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ABSTRACT 

 

 

THE USE OF COMPUTER ASSISTED SEMEN ANALYSIS TO PREDICT 

FERTILITY IN HOLSTEIN BULLS 

 

 

 Cryo-preserved semen from 120 Holstein bulls was obtained from three semen 

companies, which were randomly coded 1:3 to decrease bias, through USDA-ARS, Fort 

Collins, CO. Computer assisted semen analysis (CASA; HTM-IVOS, Version 10.8, 

Hamilton Thorne Research, Beverly, MA, USA) was used to assess seminal 

characteristics and to determine if this was useful for predicting fertility, defined in this 

study as sire conception rate (SCR). For this study the primary CASA measurements 

assessed were percent motility, percent progressive, average pathway velocity (VAP), 

straightline velocity (VSL), curvilinear velocity (VCL), amplitude of lateral head 

displacement (ALH), beat cross frequency (BCF), straightness (STR), linearity (LIN) and 

cell size (SIZE). Percent motile and percent progressive sperm cells had means, followed 

by their standard deviation, of 60.93 ± 10.09 and 32.46 ± 10.06%, respectively with 

percent motile having the lowest coefficient of variation of 16.72 %. Amplitude of lateral 

head displacement and BCF were both high when compared to other studies conducted 

with fresh and cryopreserved semen (Budworth et al.,1988, Farrell et al., 1998) with 

means, followed by their standard deviation, of 8.45 ± 3.5µm and 30.99 ± 9.27Hz, 

respectively. Straightness and LIN had means, followed by their standard deviation of 
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80.74 ± 17.11 and 48.24 ± 16.15%, respectively; SIZE had a mean, followed by its 

standard deviation, of 8.38 ± 2.88µm
2
. After initial data exploration the data was fit either 

untransformed, or transformed. Data was fit untransformed because of the data being 

normally distributed or because a cubic model fit best. Data was fit transformed to better 

fit normality requirements, for prediction of CASA values. SIZE appeared to have a 

cubic relationship with all three velocity parameters (VAP, VCL and VSL). The number 

of bull samples originating from each semen company is as follows: Semen Company 

1(SC1) - 32, Semen Company 2(SC2) -71, and Semen Company 3 (SC3) -17. Semen 

company, when fit as a fixed effect was found to be significant (P ≤ 0.05) so this study 

looked at the differences of the least squares means between semen companies. When 

looking at untransformed data SC1 and SC2 were significantly (P ≤ 0.001) different 

across VAP, ALH and BCF. The heritability of most seminal parameters was low, with 

the exception of percent motile (0.793). Percent motile also had the greatest genetic 

variance when compared to its residual variance. Genetic correlation of VAP, ALH and 

SIZE with SCR were low (0.05, 0.006, and 0.04 respectively); however, percent motile 

was moderately genetically correlated with SCR at 0.302. After VAP and ALH were 

transformed to meet normality requirements, heritability was once again calculated and 

the heritability of the transformed data was lower than the untransformed data. The 

genetic correlations between the transformed data and SCR stayed the same (0.052) or 

improved (0.02) (log10VAP and √ALH, respectively). The low heritabilities of these 

seminal traits does not make them good candidates for genetic evaluation. Significant 

differences between semen companies suggest that the methods semen companies use to 

select bulls, collect semen from bulls, extend semen and store the cryopreserved semen 
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could be different. However, this information is highly proprietary and is difficult to 

ascertain to truly attribute difference between semen companies. Due to the genetic 

correlations between CASA values and SCR being low we were unable to use this 

study‟s CASA values for genetic prediction of fertility. While CASA values do have an 

underlying genetic component, environmental effects are too large and physiological 

processes vary too much to estimate future performance of these bulls‟ fertility.  
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INTRODUCTION 

Bull fertility plays a very important role in bovine reproduction since selection 

intensity of bulls chosen for breeding programs in both the beef and dairy industry is high 

and since they can produce high numbers of offspring relative to females. Bulls that are 

sub-fertile prolong calving season due to delayed pregnancy, reducing calf crop weights 

and in turn increasing culling of females (Kastelic and Thundathil, 2008).  

The problems created by sub-fertile or infertile bulls are of economic importance 

to the cow-calf producer. As a general category, reproduction is at least five times more 

important economically than growth traits to the beef cow-calf producer (Trenkle and 

Willham, 1977). Any measurable trait that is able to identify lower fertility bulls to cull 

or avoid, or conversely highly fertile bulls to utilize in a herd should improve the fertility 

rate of a herd (Clay and McDaniel, 2001). In the dairy industry this allows a cow to begin 

lactation sooner and in the beef industry this provides an opportunity for the cow to 

produce a heavier calf at weaning.

Reproductive performance and fertility in beef bulls is influenced by many 

different factors, including testicular development, seminal quality, libido, mating ability 

and physical soundness (Ott, 1986; Chenoweth, 1983; Larson, 1986). Traditionally 

breeding soundness exams are used to predict whether a bull will likely be a good breeder 

or not. Additionally, many studies have focused on seminal quality, using two main 

methodologies: trained personnel using a microscope or more recently computer assisted 

semen analysis (CASA). The CASA system allows for a more objective measurement of 
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semen quality than traditional methodologies. However, there are limitations on the use 

of this machine due to cost; wide variability in equipment settings due to the flexibility in 

machine parameterization as well biological limitations; as the fact that many sperm 

attributes are required for sperm to fertilize an oocyte, not merely motility, and since lab 

assays generally score sperm populations not individual sperm (Rodríguez-Martínez, 

2006; Rodríguez-Martínez, 2007). 

Even with all of the technology available there are differing ideas on which 

methods best predict bull fertility, and which methods best fit the breeding scheme of any 

given ranch. While people agree that certain correlations exist between fertility and 

sperm parameters the problem is these are not consistent between studies. There is little 

consensus on what parameters can be used to build an adequate model for predicting 

fertility and the problem arises that fertility is defined so many way, conception rate, 

pregnancy rate, calving rate. Few studies have been conducted to analyze the association 

of seminal quality with fertility and look at the genetics behind seminal quality. Of the 

studies that have been conducted, most deal with poultry and are limited to a few genetic 

lines. There are few studies published on the genetics of fertility in cattle, specifically 

with regards to seminal characteristics. 

The objectives of this study are to:  

 Determine if there is a genetic component to CASA parameters, and 

 Predict fertility, defined as sire conception rate, using CASA parameters. 
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LITERATURE REVIEW 

Fertility 

 Bull fertility is essential to reproductive performance; bulls have a high selection 

intensity, therefore, fertility is of the utmost importance. The Beef Improvement 

Federation (BIF) guidelines estimates around 20% of beef bulls have some degree of 

infertility (2010). Fertility is import to cow-calf producers so that they are able to provide 

themselves and others with herd replacements. In the dairy industry fertility is essential to 

milk production, if a bull is in-fertile, in the case of natural mating, or sub-fertile, in the 

case of artificial insemination, and the cow isn‟t bred back it is unable to enter lactation 

again and thus unable to produce. 

 Fertility has been defined many ways. A common definition of fertility is a set 

nonreturn rate where if the cow hasn‟t returned to heat or been rebred within a specified 

number of days, they are considered pregnant. Some examples of these day limits are a 

70 d nonreturn rate (Clay and McDaniel, 2001; Kuhn and Hutchison, 2008), a 75 d 

nonreturn rate (Budworth et al., 1988; Budworth 1987), and a 59 d nonreturn rate (Farrell 

et al., 1998). Budworth (1987) and Budworth et al. (1988) based fertility on the 

percentage of cows and heifers that were apparently pregnant at 75 d after insemination. 

Farrell et al. (1988) defined fertility as the 59 d nonreturn rate to first service. Clay and 

McDaniel (2001) as well as Kuhn and Hutchison (2008) utilized a 70 d non-return rate 

because of its use in calculating Estimated Relative Conception Rate. 
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Another way to determine pregnancy is by palpation or ultrasound per rectum. 

Farin (1980) used palpation per rectum at 60-75 d post insemination to diagnose 

pregnancy and in return determine fertility.  

Budworth et al. (1987) used an alternative method, a competitive fertility index, 

which was calculated using phenotypic markers and bloodtyping to determine sire of 

calves. Equal numbers of sperm from two bulls were mixed into one dose and every cow 

was inseminated with one mix. This is a relative fertility estimate because of the 

heterospermic insemination, one bull was a success and one bull was a failure. These 

bulls were ranked according to their competitive fertility (Budworth et al., 1987).  

Fertility in chickens is defined differently because of their different nature of 

laying eggs. In chickens candling (shining a bright light through the egg) eggs after 7 d of 

incubation was used to determine fertility from hens that lay 2 or more settable eggs 

(Ansah and Buckland, 1983). The BIF uses the stayability EPD as a prediction of 

sustained female fertility, but as of now has no set definition for immediate fertility (Beef 

Improvement Federation Guidelines, 2010). 

 Farin (1980) analyzed data by least squares analysis and discovered 7 different 

models to assess libido/serving capacity and mating/fertility performance in a 30 hr 

observation period. The variables analyzed were trial (1-6), age of bull, libido, number 

observed in estrus (linear), observation time (hr, linear & quadratic), number services per 

female (linear), and last service number to each female (linear). Model 2 analyzed 

measurements of mating performance and fertility during the 30 hr observation period. 

Model 4 analyzed the effect of successive services on number pregnant. In model 2 the 

number in estrus, trial x libido, and age of bull x libido were found nonsignificant. In 
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model 4, bull libido, BSE score, percentage of total abnormal sperm cells, normal sperm 

cells, and motile cells, rate of mobility, scrotal circumference, age of bull by scrotal 

circumference and mean services per female were all found to be non-significant main 

effects. With the amount of fertility related information available, to select a complete 

model that accurately predicts fertility, the genetics, or the pedigree, should be included. 

Genetics of Fertility 

 While many studies have been done to assess the correlation between seminal 

characteristics and fertility in animals and humans (Bailey et al., 1994; Branton et 

al.,1950; Kaskar and Franken, 1996), few studies have addressed the genetics of fertility. 

Ansah and Buckland (1983) examined the effect of selection on four aspects of fertility of 

frozen-thawed and fresh semen in chickens. Eggs were used as the determinant of fertility 

by candling them after 7 d of incubation from hens that laid 2 or more settable eggs. They 

calculated the heritability and repeatability of the estimates of fertility and hatchability of 

the eggs from frozen-thawed semen. The authors found the heritability of fertility in their 

selected line (h
2
 = 0.01) was lower than the heritability of fertility in the control line (h

2
 = 

0.31), and attributed this to non-random mating or selection for semen that survived 

better in the freezing process. However, the selected line expressed greater fertility when 

compared to the control line. Ansah et al. (1985) continued with the breeding lines started 

in the previously mentioned paper and analyzed the effect fertility selection had on 

seminal characteristics. This study also utilized the candling of eggs after 7 d of 

incubation from hens that laid 2 or more settable eggs as the determinant of fertility. They 

found a significant difference between the selected line and the control line, when 

analyzing fertility of frozen-thawed semen. The result was a higher level of fertility and 
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duration of fertility (defined as days semen is frozen prior to insemination) in the selected 

line than in the control line. When looking at the seminal characteristics, the authors 

found that selecting for fertility of frozen-thawed semen also decreased the seminal fluid 

volume and sperm number per ejaculate, but had no effect on sperm concentration. While 

the quantity of the sperm decreased over time, the quality of the sperm increased. The 

selected line had significantly fewer abnormal sperm present and a significantly higher 

percentage of normal sperm when compared to the control line. There is a favorable 

genetic association between semen production and egg production (Nestor, 1977, Marks, 

1978). Because of this, Buckland‟s group assessed the genetics of sperm/semen 

characteristics and egg weight. They found low to moderate genetic correlations of 

between rooster semen weight (0.19, 0.20), packed-sperm volume (0.26, 0.07), and total 

sperm weight (0.36, 0.24) with egg weight at both d 240 and 450 in their selected line 

with the control lines having varying genetic correlations (respectively; Segura et al., 

1990). When the control lines‟ correlations were averaged across the lines, Full-sib and 

Dam-son, they were in the same range as the selected strain. Genetic correlations with 

egg weight at both day 240 and 450 were as follows: semen weight (0.20, 0.26), packed-

sperm volume (0.06, 0.05), and total sperm weight (0.16, 0.18; Segura et al., 1990). 

Ansah et al. (1985) found that the heritabilities and repeatabilities of ejaculate 

volume, sperm concentration, and sperm cells per ejaculate were much higher for the 

control line than the selected line. However, the difference in repeatability for each line 

was not as great as the difference in heritability values. Heritabilities for the selected and 

control lines, respectively, are as follows: ejaculate volume (0.34, 0.64), sperm 

concentration (0.37, 0.65), and sperm cells per ejaculate (0.54, 0.73). Repeatability for 
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the selected and control lines, respectively, are as follows: ejaculate volume (0.35, 0.48), 

sperm concentration (0.33, 0.50), and sperm cells per ejaculate (0.42, 0.51). The authors 

attributed the lower heritability in the selected line to decreased genetic variance caused 

by a greater selection pressure. Segura et al. (1990) also found the heritabilities of the 

traits they assessed to be lower in the selected line than in the control line. The authors 

concluded that wattle and testes weights are influenced mainly by additive genes because 

of the large heritability estimates (0.54 ± 0.10 and 0.58 ± 0.11). The authors concluded 

that semen volume and sperm production of males are not good indicators of high egg 

production in female relatives because of the unfavorable genetic relationship between 

semen traits and egg production traits These egg production traits included 1) Age at first 

egg, 2) Hen-day rate of egg production 3) The number of eggs produced from housing to 

two different ages 4) Egg weight 5) Egg specific gravity, and indicator of shell thickness 

6) Albumin height 7) Shell shape and 8) Blood spots percentage. These can be compared 

to mammals traits such as, age at puberty, calving rate, the weight of calf to different 

weaning days, and calf birth weight.While the previous findings highlights testes weight 

as a poor indicator of fertility, in cattle scrotal circumference is correlated with daughter 

age at first puberty. 

Scrotal Circumference 

Scrotal circumference (SC) has been found to be favorably related to semen 

quality as far back as the fifties (Bratton et al., 1956; Bourdon and Brinks, 1986). Scrotal 

circumference is highly heritable and positively correlated to total semen production, 

semen quality, and testicular weight (Latimer et al., 1982, Hopkins and Spitzer, 1997). 

Heritabilities in the literature for SC of yearlings, unadjusted, are 0.6 ± 0.17 (Latimer et 
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al., 1982), 0.36 ± 0.06 (Knights et al., 1984) and 0.53 ± 0.06 (Bourdon and Brinks, 1986). 

Coulter et al. (1976) found the weighted average for heritability of SC to be 0.67 and the 

correlation of SC with spermatozoal output to be 0.81. Since SC is highly heritable, 

producers have put great selection pressure on larger scrotal sizes. This allows producers 

to breed heifers sooner thereby decreasing the length of the calving season, which helps 

to produce bulls that meet the standards for Breeding Soundness Exams (BSE). The 

Society for Theriogenology (Chenoweth et al., 1992) has published minimum guidelines 

for scrotal circumference for different age ranges (Table 1) in an effort to encourage 

genetic progress in breeding cattle.  

Table 1. Minimum scrotal circumference by age 
a
 

Age SC (cm) 

≤ 15 months 30 

> 15 to ≤ 18 months 31 

> 18 to ≤ 21 months 32 

> 21 to ≤ 24 months 33 

> 24 months 34 
a 
Adapted from Chenoweth et al., 1992 

 

Madrid et al. (1988) attributed poor quality semen to small SC measurements. A 

SC of less than 32 cm was considered small. The only difference found in a study done 

by Chacón (2001) between Zebu bulls older than 24 mo with a SC of ≤ 30 cm and bulls 

whose SC > 30 cm was a higher prevalence of cytoplasmic droplets. This may be the 

result of a delayed sexual maturity or a disruption in the sperm maturation process 

(Chacón, 2001).  

Several studies have evaluated the ability to predict SC at later ages using early 

life measures. Coe and Gibson (1993) evaluated bulls at 200 d and 365 d and found that 

calves with > 23 cm SC at 200 d had a 95% probability of achieving > 34 cm SC by 365 

d. Decker et al. (2008) found that an adjusted 240 d SC measure of 22.5 cm was required 
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to achieve 30 cm SC at 365 d. This is more desirable information for producers who are 

able to choose bulls at an earlier age for development, and provides a sense of assurance 

that the chosen bulls are able to pass their BSE to either be used in the herd or sold for 

profit. 

Breeding Soundness Exam 

 Breeding soundness exams are widely used and commonly accepted for 

predicting bull fertility (Kealey et al., 2004). The Society for Theriogenology lists three 

classifications for bulls as a result of their BSE (Chenoweth et al., 1992).  These three 

classifications are „satisfactory potential breeder‟, „unsatisfactory potential breeder‟, or 

„classification deferred‟ for re-testing later. To be classified as a „satisfactory potential 

breeder‟ the bull must have a good physical evaluation, a minimum scrotal circumference 

based on age (Table 1), a minimum of 30% individual motility, and a minimum of 70% 

normal morphology.  

It is very common for yearling bulls to have a less than satisfactory SC, or have 

less than satisfactory sperm morphology, or both. Makarechean and Farid (1985) found 

yearling bulls to have a greater frequency of primary semen abnormalities (14.6%) and 

lower scrotal circumference (35.2 cm) than mature bulls (10.2% and 38.7 cm, 

respectively). Kennedy et al. (2002) found a greater percentage of 10 mo old bulls being 

classified as unsatisfactory due to inadequate SC than 17 and 18 mo old bulls (24.9% and 

~8.6%, respectively). Primary semen abnormalities have a greater effect on fertility than 

secondary abnormalities, however, some indicate a lack of maturity, and disappear after 

the bull has matured; in this case the bull would be classified „classification deferred‟. 

Another main reason „classification deferred‟ is used is when bulls have a temporary 
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injury or illness that when healed would allow the bull to satisfactorily pass the BSE. 

When classifying bulls the evaluator has set guidelines for what is considered a 

satisfactory potential breeder, however once a bull doesn‟t meet all the requirements the 

evaluator decides whether to classify as „unsatisfactory potential breeder‟, or as 

„classification deferred‟. While this method is highly accepted and highly utilized it is 

very subjective, requires the use of highly trained personnel, and BSE score is lowly 

heritable, 0.10 ± 0.06 (Smith et al., 1989). 

 A current ongoing discussion amongst animal breeding and genetics researchers is 

whether failing a bull on his BSE for not having a 30 cm scrotal circumference is fully 

justified. One argument commonly used could be stated as, “If a bull‟s semen is viable 

and he is able to perform, with a scrotal circumference less than 30 cm is it justified to 

consider him an unsatisfactory potential breeder?” While many studies have been done to 

justify a cutoff of 30 cm, there are breed differences that need to be assessed when 

performing a BSE. Sosa et al. (2002) found the SC of Wagyu bulls to be smaller than 

Angus and Brahman bulls at puberty, 24.5 ± 0.8 cm, 28.1 ± 0.8 cm and 28.0 ± 0.7, 

respectively. Kennedy et al. (2002) also found a significant difference between the 

percent of bulls within breed classifying as unsatisfactory due to SC. Angus had only 

4.8% with an inadequate SC while Limousin, Santa Gertrudis, and Simbrah were all 

greater, 16.8 ± 4.5%, 35.8 ± 2.8%, and 22.4 ± 4.7%, respectively. The differences 

between breeds are visible in carcass and fertility traits and as such, breeds are selected 

for their respective desired traits. A basic breakdown of British, European and Zebu 

breeds is shown in Table 2. British breeds are usually selected for their maternal traits, 

low birth weight, and higher fertility. European breeds are usually chosen for their 
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finishing traits, high growth weight and larger frame size. Zebu breeds are chosen for 

their adaptability to adverse environments such as, high heat, low nutrition, and high 

insects. Since this is the case, why do all breeds have the same SC requirements? Why 

not consider culling at the level of any bull that is greater than one standard deviation 

from their breed mean for SC? While this may decrease genetic variation, there is 

potential for less of a decrease as compared to a culling level of 30 cm. 

Table 2. Advantages and disadvantages to different breed types.
a
 

Breed Type Advantages Disadvantages 

British   

Angus, Hereford, 

Shorthorn 
 Low birth weight 

 High fertility 

 Moderate milk 

production 

 Moderate frame size 

 Lower growth rate 

European   

Charolais, Gelbvieh, 

Maine-Anjou, Pinzaguer, 

Simmental, South Devon, 

Tarentaise, and Others 

 High growth rate 

 Larger frame size 

 High milk production 

 Increased dystocia 

 Increased maintenance 

Zebu   

American Brahman, 

British Derivatives, and 

European Derivatives 

 Adaptability to adverse 

environments 

 Moderate to high milk 

production 

 Maximum heterosis in 

crossbreeding 

 Lower growth rate 

 Poor carcass quality 

a
Adapted from Hicks et al., 2010 

 

Hopkins and Spitzer (1997) outlined proper collection of SC measurements. First 

testicles should be gently massaged to the bottom of the scrotal sack. The measuring tape 

should then be placed over the area of greatest width and the tape pulled until snug. This 

presents another problem with the subjectivity of BSE. While evaluators are highly 

trained, each has their own degree of „snug‟ for the measuring tape that can make the 

difference between a 29 and a 30 cm SC. This can cause problems with yearling bulls 
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who may meet all minimum requirements but the SC measurement. Kastelic and 

Thundathil (2008) concluded that while traditional BSE may identify bulls that are 

abnormal, a comprehensive approach of assessing sperm function and fertility at the 

molecular, cellular and whole-animal levels is necessary to predict fertility of bulls 

producing normal sperm. Bruner et al. (1995) performed BSE and analyzed the difference 

between including and excluding semen analysis and how bulls are classified. When 

semen analysis was included less bulls were classified as „unsatisfactory‟, but more were 

classified as „questionable‟ or „classification deferred‟. They attributed this to the fact 

that primary abnormalities are the most significant factor in determining BSE 

classification. BSE should be a portion of a bull‟s assessment concurrently with seminal 

evaluation to maximize breeding potential. 

Computer Assisted Semen Analysis 

 Computer assisted semen analysis (CASA); also known as sperm quality 

analyzer, computer assisted sperm motility analysis, and a microcomputer-photographic 

method for evaluation; has been used for many years to provide an objective measure of 

semen characteristics. Until recently the ability of these machines to correctly analyze a 

semen sample and in turn predict fertility was poor and subject to human error. However, 

there has been a push for machines that not only estimate fertility, but accurately estimate 

fertility because it has been estimated that breeders would pay a premium of $2 for semen 

they purchase for each 1% increase in fertility rates (Clay and McDaniel, 2001). The 

most recent CASA machines are still not 100 % objective because of the bias in operators 

setting limits on what is considered motile, and what is considered debris.  
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“CASA and visual measures of percent motility usually differ because their 

definitions are not identical. In visual measures, a spermatozoon is usually 

considered to be motile if its flagellum is twitching even though it may not exhibit 

forward progression. In CASA, a spermatozoon must achieve a minimum VSL to 

be motile,” (Davis and Katz, 1996).  

 

Budworth et al. (1987) and Farrell et al. (1997) set a threshold level of velocity 

for sperm to be considered motile at ≥ 20 μm/s. 

Palmer and Barth (2003) reported disadvantages of the CASA machine, in this 

instance the Optibreed™, BullMate
TM

 sperm quality analyzer (Alpharma Inc., Fort Lee, 

NJ) to be high cost and difficult to calibrate, validate and standardize. There are other 

disadvantages to the CASA system, but many of them are easily overcome by appropriate 

parameterization of the machine. Below is a list presented by Davis and Katz (1996) of 

factors that can affect CASA results: 

 Instrument precision 

 Instrument accuracy 

 Microscope 

 Counting chamber 

 Diluents or extender 

 Video framing (or digitization) rate 

 Physiological state of sperm 

 Temperature effect on VCL and motility 

 Specimen concentration 

 Presence of debris in the sample 

 Instrument parameter settings 

 Digitization threshold (gray scale) 

 Number of points per track 

 Number of frames tracked 

 Number of fields (or sperm) analyzed 

 Computational algorithms for average path and ALH 

 Statistical methods 

 Laboratory supplies 

 Videotaping (inter-tech variation) 

 Between-aliquot variation 
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 Many of these can be overcome by simple solutions such as, using pre-warmed 

slides from the same company, maintaining an average number of cells viewed per frame, 

setting the minimum and maximum parameters on the machine for clarity, and 

eliminating cells that aren‟t alive, moving, or swim off the screen as soon as the analysis 

starts. 

With the availability of different slide choices on the market, such as 2-chamber, 

4-chamber, and 8-chamber slides; it is wise to first determine what best suits the machine 

being used, which can easily be accomplished by consulting the operations manual. Then 

continuing with the same slide throughout the study will decrease variability due to slide 

differentiations. Pre-warming slides allows them to be at the same temperature the semen 

samples are at so the samples don‟t experience a temperature shock. Machines that have 

been used to analyze sperm have also been checked for repeatability by using more than 

one slide of the same sperm sample. Initially Budworth et al. (1987) found that variation 

in the percent of motile sperm decreased when two or three slides were used rather than 

one slide. Later Budworth et al. (1988) found that slide to slide variation was low but 

suggested that two slides be used to reduce error. 

Alleviating issues associated with debris in the sample has proven problematic. 

Budworth et al. (1988) found that a range of 0 to 18% of approximately 240 spermatozoa 

identified might be debris from the extender. The authors then suggested that for semen 

to be properly evaluated using a computerized system; particulate matter in an egg yolk 

extender must be reduced by sedimentation over night at 5 C followed by decantation, 

centrifugation, or filtration. Extender is not always known when samples are analyzed by 
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the CASA machine so operators should take great care in observing the amount of debris 

present in the field of view. 

When it comes to fertility Farrell et al. (1998) reported significant, high 

correlations (0.99) between bull fertility, 59 d non-return rate to first service, and CASA 

motility parameters; BCF, linearity, average path velocity, straightness, curvilinear 

velocity, total motility, linearly motile sperm, and total number of motile sperm. 

Kasimanickam et al. (2006) found ALH and BCF together with either VSL or VAP to be 

significantly correlated to fertility which they defined by using a competitive fertility 

index. Computer assisted semen analysis has the potential to more accurately predict 

fertility than traditional BSE and visual evaluations (Farrell et al., 1998; Christensen et 

al., 1999). Computer assisted semen analysis is a broad term that is used for 

computerized semen analysis and there are machines that are currently being used under 

different names and have been reported in studies to be good estimators of sperm 

viability. 

Other Objective Measures 

 Kruger and du Toit (1996) report the use of automated sperm morphology 

analysis (ASMA). Automated sperm morphology analysis machines work like CASA 

machines except that no movement parameters are recorded and the slide is fixed and 

stained. The set up consists of a microscope, a video camera, a computer frame grabber 

and morphology software. The computer frame grabber receives images from the video 

camera for analysis by the morphology software. This software uses many of the same 

parameters as CASA for sperm recognition, size, shape, intensity, and others. When 

debris in the sample are sorted out by the computer, the sperm head, midpiece, acrosome, 
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and others are measured metrically. These measurements are used to assign the sperm to 

different classifications; normal, subnormal, or abnormal. The correlation of the 

computerized machine with manual inspection of morphology was positive and favorable 

(Kruger and du Toit, 1996). 

Mahmoud et al. (1998) reported the use of the sperm quality analyzer (SQA) as a 

portable device for fast evaluation of semen quality; it requires minimal training and is 

considered relatively cheap when compared to other CASA systems. The output of the 

SQA is a value expressed in sperm motility index (SMI) units. These are a measure of the 

optical density fluctuations caused by motile cells. Zavos et al. (1996) better described 

SMI as reflecting semen concentration, morphology and acrosomal status of motile 

spermatozoa. Palmer and Barth (2003) stated that there was a threshold SMI value of 350 

where bulls would have a satisfactory BSE. They continue to suggest that the SMI should 

be referred to as the sperm quality index, because it assesses more than just motility. The 

authors also reported a problem with the SMI being a single output, the index value; 

semen samples with one or two poor qualities (i.e. low percent motile sperm) may go 

undetected because the good characteristics of the sample would conceal the failing 

characteristics. 

Plasma membrane status or integrity (PMI) has become of greater importance due 

to the effect cryopreservation has on sperm cell membranes. The plasma membrane is the 

outermost membrane on the head of the spermatozoon, followed by the acrosomal 

membrane and the nuclear envelope; a mitochondrial membrane covers the midpiece of 

the spermatozoon (Kasimanickam et al., 2006). Graham et al. (1990) stated that sperm 

competency requires that each of these membranes be intact, without this, fertility will be 
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compromised. When assessing PMI a combination stain of SYBR
®
 14 or CDMFDA 

(carboxydimethylfluorescein diacetate) and propidium iodide (PI) are used for labeling 

the sperm cell as live or dead. SYBR
®
 14 is a membrane permeable, nucleic acid stain 

that penetrates the intact plasma membrane and stains the DNA green, while PI is 

membrane impermeable and stains the DNA red only when the plasma membrane is 

damaged (Ericsson et al., 1993; Kasimanickam et al., 2006). 

Kasimanickam et al. (2006) chose to evaluate the relationship of PMI and sperm 

motility parameters (using CASA) and found a significant, positive correlation (r = 0.87, 

P < 0.01) between PMI and the total progressive motility assessed by CASA. The same 

correlation was found between the PMI and the competitive index formed in the study 

conducted by these authors, however, it should be noted that the PMI along with the 

DNA fragmentation index were used to calculate the competitive index and accounted for 

87% of the variation in the index.  

Mahmoud et al. (1998) found significant correlations between the percentage of 

fertilized oocytes and sperm motility and also between the percentage of fertilized 

oocytes and the percentage of spermatozoa with normal morphology. Palmer and Barth 

(2003) however, found that the percent motile sperm and concentration values were only 

moderately correlated with each other (r = 0.22, P < 0.01), by machine and by 

conventional methods (r = 0.23, P < 0.01). They further concluded that when compared 

across machine and conventional methods there were significant, positive correlations for 

percent motile sperm (r = 0.82, P < 0.001) and sperm concentration (r = 0.80, P < 0.001). 

Budworth et al. (1987), using a microcomputer-photographic system, concluded that 

there was a correlation between the spermatozoal characteristics, percentage of motile 
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sperm or spermatozoa velocity, and the competitive fertility index (r = 0.82, P < 0.05 and 

r = 0.83, P < 0.05; respectively). Mahmoud et al. (1998) concluded that SMI values 

correlated better with the percentage of fertilized oocytes than most conventional semen 

parameters (r ≈ 0.5, P < 0.05 for SMI vs. r ≈ 0.33 or 0.46, P < 0.05). 

Ericsson et al. (1993) stated that fluorogenic stains may be useful in identifying an 

elite population of sperm cells that have a greater chance of completing the fertilization 

process. However at the conclusion of their study the authors stated that none of the 

semen quality parameters, flow cytometry or classical measures, were correlated with 

fertility estimates as defined by ability to complete the fertilization process. Classical 

measures were defined as post-thaw motilities, intact acrosomes, normal morphology, 

abnormal heads, vacuoles-craters and spermatozoa with attached cytoplasmic droplets 

(Ericsson et al., 1993). 

Seminal Parameters 

Objective measurements of sperm quality traits give better predictions of fertility 

than the subjective measurement of visual estimation (Saacke, 1982). Visual estimation is 

the most commonly accepted way of evaluating spermatozoa traits but this estimation 

technique is not highly repeatable or reliable when predicting fertility (Linford et al., 

1976; Graham et al., 1980; Moce & Graham, 2008). The 95 % confidence interval is 

approximately ± 20 percentage units for visual determination of percent motile 

spermatozoa (Budworth, 1987). Beef Improvement Federation guidelines (2010) state 

that semen evaluation provides important information relative to a bull‟s fertility, with 

sperm viability and morphology among the most important information from the semen 

evaluation to be used as an indicator of a bull‟s fertility (Guidelines, 2010). The Beef 
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Improvement Federation guidelines have been updated through the years as new 

technologies emerge and have been written by committees, established by the Beef 

Improvement Federation Board of Directors, to develop recommendations based on 

scientific research results and industry experience. 

An alternative is to use more objective methodologies through use of computer 

visualization instead of relying on the subjectivity of the human eye.  Traits that lend 

themselves to this method consist of motility, cell velocity, path traveled, concentration, 

cell size, and cell shape. Motility can be quantified through two different measurements.  

One is overall sample motility and the other is specific track motility measured for each 

individual sperm cell.  

Velocity is measured, by the computer, three different ways for each cell (linear, 

curvilinear, and straight line), and is classified as slow, medium or rapid. Average 

pathway velocity (VAP), straight-line velocity (VSL) and curvilinear velocity (VCL) are 

the three most commonly used measures of sperm movement (Figure 1). VAP is the 

smoothed average position of the sperm cell, VSL is the straight-line distance between 

the beginning and the end of the cell path, and VCL is the total distance traveled by the 

sperm cell including every point in the cell path all divided by the time elapsed and 

expressed in micrometers per second. Linearity (LIN), straightness (STR), and wobble 

(WOB) are all ratios of the velocity parameters (VSL/VCL, VSL/VAP, and VAP/VCL, 

respectively) used for looking at progressiveness on a relative scale and are expressed as 

a percentage. 

Amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) 

are both measures of cell oscillation and are based on each specific sperm cell path. 
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Amplitude of lateral head displacement is the measurement of the maximum value of the 

distance, in µm, of any point on the cell track from the average path, multiplied by two 

(Figure 1). BCF measures the frequency with which the cell track crosses the average cell 

path in either direction and is expressed in Hz (number of video frames per second) 

(Hamilton Thorne Research, Beverly, MA, USA; Mortimer, 1994; Farrell et al., 1998; 

Hoflack et al., 2007).  

Cell size, cell shape and cell pixels are used as indicators of sperm cells vs. debris, 

and cell abnormality (Hamilton Thorne Research, Beverly, MA, USA). Budworth et al. 

(1988) concluded that a size range of 20 to 70 pixels was optimal for discriminating all 

motile and immotile cells from debris. 

 

 

Figure 1. Definitions of cell velocities and motion parameters. Adapted from 

Hamilton Thorne Research, Beverly, MA, USA  

The question posed now is how or if these parameters, analyzed by computer, are 

related or able to predict fertility. Many studies have been done to analyze seminal 
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parameters and their relationship to fertility; however, results differ greatly. As early as 

the 1940‟s laboratory tests of semen quality were related to fertility (Swanson and 

Herman, 1944; Branton et al., 1951; Buckner et al., 1954; and Bratton et al., 1956). These 

four studies defined fertility as the presence of a calf, palpation for the presence of a 

fetus, or failure of a cow to return to heat within 90 d after insemination (Swanson and 

Herman, 1944); percent 60- to 90- d non return rate to first service (Branton et al., 1951; 

Buckner et al., 1954); and the percent of first service cows not returning for 

reinsemination within 60 to 90 d after the mo in which they were inseminated with semen 

extended 1:300 in 3.6% citrate-sulfanilamide-yolk (Bratton et al., 1956). Concentration of 

spermatozoa in the ejaculate, the percent of motile sperm, and sperm velocity were found 

to be significantly correlated with fertility (Bratton et al., 1956; Budworth et al., 1987). 

Budworth et al., (1987) calculated the competitive fertility index which is a ranking based 

on relative fertility and is not a direct estimate of fertility. Beat cross frequency and ALH 

were found to be not significantly correlated with fertility, as defined as the percentage of 

cows and heifers that apparently were pregnant 75 d after the insemination for 

experiment 1 and by calculating the competitive fertility index for experiment 2 

(Budworth et al., 1988). In 1985 a study was published by Makarechian and Farid who 

concluded that none of the semen characteristics they analyzed were able to predict 

fertility. There is a large range of correlations in literature for sperm motility and fertility, 

as low as 0.15 to as high as 0.83 (Kjaestad et al., 1993; Bailey et al., 1994; Stålhammar et 

al., 1994; Januskauskas et al., 2003). Evaluations of track motility, though repeatable and 

precise, have been found to be only slightly more reliable in predicting fertility of bull 

sperm than visual estimation (O‟Connor et al., 1981; Saacke et al., 1980).  
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The average percentage of abnormal spermatozoa has not been found to be 

linearly correlated with fertility (Bratton et al., 1956). However, Saacke (2004) found that 

sperm with classically abnormal heads or tails are unable to move along the female 

reproductive tract, and thus are unable to participate in fertilization. Saacke (2004) also 

suggested that the presence of abnormal sperm in semen may reduce reproductive 

efficiency due to insufficient numbers of sperm that are able to reach the site of 

fertilization, the cells inability to fertilize the oocyte, or the inability to sustain the 

embryo post-fertilization. Kastelic and Thundathil (2008) also found that fertility is 

decreased with > 30% morphologically abnormal sperm or > 20% head defects. Hoflack 

et al. (2007) found the percentage of abnormal tails and distal droplets to be negatively 

correlated with the percentage of motile, progressively motile, and rapid spermatozoa, 

and positively correlated with the percentage of static spermatozoa. 

Mukasa-Mugerwa (1974) conducted his PhD dissertation on the genetics of 

bovine spermatozoan morphology and reported heritabilities for semen traits in bovine 

and mice in his literature review from seven different papers. Bovine heritabilities are as 

follows; semen volume had the greatest range of 0.10 to 0.62, concentration was 0.10 to 

0.40, viability was 0.10 to 0.36, motility was 0.13 to 0.23, percent normal was 0.24, 

percent live was 0.06, percent primary abnormalities were 0.13 to 0.30, and percent 

secondary abnormalities were 0.05 to 0.23. In mice the author reported heritabilities for 

head length, midpiece length and head shape of 0.72 ± 0.18, 0.97 ± 0.36, and 0.90 

respectively. The author calculated repeatability estimates for fourteen semen parameters: 
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 Volume, 

 Concentration, 

 Percent motility, 

 Percent normal spermatozoa, 

 Percent abnormal spermatozoa, 

 Percent head abnormalities, 

 Percent midpiece abnormalities, 

 Percent abaxial attached midpieces, 

 Percent detached heads, 

 Percent tail abnormalities, 

 Percent proximal droplets, 

 Percent distal droplets, 

 Percent primary abnormalities, and  

 Percent secondary abnormalities.  

The range of repeatabilities was from 0 to 94.8% with the average of 

repeatabilities around 62.5%. 

Another possible effect on sperm production would be age of bull greater than 

one year. Coulter and Kozub (1989) found a decrease in abnormal sperm traits, incidence 

of secondary sperm defects and percentage of sperm with an abnormal acrosome, as 

bull‟s age from 1 year to 2 years but the percentage of progressively motile sperm 

declined as bulls reached 3 years of age. The authors also found that as bull age increased 

so did ejaculate volume and sperm concentration. The increase in ejaculate volume and 
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sperm concentration could be due to the decreased seminal quality, which is best 

estimated objectively using a calibrated machine.  

Estimated Conception Rates 

 Estimated Relative Conception Rate (ERCR) was implemented by the Animal 

Improvement Programs Laboratory (AIPL) in May of 2006 when AIPL assumed the 

responsibility of the US evaluation of service sire fertility in dairy cattle. ERCR was 

developed by Dairy Records Management Systems and North Carolina State University 

(Raleigh, NC), and evaluations were computed and published by Dairy Records 

Management Systems. Clay and McDaniel (2001) defined ERCR as an estimate of the 

difference of a bull, used for AI mating, from the average bull, used for AI mating, of 

herdmates for the 70d rate of nonreturn. The model the authors utilized for computing 

ERCR is as follows: NR70 = HYM+ECM+P+DOI+ERCR+Animal+PE+e. Where: NR70 

= 70-day nonreturn status of cow(1=no return, 0=return), HYM = herd-year-month of 

breeding, ECM = average of daily, early-lactation, energy-corrected milk, P = parity, 

DOI = days open at first mating, ERCR = for rate of return in 70 d, expressed as the 

difference of one AI mating bull from the average AI mating bull of herdmates 

(uncorrelated random effect), Animal = random effect of animal including additive 

relationships, PE = permanent cow effect (uncorrelated random effect), and e = residual. 

Kuhn and Hutchison (2008) noted that the 70 d non-return rate used in calculating ERCR 

is for first service only and does not include subsequent matings.  

Clay and McDaniel (2001) concluded that bull fertility was predictable and 

repeatable (r
2
 = 0.54) based on ERCR as long as the number of matings was adequate. 
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The authors defined adequate as ≥ 300 matings, when the number of matings decreased 

below 300 the authors found the beta solutions for their equation were not significant. 

Sire conception rate (SCR), which is the current measurement of fertility, is 

defined similarly to ERCR but instead of using the 70 d nonreturn rate, actual cow 

conception rate is used, validated by pregnancy check or a resulting calving date (USDA, 

2010). The change was made after AIPL took over the fertility evaluation (Norman et al., 

2008). There are far stricter requirements to being included in an SCR analysis but more 

breeds are currently analyzed than were in the initial ERCR analysis. Table 3 highlights 

these requirements and compares ERCR to SCR. 

Table 3. Comparison of ERCR and SCR
1,a 

Category ERCR SCR 

Trait evaluated First service 70 d 

nonreturn rate 

Conception Rate 

Breeds evaluated Holstein, Jersey Ayrshire, Brown Swiss, 

Guernsey, Holstein, Jersey, 

Milking Shorthorn 

Lactation numbers 

included 

1-6, with >6 = 6 1-5 

Service numbers 

included 

1 1-7 

Bulls included AI, < 12 yr old AI, not active AI, < 13 yr old 

Minimum number of 

matings 

≥ 300 first services ≥ 300 services in the last 4 yr and 

≥ 100 in the last yr for 

Holsteins; somewhat fewer 

services for other breeds 

Minimum number of 

herds 

None 10 for Holsteins and Jerseys, 

somewhat fewer for other 

breeds 

Fertility expression Deviation from mean 

(nearest 1%) 

Deviation from mean (nearest 

0.1%) 

Base assigned Mean value forced to 

0 

Mean value forced to 0 

1
ERCR = estimated relative conception rate, SCR = sire conception rate 

a
Adapted from Norman et al., 2008 

 Kuhn et al. (2008) assessed the use of a combination of nuisance variables to 

adequately and accurately model conception rate (CR). The nuisance variables assessed 



26 
 

were; 1) management group, defined as herd, year, season, parity, and registry status 

(HYSPR) 2) milk yield 3) cow age 4) days in milk at breeding 5) lactation number 6) 

service number 7) an interval between breedings variable (to account for lower CR 

following short cycles) and 8) cow effects, both genetic and permanent environmental. 

The final model chosen used HYSPR, year-state-month (in combination with HYSPR 

accounts for climate effects), lactation, service number, milk yield, cow age at breeding, a 

variable to account for the effect of short intervals between breedings, and the cow effect, 

partitioned as permanent environment and breeding value. Animal Improvement 

Programs Laboratory adapted a model with all eight of the previous mentioned nuisance 

variables partitioned out, and included a service sire random (SSR) effect so as to better 

estimate true bull fertility. These eight variables were chosen to be included because of 

the previous research done to approve them for future CR analyses (Kuhn et al., 2008). 

Norman et al. (2008) listed 5 factors that are associated with the SSR variable; 1) 

inbreeding of the bull 2) inbreeding of the embryo from the mating 3) age of the bull 4) 

AI organization combined with the year of the mating and 5) effect of the bull itself. This 

is the result of research done by Kuhn and Hutchison (2008) who determined that a 

diagonal variance-covariance matrix was used for the SSR term because the heritability 

of diary bull fertility with the use of AI was assumed to be zero. The authors also 

concluded that completely removing sire effect from the prediction of the service sire 

fertility drastically reduces the accuracy of the evaluation performed. 

Fertility in the dairy industry, and any livestock industry, is essential to 

continuous production of consumables and ultimately to the livelihood of animal 

producers. If fertility could be estimated at a very early age it would save many producers 
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the cost of growing and maintaining bulls that are sub- or in-fertile. Scrotal circumference 

is very important in predicting bull fertility, as are breeding soundness exams, but to take 

it to the next step and increase our ability to predict fertility, seminal characteristics 

should be included. This would not only get rid of unsatisfactory potential breeders but 

help to distinguish between bulls that are considered „satisfactory potential breeders‟ in 

terms of average semen or „optimum‟ semen. While this is not currently something that is 

analyzed, the ability to look at the CASA parameters of a bull and fit a model to most 

effectively predict fertility would allow producers the option of marketing their bulls as a 

more satisfactory breeder than others. 
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MATERIALS AND METHODS 

Data Description 

 Cryo-preserved semen from 120 Holstein bulls was obtained from three semen 

companies, which were randomly coded 1:3; Semen Company 1(SC1), Semen Company 

2 (SC2) and Semen Company 3 (SC3); to decrease bias, through USDA-ARS, Fort 

Collins, CO.  The number of bull samples originating from each semen company is as 

follows: Semen Company 1 (SC1) - 32, Semen Company 2 (SC2) - 71, and Semen 

Company 3 (SC3) – 17. Bulls were born over a wide range of years, 1985-2003, and were 

un-evenly distributed among the years. Computer assisted semen analysis (CASA) 

(HTM-IVOS, Version 10.8, Hamilton Thorne Research, Beverly, MA, USA) was used to 

assess seminal characteristics. 

The CASA was parameterized as follows: frames acquired – 100, frame rate – 60 

Hz, minimum contrast – 70, minimum cell size (SIZE) – 8 pixels, minimum static 

contrast – 30, straightness threshold – 80%, average pathway velocity (VAP) cutoff – 25 

µm/s, straight line velocity (VSL) cutoff – 20 µm/s, cell intensity – 80, static elongation – 

11 to 80, magnification – 1.89. 25 µL of post-thaw semen was diluted into 50-100 µL of 

Tris (formulated for bull semen), and 5 µL of this diluted semen was loaded into a pre-

warmed dual chamber slide, and then loaded into the CASA for analysis. Of the 120 bulls 

utilized, 20 had been previously analyzed for other studies. The CASA data of these 20 

bulls were used instead of running another CASA to preserve the limited availability of 

semen straws. The settings on the CASA for these 20 bulls were the same as the 100 
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analyzed for this study. The number of sperm cells counted for each bull ranged from 505 

to1366 individual cells, depending on the study the CASA was performed for. 

The CASA provided two files with results for each of the bulls, one was a 

summary file (DBS) in which each of the bulls had overall means for each of the 

parameters and the second (DBT) was a file that had every live cell tracked and the 

parameters for each cell. The seminal parameters were similar across the two files and 

consist of VAP, VSL, curvilinear velocity (VCL), amplitude of lateral head displacement 

(ALH), beat cross frequency (BCF), straightness (STR), linearity (LIN), elongation, 

SIZE, size in pixels, and intensity. The DBS file stores other variables such as total 

concentration, percent alive, percent motile and percent progressively motile as well.   

For this study the primary CASA outcomes of interest were percent motility, 

percent progressive, VAP, VSL, VCL, ALH, BCF, STR, LIN and SIZE. 

Sperm SIZE was limited to a range of 5.36 to 28.7µm based upon previous 

literature estimates (Budworth et. al, 1988; Farrell et. al, 1998; Hoflack et.al, 2007); this 

range included 3 standard deviations from the mean of this study. The average pedigree 

relationship between bulls in this study was 12.16%, compared to active AI Holstein 

bulls of 11.5% (Weigel and Lin, 2002). The average relationship between bulls by semen 

company (1:3) are 12.41%, 12.1% and 13.47%, respectively. The average pedigree 

inbreeding of the bulls in this study was 5.62% with a minimum of 1.94% and a 

maximum of 15.37%. The average SCR for the bulls in this study was -1.09 ± 2.58 with 

the average SCR for active AI sires being 0.799 ± 1.67; only 46.71% of active AI sires 

have a SCR value. 
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Statistical Analysis 

 Data were initially analyzed using a statistical software program (SAS Version 

9.2 for Windows, SAS Institute, Cary, NC, USA). A single trait mixed model was fit to 

analyze each of the seminal parameters; average pathway velocity (VAP), amplitude of 

lateral head displacement (ALH), and beat cross frequency (BCF); and their transformed 

variables as needed, the log base 10 of VAP (lVAP) and the square root of ALH (ALH1) 

(these two transformations were chosen based on preliminary distributional analyses). 

For each model the fixed effects were the semen company, SIZE, with the random effect 

being animal nested within semen company. SIZE was fit two ways depending on the 

data.  If the dependent variable was non-normal and untransformed, the cubic effect of 

SIZE was fit. If the dependent variable was normal or transformed for normality then the 

inverse effect of SIZE was fit. This was chosen based on initial data exploration, looking 

at graphs of SIZE vs. each dependent variable.  

While some data exploration was conducted on VCL and VSL, VAP was chosen 

out of the three velocity parameters for statistical analysis because it was the average path 

the sperm cell took and the three velocity parameters were all highly correlated (P ≤ 

0.001) as shown in Table 4. Secondly, VAP was chosen over VSL because VSL is used 

mainly by the CASA program to differentiate between “slow motile” and “static” cells. 

Table 4. Pearson correlation coefficients of velocity parameters
1
. 

Phenotype
1
 VSL VCL 

VAP (µm/s)
 

0.871 0.845 

VSL (µm/s)  0.659 
1
Velocity parameters: VAP = average pathway velocity, VSL = 

straight line velocity, VCL = curvilinear velocity 

 SIZE and elongation were analyzed as predictors to see if they truly had an effect 

on the sperm‟s ability to be motile and progressive. Because data were pulled from a 
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previous analysis, the effect of study was included in the model and tested as a significant 

effect, but was not included in the final model. The difference between semen companies 

was analyzed for each seminal parameter using the „lsmeans/pdiff‟ option in the mixed 

procedure of SAS (SAS Version 9.2 for Windows, SAS Institute, Cary, NC, USA). The 

model used to estimate the seminal parameters was:  

Y = SC + SIZE + Animal(SC) + e 

where: 

                               Y = CASA variable (VAP, lVAP, ALH, ALH1, BCF) 

                             SC = Company semen was obtained from 

                          SIZE = the effect of cell SIZE (cubic or inverse) 

              Animal(SC) = random effect of animal nested within semen company 

                                e = residual. 

 

 After analyzing the individual cell data for the CASA variables, the “Mixed” 

procedure of SAS (SAS Version 9.2 for Windows, SAS Institute, Cary, NC, USA) was 

used to estimate the effect of CASA variables on sire conception rate. Due to the nature 

of only one SCR value per bull, the data for the CASA variables were averaged to allow 

for convergence. The model used to estimate fertility was:  

SCR = SC + SIZE + CASA + Animal(SC) + e 

where: 

                          SCR = Sire Conception Rate 

                             SC = Company semen was obtained from 

                          SIZE = the effect of cell SIZE 

                       CASA = CASA variable (lVAP, ALH1, BCF) 

              Animal(SC) = random effect of animal nested within semen company 

                                e = residual. 

 

 The ultimate goal of the preliminary analysis was to determine the appropriate 

fixed effects for inclusion in the model estimating heritability.  The next step was then to 

estimate those heritabilities. 
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 A single trait analysis was then performed looking at each of five seminal 

parameters, and the fertility estimate; VAP, ALH, BCF, SIZE, percent motile and SCR. 

This analysis was performed using ASReml (Gilmour et al., 2006), ASReml uses the 

average information procedure of REML and sparse stored matrices. Each model was fit 

with an additive direct, permanent environment (not included in SCR analysis due to only 

one SCR value per bull), and residual effect which were used to calculate phenotypic, 

genetic and residual variances for each parameter. After residual variances were 

estimated heritabilities and repeatabilites of each of the parameters were estimated. 

Pedigree data obtained included animal, sire, and dam and included 18 generations. The 

confounding of animal and semen company is overcome by including this relationship 

matrix in the equations. 

 A multi trait analysis was run to estimate the genetic correlation between SCR 

and CASA values. The random animal model used to estimate genetic correlations was as 

follows:  

[
  
  
]  [

   
   

] [
  
  
]  [

   
   

] [
  
  
]  [

  
  
] 

where: 

                              y1  = Sire conception rate 

                              y2 = CASA variable (VAP, ALH, BCF, SIZE, % motile) 

                              Xi = known incidence matrix for fixed effects 

                              Zi = known incidence matrix for additive genetic effects 

                               ei = residual effects. 
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RESULTS AND DISCUSSION 

Raw Data 

 The mean, standard deviation, and range values for CASA seminal parameters are 

presented in Table 5. Percent motile and percent progressive sperm cells for this study 

were equal to or greater than other CASA utilizing cryo-preserved semen (Budworth et. 

al, 1987; Budworth et. al, 1988); but were lower than the CASA results from fresh semen 

studies by 10 to 20 % (Farrell et. al, 1998; Hoflack et. al, 2007). When looking at the 

velocity parameters; average pathway velocity (VAP), curvilinear velocity (VCL), and 

straight line velocity (VSL), the results from this study were approximately equal to 

studies that analyzed cryo-preserved semen (Budworth et. al, 1987; Budworth et. al, 

1988) and were lower than studies that analyzed fresh semen by 30 – 70 µm/s (Farrell et. 

al, 1998; Hoflack et. al, 2007). This is to be expected due to death loss of sperm cells 

during the freezing process. Budworth et. al used only nine beef bulls (1987) ten dairy 

bulls (1988) for their analyses so they had 10% of the bulls that this analysis used. 

Amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) for this 

study (8.45 and 30.99, respectively) were both greater than other cryo-preserved and 

fresh semen studies; 3.2 and 15.9 (Budworth et al., 1988), 5 and 15 (Farrell et al., 1998), 

except one study had a greater BCF, 4.83 and 37.4 (Hoflack et al., 2007). Straightness 

(STR, VSL/VAP) for this study was lower than estimates previously determined (Farrell 

et al., 1998, Hoflack et al., 2007); however, the cited studies utilized fresh semen instead 

of cryo-preserved semen.
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Table 5. Number of  (N), mean, SD, coefficient of variation and range for all CASA 

outcomes. 

Phenotype
1
 N Mean ± SD CV

2
 Range 

Motility (%) 70586 60.93 ± 10.09 16.72 (29 – 82) 

Progressive (%) 70586 32.46 ± 10.06 31.00 (10 – 55) 

VAP (µm/s)
 

70586 111.37 ± 40.97 36.78 (25 – 425.1) 

VSL (µm/s) 70586 90.69 ± 40.60 44.77 (20 – 421.8) 

VCL (µm/s) 70586 193.93 ± 71.50 36.87 (25.3 – 590) 

ALH (µm) 70586 8.45 ± 3.5 41.45 (0.2 – 26.5) 

BCF (Hz) 57450 30.99 ± 9.27 29.90 (4.8 – 59.4) 

STR (VSL/VAP) 70586 80.74 ± 17.11 21.19 (10 – 100) 

LIN (VSL/VCL) 70586 48.24 ± 16.15 33.47 (6 – 100) 

SIZE (µm
2
) 70586 8.38 ± 2.88 34.34 (5.4 – 28.7) 

1
VAP = average pathway velocity, VSL = straight line velocity, VCL = curvilinear 

velocity, ALH = amplitude of lateral head displacement, BCF = beat cross frequency, 

STR = straightness, LIN = linearity 
2
CV = coefficient of variation 

Fresh semen should have sperm with less damage which would account for 

greater straightness. Mukhopadhyay et al. (2011) found that sperm DNA fragmentation 

significantly (P ≤ 0.01) increased due to cryopreservation and thawing of sperm cells as 

compared to fresh semen. 

Linearity (LIN, VSL/VCL) in this study was 48.24% which was comparable to 

the average of results found in previous studies (39.34%; Farrell et al., 1998, Budworth et 

al., 1988). Computer assisted semen analysis using fresh semen calculated LIN at 82-

88% (Farrell et al., 1998) versus CASA using cryo-preserved semen found results for 

LIN at 6% (Budworth et al., 1988), this difference could be attributed to damage from 

freezing. A reason STR and LIN would be different from literature estimates would be 

because these are functions of the velocity parameters and if great differences exist in the 

velocities of semen analyzed, it would most likely be seen in these ratios. These ratio 

traits were no included in the final models due to the problem of increased selection 

pressure on ratio traits. Gunsett (1984) found that selecting directly for the ratio trait 

changed the selection pressure of the components of that ratio in a nonlinear fashion. 
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SIZE for this study was within literature estimates (Budworth et al., 1988; Farrell et al., 

1998; Hoflack et.al., 2007). 

Untransformed Data 

 The untransformed data set was utilized for prediction models. In the initial data 

exploration, graphs revealed a trend for SCR to decrease slightly as velocities (VAP, 

VSL and VCL) increased (Figures 2, 3 and 4). This trend was also seen when looking at 

the relationship between SCR and ALH or BCF (Figures 5 and 6). When SIZE was 

plotted against the velocity parameters SIZE had a cubic relationship on all three 

velocities (Figure 7). The biggest difference was seen in VCL, it appears that the size of 

the cell could have an effect on the cells ability to swim in a straight line, with an ideal 

SIZE between 7 and 8 µm as evidenced by the lowest curvilinear velocity in Figure 7. 

This cubic relationship was also seen when looking at SIZE and ALH or BCF (Figures 8 

and 9). Looking at the data graphed without being transformed provided insight into 

using the cubic effect of size (SIZE3) as an additive effect in SAS models. 

 
Figure 2. Linear regression of sire conception rate (SCR) on 

average pathway velocity (VAP). 
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Figure 3. Linear regression of sire conception rate (SCR) on average straightline 

velocity (VSL). 

 

 

 
Figure 4. Linear regression of sire conception rate (SCR) on average curvilinear 

velocity (VCL). 
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Figure 5. Linear regression of sire conception rate (SCR) on average amplitude of 

lateral head displacement (ALH). 

 

 

 
Figure 6. Linear regression of sire conception rate (SCR) on average beat cross 

frequency (BCF). 
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Figure 7. Relationship between average cell size and average pathway 

velocity (VAP), average straightline velocity (VSL), and average 

curvilinear velocity (VCL). 

 

 

 
Figure 8. Relationship between average cell size and average amplitude of lateral 

head displacement (ALH). 
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Figure 9. Relationship between average cell size and average beat cross frequency 

(BCF). 

 Initial model testing in SAS (SAS Version 9.2 for Windows, SAS Institute, Cary, 

NC, USA) revealed that cell elongation had a significant effect (P < 0.01) on sperm 

parameters, when fit as an additive effect to SIZE, but alone elongation was not 

significant. For this reason, elongation was left out of the model and SIZE was chosen as 

a fixed effect for mixed model analysis. Elongation and SIZE were, however, only lowly 

correlated (r = 0.061, P < 0.001). As stated previously, due to the evidence of cubic effect 

on velocity parameters, SIZE3 was included in the model as a fixed effect. Because data 

were utilized from semen samples from previous studies, study source was tested as a 

fixed effect in the mixed models. Mean SIZE for each bull was also tested to see if there 

were differences in distributions using the Student Newman-Keuls (SNK) and Ryan-

Einot-Gabriel-Welsch Q (REGWQ) means options in the glm procedure of SAS (SAS 

Version 9.2 for Windows, SAS Institute, Cary, NC, USA). While 119 of the bulls‟ means 
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overlapped in succession, one bull was found to have an average SIZE that was 

significantly different (P < 0.01) from the other 119 bulls using both tests.  

When semen company was fit in the models it was found to be significant (P ≤ 

0.05). For this reason this study also looked at the differences of least squares means [H0: 

LSMean(SCa)=LSMean(SCb)] between the semen companies for each untransformed 

seminal parameter, this data is presented in Table 6.  It is interesting to note that only one 

pair of companies was found to be significantly different (P ≤ 0.001) across all the 

seminal parameters, SC1 and SC2. Significant differences between the other semen 

companies were detected for SC1 and SC3 for the parameters ALH (P ≤ 0.05) and BCF 

(P ≤ 0.001); when looking at SC2 and SC3 significant differences were detected between 

VAP (P ≤ 0.001) and ALH (P ≤ 0.001). For this reason semen company was included in 

the genetic model to reduce error variation. 

Table 6. Differences of least squares means, standard errors and P-values
1
 between 

semen companies
2
 for each untransformed seminal parameter and SCR.

3 

Semen 

Companies 

VAP ALH BCF SCR 

SC1 SC2 -24.66 ± 2.85 

<0.001 

-1.19 ± 0.232 

<0.001 

-6.142 ± 0.845 

<0.001 

2.1863 ± 0.447 

<0.001 

SC1 SC3 3.656 ± 4.02 

0.365 

0.842 ± 0.327 

0.011 

-5.623 ± 1.19 

<0.001 

0.06 ± 0.62 

0.923 

SC2 SC3 28.32 ± 3.61 

<0.001 

2.031 ± 0.294 

<0.001 

0.519 ± 1.07 

0.628 

-2.126 ± 0.591 

<0.001 
1
Estimate is followed by its standard error, p-values are listed below estimates. 

2
Semen companies: SC1 = Semen Company 1, SC2 = Semen Company 2, SC3 = Semen 

Company 3. 
3
Seminal parameters: VAP = average pathway velocity, ALH = amplitude of lateral head 

displacement, BCF = beat cross frequency, SCR = sire conception rate. 

 Phenotypic, genetic, and residual variances of the seminal parameters are 

presented in Table 7 with their standard errors. The heritabilities and repeatabilities of the 

seminal parameters are presented in Table 8 and ranged from 0.009 to 0.785. 

Repeatability is not calculated for percent motile and SCR due to there being only one 
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observation per animal. Percent motile sperm had the lowest residual variance compared 

to other seminal parameters. Percent motile sperm and SCR were estimated to be highly 

heritable (0.785 ± 0.302 and 0.629 ± 0.305, respectively) with the other seminal 

parameters ranging from 0.009 to 0.088. Brun et al. (2010) utilized rabbit semen for 

CASA and genetic analysis and found heritability of VAP and LIN to be low (0.14 ± 0.03 

and 0.05 ± 0.03, respectively) with percent motile sperm having the highest heritability of 

0.18 ± 0.04. While Brun et al. (2010) also found percent motile to be highly heritable 

their estimate is much lower than this study‟s estimate of heritability. This could be 

attributed to the difference in species and this study utilizing proven bulls who had 

multiple ejaculates taken over time. Brun et al. (2010) still concluded that percent motile 

sperm appeared to be a good criterion to aid in the selection of semen quality. 

Table 7. Estimates of genetic, phenotypic and residual variances of 

untransformed seminal parameters with their standard errors.
 

Seminal 

Parameters
1 

Variances 

Genetic Phenotypic Residual 

VAP 135.3 ± 59.86 1536 ± 27.60 1352 ± 7.20 

ALH 0.346 ± 0.373 11.68 ± 0.173 10.51 ± 0.056 

BCF 5.427 ± 5.659 78.81 ± 2.301 62.66 ± 0.367 

SIZE (µm
2
) 0.075 ± 0.141 8.218 ± 0.079 7.726 ± 0.041 

Motile (%) 82.76 ± 38.89 104.4 ± 15.58 21.62 ± 30.07 
1
VAP = average pathway velocity, ALH = amplitude of lateral head 

displacement, BCF = beat cross frequency. 

 

Table 8. Estimates of heritability and repeatability of untransformed 

seminal parameters with their standard errors. 

Seminal 

Parameters
1 

  

Heritability Repeatability 

VAP 0.088 ± 0.038 0.119 ± 0.015 

ALH 0.027 ± 0.032 0.101 ± 0.013 

BCF 0.064 ± 0.069 0.203 ± 0.023 

SIZE (µm
2
) 0.009 ± 0.017 0.06 ± 0.008 

Motile (%) 0.785 ± 0.302 - 

SCR 0.692 ± 0.305 - 
1
VAP = average pathway velocity, ALH = amplitude of 

lateral head displacement, BCF = beat cross frequency, 

SCR = sire conception rate. 
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 Phenotypic, genetic, and residual correlations between seminal parameters and 

SCR are presented in Table 9 with their standard errors. Genetic correlations of VAP, 

ALH and SIZE with SCR were low (0.05, 0.006, and 0.04 respectively). Phenotypic 

correlations were low for VAP (-0.071), ALH (0.0647) and BCF (0.0648) but varied 

greatly. The genetic correlation between BCF and SCR was moderate (0.1413); the 

phenotypic correlation between SIZE and SCR was also moderate (0.1216). Once again 

percent motile had the highest correlation with SCR (0.302). The standard errors for all 

the correlations were moderate to high. Budworth et al. (1988) estimated correlations 

between CASA values and two different fertility measures, 1) 75-d non-return rate and 2) 

their calculated competitive fertility index which was calculated by thawing 

cryopreserved semen at 35 C and mixing equal numbers of spermatozoa from two bulls, 

when 785 beef cows were inseminated with the mixtures and the sire of each calf was 

determined by phenotypic markers and bloodtyping. The competitive fertility index 

ranked the bulls based on relative fertility or competitive fertility. In this study percent 

motile spermatozoa and the competitive fertility index were highly correlated (0.86) and 

the 75-d non-return rate was found to be moderately correlated with percent motile sperm 

(0.34). Budworth et al. (1988) also found that BCF and ALH were not significantly (P < 

0.05) correlated with either measure of fertility. 

As another measure of dispersion, a coefficient of variation (CV) was calculated for all 

seminal traits measured and is shown in Table 5. Average pathway velocity and VCL 

were very close at 36.78% and 36.87%, respectively. Straightline velocity had the highest 

CV at 44.77% followed closely by ALH at 41.45%. Percent motile had the lowest CV at 

16.72%, the next lowest calculated was STR at 21.29%. 
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Table 9. Estimates of genetic, phenotypic and residual correlations between SCR and 

untransformed seminal parameters with their standard errors. 

 Correlations 

Seminal Parameters
1 

Genetic Phenotypic Residual 

VAP 0.054 ± 0.162 -0.071 ± 0.088 -0.112 ± 0.114 

ALH 0.006 ± 0.164 0.065 ± 0.092 0.085 ± 0.115 

BCF 0.141 ± 0.163 0.065 ± 0.106 0.032 ± 0.132 

SIZE (µm
2
) 0.041 ± 0.152 0.122 ± 0.108 0.158 ± 0.155 

Motile (%) 0.302 ± 0.293 0.032 ± 0.101 -1.398 ± 0.278 
1
Seminal parameters: VAP = average pathway velocity, ALH = amplitude of lateral head 

displacement, BCF = beat cross frequency. 

Percent progressively motile sperm (31%), BCF (29.9%), LIN (33.47%) and SIZE 

(34.34%) all had CV‟s between 29.90% and 34.34% as shown in Table 5. The great 

variation in CV illustrates the differences between the physiological processes of the 

bulls utilized in this study. 

Transformed Data 

 Data that did not show a normal distribution in preliminary analysis were 

transformed to meet normality requirements. Average path velocity was transformed 

using log base 10 (lVAP), ALH was transformed using the square root of the data 

(ALH1), and SIZE was transformed using the inverse of the cell SIZE data (iSIZE). 

These were chosen by using the univariate procedure in SAS (SAS Version 9.2 for 

Windows, SAS Institute, Cary, NC, USA) and using the tests for normality. In addition, 

looking at the normal probability plot gave a good visual representation of normality. 

Initial model testing in SAS (SAS Version 9.2 for Windows, SAS Institute, Cary, NC, 

USA) revealed iSIZE to have a significant effect (P < 0.01) on seminal parameters when 

fit as a fixed effect in the mixed model analysis. 

 The transformed data was also analyzed for differences of least squares means [H-

0: LSMean(SCa)=LSMean(SCb)] between the semen companies (Table 10). Significant 

differences (P < 0.001) were observed between SC1 and SC2, and between SC2 and SC3 
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for both lVAP and ALH1. Only small differences between SC1 and SC3 in lVAP were 

found, but it was not significant (P = 0.23) and when looking at ALH1 the difference was 

significant at P < 0.01. 

Phenotypic, genetic and residual variances of the transformed seminal parameters 

are presented in Table 11 with their standard errors. Estimates of heritability and 

repeatability are presented in Table 12. The heritabilities were low, which is to be 

expected with the data transformed as it was. The standard errors for heritabilities and 

variances are as large as or larger than the estimates. 

Table 10. Differences of least squares means, standard errors and P-

values
1
 between semen companies

2
 for each transformed seminal 

parameter.
3 

Semen Companies lVAP ALH1 

SC1 SC2 -0.096 ± 0.012 

≤ 0.001  

-0.200 ± 0.041 

≤ 0.001  

SC1 SC3 0.019 ± 0.016 

0.237  

0.157 ± 0.057 

≤ 0.01  

SC2 SC3 0.115 ± 0.015 

≤ 0.001  

0.357 ± 0.051 

≤ 0.001  
1
Estimate is followed by its standard error, p-values are listed below estimates. 

2
Semen companies: SC1 = Semen Company 1, SC2 = Semen Company 2, SC3 = Semen 

Company 3. 
3
Seminal parameters = lVAP = log10(average pathway velocity), ALH1 = 

√amplitude of lateral head displacement. 

 

Table 11. Estimates of genetic, phenotypic and residual variances of 

transformed seminal parameters with their standard errors.
 

Seminal 

Parameters
1 

Variances 

Genetic Phenotypic Residual 

lVAP 0.002 ± 0.001 0.031 ± 0.0005 0.028 ± 0.0001 

ALH1 0.009 ± 0.012 0.394 ± 0.005 0.358 ± 0.002 

iSIZE (µm
2
) 

0.00002 ± 

0.00003
 

0.0009 ± 

0.00001 

0.0007 ± 

0.000004 
1
Seminal parameters = lVAP = log10(average pathway velocity), ALH1 = 

√amplitude of lateral head displacement, iSIZE = 1/SIZE.
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Table 12. Estimates of heritability and repeatability of transformed 

seminal parameters with their standard errors. 

Seminal 

Parameters
1 

  

Heritability Repeatability 

lVAP 0.074 ± 0.033 0.10 ± 0.013 

ALH1 0.023 ± 0.029 0.093 ± 0.012 

iSIZE (µm
2
) 0.025 ± 0.031 0.105 ± 0.013 

1
Seminal parameters = lVAP = log10(average pathway 

velocity), ALH1 = √amplitude of lateral head 

displacement, iSIZE = 1/SIZE. 

Phenotypic, genetic and residual correlations between transformed seminal 

parameters and SCR are presented in Table 13 with their standard errors. Correlations 

were very similar in nature to the untransformed data. All correlations were low for lVAP 

and AHL1.  

Table 13. Estimates of genetic, phenotypic and residual correlations between 

SCR and transformed seminal parameters with their standard errors.
1
 

 lVAP ALH1 

Genetic correlation 0.0524 ± 0.1628 0.0203 ± 0.1679 

Phenotypic correlation -0.0326 ± 0.0912 0.0529 ± 0.0940 

Residual correlation -0.0576 ± 0.1156 0.0646 ± 0.1157 
1
Seminal parameters = lVAP = log10(average pathway velocity), ALH1 = 

√amplitude of lateral head displacement. 
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CONCLUSIONS AND IMPLICATIONS 

 While considerable variance was evident between the different semen parameters 

evaluated, much of this could be attributed to either the physiological process of sperm 

production or other environmental factors resulting in low heritability. Foote (1970) 

stated that much of the variation in fertility is not due to genetics.  The low heritability of 

the seminal parameters makes these traits poor candidates for genetic evaluation. While 

overall variance was high, the CV‟s calculated were lower than expected on the current 

data set. Semen production is a physiological process with many steps which leaves many 

places for things to go wrong but it is important to the industry so limiting errors, if 

possible, in each of these steps better allow for CASA use in the future.

Significant differences in the least squares means between the semen companies 

utilized in this study suggest that seminal quality, as measured by CASA parameters, and 

fertility, as measured by SCR, are different between the companies. This could be 

attributed to different bull selection methods, different budgets or even different seminal 

collection methods. The methods semen companies use to dilute semen, extend semen 

and the procedures for freezing semen are proprietary and would be difficult to find out 

to truly attribute differences between the semen companies. Each semen company may 

have different production goals for the bulls they select such as, milking in dairy bulls, 

carcass production for progeny headed to the feedlot, and days to puberty for replacement 

heifers in a cow-calf unit. However, the bulls utilized in this study were all dairy bulls so 

if differences exist in production goals they would be the difference between breeding for 
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a replacement heifer (sexed versus non-sexed semen), increased milking ability, 

increased calving rate, or increased stayability. This study also found that average 

relationship within semen company was approximately equal to or slightly greater than 

the average of all the bulls. This could show a bias for semen companies to select for 

bulls along specific genetic lines. 

 While basic CASA values exhibit low heritability in this study, the percent motile 

sperm was found to be highly heritable. This supports the use of a sperm motility 

parameter in breeding soundness exams, and as a criterion for genetic selection. SIZE had 

a cubic effect on VAP, VCL, VSL, ALH and BCF, and this could lead to genetic 

selection for an „optimal‟ cell size; however, the heritability for these outcomes were low. 

It is important to note that this study utilized an 18 generation pedigree to analyze the 

genetic component behind CASA values and SCR. 

 Since the genetic correlations between CASA values and SCR are so low we were 

unable to use this study‟s CASA values for genetic prediction of fertility. We also found 

a basic genetic component to the CASA values, but the residual effects had a significant 

influence, making it difficult to estimate future performance of these bulls‟ fertility. The 

highest genetic correlation was between BCF and SCR (0.1413). Financially, it would 

cost approximately $5 per bull to run CASA on every bull. In research the use of CASA 

is ideal to possibly predict fertility or to utilize as a tool for assessing semen quality. But 

currently there are cheaper and more accurate methods of predicting fertility for the 

industry to use in the selection of future sires, such as scrotal circumference EPDs and 

BSEs. If more research was done into figuring out how to decrease the variance of the 
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physiological process of sperm creation, or conversely properly account for that variance 

in a genetic model, the ability to predict fertility would be greater. 

 Computer assisted semen analysis is a powerful tool utilized in the animal 

research field, but since CASA traits exhibit low heritability, using CASA to select for 

future fertility is of limited worth without further investigation of the genetics behind this 

physiological process. The current BSEs exhibit more heritability than CASA parameters 

and work effectively for selecting sound breeders. In this study CASA unfortunately is 

not a good supplementation to BSEs, for sire selection. Currently the industry selects 

based on genetics, e.g. milk production, and a sire may have great genetics to choose 

from but could lack the ability to create viable sperm, or even have decreased fertility. 

This is where CASA has the ability to aid genetic selection; it could also be utilized as a 

marketing tool to promote a great motility or good cell conformation in bulls. 
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APPENDIX A 

CODE USED IN ANALYSIS

SAS Code 

proc import 

datafile='C:\Users\Mandy\Documents\SAS_Data\DBSwithSCR

.csv' out=holsteindat3 dbms=csv replace; 

 getnames=yes; 

run; 

proc univariate data=holsteindat3 plot normal alpha=0.05; 

 var MOTILE_PCT PROGRESSIVE_PCT; 

run; 

proc import 

datafile='C:\Users\Mandy\Documents\SAS_Data\DBT_full_S

CR_full.csv' out=holsteindat dbms=csv replace; 

 getnames=yes; 

run; 

data holsteindat2; 

 set holsteindat; 

  lVAP=log10(VAP); 

  lVCL=log10(VCL); 

  ALH1=SQRT(ALH); 

  iSIZE=1/SIZE; 

  SIZE2=SIZE*SIZE; 

  SIZE3=SIZE*SIZE*SIZE; 

run; 

proc corr; 

 var VAP VSL VCL; 

run; 

proc univariate data=holsteindat2 plot normal alpha=0.05; 

var VAP VSL VCL ALH BCF STR LIN SIZE lVAP ALH1 iSIZE      

SCR; 

run; 

proc glm data=holsteindat2 alpha=0.05; 

 class Semen_comp ID; 

 model SIZE = Semen_comp ID /solution; 

 means ID / REGWQ SNK; 

run; 

proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 
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 model VAP = Semen_comp SIZE3/solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 

proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 

 model VSL = Semen_comp SIZE3/solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 

proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 

 model VCL = Semen_comp SIZE3/solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 

proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 

 model ALH = Semen_comp SIZE3/solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 

proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 

 model BCF = Semen_comp SIZE3/solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 

proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 

 model SIZE = Semen_comp /solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 

proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 

 model lVAP = Semen_comp SIZE3/solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 
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proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 

 model ALH1 = Semen_comp SIZE3/solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 

proc mixed data=holsteindat2 covtest; 

 class Semen_comp ID; 

 model iSIZE = Semen_comp /solution; 

 random intercept / subject=ID(Semen_comp) type=un 

solution; 

 lsmeans Semen_comp /pdiff cl; 

run; 

Animal Breeders Toolkit Code 

##DBT_full_remove.csv header 

##FIELD#,TRACK#,DATE,TIME,TRACK_TYPE,POINTS,VAP,LVAP,VSL,VC

L,ALH,SQALH,BCF,STR,LIN,ELONGATION,SIZE,ISIZE,SIZE_PIXELS,I

NTENSITY,NAME,ID,Regnum,SCR,ISCR,Semen_comp,SSCR 

 

awk 'BEGIN{FS=","}; NR>1 {print 

$7,$11,$13,$17,$22,$23,$24,$26}' DBT_full_remove.csv > 

DBT_un.dat 

 

########################################################### 

##DBT_un.dat header 

##VAP ALH BCF SIZE ID Regnum SCR Semen_comp 

 

par_ped_stk.txt is stacked 

 

#All unknown parents need to be recoded to . 

awk '{for(i=1;i<=NF;i++) if($i=="0") {$i="."}} {print 

$1,$2,$3}' ped.recode > ped.rc 

 

ainv -i ped.rc -o inbred.lst 

 

awk '{print $2}' inbred.lst | sst 

 

########################################################### 

##Header:Regnum,TOTAL_COUNT,TOTAL_CONC,MOTILE_PCT,PROGRESSI

VE_PCT,Semen_comp,SCR 

 

awk 'BEGIN{FS=","}; NR>1 {print $1,$9,$10,$11,$12,$14,$15}' 

DBSRegnumSC.csv > DBSmot.dat 
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########################################################### 

##Header: 

Track_Type,VAP,lVAP,ALH,SQALH,BCF,SIZE,iSIZE,SIZE3,Regnum,S

emen_comp,SCR 

 

awk 'BEGIN{FS=","}; NR>1 {print 

$1,$2,$3,$6,$7,$8,$12,$13,$14,$17,$18,$19}' 

DBT_trans_SCR_single.csv > DBTtrans.dat 

 

########################################################### 

##DBT_file.csv Header: 

##FIELD#,TRACK#,cellnum,DATE,TIME,TRACK_TYPE,POINTS,VAP,VSL

,VCL,ALH,BCF,STR,LIN,ELONGATION,SIZE,SIZEadj,SIZE2,SIZE_PIX

ELS,INTENSITY,NAME,ID,Regnum,Semen_comp,Birthdate 

 

awk 'BEGIN{FS=","}; NR>1 {print 

$3,$7,$8,$11,$12,$15,$17,$18,$21,$22,$23,$24}' DBT_file.csv 

> DBT 

 

##DBT Header: 

##cellnum,POINTS,VAP,ALH,BCF,ELONGATION,SIZEadj,SIZE2,NAME,

ID, 

   Regnum,Semen_comp 

 

awk '{print $10}' DBT | sort | uniq -c | awk '{print 

$1,$2}' > Id.cnt 

##Id.cnt format 

###cells,Registration number 

 

sort -k1,1 par_ped_stk.txt > par_ped.stk 

 

join -a2 -j1 1 -j2 2 -e"0" -o 2.2 1.2 1.3 par_ped.stk 

Id.cnt > regsd 

 

## have a sire and dam for each of the 120 sires 

 

########################################################### 

## how many unique SCR values? 

awk 'BEGIN{FS=","}; NR>1 {print $13}' DBT_remove_cells.csv 

| sort -u | wc 

 

ASReml Code 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 
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   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

VAP ~ mu SIZE3 Semen_comp !r Regnum ide(Regnum) 

 

0 0 1 

Regnum 2 

1 0 US 2 

Regnum 0 AINV 

 

Holstein Data Pepper Thesis 2009 

   VAP 

   ALH 

   BCF 

   SIZE 

   ID 

   Regnum 120 !P !LL 17 

   SCR 

   Semen_comp 4 !A 

   SSCR 

    

stack_cor.ped !ALPHA !MAKE 

DBT_un.dat !MVINCLUDE !MAXIT 400 

 

ALH ~ mu Semen_comp !r Regnum ide(Regnum) 

 

0 0 1 

Regnum 2 

1 0 US 100 

Regnum 0 AINV 

 

Holstein Data Pepper Thesis 2009 

   VAP 

   ALH 

   BCF 

   SIZE 

   ID 
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   Regnum 120 !P !LL 17 

   SCR 

   Semen_comp 4 !A 

   SSCR 

    

stack_cor.ped !ALPHA !MAKE 

DBT_un.dat !MVINCLUDE !MAXIT 400 

 

BCF ~ mu Semen_comp !r Regnum ide(Regnum) 

 

0 0 1 

Regnum 2 

1 0 US 100 

Regnum 0 AINV 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

SIZE ~ mu Semen_comp !r Regnum ide(Regnum) 

 

0 0 1 

Regnum 2 

1 0 US 2 

Regnum 0 AINV 

 

DBS Holstein SCR 2010 

   Regnum 120 !P !LL 17 

   TOTAL_COUNT 

   TOTAL_CONC 

   MOTILE_PCT 

   PROGRESSIVE_PCT 

   Semen_comp 4 !A 
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stack_cor.ped !ALPHA !MAKE 

DBSmot.dat !MVINCLUDE !MAXIT 400 !STEP 0.01 !EXTRA 10 

 

MOTILE_PCT ~ mu Semen_comp !r Regnum 

 

0 0 1 

Regnum 2 

1 0 US 2 

Regnum 0 AINV 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

lVAP ~ mu Semen_comp !r Regnum ide(Regnum) 

 

0 0 1 

Regnum 2 

1 0 US 2 

Regnum 0 AINV 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 
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stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

SQALH ~ mu Semen_comp !r Regnum ide(Regnum) 

 

0 0 1 

Regnum 2 

1 0 US 2 

Regnum 0 AINV 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

iSIZE ~ mu Semen_comp !r Regnum ide(Regnum) 

 

0 0 1 

Regnum 2 

1 0 US 2 

Regnum 0 AINV 

 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 
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   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

VAP SCR ~ Trait Trait.Semen_comp !r Trait.Regnum 

 

1 2 1 

0 

Trait 0 US 

0.88 

0.6371 1 

Trait.Regnum 

2 0 US 

0.08 

0.0022 1 

Regnum 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

ALH SCR ~ Trait Trait.Semen_comp !r Trait.Regnum 

 

1 2 1 

0 

Trait 0 US 

0.88 

0.6371 1 

Trait.Regnum 

2 0 US 

0.08 

0.0022 1 
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Regnum 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

BCF SCR ~ Trait Trait.Semen_comp !r Trait.Regnum 

 

1 2 1 

0 

Trait 0 US 

0.88 

0.6371 1 

Trait.Regnum 

2 0 US 

0.08 

0.0022 1 

Regnum 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 
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DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

SIZE SCR ~ Trait Trait.Semen_comp !r Trait.Regnum 

 

1 2 1 

0 

Trait 0 US 

0.88 

0.6371 1 

Trait.Regnum 

2 0 US 

0.08 

0.0022 1 

Regnum 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 

   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

lVAP SCR ~ Trait Trait.Semen_comp !r Trait.Regnum 

 

1 2 1 

0 

Trait 0 US 

0.88 

0.6371 1 

Trait.Regnum 

2 0 US 

0.08 

0.0022 1 

Regnum 

 

Holstein Data Pepper Thesis 2009 

   Track_Type 3 !A 
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   VAP 

   lVAP 

   ALH 

   SQALH 

   BCF 

   SIZE 

   iSIZE 

   SIZE3 

   Regnum 120 !P !LL 17 

   Semen_comp 3 !A 

   SCR 

    

stack_cor.ped !ALPHA !MAKE 

DBTtrans.dat !MVINCLUDE !MAXIT 4000 !STEP 0.01 !EXTRA 10 

 

SQALH SCR ~ Trait Trait.Semen_comp !r Trait.Regnum 

 

1 2 1 

0 

Trait 0 US 

0.88 

0.6371 1 

Trait.Regnum 

2 0 US 

0.08 

0.0022 1 

Regnum 

 

Estimating heritability, and correlations (genetic, 

phenotypic and residual) 

 

For single trait model: 

 

F Vp 1+2+3 #4 

F Vd 3*1 #5 

F Vr 2*1 #6 

F Ve 1*1 #7 

F AE 3+1        #8 

H H2d 5 4 #9 

H C2 7 4 #10 

H R 8 4         #11 

 

For multivariate model: 

 

F Vp 1:3 + 4:6  #7,8,9 

F Vd 4:6 * 1    #10,11,12 

H H2dA 10 7 
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H H2dS 12 9 

R Rg 4:6 

R Rr 1:3 

R Rp 7 8 9 


