter how many secondary users compete for

the channel. We extended the proposed MAC algorithm to systems where each user is equipped

with multiple transmission options. Simulation results showed that the proposed MAC algorithm

can maintain the primary-secondary user structure and can also be reasonably responsive in a

dynamic environment with users joining and existing the system.
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Chapter 5

Distributed MAC Algorithm for Multiple Channels

In this chapter, we introduce an ongoing research work that is not yet completed. We propose

an extension to the distributed MAC algorithm of Chapter 3 for a multiple access network with

multiple non-interfering channels. A preliminary illustration of its potential convergence and per-

formance analysis is presented. We still assume that the system contains an unknown finite number

of homogeneous users. However, differs from the single channel case investigated in Chapter 3,

in a multi-channel system, enforcing the assumption that homogeneous users should converge to

the same transmission scheme at equilibrium becomes suboptimal. For example, let us consider

a distributed multiple access network with K homogeneous users sharing two parallel collision

channels. Assume that K is even-valued. Let each user be equipped with one transmission option

for each channel. Assume that users intend to maximize the symmetric sum throughput. If users

are forced to have the same transmission schemes at equilibrium, then the optimal solution is to

let all users transmit in both channels, at a probability of 1
K

for each channel. This leads to a sum

throughput of 2
(

1− 1
K

)K−1
. However, if we partition users into two groups, each with K

2
users

accessing only one channel. Then each user should transmit in one channel at a probability of 2
K

.

The sum throughput in this case equals 2
(

1− 2
K

)
K
2
−1

, which is larger than 2
(

1− 1
K

)K−1
. In other

words, despite the fact that users are homogeneous and channels are homogeneous, a distributed

MAC algorithm should still guide users to heterogeneous transmission schemes at equilibrium. In

this chapter, we handle such a problem by assuming that each user should be assigned to only one

channel. On one hand, for users being assigned to one channel, we adopt the distributed MAC

algorithm presented in Chapter 3 to guide their transmission probability vectors toward a common

target. On the other hand, we also propose a distributed algorithm to adapt channel assignments

of the users toward the objective of balancing the loads of the channels. A scheme of conver-

gence analysis is provided to illustrate the idea of a potential proof that the extended distributed
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MAC algorithm should lead the system to a desired equilibrium. Simulation results are provided

to demonstrate the performance of the proposed MAC algorithm.

The rest of the chapter is organized as follows. In Section 5.1, we extend the distributed MAC

algorithm to the case of multiple non-interfering channels and provide an illustration scheme of

convergence analysis. Simulation results are presented in Section 5.2 to illustrate the performance

of the proposed MAC algorithm under various network settings.

5.1 Distributed MAC Over Multiple Channels

In this section, we extend the distributed MAC algorithm presented in Chapter 3 to a multiple

access network with K homogeneous users and W non-interfering channels. Note that, while the

users are homogeneous, the channels can be heterogeneous. Assume that K is unknown to the

users and to the receiver. Each user is backlogged with a message queue and is equipped with M

transmission options plus an idling option for each channel.

We assume that time is partitioned into frames, with detail of the partitioning approach being

explained later. In each time frame, each user can assign itself to one and only one channel. Users

can change their channel assignments at the beginning of each time frame, but not within a time

frame. Let us first focus on one arbitrary time frame. Because channel assignments are fixed within

the time frame, the multi-channel system essentially operates as multiple parallel single-channel

systems. Let wk denote the channel chosen by user k. We use Kw to denote the number of users

being assigned to channel w. Therefore,
∑

w Kw = K. We will use a superscript [w] to denote

parameters corresponding to channel w.

In each time slot, the receiver assumes the existence of a virtual packet for each channel. While

virtual packets assumed in different time slots for the same channel are identical, virtual packets

assumed for different channels can be different. Let q
[w]
v be the contention measure, which is

the success probability of the virtual packet, for channel w. We assume that the receiver should

obtain estimated contention measures for all channels and feed them back to the users. Under the

assumption that all users should adopt the same transmission direction vector d for channel w,
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we model the channel using two sets of parameter functions, the “real channel parameter function

set” {C [w]
rij (d)} and the “virtual channel parameter function set” {C [w]

vj (d)}. Both {C [w]
rij (d)} and

{C [w]
vj (d)} for all w are supposed to be known at the receiver.

Consider an arbitrary user, for example user k. If user k is assigned to channel wk = w, then

user k should maintain a transmission probability vector p
[w]
k for channel w. We write p

[w]
k =

p
[w]
k d

[w]
k , where p

[w]
k is the transmission probability and d

[w]
k is the transmission direction vector of

user k for channel w. We assume that users intend to maximize a sum utility denoted by

U =
∑

w

U [w](Kw,p
[w], {C [w]

rij (d
[w])}). (5.1)

Here U [w](Kw,p
[w], {C [w]

rij (d)
[w]}) is the utility function of channel w under the assumption that

Kw users are assigned to channel w, and all the Kw users should adopt the same transmission

probability vector p[w] = p[w]d[w] whose transmission direction vector is d[w]. Given the utility

function of each channel, for example channel w, the system should design two key functions,

namely the “theoretical transmission probability vector” function p∗[w](Kw), and the “theoretical

channel contention measure” function q
∗[w]
v (Kw). These functions should be designed according

to the guideline given in Chapter 3 such that the distributed MAC algorithm presented in Chapter

3 can be adopted to help users in channel w to adapt their transmission probability vectors within

one time frame toward the designed target of p∗[w](Kw).

Now let us consider multiple time frames. Let T be a predetermined constant. We say that time

slot t1 belongs to the nth time frame, if the following condition is satisfied7.

n ≤ 1

T

t1
∑

t=0

α(t) < n+ 1, (5.2)

7Here t1 is the value of the time counter introduced in the distributed MAC algorithm presented in Chapter 3
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where α(t) is the step size parameter of time slot t and T is a constant. During each time frame,

channel assignment is fixed. Therefore, multi-channel system converts to a system with parallel

channels during one time frame.

We continue our discussion in two parts, first we investigate homogeneous channels and then

consider heterogeneous channels.

5.1.1 Homogeneous Channels

In this section, we consider the case of homogeneous channels and assume that virtual packets

designed for different channels are identical. Upon receiving q
[w]
v , users in channel w calculates an

estimated number of users in channel w, denoted by K̂w. At the beginning of a time frame, based

on estimated number of users in each channel, each user say user k transmitting in channel wk,

randomly decides to switch to another channel with probability psw. The channel that user k may

switch to, should have the least estimated number of users and this number should be ǫK-less than

the estimated number of users in channel wk, where 1 < ǫK < 2 is a positive constant. In other

words, user k may switch to channel wl if

K̂ [wl] ≤ K̂ [w] for w = 1, . . . ,W

K̂ [wl] + ǫK < K̂ [wk].

(5.3)

The value of ǫK depends on T and convergence rate of probability vectors. Probability of switching

from one channel to another one may not be the same for different channels, which means psw can

be a function of the difference between the estimated number of users in the current channel and

in the channel that the user may switch to. If no user can find a channel with ǫK-less estimated

number of users than the currently assigned channel of the user, then no switching should take

place.

The extended distributed MAC algorithm for multiple channels operates as follows. At the

beginning of the first time frame, each user randomly assigns itself to a channel. Next, users

follow the presented MAC algorithm in Chapter 3 during the time frame. Then, at the beginning of
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each time frame, each user say user k in channel w randomly decides to switch to channel wl with

probability psw if (5.3) is satisfied. After possible change of channel assignment at the beginning

of a time frame, users then fix their channel assignments in the rest of the time frame and follow

the MAC algorithm presented in Chapter 3.

To illustrate the potential convergence property of the distributed MAC algorithm, let us as-

sume that each time frame is long enough such that transmission probability vectors of users in

each channel should converge asymptotically to the designed equilibrium at the end of the time

frame. Consequently, with a probability close to one, users should be able to correctly estimate

the number of users assigned to each channel. Under this assumption, the process of channel as-

signment transitions becomes an absorbing Markov chain [31]. More specifically, on one hand,

if the number of users of different channels are not balanced, then at the beginning of each time

frame, users should randomly switch their channel assignments toward the under-loaded channels.

In expectation, the system should move in the direction of balancing the loads of the channels. On

the other hand, once the system reaches an “absorbing state” in the sense that the number of users

of any channel is not larger than the number of users of another channel, then with a probability

close to one, users should maintain their current channel assignment. In this case, loads of the

channels should remain balanced, or in other words, the system should stay at an absorbing state.

In the non-asymptotic case when the length of each time frame is finite and the system adopts

a small constant step size, users should have a high probability to correctly estimate the number

of users of each channel at the end of each time frame. Therefore, with a high probability, the

system should converge toward the set of absorbing states at the beginning of each time frame.

While the probability of the system leaving the absorbing states is non-zero, such a probability can

be reduced arbitrarily close to zero by increasing the length of the time frame and decreasing the

value of the step size. Because the system should have a high probability to converge toward the

set of absorbing states once it leaves the set, according to the theory of absorbing Markov chain

[31], it is reasonable to expect that convergence to the absorbing states can be proven both in strong

and weak senses.
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5.1.2 Heterogeneous Channels

When the channels are heterogeneous, it is no longer appropriate to compare loads of the

channels by comparing their estimated number of users. Instead, per user utility of each channel

is a more direct measure of its load. To make a decision for channel assignment, each user, say

user k, should calculate the per user utility value of every channel, denoted by 1

K̂w
U [w](K̂w) for

channel w. Let ǫU be a predetermined positive constant satisfying 1 < ǫU < 2. Assume that user k

is currently assigned to channel w. At the beginning of a time frame, user k may switch to channel

wl if the following inequality holds true

2− ǫU

K̂wl
+ 1

U [wl](K̂wl
+ 1) +

ǫU − 1

K̂wl
+ 2

U [wl](K̂wl
+ 2) >

1

K̂w

U [w](K̂w). (5.4)

The left-hand-side of (5.4) is an estimated per user utility if channel wl has ǫU more users. The

estimation is obtained using a linear interpretation approach because ǫU is not integer-valued. The

criterion of (5.4) basically states that, in order for user k to consider switching to channel wl, the

per user utility of channel wl should be better than that of channel w even if channel wl adds ǫU

more users. Note that the criteria of (5.3) and (5.4) are similar in principle. The difference is that,

while channel load is measured by the number of users in (5.3), it is measured by per user utility in

(5.4). We believe that convergence properties of the extended distributed MAC algorithms under

channel switching criteria of (5.3) and (5.4) should not be fundamentally different. Therefore, with

heterogeneous channels and under mild conditions, we still expect that the system should converge

to a state with roughly balanced channel loads.

5.2 Simulation

In this section, we use two examples to show performance of MAC algorithm for multiple

channels and its convergence behavior.

Example 1: In this example, we consider a multiple access system with two non-interfering

collision channels. Each user is equipped with a single transmission option. The transmission of

60



a packet in a channel is successful if and only if no other user is transmitting in the same channel.

Virtual packets for both channels are assumed to be equivalent to a real packet. Users intend to

maximize the symmetric system throughput. Each user designs functions p∗[w](K̂) = 1

K̂+1.01
and

q
∗[w]
v (K̂) = (1 − 1

K̂+1.01
)K̂ for w = 1, 2. We assume that there is no measurement noise and no

feedback error. Users follow the proposed MAC algorithm for channel assignment and portability

adaptation. Figure 5.1 depicts distribution of number of users in each channel as a function of total

number of users in the system. It can be seen that the number of users in the two channels are

either equal or different only by one.

Total Number of Users

Number of users in channel 1

Number of users in channel 2

Figure 5.1: Number of users in each channel as a function of total number of users in the system

Now assume there are 8 users in the system. First, each user randomly assigns itself to one

channel and initializes its probability. The receiver measures q
[w]
v in each channel using the fol-

lowing exponential moving average approach. Let I
[w]
v be an indicator that shows success/ failure

status of the virtual packet in channel w. The receiver first sets q
[w]
v = 1, then updates it by

q
[w]
v = (1 − 1

300
)q

[w]
v + 1

300
I
[w]
v . Users adapt the proposed MAC algorithm with a constant step-

size of α(t) = 0.05 and with psw = 0.5. We use similar exponential moving average approaches

to calculate the throughput and the average transmission probability of each channel. Figure 5.2,

shows throughput in each channel. As can be seen from the figure, throughput of the two channels
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Figure 5.2: Throughput in two collision channels
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Figure 5.3: Probability convergence behavior in two collision channels

are almost identical. Figure 5.3 illustrates the convergence behavior of transmission probabilities

in both channels with their theoretical values. Theoretical values for both channels are the same

and the actual probabilities of the users are close to the theoretical values. Figures 5.1, 5.2 and 5.3

show the proposed MAC algorithm can lead the system to a state with balanced channel loads.

Example 2: Consider a multiple access system with one collision channel and one multi-packet

reception channel. For the multi-packet reception channel, we assume that each user is equipped

with two transmission options, one being labeled as the high rate option and one being labeled as

the low rate option. If all packets are encoded using the low-rate option, the multi-packet reception

channel can support the parallel transmissions of 12 packets. We assume that each packet encoded
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using the high-rate option is equivalent to the combination of 4 low-rate packets. In other words,

the multi-packet reception channel can support the parallel transmissions of n1 high-rate packets

and n2 low-rate packets if and only if 1
3
n1 +

1
12
n2 ≤ 1 is satisfied. For the collision channel,

we assume that each user is equipped with a single transmission option that has the same rate

parameter as the high-rate option of the multi-packet reception channel. For both channels, each

virtual packet is assumed to be equivalent to a high-rate packet.

Assume that users intend to maximize the symmetric sum system throughput. For the colli-

sion channel, users design p∗[1](K̂) and q
∗[1]
v (K̂) as explained in Example 1. For the multi-packet

reception channel, each user sets p∗[2](K̂) = 2.27
2+1.01

[1, 0]T for K̂ ≤ 2, p∗[2](K̂) = 2.27

K̂+1.01
[1, 0]T

for 2 < K̂ ≤ 4 and p∗[2](K̂) = 8.82

K̂+1.01
[0, 1]T for K̂ ≥ 10. q

∗[2]
v (K̂) then can be calculated corre-

spondingly. To design p∗[2](K̂) for 4 ≤ K̂ ≤ 10, we choose two pinpoints at K̂ = 5 and K̂ = 6.

We set direction vectors of the pinpoints at the direction vector corresponds to the optimal scheme.

Then, we use linear interpolation to determine direction vectors for other points of 4 < K̂ ≤ 10.

Finally, we set the transmission probability function p∗(K̂) for 4 < K̂ ≤ 10 such that the resulting

q
∗[2]
v (K̂) is linear in K̂.

We assume that the system goes through three stages. First, there are 5 users in the system. At

the Stage two, 8 more users join the system. Then at Stage three, 10 users leave the system. Each

user assigns itself to a channel randomly and users initialize their probability vectors at zero vec-

tors. The receiver measures q
[w]
v in each channel using an exponential moving average approach.

Let I
[w]
v be an indicator of the success/failure status of the virtual packet in channel w. The receiver

first sets q
[w]
v = 1, then updates it by q

[w]
v = (1 − 1

300
)q

[w]
v + 1

300
I
[w]
v . Users adapt the proposed

MAC algorithm with a constant step-size of α(t) = 0.05 and with psw = 0.5. Figure 5.4 shows

the throughput achieved in two channels, and figure 5.5 shows per user throughput achieved in two

channels. In figure 5.6 and 5.7 convergence behavior of the entries of the probability vectors and

their theoretical values in the collision channel and the multi-packet reception channel are depicted

respectively. It can be seen that the entries of the probabilities vectors are close to the correspond-

ing theoretical values. Users can also adapt quickly to the new equilibrium as the number of users
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change in the system. Furthermore, figures 5.4, 5.6, 5.5 and 5.7 also show the proposed MAC

algorithm achieved the objective of balanced channel loads.
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Figure 5.4: Throughput in collision channel and multi-packet reception channel
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Figure 5.5: Per user throughput in collision channel and multi-packet reception channel
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Figure 5.7: Entries of transmission probability vector in multi-packet reception channel
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Chapter 6

Conclusion

In this dissertation, we introduced and investigated an enhanced physical-link layer interface.

Classical physical-link layer interface only allows a link layer user either to transmit a packet or

to idle. Other communication details are determined at the physical layer. However, because

wireless traffic is increasingly bursty and fragmental, coordinating a large number of users in such

an environment can become expensive or infeasible in terms of overhead. It is possible that full

communication optimization cannot be done at the physical layer, and therefore it is necessary to

support advanced communication adaptation at the data link layer. Objective of the physical-link

layer interface enhancement is to enable advanced wireless capabilities such as power and rate

adaptation at the data link layer.

At the physical layer, the enhanced physical-link layer interface is supported by distributed

channel coding theory reviewed in Chapter 2. The channel coding theory allows each physical

layer user to be equipped with an ensemble of channel codes. Each code corresponds to a trans-

mission option at the data link layer. Each physical layer user with available message arbitrarily

chooses one code to encode its message and sends it through the channel. The receiver knows the

code ensembles of the users but not their particular coding choices. The receiver decodes the mes-

sage of interest if a pre-determined error probability requirement can be met and reports collision

otherwise. We extended the definition of “communication error” from the classical meaning of er-

roneous decoding to the new meaning of failure in reporting the expected outcome, and with packet

collision being added as an expected outcome under certain conditions. With this new definition

a “distributed channel capacity” is defined and characterized. The new capacity result coincides

with Shannon information region in a sense explained in [4].

At the data link layer, with the enhanced interface, each user is equipped with multiple trans-

mission options each of them representing a particular combination of communication parameters

such as transmission power and communication rate. Motivated by questions such as how a user
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with multiple transmission options should respond to the feedback of success/failure status of

a packet, in Chapter 3, we proposed a distributed MAC algorithm with/without enhanced inter-

face. The proposed algorithm is applicable to a general channel model and a wide range of utility

functions. We analyzed the equilibrium of the proposed MAC algorithm based on a stochastic

approximation framework. As explained in Chapter 3, the key challenge is to design the theo-

retical channel contention measure function to be monotonic in the estimated number of users

while satisfying the Lipschitz continuity condition defined in Condition 2. For the case of single

transmission option, a closed-form theoretical channel contention measure function is designed.

For the case of multiple transmission options, a search-assisted approach is suggested to design

the monotonic channel contention measure function. With the desired monotonicity property, we

proved uniqueness of the equilibrium of the proposed algorithm. Simulation results are provided

to illustrate the performance and the convergence behavior of the proposed algorithm. Although

our design approach does not provide optimality guarantee to the system equilibrium, simulation

results demonstrated that obtaining a near optimal equilibrium is often not difficult.

In Chapter 4, we proposed a distributed MAC algorithm to support a hierarchical primary-

secondary user structure in a random multiple access system. Assume that the numbers of primary

and secondary users in the system are unknown to the users. Without requiring users to identify

whether a transmission belongs to a primary or a secondary user, without requiring direct informa-

tion exchange between any users, the proposed algorithm establishes the hierarchical structure in

the following senses. First, when the number of primary users is small, the algorithm guarantees

transmission success probability of primary users to stay above a pre-determined threshold despite

of the number of secondary users competing for the channel. Second, when the number of pri-

mary users is large, the algorithm automatically drives transmission probabilities of the secondary

users down to zero. As explained in Chapter 4, such a hierarchical structure is achieved by raising

the tail of the theoretical channel contention measure function of secondary users, such that the

aggregated impact of secondary users on channel contention is kept below a given threshold. We

proved uniqueness of the equilibrium for systems with users being equipped with only a single
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transmission option. Although we could not prove equilibrium uniqueness for systems with mul-

tiple transmission options, we believe this should be the case under mild conditions, and this is

supported by simulation results.

In Chapter 5, we investigated distributed MAC approach for a random multiple access sys-

tem with multiple non-interfering channels. While we assume that users should be homogeneous,

we assume that channels can be homogeneous or heterogeneous. We showed that enforcing ho-

mogeneous users to converge to the same transmission scheme can be suboptimal. Therefore a

distributed MAC algorithm should guide users to heterogeneous transmission schemes to avoid

overly crowding any channel. We assume that time is partitioned into long frames. We developed

a distributed algorithm to assign each user to one channel at the beginning of each time frame. Such

assignments are carried out randomly and adaptively toward the objective of achieving a balanced

channel loads. Within each time frame, channel assignments of the users are fixed. Users assigned

to the same channel use distributed MAC algorithm presented in Chapter 3 to adapt their trans-

mission probability vectors toward the common unique equilibrium. We provided an argument to

support the potential convergence proof of the developed algorithm, although a strict theoretical

proof is not yet available. Simulation results showed that the proposed algorithm can maximize

a symmetric network utility and can also achieve the objective of balancing the loads of different

channels.
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Appendix A

Proofs of Theorems in Chapter 3

A.1 Proof of Theorem 6

Proof. According to Step 3 of the distributed MAC algorithm, users should always have the same

target transmission probability vectors. At any equilibrium, we should have transmission proba-

bility vectors of all users equal p∗(K̂) for some K̂, which must satisfy qv(p
∗(K̂), K) = q∗v(K̂).

According to Assumption 5, if K ≥ Kmin, we must have K̂ = K. If K < Kmin, on the other

hand, according to Assumption 3, for all K̂ > Kmin, we have

q∗v(K̂) < q∗v(Kmin) = qv(p
∗(Kmin), Kmin) ≤ qv(p

∗(Kmin), K). (A.1)

Consequently, transmission probability vectors of all users at equilibrium must equal p∗(Kmin),

which equals p∗(K) according to Assumption 5. Therefore, the system should always have a

unique equilibrium at P ∗ = 1⊗ p∗(K).

Given the number of users K. Target transmission probability vector p̂ obtained in Step 3 of

the distributed MAC algorithm can be written as a function of the transmission probability vectors

of all users P as p̂(P ) = p̂(qv(P , K)). Let P a, P b be two arbitrary transmission probability

vectors of all users. According to Assumption 4 and Theorem 5, we have

‖p̂(P a)− p̂(P b)‖ ≤ Kqp|qv(P a, K)− qv(P b, K)| ≤ KqcKqp‖P a − P b‖. (A.2)

Therefore, the Lipschitz Continuity Condition 2 is satisfied.

Finally, when the system is noisy, the receiver can choose to measure qv over an extended num-

ber of time slots, or equivalently, to increase the value of Q introduced in Step 2 of the proposed

MAC algorithm. If users maintain their transmission probability vectors during the Q time slots, it
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is often the case that the potential measurement bias in the system can be reduced arbitrarily close

to zero. Therefore, the Mean and Bias Condition 1 is also satisfied.

A.2 Proof of Theorem 8

Proof. First, it is easy to see that Assumption 2 is satisfied with q∗v(∞) being equal to the limiting

theoretical channel contention measure of the “Tail” regime, and p∗(∞) = p∗(∞)d∗(K), where

p∗(∞) is the limiting theoretical transmission probability of the “Tail” regime.

Second, in the “Head” regime when K̂ ≤ K, because K ≥ Jǫv(d
∗(K)), q∗v(K̂) is strictly

decreasing for Jǫv(d
∗(K)) ≤ K̂ ≤ K, and p∗(K̂)) = pmaxd

∗(K) remains a constant vector for

K̂ ≤ Jǫv(d
∗(K)). In other words, we should define Kmin = Jǫv(d

∗(K)). Furthermore, q∗v(K̂) is

strictly decreasing for K ≤ K̂ ≤ K by design. Because K > Jǫv(d
∗(K)), q∗v(K̂) is also strictly

decreasing for K̂ ≥ K in the “Tail” regime. Therefore, Assumption 3 is satisfied.

Third, according to [21, Theorem 4], Assumption 4 should be satisfied in the “Head and Tail”

regimes. In other words, target transmission probability vector p̂(qv) as a function of qv is Lipschitz

continuous in qv for qv ≥ q∗v(K) and qv ≤ q∗v(K).

Next, we will prove that the theoretical transmission probability vector function p∗(K̂) =

p∗(K̂)d∗(K̂) is Lipschitz continuous in K̂ for K ≤ K̂ ≤ K. Because d∗(K̂) is continuous by

design, the objective is to show that the search-assisted approach does not lead to any discontinuity

of p∗(K̂) in K̂. For the sake of simple notation, we use
dp∗(K̂)

dK̂
to represent the derivative of p∗(K̂)

with respect to K̂ if p∗(K̂) is differentiable. If p∗(K̂) is only continuous but not differentiable at

K̂, then
dp∗(K̂)

dK̂
represents one or an arbitrary subderivative of p∗(K̂). If p∗(K̂) is not continuous

at K̂, then
dp∗(K̂)

dK̂
should take the values of ±∞. Note that the adoption of such a notation does

not imply a continuity assumption on p∗(K̂). Our objective then becomes to prove that
dp∗(K̂)

dK̂
is

bounded for K ≤ K̂ ≤ K.

Let i ∈ {1, . . . , L} and 0 ≤ λ < 1 be chosen arbitrarily. Let K̂ = K̂iλ, where K̂iλ is

defined in (3.26). To simplify the discussion, we assume that the neighboring two pinpoints satisfy
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K̂i+1 = K̂i + 1, i.e., they take neighboring integer values8. Write K̂ = K̂iλ = (1− λ)K̂i + λK̂i+1

as a function of λ, we have
dp∗(K̂)

dK̂
= dp∗(λ)

dλ
.

To bound
dp∗(λ)
dλ

, we consider two different expressions of q∗v(K̂) = q∗v(λ). The first expression

is

q∗v(λ) = (1− λ)q∗v(K̂i) + λq∗v(K̂i+1). (A.3)

Take derivative with respect to λ, we get
dq∗v(λ)
dλ

= q∗v(K̂i+1)− q∗v(K̂i). Because both q∗v(K̂i+1) and

q∗v(K̂i) are bounded, there exists a positive constant ∆1 > 0 such that

∣

∣

∣

∣

dq∗v(λ)

dλ

∣

∣

∣

∣

≤ ∆1. (A.4)

On the other hand, define p∗iλ = p∗(K̂iλ), and consider the second expression of q∗v(K̂) = q∗v(λ)

given below.

q∗v(λ, p
∗
iλd

∗
iλ) = (1− λ)qv(p

∗
iλd

∗
iλ, K̂i) + λqv(p

∗
iλd

∗
iλ, K̂i+1). (A.5)

Taking derivative with respect to λ results in

dq∗v(λ, p
∗
iλd

∗
iλ)

dλ
=

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂λ
+

[

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂d∗
iλ

]T
dd∗

iλ

dλ
+

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂p∗iλ

dp∗iλ
dλ

.(A.6)

Now we consider the terms on the right hand side of (A.6) separately.

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂λ
= qv(p

∗
iλd

∗
iλ, K̂i+1)− qv(p

∗
iλd

∗
iλ, K̂i). (A.7)

Because both two terms on the right hand side of (A.7) are bounded, there exists a constant ∆2 > 0

to satisfy
∣

∣

∣

∣

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂λ

∣

∣

∣

∣

≤ ∆2. (A.8)

According to (3.13), we can write qv(p
∗
iλd

∗
iλ, K̂i) as

8The proof can be easily extended to the case when this assumption does not hold.
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qv(p
∗
iλd

∗
iλ, K̂i) =

K̂i
∑

j=0

(

K̂i

j

)

p∗jiλ(1− p∗iλ)
K̂i−jCvj(d

∗
iλ). (A.9)

Due to Assumption 1, the right hand side of (A.9) contains no more than Kc + 1 terms. Because

∂Cvj(d
∗

iλ)

∂d∗

iλ
is bounded for all j,

∂qv(p∗iλd
∗

iλ,K̂i)

∂d∗

iλ
must be bounded. Similarly,

∂qv(p∗iλd
∗

iλ,K̂i+1)

∂d∗

iλ
is also

bounded. Therefore, from (A.5), we can see there exists a constant ∆3 > 0 such that

∣

∣

∣

∣

∣

[

∂q∗v(λ, piλdiλ)

∂diλ

]T
ddiλ

dλ

∣

∣

∣

∣

∣

≤ ∆3. (A.10)

From (A.9), by taking partial derivative with respect to p∗iλ, we get

∂qv(p
∗
iλd

∗
iλ, K̂i)

∂p∗iλ
=

K̂i
∑

j=0

(

K̂i

j

)

jp
∗(j−1)
iλ (1− p∗iλ)

K̂i−jCvj(d
∗
iλ)

−
K̂i
∑

j=0

(

K̂i

j

)

(K̂i − j)p∗jiλ(1− p∗iλ)
K̂i−j−1Cvj(d

∗
iλ)

=

K̂i−1
∑

j=0

(

K̂i

j

)

K̂ip
∗j
iλ(1− p∗iλ)

K̂i−j−1(Cv(j+1)(d
∗
iλ)− Cvj(d

∗
iλ)). (A.11)

Due to Item 2 of the Pinpoints Condition 4, K̂i > Jǫv(d
∗
iλ). Therefore, Cvj(d

∗
iλ)−Cv(j+1)(d

∗
iλ) ≥ ǫv

should hold for at least one 0 ≤ j ≤ K̂i − 1. Due to Item 3 of Condition 4, p ≤ p∗iλ ≤ p.

Hence

∣

∣

∣

∂qv(p∗iλd
∗

iλ,K̂i)

∂p∗
iλ

∣

∣

∣
is bounded away from zero. The same conclusion applies to

∣

∣

∣

∂qv(p∗iλd
∗

iλ,K̂i+1)

∂p∗
iλ

∣

∣

∣
.

Because both
∂qv(p∗iλd

∗

iλ,K̂i)

∂p∗
iλ

and
∂qv(p∗iλd

∗

iλ,K̂i+1)

∂p∗
iλ

are negative-valued, from (A.5), we can see there

exists a positive constant ∆1 > 0 such that

∣

∣

∣

∣

∂q∗v(λ, piλdiλ)

∂piλ

∣

∣

∣

∣

≥ ∆1. (A.12)

Because the two expressions of q∗v(K̂) given in (A.3) and (A.5) must equal each other, by

combining (A.4), (A.6), (A.8), (A.10), and (A.12), we conclude that there exists a positive constant

Kg > 0, such that

∥

∥

∥

dp∗(K̂)

dK̂

∥

∥

∥
≤ Kg. With the extended definition of

dp∗(K̂)

dK̂
, as explained at the

beginning of the proof,

∥

∥

∥

dp∗(K̂)

dK̂

∥

∥

∥
≤ Kg means that p∗(K̂) is Lipschitz continuous in K̂.
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According to Item 1 of the Pinpoints Condition 4, for any K̂a, K̂b ∈ [K,K], we have

|q∗v(K̂a)− q∗v(K̂b)| ≥
ǫq

K −K
|K̂a − K̂b|. (A.13)

This means that, for K̂ being obtained according to Step 3 of the distributed MAC algorithm,

K̂(qv) as a function of qv is Lipschitz continuous in qv for q∗v(K) ≤ qv ≤ q∗v(K). Because

we just proved that p∗(K̂) is Lipschitz continuous in K̂, we conclude that the target transmission

probability vector p̂(qv) obtained according to Step 3 of the distributed MAC algorithm is Lipschitz

continuous in qv for q∗v(K) ≤ qv ≤ q∗v(K). Combined with Lipschitz continuity of p̂(qv) in the

“Head and Tail” regimes, we can see that Assumption 4 is also satisfied.

Fourth, because q∗v(K̂) is strictly decreasing in K̂ for K̂ ≥ Jǫv(d
∗(K)), it is easy to prove that,

if K ≤ Kmin = Jǫv(d
∗(K)), then q∗v(K̂) = qv(p

∗(K̂), K) should hold for all K̂ ≤ Kmin, and for

Kmin ≤ K ≤ K and K ≥ K, q∗v(K̂) = qv(p
∗(K̂), K) should have a unique solution at K̂ = K.

Now consider the case when K ≤ K ≤ K. With users setting their transmission probability

vectors at p∗(K̂), because K̂ > Jǫv(d
∗(K̂)) and p ≤ p∗(K̂) ≤ p, if K > K̂ and K̂ is an integer,

we must have

qv(p
∗(K̂), K) < qv(p

∗(K̂), K̂) = q∗v(K̂). (A.14)

If K > K̂ and K̂ is not an integer, we have

qv(p
∗(K̂), K) < qv(p

∗(K̂), ⌊K̂⌋),

qv(p
∗(K̂), K) ≤ qv(p

∗(K̂), ⌊K̂⌋+ 1), (A.15)

which implies that

qv(p
∗(K̂), K) < q∗v(K̂). (A.16)

On the other hand, if K < K̂ and K̂ is an integer, we must have

qv(p
∗(K̂), K) > qv(p

∗(K̂), K̂) = q∗v(K̂). (A.17)
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If K < K̂ and K̂ is not an integer, we have

qv(p
∗(K̂), K) > qv(p

∗(K̂), ⌊K̂⌋+ 1),

qv(p
∗(K̂), K) ≥ qv(p

∗(K̂), ⌊K̂⌋), (A.18)

which also implies that

qv(p
∗(K̂), K) > q∗v(K̂). (A.19)

Consequently, q∗v(K̂) = qv(p
∗(K̂), K) must have a unique solution at K̂ = K. Therefore, As-

sumption 5 should hold true.
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Appendix B

Proofs of Theorems in Chapter 4

B.1 Proof of Theorem 9

Proof. According to the stochastic approximation framework presented in [8, Section 4.1], the

system should have at least one equilibrium. Assume that the system contains two equilibria,

whose corresponding channel contention measures equal qv and q̃v, respectively. Without loss of

generality, we assume that qv < q̃v.

Assume that, at the first equilibrium corresponding to channel contention measure qv, the num-

ber of users estimated by the primary users and by the secondary users equal respectively K̂p and

K̂s. At the other equilibrium corresponding to channel contention measure q̃v, the estimates equal

K̃p and K̃s, respectively. Consequently, we have

qv = q∗vp(K̂p) = q∗vs(K̂s),

q̃v = q∗vp(K̃p) = q∗vs(K̃s). (B.1)

Because qv < q̃v, due to the fact that q∗vp(K̂) and q∗vs(K̂) functions are strictly decreasing in K̂

[8, Theorem 4.4], (B.1) implies that K̂p ≥ ˜̂
Kp and K̂s ≥ ˜̂

Ks. This consequently implies that

p∗p(K̂p) ≤ p∗p(K̃p) and p∗s(K̂p) ≤ p∗s(K̃p). However, if each user at the first equilibrium should

transmit at a probability no higher than the corresponding probability at the other equilibrium, we

must have qv ≥ q̃v, which contradicts the assumption that qv < q̃v. Therefore, equilibrium of the

system must be unique.

Let qv be the channel contention measure at the unique equilibrium. We will prove the fol-

lowing equivalent statement. That is, if qv < q∗vs(∞), we must have q∗vp(Kp) = qv < q∗vs(∞).

Otherwise if qv ≥ q∗vs(∞), we must have q∗vp(Kp) ≥ q∗vs(∞).
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According to the proposed MAC algorithm, if qv < q∗vs(∞), we should have K̂s = ∞ and all

secondary users should have zero transmission probability at the equilibrium. Consequently, the

system becomes equivalent to one with homogeneous (primary) users, as analyzed in [8]. Accord-

ing to [8, Theorem 4.5], we should have

qv = qv(p
∗
p(Kp), Kp) = q∗vp(Kp). (B.2)

In other words, primary users should obtain correct user number estimate. This implies that

q∗vp(Kp) = qv < q∗vs(∞).

If qv ≥ q∗vs(∞), on the other hand, we have qv = q∗vp(K̂p). In this case, K̂s < ∞, meaning that

secondary users should transmit with a positive probability. Because if all secondary users exit the

system, channel contention measure of the system should converge to qv(p
∗
p(Kp), Kp) = q∗vp(Kp),

due to monotonicity of the qv(p,Kp) function, we must have

q∗vs(∞) ≤ qv = qv(p
∗
p(K̂p), Kp)

≤ qv(p
∗
p(Kp), Kp) = q∗vp(Kp). (B.3)
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