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Abstract

Real Time Stream Processing for Internet of Things and Sensing

Environments

Improvements in miniaturization and networking capabilities of sensors have contributed

to the proliferation of Internet of Things (IoT) and continuous sensing environments. Data

streams generated in such settings must keep pace with generation rates and be processed in

real time. Challenges in accomplishing this include: high data arrival rates, buffer overflows,

context-switches during processing, and object creation overheads.

We propose a holistic framework that addresses the CPU, memory, network, and ker-

nel issues involved in stream processing. Our prototype, Neptune, builds on the Granules

cloud runtime and leverages its support for scheduling packets and communications based on

publish/subscribe, peer to peer, and point-to-point. The framework maximizes bandwidth

utilization in the presence of small messages via the use of buffering and dynamic com-

paction of packets based on their entropy. Our use of thread-pools and batched processing

reduces context switches and improves effective CPU utilizations. The framework alleviates

memory pressure that can lead to swapping, page faults, and thrashing through efficient

reuse of objects. To cope with buffer overflows we rely on flow control and throttling the

preceding stages of a processing pipeline. Our correctness criteria included deadlock/livelock

avoidance, and ordered and exactly-once processing.

Our benchmarks demonstrate the suitability of the Granules/Neptune combination and

we contrast our performance with Apache Storm, the dominant stream-processing framework

developed by Twitter. At a single node, we are able to achieve a processing rate of ∼2 million
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stream packets per-second. In a distributed cluster setup, we are able to achieve a processing

rate of ∼100 million stream packets per-second with a near-optimal bandwidth utilization.
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CHAPTER 1

Introduction

Application of wireless sensor networks and related technologies to efficiently measure

and monitor a wide spectrum of environments from weather and ecology to smart house-

holds to military battlefields has presented a novel set of challenges to the traditional data

processing paradigm. Increasing numbers of ubiquitous sensors, actuators and embedded

communication hardware that are seamlessly integrated with the environment surrounding

us along with the information systems to store and process voluminous data produced by

these monitored environments form a communicating-actuating network, which is called the

Internet of Things (IoT) [1].

Middleware for on-demand storage and data analytics is considered a key element in

an IoT reference architecture [1]. Stream processing systems [2–9] and batch processing

systems [10–12] are two key components in implementing this middleware layer. Being two

approaches that are contrasted often with each other, low latency processing or near-realtime

processing is one advantage offered by stream processing systems over batch processing

systems. This is a key requirement for most of the IoT use cases such as triggering actuators

in realtime upon processing of sensor data.

Stream processing systems are developed for real-time processing of voluminous data

arriving through continuous unbounded data streams with varying data rates. A stream

processing system provides a managed execution runtime for a set of stream processing jobs

at a given time. A stream processing job is comprised of multiple stages where a stage encap-

sulates a domain specific processing logic to process streaming data received over external

input data streams or intermediate streams generated within the stream processing job.
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Once processing is completed for a stream data object at a particular stage, it is forwarded

to the next stage through a data stream which links the two stages. Therefore the man-

aged execution runtime provided by the stream processing system should support ingesting

external data streams into the system, managing life cycles of each stream processing job

and their constituent stages, scheduling, and orchestrating data flow between the stages of

a stream processing job. Further, a stream processing system should accommodate for the

inherent heterogeneity of stages within a stream processing system due to differences in their

processing and IO requirements. A stream processing systems should be capable of handling

streams with high data rates as well as multiple concurrent data streams. The solution is

to engineer stream processing systems towards achieving high throughput. It should be em-

phasized that a high throughput should be achieved while maintaining acceptable levels of

end-to-end latency. Further, for certain IoT use cases low latency processing is more critical

than high throughput [13]. Hence a stream processing system should be able to provide the

required balance between low latency and high throughput for individual stream processing

jobs.

1.1. Research Challenges

Achieving high-throughput stream processing in Internet of Things (IoT) and sensing

settings involves several challenges that impact the efficiency of network, CPU, and memory

utilization.

(1) Small packets: The packet sizes in IoT settings tend to be very small (∼100 bytes).

Since these packets are processed in Ethernet-based clusters, given the small payload

sizes of stream packets, a significant portion of each Ethernet packet frame (with
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an MTU of 1500 bytes) is left unused. This contributes to lower throughputs since

a large portion of the available network bandwidth is not utilized.

(2) Context switches: Packets are typically processed in thread pools with each thread

processing a packet at time from a shared queue. The processing performed per-

packet is not CPU intensive. However, since packets arrive at a high rate, context-

switching costs start to dominate the overall processing costs. This is true even

when these packets are being processed in thread-pools where the thread-context

switching costs are significantly lower than process context switching costs.

(3) Buffer overflows: Processing in IoT settings is performed in stages, some of which

may execute on different machines. End-to-end processing in these settings is de-

termined by the slowest stage. When packets arrive at a stage faster than the rate

at which that stage can process, queues build up at these stages leading to buffer

overflows, and in some cases, subsequent process crashes.

(4) Object creation: Prior to packets being processed, the raw bytes need to be con-

verted from their serialized representations into objects through which data fields

(of different types) can be accessed. Object creation costs in these settings can

add up, because the objects retain their memory footprint slightly longer than their

processing scope; this is applicable regardless of whether the memory reclamation

scheme is implicit (as in Java/C#) or explicit (as in C/C++). There are costs as-

sociated with the allocation of objects on the heap as well; as the number of objects

and the memory utilization increase, the costs increase as well. In extreme cases,

as memory utilization increases page faults and thrashing may occur as well.

Challenges are also exacerbated by the interactions between these issues. For example,

as object creations increase there is a processing cost involved in identifying the objects
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(that have gone out of scope) to garbage collect. Similarly, lack of flow control may trigger

unimpeded object creations and the associated memory and processing overheads.

1.2. Research Questions

Efficient real-time processing of data streams generated in IoT and sensing settings must

address the challenges described earlier. These challenges necessitate a holistic solution that

addresses the CPU, memory, network, and kernel (context switches and page faults) issues

involved in stream processing. As part of this study, we will explore the following research

questions.

(1) How do we incorporate support for efficiently expressing multi-stage stream pro-

cessing?

(2) How can we improve bandwidth utilizations in IoT settings?

(3) How can we reduce context-switching overhead during processing? And, how can

we minimize the number of context switches even in cases where the processing is

backed by thread pools?

(4) How can we avoid buffer overflows when the processing involves multiple stages?

Specifically, How can we identify which stages to throttle and how do we throttle

the stages effectively? Such flow controls often have ripple effects with multiple,

preceding stages being throttled.

(5) How can we minimize object creation in such stream processing settings?

(6) How can we minimize data volumes in such settings?

A key issue that we also consider is that of correctness. Our proposed solution should not

result in dropped or corrupted stream packets. Furthermore, packets must be processed in-

order and exactly-once. The trade-off space in this setting encompasses the entire processing
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stack involving I/O, memory, and CPU utilization. Consider the case where we try to

improve bandwidth utilization: compacting messages using efficient serialization techniques

or compression introduces additional CPU costs. Furthermore, sometimes compaction may

not be possible; for example, depending on the entropy within individual packets compression

rates may be quite low.

1.3. Approach Summary

We present Neptune, a system designed for high throughput stream processing use cases,

especially IoT applications. The rationale behind many of the design principles in Neptune

is to achieve optimal consumption of resources: network IO, CPU and memory. Neptune

provides an intuitive stream processing API and a stream processing graph description model

that facilitate implementing a stream processing use case as a collated set of modular stages.

The framework will initialize individual stages, establishes communication between stages

and manages the life cycle of a stream processing job. Besides these primitive constructs,

users can augment a stream processing graph with a degree of parallelism for each stage and

stream partitioning schemes in order to scale the stream processing job during the runtime

to better utilize the available cluster resources and to achieve desired levels of performance.

Neptune’s communication module is optimized for high throughput while maintaining

the communication latencies at acceptable levels. Neptune buffers stream data objects at

the application layer and transfers a batch of buffered messages together over the network

instead of sending individual messages one at a time. In addition to improving the bandwidth

usage significantly, application level buffering further helps reducing the number traversals

of the network stack and queue contention between worker threads and IO reactor threads.

Buffer sizes are configurable per stream processing job which enables optimizing each stream
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processing job for achieving either high throughput or low latency. Even with a configuration

optimized for high throughput, Neptune manages to maintain a sub-second end to end

communication latency in the order of tens of milliseconds for most applications. Application

level buffering is streamlined with batch processing to reduce the number of context switches

for worker threads as well as to improve the use of instruction cache.

Neptune uses a two-tier thread model comprised of two thread pools for worker threads

and IO threads. This simplified model reduces the queue contentions caused by inter-thread

communication. We rely on an asynchronous IO model based on Java NIO library [14]

and Netty IO library [15] to implement a scalable communication module with a minimum

resource usage footprint. Neptune has a conservative object creation scheme that reduces

the strain on the garbage collector through the reuse of data structures used for serializa-

tion/deserialization process. The advantages are reduced instantiation overhead, efficient

serialization/deserialization of stream data objects and reduced number of short-lived ob-

jects created during runtime.

Neptune supports backpressure, a flow controlling technique, at the framework level in

order to cope with discrepancies between processing rates and data arrival rates at certain

stages of a stream processing job. Backpressure throttles the upstream stages to avoid queue

buildups and possible memory management issues such as excessive garbage collection cycles

at latter stages due to low processing rates.

Neptune has a in-built compression module which can be configured to compress portions

of a data stream selectively based on their entropy levels. Despite the additional processing

overhead incurred, compression can be useful in settings with limited bandwidth and low

entropy data streams.
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We evaluate the capabilities of Neptune based on the results obtained through a compre-

hensive set of experiments. This includes experiments that evaluates the validity of individual

design principles used in Neptune as well as experiments that evaluates it as a complete so-

lution for stream processing. Neptune is compared with Apache Storm [2], a widely used

stream processing system, when necessary. While some of the design principles are used in

both systems, Storm does not employ some of the optimizations implemented in Neptune.

As evident from the empirical evaluation, Neptune outperforms Storm in all metrics we have

considered which in turn validates the suitability Neptune for stream processing in IoT and

sensing environments.

1.4. Thesis Contributions

This thesis presents our experiences in building a real-time stream processing framework

for IoT and sensing environments. The main contributions of this thesis relate to the ex-

ploration of the trade-off space encompassing CPU, memory, network, and kernel issues in

such settings. The framework supports buffering of data streams, object reuse, dynamic

compaction, flow controls, thread-pool based batched executions and reduced queuing-based

contentions. Specifically, the framework:

(1) Supports expressing and orchestrating multistage stream processing.

(2) Provides support for high throughput stream processing while making efficient use

of resources.

(3) Supports a mixture of stream processing jobs each with possibly different latency

and throughput requirements within the same runtime.
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(4) Incorporates an effective backpressure scheme that manages the complexities result-

ing from mismatches between processing rates and data arrival rates in the stages

comprising a processing graph.

(5) Empirical performance evaluation of several aspects of the framework and a com-

parison with the dominant stream-processing framework, Storm.

1.5. Paper Organization

The remainder of the thesis is organized as follows. In chapter 2, we introduce Granules,

the underlying cloud computing runtime of Neptune, followed by various improvements in-

troduced to Granuels while developing Neptune. Chapter 3 introduces Neptune and the key

concepts related to its API and stream processing graph description model. The latter half of

the chapter 3 discusses in detail how Neptune achieves high performance stream processing.

The evaluation criteria, experiments and results are presented in chapter 4. A discussion

on related work is provided in chapter 5 and we conclude the thesis in chapter 6 discussing

conclusions and future work.
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CHAPTER 2

Granules

Neptune is implemented on top of Granules computing framework [16] which is a stream-

ing based computing runtime for cloud. Neptune leverages the general computing abstrac-

tions provided by Granules to provide a specialized and intuitive programming model for

stream processing. In this chapter, we introduce key concepts of Granules and the improve-

ments that were introduced to Granules as part of implementing Neptune.

A computational task is the most fine grained unit of execution in a Granules runtime.

It encapsulates a domain specific processing logic to process a fine grained unit of data such

as a stream data object, a file or a database record. In practice, a set of computational tasks

is cascaded together by defining flow of data between them to form a complex computation

graph such as a stream processing job, a map-reduce style computation, a machine learning

job, etc.

Granules orchestrates a set of distributed machines to perform a set of concurrent com-

putational tasks. Granules launches one or more Granules resources at a single physical

machine which act as containers for individual computation tasks. The framework is respon-

sible managing the life cycles of computational tasks in addition to launching and terminating

computational tasks running on resources.

A computational task accesses data through a dataset. A Dataset encapsulates the

access to low level data such as a file system, stream or a database and unifies the access of

different types of resources. A computational task may work with a set of datasets which

are logically grouped together to form a dataset collection. Granules framework manages the

initializations and closures of datasets and provides notifications on the availability of data.
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Figure 2.1. Abstract design of Granules

Computational tasks are scheduled to run on a shared worker thread pool based on a

scheduling strategy. A scheduling strategy could be either data driven, periodic, count based

or a combination of these three. For instance, a computational task can be scheduled to

run every 500 milliseconds or when data is available in a particular dataset. The sched-

uling strategy associated with a computation task can be changed during the lifetime of a

computation.

2.1. Improvements to Granules

While implementing Neptune, we have identified a few areas in Granules that required

improvements, especially in its communication substrate. Granules was initially designed

to use a publisher/subscriber based model for inter resource communication. If it required

for two computational tasks to communicate with each other, a topic has to be created

at a central broker to which the sender task should publish. The recipient task should be

subscribed to the same topic in order to receive data from the sender task. Granules was using

NaradaBrokering [17] as the broker network by default. While this model is useful in certain

cases such as implementing fault tolerance with upstream backups [18], it has adverse effects

on the performance of the overall system. Sending every message through an intermediate

10



Figure 2.2. Resource discovery and meta-data management with Zookeeper

Figure 2.3. Direct communication implementation with Java NIO 2

broker can increase the end to end latency, especially in a multi-stage stream processing

job. Also the broker may become a bottleneck when achieving high throughput even with a

distributed deployment. Finally, given the broker network is a crucial component in the entire

deployment, it should be functional all the time along with Granules resources. This incurs

11



Figure 2.4. Direct communication implementation with Netty

additional operational overhead for the users. As an alternative, we have added support for

a communication substrate based on direct point to point communication between Granules

resources. The evaluation results shows that this model results both in high throughput and

low latency.

While adding support for direct communication, the publisher/subscriber based commu-

nication abstraction at Granules core was preserved. This is to make sure that Granules

is not coupled to any communication model and will remain extensible for future improve-

ments. This will allow users to switch to any communication mode based on their require-

ments. Figure 2.1 depicts the layered design of Granules. In addition to NaradaBrokering

based publisher/subscriber mode and a peer-to-peer communication mode based on a system

called Funnel [19], we have added support for two direct communication implementations.

In previous publisher/subscriber based communication model, a special topic created

at the broker was used for resource discovery. Since this type of bootstrapping facility is

not available with the direct communication based model, we have used Zookeeper [20] for
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resource discovery. Every resource, on starting up publishes their meta-data: communica-

tion endpoint and resource identifier as a ephemeral zNode at a predefined parent node in

Zookeeper. This is depicted in Figure 2.2. When a new stream processing job is deployed,

the job deployer polls this specific parent node in Zookeeper to get the current list of available

resources. Through the use of ephemeral zNodes and tuning the Zookeeper timeouts appro-

priately, Granules can detect of failed resources quickly with a high reliability. Apart from

the resource discovery, Zookeeper is used to store meta-data related to stream subscriptions

as well. Given that Zookeeper cluster is accessed only during the deployment of a stream

processing job, the resource requirements for the Zookeeper cluster deployment is much less

compared to running a broker network.

Granules supports two inbuilt direct communication implementations: Java New In-

put/Output module (NIO) [14] based implementation and Netty [15] based implementation.

Both implementations use same stream dataset implementation, but the difference is in the

way the serialized data gets written into network sockets. Worker threads in Granules which

act as threads of execution for computational tasks write data to the appropriate stream

dataset. If application level buffering is enabled, the data is written to an internal buffer

within the stream dataset. Otherwise data will be directly written to the corresponding IO

buffer. In the case of buffering, buffered data is written to the IO buffer only when the

cumulative size of buffered messages exceeds a predefined threshold.

For Java NIO based implementation, we have used the reactor model [21] when designing

the threading model for IO thread pool. Instead of having a single thread pool to manage

the entire set of open connections, in reactor model each thread, known as a IO-Reactor

thread, manages a set of connections. In other words, de-multiplexing and dispatching

events corresponding to a particular connection is handled by a single thread at all times.

13



An abstract design on this implementation is depicted in Figure 2.3. This results in reducing

the context switching between threads as well as eliminates the necessity for concurrency

control to guard shared data structures.

Netty is a dominant asynchronous IO library for Java with a lot of built-in optimizations.

In Netty, a message is injected to an ordered sequence of interceptors, called channel handlers,

each implementing a certain post-processing operation before sending the message over the

network socket. Similarly, at the receiving end a message needs to be processed by a sequence

of corresponding set of input handlers before reaching the message processing layer. In

the Netty based direct communication implementation of Granules, serialized messages are

directly injected into the out-going channel handler chain. This is illustrated in Figure 4.7.

We have implemented a channel handler, that will prepend the length of the serialized

message to the message being transmitted, which enables the recipient to partition the

incoming stream at correct boundaries to retrieve the individual messages. We have not

discussed the implementation at the receiver’s end, since it is quite intuitive once the details

of the message sending are discussed.
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CHAPTER 3

Neptune

Stream processing tasks in Neptune are extensions of Granules computational tasks, but

present a specialized application programming interface (API) for stream processing. The

Figure 3.1. Fanning out of a stream processing graph during runtime

Figure 3.2. Implementing word count in Neptune
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communication between stream processing tasks is implemented using datasets in Granules

in a way that is oblivious to the end user. In this section, we will introduce the key concepts

of Neptune stream processing and how they extend Granules primitives.

3.1. Key Concepts

3.1.1. Stream Data Objects. A stream data object (SDO), also called a stream data

packet, is the most fine grained element of data inside a Neptune runtime. An ordered

unbounded set of stream data objects forms a stream. Users can define stream data objects

by combining one or more data fields as required. Neptune supports a set of primitive data

types and data structures out of the box to aid defining data fields within a stream data

object.

3.1.2. Stream Sources. Stream sources are used to ingest external data streams into

a stream processing graph. During an invocation, it employs a pull based approach to fetch

data in and emit stream data objects into one or more internal streams connected to stream

processors that are part of the same stream processing graph. Typical implementations of

stream sources may read data from message brokers and message queues. This design makes

Neptune an ideal candidate for the stream processing engine which retrieves and processes

data from an IoT gateway as outlined in IoT reference architectures [13]. Usually a stream

source is placed at the root of a stream processing graph. Stream sources are scheduled using

a new scheduling scheme introduced to Granules called continuous execution. This scheduling

scheme ensures that the underlying computational task created for a stream source will be

scheduled for execution immediately at the end of an execution.

3.1.3. Stream Processors. Domain specific processing logic to process a stream data

object is encapsulated within a stream processor. A stream processor receives stream data
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objects from one or more streams, process them and eventually emit stream data objects

to one or more streams. Stream processors are scheduled only if data is available in any of

the input streams using the data driven scheduling scheme available in Granules. We will

use the term stream operators to represent both stream sources and stream processors in

remainder of the thesis.

3.1.4. Links. A link is used to connect an instance of a stream source or a stream

processor with an instance of another stream processor. Links model the streams of stream

data objects flowing between stream operators within a stream processing graph. Users

define the links between stream operators in the stream graph description in addition to the

definitions of stream operators. Within a stream operator, users can decide which link to use

when emitting a stream data object. Neptune will mediate the stream data objects between

stream operators according the definitions of links and the link to which the stream data

object is emitted. Links are internally implemented using a publisher-subscriber model where

the source of the link publishes to a topic to which the destination operator is subscribed.

3.1.5. Parallelism. Even though a stream processing graph may contain one instance

of each stream operator, at run time the graph may need to fan out by instantiating multiple

instances of stream operators as depicted in Figure 3.1. This is a useful construct in imple-

menting solutions to domain specific problems because it provides the ability to partition a

stream based on a particular scheme and let one instance of a stream processor to deal with

a particular partition of the stream. Further, it is useful when horizontally scaling a given

operator in order to load balance the network IO and computational load across multiple

nodes and to optimize the cluster utilization.
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3.1.6. Stream Partitioning Schemes. Stream partitioning schemes are mandatory

to make parallelism work. Partitioning schemes define how a stream should be partitioned

when it is routed to different instances of the same stream processor. In other words, given

a stream data object emitted by a particular instance of a stream operator, a partitioning

scheme decides to which instance of the destination stream processor it should be routed

to. Neptune supports four partitioning schemes by default while allowing users to define

their own partitioning schemes. Partition by field allows destination to be defined based on

the value of a particular field of the stream data object. This is based on to widely used

hash(key) mod (no. of destination instances) partitioning scheme. Other default

partitioning schemes supported are send to one, send to all and send to random.

3.1.7. Stream Processing Graphs. A stream processing graph or a stream process-

ing job models a domain specific use case. A stream processing graph is comprised of multiple

logical phases called stages where each stage focuses on implementing a portion of the use

case. Each stage is implemented using one or more stream operators. The data flow between

stages are modeled using links. The definition of a stream processing graph in Neptune is

comprised of stream sources and stream processors for different stages, parallelism levels

for stream operators, links connecting stream operators and stream partitioning schemes

for each link. A stream processing graph can be created by directly invoking the Neptune

stream processing graph API or through a JSON descriptor file.

Figure 3.2 depicts a word count stream processing graph implemented using Neptune to

illustrate the concepts described above. Stream source reads lines from a file and send to the

stream processor which splits each line into a set of words. Finally, each word is sent to Word

Counter stream processor for counting. The partitioning scheme for the links connecting the

Stream Source with Sentence Splitters is send-to-random which will load balance the stream
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between the two instances of the Sentence Splitter. Each word is sent to appropriate counter

instance using the partition-by-key partitioning scheme which will make sure that the same

word will be sent to the same Word Counter instance.

3.2. Optimizing for High Throughput and Scalable Stream Processing

Neptune’s design is optimized primarily for achieving high throughput and scalability

while maintaining latency at acceptable levels. Further it even allows a stream processing

job to be optimized for low latency instead of high throughput depending on the requirement.

In this section, we introduce the main optimizations that are built into Neptune in order to

realize the objectives outlined above.

3.2.1. Application Level Buffering. Stream processing often involves dealing with

streams containing small stream data objects. This is applicable to majority of the stream

processing jobs used in IoT applications. These streams could be either input streams

originated in external sources as well as intermediate streams originated within the stream

processing jobs. Sending these small stream data objects individually can cause poor utiliza-

tion of resources. Systems like Neptune are run on clusters of commodity machines which

are connected through an ethernet. Given that the significant mismatch in sizes between

the MTU of ethernet frames and serialized versions of these small stream data objects will

cause the available network bandwidth to be under utilized. Also sending individual small

sized stream data objects can introduce a lot of computational overhead as well. This is

mostly due to increased number of network stack traversals [22]. In the absence of low level

buffering, this could also lead to a large number of system calls at the network IO layer of the

operating system. Due to these reasons, if the size of the stream data object is smaller, the

ratio between the overhead of a data transfer and the effective work carried out during the
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transfer tend to increase. The poor utilization of systems resources will degrade the system

throughput.

Instead of sending individual stream data objects, Neptune implements application level

buffering at the stream dataset layer to optimize the throughput. The size of these buffers

are defined in terms of their capacity as opposed the number of messages being buffered.

The rationale behind this design decision is to flush the buffer as soon as the required level

of threshold is reached irrespective of the number of the messages in the buffer and their

sizes. We have found this to be quite useful in practice when a stream operator is producing

messages with different sizes. This size is configurable and can be set separately for each

stream processing graph. Additionally, buffering has helped us to reduce the amount of

thread contention when the worker threads are writing the buffered messages to the data

buffers of IOReactor threads in the NIO based direct communication implementation.

One of the challenges in buffering is to handle data streams with low data rates. This

could be due low data rates in the input streams, due to an under performing stream operator

or even due to the nature of the processing logic. For instance, if a stream operator calculates

a descriptive statistic over a sliding window of incoming stream data objects and emits a

new stream data object only if it detects a significant change in the value that is of interest,

the outgoing stream will have a low and a variable data rate. This will increase the time it

takes to trigger a buffer flush resulting an increased queuing delay consequently increasing

the end to end latency. The end result can be as drastic as failing to satisfy strict real-time

processing constraints and latency related quality-of-service (QoS) requirements [23]. To

counter this problem, each buffer in Neptune is equipped with a timer which guarantees

flushing of the buffer after a certain time period of time since arrival of the first message in

the current unflushed buffer. A buffer is flushed either if it is full or if the timer is expired.
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This design has helped Neptune to set a soft upper bound on the expected level of end to

end latency even in the presence of buffering.

3.2.2. Batch Processing. Processing multiple stream data objects during a single

scheduled execution at a stream processor can improve the throughput of the system. This is

mostly through amortizing warm-up costs in instruction cache and reduced context switches

between worker threads [23]. In Neptune, batch processing is tightly integrated with appli-

cation level buffering. Stream processors process a set of messages buffered together as a

batch in a single scheduled execution. Users need to write the processing logic for a single

stream data object while the batched execution is managed by Neptune in a way that is

oblivious to the user. Neptune stream sources are also invoked multiple times once they are

scheduled by a worker instead of invoking only once. This invocation count is configurable

and should be chosen carefully to avoid starvation for other stream operators.

3.2.3. Ability to Optimize for High Throughput or Low Latency. A stream

processing job in Neptune can be optimized for high throughput, low latency or a com-

bination of the two metrics at acceptable levels. This allows a mix of stream processing

jobs optimized either for high throughput or low latency executing simultaneously in a sin-

gle Neptune cluster. Application level buffering and batch processing improves throughput

while increasing the latency. Optimizing a stream processing job for low latency can be done

through controlling the size of the application level buffers of a particular stream process-

ing job. Given that application level buffering is tightly integrated with batch processing,

configuring the buffer size implicitly controls the batch size.

3.2.4. Backpressure Management. A stream processing job often involves multiple

stages which are heterogeneous with respect to the stream processing rate they can support.
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This could be mainly due to the nature of their processing logic as well as due to other

external factors such as running on a over provisioned Granules resource. This could lead to

situations where the processing rate is lower than the data arrival rate causing the queues

to build up. Also if the queues are unbounded, it may often cause long and inefficient

garbage collection cycles and eventual out of memory errors at the stream processor. Some

frameworks may employ a fail-fast technique where the senders drop messages in the presence

of such conditions which causes loss of messages as well as wasted computation cycles if the

dropped messages are already processed at previous stages [3].

Neptune uses a backpressure model that leverages the TCP flow control to control the

flow of data from upstream stream operators. Each inbound buffer of an stream processor

has two threshold values which are called high and low watermarks. Once the buffer is filled

up to the high watermark, the IO worker threads are not allowed to write to the buffer unless

the buffer contents are consumed by the worker threads until the buffer usage reaches the

low watermark level. Consequently, receive buffers associated with the corresponding TCP

connections reach their maximum capacity narrowing down the TCP sliding window. This

causes sending buffers at the senders to remain filled. Since Neptune uses shared bounded

buffers at IO reactors that are handling out-bound traffic, this prevents worker threads from

writing to these shared buffers. The stream processors are not scheduled again until these

write operations are successful. The high and low watermarks of the inbound buffers are set

apart from each other to avoid system oscillating between the two states rapidly.

The disadvantage of this approach is its coarse grained nature. Usually the communica-

tion between two resources takes place through a single connection which results in multiple

streams of data flowing through a single connection. If the consumer of a single stream slows

down, this model of backpressure will effectively control the flow of data for all streams that
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share the same connection. Currently we are working on a more fine grained model that will

control the flow of data at individual stream level via control messages that flow upstream.

These control messages makes modifications to the scheduling policy of the schedulers at the

Granules resources where corresponding upstream stream operator is running. This scheme

gradually propagates the backpressure to the higher stages of the stream processing graph

without affecting the other stream processing jobs.

3.2.5. Compression. We have included support for compression as an experimental fea-

ture in Neptune to evaluate its impact on the overall throughput of the system. Compression

can compact the amount of data that needs to be transmitted especially when dealing with

data streams with low entropy. This could increase the effective amount of data (when un-

compressed) transmitted within a given time. Despite probable improvements in efficiency

during data transmission, it introduces extra processing overhead at both sending and re-

ceiving end. So it would be interesting to explore if this extra computational overhead can

outweigh the gains due to compacted data size. Neptune supports two modes of compres-

sion: total compression and selective compression. In total compression mode, every batch of

stream data objects is compressed whereas in the selective compression mode, compression

is performed based on the compressibility of data. In selective compression, if the ratio of

the size of compressed data to the size of actual data is greater than a configurable threshold

called selectivity coefficient, data will not be compressed. Compression and decompression

are implemented at the immediate layer to the communication layer and need to be enabled

explicitly. To reduce the extra processing latency that can be introduced due to compres-

sion, we have used LZ4 [24] compression algorithm which provides faster compression and

decompression rates at a reasonable compression ratio.
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CHAPTER 4

Evaluation

In this section, we present a series of evaluations carried out on Neptune to demonstrate

its performance, scalability and other features. Three metrics were primarily used for evalu-

ation: throughput, latency and bandwidth consumption. We have compared Neptune with

another leading open source stream processing system system: Apache Storm [2] when nec-

essary. The hardware and software experimental setup used for evaluation is explained prior

to the discussion on experiments.

4.1. Experimental Setup

An in-house cluster comprised of 80 physical machines connected through a local area

network with 1 Gbps bandwidth was used for experiments. Each node in the cluster is an

Intel Xeon 2.4 GHz 4 core duo machine with 16 GB of memory.

We have used version 0.9.5 of Storm with reliable message processing feature disabled.

This is to ensure that the throughput of Storm is not adversely affected by the additional

overhead added due to acknowledgements. Also Neptune does not support reliable message

processing at the moment; hence it was a measure taken to maintain the fairness in the

evaluation. In our experiments, we have optimized Neptune and Storm for high throughput.

We configured Storm for high throughput based on the following settings as recommended

by its developers and research literature [25, 26].

topology.transfer.buffer.size - 32

topology.receiever.buffer.size - 8

topology.executor.send.buffer.size - 16384

topology.executor.receive.buffer.size - 16384
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Figure 4.1. Three-stage stream processing job acting as a message relay

For Neptune, we have used the default configurations where the buffer size is set to 1

MB. Thread pool sizes are determined automatically depending on the number of cores in

the machine it is running on. Heap sizes of both Storm workers and Granules resources were

set to 1 GB.

We have used a few different stream processing jobs for the evaluation depending on the

objective of the experiment. If the experiment is focused on the underlying communication

framework, we have used stream processing jobs with less CPU intensive processing to ensure

a minimum interference on the communication layer from the stream processing logic. We

have used complex multi-stage stream processing jobs and the associated datasets otherwise.

4.2. Effect of Internal Buffer Size on Performance

Neptune’s internal buffer size is the primary mechanism to optimize a stream processing

job either for high throughput or low latency. We observed how throughput, latency and

bandwidth usage varied with the buffer sizes for different message sizes. Buffer size was varied
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Figure 4.2. Throughput, end-to-end latency and bandwidth usage Vs. ap-
plication level buffer size for different message sizes

Figure 4.3. Two-stage stream processing graph with multiple senders and a
single recipient

Figure 4.4. Throughput, and bandwidth usage Vs. number of senders in a
two-stage stream processing graph

from 1 KB to 1 MB at different step sizes. Message sizes were chosen to cover a wide spectrum

from 50 Bytes to 10 KB. We have focused more on relatively small sized messages, which are
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Figure 4.5. Cumulative throughput and cumulative bandwidth usage with
the number of concurrent jobs

Figure 4.6. Cumulative throughput and cumulative bandwidth usage with
the number of nodes in the cluster

Figure 4.7. Throughput, end-to-end latency and bandwidth usage Vs. mes-
sage size in Neptune and Storm

in the range of 50 to 400 bytes, since majority of the message sizes found in Internet of Things

(IoT) datasets are within that range. A three-stage stream processing job, as depicted in
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Figure 4.1, was used for this experiment. This simulates a message relay where a stream

processor in the second stage relays messages it receives from the stream source at stage 1

to a stream processor at stage 3 which is the final destination. Sender and final receiver

are deployed in the same Granules resource whereas the message relay was deployed in a

different resource running on a separate physical machine. This deployment plan helped us

to measure the end-to-end message latency with a higher accuracy without being affected by

clock synchronization issues. We used the Netty based direct communication implementation

in Granules for this experiment.

Figure 4.2 shows the results of this experiment. As expected, the system throughput

increases until it reaches a steady state with the buffer size. The bandwidth usage reaches

0.937 Gbps (out of 1 Gbps) for message sizes greater than 200 KB when the buffer size

increases. Stabilization at the bandwidth consumption causes the throughput to reach and

stay at a steady state for larger message sizes. The latency on the other hand slightly

increases with the buffer size due to increased queuing delay at the application layer. For

smaller message sizes, we are seeing a very high latency when the buffer size is set to 1 KB

due to the overhead of meta data. When buffering is enabled, Neptune attaches meta-data

only once for each batch. Hence the ratio of meta-data to the actual data is much higher

with small buffer sizes. With a lower middle range buffer sizes like 16 KB, the observed

latency is less than 10 ms for all message sizes.

4.3. Scalability of Neptune

A stream processing system should be scalable with respect to the number of concurrent

stream processing jobs as well as the complexity of stream processing jobs. Complexity of

a stream processing job can have many faces: number of processing stages, complexity of
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the processing logic embedded in stream processors, level of parallelism and complexity of

partitioning schemes.

As the first experiment to test the scalability of Neptune, we tested how its communica-

tion layer performs in the presence of multiple traffic sources. A simple two staged stream

processing job was used for this experiment by varying the parallelism of the sender as shown

in Figure 4.3 with the message size set to 50 bytes. Each of the stream sources and stream

processors were deployed on separate physical machines. The results of the experiment are

shown in Figure 4.4. The throughput and bandwidth usage increase and stabilize with the

number of senders. Neptune could process around 4.7 million messages per second with 4

cpu cores. Please note that our cluster nodes can receive data from two network interface

cards at a give time which will allow us to achieve an effective read bandwidth of 2 Gbps.

Figure 4.5 depicts the cumulative throughput and cumulative bandwidth usage of a

Neptune cluster with 50 nodes when the number of concurrent jobs is increased. Both

cumulative metrics increase until the number of jobs is equal to 50. This phase of the

plot corresponds to an sufficient provisioning of resources. Beyond this point, when the

number of jobs increased further, the cluster reaches an over provisioned stage and there

is a drop in both cumulative throughput and cumulative bandwidth usage. We carried out

another experiment by fixing the number of jobs to 50, which corresponds to the maximum

throughput Neptune was able achieve in the previous experiment, and varied the number

of machines in the cluster. Figure 4.6 shows the cumulative throughput and cumulative

bandwidth usage with the cluster size. Both these metrics linearly scale with the cluster size

and it is expected to reach a maximum and stabilize once the cluster grows beyond a certain

number of machines.
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Message Size
Neptune Storm Two Sample T-Test

Mean Std. Dev. Mean Std. Dev. t-value df P-value

50 B 1987600.95 267582.82 200523.3 51209.70 65.84 102.68 < 0.0001

100 B 1172239.33 51410.19 195943.15 62955.95 154.11 206.19 < 0.0001

200 B 586026.05 7527.83 152759.19 63654.30 125.81 392.67 < 0.0001

400 B 293131.43 2541.31 170864.27 44226.59 52.64 375.83 < 0.0001

1 KB 114496.22 530.59 40328.75 34353.70 31.05 207.21 < 0.0001

4 KB 28620.50 50.36 3090.77 4438.46 64.56 126.04 < 0.0001

10 KB 11447.95 8.62 648.05 1403.28 46.81 37.00 < 0.0001

Table 4.1. Results of the two sample t-test for comparing the throughput of
Neptune and Storm

Message Size
Neptune Storm Two Sample T-Test

Mean Std. Dev. 99th Perc. Mean Std. Dev. 99th Perc. t-value df P-value
50 B 65.58 20.21 109.02 11667.11 5718.05 22509.36 -28.40 196.01 < 0.0001
100 B 57.46 6.13 68.0 10140.63 9743.56 48508.8 -17.77 295 < 0.0001
200 B 58.82 5.76 70.0 44398.21 17184.58 71949.01 -48.89 359 < 0.0001
400 B 66.45 4.78 77.02 10833.43 6108.73 22437.16 -33.77 367 < 0.0001
1 KB 66.25 4.08 74.02 29484.76 17307.34 56146.61 -24.46 207 < 0.0001
4 KB 67.31 4.87 76.0 91973.57 20939.42 104507.46 -49.27 126 < 0.0001
10 KB 66.44 7.47 87.82 201598.55 53237.60 225254.14 -23.03 37 < 0.0001

Table 4.2. Results of the two sample t-test for comparing the latency of
Neptune and Storm

Message Size
Neptune Storm Two Sample T-Test

Mean Std. Dev. Mean Std. Dev. t-value df P-value

50 B 0.80 0.11 0.08 0.03 65.84 102.68 < 0.0001

100 B 0.94 0.04 0.16 0.05 154.11 206.19 < 0.0001

200 B 0.94 0.01 0.24 0.10 125.81 392.67 < 0.0001

400 B 0.94 0.01 0.55 0.14 52.64 375.83 < 0.0001

1KB 0.94 0.00 0.33 0.28 31.05 207.21 < 0.0001

4 KB 0.94 0.00 0.10 0.15 64.56 126.04 < 0.0001

10 KB 0.94 0.00 0.05 0.12 46.81 37.00 < 0.0001

Table 4.3. Results of the two sample t-test for comparing the bandwidth
consumption of Neptune and Storm

4.4. Comparison of Neptune and Apache Storm

We compared the performance of communication layers of Neptune with Apache Storm

using the message relay setup depicted in Figure 4.1. The evaluation metrics: throughput,

latency and bandwidth usage were recorded by varying the message size from 50 bytes to 10

KB.
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Figure 4.8. Multi-stage stream processing graph for monitoring a manufac-
turing equipment

Figure 4.9. Cumulative throughput Vs. number of concurrent jobs for the
manufacturing equipment monitoring use case

As illustrated in Figure 4.7, the results of this experiment show that Neptune outperforms

Storm with respect to all three metrics. One-tailed t-tests were performed for each metric

to compare the performance of Neptune (with Netty) and Storm. The results of the t-

tests are reported in Table 4.1, Table 4.2 and Table 4.3 with the t-statistic value, degrees

of freedom(df) and the P-value. As it can be observed from the results, the P-value is

31



Figure 4.10. Cluster-wide resource consumption by Storm and Neptune

insignificant compared to any practical test significance level, α. This provides sufficient

evidence to reject our null hypothesis: Storm’s performance is equal or better than that of

Neptune. Hence it is a strong statistical evidence to support our claim: Neptune performs

better than Storm with respect to throughput, latency and bandwidth consumption. The

latency of Storm was drastically increasing with the message size. This was mainly due to

the absence of backpressure in Storm. The storm spout was emitting a single tuple in every

invocation. The relay processor (which is a Storm bolt) is relatively slower than the sender

(which is a Storm spout) which creates a bottleneck in the entire Storm topology. If we

add a small wait after emitting a tuple (through a sleep to the thread of execution of the

Spout), then Storm was able to perform well with a very low latency. But this was not a

viable option given its adverse effect on throughput and bandwidth usage. Also we could not

use the topology.max.spout.pending parameter to throttle the spout because it relies on

acknowledgments provided through reliable message processing. The same issue is discussed

in other performance benchmarks that used Storm [3, 26].

We implemented a more complex multi-stage stream processing graph to model a real

world stream processing use case using both Neptune and Storm. The use case is to monitor a

manufacturing equipment using real-time processing data captured by sensors attached to it.
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This use case is presented as part of the Grand Challenge competition [27] held in parallel to

6th ACM International conference on Distributed Event-Based Systems. The system ingests

a continuous stream of readings captured by sensors that operate at a rate of 100Hz. A single

stream data object contains 66 different data fields including the timestamp during which

the data is captured. For this particular use case, we will be using 6 sensor readings along

with the timestamp. Three of these sensor readings correspond to states of three chemical

additive sensors whereas the remaining three readings capture the states of corresponding

valves. When the state of a sensor changes, consequently the valve should actuate resulting

in a change of its state. The objective of this stream processing job is to monitor the delay

between the change of state in a sensor and the actuation of the corresponding valve over

a 24 hour time window. Figure 4.8 depicts components of the four-stage stream processing

graph implemented for this use case.

We have used a fixed size cluster of 50 nodes for this experiment. Multiple instances of the

stream processing job were deployed at the same time and the cumulative throughput at the

stream source was measured across the cluster. We have deployed a single Neptune resource

per each physical machine and each of them were running one or more stream processors

corresponding to one or more stream processing jobs. Storm dedicates a worker process to

run a part of a single topology. Since we were measuring the throughput by doubling the

number of jobs, with a 50 worker setup the cluster was not fully utilized with 32 concurrent

jobs in this setup. Due to this reason, we experimented with a 100 worker setup in addition

to the 50 worker setup to ensure that all 50 cluster nodes are utilized. We did not observe

any significant difference in the cumulative throughput, hence we used a 50 worker setup for

our experiment. The results of this experiment are plot in Figure 4.9. Both systems scale

with the number of concurrent jobs. But the degree of increase in throughput is higher in
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Figure 4.11. Impact of compression on stream processing performance

Neptune. With 32 jobs, Neptune can process approximately 8 times more messages than

Apache Storm.

We used the same stream processing job to measure the cluster-wide resource usage by

both frameworks. A 50 node cluster was used similar to the previous experiment and 50

concurrent stream processing jobs were deployed. CPU usage and memory usage for each

system were measured at each individual cluster node in the cluster. Data collected during

this monitoring process is plotted in Figure 4.10. Please note that the CPU usage shows the

cumulated value of 8 virtual cores (with hyper threading). Memory usage is the amount of

memory consumed by the system as a percentage of total available memory. Neptune’s CPU

consumption is consistently lower compared to the CPU consumption of Storm across all 50

nodes. The high CPU consumption in Apache Storm is due to the overhead introduced by its

threading model which requires every message to go through four different threads from the

point of entry to exit from a stream processor [3]. On the other hand, Neptune uses a simple

two tier thread model, which results in less overhead and reduced queue contention. With

respect to memory consumption, we do not see any noticeable difference in both systems.
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(a) Throughput (b) Latency (c) Bandwidth Usage

Figure 4.12. Results of Tukey’s HSD procedure to evaluate the significance
of compression for sensor data

(a) Throughput (b) Latency (c) Bandwidth Usage

Figure 4.13. Results of Tukey’s HSD procedure to evaluate the significance
of compression for random data

4.5. Effectiveness of Compression

The impact of compression on the performance of a stream processing job was evaluated

using two data sets. One dataset was from the manufacturing equipment monitoring use

case [27] that was discussed earlier. The sensor readings do not change frequently over time

which results in a low entropy when consecutive stream data objects are batched together.

To simulate a data stream with higher entropy, we created a synthetic data stream with

random binary data with stream data objects of the same size as the first dataset. We have
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used the three-stage stream processing graph as depicted in Figure 4.1 with four different

settings: no compression, selective compression with a selectivity coefficient of 0.2 and 0.5

and total compression. The results of this experiment are shown in Figure 4.11. There is a

clear improvement in performance when the compression is completely disabled for random

data. This is because the effective level of compaction is very low for random data and often

compression resulted in an expansion of the data due to their high entropy. Therefore there

is no significant reduction in transmission overhead to outweigh the additional overhead in-

curred due to compression and decompression operations. For the manufacturing equipment

monitoring dataset, there is no strong evidence to support any negative or positive impact

of the compression. The positive impact caused by the compaction of data is at a compa-

rable level of the negative impact incurred due to additional processing overhead for this

dataset. We used a multiple comparison procedure called Tukey-Kramer HSD (Honestly

Significant Difference) procedure to compare the data recorded for each compression level

for each performance metric for both datasets. The results of the Tukey’s HSD procedure

for sensor data is appearing in Figure 4.12. The difference between compression levels are

insignificant except for a few cases, which do not show a significant difference. Results of

the same test for random dataset is appearing in Figure 4.13. In contrast to sensor data,

there is a significant statistical difference in data when compression is disabled. To this

end, effectiveness of compression depends on the nature of the stream data, hence should be

enabled and configured for each stream individually even within the same stream processing

job.
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Figure 4.14. Three-stage stream processing graph used to trigger backpressure

Figure 4.15. Demonstrating the backpressure in Neptune

4.6. Demonstrating Backpressure Management

We used the setup shown in Figure 4.14 to simulate a stream processing job with a

stream processor with varying performance. The thread of execution for stream processor

at stage C sleeps for some time after processing a stream data object. The sleep interval

varies between 0 ms and 3 ms in a cycle in steps of 1 ms as shown in first sub-figure of

Figure 4.15. The backpressure should be propagated to stream source at stage A through

the stream processor at stage B. In the second sub-figure, we plot the observed throughput

at stream source at stage A. The throughput at the stream source is inversely proportional

37



to the sleep interval at stage C. As expected, the stream source controls the rate of emission

of new stream data objects according to the processing rate of the stage C processor.
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CHAPTER 5

Related Work

Streaming Databases or Data Stream Management Systems [4, 5, 28] are considered as

one of the initial efforts in data stream processing. These systems attempt to extend the con-

cepts of relational database systems to perform data stream processing. Streaming databases

materializes an unbounded set of stream data into a continuous series of bounded datasets

through data windows. Similar to relational databases, streaming databases often provide

a query language such as Continuous Query Language (CQL) [29] through which users can

express the processing logic. Even though query languages constrain the capabilities of the

system due to the limited expressiveness offered by the language itself compared to a gen-

eral purpose programming language, they simplify the generation and optimization of query

plans from a user expressed query.

Most of the recent attempts [6, 7, 30, 8, 9, 2, 31, 32, 3] to stream processing let users

to express the processing logic using imperative languages as opposed to system specific

query languages. S4 [6] models a stream processing job as a set of processing elements.

Each processing element is responsible for processing events with a specific key. Processing

Nodes act as containers for processing elements and the framework routes events between

processing elements based on keys of events. Stream Processing Core (SPC) [30] also uses

processing elements as the basic unit of computation. The processing elements define their

input and output streams through a publisher/subscriber model similar to Granules’ internal

messaging layer. Communication in SPC is abstracted to a layer called data fabric which

transparently uses one of its communication modes: pointer transport, shared memory or

network transport based on the location of the destination processing element.
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Apache Storm [2] uses two types of stream processing elements, namely, Spouts and

Bolts. Spouts are used to ingest streams into the system whereas Bolts are used to process

event streams and to generate intermediate streams if necessary. Spouts and Bolts can be

wired through different streams to form a topology, which will be deployed in a cluster of

Storm workers. Storm provides different levels of reliable processing guarantees: at most

once and at least once through an acknowledgement scheme. Through the use of Trident

abstraction layer [33], Storm can be extended to provide exactly once processing guarantee

if necessary in the expense of topology throughput. Heron [3] is a successor to Storm which

mainly improves upon Storm’s execution model and resource utilization.

Apache Samza [8] relies on a message broker system called Kafka [34] for ingesting streams

into the system and for inter-task communication. A stream is modeled as a topic in Kafka

which is partitioned and distributed across the broker network. The partition for an event

published to a given topic is decided based on the key associated with the event. A topic

partition corresponds to a stream partition and each of these stream partitions is processed

by a separate Samza task.

Apache Flink [9] provides support for both stream processing and batch processing in

a single framework based on the same data-flow oriented framework core. Flink supports

exactly-once semantics, backpressure and state check-pointing for stream operators. Similar

to Flink, Spark Streaming [31] also uses the same programming model used in batch pro-

cessing for stream processing. Spark Streaming breaks up incoming streams into a series

of small batches known as discretized streams based on time intervals before processing.

Spark runtime treats these discretized streams as resilient distributed datasets (RDDs) [35]

and process them as regular RDDs created during batch processing. These RDDs are kept

in-memory, but replicated to multiple nodes in the cluster to provide fault tolerance. In the
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case of a node failure, the lost state can be recalculated by applying the series of the RDD

transformations starting from one of the raw data replicas. Both Flink and Spark Streaming

support data windows and a set of operators such as joins, union, map, flatmap, etc. as

first class members in their programming model. Google’s Millwheel [32] provides fault-

tolerant stream processing framework through exactly-once delivery, efficient check-pointing

and idempotency built into the framework. Further it provides in-order deliveries of stream-

ing data based on a notion of logical time implemented using a watermarking approach on

event timestamps.

At a high level, complex event processing (CEP) systems [36–38] may appear to provide

functionality that overlaps with the functionality offered by stream processing systems to a

certain extent. CEP systems are designed to ingest events from multiple sources simultane-

ously in order to detect relationships and patterns between these events that are of interest.

These are known as event clouds [39] where events are partially ordered based on the time

and causality. On the other hand, event streams are initiated at a single source and are

totally ordered based on time which makes them a special case of even clouds. Stream pro-

cessing systems are designed to process event streams whereas CEP systems are designed to

process event clouds [40].
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CHAPTER 6

Conclusions and Future Work

Achieving real-time stream processing in IoT and sensing environments requires a holistic

framework that accounts for the CPU, memory, network, and kernel issues that arise in such

settings.

Efficient scheduling of workloads through the use of thread pools and minimizing context-

switches by processing streams in batches reduces the number of context switches that need

to be performed during stream processing. This, in turn, effectively utilizes the CPU. As

our results demonstrate, this allows Neptune to do more with less; we are able to achieve

higher throughput than Storm while maintaining a lower average CPU utilization across the

entire cluster.

Reusing objects reduces memory utilization; this, in turn, forestalls kernel issues stem-

ming from swapping, page faults, and thrashing. Reusing objects also eliminates issues of

memory space reclamation including reduction of CPU overheads relating to garbage collec-

tion that involves tracking the scope of individual objects.

Buffering streams utilizes the bandwidth far more effectively. This is especially important

when dealing with small packets that may leave Ethernet packet frames underutilized. In

fact, as our results demonstrate, our bandwidth utilization is near optimal.

Buffer overflows, where packets arrive at a rate faster than the rate at which they can

be processed, can be avoided via effective throttling of streams. Such flow control simplifies

memory management and obviates the need to resort to sampling when processing stream

packets.
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Cumulatively, our methodology results in a novel framework that allows us to demon-

strably perform stream processing at scale in real time and high throughput. Our empirical

evaluations are performed in large-scale settings and contrast performance with Apache

Storm.

In a three-stage message relay benchmark, Neptune was able to achieve a throughput of

2 million messages per second with a 93.2% bandwidth consumption. The same experiment

in a 50 node cluster setup recorded a cumulative throughput closer to 100 million messages

per second with a near optimal bandwidth consumption. The processing latencies (for 10KB

packets) for the 99% of the packets was less than 87.8ms even with a configuration opti-

mized for high throughput. For a four-stage stream processing application that modeled

real-time monitoring of manufacturing equipment, Neptune was able to achieve a cumula-

tive throughput of 15 million messages per second. During the course of evaluation, Neptune

outperformed Storm in all three metrics that are critical in stream processing: throughput,

latency and bandwidth consumption. Neptune’s cluster-wide CPU consumption is signifi-

cantly less than Storm as demonstrated when the cluster is loaded up with multiple instances

of the four-stage stream processing job.

Neptune has provided us a solid basis to introduce a series of new features in future.

Future work will target development of algorithms for fault tolerant processing while reducing

overheads that often accompany such schemes. We also plan to add support for a dynamic

deployment model for Neptune that leverages the available capabilities of cluster nodes,

properties of the stream processing graph and the data arrival patterns of data streams.
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