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the amplituctel, offset or shape can be modified to the desired levels 
at the test section through the use of the pump. Thus, this device 
fulfills the design goals of providing a pressure source for small blood 
vessel experiments, but may be applied to a variety of experimental 
systems as well. 
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Correction to "Reduced Order Kalman Filtering 
for the Enhancement of Respiratory Sounds" 

S. Charleston and M. R. Azimi-Sadjadi* 

In the above paper1 a portion of Section II was omitted. The omitted 
text is the paragraph beginning "Under these assumptions ... " For 
clarity, Section II is printed here in its entirety. We apologize to 
the authors and readers for this omission. 

II. MODELS FOR THE HEART AND RESPIRATORY SIGNALS 

Signal estimation using ROKF requires a mathematical model for 
the signal to be estimated ( d~sired) as well as for the observation 
process. In this paper, the heart sounds are considered as the desired 
signals to be estimated while the respiratory sounds are assumed to 
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be additive colored noise. Three assumptions are made baserl t;tpon 
the properties of these contributing . signals for the modeling and 
cancellation purposes. 

1) The interaction between the heart and respiratory' sounds is 
additive [5], [6]. 

2) The Signals are considered to be mutually uncorrelated proc · 
cesses as they are generated from from independent sources, 
while they ar~ correlated themselves [5], [6]. . 

3) Prior and subsequent heart sounds are linearly related to the 
heart sounds corrupted by the respiratory signal. 

Under these assumptions the observation equation can be written as 

z(k) = x(k) + v(k) (I) 

where z(k) is to the acquired signal, x(k) represents the heart signal, 
and v(k) corresponds to the respiratory s-ignal. The dynainics of the 
heart signal is modeled by an Mth-order AR model dtiven by a 
white Gaussian noise process, i.e., 

M 

x(k) =- L anx(k- n) + u(k); (2) 
n=l 

where an is the model coefficient, n E [1, M], and u ( k) is a zero­
mean white Gaussian noise with variance O"~. The AR model fits the 
spectral characteristics of the heart sounP,s since its power spectral 
density (PSD) possesses distinctive peaks. This model i~ arrived at by 
using the heart information present in the manually extracted 'sections· 
of an acquired signal that are free of respiratory sounds. · 

To represent the dyna!llical model (2) in state equation, we define 
a state vector that contains the current and past values of the heart 
signal, i.e., ~(k) = [x{k- M + 1)x(k __.: M + 2) · · · x(k -1)x(k)t 
Using this stite assignment and the AR model in (2), the .following 
state equation can be obtained: 

where 

~(k) = F:£(k- 1) + Gu(k) 

1 
0 

0 
1 

(3) 

and 

The observation equation (1) can now be expressed in terms of cthe 
state vector !f. ( k) as 

(4) 

where H = [00 ·- · 1]. Note that i'u the abov'e equations,' even though 
the dtiving process u( k) 'is a white process, v ~k) is a colored procesS 
owing to its band-limited behavio~. Thus the st~dird Kalman filter 
can not be applied. T):ris calls for t]le ROKF which is reviewed briefly 
in the next section. 
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Communications -----------------------------------------

Reduced Order Kalman Filtering for the 
Enhancement of Respiratory Sounds 

S. Charleston and M. R. Azimi-Sadjadi,* 

Abstract-In the processing and analysis of respiratory sounds, heart 
sounds present the main source of interference. This paper is concerned 
with the problem of cancellation of the heart sounds using a reduced­
order Kalman filter (ROKF). To facilitate the estimation of the respiratory 
sounds, an autoregressive (AR) model is fitted to heart signal information 
present in the segments of the acquired signal which are free of respi­
ratory sounds. The state-space equations necessary for the ROKF are 
then established considering the respiratory sound as a colored additive 
process in the observation equation. This scheme does not require a time 
alignment procedure as with the adaptive filtering-based schemes. The 
scheme is applied to several synthesized signals with different signal-to­
interference ratios (SIR) and the results are presented. 

I. INTRODUCTION 

Interferences are usually present in the acquisition and processing 
of biomedical signals; the respiratory sounds are good examples of 
such cases. Respiratory or breathing sounds have always been of 
interest to physicians because of the information that they carry 
about the lung's condition [1]-[3]. One of the main problems in their 
processing and analysis, however, is the presence of interference due 
to heart sounds which occur in most of the chest and neck sites. 
Additionally, the. acquired signals contain other disturbances caused 
by muscle contraction, ambient noise, skin, and hair. Although, the 
effects of these interferences could be significantly reduced by using 
a sound proof room and a firm microphone placement, the effects 
of heart sounds cannot be removed easily. Respiratory and heart 
signals overlap not only temporally but also spectrally [1]-[3]. In 
addition, frequency contents could change or exhibit a shift due to 
several factors such as the inherent variability of biological systems, 
conditions during the signal acquisition, and cardiac disorders. High­
pass filtering has traditionally been used as an ad-hoc solution 
to this separation problem. However, variability inherent to any 
biological system as well as the variability among subjects limits 
the effectiveness of the standard filtering schemes owing to the loss 
of spectral information [3], [4]. 

The application of adaptive filtering to this problem was sug­
gested in [5] and [6] where the electrocardiogram (ECG) signal 
and a particular filtered version of the acquired signal were used 
as reference signals. In [5] a reference signal, the "augmented ECG," 
was generated by adding a delayed version of the original signal to 
the acquired ECG. However, the approach cannot follow the time 
variations between the first and second heart sounds resulting in a 
sound reduction performance between 50% and 80%. To avoid the 
acquisition of an additional signal, in [6] an elaborate scheme was 
applied to get the reference from the acquired sounds. The acquired 
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signal is first low-pass filtered, squared, and then smoothed by another 
low-pass filter. The idea was to produce a spike whenever the heart 
sounds occur in the acquired signal. The experimental results showed 
moderate heart sounds reduction between 24% and 49% [6]. 

The results in [5] and [6] pointed out the important fact that the 
temporal alignment between the reference and interference signal 
procedure plays a crucial role in the performance of the adaptive 
filtering based methods. For the cases where the signal-to-interference 
(SIR) (heart) ratio is low, an automatic alignment procedure based on 
the maximum value of the cross correlation between the heart sounds 
and the acquired signal could be used to determine the locations of the 
heart sounds prior to filtering. However, an accurate time alignment 
can not readily be achieved in those cases where the SIR is moderately 
high or when the subjects suffer combined heart and respiratory 
diseases that produce alterations in the heart sound's morphology 
and cardiac frequency. Consequently, methods that rely on a simple 
time alignment procedure do not perform satisfactorily. In addition, 
the selection of a reference signal can not be made easily due to the 
possibility of more than one heart sound inside the breathing section. 

More recently, the analysis of respiratory sounds on dogs was 
performed by monitoring the ventilation during anesthesia where 
at least two microphones were used and a strain gauge monitored 
the inspiration/expiration/rest periods [7]. The adaptive heart sounds 
cancellation was achieved using the phonocardiogram (PCG) signal 
present in the rest periods assuming that the neighboring PCG beats 
were correlated. The reference signals were formed with the PCG 
beats just before the inhalation and just after the exhalation periods. 
The location of the PCG signals was determined by the cross­
correlation method. It was observed that, even after the adaptive 
filtering, PCG interference posed some problems especially in the 
lower frequency range. 

The purpose of this paper is to investigate the potential application 
of Kalman filtering [8] to this signal separation problem using only 
the acquired sounds. A reduced-order Kalman filter (ROKF) is used 
which does not rely on the time alignment procedure required by the 
adaptive filtering-based schemes. In the state-space formulations for 
ROKF, the heart sounds are considered as the desired signal to be 
estimated and the respiratory sounds are treated as additive colored 
interference. An AR model is fitted to the heart signals manually 
segmented from the portions of an acquired signal which are free 
of respiratory sounds. A low-order model is used to represent the 
colored respiratory sounds. The state variables associated with this 
model are then augmented into the state vector. This augmentation 
leads to a noise-free observation model for which an ROKF can be 
derived [8]. The scheme is then applied to a number of synthesized 
cases with different SIR that are formed by adding acquired heart 
sounds to synthesized respiratory sounds. 

II. MODELS FOR THE HEART AND RESPIRATORY SIGNALS 

Signal estimation using ROKF requires a mathematical model for 
the signal to be estimated (desired) as well as for the observation 
process. In this paper, the heart sounds are considered as the desired 

signals to be estimated while the respiratory sounds are assumed to 
be additive colored noise. Three assumptions are made based upon 
the properties of these contributing signals for the modeling and 
cancellation purposes 
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1) The interaction between the heart and the respiratory sounds 
is additive [5], [6]. 

2) The signals are considered to be mutually uncorrelated pro­
cesses as they are generated from independent sources, while 
they are correlated themselves [5], [6]. 

3) Prior and subsequent heart sounds are linearly related to the 
heart sounds corrupted by the respiratory signal. 

Under these assumptions the observation equation can be written as 
To represent the dynamical model (2) in state equation we define 

a state vector that contains the current and past values of the heart 
signal, i.e., ;!C(k) = [x(k- M + 1)x(k- M + 2) · · · x(k -1)x(k)t 
Using this state assignment and the AR model in (2), the following 
state equation can be obtained 

where 

;!C(k) = F;!C(k- 1) + Gu(k) 

1 0 
0 1 

0 
0 

(3) 

l and 

The observation equation (1) can now be expressed in terms of the 
state vector ;!C ( k) as 

z(k) = H;!C(k) + v(k) (4) 

where H = [0 0 · · · 1]. Note that in the above equations, even though 
the driving process u(k) is a white process, v(k) is a colored process 
owing to its band-limited behavior. Thus, the standard Kalman filter 
can not be applied. This calls for the ROKF which is reviewed briefly 
in the next section. 

III. REDUCED-ORDER KALMAN FILTER (ROKF) 

A generalization of the Kalman filter theory deals with the cases 
where the noise terms u(k) and/or v(k) may not be white processes. 
In these circumstances, it is necessary to find additional models for 
these colored processes. Typically, a low-order model, e.g., a second­
order AR model, driven by a white noise process is used. This model 
is arranged into state equations and then augmented with that of the 
original process. In our case, the augmented state-space equations, 
assuming a second order AR model for v(k), become 

where 

~(k) = FI~(k- 1) + Gl'!Q(k) 

z(k) =H1~(k) 

'!Q(k) = [u(k)17(kW 

F1 = [~ ;v] 

H1=[HHv] Hv=[O 1] 

al = [~ ~v] av = [n 

(5) 

and b1 and b2 are the coefficients for the AR model associated with 
v(k) with a white driving process 17(k). Note that the measurement 
equation in (5) does not contain an. observation noise term. This 

leads to numerical problems in the implementation of the Kalman 
filter which can be resolved using ROKF [8]. The goal is to estimate 
a reduced-order state vector for which a new observation equation is 
generated. The concept of a reduced-order state v~ctor is based on the 
fact that a set of "perfect" measurements reduce the number of states 
that have to be estimated. This new reduced state vector of dimension 
( M + 1) x 1, p( k), is assumed to be a linear transformation of ;!Ca ( k) 
of the form p( k) = C;!Ca ( k). Augmenting the observation equation 
in (5) with this new vector yields 

l z( k)] _ [H 1] 
[E(k) - c ~(k). 

The only condition on C is that [Hi C1
]
1 must be invertible. Note 

that since there are multiple choices for C, this step does not have a 
unique solution. Now using ([H~ ctr}-~ .= [L1IL2] where L1 and 
Lz are matrices of dimensions (M + 2) x 1 and (M + 2) x (M + 1), 
respectively, ~(k) can be expressed as 

(6) 

To obtain the filtered estimate bz ( k I k), the estimate Ea ( k I k) 
is needed. This can be generated using the recursive predictor 
implementation of ROKF, the details of which are given in [8]. 

IV. RESULTS AND DISCUSSION 

The performance of the ROKF scheme was tested on a number of 
synthesized signals formed by summing the heart sounds extracted 
from a breathing free segment of a real acquired signal and a sim­
ulated respiratory sound at different SIR's. The simulated breathing 
signal was generated by filtering a Gaussian noise sequence covering 
the same spectral range that is present in the real signals and allowing 
spectral overlap between heart and breathing frequency contents. 
Additionally, to mimic the breathing-like shape of the signal, the 
filtered sequence was envelope modulated by a Hamming window in 
the time domain. This procedure generates the simulated breathing 
sound for just one phase of the respiratory cycle. 

The final prediction error (FPE) criterion was applied to select 
the AR model-order for the heart sounds. The optimum order was 
found to be 15. Having determined the order of the AR model, the 
coefficients and the variance O"; of the driving process were calculated 
using the Burg approach [9]. The statistical information needed to 
identify these parameters was extracted from several cardiac cycles 
in order to consider possible changes in the heart sounds morphology. 
For the synthesized respiratory sound a second-order AR model was 
chosen for which the coefficients were also computed using the Burg 
approach. 

The performance of the ROKF method was compared with another 
interference cancellation scheme using adaptive filtering based on the 
standard recursive least squares (RLS) learning algorithm [9]. A ref­
erence signal was formed from one of the heart sounds cycles used in 
the simulation. An adaptive filter of order N = 32 was implemented 
and time alignment between the reference and synthesized signal was 
carried out with the aid of the cross correlation approach, which is 
a common method for time alignment [7]. The performances of the 
methods were evaluated in terms of the squared error (SE) defined 
as the difference between the actual signal and the estimated one 

·squared. SE is a common parameter used to measure the similarity 
between two time sequences. This index was chosen over the SIR 
since the purpose was to measure possible distortion of the known 
heart and synthesized respiratory sounds generated as a consequence 
of the estimation process. In addition, it is always possible to get 
a very large SIR at the output witho,ut really enhancing the desired 
signal. The SE between the known heart signal and the estimated 
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Fig. 1. (a) Original heart sounds, (b) synthesized signal SIR= -6 dB, (c) heart sounds estimated by the ROKF approach, (d) respiratory sound estimated 
by the ROKF approach, (e) heart sounds estimated by the standard RLS approach, and (t) respiratory sound estimated by the standard RLS approach. 

one at the output of the ROKF was calculated for seven synthesized 
cases. A similar process was repeated to the spectra of these signals in 
the frequency domain in order to have a measure of distortion in the 
frequency domain. This is particularly important for the evaluation 
of the goodness of the respiratory sound estimates. 

Table I shows the SE values, which are normalized by the energies 
of the known heart sounds and synthesized breathing, for seven 
simulated cases with SIR ranging from -6 to 3 dB. Note that here 
SIR calculations are performed differently, as in our formulations of 

ROKF the heart signal is the one to be estimated and the respiratory 
signal is considered as the colored noise or interference. The table 
also shows the results of the standard RLS-based adaptive filtering 
scheme. Columns 2, 3, 5, and 6 of Table I show the SE values for 
the heart sounds estimates in the time (SETo) and frequency (SEFo) 
domains using the ROKF and standard RLS schemes, respectively. 
Columns 4 and 7, on the other hand, show the SE values for 
the respiratory sounds estimates in the frequency domain (SEFoR) 
for these two schemes. These values clearly indicate the better 
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TABLE I 
SE VALUES FOR THE HEART AND RESPIRATORY SOUNDS IN THE TIME AND FREQUENCY DOMAINS 

SIR [dB] SETD(ROKF) SEFD(ROKF) SEFDR(ROKF) SETD(RLS) SEFD(RLS) SEFDR(RLS) 

-6 0.61 0.33 0.15 1.44 0.56 
-4 0.53 0.29 0.19 1.22 0.86 0.43 
-3 

0.47 0.25 0.26 0.78 1.15 

-I 0.4 0.21 0.33 0.97 0.72 1.72 
0 0.35 0.17 0.40 0.89 0.68 2.72 
2 0.29 0.14 0.47 0.83 0.65 4.47 
3 0.25 0.11 0.54 0.80 0.63 7.63 

performance of the ROKF over the standard RLS approach. As can 
be seen from the results in columns 2 and 3, the SE values for heart 
sounds estimates using the ROKF in both domains are approximately 
one third of those of the standard RLS approach in columns 5 and 6. 
The improvement is also seen for the respiratory sound estimates as 
shown in columns 4 and 7. The increase in theSE values in columns 
4 and 7 is due to the reduction in the respiratory signal information 
as the SIR increases. 

Fig. !(a) and l(b) shows the original heart sounds used in the 
simulations and the synthesized signal, respectively, for one case in 
the table where SIR= -6 dB. Fig. l(c) and (d) presents the estimates 
for the heart sound and respiratory signal, respectively, using the 
ROKF method. Fig. l(e) and (f) shows the estimates of the heart and 
respiratory sounds, respectively, using the standard RLS method. As 
can be seen in these results and their comparison with the original 
heart signal, the quality of signal estimation and separation using the 
standard RLS-based adaptive filter is very poor. This is attributed 
to the fact that the accuracy of the cross-correlation method for 
time alignment is dependent on two factors: SIR in the data and 
morphological characteristics of the reference and the heart signal 
buried in the respiratory signal. Thus, even if the reference signal 
is aligned with the desired signal according to the cross-correlation 
results, the procedure does not account for possible alterations in the 
time lag between the first and second heart sounds in the reference 
and the heart signal buried in the respiratory signal. In the contrary, 
the ROKF method generated heart signal estimates that possess close 
similarity in morphology to the original heart signals in Fig. l(a). The 
reason for the presence of some artifacts in the results of Fig. 1 (c) 
has to do with the fact that the ROKF approach provides the optimal 
estimates based on the statistical information of the signals without 
requiring any knowledge about the position of the heart sounds. The 
adaptive scheme, on the other hand, uses a "conventional reference" 
signal that contains exclusively heart sounds information and further 
the output of the transversal filter turns off when the input is zero. 

V. CONCLUSIONS 

The purpose of this paper was to investigate the potential ap­
plication of the Kalman filter for the separation of heart and res­
piratory sounds. The problem was formulated in the context of 
signal estimation where the heart signal was the one to be estimated 
from synthesized signals. The estimated heart signal was then used 
to isolate the respiratory signal. The superior performance of the 
ROKF over that of the standard RLS approach was demonstrated 
in terms of the SE index in both the time and frequency domains. 
In addition, is was shown that the ROKF method produced heart 
sounds estimates which preserved the morphology of the original 
heart sounds. However, the drawback of the ROKF approach lies 
in the necessity to establish a model for the heart and respiratory 
sounds and the computational complexity of the algorithm which 

is 0(12M3
), where M is the order of the AR model vs that of 

the standard RLS method which is O(N2
), where N is the order 

of the adaptive filter. Moreover, the adaptive filter approach does 
not require any a priori assumption about the model for the signals 
under consideration, although there i~ a need for a more elaborate 
time alignment procedure. 
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