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Abstract

Optimal Design Space Exploration for FPGA-based Hardware

Accelerators: A Case Study on 1-D FDTD

Hardware accelerators are optimized functional blocks designed to offload specific tasks

from the CPU, speed up them up and reduce their dynamic power consumption. It is impor-

tant to develop a methodology to efficiently implement critical algorithms on the hardware

accelerator and do systematic design space exploration to identify optimal designs. In this

thesis, we design, as a case study, a hardware accelerator for the 1-D Finite Difference Time

Domain (FDTD) algorithm, a compute intensive technique for modeling electromagnetic

behavior. Memory limitations and bandwidth constraints result in long run times on large

problems. Hence, an approach which increases the speed of the FDTD method and reduces

bandwidth requirement is necessary. To achieve this, we design an FPGA based hardware

accelerator.

We implement the accelerator based on time-space tiling. In our design, p processing

elements (PEs) execute p parallelogram shaped tiles in parallel, each of which constitutes

one tile pass. Our design uses a small amount of redundant computation to enable all PEs

to start nearly concurrently, thereby fully exploiting the available parallelism. A further

optimization allows us to reduce the main memory data transfers of this design by a factor

of two. These optimizations are integrated in hardware, and implemented in Verilog in

Alteras Quartus II, yielding a PE that delivers a throughput of one iteration (i.e., two

results) per cycle. To explore the feasible design space systematically, we formulate an

optimization problem with the objective of minimizing the total execution time for given

resource constraints. We solve the optimization problem analytically, and therefore have a
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provably optimal design in the feasible space. We also observe that for different problem

sizes reveal that the optimal design may not always match the common sense intuition.
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CHAPTER 1

Introduction

Stencil computations constitute a large fraction of scientific computations in diverse ar-

eas such as electromagnetics, image processing and fluid dynamics. Stencil codes involve

computations that are largely independent of each other and have a very regular pattern of

execution. This makes them highly amenable for parallelization. A lot of effort has been

invested in building accelerators to solve stencil computations at high speed. FPGAs have

been increasingly used for building efficient hardware accelerators because of their recon-

figurability, low cost, shorter development cycle, reasonable speed grades and low running

power. To increase the performance of iterative stencil computation, we can exploit both

temporal and spatial parallelism by designing multiple, deeply pipelined compute engines

on FPGA. It is important to develop an effective design methodology for deriving optimal

hardware for stencil computations. A clear specification of all the transformations needed

to implement the stencil computations on FPGAs and design space exploration of potential

designs to find the optimal design, would help in building an efficient hardware accelera-

tor. Although most of the research in this field has led to FPGA accelerators with better

performance than generic processors, an effective design methodology for deriving optimal

hardware for stencil computations has not been well defined.

In this thesis, we design an FPGA-based hardware accelerator that efficiently implements

the 1-D Finite Difference Time Domain (FDTD) method. FDTD is an important, compute

intensive algorithmic technique for modeling electromagnetic behavior. Hence the accelerator

should be designed in such a manner that the speed of execution of FDTD is improved

and the off-chip bandwidth requirement is reduced. To achieve this, we develop a three
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step approach to implement 1-D FDTD on FPGA. The first step is to analyze the data

dependencies of FDTD and propose good tiling transformations. The second step involves

the implementation of the actual hardware of the accelerator. And the third step is to

perform a thorough design space exploration to understand the impact of various design

parameters on the execution time and area and to determine the optimal design for the

given problem size with given area constraint.

1.1. Contributions

The main contributions of this thesis are as follows:

(1) A well-defined approach for deriving FPGA-based hardware acceleration of 1-D

FDTD

(2) Careful analysis of data dependencies, use of tiling transformations to fully exploit

available parallelism and reduce off-chip memory accesses, integration of these op-

timizations in the hardware design of the accelerator

(3) Parametric Verilog implementation of our design, incorporating a processor that

delivers the results of one iteration every clock cycle in the steady state.

(4) Systemic design space exploration by developing analytical models of area and per-

formance and by formulating an optimization problem optimization problem with

the objective of minimizing the total execution time for given resource constraints.

1.2. Related Work

1.2.1. Related work on FPGA Implementation of the FDTD method. FPGA

technology was first used for implementing FDTD method by Schneider et al. [3] . In this

paper the authors describe the custom FPGA-based hardware design of 1-D FDTD and
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implements it on FPGA. They implemented a 10 computation cell pipelined bit-serial arith-

metic design that runs at 37.5 MHz. Their experimental results show that their hardware

design significantly accelerates the simulation of 1-D FDTD compared to the software im-

plementation. Later Durbano et al. [4, 5] proposed a design for three-dimensional FDTD

using floating point arithmetic. The describe in detail their hardware accelerator architec-

ture consisting of computation engine, data storage and handling of special boundary nodes.

However, due to the use of floating-point arithmetic, slow memory interface and lack of

pipelining, the design runs only at 14 MHz and is 9 times slower than the software design

running on 2 GHz PC. Chen et al. [6] implement a fixed-point, deeply pipelined custom

hardware for two-dimensional FDTD. The design was described in VHDL and implemented

on Xilinx Virtex II Pro FPGA chip. The throughput of their design is 13.8 Mcells/s (i.e, mil-

lions of grid points updated per second). Pless et al. [7] implemented a fixed-point, deeply

pipelined custom hardware for two-dimensional FDTD on FPGA-based Maxeler dataflow

computer. They achieved a throughput of 1486 Mcells/s. None of these works included

tiling optimizations integrated in their custom hardware design.

Kameyama et al. [8] designed an FPGA-based hardware accelerator for two dimensional

FDTD based on overlapped tiling in openCL. However, they do not describe the methodol-

ogy and synthesized hardware in detail. Also, overlapped tiling involves a lot a redundant

computations. This paper does not suggest optimal tile sizes or method for selection of opti-

mal design parameters. We will show later that, based on its data dependencies, FDTD can

be tiled in more optimal manner. Wester et al. [9] describe the methodology for transforming

higher-order stencils into FPGA-based design in their recent paper on deriving FPGA-based

hardware for stencil computations. Their approach applies space/time transformations to

the higher-order stencils and they also mention the need to study the trade-offs between
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execution time and FPGA resources to find out better design parameters. However they do

not provide any mathematical formulation for this.

We present, in detail, a methodology for deriving an FPGA-based hardware accelerator

for 1-D FDTD that uses tiling transformations. We also formulate an optimization problem

to systematically explore the design space to study the execution time and area trade-offs

and to find the optimal design amongst all possible designs.

1.3. Thesis Structure

In chapter 2 we first describe the need of hardware accelerators, then the structure of

FPGAs and their suitability for parallelization. We then introduce the FDTD method and

derive 1-D FDTD equations. Finally we explain the concept of tiling, as we would be

integrating the tiling optimizations in our hardware.

In chapter 3 we analyze the data dependencies of 1D-FDTD, and develop tiling opti-

mzations leading to “nearly” concurrent start for processing elements and reduced off-chip

accesses. Later in this chapter we discuss the hardware implementation of 1-D FDTD in

Verilog. The Verilog design, the synthesized hardware and its characteristics are explained

in detail.

Chapter 4 describes the formulation and solution of the optimization problem to find

optimal values of design parameters, with an objective of minimizing the execution time for

given resource constraints. We show that this helps in systematic design space exploration

which is important for efficient accelerator design. The results of the optimization problem

for different problem sizes reveal that for some problem sizes, the optimal design may not

always match the intuition. Such observations are useful in convergence testing which is also

explained in this chapter.
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Chapter 5 draws conclusions and gives suggestions for future work.
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CHAPTER 2

Background

In this chapter we present the background information that will help to follow the rest

of the thesis. We specifically discuss the advantages of hardware accelerators, FPGA archi-

tecture, the FDTD algorithm and space-time tiling.

2.1. Hardware Accelerators

The need of hardware accelerators can be associated with the drawbacks of the the

multicore approaches. Ideally, processor performance should increase linearly with each

additional core. But, there are many limitations of multicore processors that dampen their

performance.

(1) Parallelism: Programs need to be first parallelized to maximize utilization of the

computing resources provided by multicore processors. For many workloads addi-

tional work required to parallelize software is difficult.

(2) Operating system design: The design of OS for multicore processors is a challenging

task, as the requirements for all the cores need to be satisfied.

(3) Energy and Heat Dissipation: In spite of curbing the rise clock frequencies, mulitcore

architectures are beginning to hit energy limits. Some power is used up to keep track

of shared resources like caches and system bus. Moreover, the higher the number of

cores, the higher is the heat radiated from a processor. Large heat sinks are required

to cool the processors.

(4) Slower clocks: The voltage scaling era allowed clock scaling and running chips at

faster clock speeds. The clock speed of each of the cores on a multicore processor

can be slower than those of single core processors they are replacing.
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(5) Dark Silicon:For decades, Dennard Scaling model has allowed the chip designers

to keep power density (power consumption per unit area of silicon) constant while

moving from one technology node to another. However the dependence of leakage

power consumption on the threshold voltage has constrained further threshold and

supply voltage scaling. This has led to a sharp increase in the power densities

that restricts powering-on all the transistors simultaneously, while keeping the chip

temperature in safe operating range. Some of the cores cannot be powered-on at

nominal voltage for a given thermal design power (TDP) constraint. Esmaeilzadeh

et al. [10] refer to this as “Dark Silicon”.

An approach that can help in overcoming the limitations of multicores, for certain class

of tasks, is hardware acceleration. Hardware accelerators are circuits customized for spe-

cific tasks or classes of tasks. Accelerator architectures come in many forms, like Graphic

Processing Units (GPUs), Digital Signal Processors (DSPs), ASIC-based accelerators and

FPGA-based accelerators. In this thesis, we will be focusing on FPGA based accelerators,

as a case study. FPGAs offer many advantages like reconfigurability, low cost, faster turn-

around, reasonable speed grades and low running power.

An FPGA is an array of logic gates that can be hardware programmed to implement

specific tasks. Special purpose functional units can be devised and used in parallel on an

FPGA. FPGAs are good candidates for acceleration of certain applications. We can do cus-

tom hardware design for FPGA-based hardware accelerators to improve the performance,

energy and power. The memory hierarchy, daptapath operators, pipeline stages, intercon-

nects between processing blocks can be customized for specific application. The accelerator

may only be used to perform certain task and turned off at other times. This is especially
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useful in the future generations, due to the problem of Dark Silicon. Hardware accelera-

tors are often limited by available resources. More resources means more parallelism but

also higher cost and more power consumption. Thus there is a trade-off between hardware

resources and speed.

The prime considerations while designing the FPGA-based hardware accelerators are

listed below.

(1) Designing the compute engine to fully exploit the available parallelism

(2) Choosing pipeline depth and structure for the combinational path

(3) Designing efficient control logic

(4) Determining on-chip memory requirement and register file organization

(5) Reducing FPGA-to-global memory bandwidth requirements

(6) Increasing register reuse and avoiding idling of resources

(7) Comprehensive design space exploration, to make different architectural and design

parameter choices effectively

2.2. FPGA Architecture

A Field Programmable Gate Arrays (FPGA) is an integrated circuit that can be elec-

trically programmed to implement any digital circuit or system. An FPGA needs 20 to 35

times more area, has speed performance 3 to 4 times slower and consumes approximately

10 times more dynamic power as compared to standard cell Application Specific Integrated

Circuit (ASIC) [11]. Also for large volume the cost is significantly higher since ASIC de-

sign and fab cost can be amortized over the larger market. However FPGAs offer many

advantages like reconfigurability, faster turn-around, reasonable speed grades and low run-

ning power. FPGAs can be programmed using Hardware Description Languanges (HDL)
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like Verilog and VHDL. By using the CAD tools, the design descriptions in HDL can be

compiled, synthesized and placed and routed on the target FPGA platform.

2.2.1. Basic FPGA Structure. FPGAs [12], as illustrated in Figure 2.1 , are com-

posed of configurable logic blocks (CLBs) of different types such as general logic, memory,

multiplier and input/output blocks surrounded by programmable routing, which can be con-

figured to enable the interconnection between different blocks. The CLBs are arranged in

a matrix form in FPGAs and connected by programmable routing fabric. The most widely

used programming technologies in modern FPGAs are flash, static memory and anti-fuse.

FPGAs can be programmed without detaching the chips from the target platform. It is

also possible to program the reconfigurable logic on FPGA at run-time, when the circuit is

running on the other part of the chip.

2.2.2. Configurable Logic Blocks. The configurable logic blocks (CLBs) are the

fundamental building blocks of FPGA used for implementing the digital logic. A CLB either

has a single basic logic element (BLE) or a cluster of locally interconnected BLEs, as shown

in Figure 2.2. The structure of CLBs and BLEs may vary in different FPGA chips. Figure 2.3

shows the typical BLE which consists of a look-up table (LUT) and a flip-flop. It has only one

output which may be taken directly from the LUT or from the flip-flop. A k-input look-up

table is composed of 2k bit memory units which can be programmed to implement a k-input

boolean function or truth-table. Any digital logic can be implemented by configuring one

or more LUTs. The output of one BLE is accessible to another BLE. By programming the

routing fabric we can connect several BLEs together to fit bigger functions. Modern FPGAs,

typically have 4 to 10 BLEs in one CLB. Along with the basic logic logic blocks FPGAs also

contain some special purpose blocks like memory, multipliers, adders, DSP blocks etc. These

9



Figure 2.1. Basic FPGA Architecture (Figure taken from [1])

are called as hard blocks and are integrated on chip to implement specific frequently used

functions very efficiently.

2.2.3. Adaptive Logic Modules. Over the last few years, the growing popularity of

FPGAs has lead to several architectural innovations in the FPGA industry. In this thesis, we
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Figure 2.2. Cluster of N BLEs (Figure taken from [1])

Figure 2.3. Basic Logic Element (BLE) (Figure taken from [1])

synthesized our design on Altera’s Arria II GX EP2AGX65DF29I5. In the Arria II FPGA

family the basic building block of logic is called Adaptive Logic Module (ALM). As shown

in the Figure 2.4, each ALM contains a variety of LUT-based resources that can be divided

into two combinational adaptive LUTs (ALUTs) and two registers. The ability to divide the

LUT is what makes it adaptive. The entire ALM is an 8-input structure that can implement

various combinations of logic functions including two 4-input logic functions, one 6-input

logic function, one 5-input and one 3-input function and two 6-input functions which share

the same logic function and two inputs. Apart from the ALUT based resources, each ALM

contains two programmable registers, two full adders, a carry chain, a shared arithmetic

chain and a register chain. Using these dedicated resources, an ALM can implement various

arithmetic functions like adders, counters, comparators, accumulators etc. and shift registers

efficiently. Each ALM has two sets of outputs that drive the routing resources. The ALM
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outputs can be driven by either the LUT or adder or register. Another useful feature of the

ALM is register packing in which the LUT or adder can drive one output while the register

drives another output. This allows the use of the same ALM for register and combinational

logic for unrelated functions. Thus, use of this feature improves the resource utilization of

the device. The use of this feature can be enabled using the synthesizer setting in CAD

tools.

Figure 2.4. Block Diagram of Arria II Adaptive Logic Module (ALM) (Fig-
ure adapted from [2])

2.3. The FDTD Method

FDTD is extremely useful in solving electromagnetic problems. After Yee first introduced

it in 1966 [13], it has been successfully applied to areas such as electromagnetic scattering,

electromagnetic compatibility, antennas, microwave circuits, wave propagation, photonics

and biomedical engineering because of its simple structure and accuracy. The FDTD method

uses Maxwell’s curl equations to solve for both electric and magnetic field in time and space.

The basic idea of Yee’s algorithm is to discretize both physical region and time interval of the
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differential form of Maxwell’s equations, on an interleaved Cartesian grid. For every point

in this grid the electric and magnetic field are calculated for each time step. For the recent

advances in FDTD modeling applications refer to the Tafflove and Hagness textbook [14] .

The FDTD method is compute intensive. The grid resolution in the computational

domain depends on the smallest wavelength in the simulation and is typically sufficiently

fine-grained. The smaller the resolution, the greater is the number of computational points in

the domain. Thus some problems are often too large to be solved efficiently due to practical

limits and memory and bandwidth constraints. This results in very long run times while

solving problems of large sizes. Hence an approach which increases the speed of the FDTD

method and reduces bandwidth requirement is necessary.

2.3.1. Reduction of Maxwell’s Equations to 1D. FDTD method starts with

Maxwell’s Curl Equations in free space for a homogeneous medium are:

∂H

∂t
= −

1

µ0

∆× E (2.3.1)

∂E

∂t
= −

1

ǫ0
∆×H (2.3.2)

In equations (2.3.1) and (2.3.2) H and E represent the magnetic and electric field, µ0 is the

electric permeability of free space and ǫ0 is the electrical permittivity of free space. The

stencil equations for H and E field values are given below. In equations (2.3.3) and (2.3.4) i

represents the spatial dimension and t represents the time in the computation. All values of

i and t are integers as they are associated the spatial grid and computation step. ca, cb, da

and db are the reflection coefficients which depend on the material or transmission media.
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H i
t = daH

t−1
i + db(E

t−1
i − Et−1

i+1 ) (2.3.3)

E i
t = caE

t−1
i + cb(H

t
i −H t

i−1) (2.3.4)

2.4. Tiling

Tiling [15, 16] is a technique in which the iteration space is partitioned to group/block the

computations. One of the goals of performing tiling transformations is to reduce the number

of off-chip memory accesses by improving data locality. This is particularly important for

stencil computations. The data dependencies in the iteration space imply the precedence

constraints among computations. Based on these dependencies the tile shape and the sched-

ule for execution should be chosen in such way that there are no deadlocks i.e., there are

no dependence cycles between tiles. The tile shapes are determined by the bounding hyper-

planes. The concept of slicing the iteration space using hyperplanes was first introduced by

Irigoin et al. in [16] . There are different tiling techniques like overlapped tiling [17], split

tiling [17], diamond tiling [18], hexagonal tiling [19] and time skewing [20, 21] followed by

rectangular tiling. Moreover, tiling can be applied hierarchically. Selection of a tiling tech-

nique amongst these is application specific and depends on which approach leads to better

computation to communication ratio for the given application. Once tiling is applied, we

can determine the execution wavefronts, where all the tiles in a wavefront are executed in

parallel. Thus tiling exposes available parallelism of the given application. We will see later,

the different tiling techniques that can be applied to 1-D FDTD and the tiling optimizations

we perform to implement the FDTD on FPGA efficiently.
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CHAPTER 3

Hardware Implementation of 1D FDTD

In this chapter, we first analyze the data dependencies and the computations of 1-D

FDTD. Such an analysis is important as it assists in deciding the architectural features and

control flow of the architecture. This analysis influences the tiling optimzations we discuss

later in this chapter. Then we discuss the hardware accelerator design, which is based on

the dependence analysis and tiling optimizations. We also, describe in detail the Verilog

implementation of our design.

3.1. Analysis of Data Dependencies of 1D FDTD

As discussed in section 2.3, the magnetic and electric field equations for FDTD are derived

from the Maxwell’s curl equations, and are given as,

H i
t = daH

t−1
i + db(E

t−1
i − Et−1

i+1 ) (3.1.1)

E i
t = caE

t−1
i + cb(H

t
i −H t

i−1) (3.1.2)

By analyzing equations (3.1.1) and (3.1.2) we can draw a Data Dependence Graph (DDG)

as shown in Figure 3.1, which represents the dependence of the grid points with edges and

nodes.In Figure 3.1 the squares represent the magnetic field and the circles represent the

electric field. The uniform cyclic nature of the algorithm is evident from the magnetic and

the electric field equations and DDG. The calculations for updating the magnetic field and

electric field at each grid point are not independent of each other. Both of them need each
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Figure 3.1. DDG for Magnetic and Electric field of FDTD 1D

others former result as inputs. the Electric field equation also needs the current time step

result of the magnetic fields H t
i and H t

i−1.

Figure 3.2. DDG for FDTD 1D with dependences ~d1=(0,1), ~d2=(1,0) and ~d3=(1,1)

For better understanding of the data dependencies, Figure 3.2 shows a simplified DDG

where the E and H at each grid point are represented as a single grid point and the edges

represent the three dependencies ~d1, ~d2 and ~d3. Since E and H are represented as single grid
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point the dependence of E on the result of H at same grid point and same time step H t
i is

not shown.

Figure 3.3. DDG for FDTD 1D with transformed dependence ~d1′=(-1,-1)

Of the the three dependencies shown in Figure 3.2, dependence d1 indicates the depen-

dence of E i
t on H t

i−1. However H
t
i−1 can be independently computed as:

H t
i−1 = daH

t−1
i−1 + db(E

t−1
i−1 − Et−1

i ) (3.1.3)

In the above equation (3.1.3), the two operands different from equations (3.1.1) and

(3.1.2) are H t−1
i−1 and Et−1

i−1 . This indicates that dependence d1 can be transformed into

dependence d1′ as shown in Figure 3.3 and H t
i−1 can be computed independently. This

transformation is important for fully exploiting the available parallelism and for efficient

partitioning of the iteration space which is explained later in section 3.2.

3.2. Tiling Optimizations

The naive way of implementing this stencil would be to traverse the iteration space

sequentially and execute the grid points one after the other. However such an implementation
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is not very efficient due to lack of data locality and parallelism. It leads to large volume of

data transfers from the main memory and low computation-to-communication ratio. The

FDTD algorithm offers abundant parallelism. A key transformation which we use here is

the iteration space tiling. Tiling transformations enable parallelization and data-locality

optimization. We propose two levels of tiling for implementing FDTD algorithm on the

hardware accelerator. The outer level corresponds to multiple passes while the inner level

corresponds to tiling optimizations within a tile pass. Multi-pass tiling has been recently

proposed for CPUs and GPUs while implementing stencil computations, because it reduces

off-chip memory accesses and thus allows considerable energy savings [22, 23]. We implement

this strategy for our design of hardware accelerator. The hyperplane which defines the pass

boundaries should be such that all the data dependences should always lie on one side or

along the hyperplane. Figure 3.4 and Figure 3.5 show the two valid hyperplanes for 1-D

FDTD ~h1=(1,1) and ~h2=(0,1).

Passes can be mapped on the hardware accelerator either be along the hyperplane ~h1 or

along hyperplane ~h2 in the horizontal direction. In order to achieve load balance between the

PEs, it is essential to have the inter-PE boundary parallel to the pass boundary hyperplane.

In Figure 3.4 and Figure 3.5, the red lines represent the PE boundaries. A pass of d-

dimensional iteration space is nothing but a tiling strategy that uses only d-1 hyperplanes.

So along one direction, the iteration space is not tiled, and this leads to tubes that can be

arbitrarily long. In our tiling scheme we choose parallelogram tiling for inner level too. We

justify this choice later on in this section. Let us first address the problem of choosing a pass

boundary. Tile pass along the hyperplane ~h1 means that each PE executes a parallelogram

with width x and height T in one pass. While tile pass along hyperplane ~h2 means that each

PE executes a horizontal strip with height x and width N in one pass. Within a pass, each
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PE executes parallelogram shaped tiles sequentially. Selecting the direction of traversal is

primarily governed by maximization of data re-use. It is beneficial to have larger pass width

while executing the tiles along ~h1 and larger pass height while executing the tiles along ~h2, to

maximize data re-use. An important point to note here is that the other dimension, ie., tile

height in Figure 3.4 and tile width in Figure 3.5, is made small to shorten the synchronization

interval between the PEs. Looking at the inter-tile data dependences we can say that, both

these tiling schemes inhibit concurrent execution start of all the PEs. However, we propose

a key transformation to eliminate this limitation for the tiling scheme with tile passes along

~h1.

Figure 3.4. Parallelogram tile passes along ~h1

The key idea we propose while implementing the tiling scheme with tile passes along ~h1 is,

to retain the dependence d1 across the pass boundaries but to use, instead, the transformed

dependence d1′ across PE boundaries within a pass. This can be seen in Figure 3.6 which

shows one of the steady state passes. The advantages of this scheme is twofold:

(1) Near-concurrent start: For updating the Electric field Et
i we need the values of

H t
i−1. For the points on the left boundary of the tile, this value lies across the PE

boundary. By making use of the dependence d1′ we can remove this dependence
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Figure 3.5. Horizontal tile passes along ~h2

between the PEs. Each PE redundantly calculates one column of H needed for the

electric field values on the left boundary. This allows concurrent start of all the

PEs. However, the inputs Et−1
i , Et−1

i+1 and H t−1
i−1 needed for calculating H t

i−1 are

taken from the previous PE. This introduces a small latency between the PEs. This

latency is no more than the time to compute a single iteration, which is d cycles, d

is the pipeline depth of computation data-path and is independent of the tile width

x. Hence we say that the PEs have a “near-concurrent start”.

(2) Reduced I/O: Across the pass boundary we retain the dependence d1. The val-

ues of H t
i−1 needed for the left boundary of the first PE have been calculated in

earlier passes and are taken from main memory. This allows us to fetch only one

column of data (E and H) from the main memory. The other alternative of retain-

ing dependence d1′ across passes would have required two columns of data to be

transferred (E and H). To avoid this, the first PE takes the previously calculated

values from the main memory instead of computing H t
i−1 redundantly. However to

maintain uniformity in timing characteristics and control logic of PEs, the first PE
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does a dummy calculation to account for the time spent by other PEs in doing the

redundant calculation.

Figure 3.6. Steady state pass with ~d1=(0,1) across pass boundaries and
~d1′=(-1,-1) across PE boundaries within a pass

We are not sure whether such transformations are possible for the tiling scheme with tile

passes along ~h2. Hence we chose to perform the tile passes along ~h1 = (1, 1) direction. Based

on the DDG shown in Figure 3.3, many alternative tiling strategies are possible for the 1-D

FDTD namely overlapped tiling, split tiling, triangular tiling, hexagonal tiling and diamond

tiling. Let us look at the tiling scheme with diamond tiling as the inner level of tiling. For

diamond tiling the valid hyperplane for outer level tile passes is ~h1. The overall tiling scheme

is shown in Figure 3.7. Within the diamond tile, the iteration points are executed row-wise.

The advantage of this scheme is that the PEs can have a fully concurrent start. However

the number of iteration points executed by a PE, within a diamond, varies at each time

step, which leads to a complex control logic inside each PE. Moreover the data-dependences

are such each PE needs to store 2c values of E and H on on-chip buffers because they are

needed by the next PE for execution of next diamond. This increases the on-chip storage
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requirements. It is crucial for the FPGA-based hardware accelerators to have a simple

control logic and minimal storage requirements for efficient use of the available hardware

resources. We believe that similar arguments can be made for all tile shaped other than

parallelogram. Hence in this this thesis we implement the tiling scheme shown in Figure 3.6

with parallelogram tile passes and parallelogram inner tiles with tile height equal to one

timestep.

Figure 3.7. Diamond Tiling with Parallelogram-shaped Tile Passes

Figure 3.8. Tiled iteration space with Initial phase, Steady state and Final
phase passes

This tiling scheme divides the iteration space into three phases as showm in Figure 3.8.
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(1) Initial Phase: All the purple tiles constitute the initial phase. The passes in this

phase are unbalanced causing some processing elements to be idle for certain period

of time. All PEs have near concurrent start but the finish time of PE i is a linear

function of i.

(2) Steady State: The balanced blue passes represent the steady state passes. In this

phase the PEs can have near-concurrent start and finish with no load imbalance.

(3) Final Phase: Similar to initial phase passes, all the green passes cause idling of

PEs for certain period of time. In this phase the PEs have linear start times and

concurrent finish times.

3.3. Hardware Design

This section describes the design of the hardware accelerator based on the tiling opti-

mizations mentioned in section 3.2. In the context parallel implementation of FDTD based

on the data dependence analysis, tile shape selection and the computations, our hardware

design is made up of three main components:

(1) Compute engine and control unit within each PE

(2) Memory Hierarchy

(3) Communication between PEs.

We implemented our hardware design in Altera’s Quartus II using Verilog. In a tile pass

described in section 3.2 each PE computes a parallelogram shaped tile of height equal to one

time-step from left to right and then moves on to the next tile of the tile pass. We first did the

design entry for one PE and then instantiated the PE module in a top level Verilog module

multiple times. After doing the preliminary functional simulation, we synthesized and placed
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and routed our design on Altera’s Arria II GX device. We then performed post-synthesis

functional verification and timing checks.

The number of points executed by each PE in one pass i.e., the tile width in the space

dimension, and the total number of PEs determine the number of passes needed for execution

of complete iteration space. In chapter 4 we discuss the selection of the optimal tile width and

optimal number of PEs based on an analytical cost model and resource utilization profiling.

3.3.1. Verilog Design. We will now discuss in detail the Verilog implementation of

the FDTD hardware accelerator. In chapter 2 we introduced the FDTD algorithm. For a

quick review, the algorithm starts by loading input data for electric and magnetic field and

values of reflection coefficients from main memory into the storage elements in PEs. Each

PE then starts the calculation which involves updating E and H fields at each grid point in

a tile for which the PE is responsible at every time step till the E and H field values reach

the convergence condition, after which the iterations are terminated.

The notations used in this section are mentioned in Table 3.3.1.

Table 3.1. Notations

parameter description

N Total number of grid points in i-th dimension
T Total number of time steps needed for convergence
p Number of processing elements (PE)
x Grid point executed per PE per pass
s Total number of passes
f FPGA Frequency
d Depth of pipeline
η Main memory bandwidth

As described in section 3.2 each PE is allocated parallelogram tiles . The tiles executed

by all the PEs in parallel constitute one pass.
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The two key optimizations mentioned in section 3.2 viz. use of d1′ dependence across PE

boundaries and use of the d1 dependence across pass boundaries, in the interest of reducing

off-chip memory transfers and allowing near-concurrent start, results in:

(1) Loading of T values of H from main memory for the first PE

(2) Redundant calculation of the magnetic field of T points outside the left boundary

of a tile

Figure 3.9. Memory transfers and redundant computations in a steady state pass

In Figure 3.9 the points within the yellow rectangles represent the data to be loaded from

main memory and the ones within blue rectangles represent the redundant computations of

PEs. Execution within a tile is row-wise. Each PE starts execution by updating the H field

values in a row where the first set of inputs fed in the pipelined datapath correspond to the

redundantly computed H. For computing E field values, the H values from the current time

step are needed. Hence as soon as the first H field value of a row is available the PE starts

updating the E field values of that row.

25



The datapath of each PE consists of an arithmetic logic unit (ALU) for simultaneous

execution of H and E field computations. We use only integer arithmetic in our Verilog

implementation. Verilog code snippet for the computation of H and E field equations (3.1.1)

and (3.1.2) is shown below.

// H Field Equation

sub1 = a[0] - a[1];

hp0 = da*a[2];

hp1 = db*r_sub1;

x[2] = r_hp0 + r_hp1;

// E Field Equation

sub2= b[0] - b[1];

ep0 = ca*b[2];

ep1 = cb*r_sub2;

y[2] = r_ep0 + r_ep1;

In the arithmetic units, inputs for the H and E fields for all the iteration points of a row

are fed one after the other to ensure that the pipeline is full all the time. This essentially

means that for an efficient hardware implementation the value of x, which represent the

independent computations which can be fed in the pipeline, should be equal to or greater

than the pipeline depth of the data-path. Apart from the data-path, the other important

unit inside a PE is the control unit. By doing a cycle by cycle analysis we designed a control

logic for each PE to feed in the correct input values at the right cycles into the pipeline

registers a[0], a[1], a[2], b[0], b[1], b[2] in the above code listing. The Verilog design for this

control path is shown below. While executing a row of points, the pipeline registers are fed

inputs from either the E and H registers within a PE or from the main memory for the first

PE and from the previous PE for remaining PEs. The output values of the H and E field

of the current row replace the previous values in the registers E and H. This reduces the

storage needed inside each PE.

//Control logic for H field values
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case (index)

0:begin

a[0] <= (count1<num_h)?16’b0000000001011010:ein1;

a[1] <= (count1<num_h)?16’b0000000001010101:ein2;

a[2] <= (count1<num_h)?16’b0000000000000110:hin1;

end

1:begin

a[0] <= (count1<num_h)?16’b0000000001010101:ein2;

a[1] <= E[index-1];

a[2] <= H[index-1];

end

2,3:begin

a[0] <= E[index-2];

a[1] <= E[index-1];

a[2] <= H[index-1];

end

default: begin

a[0] <= E[index-2];

a[1] <= E[index-1];

H[index-4] <= x[3];

a[2] <= H[index-1];

E[index + (z-8)]=(count1<num_h)?E[index]:y[3];

end

num_e: begin

a[0] <= E[index-2];

a[1] <= E[index-1];

H[index-4] <= x[3];

a[2] <= H[index-1];

end

endcase

//Control logic for E field values

case (index_e)

0: begin

b[0] <= x[3]; //h1

b[2] <= (count1<num_e)?16’b0000000001010101:ein2;

b[1] <= H[index_e];//h0

end

1,2,3: begin

b[0] <= x[3];//h2

b[1] <= H[index_e];//h1

b[2] <=E[index_e-1];

end

default: begin

b[0] <= x[3];

b[1] <= H[index_e];

b[2] <= E[index_e-1];

H[index_e+1] <= x[3];

E[index_e-4] <= y[3];

end
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num_e: begin

end

endcase

It can be seen from the case statement for H fields, that the inputs for the first H field

value in a row, which corresponds to the redundant computation done by a PE, are ein1, ein2

and hin1 which are the values communicated by the previous PE. These dependences d1′

and d2 are shown in Figure 3.9. This inter-PE dependence is the reason why the PEs have

a near-concurrent start and not fully concurrent start. We call the time interval between

the start of execution of successive PEs as the inter-PE latency . The inter-PE latency

for our design is equal to the pipeline depth of the datapath. This is the time required to

get the first output value for the E field in a row. Delaying successive PEs by this interval

ensures that once a PE starts executing, there are no pipeline stalls due to data dependency

on the results of previous PE. Figure 3.10 is the block level representation of the synthesized

hardware of each PE.

In a top level Verilog module for the hardware accelerator, multiple instances of PEs

were instantiated using a generate block loop. The generate loops are useful for generating

multiple instances of modules, user defined primitives, gate primitives etc. A new data type

variable genvar is used inside such a generate loop. It differs from the other variables in that

it can be assigned values and can be changed at compilation time. The code listing for the

generate block, in which w PEs are instantiated is shown below. The PE instantiation is done

in such a way that, w PEs get synthesized along with the input and output interconnections

between them. Figure 3.11 shows three PEs synthesized using Quartus II.

genvar n;

generate for (n=2; n<=w; n=n+1) begin : PEs

localparam y = 8’b00001000*(n-1) + 1;

PE1 u (.clk(clk), .rst(rst), .ein1(path1[n-1]), .ein2(path2[n-1]),

.hin1(path3[n-1]), .eo1(path1[n]), .eo2(path2[n]), .ho1(path3[n]),
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Figure 3.10. Block level representation of hardware synthesized for one Pro-
cessing Element

.ho2(path4[n]), .counter(counter), .start(y), .h(h), .e(e));

end

endgenerate

Figure 3.11. Interconnected Processing Elements synthesized in Quartus II

3.3.2. Design Verification. We now describe the post-synthesis simulation and veri-

fication of the Verilog design. We first performed functional verification to verify the logical

operation and fundamental correctness of the design. We then performed timing simulation
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to check the timing of the signals in synthesized circuit and analyze maximum frequency of

operation of the circuit.

Functional verification was performed by writing a Verilog testbench and simulating the

design in Altera’s ModelSim software. Using a Perl script the testbench was simulated for

different values of x and p, and the outputs of the simulations were stored in a file. The

outputs were checked against the outputs generated using a C program generated from the

equational specification of the FDTD algorithm in the Alpha language. Both Verilog and

and the C code were given the same set of inputs and the corresponding outputs where

matched. Identical outputs indicate the functional correctness of the Verilog code.

We did timing verification of the synthesized design using the TimeQuest Analyzer in

Quartus II. We performed cycle by cycle verification of the circuit’s behavior. This helped in

architecture verification and performance analysis. TimeQuest also performs Static Timing

Analysis of the circuit, which helps in determining the maximum frequency of operation

of the circuit. Table 3.3.2 lists the maximum frequency of operation along with resource

utilization, for circuits with different values of x and p on Altera’s Arria II GX. From the

table we can see that x and p play a major role in determining the resource utilization and

performance of the hardware accelerator.

In the Chapter 4 we formulate an optimization problem to find out optimal values of x

and p in order to achieve high performance and efficient resource utilization.

Table 3.2. Summary of Resource Utilization and Maximum Frequency

x = 8,p = 32 x = 8,p = 52 x = 16,p = 27 x = 32,p = 15

Logic Utilization 83% 98% 99% 94%
Combinational ALUTs 26,000 (51%) 33,423 (66%) 34,381 (68%) 30,298 (60%)

Dedicated Logic Registers 15,880 (31%) 25,192 (50%) 20,312 (40%) 16,440 (32%)
DSP Block Elements 128 (41%) 208 (67%) 112 (36%) 52 (17%)
Maximum Frequency 92 MHz 80 MHz 75 MHz 89 MHz
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CHAPTER 4

Selection of Optimal Design Parameters

Advances in FPGA technology lead to increased logic resources available, resulting in a

huge design space for exploration. The performance of different designs with the same logic

utilization is not the same. Therefore, it is not trivial to find the optimal design solution, es-

pecially when there are limited computation resources. In addition, optimization techniques

like tiling transformations further expand the design space to be explored. Consequently, it

is more difficult to find the optimal solution in the design space. Hence, a systematic method

is required to explore the design space of FPGA-based accelerators.

In chapter 3 we introduced the two parameters x and p which represent the width of a

tile in the space dimension (i) and the number of processing elements, respectively. These

design paramters x and p govern the run-time of the algorithm on the hardware accelerator.

We now address the problem of choosing these two optimally. The goal is to determine

the provably “good” values of x and p, in the sense that they minimize the execution time.

Two crucial considerations while choosing the values of x and p are the problem sizes and

resource utilization. The tile size will determine the amount of FPGA resources needed to

synthesize one PE. Hence the optimal values for x and p are not independent of each other.

In this chapter we first develop performance and area models, and then formulate and solve

analytically, an optimization problem with the objective of minimizing the total execution

time for given problem size with the given resource constraints. The total execution time is

a function of x and p. Hence, the analytical solution to this problem allows us to choose the

tile size and number of processing elements in an optimal manner.
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After solving the optimization problem, we will also investigate how the optimal values

of x and p, are affected by the problem size parameters N and T . N is the total number

of grid points in the space dimension and T is the total number of timesteps. To a first,

intuitive approximation, we can say that, since we have p PEs and each one delivers the

result of one iteration point point per clock cycle in the steady state, and assuming all PEs

are always active, the total execution time is equal to NT
p
. Hence maximizing the number of

PEs leads to higher performance. The results of optimization problem for FDTD algorithm

with conservative problem sizes agree with this insight. However, we will see that, under

certain conditions this is not optimal.

4.1. Performance Model

In this section we develop performance model for our hardware accelerator in terms of

total execution time. As described in section 3.2 , the entire iteration space can be divided

in three phases- initial phases, steady state phase and final phase. The total execution time

is the sum of the time required for execution of tile passes in each of these phases. So we

develop the performance model by initially modeling the execution time for the three phases

separately. Table 4.1 shows the various parameters used in this section.

4.1.1. Execution Time For Steady State Passes. As explained in section 3.2 , in

one steady state pass, p processing elements execute p tiles of size x in the space dimension

i and T in time dimension. The total time taken for execution of one pass depends on the

following four components:

(1) Time taken for computation (tcomputation)

(2) Time taken for communication (tcommunication)

(3) Time for which each PE is idle due to inter-PE dependence (tinter PE)
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Table 4.1. Model Parameters

paramter description

N Total number of grid points in the i dimension
T Total number of timesteps
p Number of processing elements (PE)
x Grid points executed per PE per pass
s Total number of passes
f Frequency (MHz)
d Pipeline depth of the datapath
η Main memory bandwidth(bytes/seconds)

tcomputation Time taken for performing computations (seconds)
tcommunication Time taken for off-chip memory transfers (seconds)

tinter PE Time for which each PE is idle due to inter-PE dependence (seconds)
ts pass Time taken for execution of one steady state pass (seconds)

tsteady state Total execution time of all steady state passes (seconds)
tcorner Total execution time of all corner passes (seconds)
ttotal Total execution time of the algorithm on the hardware accelerator (seconds)

In our design one iteration point is computed per cycle. Hence the time taken for com-

putation of one pass can be given as:

tcomputation =
Total number of grid points in one pass

pf

In chapter 3 we described how each processing element performs some redundant com-

putations to allow the “near-concurrent” start for PEs. Each PE computes T values of

magnetic field H t
i−1 redundantly because all the electric fields Et

i near the left boundary of a

PE need this value from across the PE boundary. Thus we calculate (x + 1) magnetic field

values and x electric field values for one row in a tile. To satisfy the dependence between

electric and magnetic field for the next row, no input is fed in the electric field datapath

for one cycle and the last value of electric field is held for two cycles. So the redundant

computation of one H value per row plus one cycle stall per row in the electric field datapath

essentially means that each PE calculates (x+1) iteration points per row. Hence tcomputation

33



can be written as:

tcomputation =
(x+ 1)Tp

pf
=

(x+ 1)T

f
(4.1.1)

For each tile pass, (x + T ) values need to written to the off-chip memory and the same

amount of data needs to be read from the off-chip memory. The time taken for reading and

writing (x+ T ) single precision values of E and H to the main memory is given by:

tcommunication =
2× 2× 4× (x + T)

η
(4.1.2)

The next component to be considered for calculating the execution time of a pass is the

inter-PE latency since it determines the idle time of PEs. The redundant computation of the

magnetic field value across the PE boundary needs input E and H values calculated by the

previous PE. Because of this inter-PE dependence the PEs have a “near-concurrent” start.

Inter-PE latency is the time interval between the start of execution of the successive PEs.

As mentioned in section 3.3 for our design the inter-PE latency is equal to the pipeline depth

of electric and magnetic datapath. This ensures that once a PE starts executing, there are

no pipeline stalls due to inter-PE dependency.

tinter PE =
d

f
(4.1.3)

Except for the first PE, all the other PEs start their execution d cycles after its previous

PE. Thus the total number of idle cycles of PEs is a linear function of its id (identity number).

The j − th PE will starts its execution after dj cycles, where j ranges from 0 to p− 1. The
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idle cycles of the last PE account for the idle cycles of all other PEs. The last PE will start

d cycles after the second last PE. Hence the total idle cycles due to inter-PE latency is given

as:

tinter PE(p− 1) =
d(p− 1)

f
(4.1.4)

The total execution time for a steady state pass is the sum of the three components

described above. However the computation and communication of PEs can be overlapped

and hence the greater of the two needs to be considered while finding out the execution time.

ts pass = max(tcomputation, tcommunication) + tinter PE(p− 1) (4.1.5)

It is important to note that not all of the data (x+T ) is needed from off-chip at the beginning

of a pass. The data can be prefetched in smaller chunks and stored in the on-chip buffers.

For our design, one value needs to be fetched and written into the off-chip memory every x

cycles. The bandwidth required is highest when x is minimum. The minimum value of x in

our design is equal to the pipeline datapath d. Thus the required bandwidth can be given as

8 bytes in d cycles. Looking at the typical pipeline depths and frequencies of the most of the

modern FPGAs, we can say that this bandwidth requirement is not hard to satisfy. Hence

tcomputation dominates tcommunication and the total time for execution of one steady state pass

is given as:
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ts pass = tcomputation + tinter PE(p− 1) =
(x+ 1)T

f
+

d(p− 1)

f
(4.1.6)

The total number of steady state passes is N−T
xp

(assuming N ≥ T . Hence the total time

taken for executing all the passes in steady state phase is:

tsteady state =

(

(x+ 1)T

f
+

d(p− 1)

f

)

N − T

xp
(4.1.7)

4.1.2. Execution Time For Corner Passes. The corner passes are the ones in the

initial and final phases of the computation. These passes are not of equal length and fur-

thermore, the number of iteration points executed by a PE in any such pass is also different

from one PE to another. This leads to load imbalance and causes idling of PEs. Similar to

the steady state passes, the communication required for the corner passes can be overlapped

with the computation by prefetching smaller chunks of data and storing them in on-chip

buffer. Hence the two main components of execution time for corner passes are tcomputation

and tinter PE.

The computation time of the corner passes will depend on the size of the tile passes.

Each PE will still be executing (x+1) grid points in a row. However the number of rows are

not the same for all the passes. The maximum number of rows in a pass, is some multiple of

xp depending on the pass number. For one corner phase, there are T
xp

passes. The maximum

number of rows in each pass can be given by multiplying (xp) with the corresponding pass

number as given in equation (4.1.8). An important point to note here is that, though only

one PE executes the parallelgram with maximum number of rows in a pass, in equation
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(4.1.8) we consider that all the PEs execute the same number of rows so as to account for

the idle cycles of the PEs. The the time taken for computation of all the passes in the initial

and final phase is thus given as:

tcomputation =
2

f

T
xp
∑

q=1

(x+ 1)(xpq) (4.1.8)

Solving the above summation we get:

tcomputation =
1

f

(

(x+ 1)T

)(

T

xp
+ 1

)

(4.1.9)

The total number of corner passes in initial and final phase are 2× T
x×p

. Similar to steady

state passes, the corner passes too have the inter-PE latency, given by d(id-1). The total

idle time of PEs in one pass is given by d(p-1). The total idle time for corner passes can be

written as:

2tinter PE(p− 1)
T

xp
=

2

f
d(p− 1)

T

xp
(4.1.10)

The total time taken for execution of all the passes in the initial and final phase is equal

to the sum of the computation time and time for which the PEs are idle.
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tcorner =
1

f

(

(x+ 1)T

)(

T

xp
+ 1

)

+
2

f
d(p− 1)

T

xp
(4.1.11)

=

(

(x+ 1)T + 2d(p− 1)

)

T

xpf
+ (x+ 1)T (4.1.12)

The execution time of the entire algorithm on the hardware accelerator is the addition

of time taken to execute all the passes in the initial, final and steady state phases. Hence

from Equation (4.1.7) and Equation (4.1.12) the total execution time can be written as:

ttotal(x, p) =
1

f

(

NT

p
+

NT −Nd− Td

xp
+

Nd+ Td

x
+ (x+ 1)T +

Td

x
−

Td

xp

)

(4.1.13)

The execution time is a function of our design parameters x and p and we seek to

minimize ttotal(x, p) subject to resource and other hardware constraints. First we notice

that in equation (4.1.13) p occurs only in the denominator of terms where the numerator

is guaranteed to be positive. Hence ttotal(x, p) monotonically decreases with p. Hence to

minimize ttotal(x, p) with a given value of x, p should be maximized. However p cannot be

increased arbitrarily since the FPGA resources are constrained. Therefore we develop a cost

model for resource utilization.

4.2. Area Model

The motivation behind developing an analytical area model is to relate our design pa-

rameters to FPGA resource utilization. The utilized chip area of the FPGA is calculated in

terms of LUTs (Look-up Table) used. Our objective is to improve the performance of our

hardware accelerator by minimizing ttotal(x, p). In order to accomplish this goal, we need to
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find out the optimal values of design parameters like x and p. The area model will guide

us in this task, by determining the constraints on x and p with respect to the target FPGA

platform.

The chip utilization in terms of LUTs can be further subdivided as the number of LUTs

utilized to implement combinational logic and the number of LUTs used as registers. In our

design, the former is mainly the function of number of processing elements synthesized and

nearly independent of the tile size whereas the utilization of LUTs for synthesizing storage

elements is a function of both the number of processing elements and the tile size. On these

grounds, we can relate x and p to the logic utilization, as given in equation (4.2.1) , where

A(x, p) is the resource utilization in terms of LUTs, α and β are constants interrelating

combinational LUTs with p and storage LUTs with (xp) respectively.

A(x, p) = αp+ β(xp) (4.2.1)

The Verilog code was synthesized was different values of x and p on Altera’s Arria II

GX EP2AGX65DF29I5, and then the resource utilization for each case was obtained from

the post-synthesis report from the tool. Table 4.2 gives ALUTs (Adaptive Look-up Ta-

ble) utilized by some of the sets of x and p which utilize the resources of Arria II GX

EP2AGX65DF29I5 completely. For finding out the values of α and β, we did curve fitting

with nonlinear regression method on the empirical data using DataFit [24] to find the “best-

fit” values of α and β. For the selected FPGA device we got α and β to be 222 and 94

respectively. Hence equation (4.2.1) can be written as:
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A(x, p) = 222p+ 94(xp) (4.2.2)

Table 4.2. Resource utilization for different pairs of x and p

[x,p] [8,52] [16,27] [20,22] [24,19] [32,15] [64,9]

ALUTs (out of 50600) 50094 50030 50034 49753 49049 49152
DSP Block Multipliers (out of 312) 208 108 88 76 60 36

In the next section we will see how to formulate and solve the optimization problem to

find optimal x and p using the equation for total execution time and the area model.

4.3. Optimization Problem Formulation and Solution

Several values of design parameters would satisfy the minimal constraint of the resource

utilization. But, significant performance gains can be achieved by searching for an optimal

design among all the designs that satisfy constraints that determine feasible design space.

For our design, the resource constraint decides the upper bound for design parameters like

x and p. Additionally, in order to maximize utilization and throughput we need to ensure

that the pipeline for arithmetic unit is always full. Consequently the lower bound on x is

equal to the pipeline depth of the datapath. These constraints define the feasible region of

x and p. Figure 4.1 shows the bounded solution space. As seen in the Figure 4.1 xmin = d,

pmin = 1 whereas xmax and pmax are determined by the hyperbola αp+ β(xp) = Lmax.

We saw in the previous section that, for any given value of x ttotal(x, p) monotonically

decreases with p and ttotal(x, p) will be minimized when the hyperbolic constraint is saturated.

Therefore, we can say that, in Figure 4.1 for any value of x, the optimal design point is

obtained by traversing vertically upwards towards the corresponding maximum p that lies
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on the hyperbola formed by Lmax = αp + β(xp). We can replace p as Lmax

α+βx
in equation

(4.1.13) and ttotal now becomes function of only x and is given as:

ttotal(x) =
1

f

((

(NTx+NT −Nd− 2Td)(α + βx)

Lmaxx

)

+
Nd+ 2Td

x
+ (x+ 1)T

)

(4.3.1)

For the sake of simplicity, in equation (4.3.1) let us substitute (Nd + 2Td) by N ′. So

(4.3.1) becomes,

ttotal(x) =
1

f

((

(NTx+NT −N ′)(α + βx)

Lmaxx

)

+
N ′

x
+ (x+ 1)T

)

(4.3.2)

We can now formulate an optimization problem with the objective of minimizing the

total execution time given by equation (4.3.2), to determine the optimal values of design

parameters.

minimize: ttotal(x) =
1

f

((

(NTx+NT −N ′)(α + βx)

Lmaxx

)

+
N ′

x
+ (x+ 1)T

)

subject to: d ≤ x ≤
Lmax − α

β

By simplifying the objective function we get,

ttotal(x) =
1

fLmax

(

(NTβ + TLmax)x+
α(NT −N ′) + Lmax(N

′)

x

+ (NTα + β(NT −N ′) + TLmax)

)

(4.3.3)
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Figure 4.1. Feasible solution space for optimal values of x and p

We can see form (4.3.3) that ttotal has a form of F (x) = A/x+Bx+C which is a the sum

of the hyperbolic term, a linear term and a constant. This is a strongly convex function, and

has a unique minimum (for positive x) at x∗ =
√

A/B. Thus for solution of our problem

that optimal value of x lies at:

x∗ =

√

α(NT −N ′) + Lmax(N ′)

NTβ + TLmax

=

√

α(NT −Nd− 2Td) + Lmax(Nd− 2Td)

βNT + TLmax

(4.3.4)

Using equation (4.3.4), the optimal value for p can be given as:

p∗ =
L

α + β
√

α(NT−Nd−2Td)+Lmax(Nd−2Td)
βNT+TL

(4.3.5)
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The optimal values of x and p, which minimize the total execution time and satisfy all

the three constraints, is given by,

[d, pmax] if x∗ < d

[xmax, pmin] if x∗ > xmax

[x∗, p∗] otherwise

4.4. What will be the optimal design?

We will now study how the optimal design depends on the problem size parameters N and

T. We assume that N and T grow asymptotically large (otherwise it does not make sense

to implement the computation on an accelerator). We also assume that Lmax, although

potentially large, is not an increasing resource. It remains fixed once the target FPGA

platform is chosen. Thus the area of the accelerator is bounded relative to the size of

parameters we seek to implement on the accelerator.

Let us now see when is the inequality x∗ < d satisfied, in which case the smallest feasible

value of x = d, is the optimal. Equation (4.3.4) can be written as given below. Here we have

substituted x∗ = d

α(NT −Nd− 2Td) + Lmax(Nd− 2Td) = d2βNT + TLmax (4.4.1)

From equation (4.4.1) we can say that, for large values of N and T, the two quadratic

terms αNT and (x∗)2βNT are the dominant terms. Hence as long as α < (d)2β, the optimal

value of x is going to be xmin i.e., d the depth of pipeline. The optimal value of p will be the

corresponding p given by equation (4.3.5), which in this case is pmax. Thus the optimization
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problem solution in this case, matches with the common sense intuition of maximizing PEs

for faster execution.

Most of the FDTD applications use large values of N and T to maintain high accuracy

and resolution. Hence as per the above explanation, for most of the problems, the optimal

design is going to be the design with minimum x and maximum p. However, when both

N and T do not grow large simultaneously, this is not true. When N is considerably large

compared to T, apart from the quadratic terms, the other terms in equation (4.4.1) also

play a dominant role. For smaller T, it might be the case that, d2βNT + TLmax is much

smaller compared to α(NT −Nd− 2Td) + Lmax(Nd− 2Td). Therefore xmin, will not be the

optimal. The optimal x will be greater than xmin, given by (4.3.4), and p will not be pmax,

but will be given by (4.3.5). Intuitively we can say that, when N ≫ T the inter-PE latency

contributes significantly in the total execution time. As discussed before the inter-PE latency

for a pass is given by d(p− 1). Thus maximizing PEs is not optimal in this case.

Formulating and solving the optimization problem not only helped us in systematic design

space exploration to determine optimal parameter values but also lead to the important

conclusions regarding parameter tuning. Tuning the design parameters as per the given

problem, enhances the efficiency of the hardware accelerator. Observation made for larger

N and smaller T are very useful in convergence testing. FDTD simulations are complicated

to setup and analyze and to ensure convergence. Convergence testing is an important part

of any simulation. A common way to perform the convergence test is to first quantify the

level of convergence by determining the acceptable level of error, then perform simulations

for fixed number of timesteps, check for convergence and decide whether to simulate further.

The number of timesteps (T) here can be really less , to run the simulations quickly. This is

especially useful during the development phase when saving simulation time is more critical
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than precision. The resolution of grid in time direction can be made large, reducing the total

number of timesteps. When T is considerably small, the optimal values and x and p can be

chosen as per the equations (4.3.4) and (4.3.5), to minimize the total execution time.

One of the assumptions made while formulating the optimization problem is that the

maximum frequency of operation of different designs is the same. We simulated different

designs in Quartus II and performed static timing analysis using TimeQuest to obtain the

maximum frequency of operation. For different problem sizes, Table 4.4 lists the values of

maximum frequency and execution time for sets of x and p. Though the maximum frequency

of operation is different for different designs, the designs with the optimal values of x and p

given by our analytical equations, have the minimum execution time.

Table 4.3. Optimal design parameters for different problem sizes

N T x p Cycles Frequency
Execution
time(µ sec)

Optimal x and p
given by the analyti-
cal equations

5000 1000
8 52 125176 80 MHz 1564.7

x=xmin(8), p=pmax(52)16 27 216648 75 MHz 2888.64
32 15 378150 89 MHz 4248.87

5000 100
8 52 16930 80 MHz 211.62

x=xmin(8), p=pmax(52)16 27 23832 75 MHz 317.76
32 15 38865 89 MHz 436.68

5000 40

8 52 9715 80 MHz 121.43

x=10, p=43
16 27 10944 75 MHz 146.36
32 15 16246 89 MHz 182.53
10 43 9410 79 MHz 119.16

5000 20

8 52 7307 80 MHz 91.33

x=15, p=31
16 27 6692 75 MHz 89.23
32 15 8706 89 MHz 97.82
15 31 6350 77 MHz 82.46
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CHAPTER 5

Conclusion and Future Work

The goal of this thesis was to present a systematic design flow to generate the hardware

accelerator for stencil computations like FDTD. We used a three step approach in which we

first analyzed the data dependencies and logic structure of FDTD 1-D and proposed tiling

transformations to fully exploit parallelism and reduce off-chip memory accesses. Next we

developed a parametric design, consisting of a linear array of processing elements (PEs),

each one with a combinational datapath, a set of storage registers and a control unit. We

described it in Verilog and synthesized it on Altera’s Arria II GX EP2AGX65DF29I5. We

verified the functionality and timing of our design by performing cycle accurate simulation.

We also formulated and resolved analytically, a discrete non-linear optimization problem

that allows us to choose the optimal design within a significant design space. Hence, the

design space “exploration” for this problem consists of a “one-shot” solution.

The case study presented in this thesis can guide the future developments in the area of

hardware accelerators. It would be interesting to apply the approach to higher dimensional

FDTD stencils as well as other stencil computations. The higher dimensional stencils would

have more parallelism to exploit, several tiling optimization options, more complicated com-

binational datapath, added bandwidth requirements, and larger design space. The approach

should thus be altered to take these factors into consideration. For higher dimensional

FDTD, the current Verilog design can be upgraded by using BRAMs instead of LUTs for

storing larger volumes data, so as to make maximum use of available FPGA resources and

free some LUTs for implementing deeply pipelined, highly parallel combinational logic. Also,

for 2D stencils, tiling can be done along both the dimensions yielding a prism shaped tile.
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Instead on a linear array of processing elements, more options like a grid of interconnected

PEs can be explored. The task of finding the optimal design would become more compli-

cated because of increased number of design parameters and expanded design space. The

optimization problem we formulated must be appropriately modified.
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