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ABSTRACT 

 

SIGNALING COMPLEXES FORMED BY LUTEINIZING HORMONE RECEPTOR TRANS- 

ACTIVATION 

 

Signal transduction by luteinizing hormone (LH) receptors depends on hormone 

activation of these receptors, a process important for mammalian reproduction.  The LH receptor, 

a member of the G protein-coupled receptor (GPCR) family, undergoes hormone-induced LH 

receptor dimerization and/or oligomerization and translocation into small membrane 

compartments where receptors are confined and exhibit slow lateral diffusion.  However, the 

organization of the signaling complex confined within these structures is not clear.  In this 

project, we used single particle tracking methods to evaluate the lateral motions of wild type 

receptor FLAG-LHR-YFP and mutant receptors defective in hormone binding (LHR-hCG, +cAMP) 

or defective in signal transduction (LHR+hCG,-cAMP) after exposure to human chorionic 

gonadotropin (hCG). These studies showed that, when wild type LH receptors and mutant 

receptors are coexpressed and treated with 100 nM hCG, there are decreases in receptor lateral 

diffusion, the number of receptor-occupied membrane microdomains and the size of receptor-

containing membrane microdomains.  These results suggest that wild type LH receptors are 

capable of both cis-activation of nearby wild type LH receptors and transactivation of 

LHR-hCG,+cAMP , a receptor that is not able to bind hCG.  We then investigated interactions 

between wild type LH receptors and mutant receptors using homo-transfer fluorescence 

resonance energy transfer (FRET) methods.  We showed that LH receptors associate with one 

another and that the extent of self-association increases in response to increasing hCG 

concentrations.  Using homo-transfer FRET methods, we showed that mutant LH receptors are 
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trans-activated by wild type receptors and undergo aggregation in response to 100 nM hCG 

despite being unable to bind hCG directly.  Finally, we evaluated cAMP levels in cis-activated 

and trans-activated LH receptors using ICUE3, an EPAC-based reporter molecule for cAMP.  

We determined that increases in intracellular cAMP occur in cells expressing wild type receptors 

and exposed to increasing concentrations of hCG.  Similarly, cells co-expressing mutant 

receptors exhibit increased cAMP when there is a 1:10 transfection ratio of LHR+hCG,-cAMP to 

LHR-hCG,+cAMP indicating that trans-activation is occurring.  Disruption of membrane 

microdomains by pre-treatment of cells with 10 nM methyl--cyclodextrin for an hour has a 

negative effect on cAMP levels which indicates the importance of cholesterol-containing 

microdomains in signal transduction by LH receptors.  Together these results demonstrate that 

trans-activated LH receptors can undergo receptor aggregation in response to hormone binding 

and can signal effectively despite the absence of a signal-transduction sequence in the mutant 

receptor.   
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CHAPTER 1:  BACKGROUND AND SIGNIFICANCE 

 

1.1:   Introduction  

 

            Human chorionic gonadotropin (hCG) is heterodimeric glycoprotein hormone acting on a 

G protein coupled receptor, the luteinizing hormone (LH) receptor, which is capable of binding 

either hCG and LH.  The LH receptor, a member of the glycoprotein hormone receptor family, 

plays an important role in both normal and abnormal reproductive physiology in males and 

females (1-3).  In males the LH receptor regulates the function and development of Leydig cells.  

In women LH receptors are important for ovulation, corpus luteum formation and progesterone 

secretion.   

The LH receptor has become a target for drug discovery because of natural mutations in 

LH receptor where the receptor either cannot bind hormone or cannot initiate signal transduction 

and because of the relationship between these mutant receptors and human diseases such as 

Leydig cell hyperplasia.  Much of this research has focused on the mechanism of activation of 

LH receptors which is still poorly understood.   

LH receptor activation is generally accomplished through cis-activation of these 

glycoprotein hormone receptors.  Cis-activation involves binding of cognate hormone to the 

receptor‘s exodomain followed by interactions between the receptor exodomain and the receptor 

transmembrane domains and extracellular loops (4,5).   Trans-activation is believed to occur 

through interactions between a ligand-occupied exodomain on one receptor and the signaling 

domain of an adjoining receptor.  It is assumed that the trans-activated receptor takes on an 

“active” conformation and signals similarly to a fully functional receptor that has bound and 

retained ligand or to a constitutively-active receptor that has never seen ligand but signals 
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continuously nonetheless.  Whether LH receptor cis-activation and trans-activation includes 

protracted receptor-receptor interactions is examined in this research.       

  

1.2: G protein-coupled receptors (GPCR) 

G protein-coupled receptors (GPCRs) are the largest protein receptor family and are 

involved in signal transduction across membranes.  Sensory perception uses members of the 

GPCR family. As examples, visual perception uses rhodopsin and sense of smell is accomplished 

using receptors of the olfactory epithelium which bind odorants.  GPCRs have seven 

transmembrane domains (7TM) and undergo conformational changes after ligand binding, a 

process that transfers the signal through the cell membrane.  Their name is based on their ability 

to activate G proteins to induce intracellular signaling (6).  These receptors may also be called  

7TM receptors based on their seven transmembrane helical segments, a name that is more 

accurate since GPCRs can interact with other signaling molecules that are not G proteins (7).   

All GPCRs have seven transmembrane-spanning segments connected by intracellular and 

extracellular loops.  The N-terminal of GPCRs has the amino terminus and the C-terminal has 

often contains serine or threonine residues (Figure 1.1).  In mammals, many physiological 

processes are regulated by GPCRs and this makes them a target for pharmaceutical drugs (8).  

GPCRs are coupled to G proteins via their third transmembrane domain and cytoplasmic loop 

between transmembrane domains 2 and 3 as well as via the cytoplasmic tail in some receptors 

(6).  The size of the GPCRs can vary and about 800 different human genes for this class of 

receptors have been demonstrated from the analysis of genome sequences (9).   

The GPCR superfamily is further divided to three main classes of receptors.  Class A is  

the largest class of GPCR and this class accounts for about 85%  of the GPCR genes.  Class A  
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GPCRs are also called rhodopsin-like receptors. All GPCRs have a common structure and 

mechanism for transducing signal, but they lack homology in their sequences.  The first crystal 

structure of GPCRs was for bovine rhodopsin (10).  In 2007, the structure of β2-adrenergic 

receptor was described (11). Both β2-adrenergic receptors and rhodopsin have similar 

orientations of their seven-transmembrane helices but with different conformations in the second 

extracellular loop.  The structures of activated GPCRs have been also determined.  This is the 

structure formed after the extracellular binding domain engages ligand and causes 

conformational changes in the cytoplasmic surface of the receptor (12).   

Class B GPCRs, characterized by a large extracellular domain for ligand binding, are best 

exemplified by the parathyroid hormone receptor. The Class C GPCRs are a small group of 

receptors with a ligand binding domain located at the N-terminus tail.  An example of a Class C 

GPCR is the heterodimeric GABAB receptor.  These GPCRs are activated by an external signal, 

a ligand, which leads to activation of a G protein.  

It is important to recognize that, although many GPCRs have similar structures in their 

seven transmembrane domains, the remainder of their structures can be very different.  GPCR 

N-terminal domains are different in size and may contain the binding site for ligand.  Their 

C-terminal domains may also vary in size. 

   

1.3: Structure of LH and hCG 

The glycoprotein hormone family includes human chorionic gonadotropin (hCG), 

luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone 

(TSH).  LH and hCG, like other members of the glycoprotein hormone family, have a common 
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α-chain and hormone-specific β-chains.  Their receptors are GPCRs with large extracellular 

domains that binds the glycoprotein ligands (13).   

            Both LH and hCG are heterodimers whose subunits are non-covalently associated (14). 

hCG is comprised of 237 amino acids with a β-subunit containing 145 residues, six disulfide 

bridges and two N-linked glycosylation sites (14).  Its α-subunit contains 92 residues, five 

disulfide bridges, two N-linked glycosylation sites and four O-linked glycosylation sites.  

Glycoprotein hormones such as LH and hCG are glycosylated in the natural state and these 

carbohydrates have important roles in hormone stability and receptor signaling (15).  Other than 

glycosylation patterns, LH and hCG have very similar amino acid sequences, structural 

properties, chemical composition and functions.  hCG exhibits higher affinity binding to 

receptors than does LH, probably a consequence of its additional glycosylated sites.    

            In 1994, the structure of hCG was obtained at 2.6 Å resolution.  This crystal structure, 

however, was missing the four N-linked and the four O-linked oligosaccharides and the 

β-subunit (16).  In 2012, Cole added back these missing structures and predicted the final 

structure of hCG (17).  The α and β subunits of hCG are associated to form a heterodimer which 

is essential for receptor binding.  hCG forms a heterodimer by wrapping the β-subunit around the 

α-subunit and this wrapping is linked via a disulfide bond between Cys26-Cys110 to form a 

“seat-belt region” which is important in the stability of the heterodimer (18).  There are two 

sugar residues on the each one of the α-subunits and one sugar residue on the β-subunit.  The 

carbohydrates of the α-subunit are attached to Asn52 on the double stranded loop and to Asn78 

almost at the end of the β-hairpins. 

 

1.4: LH receptors  
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            LH receptors are members of the GPCR family (6) and are characterized by a large 

N-terminal extracellular domain containing the binding site for hCG and LH  (19).  The 

extracellular domain contains leucine-rich repeats and a short hinge region located between the 

leucine-rich repeat region and the first transmembrane helix (19).  The hinge region is thought to 

act as a flexible region that allows the leucine-rich repeat domain to physically convey bound 

hCG or LH to the transmembrane domains (20).  The leucine rich repeats are arranged in a 

horseshoe shape with parallel β strands and loops providing important binding sites for hormone 

(21).   

The transmembrane domains of the LH receptor, TM1-TM7, span the plasma membrane 

seven times and are connected by three extracellular and three intracellular loops (Figure 1.1).  

The transmembrane domains of the receptor anchor the receptor in the membrane and transduce 

the signal initiated in the extracellular domain to G proteins (Figure 1.1).   The three intracellular 

loops, especially loop 3, are important for interactions between the LH receptor and G proteins.  

The LH receptor also has six potential sites for N-linked glycosylation, all of which are located 

on the extracellular domain.  

            The human LH receptor contains 699 amino acids encoded by a single gene.  The human 

and rat LH receptor genes are about 80 kb in size and have 11 exons and 10 introns, respectively 

(22,23).  The cloning of complementary DNA for the human LH receptor was reported after the 

exon structure was identified (24).  The mature LH receptor is 80 kDa with an additional 15 kDa 

contributed by multiple carbohydrate chains (25).  The first and second extracellular loops of the 

receptor contain  cysteine residues as do other receptors of the GPCR superfamily.  These 

cysteine residues in rhodopsin receptor stabilize the seven-transmembrane helical by forming 

disulfide bridges (25).  Cysteine residues Cys257 and Cys258 on  exon 9 are important for LH 
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receptor expression on the plasma membrane; mutations of these cysteines lead to intracellular 

retention of the receptor without affecting ligand binding (25).  Furthermore,  mutation of 

cysteine residues in exon 1 (Cys8,12,14,22) indicates that these residues are important for ligand 

binding to the receptor (1).  Natural mutations of the LH receptor can lead to hormone-

independent signaling which occurs in Ledyig cell hyperplasia (26).  Shenker et al. (21) 

identified the first intrinsically active mutation of LH receptors in a patient with precious 

puberty.  

  

1.5: Signal transduction by LH receptors 

LH receptors have the ability to activate multiple G protein-dependent signaling 

pathways (27).  Activated LH receptors interact with heterotrimeric G proteins which consist of 

three subunits (α, β and γ) leading to activation of adenylate cyclase (AC) and phospholipase C 

(PLC) (Figures 1.6 and 1.7).  The LH receptor, like other GPCR family members, interacts 

mainly with Gs and, to a lesser extent with Gq and Gi.  Like many GPCRs, receptor activation 

includes changes in the transmembrane domains and sometimes involves participation by the 

extracellular domains (28).  The intracellular domains contact G proteins by interacting with the 

C-terminal domain of the receptor.  More specifically, LH receptor coupling to G proteins is 

dependent on the C-terminus of the third loop and involves protein-protein interactions (29).  

Signal transduction by the receptor through the membrane is not well understood.  It is 

known that the receptor, in the absence of hormone, interacts with a G protein and that both are 

in an inactive state.  Once ligand binds, the conformation of the receptor changes, the G protein 

is activated and dissociates from the receptor (Figure 1.5).  The receptor now can activate 

another G protein or switch back to an inactive state.   
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A new mechanism for receptor activation of the glycoprotein hormone receptors, termed 

trans-activation, has been proposed as an alternative to the traditional mechanism known as cis-

activation. (30).  LH receptor-mediated signal transduction via cis-activation involves high 

affinity binding of either LH or hCG to the receptor's exodomain and interactions between the 

hormone-occupied exodomain and the receptor endodomain (Figure 1.2 (4)). The receptor 

endodomain, as modeled by Fanelli and colleagues (31), is capable of interacting with Gs. LH 

receptors (30) and structurally-related FSH receptors (32) can also be activated by receptor 

trans-activation which involves at least two receptors (Figure 1.4).  A functional LH receptor 

exodomain binds ligand and then interacts with an adjoining receptor that has not bound ligand.  

This leads to signal transduction by the second receptor’s functional endodomain including 

activation of G proteins and adenylate cyclase. LH receptor trans-activation can be shown (30) 

using cells co-transfected with a functional LH receptor exodomain coupled to either a non-

signaling LH receptor endodomain or to a protein or lipid membrane anchor  (33) and with a 

second LH receptor containing one of several mutations in their exodomain that prevent binding 

of hormone. These cells produce cyclic AMP (cAMP) in response to hCG, presumably via 

signaling through the competent LH receptor endodomain. The demonstration of both cis- and 

trans-activation of LH receptors suggests that amplification of ligand signal may occur through 

sequential cis-activation of one receptor and by trans-activation of closely associated LH 

receptors.  More recently, it has been shown that co-expressing mutant LH receptors deficient in 

binding or in signaling produces a hormone-induced signal in transgenic mice (34).   

            Signals by the LH receptor arise primarily through cAMP and protein kinase A (PKA).  

Following hormone binding, the LH receptor is activated, there is a conformational change in the 

transmembrane domain and binding of the intracellular domain with G proteins (Figure 1.5).  G 
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proteins contain three distinct subunits α, β, and γ and, before ligand binding, are inactive.  In the 

inactive state, the α subunit is bound to GDP while the β and γ subunits help to anchor the 

heterotrimer in the inner leaflet of the plasma membrane.  When receptor is activated, GDP is 

released from the α-subunit resulting in the activation of G protein and dissociation from both the 

activated receptor and the β and γ subunits  (19).  Activation LH receptor leads to the activation 

of the G protein Gs.  Following dissociation from β and γ, the α subunit activates adenylate 

cyclase.  Activation of adenylate cyclase, in turn, converts adenosine triphosphate (ATP) to the 

second messenger molecule cAMP (Figure 1.6).  cAMP binds to the regulating subunit of PKA 

and causes activation of its subunits.  Upon receptor activation, phospholipase C (PLC) 

hydrolyzes the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), yielding inositol 

1,4,5-triphosphate (IP3) and 1,2-diacylglycerol (DAG).  IP3 leads to release of sequestered 

intracellular Ca+2 ions from endoplasmic reticulum.  DAG increases the catalytic activity of 

protein kinase C (PKC) (Figure 1.7).                 

 

1.6: GPCR dimerization or oligomerization 

            For many years G protein-coupled receptors (GPCR) were thought to function as  

monomers but the concept that GPCRs can form dimers or oligomers has become widely 

accepted (35).  The evidence for signal transduction by dimerization of GPCR was first 

demonstrated for GABAB, metabotropic glutamate and calcium-sensing receptors (36).  

Oligomerization of GPCRs may be required for function as described for purified leukotriene B4 

receptor (37).  There is evidence of dimerization and oligomerization for some of GPCRs 

accompanying receptor activation.  GPCR  homodimers have been demonstrated for the 

β2-adrenergic receptor, the δ-opioid receptor, and the dopamine D1, D2 and D3  receptors (6).  
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GPCRs interact with components of the membrane bilayer such as lipids and with other GPCRs 

to form dimers or oligomers. These dimers and higher order-oligomers can affect ligand binding 

and signaling of GPCRs (38).   

 The serotonin1A receptor is a member of GPCR superfamily and serves as an important 

target for drugs.  The oligomerization state of serotonin1A receptors has been observed using a 

homo-FRET measurements where fluorescence anisotropy increases with fluorophore 

photobleaching (39).  In the glutamate receptor family of GPCRs, dimerization is important for 

receptor activation (40).  For rhodopsin family members, dimerization may play a role in the 

receptor activation.  However, the rhodopsin receptor could exist as a homodimers in the outer 

membrane as shown by microscopy images (41).  Oligomerization of LH receptors has also been 

observed (42-44).   

            A number of methods have been used to demonstrate dimerization or oligomerization of 

GPCRs.  A biochemical technique commonly used to identify the oligomerization state of GPCR 

is co-immunoprecipitation.  In the co-immunoprecipitation technique, cells which express two 

epitope-tagged receptors are solubilized and the lysate is incubated with an antibody against one 

of the epitope tags (7).  Then the complex is bound to a medium, electrophoresed, blotted and 

visualized using an antibody against the epitope tag on the second receptor of interest (7).  

Dimerization of GPCRs is induced by ligand binding to the receptor and this procedure is 

repeated.  Dimerization of β2-adrenergic receptor increases with the addition of its ligand 

isoproterenol (45).   Ligand-induced receptor dimerization has been also demonstrated for 

CXCR2, CCR5 and CCR2 receptors (35).  Dimers or oligomers of several GPCRs have been 

described during receptor desensitization or internalization either before, during, or after ligand 

binding (34).   
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1.7: The role of cholesterol in receptor function  

Cholesterol is an amphiphilic sterol with a small –OH head group and four rigid rings 

that interact with plasma membrane phospholipids through their hydrophobic tails (46).  

Cholesterol is an important component of the plasma membrane and can play an important role 

in the function of membrane proteins (47) including a number of GPCRs.   Cholesterol analogues 

and membrane fluidity measurements during receptor activity have been used to demonstrate 

direct and indirect cholesterol-receptor interactions (46).  Direct interactions between cholesterol 

and membrane proteins have been demonstrated for some GPCRs including serotonin1A 

receptors (48).  A specific binding site for cholesterol on the β2-adrenergic receptor has been 

described (49).   

There is evidence indicating that membrane cholesterol affects signal transduction by 

GPCRs.  Cholesterol is important for formation of lipid microdomains (lipid rafts) (50) which 

are enriched in cholesterol and sphingolipids and thought to act as a signaling platforms for 

GPCRs.  As an example, Smith et al. (51) have demonstrated that the LH receptors, upon 

hormone binding, become confined in small membrane microdomains which are essential for 

ligand-mediated receptor signaling.     

How cholesterol functionally regulates GPCRs and how cells control cholesterol 

distribution is not understood.  Nor is it clear whether these mechanisms are of pharmacological 

importance.  However, cholesterol depletion using methyl-β-cyclodextrin leads to a decrease in 

the oligomerization of the serotonin receptors and decreased signal transduction in response to 

ligand (39).  Decreasing cholesterol levels in membranes expressing µ-opioid receptors are 

accompanied by decreases in dimerization of the receptor and in receptor association with Gα, a 

result that reflects the importance of cholesterol in signaling transduction (52). 



11 

1.8: Single particle tracking  

            Single particle tracking (SPT) has become an important tool for studying the movement 

of molecules in live cells.  The aim of SPT is to understand motion of individual molecules or 

particles in specific environments and to describe their lateral dynamics quantitatively (53).  

Single particle tracking permits measurement of the individual trajectory of a molecule on the 

cell surface (54). The trajectories obtained from SPT experiments provide the molecule’s mean 

square displacement (MSD) which is  the average square distance that a particle moves in a time 

period (55).  The diffusion coefficient (D) can be calculated from the slope of a plot of MSD vs. 

time (56).  Daumas et al. have calculated the diffusion coefficient from the first two points of the 

MSD plot (57). 

 

1.9: Fluorescence resonance energy transfer (FRET) 

FRET is a biophysical technique that can evaluate interactions between membrane 

receptors.  FRET techniques include both hetero-transfer FRET and homo-transfer FRET.  In 

FRET the energy is transferred from an excited donor to an acceptor when the donor and 

acceptor are less than about 10 nm apart (58).  When a donor and acceptor fluorescent molecules 

are close, the emission spectrum of the donor overlaps the excitation spectrum of the acceptor, 

the donor emission is decreased and acceptor emission can be detected.  FRET techniques have 

been used by researchers to study a variety of biological processes including receptor-receptor 

interactions that occur as part of oligomerization of GPCRs.   

1.10: Hetero-FRET 

 Hetero-FRET is  FRET   between   two different  fluorescent proteins where one acts as a 

fluorescence donor and the other  is a fluorescence acceptor.   Commonly used FRET pairs 
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include CFP and YFP or CFP and GFP.  Cyan fluorescent protein (CFP) and yellow fluorescent 

protein (YFP) are color variants of green fluorescent protein (GFP).  Donor (CFP) excitation 

results in energy transfer to the acceptor (YFP) and emission by the acceptor when both donor 

and acceptor are at distances less than about 10 nm (58).   

 

1.11: Homo-FRET 

FRET usually refers to energy transfer between two different fluorophores, one acting as 

a donor and the other acting as an acceptor.  However, in some biological conditions, researchers 

need to evaluate interactions between two copies of a single protein (59).  In homo-transfer 

FRET both proteins will emit light with the same wavelengths but with differences in 

polarization between excitation and emission light of the fluorophores which can be detected 

(Figure 1.4).  Thus energy is transferred between two identical donor and acceptor molecules 

(58).  If the donor and acceptor molecules are sufficiently close for energy transfer, the emitted 

energy is polarized like the donor molecules, but less anisotropy is seen in FRET because the 

acceptor is oriented differently (Figure 1.8 (60)).  Decreased polarization reflects an increase in 

self-association and suggests that molecules of interest are in a dimeric or oligomeric structure. 

Anisotropy is measured by collecting images using polarizers to obtain images of 

fluorescence emitted parallel (I∥) and perpendicular (I⊥) to the polarization of the exciting light.  

The following formula is used to calculate fluorescence anisotropy (r):          

 ( )
2

 

 
Anisotropy r

I I

I I









   (1) 

 where I∥ and I⊥ are the intensities of the parallel and perpendicular polarized emission. Homo-

transfer FRET can be used to examine protein-protein interaction on individual cells and it is 

widely used to evaluate the aggregation state in living cells (61).   
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1.12: EPAC-Based FRET Sensors 

FRET-based sensors are ideal to measure the changes in intracellular concentrations of 

cAMP, a second messenger involved in GPCR signaling.  cAMP is an important intermediate 

that regulates various cellular functions through protein kinase A (PKA) and Epac, an exchange 

protein directly activated by cAMP (62).  Several Epac-based reporters called ICUE probes have 

been created using full length Epac1 or truncated forms of Epac2 sandwiched between ECFP and 

citrine. Similar to the biosensors formed from EPAC, ICUE3 was constructed by replacing 

citrine with a circularly permuted YFP.   In FRET-based sensing, binding of cAMP to Epac 

induces an unfolding of CFP and YFP domains which increases the distance between CFP and 

YFP and increases the ratio of CFP emission to YFP sensitized emission  (Figure 1.9 (63)). 

 

1.13: Hypothesis 

Cis-activation of the glycoprotein hormone receptors, including receptors for luteinizing 

hormone (LH), involves binding of cognate hormone to these receptors' large exodomains 

followed by interactions between the receptor exodomain and the receptor transmembrane 

domain and extracellular loops (4,5). Intracellular signaling arising from these interactions is 

essential for development, regulation of metabolism and reproductive function.  In addition to 

cis-activation, trans-activation of glycoprotein hormone receptors may amplify hormone signals.  

Trans-activation is believed to occur through interactions between a ligand-occupied exodomain 

on one receptor and the signaling domain of an adjoining receptor.  It is assumed that the trans-

activated receptors takes on an “active” conformation and signal similarly to a fully functional 

receptor that has bound and retained ligand or to a constitutively-active receptor that has never 

seen ligand but signals continuously nonetheless. We hypothesize that hormone activation of 
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LH receptors leads to formation of a signaling complex containing active receptors and 

that both cis- and trans-activated receptors are present in small membrane microdomains 

in which receptors motions are confined.  
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Figure 1.1: G protein-coupled hormone receptor. The luteinizing hormone (LH)/human 
chorionic gonadotropin (hCG) receptor is a representative of group II of the G protein-coupled 
receptors.  The LH/hCG receptor is composed of seven highly conserved transmembrane 
domains (I through VII), a large extracellular domain with six potential glycosylation sites and a 
relatively short cytoplasmic domain. (Modified from Segaloff et al. (64)).  
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Figure 1.2: A and B: Schematic presentation of intramolecular (cis) and intermolecular (trans) 
activation of GPCRs. In cis-activation (A), the hormone-occupied exo-domain is capable of 
intramolecular activation of its cognate endo-domain. In trans-activation (B), the hormone-
occupied exo-domain is capable of intramolecular activation of the endo-domain of the 
unliganded receptor. (Adapted from Rivero-Muller et al. (34)). 
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Figure 1.3: Schematic representation of cis-activation on the left and trans-activation on the 
right of LH receptors leading to receptor clustering, raft localization and increased intracellular 
cAMP.     
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Figure 1.4: Polarization of fluorescence. (A) Fluorophore with randomly-oriented transition 
dipoles within an isotropic distribution.  (B) When the isotropic distribution of fluorophors is 
excited with vertically polarized light, fluorophores oriented in parallel to the vertical 
polarization of exciting light are excited. (C) The excited fluorophores transfer energy to 
adjoining fluorophores resulting in randomly-oriented emitted fluorescence. 
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Figure 1.5: Activation of G-proteins (65). 
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Figure 1.6: Activation of protein kinase A (65). 
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Figure 1.7: Activation of phospholipase C by activated G-protein (65). 
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Figure 1.8: FRET results in depolarization of the fluorescence signal.  The extent of such 
depolarization can be used to estimate the cluster size of proteins.  
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Figure 1.9: ICUE3 consists of an Epac1 149−881 sensing unit flanked by an ECFP donor and a 
cpV-L194 acceptor reporting unit.  Upon binding cAMP, the sensor switches from a high FRET 
to a low FRET conformation.  Adapted from Zhang et al., 2014 (66).   
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CHAPTER 2: MATERIALS AND METHODS  

 

2.1:   Introduction Single Particle Tracking (SPT)   

 Single particle tracking (SPT) is a biophysical technique that utilizes optical microscopy 

to provide important information about the diffusion of individual protein molecules on live cells 

(55).  SPT also offers multiple advantages for evaluating protein diffusion when compared with 

other light microscope techniques (67).   One of the important advantages of SPT is that it can 

give rates of diffusion for single molecules.  In contrast, a related method, fluorescence recovery 

after photobleaching, provides diffusion coefficients for all molecules in an illuminated region of  

the cell surface, typically at least 50 proteins.  Our lab previously examined the diffusion 

coefficient of LH receptors using colloidal gold particles and single particle tracking methods. In 

these earlier studies 40 nm gold particles were used as probes for labeling the LH receptors on 

the surface of living cells and the motion of these labeled receptors was imaged using light 

microscopy.  In the present study, we use quantum dots (QDs) to examine the diffusion 

coefficient of LH receptors.  QDs are inorganic semi-conducting nanoparticles that are 10-100 

times brighter than organic dyes.  QDs are attached to molecules of interest and imaged by light 

microscopy to obtain particle trajectories that are analyzed to obtain the mean square 

displacement of the particle and to distinguish between the different possible motions of the 

molecules. 

 

2.2: Materials and cell culture 

           CHO (Chinese hamster ovary) cells were purchased from American Type Culture 

Collection (Manassas, VA).  CHO cells were maintained in high glucose Dulbecco’s 

Modification of Eagle’s Medium (DMEM).  DMEM medium was purchased from Corning 
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Cellgro (Visalia, CA) supplemented with 10% fetal bovine serum (FBS).  FBS was purchased 

from Atlas Biologicals (Fort Collins, CO). Penicillin/streptomycin and L-glutamine solution 

were purchased from Gemini Bio-Products (West Sacramento, CA). 100x MEM non-essential 

amino acid solution and ethylenediamine tetraacetic acid (EDTA) were purchased from Sigma-

Aldrich, Inc. (St.Louis, MO).  Human chorionic gonadotropin (hCG) was purchased from 

Fitzgerald Industries (Acton, MA) and prepared in 1x PBS.  Monoclonal anti-FLAG biotin 

antibody was purchased from Sigma-Aldrich, Inc. (St. Louis, MO).  Qdot 605-streptavidin-

conjugated quantum dots were purchased from Invitrogen (Carlsbad, CA).  Lipofectamine 3000 

regent and OPTI-MEM reduced serum medium were purchased from Life Technology 

(Carlsbad, CA).  35 mm diameter glass-bottom cell culture dishes with 14 mm diameter glass 

bottoms were purchased from Invitro Scientific (Sunnyvale, CA).  CHO cells were grown in 5% 

CO2 at 37°C in a humidified environment.  

 

2.3: Amplification of FLAG-LHR-YFP in E. coli competent cells (DH5α) 

            2-5 µg of DNA plasmid (FLAG-LHR-YFP) was added to 50 µL of competent cells 

(DH5α) max efficiency.  A mixture of E. coli (DH5α) with FLAG-LHR-YFP was heat shocked 

for 45 seconds at 42°C and then transferred to ice for 2 minutes.  950 µL LB liquid media was 

added to the mixture of E .coli cells with FLAG-LHR-YFP and were grown at 37°C with 

vigorous shaking at 225 rpm for one hour.  E. coli cells with FLAG-LHR-YFP were plated 

together on LB-agar with antibiotic and cells were grown overnight at 37°C.  A single colony 

was selected and incubated overnight with 3-5 mL of LB-broth media at 37°C with vigorous 

shaking at 250 rpm.  Plasmid DNA was purified using a Qiagen mini-prep kit. 
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2.4: Amplification of FLAG-LHR
+hCG,-cAMP 

 and HA-LHR
-hCG,+cAMP

 plasmids using E. coli cells 

(DH5α) 

            2-5 µg of DNA plasmid (FLAG-LHR+hCG,-cAMP or HA-LHR-hCG,+cAMP) was added to 50 µL of 

competent cells (DH5α) max efficiency.  A mixture of E. coli (DH5α) with FLAG-LHR+hCG,-cAMP 

or HA-LHR-hCG,+cAMP
  were heat shocked for 45 seconds at 42°C and then transferred to ice for 2 

minutes.  950 µL LB liquid media was added to the mixture of E. coli cells with 

FLAG-LHR+hCG,-cAMP or HA-LHR-hCG,+cAMP  and cells were grown at 37°C with vigorous shaking at 

225 rpm for one hour.  E. coli cells with FLAG-LHR+hCG,-cAMP  or HA-LHR-hCG,+cAMP were plated on 

LB-agar with antibiotic and cells were grew overnight at 37°C.  A single colony was selected 

and incubated overnight with 3-5 mL of LB-broth media at 37°C with vigorous shaking at 250 

rpm.  Plasmid DNA was purified using a Qiagen mini-prep kit. 

 

2.5: Transfection of CHO cells with FLAG-LHR-YFP 

 CHO cells were grown in a 25 cm2 culture flask in DMEM medium supplemented with 2 

mM L-glutamine, 10% fetal bovine serum (FBS), 1% penicillin/streptomycin and 1% 1x MEM 

non-essential amino acid solution. Cells were grown in 5% CO2 at 37°C in a humidified 

environment. CHO cells were transiently transfected with FLAG-LHR-YFP, kindly prepared by 

Dr. Xiaorong Li (Southwest University, Chongqing, China), using Lipofectamine 3000 in 

accordance with the Manufacturer’s instructions. Two sterilized microcentrifuge tubes were 

needed, each one containing 125μL of OPTI-MEM medium.  Tube one contained 5μL LP300 

reagent and 0.4 μg of FLAG-LHR-YFP.  Tube two contained 7.5μL of Lipofectamine 3000.  

Tube one was added drop wise to tube two and the mixture was incubated at room temperature 

for 5 to 15 min.  The incubated mixture was added to the CHO cells.  Cells were plated in a 

35mm glass-bottom Petri dish and grown to approximately 80% confluence in 1mL OPTI-MEM 
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reduced serum medium.  Cells were maintained in a humidified incubator in 5% CO2 at 37°C.  

Transfection proceeded for at least 24 hours. 

CHO cells were transiently co-transfected with 0.4 µg HA-LHR-hCG,+cAMP and 

FLAG-LHR+hCG,-cAMP.  These vectors were kindly provided by Dr. Aylin Hanyaloglub and Dr. Jonas 

Kim, members of Dr. IIpo T. Huhtaniemi’s research group at Imperial University, UK.  

Co-transfection procedures were similar to those used to transfect CHO cells with 

FLAG-LHR-YFP above. 

 

 2.6: Labeling with anti-FLAG-biotin antibody and QD 605-streptavidin: 

CHO cells expressing either wild type FLAG-LHR-YFP or FLAG-LHR+hCG,-cAMP and 

HA-LHR-hCG,+cAMP were seeded onto sterile culture dishes and grown to 70% confluence.  All 

labeling was performed in Tyrodes buffer containing 0.1% BSA. Cells were labeled first with 

anti-FLAG-biotin antibody at 0.2µg/mL for 30 min,  washed three times for 1 min in 1 mL 

buffer, labeled with QD 605-streptavidin for 10 min and washed 6 times for 1 min in 1 mL of 

buffer.  The QDs were then imaged.  The binding specificity for FLAG-tagged receptors was 

tested by pre-incubating cells with excess of anti-FLAG antibody. 

 

2.7: Single particle tracking of FLAG-LHR-YFP and FLAG-LHR
+hCG/-cAMP

 co-expressed 

with HA-LHR
-hCG/+cAMP

 on individual CHO cells 

            We examined the diffusion coefficient and confinement of LH receptors in plasma 

membrane microdomains by tracking the movement of individual receptors using single particle 

tracking methods as described by Kusumi and colleagues  (68).  CHO cells expressing 

FLAG-LHR-YFP alone or co-expressing FLAG-LHR+hCG,-cAMP  with HA-LHR-hCG,+cAMP  were 

seeded onto 35 mm2 Petri dishes  and grown to 50% confluence.  All labeling was performed in 
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Tyrodes buffer containing 0.1% BSA.  Cells were labeled first with anti-FLAG-biotin antibody at 

0.2 µg/mL for 30-40 min, washed three times for 1 min in 1mL of buffer and labeled with 

quantum dot probe Qdot605-streptavidin conjugate at 100 pM for 10 min and then washed at 

least six times for 1 min in 1mL to remove unbound probe.  In some experiments, cells were 

treated with 0.1, 1 or 100 nM hCG for 1 hour.  Images were collected on a Zeiss Axiovert 200M 

microscope using a 63x 1.2 NA water objective and Qd605 filter set.  Images were collected 

every 100 ms for up to 2 minutes at a final magnification of 315x onto a CCD camera with 16 x 

16 µm pixels.  Image acquisition was performed with MetaMorph 7.1.6.  Determination of 

individual particle locations and the trajectories for individual particles were performed with 

Image J.  The diffusion coefficient and the domain size were calculated using a program 

developed by Dr. George Barisas at Colorado State University.  

 

2.8: Homo-Transfer FRET 

After hormone treatment with either luteinizing hormone (LH) or human chorionic 

gonadotropin (hCG), LH receptors are self-associated into dimers/oligomers and translocated 

into small membrane compartment (lipid rafts) where receptor motions are confined.  

Polarization homo FRET is one of the FRET techniques that has been used to investigate 

self-association of LH receptors.  The aggregation of LH receptors is related to hormone 

concentration as shown in a previous study using homo-FRET methods  which show a decrease 

in anisotropy when CHO cells are incubated with 100 nM hCG (43).  Homo-FRET is energy 

transfer between identical molecules, one acting as a donor and the other as an acceptor and this 

process can be assessed by imaging measurements of emission polarization.  Decreasing 

anisotropy indicates increased self-association of the LH receptor.  In this study, decreased 

anisotropy for wild type receptor after hormone treatment or mutant receptors defective in 
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hormone binding or signal transduction when co-expressed with wild type receptor was 

examined.   

 

2.9: Materials and cell culture 

           CHO (Chinese hamster ovary) cells were purchased from American Type Culture 

Collection (Manassas, VA).  CHO cells were maintained in high glucose Dulbecco’s 

Modification of Eagle’s Medium (DMEM).  DMEM medium was purchased from Corning 

Cellgro (Visalia, CA) supplemented with 10% fetal bovine serum (FBS).  FBS was purchased 

from Atlas Biologicals (Fort Collins, CO). Penicillin/streptomycin and L-glutamine solution 

were purchased from Gemini Bio-Products (West Sacramento, CA). 100x MEM non-essential 

amino acid solution and ethylenediamine tetraacetic acid (EDTA) were purchased from 

Sigma-Aldrich, Inc. (St. Louis, MO).  Human chorionic gonadotropin (hCG) was purchased 

from Fitzgerald Industries (Acton, MA) and prepared in 1x PBS.  Lipofectamine 3000 regent and 

OPTI-MEM reduced serum medium were purchased from Life Technology (Carlsbad, CA).  

Glass bottom cell culture dishes with 35 mm diameter and 14 mm diameter glass bottoms were 

purchased from Invitro Scientific (Sunnyvale, CA).  CHO cells were grown in 5% CO2 at 37°C 

in a humidified environment.  

 

2.10: Transfection of CHO cells with FLAG-LHR-YFP 

 CHO cells were grown in a 25 cm2 culture flask in DMEM medium supplemented with 

2mM L-glutamine, 10% fetal bovine serum (FBS), 1% penicillin/streptomycin and 1% 1x MEM 

non-essential amino acid solution. Cells were grown in 5% CO2 at 37°C in a humidified 

environment. CHO cells were transiently transfected with FLAG-LHR-YFP using Lipofectamine 
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3000 in accordance with the Manufacturer’s instructions. Two sterilized microcentrifuge tubes 

were needed, each containing 125μL of OPTI-MEM medium.  Tube one contained 5μL LP3000 

reagent and 0.4μg of FLAG-LHR-YFP.  Tube two contained 7.5μL of Lipofectamine 3000.  Tube 

one was added drop wise to tube two and the mixture was incubated at room temperature for 5 to 

15 min.  The mixture was added to CHO cells.  Cells were then plated in a 35mm glass-bottom 

Petri dish and grown to approximately 80% confluence in 1mL OPTI-MEM reduced serum 

medium.  Cells were maintained in a humidified incubator in 5% CO2 at 37°C.  Transfection 

proceeded for at least 24 hours. 

            CHO cells were transiently co-transfected with 0.4 µg FLAG-LHR-YFP and excess of 

HA-LHR-hCG,+cAMP or 0.4µg FLAG-LHR-YFP and excess of FLAG-LHR+hCG,-cAMP.  Co-transfection 

procedures were similar to those used to transfect CHO cells with FLAG-LHR-YFP above. 

 

2.11: Analysis of Polarization Homo-FRET 

            We investigated aggregation or self-association of LH receptors following hormone 

binding using polarized imaging microscopy to measure homo-FRET between receptors.  CHO 

cells, after transient transfection with wild type receptor FLAG-LHR-YFP alone or 

co-expressing FLAG-LHR-YFP with excess of either HA-LHR-hCG,+cAMPor FLAG-LHR+hCG,-cAMP 

were plated overnight in Willco 35 mm diameter #1.5 glass-bottom Petri dishes and grown to 

approximately 80-90 % confluence.  Cells were washed twice with 1x phosphate buffered saline 

(PBS) pH 7.0.  For untreated cells, the cells were incubated in 600 mL of PBS alone, while 

treated cells were incubated with different concentrations of hCG (0.1, 1 or 100 nM) at 37°C for 

one hour.  Cells were imaged on a Zeiss Axiovert 200M inverted microscope using a 63x 1.2 NA 

water objective and YFP filter set.  Images were acquired using an arc lamp for fluorescence 
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excitation with a polarized excitation filter.  Homo-transfer FRET data are collected from two 

separate images obtained using an Andor Du897E EMCCD camera and a “Dual View” image 

dissector.  This latter device provides simultaneous acquisition of separate images of 

fluorescence emission parallel to polarization of the excitation light and fluorescence 

perpendicular to excitation light, respectively. The cells were photobleached for 15 minutes and 

fluorescence emission was evaluated using MetaMorph 7.1.6.  Each anisotropy measurement 

was taken with g-factor and background images, and image analysis was performed with 

Image J.  Ten cells for each treatment were analyzed.  The fluorescence polarization anisotropy 

(r) was calculated using the following formula:   r = (I∥ -g  I⊥)/ (I∥ +2g I⊥) where g is the g-factor, 

and I∥, I⊥ are the parallel and perpendicular polarized emission intensities generated by excitation 

with vertically polarized light.   

 

2.12: EPAC-based FRET sensor 

            cAMP is a second messenger which regulates several cellular functions (69).  The cAMP 

sensor is based on Epac, an exchange protein directly activated by cAMP.  Several Epac-based 

probes, so-called ICUE probes, have used Epac1 and Epac2 as described by Zhang and 

colleagues (70).  Epac based reporter molecules can be used to evaluate intracellular cAMP 

levels by sandwiching the full length Epac between cyan fluorescence protein (CFP) as a donor 

and yellow fluorescence protein (YFP) as an acceptor.  Energy transfer FRET signals depend on 

the energy transferred from an excited donor to the FRET acceptor if both the donor and the 

acceptor are in close proximity.  With energy transfer, fluorescence emission from the excited 

donor will be reduced and fluorescence emission from the acceptor will increase.  In 

FRET-based sensors, binding of cAMP to Epac induces an unfolding of CFP and YFP domains 

which increases the distance between CFP and YFP.  The ratio of CFP emission to sensitized 
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YFP emission also increases (63).  In this study, we used ICUE3 to evaluate changes in cAMP in 

cells expressing LH receptors in response to hCG treatment.  

 

 2.13: Materials and cell culture 

           CHO (Chinese hamster ovary) cells were purchased from American Type Culture 

Collection (Manassas, VA).  CHO cells were maintained in high glucose Dulbecco’s 

Modification of Eagle’s Medium (DMEM).  DMEM medium was purchased from Corning 

Cellgro (Visalia, CA) supplemented with 10% fetal bovine serum (FBS).  FBS was purchased 

from Atlas Biologicals (Fort Collins, CO). Penicillin/streptomycin and L-glutamine solution 

were purchased from Gemini Bio-Products (West Sacramento, CA) and methyl-β-cyclodextrin 

(MβCD) was purchased from Sigma-Aldrich, Inc (St. Louis, MO). 100x MEM non-essential 

amino acid solution and ethylenediamine tetraacetic acid (EDTA) were purchased from 

Sigma-Aldrich, Inc. (St. Louis, MO).  Human chorionic gonadotropin (hCG) was purchased 

from Fitzgerald Industries (Acton, MA) and prepared in 1x PBS.  Lipofectamine 3000 regent and 

OPTI-MEM reduced serum medium were purchased from Life Technology (Carlsbad, CA).  35 

mm diameter glass-bottom cell culture dishes with 14 mm diameter glass-bottoms were 

purchased from Invitro Scientific (Sunnyvale, CA).  CHO cells were grown in 5% CO2 at 37°C 

in a humidified environment.    

 

2.14: Transfection of CHO cells with FLAG-LHR-YFP and ICUE3  

           CHO cells were grown in a 25 cm2 culture flask in DMEM medium supplemented with 

2mM L-glutamine, 10% fetal bovine serum (FBS), 1% penicillin/streptomycin and 1% 1x MEM 

non-essential amino acid solution. Cells were grown in 5% CO2 at 37°C in a humidified 
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environment. CHO cells were transiently co-transfected with FLAG-LHR-YFP and ICUE3 

plasmid kindly provided by Dr. Jin Zhang (Johns Hopkins University, Baltimore, USA) using 

Lipofectamine 3000 in accordance with the Manufacturer’s instructions. Two sterilized 

microcentrifuge tubes were needed, each one containing 125μL of OPTI-MEM medium.  Tube 

one contained 5μL LP3000 (reagent) and 0.4μg of FLAG-LHR-YFP.  Tube two contained 7.5μL 

of Lipofectamine 3000.  Tube one was added drop wise to tube two and the mixture was 

incubated at room temperature for 5 to 15 min.  Incubated mixture was added to the CHO cells, 

cells were plated in a 35mm glass-bottom Petri dish and grown to approximately 80% confluence 

in 1mL OPTI-MEM reduced serum medium.  Cells were maintained in a humidified incubator in 

5% CO2 at 37°C.  Transfection proceeded for at least 24 hours.  CHO cells were transiently co-

transfected with 0.4 µg ICUE3 and excess of HA-LHR-hCG,+cAMP and 0.4µg ICUE3 and excess of 

FLAG-LHR+hCG,-cAMP.  Co-transfection procedures were similar to those used to transfect CHO 

cells with FLAG-LHR-YFP and ICUE3 above.   

 

2.15: FRET measurement using dual emission ratio imaging 

            After cells were transiently transfected with ICUE3, ICUE3 and FLAG-LHR-YFP, 

ICUE3 and excess HA-LHR-hCG,+cAMP or ICUE3 and excess FLAG-LHR+hCG,-cAMP , medium was 

discarded from the Petri dish, cells were washed twice gently and maintained in 1x phosphate 

buffered saline (PBS) pH 7.4.  Cells were then immediately imaged.  Imaging data were 

collected using a 1.2 N.A. 63x water objective in a Zeiss Axiovert 200M inverted microscope 

with an EMCCD camera controlled by MetaFluor software.  A 10% neutral density filter was 

used to reduce the intensity of the arc lamp and reduce fluorophore photobleaching.  Emission 

ratios were obtained using a 436DF20 excitation filter, a 455 DRLP dichroic mirror, and two 



34 

emission filters, 480DF40 for CFP and 535DF30 for YFP.  All filters used were from Chroma 

Technology.  Images were taken at 60s intervals during acquisition and, for each experiment, a 

sequence of images were obtained.  During experiments, data were collected from untreated cells 

or pretreated cells for 1 hour with 10mM MβCD for several minutes before the PBS solution was 

removed and replaced with PBS containing 0.1, 1, or 100 nM hCG and cells were incubated for 

15 minutes at room temperature.  The data were analyzed using Image J software. Emission 

ratios (CFP/YFP) were calculated from CFP emission intensity and FRET emission intensity 

after background correction of fluorescent images.  These corrections were performed by 

subtracting the intensity of the background from the emission intensities of fluorescent cells 

expressing ICUE3.  

 

2.16: Statistical analysis of data 

 Mean values ± S.E.M. or standard deviation are presented.  Significance was evaluated 

using Student’s t-test and p values are indicated (p < 0.05). 
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CHAPTER 3: RESULTS 

 

3. 1: Introduction  

 

The data presented here were obtained from CHO cells expressing either wild  type 

receptor and/or mutant epitope-tagged receptors.  We also examined the effect of treatment with 

hCG, a hormone which has been previously demonstrated to cause aggregation of wild type LHR 

(71),  presumably through receptor cis-activation.  The goal of these studies was to determine 

whether lateral motions or the aggregation state of wild type or mutant receptors provided 

evidence of LHR trans-activation and, similarly, whether there was increased intracellular cAMP 

when CHO cells expressed a pair of receptors (FLAG-LHR+hCG,-cAMP or HA-LH-hCG,+cAMP) that 

could only function through receptor trans-activation.  

 

3.2: Single particle tracking of wild type FLAG-LH receptors or FLAG-LHR
+hCG,-cAMP  

co-expressed with HA-LHR
-hCG,+cAMP 

To assess the diffusion coefficient of LH receptors, we used single particle tracking 

methods to track the movements of single LH receptors on the plasma membrane of CHO cells 

expressing FLAG-LHR-YFP wild type receptors or coexpressing FLAG- LHR+hCG,-cAMP and  

HA-LHR-hCG,+cAMP.  Trajectories used to create MSD plots were obtained from FLAG-tagged 

receptors using images were recorded for two minutes.  A representative trace is shown in 

Figure 3.1 and samples of data obtained are shown in Table 3.1 and 3.2.  FLAG-LHR-YFP 

receptors before treatment with hCG had a microscopic diffusion coefficient (D0,1) of 2.70x10-10 

± 1.05x10-10 cm2sec-1 (Table 3.3).  The domain size and the number of domains occupied by 

wild type receptors were 0.40 ± 0.15 μm and 5, respectively (Table 3.3).  The diffusion 
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coefficient D0,1 and domain size of wild type receptors treated with 100 nM hCG were reduced to 

1.51x10-10 ± 1.20x10-10 cm2sec-1 and 0.30 ± 0.20 µm, respectively.  The number of domains 

accessed by the receptor decreased to 3 (Table 3.3).                                                                                                  

The diffusion coefficient of mutant LH receptors FLAG-LHR+hC,-cAMP coexpressed with 

HA-LHR-hCG,+AMP before hormone hCG treatment was 8.76x10-10 ± 3.97x10-10 cm2sec-1.  The 

average domain size was 0.60 ± 0.43 µm and the number of domains was 5.  After 100 nM hCG 

treatment, the diffusion coefficient decreased to 2.35x10-10 ± 3.42x10-10 cm2sec-1.  The domain 

size and the number of domains also decreased to 0.37 ± 0.24 µm and 3, respectively (Table 

3.3).  This results suggests that HA-LHR-hCG,+AMP, a receptor which is unable to bind hCG, was 

nonetheless activated by FLAG-LHR+hCG,-cAMP.  In general, the diffusion coefficients measured, 

the size of domains occupied by receptors and the number of domains were reduced by treatment 

of cells with 100 nM hCG.  SPT raw data are presented in Appendix I. 

 

3.3: Effects of hCG treatment on aggregation of wild type FLAG-LHR-YFP, 

FLAG-LHR-YFP co-expressed with FLAG-LHR
+hCG,-cAMP

 or FLAG-LHR-YFP 

co-expressed with HA- LHR
-hCG,+cAMP

 

To examine the aggregation state of LH receptors in response to cis-activation or 

trans-activation by hCG treatment, we performed homo-transfer FRET experiments using CHO 

cells expressing wild type receptor FLAG-LHR-YFP,  FLAG-LHR-YFP co-expressed with 

FLAG-LHR+hCG,-cAMP or FLAG-LHR-YFP co-expressed with HA-LHR-hCG,+cAMP
.   Homo-FRET 

was measured by imaging microscopy of polarized fluorescence from the YFP moiety attached 

to the C-terminus of FLAG-LHR-YFP.  When YFP moieties are in close proximity, presumably 
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due to receptor aggregation, the acceptor YFP molecules are oriented differently than donor YFP 

molecules and anisotropy is subsequently decreased.   

Hormone-treated LH receptors exhibited a higher degree of aggregation than did 

untreated LH receptors.  As shown in Table 3.4, change on photobleaching in mean anisotropy 

of wild type FLAG-LHR-YFP following 100 nM hCG treatment was 0.060 ± 0.003, larger and 

significantly different from the change on photobleaching in mean anisotropy for untreated cells 

which was 0.010 ± 0.001.  This suggests that receptor self-association accompanies 

cis-activation of wild type receptors in response to treatment of cells with increasing 

concentrations of hCG.   

The change on photobleaching in mean anisotropy of CHO cells coexpressing wild type 

receptor FLAG-LHR-YFP and FLAG-LHR+hCG,-AMP with a transfection ratio of 1:1 following 

100 nM hCG treatment was 0.100 ± 0.006 which was similar to the difference in mean 

anisotropy before hormone treatment, 0.100 ± 0.006.  The difference in mean anisotropy for cells 

coexpressing FLAG-LHR-YFP and FLAG-LHR+hCG,-AMP with a transfection ratio of 1:2 was 

0.090 ± 0.005 before 100 nM hCG treatment and 0.090 ± 0.006 after 100 nM hCG treatment.  

These values increased with a transfection ratio of 1:3 which resulted in a difference in mean 

anisotropy of 0.090 ± 0.007 before 100 nM hCG treatment and 0.120 ± 0.007 after cell treatment 

with 100 nM hCG.   

The changes on photobleaching in mean anisotropy between wild type receptor 

FLAG-LHR-YFP and the mutant receptor, FLAG-LHR+hCG,-AMP which binds hormone but is 

unable to initiate signal were likely to be the result of trans-activation by the wild type receptor.  

As shown in Table 3.4, CHO cells coexpressing FLAG-LHR-YFP and HA-LHR-hCG,+AMP , when 

the transfection ratio was 1:1, exhibited differences upon photobleaching in mean anisotropy of 



38 

0.070 ± 0.007 both before and after 100 nM hCG treatment.  The photobleaching-induced 

differences in mean anisotropy between this same receptor pair, FLAG-LHR-YFP and 

HA-LHR-hCG,+AMP  at a transfection ratio of 1:2 was 0.080 ± 0.004 after 100 nM hCG treatment,  

slightly larger than differences in mean anisotropy before hormone treatment of 0.070 ± 0.007.  

By increasing the transfection ratio for FLAG-LHR-YFP wt:HA-LHR-hCG,+AMP to 1:3, the 

photobleaching-induced difference in mean anisotropy following 100 nM hCG treatment was 

0.110 ± 0.007, somewhat larger than the differences in mean anisotropy for untreated cells.  

Overall, photobleaching induced differences in mean anisotropies values increased with an 

increase in the transfection ratio use for CHO cells co-expressing FLAG-LHR-YFP and either 

FLAG-LHR+hCG,-AMP or HA-LHR-hCG,+AMP (Table 3.4).  Examples of homo-FRET raw data are 

presented in Appendix II. 

 

3.4: Effects of hCG treatment on intracellular cAMP levels in CHO cells expressing 

FLAG-LHR-YFP only or co-expressing FLAG-LHR
+hCG,-cAMP

 and HA-LHR
-hCG,+cAMP

. 

            LH receptor-mediated changes in intracellular cAMP levels were measured following 

hCG treatment.  These studies used a live cell imaging technique to assess intramolecular 

hetero-FRET in ICUE3, a cAMP reporter molecule.  As shown in Table 3.5, the emission ratio 

of FLAG-LHR-YFP before hCG treatment was 0.85 ± 0.01 which increased after 100 nM hCG 

treatment to 0.89 ± 0.02.  This 1.05 fold increase in the ratio of CFP/YFPSE indicated 

cis-activation of wild type receptor by hCG.   

In CHO cells coexpressing mutant receptors FLAG-LHR+hCG,-AMP and HA-LHR-hCG,+AMP 

using a 1:1 transfection ratio, the CFP/YFP emission ratio before hormone hCG treatment was 

0.80 ± 0.01, a value that increased after 100 nM hCG treatment to 0.83 ± 0.01, a 1.03-fold 



39 

increase.  CHO cells coexpressing FLAG-LHR+hCG,-AMP and HA-LHR-hCG,+AMP , prepared using a 

transfection ratio of 1:10, had a CFP/YFP emission ratio before 100 nM hCG of 0.82 ± 0.01 and 

an emission ratio after 100 nM hCG treatment of 0.85 ± 0.01, a 1.04-fold change in the ratio of 

CFP to YFPSE emission.  Thus, increasing the transfection ratio for CHO cells co-expressing 

FLAG-LHR+hCG,-AMP and HA-LHR-hCG,+AMP increased the CFP/YFPSE emission ratio 

CFP/YFPSE upon treatment with 100 nM hCG although the changes were small.   

To assess effects of cholesterol depletion on intracellular cAMP levels in response to LH 

receptor mediated signaling, we pretreated CHO cells expressing FLAG-LHR-YFP or 

co-expressing FLAG-LHR+hCG,-AMP and HA-LHR-hCG,+AMP with MβCD as described in Chapter 

2.  As shown in Table 3.5, there was a significant decrease in the CFP/YFPSE emission ratio 

before and after 100 nM hCG treatment in cells expressing FLAG-LHR-YFP and pretreated with 

MβCD.  Before hormone treatment, the CFP to YFPSE ratio was 0.84 ± 0.01.  After hCG 

treatment, that ratio was 0.88 ± 0.02, a 1.04-fold increase.  CHO cells co-expressing 

FLAG-LHR+hCG,-AMP and HA-LHR-hCG,+AMP with transfection ratio of 1:1 and pretreated with 

MβCD had an emission ratio before 100 nM hCG treatment of 0.79 ± 0.01 which is identical to 

the emission ratio observed after hormone treatment.  The CFP to YFPSE emission ratio for 

CHO cells co-expressing both mutant receptors with transfection ratio of 1:10 and pre-treated 

with MβCD was 0.80 ± 0.01 before 100nM hCG treatment and 0.81 ± 0.01 after 100 nM hCG, a 

fold change of 1.01 (Table 3.5).  Figure 3.2 shows changes in the CFP to YFPSE ratio of CHO 

cells expressing FLAG-LHR-YFP untreated and treated with 100 nM hCG.  Examples of cAMP 

raw data are presented in Appendix III. 
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 Figure 3.1:  A representative trajectory (left panel) and MSD plot (right panel) for CHO cells 
 expressing FLAG-LHR-YFP and otherwise untreated.  The diffusion coefficient for this  
 trajectory was 6.2x10-11 cm2s-1, the number of domains was 5, and the domain size was 0.49 µm. 
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Figure 3.2:  CFP/YFPSE ratio of CHO cells expressing FLAG-LHR-YFP and treated with 100 
nM hCG after 9 minutes. Images were collected for an additional 10 minutes after hCG 
treatment.   

 

 

 

 

 

 

 

Table 3.1: An example of a CSV file of a trajectory created from one image sequence.  Only a 
portion of the file is shown here. 
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frame y x 

      0 362.2074 103.6205 35 361.7089 103.3507 70 361.6321 103.3453 
1 361.7675 103.5363 36 361.7371 103.4365 71 361.7239 103.2666 
2 361.7477 103.48 37 361.7496 103.4086 72 361.6032 103.3174 
3 361.7124 103.4647 38 362.2369 103.4233 73 361.6386 103.2722 
4 362.2844 103.6019 39 361.6446 103.2604 74 361.6061 103.3162 
5 361.7488 103.5112 40 361.5998 103.3562 75 361.5644 103.3303 
6 361.7239 103.3871 41 361.7297 103.5121 76 361.5768 103.3217 
7 361.6636 103.5022 42 361.7597 103.362 77 361.5991 103.3607 
8 361.7643 103.4614 43 361.7054 103.3611 78 361.5637 103.366 
9 361.7119 103.4779 44 361.6674 103.4123 79 361.6145 103.3901 
10 361.7698 103.5175 45 361.7987 103.5439 80 361.4193 103.3601 
11 362.2305 103.4263 46 361.6517 103.4339 81 361.7131 103.4154 
12 362.226 103.4347 47 361.4847 103.2796 82 362.2495 103.479 
13 361.7216 103.5122 48 361.6284 103.4079 83 362.2681 103.4893 
14 361.658 103.4384 49 361.6579 103.5191 84 362.1398 103.5537 
15 361.6832 103.4498 50 361.6483 103.3974 85 

  16 362.3713 103.6831 51 361.6756 103.3978 86 361.58 103.3378 
17 362.2883 103.6753 52 361.4899 103.2473 87 361.7633 103.5013 
18 361.7733 103.6326 53 361.6345 103.3769 88 361.4713 103.3608 
19 361.6608 103.4836 54 361.5051 103.2661 89 361.5767 103.4489 
20 361.6614 103.355 55 361.6086 103.4446 90 361.7705 103.509 
21 361.7368 103.4377 56 361.6755 103.444 91 361.6429 103.3094 
22 361.6591 103.3342 57 361.7333 103.5169 92 361.2627 102.9066 
23 361.63 103.4107 58 361.6823 103.452 93 361.506 103.2816 
24 361.7461 103.4173 59 361.7072 103.525 94 361.6946 103.4288 
25 361.8057 103.5106 60 361.7647 103.3981 95 361.6197 103.4413 
26 361.6549 103.3493 61 361.756 103.4514 96 361.6233 103.3583 
27 361.683 103.3722 62 362.3722 103.5696 97 361.6447 103.4498 
28 361.5698 103.2961 63 361.6924 103.3799 98 361.6291 103.4127 
29 

  
64 362.3101 103.4804 99 361.6264 103.4456 

30 362.4957 103.5051 65 361.6812 103.4843 100 361.6353 103.5436 
31 362.1674 103.3978 66 361.7131 103.4792 101 361.6306 103.3703 
32 361.7772 103.3153 67 362.2311 103.5243 102 361.636 103.4506 
33 361.7458 103.3711 68 361.6142 103.3132 103 361.6092 103.3392 
34 361.7426 103.3846 69 361.6623 103.3259 104 361.6209 103.397 

 

 

 

Table 3.2: An example of the MSD file created from one image sequence.  Only a portion of     
the file is shown here. 
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i               gx               gy                gr     gxCalc      gyCalc 

                      
grCalc 

0 0 0 0 4.78E-03 4.78E-03 9.55E-03 
1 0.292361 4.87E-02 0.341017 0.967169 0.967169 1.934339 
2 0.425719 5.81E-02 0.48383 1.906026 1.906026 3.812051 
3 0.515722 6.77E-02 0.583413 2.827262 2.827262 5.654523 
4 0.565729 6.97E-02 0.635455 3.73404 3.73404 7.46808 
5 0.620122 7.28E-02 0.692972 4.628308 4.628308 9.256615 
6 0.642386 7.75E-02 0.719866 5.511398 5.511398 11.0228 
7 0.689937 8.10E-02 0.770959 6.38429 6.38429 12.76858 
8 0.716499 8.00E-02 0.796549 7.247747 7.247747 14.49549 
9 0.755532 8.15E-02 0.836992 8.10238 8.10238 16.20476 
10 0.772625 7.82E-02 0.850851 8.948695 8.948695 17.89739 
11 0.790256 0.079241 0.869497 9.78712 9.78712 19.57424 
12 0.798108 8.22E-02 0.880331 10.61802 10.61802 21.23605 
13 0.808814 0.082326 0.89114 11.44173 11.44173 22.88345 
14 0.83342 8.60E-02 0.919398 12.25851 12.25851 24.51702 
15 0.826448 8.66E-02 0.913003 13.06863 13.06863 26.13726 
16 0.873193 9.02E-02 0.96342 13.87231 13.87231 27.74462 
17 0.899003 9.39E-02 0.992915 14.66975 14.66975 29.3395 
18 0.935137 9.56E-02 1.030722 15.46115 15.46115 30.92229 
19 0.941703 9.52E-02 1.036899 16.24666 16.24666 32.49333 
20 0.908154 9.37E-02 1.001848 17.02646 17.02646 34.05292 
21 0.899741 9.55E-02 0.995287 17.80068 17.80068 35.60136 
22 0.898665 9.76E-02 0.996278 18.56946 18.56946 37.13891 
23 0.893185 9.45E-02 0.987728 19.33292 19.33292 38.66584 
24 0.876473 9.68E-02 0.973307 20.09118 20.09118 40.18236 
25 0.882438 9.61E-02 0.978564 20.84435 20.84435 41.6887 
26 0.881541 9.76E-02 0.979153 21.59254 21.59254 43.18507 
27 0.865226 0.101343 0.966569 22.33583 22.33583 44.67166 
28 0.8798 0.101781 0.981582 23.07432 23.07432 46.14865 
29 0.898224 0.104611 1.002835 23.80811 23.80811 47.61621 
30 0.903051 0.105444 1.008495 24.53726 24.53726 49.07452 
31 0.916402 0.103461 1.019863 25.26186 25.26186 50.52371 
32 0.944309 0.107579 1.051888 25.98198 25.98198 51.96396 
33 0.947188 0.10876 1.055947 26.69769 26.69769 53.39538 
34 0.935973 0.108833 1.044806 27.40906 27.40906 54.81812 

      

 

 Table 3.3: Effects of hCG on CHO cells expressed FLAG-LHR-YFP receptor or co-expressing 
FLAG-LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP assessed by single particle tracking.  Data shown 
are mean ± SD.   



44 

 
 

CHO Cell Line 

 
n [hCG] 

(nM) 
D01

* 
(10-10

cm²sec-¹) 
 

Domain    
size* 
(µm) 

Domain 
Number 

FLAG-LHR-YFP wt 
 

10 None 2.70 ± 1.05a  0.40 ±0.15d 5 ± 2 

FLAG-LHR-YFP wt 
 

10 0.1 4.17 ± 2.02a  0.50 ±0.13d 5 ± 1 

FLAG-LHR-YFP wt 
 

10 1 1.89 ± 4.92b  0.50 ±0.31e 3 ± 1 

FLAG-LHR-YFP wt 
 

10 100 1.51 ± 1.20b  0.30 ±0.20e 2 ± 1 

  HA-LHR-hCG/+cAMP,  
FLAG-LHR+hCG/-cAMP 

 
11 None 8.76 ± 3.97c  0.60 ±0.43f 5 ± 1 

  HA-LHR-hCG/+cAMP,  
FLAG-LHR+hCG/-cAMP 

 
11 100 2.35 ± 3.42c  0.37 ±0.24f 3 ± 1 

   

* Values with different superscripts (a,b,c,d,e,f) differ significantly (p<0.05). 

  

 

 

 

 

 

 

 

 

Table 3.4: Homo-transfer FRET summary of wild type and mutant LH receptors expressed by 
CHO cells that were either untreated or treated with indicated concentrations of hCG.  Data 
shown are mean ± S.E.M.    



45 

Receptor Ratio 
of 

transfection 

 
 
n 

Treatment 
with hCG 

            Anisotropy Differences 
(Final-Initial)* Initial 

anisotropy 
Final 

anisotropy 
FLAG-LHR-YFP  6 - 0.28 0.29 0.01 ± 0.01a,b 

6 0.1 nM 0.27 0.30 0.03 ± 0.01a 

8 1 nM 0.25 0.29 0.04 ± 0.01a 

8 100 nM 0.22 0.28 0.06 ± 0.01a 

FLAG-LHR-
YFP,   FLAG-
LHR+hCG,-cAMP 

1:1 10 - 0.20 0.30 0.10 ± 0.01b 

10 100 nM 0.17 0.27 0.10 ± 0.01b 

1:2 10 - 0.18 0.27 0.09 ± 0.01b 

10 100 nM 0.16 0.25 0.09 ± 0.01b 

1:3 10 - 0.17 0.26 0.09 ± 0.01b 

10 100 nM 0.13 0.25 0.12 ± 0.01b 

FLAG-LHR-
YFP,  HA- 
LHR-hCG,+cAMP 

1:1 10 - 0.26 0.33 0.07 ± 0.01b 

10 100 nM 0.22 0.29 0.07 ± 0.01b 

1:2 10 - 0.22 0.29 0.07 ± 0.01b 

10 100 nM 0.18 0.26 0.08 ± 0.01b 

1:3 10 - 0.23 0.32 0.10 ± 0.01b 

10 100 nM 0.21 0.32 0.11 ± 0.01b 

 

 * Values with different superscripts (a,b) differ significantly (p<0.05) 

 

 

Table 3.5: Effects of hCG treatment or MβCD pretreatment on CHO cells expressing wild type 
receptor FLAG-LHR-YFP or co-expressing LHR+hCG, -cAMP and LHR-hCG,+cAMP.  Data are shown 
are the mean ± SD.  
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Receptors Transfec
-tion 
Ratio 

n Pretreat-
ment 
with 
MβCD 

Treat-
ment 
with 100 
nM hCG 

 
CFP/YFPSE emission ratio* 

Ratio 
after/ 
before 

Before 
treatment 

After 
treatment 

FLAG-LHR-
YFP 

 
1:1 

 
10 

 
- 

 
+ 

 
0.85 ± 0.01b 

 
0.89 ± 0.02b 

 
1.05 

 
10 

 
+ 

 
+ 

 
0.84 ± 0.01b 

 
0.88 ± 0.02b 

 
1.04 

FLAG-
LHR+hCG,-cAMP  
and HA-LHR-

hCG, +cAMP 

 
1:1 

 
10 

 
- 

 
+ 

 
0.80 ± 0.01a 

 
0.83 ± 0.01a 

 
1.03 

 
1:1 

 
10 

           
      + 

 
+ 

 
0.79 ± 0.01a 

 
0.79 ± 0.01a 

 
1.00 

FLAG-
LHR+hCG, -

cAMP 
and HA-LHR-

hCG,+cAMP 

 
1:10 

 
10 

 
- 

 
+ 

 
0.82 ± 0.01a 

 
0.85 ± 0.01a 

 
1.04 

 
1:10 

 
10 

 
+ 

 
+ 

 
0.80 ± 0.01a 

 
0.81 ± 0.01a 

 
1.01 

 

a,b Values with different superscripts differ significantly (p<0.05) 
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CHAPTER 4: DISCUSSION 

 

 

 Trans-activation of G protein-coupled receptors was described first for the epidermal 

growth factor receptor by Daub et al. (72).  Subsequent in vitro studies by a number of 

investigators showed that the glycoprotein hormone receptors including LH receptors and FSH 

receptors could induce signaling via receptor trans-activation (30,32,73,74).  Receptor 

trans-activation had the ability to rescue cAMP signaling despite deficiencies in the two 

receptors, one deficient in signaling and the other deficient in hormone binding, expressed in 

cells (30).  In fact, Ji et al. (30)  demonstrated that a hormone-occupied exodomain could trans-

activate an unliganded endodomain on an adjoining receptor using the proposed mechanism 

shown in Figure 4.1.  More recently, in vitro trans-activation of LH receptor has been 

demonstrated by Muller et al. (34). This was observed under conditions where a mutant LH 

receptor that could not initiate signal was co-expressed with an LH mutant receptor that could 

not bind hormone (75).  Importantly, reproductive function in animals was conserved using this 

mechanism despite the lack of a fully functional LH receptor. 

         Our data presented here outline the use of biophysical methods, including single particle 

tracking, homo-transfer FRET and hetero-transfer FRET, by means of which we have evaluated 

molecular interactions occurring during cis- and trans-activation of luteinizing 

hormone/chorionic gonadotropin receptors.  In this work, we specifically investigated whether 

cAMP signal increased in hormone-treated cells through cis-activation of wild type receptor and 

trans-activation of mutant receptors and whether signaling was accompanied by decreased 

diffusion of LH receptors and receptor aggregation.  We found that 100 nM hCG treatment 

increased cAMP levels in cells expressing the wild type receptor FLAG-LHR-YFP in response 
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to cis-activation of LH receptor (Table 3.5).  In addition, cAMP levels in cells expressing a pair 

of mutant receptors, FLAG-LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP, was similarly increased after 

100 nM hCG treatment, a process that was dependent on the transfection ratio used to express 

the receptor pair (Table 3.5).  Our results agree with previous studies of hormone enhancement 

of cAMP levels for wild type and mutant LH receptors by Ji and coworkers (30).  

           Tae Ji’s initial description of LH receptor trans-activation used receptors pairs containing 

receptors with mutations in the leucine-rich repeat domains (LRRs) that introduced ligand 

binding defects coexpressed in the same cells were receptors containing mutations in exoloop 3 

and transmembrane domain 7 that resulted in signaling defects.  When co-expressed, these 

receptor pairs rescued cAMP production via trans-activation (30).  The most straightforward 

explanation for the successful cAMP rescue is that the exodomain of the receptor binds hormone 

which results in a hormone-exodomain complex which activates the endodomain of a nearby 

mutant receptor to generate cAMP signal (76).  Transgenic mice coexpressing mutant LH 

receptors where one receptor type was incapable of hormone binding and the other was incapable 

of inducing signal in the absence of wild type receptors exhibited rescued LH receptor function 

and induced cAMP signaling.  When each mutant receptor was expressed individually in cells, 

there was no cAMP signal generation.  Thus coexpressing two mutant receptors rescued cAMP 

signal by intermolecular activation, trans-activation, of the mutant receptors (75).  

Transactivation of a glycoprotein hormone receptor has also been demonstrated for the FSH 

receptor and, like LH receptors, involved co-expression of two different defective receptors, a 

non-binding mutant with intact signal generation, and another mutant that cannot generate signal 

but can bind hormone (32).  
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            Studies of interactions between LH receptors tagged with fluorescent proteins as donor or 

acceptor showed evidence of inter-receptor interactions (42).  Homo-FRET methods have been 

used to evaluate aggregation of LH receptor both by measuring absolute receptor anisotropies 

and by examining photobleaching-induced differences in emission anisotropy.  Receptor 

hetero-dimerization has been invoked to explain trans-activation of the receptor from several 

studies (75).  In one study, the Authors showed that activation occurs between a G-protein bound 

to the cytoplasmic tail of the inactive receptor and the intracellular domain of the active receptor, 

a process that could only be explained by dimerization of these receptors when one is active and 

the other is not  (77).                        

            Homo-FRET was used to evaluate interactions between either wild type 

FLAG-LHR-YFP receptors, between FLAG-LHR-YFP and FLAG-LHR+hCG/-cAMP, or between 

FLAG-LHR-YFP and HA-LHR-hCG/+cAMP receptors (Table 3.4).  We show that hormone-treated 

wild type receptors exhibit a high degree of aggregation in comparison with untreated LH 

receptors and that aggregation of wild type receptor when co-expressed with either mutant 

receptor increased in response to an increase in the ratio of receptor transfection.  This 

observation means that trans-activation is dependent on the ratio of mutant receptors as indicated 

in cAMP results.   

These data agree with a previous study showing increased aggregation of LH receptors 

following increases in hormone concentration (43).  Earlier studies by electron microscopy 

showed small groups of LH receptors on the cell surface of luteal cells after exposure of cells to 

high concentrations of LH (78).  Horvat et al. have measured FRET between FITC- and 

TrITC-derivatized hCG hormone bound to LH receptors (79).  Bioluminescence resonance 

energy transfer, BRET, which is sensitive to the distance and orientation between the donor and 
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acceptor has been used to assess aggregation or dimerization of LH receptors (80).  High order 

oligomers have been shown by homo-FRET for the GPCR serotonin 1A receptor.  In this system 

the initial anisotropy was reduced following receptor stimulation by its ligand, serotonin, in 

comparison with untreated receptors (39).   

Increased  differences between receptor final and  initial  fluorescence anisotropy values  

(Table 3.4) were accompanied by decreases in the diffusion coefficient of LH receptor following 

hormone  treatment  of either  wild  type  receptor FLAG-LHR-YFP or mutant  receptors  FLAG 

LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP.  A previous study by Smith et al. has shown that binding 

of high concentrations of hCG to rat LH receptors leads to redistribution of LH receptors to 

cholesterol-rich membrane domains, that is, lipid rafts (51).  Rat LH receptors became 

aggregated and raft-associated following treatment with LH or hCG  (81).   

Unlike methods used in previous studies, single particle tracking (SPT) techniques 

measure the diffusion coefficient of individual LH receptors rather than that of a large population 

of receptors.  This allows us to analyze specific subpopulation of receptors that have specific 

diffusion properties (82).  Our data (Table 3.3) show that the average receptor diffusion 

coefficient following 100 nM hCG treatment, a concentration sufficient to saturate available LH 

receptors, for wild type receptors expressed on CHO cells or wild type receptors coexpressed 

with mutant receptors was about 10-11cm2s-1.  Following hormone treatment, the domain size and 

the number of domains were decreased for both FLAG-LHR-YFP wt and for mutant receptors 

FLAG-LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP.  This agrees with previous studies of lateral 

diffusion of individual LH receptors where the average diffusion coefficient was reduced to 

about 10-12cm2s-1 following hormone treatment (82).   
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            Using SPT, we also observed a decrease in the receptor diffusion coefficient in response 

to increasing hCG concentrations for both wild type and mutant receptors.  This decrease in 

receptor lateral diffusion was accompanied by a corresponding increase in intracellular cAMP 

for hCG-treated wild type receptors and for mutant receptors when the transfection ratio was 

increased from 1:1 to 1:10.  This suggests that trans-activation between LHR+hCG/-cAMP and 

LHR-hCG/+cAMP receptors depends on the expression ratio of these receptors.  A single hormone-

binding mutant needs access to multiple copies of the hormone-binding, signaling-deficient 

mutant for successful interactions and signaling.  This agrees with previous measurements of 

diffusion coefficients of LH receptors on M17 neuroblastoma cells and levels of intracellular 

cAMP following hormone treatment when the activation of LH receptors resulted in decreased 

diffusion coefficients and increased levels of cAMP signal (82).   

            A variety of techniques have been used to examine the relationship between functional 

LH receptor and the environment of LH receptors membrane during cell signaling.  One of these 

methods required isolation of membrane microdomains that “float” in sucrose gradients.  

Receptors such as epidermal growth factor receptor, a plasma membrane receptor, are found in 

membrane rafts during signal transduction (83) and these membrane rafts have high 

concentrations of proteins necessary for signal transduction such as G-proteins (84).  In this work 

we used ICUE3 as an indicator of cAMP levels and measured cAMP levels following depletion 

of membrane cholesterol using MβCD for CHO cells expressing wild type receptor 

FLAG-LHR-YFP and co-expressing mutant receptors FLAG-LHR+hCG/-cAMP and 

HA-LHR-hCG/+cAMP with transfection ratios of 1:1 and 1:10.  These experiments were designed to 

assess the importance of membrane cholesterol in signal transduction (Table 3.5).  We found 

that there is a decrease in cAMP levels in cells expressing wild type receptors after pretreatment 
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with MβCD and exposure to 100 nM hCG.  When cells expressed mutant receptors arising from 

a transfection ratio of 1:1, the cAMP level was slightly decreased.  Increasing the transfection 

ratio to 1:10 for mutant receptors and pre-treating with MβCD caused further decreases in 

intracellular cAMP.   

The mechanism for this effect is not known.  Preincubation of LH receptor with MβCD 

to extract cholesterol from the plasma membrane is presumed to disrupt membrane rafts which 

work as signalplatforms  and thus  reduce cell signaling by  the receptor in response to hormone  

treatment, Interestingly, direct interaction with cholesterol and protein α-helices has been  

shown for β2-adrenergic receptor.  One possible role of cholesterol could be to force receptors to 

specific membrane regions where interactions with signaling components occurs (85).  The 

luteinizing hormone receptor (LH) has been shown to assemble in small membrane 

microdomains which are rich in cholesterol when the receptor is active, i.e. has bound ligand, 

which increases the molecular weight of the complex (79).  The disruption of these lipid rafts 

using MβCD decreases the signal produced by liganded receptors (86).  Diffusion coefficients 

for the LH receptor also decrease with hCG treatment (86) which agrees with our results for wild 

type receptors and mutant receptors where diffusion coefficient decrease and cAMP levels 

increased following hormone treatment.  These observations suggest that inducing cAMP 

signaling requires functional LH receptors that are located in membrane rafts as dimers or high 

oligomers. 
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Figure. 4.1. Proposed models of monomeric and dimeric cis-activation and trans-activation.  
Panel A shows the domain structure of LHR, including an exo-domain where the ligand binds 
and an endo-domain where the hormone signal is generated. Panel B shows cis- and trans-
activation of monomeric LHRs. The ligand is shown in red.   Panel C shows cis- and trans-
activation of dimeric LHRs. In trans-activation, the receptor dimer is formed by a hormone-
occupied receptor which interacts with an unliganded receptor to initiate signal transduction (32).   
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Functional LH receptors play an important role in reproductive function in females by 

enhancing ovulation and follicle maturation.  In this study, we demonstrated evidence of 

dimerization and/or oligomerization of LH receptors involved in trans-activation.  Our results 

suggest that, in addition to cis-activation of wild type receptor, trans-activation also occurs for 

mutant receptors where a receptor that cannot bind hormone is able to initiate signal when 

co-expressed with wild type receptors or mutant receptors that can bind hormone but cannot 

generate signal.  Our single particle tracking study shows a hormone-induced decrease in lateral 

diffusion of individual wild type receptors involved in cis-activation and of mutant receptors 

activated via trans-activation.   

 Further study of trans-activating LH receptor pairs could include an examination of 

HA-LHR-hCG/+cAMP lateral dynamics before and after hormone treatment when expressed together 

with FLAG-LHR+hCG/-cAMP.  These studies would be performed by single particle tracking of LH 

receptors on CHO cells co-expressing FLAG-LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP, treated with 

hCG and labeled with anti-HA-biotin antibody for 30 min, washed and labeled with QD 

605-streptavidin.  Images would be collected on a Zeiss Axiovert 200M fluorescence microscopy 

using a 63x 1.2 NA water objective and Qd605 filter set.  We would expect to see decreased 

receptor diffusion coefficients, domain size and the number of domains occupied by 

HA-LHR-hCG/+cAMP if trans-activation by FLAG-LHR+hCG/-cAMP occurs.   

           We are also interested in the role of the cytoskeleton in transactivation of LH receptors.  A 

previous study of the lateral diffusion of LH receptor indicates that intact actin filaments may be 

needed for decreasing lateral motions of LH receptors in response to hormone (43).  It would be 

of interest to image actin filaments using fluorophore-tagged actin, for the same cell population, 
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and evaluate single particle tracking of cis- and trans-activated LH receptors.  CHO cells 

expressing either wild type LH or trans-activating LH receptor pairs would be treated with 

cytochalasin D to disrupt the actin filaments prior to hCG treatment.  We would expect to see an 

increase in the diffusion coefficient, domain size and number of domains for cis-activated wild 

type receptors.  It would be of interest to know whether one or both members of the trans-

activating receptor pair behave similarly to wild type LH receptors when microfilament 

structures are disrupted.   

            Previous studies have shown that LH receptors can exist as monomers as well as forming 

dimers or high order oligomers.  Our FRET study of wild type LH receptors demonstrates 

self-association or aggregation of LH receptors in response to cis-activation following hormone 

treatment.  The demonstration of LH mutant receptor dimerization/oligomerization resulting 

from the interaction between receptors suggests that the LH receptor can aggregate in the course 

of receptor trans-activation.  A future experiment would be using acceptor photobleaching FRET 

(hetero-FRET) to evaluate whether binding of hormone hCG to wild type FLAG-LHR-YFP or 

FLAG-LHR+hCG/-cAMP is accompanied by interactions with HA-LHR-hCG/+cAMP.  This experiment 

would evaluate FRET between receptors with a fluorescence donor such as CFP or a 

fluorescence acceptor such as YFP by measuring the intensity of the fluorescence donor in the 

presence and absence of a fluorescence acceptor.  CHO cells co-expressing FLAG-LHR-YFP 

and FLAG-LHR+hCG/-cAMP-CFP or FLAG-LHR-YFP and HA-LHR-hCG/+cAMP-CFP would be 

examined using an as described previously.  CFP and YFP would be imaged separately and YFP 

would then be irreversibly photobleached for five minutes.  After photobleaching, CFP and YFP 

would be imaged again.  The intensity of CFP signal after (Iafter) and before YFP photobleaching 

(Ibefore) would then used to evaluate energy transfer efficiency (%E).   Energy transfer efficiency 
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could be calculated as (1-Ibefore/Iafter)x100.  We would expect to see an increase in hetero-FRET 

efficiency resulting from receptor-receptor interactions between trans-activating receptor pairs 

and between wild type receptors if HA-LHR-hCG/+cAMP is trans-activated following binding of 

hCG to wild type receptors LHR+hCG/+cAMP.   We would then use ICUE3 to determine whether 

LH receptor trans-activation has produced increased cell signaling.  These experiments would 

need to take into account our observation in this project that trans-activation of mutant LH 

receptors is dependent on the ratio of mutant receptors and requires an excess of the “hormone 

binding, non-signaling” receptor.    

 Lastly, cholesterol depletion of LH receptor resulted in a decrease in hormone-induced 

cAMP levels.  Hence we conclude that cholesterol is important for signal transduction by LH 

receptor.  We could perform single particle tracking studies as a future experiment for CHO cells 

expressing FLAG-LHR-YFP wt or co-expressing HA-LHR-hCG/+cAMP and FLAG- LHR+hCG/-cAMP 

after cholesterol depletion using 10 mM MβCD at 37°C for 1 hour to evaluate the interactions 

between receptors and confinement in small membrane microdomains in cholesterol-depleted 

cell membranes.  We would expect to see faster receptor diffusion and disruption of membrane 

microdomains with cholesterol depletion.    

           In conclusion, these experiments have provided a better understanding of cis- and trans-

activation of the LH receptor in response to hCG.  Such understanding of the mechanisms 

involved in signaling by functional LH receptors or, more generally GPCR, will be helpful in 

designing drug treatments for diseases where modulation of receptor-mediated signal generation 

is required.     
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APPENDIX I: Data Analysis for Single Particle Tracking 

 

Table A1: Diffusion coefficient of untreated CHO cells expressed FLAG-LHR-YFP (p1)  

param value 
 

FUNCTION AkiDisp(w,t,D)  
    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early Kusumi 
paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    nPts= 323 

 
w is width of domain (n cells orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 52003.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 4893.28 

 
ELSE 

      
chiSq= 0.094096127 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.306750921 

 

w (pix)= 1.65E+00 
D (pix^2/frame)= 2.745011789 
m(pix^2/frame) 6.02804754E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.4190 
D01(cm^2/sec)= 3.13E-10 
Dhop(cm^2/sec)= 3.24E-12 

   
  

0 
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4 
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Table A2: Diffusion coefficient of untreated CHO cells expressed FLAG-LHR-YFP (p2) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 595 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 172059.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 3760.25 

 
ELSE 

      
chiSq= 0.021854447 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.147832495 

 

 w (pix)= 2.01E+00 
 D (pix^2/frame)= 0.001848142 
 

m(pix^2/frame) 
4.14918404E-
05 

 
   um per pixel= 16 

 mag 
(obj*Extender)= 63 

 sec per frame= 0.12 
 

   w(um)= 0.5093 
 D01(cm^2/sec)= 2.74E-10 
 Dhop(cm^2/sec)= 2.23E-13 
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Table A3: Diffusion coefficient of untreated CHO cells expressed FLAG-LHR-YFP (p3) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    nPts= 1000 

 
w is width of domain (n cells orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 373749.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 9798.35 

 
ELSE 

      
chiSq= 0.026216391 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.161914764 

 

 w (pix)= 1.97E+00 
 D (pix^2/frame)= 0.008747263 
 

m(pix^2/frame) 
2.17977990E-

03 
 

   um per pixel= 16 
 mag 

(obj*Extender)= 63 
 sec per frame= 0.12 
 

   w(um)= 0.4998 
 D01(cm^2/sec)= 3.50E-10 

        Dhop(cm^2/sec)= 1.17E-11 
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Table A4: Diffusion coefficient of untreated CHO cells expressed FLAG-LHR-YFP (p4) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 559 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 154131.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 331076.70 

 
ELSE 

      
chiSq= 2.14802146 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 1.465612998 
 

 
 

 

      w (pix)= 1.80E+00 
        D (pix^2/frame)= 7.27914E-07 

        
m(pix^2/frame) 

6.77938731E-
03 

        
          um per pixel= 16 

        mag 
(obj*Extender)= 63 

        sec per frame= 0.12 
        

          w(um)= 0.4568 
        D01(cm^2/sec)= 4.33E-10 
        Dhop(cm^2/sec)= 3.64E-11 
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Table A5: Diffusion coefficient of untreated CHO cells expressed FLAG-LHR-YFP (p5) 

 

param value 
 

FUNCTION AkiDisp(w,t,D)  
    

   

multi-expon approx to 1D diff confined 
in region of width w 

 
g Column= D 

 

re-derived and checked against early Kusumi 
paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    nPts= 417 

 
w is width of domain (n cells orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps 
of length 1 with <r2>in steps^2 

sumWts= 86736.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 992.06 

 
ELSE 

      
chiSq= 0.011437651 

 

Tau=w^2/(pi^2*D)'continuous 
diffusion for a time t with <r2> in cm2 

SD= 0.106946956 

 

w (pix)= 1.35E+00 
D (pix^2/frame)= 0.070474342 
m(pix^2/frame) 6.18111733E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.3421 
D01(cm^2/sec)= 3.11E-10 
Dhop(cm^2/sec)= 1.20E-11 
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Table A6: Diffusion coefficient of untreated CHO cells expressed FLAG-LHR-YFP (p6) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 1000 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 373749.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 217.03 

 
ELSE 

      
chiSq= 0.000580674 

 

Tau=w^2/(pi^2*D)'continuous diffusion for 
a time t with <r2> in cm2 

SD= 0.024097181 

 

w (pix)= 7.17E-01 
D (pix^2/frame)= 0.001808873 
m(pix^2/frame) 2.46416691E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.1821 
D01(cm^2/sec)= 6.89E-11 
Dhop(cm^2/sec)= 4.77E-12 
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Table A7: Diffusion coefficient of untreated CHO cells expressed FLAG-LHR-YFP (p7) 

 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    nPts= 964 

 
w is width of domain (n cells orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 355821.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 467.98 

 
ELSE 

      
chiSq= 0.001315205 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a time 
t with <r2> in cm2 

SD= 0.036265758 

 

w (pix)= 1.08E+00 
D (pix^2/frame)= 0.034210944 

m(pix^2/frame) 
1.28682509E-
04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.2749 
D01(cm^2/sec)= 2.98E-10 
Dhop(cm^2/sec)= 2.49E-12 
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Table A8: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 1nM 

hCG (p1) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 750 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 249249.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 105812.69 

 
ELSE 

      
chiSq= 0.424526031 

 

Tau=w^2/(pi^2*D)'continuous diffusion for 
a time t with <r2> in cm2 

SD= 0.651556621 

 

w (pix)= 3.70E+00 
D (pix^2/frame)= 0.004014622 
m(pix^2/frame) 7.18298774E-07 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.6797 
D01(cm^2/sec)= 7.57E-11 
Dhop(cm^2/sec)= 3.86E-15 
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Table A9: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 1nM 

hCG (p2) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    nPts= 750 

 
w is width of domain (n cells orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 249249.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 210.70 

 
ELSE 

      
chiSq= 0.000845323 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.029074434 

 

w (pix)= 3.00E+00 
D (pix^2/frame)= 7.18089E-05 
m(pix^2/frame) 3.81569709E-05 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.7619 
D01(cm^2/sec)= 2.77E-12 
Dhop(cm^2/sec)= 2.05E-13 
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Table A10: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

1nM hCG (p3) 

param value      
FUNCTION 

AkiDisp(w,t,D)  
    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 750 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 249249.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 10.70 

 
ELSE 

      
chiSq= 4.29365E-05 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.006552596 

 

w (pix)= 5.00E-01 
D (pix^2/frame)= 0.000343875 
m(pix^2/frame) 1.29676594E-05 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.1270 
D01(cm^2/sec)= 7.60E-12 
Dhop(cm^2/sec)= 6.97E-14 
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Table A11: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

1nM hCG (p4) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 120 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 52620.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 2.61 

 
ELSE 

      
chiSq= 4.96213E-05 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a time 
t with <r2> in cm2 

SD= 0.007044235 

 

w (pix)= 1.00E+00 

D (pix^2/frame)= 0.000376393 
m(pix^2/frame) 6.38576225E-05 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

          w(um)= 0.2540 
        D01(cm^2/sec)= 1.20E-11 
        Dhop(cm^2/sec)= 3.43E-13 
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Table A12: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

1nM hCG (p5) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    nPts= 145 

 
w is width of domain (n cells orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 10440.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 15.53 

 
ELSE 

      
chiSq= 0.001487421 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a time 
t with <r2> in cm2 

SD= 0.038567092 

 

w (pix)= 4.48E-01 
D (pix^2/frame)= 0.047585985 
m(pix^2/frame) 3.75191232E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.1137 
D01(cm^2/sec)= 8.27E-11 
Dhop(cm^2/sec)= 7.27E-12 
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Table A13: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

1nM hCG (p6) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 138 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 9453.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 1674.03 

 
ELSE 

      
chiSq= 0.177089349 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.420819853 

 

 w (pix)= 2.88E+00 
 D (pix^2/frame)= 1.111206291 
 m(pix^2/frame) 1.02861292E-03 
 

   um per pixel= 16 
 mag 

(obj*Extender)= 63 
 sec per frame= 0.12 
 

   w(um)= 0.7323 
 D01(cm^2/sec)= 2.74E-09 
 Dhop(cm^2/sec)= 5.53E-12 
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Table A14: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

1nM hCG (p7) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 750 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 249249.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 4801.58 

 
ELSE 

      
chiSq= 0.019264205 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a time t 
with <r2> in cm2 

SD= 0.13879555 

 

w (pix)= 3.00E+00 
D (pix^2/frame)= 0.00027471 

m(pix^2/frame) 
5.46220432E-
07 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.1619 
D01(cm^2/sec)= 1.11E-11 
Dhop(cm^2/sec)= 2.94E-15 
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Table A15: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

0.1nM hCG (p1) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    nPts= 418 

 
w is width of domain (n cells orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 87153.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 6888.47 

 
ELSE 

      
chiSq= 0.079038871 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a time 
t with <r2> in cm2 

SD= 0.281138527 

 

 w (pix)= 1.35E+00 
 D (pix^2/frame)= 5.76964E-07 
 m(pix^2/frame) 3.24127888E-03 
 

   um per pixel= 16 
 mag 

(obj*Extender)= 63 
 sec per frame= 0.12 
 

   w(um)= 0.3437 
 D01(cm^2/sec)= 2.20E-10 
 Dhop(cm^2/sec)= 1.74E-11 
 

     

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 200 400 600 800 1000 



83 

Table A16: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

0.1nM hCG (p2) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 183 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 16653.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 726.88 

 
ELSE 

      
chiSq= 0.043648649 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.208922592 

 

w (pix)= 1.30E+00 
D (pix^2/frame)= 0.095737255 
m(pix^2/frame) 2.60947081E-03 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.3302 
D01(cm^2/sec)= 3.08E-10 
Dhop(cm^2/sec)= 1.40E-11 
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Table A17: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

0.1nM hCG (p3) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 210 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 21945.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 1340.83 

 
ELSE 

      
chiSq= 0.061099749 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.247183635 

 

w (pix)= 1.50E+00 
D (pix^2/frame)= 0.407616657 
m(pix^2/frame) 8.47554682E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.3810 
D01(cm^2/sec)= 6.59E-10 
Dhop(cm^2/sec)= 1.64E-11 
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Table A18: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

0.1nM hCG (p4) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 903 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 325443.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 5718.53 

 
ELSE 

      
chiSq= 0.017571528 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.132557641 

 

 w (pix)= 1.93E+00 
 D (pix^2/frame)= 0.00530133 
 m(pix^2/frame) 1.01467117E-04 
 

   um per pixel= 16 
 mag 

(obj*Extender)= 63 
 sec per frame= 0.12 
 

   w(um)= 0.4895 
 D01(cm^2/sec)= 7.79E-10 
 Dhop(cm^2/sec)= 5.45E-13 
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Table A19: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

0.1nM hCG (p5) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 750 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 249249.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 1023.89 

 
ELSE 

      
chiSq= 0.004107898 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.064092884 

 

w (pix)= 3.00E+00 
D (pix^2/frame)= 0.000283191 
m(pix^2/frame) 1.33444733E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.7619 
D01(cm^2/sec)= 3.63E-11 
Dhop(cm^2/sec)= 7.17E-13 

  
            

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 200 400 600 800 1000 



87 

Table A20: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

0.1nM hCG (p6) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 367 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 67161.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 11310.30 

 
ELSE 

      
chiSq= 0.168405747 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.410372692 
 

 

w (pix)= 2.00E+00 
 D (pix^2/frame)= 0.018243018 
 m(pix^2/frame) 1.77447436E-07 
 

   um per pixel= 16 
 mag 

(obj*Extender)= 63 
 sec per frame= 0.12 
 

   w(um)= 0.5079 
 D01(cm^2/sec)= 2.52E-10 
 Dhop(cm^2/sec)= 9.54E-16 
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Table A21: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 

0.1nM hCG (p7) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 850 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 299049.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 4874.94 

 
ELSE 

      
chiSq= 0.016301489 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.127677286 

 

w (pix)= 2.13E+00 
D (pix^2/frame)= 0.02404313 
m(pix^2/frame) 8.36658587E-05 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.5413 
D01(cm^2/sec)= 4.64E-10 
Dhop(cm^2/sec)= 4.50E-13 
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Table A22: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 100 

nM hCG  (p1) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 925 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 336399.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 5496.97 

 
ELSE 

      
chiSq= 0.016340615 

 

Tau=w^2/(pi^2*D)'continuous diffusion for 
a time t with <r2> in cm2 

SD= 0.127830416 

 

w (pix)= 1.20E+00 
D (pix^2/frame)= 0.07800169 
m(pix^2/frame) 1.28397312E-03 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.3048 
D01(cm^2/sec)= 4.25E-10 
Dhop(cm^2/sec)= 6.90E-12 
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Table A23: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 100 

nM hCG  (p2) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 919 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 333411.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 1532.26 

 
ELSE 

      
chiSq= 0.004595703 

 

Tau=w^2/(pi^2*D)'continuous diffusion for 
a time t with <r2> in cm2 

SD= 0.067791615 
 

w (pix)= 2.19E+00 
D (pix^2/frame)= 0.001522389 
m(pix^2/frame) 6.66937031E-07 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.5559 
D01(cm^2/sec)= 1.84E-10 
Dhop(cm^2/sec)= 3.58E-15 
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Table A24: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 100 

nM hCG  (p3) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 1000 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 373749.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 1024.46 

 
ELSE 

      
chiSq= 0.002741039 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.052354931 

 

w (pix)= 6.00E-01 
D (pix^2/frame)= 0.001812308 
m(pix^2/frame) 2.46731711E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.1524 
D01(cm^2/sec)= 6.98E-11 
Dhop(cm^2/sec)= 1.33E-12 
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Table A25: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 100 

nM hCG  (p4) 

                        
param value 

 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 346 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 59685.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 19969.66 

 
ELSE 

      
chiSq= 0.33458424 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.578432572 
        w (pix)= 5.00E-01 
 

 

D (pix^2/frame)= 11.87915042 
 m(pix^2/frame) 5.99516731E-04 
 

   um per pixel= 16 
 mag 

(obj*Extender)= 63 
 sec per frame= 0.12 
 

   w(um)= 0.1270 
 D01(cm^2/sec)= 1.15E-10 
 Dhop(cm^2/sec)= 3.22E-12 
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Table A26: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 100 

nM hCG  (p5) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 101 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 5050.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 80.97 

 
ELSE 

      
chiSq= 0.016034031 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.126625556 

 

w (pix)= 1.57E+00 
D (pix^2/frame)= 0.004543118 
m(pix^2/frame) 6.18349081E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.3982 
D01(cm^2/sec)= 2.71E-10 
Dhop(cm^2/sec)= 3.32E-12 
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Table A27: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 100 

nM hCG  (p6) 

 
param value 

 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined 
in region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    nPts= 702 

 
w is width of domain (n cells orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 225345.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 20866.56 

 
ELSE 

      
chiSq= 0.092598287 

 

Tau=w^2/(pi^2*D)'continuous diffusion for 
a time t with <r2> in cm2 

SD= 0.304299666 

 

w (pix)= 1.70E+00 
D (pix^2/frame)= 0.002037065 
m(pix^2/frame) 2.21349152E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.12 

  w(um)= 0.4317 
D01(cm^2/sec)= 1.47E-10 
Dhop(cm^2/sec)= 1.19E-12 
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Table A28: Diffusion coefficient of CHO cells expressed FLAG-LHR-YFP and treated with 100 

nM hCG  (p7) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 1000 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 373749.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 2014.68 

 
ELSE 

      
chiSq= 0.005390468 

 

Tau=w^2/(pi^2*D)'continuous diffusion 
for a time t with <r2> in cm2 

SD= 0.073419804 

 

w (pix)= 1.97E+00 
D (pix^2/frame)= 0.002712664 
m(pix^2/frame) 1.98532253E-07 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.5011 
D01(cm^2/sec)= 1.22E-10 
Dhop(cm^2/sec)= 3.85E-15 
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Table A29: Diffusion coefficient of untreated CHO cells coexpressed mutant receptors of FLAG-

LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP (p1) 

param value 
 

UNCTION 
AkiDisp(w,t,D)  

     

   

multi-expon approx to 1D diff confined in 
region of width w 

  
g Column= D 

 

re-derived and checked against 
early Kusumi paper 

   
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

     
nPts= 194 

 

w is width of domain (n cells 
orig) 

    iFirstRow= 1 
 

t is time (i jumps orig) 
     iLastRow= 500 

 
D is diffusion coeff 

      

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

 sumWts= 18721.0000 
 

Tau=(2*w^2)/(pi^2) 
      sumWtdResid= 48.55 

 
ELSE 

       
chiSq= 0.00259346 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

 SD= 0.050926029 

 

w (pix)= 1.00E+00 
D (pix^2/frame)= 0.906092354 
m(pix^2/frame) 7.17258340E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.2540 
D01(cm^2/sec)= 1.80E-10 
Dhop(cm^2/sec)= 1.39E-11 
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Table A30: Diffusion coefficient of untreated CHO cells coexpressed mutant receptors of FLAG-

LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP (p2) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 225 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 25200.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 6838.56 

 
ELSE 

      
chiSq= 0.271371443 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.520933242 

 

w (pix)= 1.05E+00 
D (pix^2/frame)= 1.642650126 
m(pix^2/frame) 7.18404383E-03 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.3667 
D01(cm^2/sec)= 6.09E-10 
Dhop(cm^2/sec)= 1.39E-10 
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Table A31: Diffusion coefficient of untreated CHO cells coexpressed mutant receptors of FLAG-

LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP (p3) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 153 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 11628.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 903.61 

 
ELSE 

      
chiSq= 0.077710243 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a time t 
with <r2> in cm2 

SD= 0.278765569 

 

w (pix)= 2.63E+00 
D (pix^2/frame)= 0.929512055 
m(pix^2/frame) 4.00797978E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.6686 
D01(cm^2/sec)= 8.56E-10 
Dhop(cm^2/sec)= 7.76E-12 
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Table A32: Diffusion coefficient of untreated CHO cell coexpressed mutant receptors of FLAG-

LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP (p4) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 118 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 6903.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 1341.99 

 
ELSE 

      
chiSq= 0.194407355 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.440916494 

 

w (pix)= 1.80E+00 
D (pix^2/frame)= 1.198744834 
m(pix^2/frame) 3.68662280E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.4571 
D01(cm^2/sec)= 6.02E-10 
Dhop(cm^2/sec)= 7.14E-12 
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Table A33: Diffusion coefficient of untreated CHO cell coexpressed mutant receptors of FLAG-

LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP (p5) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 367 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 67161.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 43272.22 

 
ELSE 

      
chiSq= 0.644305807 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.802686618 

 

w (pix)= 3.44E+00 
D (pix^2/frame)= 1.03472486 
m(pix^2/frame) 1.71220312E-03 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.7124 
D01(cm^2/sec)= 1.41E-09 
Dhop(cm^2/sec)= 3.32E-11 
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Table A34: Diffusion coefficient of untreated CHO cell coexpressed mutant receptors of FLAG-

LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP (p6) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 185 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 17020.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 3505.36 

 
ELSE 

      
chiSq= 0.20595547 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.453823171 

 

w (pix)= 2.25E+00 
D (pix^2/frame)= 1.305288786 
m(pix^2/frame) 2.16840124E-03 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.5718 
D01(cm^2/sec)= 8.21E-10 
Dhop(cm^2/sec)= 4.20E-11 

          
           

  

-3 

-2 

-1 

0 

1 

2 

3 

4 

0 500 1000 



102 

Table A35: Diffusion coefficient of untreated CHO cell coexpressed mutant receptors of FLAG-

LHR+hCG/-cAMP and HA-LHR-hCG/+cAMP (p7) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 182 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 16471.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 722.23 

 
ELSE 

      
chiSq= 0.0438486 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.209400574 

 

w (pix)= 2.31E+00 
D (pix^2/frame)= 1.088064527 
m(pix^2/frame) 1.13258958E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.5879 
D01(cm^2/sec)= 8.06E-10 
Dhop(cm^2/sec)= 2.19E-12 
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Table A36: Diffusion coefficient of CHO cell coexpressed mutant receptors of FLAG-LHR+hCG/-

cAMP and HA-LHR-hCG/+cAMP and treated with 100 nM hCG (p1) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 111 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 
1 with <r2>in steps^2 

sumWts= 6105.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 3.96 

 
ELSE 

      
chiSq= 0.000648199 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.025459749 

 

 w (pix)= 8.65E-01 
 D (pix^2/frame)= 0.266354025 
 m(pix^2/frame) 1.91578482E-04 
 

   um per pixel= 16 
 mag 

(obj*Extender)= 63 
 sec per frame= 0.0333 
 

   w(um)= 0.2196 
 D01(cm^2/sec)= 2.06E-10 
 Dhop(cm^2/sec)= 3.71E-1 
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Table A37: Diffusion coefficient of CHO cell coexpressed mutant receptors of FLAG-LHR+hCG/-

cAMP and HA-LHR-hCG/+cAMP and treated with 100 nM hCG (p2) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

     

   

multi-expon approx to 1D diff confined in 
region of width w 

  
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

   
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

     
nPts= 582 

 

w is width of domain (n cells 
orig) 

    iFirstRow= 1 
 

t is time (i jumps orig) 
     iLastRow= 500 

 
D is diffusion coeff 

      

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

 sumWts= 165585.0000 
 

Tau=(2*w^2)/(pi^2) 
      sumWtdResid= 714.93 

 
ELSE 

       
chiSq= 0.004317624 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

 SD= 0.065708631 

 

w (pix)= 6.25E-01 
D (pix^2/frame)= 0.306715771 
m(pix^2/frame) 6.81926764E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.1588 
D01(cm^2/sec)= 8.99E-11 
Dhop(cm^2/sec)= 1.32E-11 

  
  
  
   

  

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 200 400 600 800 1000 



105 

Table A38: Diffusion coefficient of CHO cell coexpressed mutant receptors of FLAG-LHR+hCG/-

cAMP and HA-LHR-hCG/+cAMP and treated with 100 nM hCG (p3) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 206 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 81473.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 4.68 

 
ELSE 

      
chiSq= 5.74046E-05 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a time 
t with <r2> in cm2 

SD= 0.007576581 

 

w (pix)= 4.90E-01 
D (pix^2/frame)= 0.056586347 
m(pix^2/frame) 3.52607706E-05 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.1244 
D01(cm^2/sec)= 3.71E-11 
Dhop(cm^2/sec)= 6.83E-13 
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Table A39: Diffusion coefficient of CHO cell coexpressed mutant receptors of FLAG-LHR+hCG/-

cAMP and HA-LHR-hCG/+cAMP and treated with 100 nM hCG (p4) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 305 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 46360.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 585.60 

 
ELSE 

      
chiSq= 0.012631658 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.11239065 

 

w (pix)= 1.20E+00 
D (pix^2/frame)= 0.058970009 
m(pix^2/frame) 3.84624612E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.3048 
D01(cm^2/sec)= 1.66E-10 
Dhop(cm^2/sec)= 7.45E-12 
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Table A40: Diffusion coefficient of CHO cell coexpressed mutant receptors of FLAG-LHR+hCG/-

cAMP and HA-LHR-hCG/+cAMP and treated with 100 nM hCG (p5) 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 565 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 157119.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 2594.22 

 
ELSE 

      
chiSq= 0.016511155 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.128495741 

 

w (pix)= 1.00E+00 
D (pix^2/frame)= 8.81129E-07 
m(pix^2/frame) 9.11639849E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.2540 
D01(cm^2/sec)= 5.28E-11 
Dhop(cm^2/sec)= 1.77E-11 
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Table A41: Diffusion coefficient of CHO cell coexpressed mutant receptors of FLAG-LHR+hCG/-

cAMP and HA-LHR-hCG/+cAMP and treated with 100 nM hCG (p6) 

 

param value 
 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in region 
of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  iDim= 2 
 

accurate to 1:1000 @ t=0 
    

nPts= 569 
 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of length 1 
with <r2>in steps^2 

sumWts= 159111.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 7327.22 

 
ELSE 

      
chiSq= 0.046051023 

 

Tau=w^2/(pi^2*D)'continuous diffusion for a 
time t with <r2> in cm2 

SD= 0.214595021 

 

w (pix)= 1.90E+00 
D (pix^2/frame)= 0.009421452 
m(pix^2/frame) 3.69618416E-06 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.4825 
D01(cm^2/sec)= 1.60E-10 
Dhop(cm^2/sec)= 7.16E-14 
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Table A42: Diffusion coefficient of CHO cell coexpressed mutant receptors of FLAG-LHR+hCG/-

cAMP and HA-LHR-hCG/+cAMP and treated with 100 nM hCG (p7) 

 
param value 

 

FUNCTION 
AkiDisp(w,t,D)  

    

   

multi-expon approx to 1D diff confined in 
region of width w 

 
g Column= D 

 

re-derived and checked against early 
Kusumi paper 

  
iDim= 2 

 

accurate to 1:1000 @ 
t=0 

    
nPts= 778 

 

w is width of domain (n cells 
orig) 

   iFirstRow= 1 
 

t is time (i jumps orig) 
    iLastRow= 500 

 
D is diffusion coeff 

     

   

IF D=0 THEN     'diffusion for t steps of 
length 1 with <r2>in steps^2 

sumWts= 263193.0000 
 

Tau=(2*w^2)/(pi^2) 
     sumWtdResid= 621.71 

 
ELSE 

      
chiSq= 0.002362197 

 

Tau=w^2/(pi^2*D)'continuous diffusion for 
a time t with <r2> in cm2 

SD= 0.048602443 

 

w (pix)= 3.73E-01 
D (pix^2/frame)= 0.499855715 
m(pix^2/frame) 3.87332418E-04 

  um per pixel= 16 
mag 
(obj*Extender)= 63 
sec per frame= 0.0333 

  w(um)= 0.0946 
D01(cm^2/sec)= 5.93E-11 
Dhop(cm^2/sec)= 7.50E-12 
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APPENDIX II 

 

Table B1: Homo FRET of untreated CHO cells expressed wild type receptor FLAG-LHR-YFP  

T 
 g Iv Ih Ivbg Ihbg 

Iv-
Ivbg 

Ih-
Ihbg Ivc s r 

0 1.41 392.309 362.658 330.564 340.505 61.745 22.153 31.23573 124.2165 0.245614 
1 1.41 362.626 347.025 328.209 334.89 34.417 12.135 17.11035 68.6377 0.252145 
2 1.41 353.95 342.82 327.693 333.723 26.257 9.097 12.82677 51.91054 0.258719 
3 1.41 350.99 341.388 326.943 333.096 24.047 8.292 11.69172 47.43044 0.260493 
4 1.41 347.805 339.741 327.219 332.848 20.586 6.893 9.71913 40.02426 0.271507 
5 1.41 345.837 339.211 327.211 333.023 18.626 6.188 8.72508 36.07616 0.274445 
6 1.41 344.959 338.35 327.025 332.4 17.934 5.95 8.3895 34.713 0.274955 
7 1.41 343.915 338.262 327.035 332.644 16.88 5.618 7.92138 32.72276 0.273773 
8 1.41 343.339 338.008 327.004 332.47 16.335 5.538 7.80858 31.95216 0.26685 
9 1.41 341.197 336.691 326.839 331.842 14.358 4.849 6.83709 28.03218 0.268296 
10 1.41 340.253 336.378 326.092 331.717 14.161 4.661 6.57201 27.30502 0.277934 
11 1.41 339.289 335.117 325.268 330.514 14.021 4.603 6.49023 27.00146 0.278902 
12 1.41 338.373 334.434 324.951 330.215 13.422 4.219 5.94879 25.31958 0.295155 
13 1.41 337.694 334.358 324.624 330.156 13.07 4.202 5.92482 24.91964 0.286729 
14 1.41 336.444 333.538 324.542 329.92 11.902 3.618 5.10138 22.10476 0.307654 
15 1.41 337.084 334.058 325.402 330.487 11.682 3.571 5.03511 21.75222 0.305573 
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Figure B1: Increasing receptor anisotropy by upon photobleaching of CHO cells expressing 

FLAG-LHR-YFP wt 
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Table B2: Homo FRET of CHO cells expressed wild type receptor FLAG-LHR-YFP and treated 

with 0.1 nM hCG 

 

t min g iv ih ivbg ihbg 
iv-
ivbg 

ih-
ihbg ivc s r 

0 0.8 381.371 380.315 362.984 368.836 18.387 11.479 9.1832 36.7534 0.25042 
1 0.8 378.336 376.687 359.475 365.125 18.861 11.562 9.2496 37.3602 0.25726 
2 0.8 377.19 375.615 359.77 364.984 17.42 10.631 8.5048 34.4296 0.25894 
3 0.8 375.961 374.785 358.08 363.979 17.881 10.806 8.6448 35.1706 0.26261 
4 0.8 375.571 374.94 356.903 363.852 18.668 11.088 8.8704 36.4088 0.2691 
5 0.8 374.628 374.406 359.607 365.754 15.021 8.652 6.9216 28.8642 0.28060 
6 0.8 373.894 373.45 358.295 364.489 15.599 8.961 7.1688 29.9366 0.28160 
7 0.8 373.995 373.839 358.377 364.475 15.618 9.364 7.4912 30.6004 0.26557 
8 0.8 373.016 373.457 357.328 364.59 15.688 8.867 7.0936 29.8752 0.28767 
9 0.8 372.972 373.823 355.361 363.492 17.611 10.331 8.2648 34.1406 0.27375 
10 0.8 369.689 366.295 355.738 358.262 13.951 8.033 6.4264 26.8038 0.28072 
11 0.8 374.831 377.57 361.508 369.689 13.323 7.881 6.3048 25.9326 0.27063 
12 0.8 373.456 375.366 360.639 367.93 12.817 7.436 5.9488 24.7146 0.27790 
13 0.8 373.214 375.291 358.262 366.785 14.952 8.506 6.8048 28.5616 0.28525 
14 0.8 373.193 374.212 357.393 365.295 15.8 8.917 7.1336 30.0672 0.28823 
15 0.8 373.626 375.92 359.115 368.121 14.511 7.799 6.2392 26.9894 0.30648 
16 0.8 373.056 375.425 358.885 367.77 14.171 7.655 6.124 26.419 0.30459 
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Figure B2: Increasing receptor anisotropy upon photobleaching of CHO cells expressing 

FLAG-LHR-YFP wt and treated with 0.1 nM hCG 
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Table B3: Homo FRET of CHO cells expressed wild type receptor FLAG-LHR-YFP and treated 

with 1 nM hCG 

 

t  
min g iv ih ivbg ihbg 

Iv-
Ivbg 

Ih-
Ihbg Ivc s r 

0 0.8 429.203 419.322 391.327 393.846 37.876 25.476 20.3808 78.6376 0.22248 
1 0.8 423 412.671 387.173 389.327 35.827 23.344 18.6752 73.1774 0.23439 
2 0.8 422.615 413.318 387.077 389.318 35.538 24 19.2 73.938 0.22097 
3 0.8 422.566 413.451 386.981 389.098 35.585 24.353 19.4824 74.5498 0.21600 
4 0.8 421.783 412.626 387.192 388.808 34.591 23.818 19.0544 72.6998 0.21371 
5 0.8 423.042 414.654 388.673 391.962 34.369 22.692 18.1536 70.6762 0.22943 
6 0.8 420.689 411.164 386.615 388.596 34.074 22.568 18.0544 70.1828 0.22826 
7 0.8 421.252 416.014 390.154 395.769 31.098 20.245 16.196 63.49 0.23471 
8 0.8 420.052 415.51 386.846 393.865 33.206 21.645 17.316 67.838 0.23423 
9 0.8 420.476 414.259 388.154 393.019 32.322 21.24 16.992 66.306 0.23120 
10 0.8 416.996 411.192 386.019 391.519 30.977 19.673 15.7384 62.4538 0.24400 

11 0.8 420.874 418.538 391.288 399.173 29.586 19.365 15.492 60.57 0.23269 
12 0.8 418.937 418.434 390.062 399.935 28.875 18.499 14.7992 58.4734 0.24072 
13 0.8 416.066 413.892 386.673 395.712 29.393 18.18 14.544 58.481 0.25391 
14 0.8 414.748 413.315 387.212 396.462 27.536 16.853 13.4824 54.5008 0.25786 
15 0.8 413.741 414.815 383.404 396.519 30.337 18.296 14.6368 59.6106 0.26338 
16 0.8 409.315 407.738 383.327 393.115 25.988 14.623 11.6984 49.3848 0.28935 
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Figure B3: Increasing receptor anisotropy upon photobleaching of CHO cells expressing 

FLAG-LHR-YFP wt and treated with 1 nM hCG 
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APPENDIX III 

 

Table C1: CFP/YFPSE ratio of CHO cells expressing FLAG-LHR-YFP +ICUE3 and treated 

with 0.1 nM hCG 

 

 

 

 

 

 

 

 

 

 

 

/ 

 

 

 

 

 

  

CFP YFPSE  CFP/YFPSE 
2980.599 3484.171 

 
0.855469 

2898.839 3390.044 
 

0.855104 
2876.596 3365.685 

 
0.854684 

2834.741 3328.701 
 

0.851606 
2809.798 3289.507 

 
0.85417 

2780.082 3254.147 
 

0.85432 
2829.33 3319.575 

 
0.852317 

2809.813 3302.497 
 

0.850815 
2937.168 3409.485 

 
0.86147 

2865.713 3324.387 
 

0.862027 
2799.397 3250.772 

 
0.861148 

2774.06 3219.288 
 

0.8617 
2780.023 3215.922 

 
0.864456 

2765.303 3165.996 
 

0.873439 
2771.363 3203.596 

 
0.865079 

2755.116 3202.073 
 

0.860416 
2746.289 3181.185 

 
0.863291 

2823.724 3298.701 
 

0.856011 
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Figure C1: CFP/YFPSE ratio of CHO cells expressed Flag-LHR-YFP +ICUE3 and treated with  

0.1 nM hCG 
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Table C2: CFP/YFPSE ratio of CHO cells expressing FLAG-LHR-YFP +ICUE3 and treated 
with 1 nM hCG. 

CFP YFPSE 
 

CFP/YFPSE 
2315.684 2893.482 

 
0.80031 

2321.948 2848.517 
 

0.815143 
2285.231 2795.771 

 
0.817388 

2404.456 2943.068 
 

0.81699 
2272.895 2778.824 

 
0.817934 

2259.812 2768.653 
 

0.816214 
2365.463 2901.279 

 
0.815317 

2219.806 2836.211 
 

0.782666 
2344.562 2898.105 

 
0.808998 

2281.777 2720.077 
 

0.838865 
2326.522 2689.021 

 
0.865193 

2374.693 2774.599 
 

0.855869 
2311.633 2705.321 

 
0.854476 

2307.605 2700.935 
 

0.854373 
2303.18 2688.5 

 
0.856678 

2222.706 2568.336 
 

0.865426 
2194.437 2577.773 

 
0.851292 

2167.876 2507.491 
 

0.86456 
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Figure C2: CFP/YFPSE ratio of CHO cells expressing FLAG-LHR-YFP +ICUE3 and treated 

with 1 nM hCG. 
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Table C3: CFP/YFPSE ratio of CHO cells expressing FLAG-LHR-YFP +ICUE3 and treated 

with 100 nM hCG 

CFP YFPSE 
 

CFP/YFPSE 
2955.645 3248.04 

 
0.909978 

2910.871 3233.263 
 

0.900289 
2901.431 3216.342 

 
0.90209 

2909.287 3209.06 
 

0.906585 
2875.796 3179.016 

 
0.904618 

2877.424 3197.218 
 

0.899977 
2883.607 3196.069 

 
0.902236 

2877.97 3196.804 
 

0.900265 
2882.658 3106.938 

 
0.927813 

2860.98 3051.747 
 

0.937489 
3022.838 3218.379 

 
0.939242 

3039.904 3216.39 
 

0.945129 
3014.96 3182.215 

 
0.947441 

3000.863 3168.443 
 

0.94711 
2957.323 3120.036 

 
0.947849 

2934.666 3110.903 
 

0.943349 
2881.524 3055.406 

 
0.94309 

2852.322 3013.238 
 

0.946597 
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Figure C3: CFP/YFPSE ratio of CHO cells expressing FLAG-LHR-YFP +ICUE3 and treated 

with 100 nM hCG. 
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LIST OF ABBREVIATIONS 

AC                 adenyl cyclase 

Asn asparagin 

ATP                   adenosine triphosphate  

ADP adenosine diphosphate 

BRET bioluminescence resonance energy transfer 

BSA bovine serum albumin 

cm centimeter 

CO2 carbon dioxide 

Cys cysteine 

Ca+2 calcium ion 

cAMP cyclic adenosine monophosphate 

CFP cyan fluorescent protein 

CHO Chinese hamster ovary 

DMEM Dulbecco’s modified minimum essential medium 

D diffusion coefficient 

DAG diacylglycerol 

ECFP enhanced cyan fluorescent protein  

%E percent energy transfer efficiency 

EDTA ethylenediaminetetraacetic acid 

EPAC exchange protein activated by cAMP 

FRAP fluorescence recovery after photobleaching 

FCS fluorescence correlation spectroscopy 

FBS fetal bovine serum 

FITC fluorescein isothiocyanate 

FSH follicle stimulating hormone 

g g-factor 

GFP green fluorescent protein 

GPCR G protein-coupled receptor 

Gs stimulatory G protein 
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GDP guanosine diphosphate 

GTP guanosine triphosphate 

hCG human chorionic gonadotropin 

hetero-FRET hetero-transfer fluorescence resonance energy transfer 

homo-FRET homo-transfer fluorescence resonance energy transfer 

I intensity 

IP3 inositol 1,4,5 triphosphate                                                                     

LRR leucine rich repeat domain 

LH luteinizing hormone 

LHR luteinizing hormone receptor 

LP lipofectamine 

MβCD methyl-beta-cyclodextrin 

µm micrometer  

MEM modified minimum essential medium 

mGlnR metabotropic glutamate receptor 

MSD mean square displacement  

PBS phosphate buffered saline 

PKA protein kinase A 

PKC protein kinase C 

PLC phospholipase C 

PIP2 phosphatidylinositol 4,5-bisphosphate 

QD quantum dots 

r anisotropy 

SPT single particle tracking 

sec seconds 

TM transmembrane 

TSH thyroid stimulating hormone 

TrITC tetramethylrhodamine isothiocyanate   

YFP yellow fluorescent protein 

YFPSE sensitized yellow fluorescent protein  

 


