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ABSTRACT OF DISSERTATION 

 
HYPERPOLARIZED AND THERMALLY POLARIZED QUADRUPOLAR NOBLE 

GAS NUCLEI STUDIED BY NUCLEAR MAGNETIC RESONANCE 

SPECTROSCOPY AND MAGNETIC RESONANCE IMAGING 

  

 This dissertation consists of several studies of two quadrupolar nuclei, 83Kr and 

131Xe, with nuclear spin states of I = 9/2 and I = 3/2, respectively.  These nuclei possess a 

nuclear electric quadrupole moment that strongly interacts with the surrounding electric 

field gradient (EFG). The quadrupolar interactions in these noble gas atoms dominate the 

longitudinal (T1) spin relaxation.  To fully study these nuclei, high non-equilibrium 

nuclear spin polarization, referred to as hyperpolarization (hp), is generated using spin 

exchange optical pumping (SEOP).  By employing this technique, enhanced nuclear 

magnetic resonance (NMR) signals many orders of magnitude above that of a thermally 

polarized (Boltzmann distribution of spin states) sample are possible and allow for 

experiments where signal averaging over long periods of time is prohibited (i.e. in vivo).   

The gas phase 83Kr T1 is shown to be sensitive to the surface 

composition/chemistry and the surface-to-volume ratio in an ideal system of closest 

packed glass beads.  Understanding the behavior of 83Kr in these conditions allows for its 

development as a surface sensitive probe that could provide information in opaque porous 

media environments.  Similar relaxation behavior can be observed in 131Xe; however, the 
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quadrupolar interactions experienced by 131Xe also induce an observable splitting in the 

NMR spectrum.  This quadrupolar splitting is extremely sensitive to surfaces during 

periods of adsorption as well as to the magnetic field strength when a 131Xe atom is 

present in the bulk gas phase.  As the influence on the quadrupolar splitting can be more 

readily observed than the relaxation of either 83Kr or 131Xe, the observed splitting in 131Xe 

NMR can provide helpful insights into quadrupolar behavior experienced by both nuclei.  

To develop a better understanding of the quadrupolar behavior, both 131Xe quadrupolar 

splitting and 83Kr relaxation are explored as functions of magnetic field strength, gas 

phase composition and co-adsorbing species.   

 In closing, improvements in polarization of 83Kr from line-narrowed diode array 

lasers as well as new delivery techniques have provided improvements that allow for the 

implementation of variable flip angle FLASH imaging sequence in an excised, intact rat 

lung.  Additionally, initial evidence suggests the T1 of 83Kr can differentiate between the 

regions of the lung (the trachea, the bronchi and bronchioles, and the alveoli), which has 

potential as a diagnostic tool for the biomedical community.  Improvements in signal 

intensity are needed to achieve in vivo studies, additional enhancements are possible 

through improved SEOP and by using isotopically enriched gases.  

 
 

        Karl Francis Stupic 
        Department of Chemistry 
        Colorado State University 

        Fort Collins, CO 80523 
        Spring 2010 
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“Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end 

of the beginning.” 

- Winston Churchill 
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CHAPTER 1 

Introduction of NMR, MRI, Spin Exchange Optical Pumping with regards to 

Quadrupolar Noble Gas Nuclei 83Kr and 131Xe 
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1.1 Background and motivation 

Optical pumping was first reported by Kastler in 1950 [1].  He demonstrated that 

the interaction of circularly polarized light with mercury, Hg, resulted in the production 

of non-equilibrium population distributions of the electronic spins.  Ten years after 

Kastler’s study, optical pumping of an alkali metal, rubidium (Rb), was shown to induce 

a non-equilibrium polarization in the nuclear spins of 3He via collision and spin-exchange 

[2].  Initial work with non-equilibrium polarization in 3He was for applications as nuclear 

spin targets [3; 4] for particle physics.  Over the decades, this non-equilibrium 

polarization, referred to as hyperpolarization (hp), has been obtained for all of the noble 

gas nuclei (details listed in Table 1.1) [2; 5; 6; 7; 8]. Additionally, spin exchange optical 

pumping (SEOP) has resulted in polarization of over 75% for the nuclei 3He [9] and 

129Xe [10].  Hyperpolarization of noble gas nuclei has had an enormous impact on 

nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) 

in the gas phase because the SEOP process overcomes the inherent insensitivity of the 

techniques.  

 NMR spectroscopy has low signal-to-noise compared to other analytical 

techniques, requiring approximately 1014 nuclei for signal detection.  However, as NMR 

utilizes radio frequency (RF) pulses to observe spin active nuclei and RF can penetrate 

opaque non-conducting, non-magnetic media, this technique provides a non-invasive, 

non-destructive technology.  Magnetic resonance (MR) studies of thermally polarized 

gases (i.e. gases with a Boltzmann distribution of nuclear spin states) are difficult due to 

low signal intensity.  NMR, MRI, and in vivo MR involving thermally polarized gases are 
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Isotope Spin Natural 
Abundance 

Gyromagnetic Ratio 
(γ) / 107 rad/Ts 

Frequency Ratio 

1 100%
H

     

Quadrupolar Moment 
(Q) / 1028 m2 

3He 1/2 1.30ൈ10-04 -20.38 76.18% --- 

21Ne 3/2 0.26 -2.11 7.90% 9.00ൈ10-02 

83Kr 9/2 11.55 -1.03 3.90% 0.26 

129Xe 1/2 26.44 -7.44 27.81% --- 

131Xe 3/2 21.18 2.21 8.25% -0.12 

Table 1.1: Spin properties of stable, spin active, noble gas isotopes (from [11]) 
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therefore impractical or impossible, as rapid data acquisition is required.  These studies 

become feasible when SEOP is used to generate hp noble gas nuclei.  Noble gas nuclei 

are of particular interest for medical MRI of the respiratory system.  Medical MRI 

typically measures the 1H nucleus due to its natural abundance and prevalence in the 

body; unfortunately, the respiratory system largely consists of void space and does not 

contain sufficient spin density for high-resolution imaging in the gaseous regions.  

However, by inhaling a quantity of hp noble gas, the requirements for high-resolution 

imaging in the respiratory system can be met. This was first shown for hp 129Xe [12] 

followed shortly thereafter by hp 3He [13].    

 3He (I = 1/2) has the largest gyromagnetic ratio of the noble gas nuclei, resulting 

in a resonant frequency approximately 3/4 that of 1H.  Additionally, in the absence of 

paramagnetic species such as oxygen and iron, the longitudinal relaxation time (T1) for 

3He approaches hundreds of hours [9].  With SEOP, this leads to high non-equilibrium 

polarizations that can be applied to high resolution MRI of lungs [14] and can provide 

information about alveolar size [15; 16].  However, 3He has no chemical shift range, 

which limits 3He MR studies to systems that require high signal intensity (via SEOP) or 

that are in contact with a relaxation-inducing agent. 3He spin relaxation is sensitive to the 

presence of oxygen, and this sensitivity can be used to study oxygen partial pressures in 

lungs [17].  For in vivo studies, where oxygen must be present in a breathable mixture, 

the T1 of 3He is reduced to 10 – 20 s.  In addition to the lack of chemical shift 

information, the reduction of the 3He T1 by paramagnetic relaxation dominates over any 

other relaxation interaction, making 3He relaxation an insensitive probe for surfaces in 

the presence of oxygen.   
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 129Xe is another noble gas isotope with nuclear spin I = 1/2.  129Xe has a smaller 

gyromagnetic ratio than 3He and a shorter relaxation time than that of 3He, approximately 

two hours in the gas phase [12].  However, 129Xe has a chemical shift range of 300 ppm 

[18] that is not available with 3He.  Interest in 129Xe began in the areas of material science 

and rapidly expanded to the biomedical field (material science reviews: [19; 20; 21; 22; 

23]; biomedical reviews: [24; 25; 26]).  129Xe has been used with NMR to explore 

systems such as single file diffusion in nanochannels [27; 28], combustion [29], and 

nanoporous media [30; 31; 32; 33; 34].  One aspect of xenon that is of interest to the 

biomedical community is the solubility of xenon into biological tissue (approximately 

10%) [35].  129Xe experiences reduced T1 times in the presence of oxygen in the range of 

10 – 20 s.  T1 times for 129Xe in biological fluids of tens of seconds has allowed for in 

vivo studies with 129Xe in biological systems such as blood [36] and brain tissue [37; 38].  

Hp 129Xe was also explored for molecular imaging using functionalized xenon biosensors 

[39; 40] and was infused directly into blood for MR imaging applications [41].   

This dissertation focuses on two of the quadrupolar noble gas nuclei, 83Kr (I = 

9/2) and 131Xe (I = 3/2), and their development for NMR and MRI applications.  As both 

nuclei possess a spin I > 1/2, they have a nuclear electric quadrupole that is sensitive to 

its surrounding environment.  When the spherical electron cloud of these atoms becomes 

distorted, during events such as adsorption onto surfaces, electric field gradients (EFGs) 

are formed that interact with the nuclear electric quadrupole moment.  These interactions 

lead to short longitudinal relaxation times for both nuclei, and in 131Xe, an observable 

quadrupolar splitting.  83Kr studies focus on understanding relaxation behavior such that 

applications to in vivo systems can be considered.  131Xe, with its smaller spin quantum 
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number than 83Kr, is studied in an effort to understand fundamental quadrupolar 

interactions via NMR spectra instead of relaxation experiments that could be time 

prohibitive.  

1.2. Fundamentals of NMR spectroscopy and MR imaging 

 1.2.1. Signal intensity in NMR spectroscopy at thermal equilibrium 

 A nucleus with non-zero spin has a nuclear magnetic moment, µ, defined as 

I  , where γ is the gyromagnetic ratio of the nucleus and I is the nuclear spin state of 

the nucleus.  The orientation of the nuclear magnetic moment is arbitrary until it 

experiences a magnetic field, B0.  In a magnetic field, the macroscopic ensemble of the 

nuclear magnetic moments of the spins align with or against B0.  The direction of the B0 

is defined by convention to be the z-axis.  Therefore, a net nuclear magnetization Mz will 

be produced upon realignment of spins; the observed NMR signal is proportional to Mz.    

All spectroscopic techniques are based on observed transitions between energy 

levels; quantum mechanically: 

Ĥ E  ,           [Eq. 1.1] 

where ψ is the spin wave function for NMR. The Hamiltonian operator for NMR is: 

0
ˆ

ẑH B I   ,              [Eq. 1.2] 

where ħ is Plank’s constant divided by 2π and ˆ
zI  is the z component of the spin operator 

Î .  ˆ
zI represents the eigenvalues m = −I to +I in steps of one.  A consequence of the  

Hamiltonian operator is that the macroscopic ensemble of the nuclear spins precess 
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around the axis of the magnetic field B0, at a resonant frequency determined by the 

gyromagnetic ratio of the nucleus, γ, defined as the Larmor frequency, 0 0B  . 

The NMR signal in a pulsed NMR experiment is induced into the rf coil by the 

Lamor precession of the magnetization when RF irradiation is applied at the Larmor 

frequency, ω0.  If the simplest spin system is considered (I = 1/2), the two spin states, mi 

= 1/2 and mi = − 1/2 (m is the magnetic quantum number), have nearly equal populations, 

assuming Boltzmann distribution of spins.  This results in only small observable 

differences for NMR signals; these differences in spin state populations are defined as 

polarization (P):   

N N
P

N N
 

 





,     [Eq. 1.3] 

where N↑ and N↓ are the number of spins in the mi = 1/2 and mi= − 1/2 spin states 

respectively.  The fraction of nuclei that are in each spin state, Ni, is determined by the 

Boltzmann distribution: 

0

0

i b

i b

m B k T

i m B k T

i

e
N

e












 ,         [Eq. 1.4] 

where kb is the Boltzmann constant, T is the temperature, and B0 is the magnetic field 

strength.  Applying Eq. 1.4 to Eq. 1.3 for an I = 1/2 spin system, polarization is redefined 

as: 

0 0

0 0

2 2

2 2

b b

b b

B k T B k T

B k T B k T

e e
P

e e

 

 










 

  .          [Eq. 1.5] 
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Under the conditions of thermal equilibrium (i.e. Boltzmann distribution of spins) and at 

high temperatures (i.e. 0 1BB k T   ), Eq. 1.5 can be approximated by: 

0

2 B

B
P

k T





.          [Eq. 1.6] 

The NMR observable magnitude of the magnetization, M0, is proportional to P: 

0

1

2 sM N P  ,    [Eq. 1.7] 

where Ns is the number of nuclear spins in the sample, and when combined with Eq. 1.6:  

2 2
0

0 4
s

b

N B
M

k T





.        [Eq. 1.8] 

It is evident from Eq. 1.8 that the observed magnetization will be a small value for all 

practical cases.  Polarization for protons at 300 K in a 9.4 T magnetic field is only 

3.3ൈ10-5.  If a nucleus has a low natural abundance (i.e. <100%) or a low γ, then the 

already small magnetization becomes smaller.  Although the variables of B0 and T can be 

altered to increase the magnetization, certain experimental procedures restrict these 

values (i.e. in vivo cannot take place at 4 K).  It is this low polarization that leads to the 

insensitivity associated with NMR and MRI.  It is important to note that the derivations in 

this section are restricted to the I = 1/2 spin system.  Defining polarization for spin 

systems where I > 1/2 (i.e. quadrupolar nuclei) is discussed further in chapter 4 of this 

dissertation.    

  



9 
 

1.2.2. Relaxation, spectral density, and correlation times  

 In the presence of a magnetic field, the spin magnetization (as defined in section 

1.2.1) is aligned with the direction of the magnetic field, B0. Detecting this magnetization 

involves applying an RF pulse at the Larmor frequency for a short period of time 

(typically on the order of milliseconds) to rotate the magnetization from longitudinal 

magnetization (Mz) to transverse magnetization (Mx,y).  NMR detects the magnetization in 

the transverse plane although it is the longitudinal magnetization that determines the 

observable signal.  Over a period of time, the magnetizations of Mz and Mx,y will return to 

their original (i.e. equilibrium) conditions,  considered in NMR to be relaxation 

processes.  The equilibrium condition for Mz and Mx,y is that magnetization is “stored” in 

Mz, and no magnetization is in Mx,y.  The growth or restoration of magnetization along the 

z axis is called the T1 relaxation process, while the decay of magnetization in Mx,y after 

the application of the RF pulse is called the T2 relaxation process.  Whereas both of these 

processes occur in the time domain, it is important to note that both T1 and T2 do not 

describe the time for complete recovery or destruction of the associated magnetization.  

Complete, or quantitative, recovery/destruction is not considered to occur until at least 

five times the value of these constants has passed.   

 Mathematically, the relaxation process for transverse magnetization, T2, can be 

described by a differential equation: 

   , ,

2

x y x ydM t M t

dt T


  .       [Eq. 1.9] 

Since no magnetization exists in Mx,y at equilibrium, Eq. 1.9 can be solved as: 
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M
x , y

t  M
x , y

0 e
 t

T2





 ,      [Eq. 1.10] 

where , (0)x yM is the magnetization in the transverse plane produced by the application of 

an RF pulse at time t = 0.  

 For traditional NMR, working with thermally polarized systems, the relaxation 

process for longitudinal magnetization, T1, back to its equilibrium value can described by 

a differential equation: 

0

( )
( )z

z

dM t
M M t

dt
  ,                 [Eq. 1.11] 

where M0 is the equilibrium value of Mz (i.e. before RF is applied) and Mz(t) is the 

present quantity of magnetization along the z axis at a particular time, t.  With a 

proportionality constant, T1, Eq. 1.11 can be rearranged: 

    1 0
z

z

dM t
T M M t

dt
  .         [Eq. 1.12] 

After separating the variables, defining Mz = 0 at t = 0 (because there is no longitudinal 

magnetization immediately after the application of the RF pulse), and integrating from 0 

→ Mz and 0 → t, the solution to Eq. 1.12 is:  

0

0 1

ln zM M t

M T

 
  

 
,    [Eq. 1.13] 

which can be rearranged to: 
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1
0 1

t
T

zM M e
   

 
.    [Eq. 1.14] 

However, as stated above, Eq. 1.14 defines T1 for a thermally polarized system.  In a 

hyperpolarized system such as those produced by SEOP, the initial magnetization after 

SEOP is larger than the equilibrium polarization, which requires a substitution of Mz(0) 

for M0 in Eq. 1.15, resulting in: 

    10 1
t
T

z zM t M e
   

 
.     [Eq. 1.15]   

In 1948, Bloembergen, Purcell and Pound [42], laid the foundation for the 

quantum mechanical perspective of relaxation.  From this foundation, relaxation is 

caused by fluctuations in the local magnetic environment.  Fluctuations as small as the 

tumbling of a molecule, causing a change in its local dipolar field, are sufficient to induce 

transitions between energy levels and therefore cause relaxation.  These fluctuations are 

found in the transverse magnetic field, Bx(t), and for NMR experiments with liquids and 

gases, these fluctuations are considered to be rapid and random.  It should be noted that 

an underlying assumption is that the difference in energy levels is small compared to kbT 

(i.e.   1i j bE E k T  ) and that this assumption holds for nearly all NMR experiments.  

As the fluctuations are random and rapid, the average value of these fluctuations is 

considered to be zero,   0xB t  .  However, it is the mean square fluctuations, 

 2 0xB t  , that are responsible for relaxation, not the average value of the fluctuations.  

To define how rapidly these fluctuations occur in time, an autocorrelation 

function is introduced: 
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     x xG B t B t   ,          [Eq. 1.16] 

where τ is an increment of time, and by definition the autocorrelation function at τ = 0 is 

equal to the mean square of the fluctuations,    20 xG B t .  For rapid fluctuations, the 

autocorrelation function decays quickly with respect to τ, whereas slow fluctuations 

decay slowly with respect to τ.  In general, the autocorrelation function, G(τ), tends to be 

large for small τ values and small for large τ values.  Therefore, assuming that G(τ) 

decays exponentially, Eq. 1.16 can be rewritten: 

  2 c

xG t B e   ,    [Eq. 1.17] 

where τc is the correlation time of the fluctuations.  Applying a Fourier transform to the 

autocorrelation function, the spectral density J(ω) at a given frequency, ω, can be 

obtained: 

      2
2 2

2
1

i c
x

c

G t e d B  
 






 
J .     [Eq. 1.18] 

It is common to work with the normalized spectral density, J(ω): 

  2 21
c

c

J

 




,       [Eq. 1.19] 

instead of the complete expression J(ω).  Fig. 1.1 shows J(ω) versus the logarithm of ω 

for three different τc values.  For any τc in Fig. 1.1, assuming the condition 01c   , 

referred to as the extreme narrowing condition, a region with nearly zero slope is found.  

When 01c  , Eq. 1.19 reduces to J(ω) ≈ τc.  However as log(ω) increases, eventually  



13 
 

 

Fig. 1.1: Spectral density, J(ω), as a function of the log of the frequency.  Three different 

correlation times, τc, are displayed to demonstrate the differences in behavior as τc 

becomes longer.  For all three curves, an arbitrary larmor frequency, ω0, has been marked 

as a reference.  For the curve marked “Long” τc, the τc is equal to the inverse of the 

larmor frequency and any change in the log(ω) will result in changes in J(ω).  For “Short” 

τc, the graph displays no significant change in J(ω) around ω0.  This is the extreme 

narrowing condition where τc << 1/ω0, demonstrating field independent nature in the 

spectral density.   
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the extreme narrowing condition is violated (i.e. 01c  ), J(ω) is governed by the 

complete Eq. 1.19 and a change in slope occurs in Fig. 1.1.  It is around this value 

01c  that J(ω) has a dependence on magnetic field strength from ω = ω0 = γB0.  As 

τc becomes shorter, the log(ω) value needed to violate the extreme narrowing conditions 

increases.  Therefore nuclei with short τc values may not experience any field dependence 

of J(ω) even at high magnetic field strengths.  This field dependence is discussed along 

with experimental observations of relaxation times in chapter 5. Depending on the nature 

of the interaction responsible for relaxation, the functional dependence of the longitudinal 

relaxation on J(ω) will be different.  Below are three cases for different relaxation: (1) 

Magnetic dipole-dipole interaction where relaxation is due to “through-space” interaction 

of magnetic moments of other nuclei, assuming a homonuclear sample: 

 4 2 6
2 2 2 2

1 0 0

1 2 1 1
1

5 1 1 4i cDD L
i c c

I I r
T

 
   




 
     

 .    [Eq. 1.20] 

(2) Chemical shift anisotropy where relaxation is related to the variability of the chemical 

shift as a function of molecular/atomic orientation with respect to the magnetic field: 

 2 2
0 2 2

1 0

1 2

15 1
c

c

B
T

  
  

 ,          [Eq. 1.21] 

where     describes the shielding anisotropy.  (3) Quadrupolar interactions, which 

are studied extensively in later chapters of this dissertation, where relaxation is due to 

changes in the EFG coupled to the quadrupole moment: 
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 

22

2 2 2
1 0

21 3 2 3
1

10 3 2 1 1
c

c

I eqQ

T I I


 

                       
,  [Eq. 1.22] 

where  eqQ   is the quadrupole coupling constant and η is the asymmetry parameter of 

the quadrupolar nucleus. η is defined as: 

 yy xx

zz

q q

q



 ,             [Eq. 1.23] 

with the axes chosen to be zz xx yyq q q   such that η is between zero and one.  The 

longitudinal relaxation has a strong dependence on τc for all three of the cases presented 

above.  In most cases, τc is small (i.e. 0 1c   ), reducing the longitudinal relaxation 

equations to 11 cT  , a consequence of the extreme narrowing condition mentioned 

above.  Fig. 1.2 shows the behavior of T1 as a function of τc at four different field 

strengths (0.5, 1, 2, 3 T). For all cases presented in Fig. 1.2, the fastest relaxation time 

occurs at 01c  .  Fig. 1.2 illustrates how for a particular τc, it is possible to obtain 

different T1 values by changing the field strength.   

 

1.2.3. Magnetic resonance imaging and contrast 

 In NMR spectroscopy, highly homogenous magnetic fields are used to obtain 

narrow linewidths. In this case, the Larmor frequency is ω0 = γB0.  When the 

homogeneity of the magnetic field is disrupted intentionally, the Larmor frequency 

becomes a function of position within the applied gradient: 
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Fig. 1.2: Longitudinal relaxation time (T1) of 83Kr as a function of correlation time (τc) at 

four different field strengths.  To calculate each T1 curve, no specific relaxation 

mechanism was considered (therefore arbitrary units); it was assumed that relaxation took 

place in a homogenous magnetic field and ω0 for each field strength is: 0.5 T: 0.82 MHz; 

1 T: 1.64 MHz; 2 T: 3.27 MHz; and 3 T: 4.91 MHz.  Each T1 curve decreases with 

increasing τc until reaching the minimum value of τc = 1/ω0, after which the T1 values 

begins increasing.  
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  0r B G r         [Eq. 1.24] 

where G is the magnetic field gradient applied along a single axis, and r details the spatial 

coordinates for the observed nuclear spin.  In the presence of a single linear gradient, a 

1D image of the spin density in the sample is acquired, compared to a 1D spectrum that 

would be collected in a homogenous field under identical RF conditions.  Using 

projection reconstruction methods, it is possible to acquire many 1D images at various 

angles and orientations of a sample to construct 2D and 3D images [43].  A second 

method for acquiring multi dimensional images is phase encoding, where a gradient is 

applied to the nuclear spins such that a location specific phase modulation is placed on 

the MR signal.  In comparison to projection reconstruction, phase encoding allows for 

faster imaging as it can be applied to more than one gradient at a time [44].   

 Whereas MRI requires sufficient signal intensity to resolve areas of interest, the 

absence or the decay of signal (from relaxation) is also a useful tool in understanding the 

surroundings of the observed nuclei.  MRI contrast depends on a difference in signal 

intensity caused by  longitudinal (T1) [45] or transverse (T2) [46] relaxation or chemical 

shift differences [47; 48] between distinct areas (i.e. healthy versus cancerous tissue 

[49]).  Therefore contrast provides a method for MRI where the absence of signal (or 

conversely increased signal) can provide information about specific regions of interest.     

   

1.3. Spin exchange optical pumping with alkali metal vapor 

 1.3.1. Generation of polarization in the alkali metal  
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 The first step in achieving high nuclear polarization in noble gas nuclei is to 

create high electronic polarization in an alkali metal, typically rubidium (Rb). The 

necessary electronic transitions for producing the high electronic polarization are 

displayed in Fig. 1.3.  Typically, SEOP takes place in a glass cell containing the alkali 

metal with an appropriate gas mixture (this is detailed further in 1.3.3) at moderate 

temperatures (> 373 K) and in the presence of a magnetic field (in excess of 10 G) 

aligned with the laser.  With the magnetic field aligned with the cell (defined as the z 

axis) the Hamiltonian for the alkali metal atom in the ground state is [4]: 

0 0
a

a a a s B z az
a

H A I S g S B I B
I

    .     [Eq. 1.25] 

The first term in Eq. 1.25, a aA I S , is the hyperfine interaction where Aa is the isotropic 

magnetic dipole coupling coefficient, Ia is the alkali metal nuclear spin, and S is the 

valence electron spin.  The remainder of Eq. 1.25 describes the Zeeman interactions of 

the electronic and nuclear spins with an applied magnetic field strength, B0.  In the low 

magnetic fields used for SEOP, the Zeeman interactions can be ignored.   

With the application of circularly polarized light (σ+ or σ−) resonant with the D1 

transition of the alkali metal (794.7 nm for Rb), the conservation of angular momentum 

requires a selection rule of 1m  (for σ+) or m  1 (for σ−).  The valence electron of 

the alkali metal can therefore be pumped from the 2S1/2 ground state to the 2P1/2 excited 

state.  Fig. 1.3 shows the selection process using σ− circularly polarized light: valence 

electrons in the spin-up (ms = 1/2) sublevel of the ground state are excited into the spin-

down (mj = −1/2) sublevel of the excited state.  At the pressures typical in an SEOP cell, 
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Fig. 1.3: Diagram of electronic transitions taking place in alkali metal Rb to produce non-

equilibrium electronic polarization.  The Zeeman splitting of the electronic sublevels is 

exaggerated in this illustration.  Hyperfine splitting is neglected and under the 

experimental conditions (i.e. pressure broadening) used for SEOP would be unresolved.  

The alkali metal valence electron from the spin-up sublevel of the 2S1/2 ground state (ms = 

1/2) is excited by circularly polarized (σ−) light to the spin-down sublevel of the 2P1/2 (mj 

= − 1/2) by the Δm = 1 selection rule.  Collisional mixing equalizes the populations of the 

2P1/2 sublevels and collisions of the excited alkali metal atom with diatomic N2 allows for 

non-radiatively quenching of the electronic excited states down to their respective 2S1/2 

sublevels.  While both excited state sublevels will be quenched with equal probability, 

electrons returning to the spin-up sublevel of the 2S1/2 ground state would be re-excited 

leading to an eventual depletion of the ms = − 1/2 sublevel population and building a non-

equilibrium population in the ms = 1/2 sublevel.  
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gas phase collisions will rapidly mix the 2P1/2 sublevel populations, equalizing the spin 

polarization of the excited-state produced by photon adsorption.  After collisional mixing, 

the excited states transition back to the ground state by either a radiative or a radiatively 

quenched process.  This relaxation repopulates the sublevels equally; however, as 

circularly polarized light is always present during the SEOP process, any valence 

electrons that decay into the sublevel being pumped (ms = 1/2 for the case presented in 

Fig. 1.3) will be re-excited into the 2P1/2 states.  This causes a depletion of the population 

for the sublevel being pumped and an increase in population for the sublevel that cannot 

be excited under the circularly polarized conditions.  Approximately 100% polarization 

of the alkali metal atoms is possible under ideal experimental conditions [50].   

  

1.3.2. Transfer of polarization to noble gas nuclei 

 After the production of electronically polarized alkali metal, the next step in the 

SEOP process is to transfer the polarization from the valence electron of alkali metal to 

the nucleus of the noble gas.  This occurs by two different processes, either binary 

collisions or van der Waals complexes, shown in Fig. 1.4.  For the low atomic number 

noble gas nuclei, in particular 3He, binary collisions are the dominant mechanism for 

polarization transfer.  For larger atomic number noble gas nuclei, such as 129Xe, van der 

Waals complexes are the main polarization mechanism.  The theory behind polarization 

transfer from the alkali metal valence electron to the nucleus of a noble gas atoms is 

detailed in [3] by Happer et al.  From [3], the simplest Hamiltonian to describe the spin 

transfer and relaxation in alkali metal vapor and noble gas mixtures is: 
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Fig. 1.4: The two spin exchange mechanisms. A: Binary collisions. Binary collisions are 

brief interactions between alkali metal and noble gas atoms.  During this collision, Fermi 

contact between the valence electron of the alkali metal atom interacts with the nucleus of 

the noble gas atom.  Spin flip transition can occur during Fermi contact where the alkali 

metal valence electron is depolarized and the noble gas nucleus is polarized. B: van der 

Waals complex.  A van der Waals complex is the result of a three-body collision between 

an alkali metal atom, a noble gas atom (displayed here as Xe), and a third body 

(displayed here as N2).  The third body transfers translational energy away from the alkali 

metal–noble gas pair producing a sticking collision.  The newly formed van der Waals 

pair remains bound for some lifetime, τ.  During this lifetime, polarization can be 

transferred between the valence electron of the alkali metal to the nucleus of the noble 

gas by Fermi contact.  The van der Waals pair is broken by a subsequent collision.   
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...H AI S N S K S       ,                       [Eq. 1.26] 

where AI S is the hyperfine interaction between the alkali metal valence electron spin, S, 

and the alkali metal nuclear spin, I; N S  describes the spin-rotation interaction between 

the rotational angular moment, N, of the alkali metal-noble gas pair and S; K S  is the 

Fermi contact between S and the nuclear spin of the noble gas, K.  From Eq. 1.26, the 

primary interest is in the Fermi contact term, K S  , which is responsible for producing 

the non-equilibrium nuclear spin polarization.   

 The Fermi contact term contains two components, α and K S .  α is the magnetic 

dipole coupling constant derived by [51]. The necessary part of α for consideration of 

transferring polarization is the Dirac delta function, δ(R). δ(R) is a three-dimensional 

delta function corresponding to the location of the alkali metal valence electron compared 

to the nucleus of the noble gas atom.  δ(R) is equal to one when the alkali metal valence 

electron is at the noble gas nucleus and zero everywhere else. K S  can be rewritten using 

ladder operator formalism: 

 1ˆ ˆ ˆˆ ˆ ˆ
2z zK S K S K S K S      ,         [Eq. 1.27] 

where the operators ˆK̂ S  and ˆK̂ S   transfer angular momentum between the valence 

electron of the alkali metal and the nucleus of the noble gas.  However, it was shown in 

129Xe [52] that the dominant relaxation mechanism for polarized Rb is not the transfer of 

polarization to the noble gas, it is the spin-rotation interaction N S  .  Happer and 

coworkers [3; 53] have shown that for each unit of angular momentum lost by the 
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collision of a Rb atom with a 129Xe atom, ~ 10% of those collisions will result in angular 

momentum transfer (i.e. polarization) to the 129Xe nucleus.   

 To consider polarization transfer from an alkali metal valence electron to the 

nucleus of a noble gas atom, the buildup of polarization in the alkali metal must first be 

established.  These calculations are shown for Rb because it is the most commonly used 

alkali metal in SEOP and is also used in this dissertation.  Rb polarization is treated as a 

function of position along the z-axis of the SEOP cell, given by PRb(z) [54]: 

   
 
op

Rb
op sd

z
P z

z


 




,       [Eq. 1.28] 

where γop(z) is the optical pumping rate per Rb atom at position z, and γsd is the Rb spin 

destruction rate expressed as: 

 i
sd sd i

i

M  ,    [Eq. 1.29] 

where i
sd is the spin destruction rate coefficient for a given gas mixture component, and 

[Mi] is the number density for that component.  Note that because the intensity of the 

circularly polarized light will weaken through the pump cell (i.e. optically thick beam 

path), the value of γop(z) is expected to change along the z axis.  Nuclear polarization in 

the noble gas atoms can be defined as a function of time (tp) [55]: 

   
   

  1 se ptopse
Ng p i

se op sd i
i

z
P t e

z M


  
   

  
, [Eq. 1.30] 
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where γse is the spin exchange rate and Γ is the rate of self relaxation of the noble gas 

nuclei originating from collisions with SEOP cell walls or other noble gas atoms. During 

optical pumping γse is positive (i.e. generating polarization) in value and Γ is negative as 

polarization in the noble gas nuclei is increasing faster than relaxation can destroy it.  The 

spin exchange rate, γse, which governs the polarization transfer between Rb and the noble 

gas nucleus, is defined as [3; 56]: 

 
 

RbNg Rb
se

g i i
i

Rb
N b M

 
 

 
        


,         [Eq. 1.31] 

where [Rb] is the number density of rubidium (found experimentally by [57]), γRbNg is the 

rate contribution from van der Waals complexes to spin exchange via Fermi contact, ζRb 

is the isotropic composition of Rb [56], [Ng] is the number density of the noble gas, and 

  is the velocity averaged binary spin exchange cross-section.   

 In studies that utilize hp noble gases for NMR and MRI, the hp noble gas is 

typically separated from the SEOP cell to be studied.  Under this premise, γop(z) is 

difficult to quantify and can be simplified to γop, an average of the optical pumping rate 

over the entire SEOP cell.  Additionally, the value of Xe
sd , ~5.2ൈ10-15 cm3s-1 [50; 55] is 

orders of magnitude larger than the values obtained for He
sd , ~2ൈ10-18 cm3s-1, and 2N

sd , 

~9ൈ10-18 cm3s-1 [50].  Therefore when considering 129Xe for SEOP, the spin destruction 

values from other gas mixture components can be disregarded.  A final simplification 

comes for 3He and 129Xe, where the Γ << γse for these nuclei, so Γ can be disregarded.  In 

the case of hp 129Xe production, Eq. 1.30 reduces to: 
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     129 1 se ptop
p XeXe

op sd

P t e
Xe


 

 


.  [Eq. 1.32] 

 Where only κsd for 129Xe is considered since all other gas present can be excluded.  

However this is not the case for 3He SEOP.  Additionally, for spin I > 1/2 isotopes, 

relaxation is much faster than that of 129Xe, therefore Γ cannot be disregarded.  At high 

densities of the noble gas atoms, relaxation will accelerate, leading to higher values of Γ.  

Eq. 1.30, Eq. 1.31, and Eq. 1.32 are all dependent on the density of the noble gas: as the 

noble gas density increases, the spin exchange rate will decrease (Eq. 1. 31) and the noble 

gas polarization will decrease due to higher spin destruction (general form: Eq. 1. 30, 

129Xe specific: Eq. 1.32).      

 

 1.3.3. Considerations and improvements for spin exchange optical pumping  

 During the SEOP process, when the alkali metal atoms are in the excited state, the 

relaxation pathway of the alkali metal atoms back to the ground state can be radiative.  

The consequence of the radiative relaxation is that both transitions, Δmj = +1 and Δmj = 

−1, have an equal probability of occurring, which results in the emission of unpolarized 

light.  This emission can be a significant depolarization source because unpolarized light 

will pump both sublevels of the ground state, thus destroying the built up non-equilibrium 

polarization.  This is countered by the addition of a diatomic molecule (typically N2) to 

the SEOP gas mixture, which allows the energy of the excitation to be transferred into 

excited rotational and vibrational modes of the diatomic molecule [58].   
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In most SEOP experiments involving NMR and MRI, solid-state diode array 

lasers provide cell illumination.  These laser sources provide high power output at low 

cost; however, they have broad line widths (~2 nm) which are not fully absorbed by the 

narrow D1 transition of the Rb vapor.  To improve absorption of the light, helium is 

added to the gas mixture (for 129Xe SEOP, ൒ 90 % He is typical) to pressure broaden the 

Rb absorption line [55] with minimal depolarization of the Rb.  In addition to pressure 

broadening, it is now commercially feasible to produce line-narrowing devices that 

improve the absorption of light and efficiently couple the laser power to the Rb 

absorption line [59; 60; 61; 62].  These devices can be fitted externally to broad lasers 

[59; 60], or internally allowing for fiber coupled, line narrowed laser systems [61; 62].  

Both types of laser systems, broad and internally narrowed, have been employed 

throughout this dissertation. 

When illuminating the SEOP cell, it is important to ensure that circularly 

polarized light is penetrating the full length and width of the cell.  Illumination of the 

volume of the SEOP cell near the walls of the cell is of particular importance as the 

relaxation on the wall surface is one of the fastest relaxation sources for both polarized 

alkali metal and noble gas nuclei.  Regions of the SEOP cell that are not illuminated by 

circularly polarized light (i.e. dark regions) contain alkali metal atoms that are not 

polarized.  A collision between an unpolarized (i.e. “dark”) alkali metal and a polarized 

noble gas poses a significant problem as the dark alkali metal will quickly relax any 

hyperpolarized noble gas atom with which it collides.  This is in contrast to the collision 

between a polarized (i.e. “light”) alkali metal and a polarized noble gas atom, which is 

unlikely to cause significant nuclear relaxation. 
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 Gas mixtures with low percentages of noble gas atoms have provided the highest 

polarizations thus far (129Xe: see refs. [10; 63; 64], 83Kr: see ref. [65] and chapter 6); 

these quantities are not typically concentrated enough for the intended studies (i.e. in 

vivo).  Currently, cryogenic accumulation is used to concentrate hp 129Xe.  To achieve 

this, slow flowing gas passes through the SEOP cell achieving hyperpolarization. Upon 

exiting the SEOP cell, the gas flows into a liquid nitrogen cold finger contained in a 

magnetic field (in excess of 500 G) [55; 66].  This allows for the hp 129Xe to freeze out of 

the gas mixture and for the other components (N2, He) to be removed as they do not 

freeze out at these temperatures.  Under these conditions, the longitudinal relaxation time 

of 129Xe in the solid state exceeds 2 hours [67].  This process results in the accumulation 

of pure xenon with only minor relaxation occurring.  When the solid xenon is rapidly 

heated, it returns to the gas phase with high polarization.  Unfortunately, hp 83Kr and 

131Xe cannot make use of cryogenic accumulation at liquid nitrogen temperatures due to 

short longitudinal relaxation times (83Kr: ~10 s; 131Xe: ~1 s) [68; 69; 70].  

1.4. Previous work with quadrupolar nuclei: 83Kr and 131Xe  

 1.4.1 Hyperpolarized and thermally polarized 83Kr 

 Since its first experimental observation [52; 71], hp 83Kr has not been used as 

widely as hp 3He and hp 129Xe.  83Kr suffers several setbacks when compared to 129Xe: a 

lower gyromagnetic ratio ( 83 129 0.14
Kr Xe

   ), faster relaxation from quadrupolar 

interactions, lower natural abundance (~44% abundant as 129Xe), and a smaller chemical 

shift range due to its smaller electron cloud and due to the lower gyromagnetic ratio [72].  

Until recently [45], hp 83Kr was limited to studies inside of the SEOP cell.  Without 
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separation from the highly reactive alkali metal, hp 83Kr research was limited.  Studies 

included determining spin-parameters [73] and understanding the spin exchange process 

[6] in the SEOP cell.  The behavior of 83Kr transverse relaxation and frequency shifts as a 

function of SEOP cell temperature and geometry were also investigated [74; 75].  The 

small 83Kr-Rb spin exchange cross section requires SEOP cells to operate at higher 

temperatures, which increase the density of Rb in the vapor phase making the penetration 

of the cell by light difficult.  As many of the initial experiments used a pump-probe setup 

to detect magnetization changes in the Rb or 83Kr [52; 71; 74], increasing the 

temperatures of the SEOP cell was a limiting factor due to limitations in light sources.   

 High power diode array lasers provide adequate optical penetration of the SEOP 

cell even at increased temperatures, so that hp 83Kr can be polarized and separated from 

the Rb vapor in both continuous flow [45; 65] and stopped flow style [45; 65; 76; 77; 78; 

79; 80; 81] setups.  Cleveland et al. [65] demonstrated that continuous flow was possible 

with hp 83Kr, resulting in enhancement factors of 27 times that of thermal signal.  In 

contrast, in stopped flow SEOP, enhancement factors of 1200 times that of thermal signal 

were achievable.  The quadrupolar relaxation of 83Kr has been shown in many cases to be 

surface sensitive [65; 76; 77; 78].  T1 times for 83Kr were found to be sensitive to changes 

in surface chemistry and surface-to-volume ratio for ideally packed glass beads [76].  In 

soda lime glass capillaries, 83Kr T1 sensitivity to the deposition of tobacco smoke 

provided sufficient differences for MRI contrast [78].  Additionally, both the 83Kr T1 

temperature dependence [65] and the 83Kr T1 relaxation behavior in the presence of co-

adsorbing species on surfaces have been observed [77].  Hp 83Kr has been used in MRI of 

biological systems as well.  Initial MRI studies took place in desiccated lung tissue [45], 
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and later MR images of ex vivo rat lungs were obtained [79]; the initial report of T1 times 

ranged from 0.6 – 3.7 s in lung tissue.  Longitudinal relaxation mechanisms for 83Kr in 

gas phase binary collisions [80] as well as relaxation induced by Kr-Kr dimers [81] has 

been reported.   

 83Kr studies are not limited to hyperpolarized systems.  Investigations date back 

almost 50 years to the fundamental work exploring 83Kr chemical shift and longitudinal 

relaxation in solids, liquids and at high gas pressures [82].  Detailed studies by Norberg 

and coworkers [68; 83; 84; 85] provide useful insight into the behavior of 83Kr in the 

solid and liquid state.  Cowgill and Norberg outlined the relaxation behavior for 83Kr in 

the solid and liquid phase [68]; at liquid nitrogen temperatures, T1 for 83Kr was ~8 s, and 

the shortest T1 reported was ~0.6 s, near the triple point of krypton (115.8 K).  In the 

presence of oxygen, T1 was reduced by a maximum of 20%.  This limited reduction is 

explored further in chapters 5 and 6, as the insensitivity of 83Kr to paramagnetic oxygen 

can be utilized for surface sensitive contrast for in vivo systems.    

 83Kr NMR spectroscopy has been carried out in a number of systems where 

krypton is dissolved into liquids or loaded into guest-host structures (i.e. zeolites).  

Mazitov et al. [72] presented an extensive study of the chemical shift and relaxation of 

83Kr in polar and non-polar solvent systems, and as a function of temperature.  Studies of 

krypton dissolved in nematic liquid crystals [86; 87; 88] showed a series of peaks that 

corresponded to the number of energy transitions in 83Kr spin states.  These peaks in the 

83Kr NMR spectrum were observed due to interactions of the nuclear quadrupole moment 

with the net alignment of the liquid crystal anisotropy, allowing for the direct observation 

of quadrupolar effects by the associated peak splitting.  In zeolite structures, the line 
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shape of 83Kr, directly observed by NMR [89], was sensitive to pore dimensions, pore 

geometry, and counter-cation charge.  These direct observations in zeolites were possible 

because 83Kr in the porous material has a T1 of a few milliseconds, allowing for rapid 

signal averaging to acquire reasonable signal-to-noise. 

 

 1.4.2. 131Xe NMR in thermally and hyperpolarized systems 

 131Xe, with a spin I = 3/2, possesses a nuclear electric quadrupole moment that is 

susceptible to interactions with EFGs.  EFGs are caused during events such as adsorption 

onto surfaces, which distort the spherical shape of the large electron cloud.  The 

quadrupolar interactions dominate 131Xe longitudinal relaxation in all phases and cause 

131Xe relaxation to be significantly faster than 129Xe.  Extrapolating from experimental 

work by Brinkmann et al. [90], a T1 of ~25 s for 131Xe in pure xenon gas at atmospheric 

pressure is expected.  This is substantially shorter than the T1 of 129Xe, which is expected 

to be on the order of 2 hours [12].  In the solid phase, 131Xe does not show the sensitivity 

to oxygen that 129Xe displays, as the 131Xe T1 is reduced by a maximum of 20% [69].  

This reduction is nearly identical to the reduction seen in 83Kr under similar conditions 

[68], which indicates that this phenomena of insensitive to paramagnetic species is 

general for quadrupolar nuclei.  Warren and Norberg [69] reported a detailed survey of 

131Xe relaxation as a function of temperature ranging from 9 to 250 K (covering the solid 

and liquid phases): the T1 of 131Xe was 200 ms at the melting point (161 K) and 390 s at 9 

K.  The T1 of one hour for 131Xe at 4 K was reported although instability in the 

temperature control leaves this measurement as a first approximation.    
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 131Xe has been studied in a number of dissolved systems, in polar and non-polar 

solvents (review: [91]), and in liquid crystalline phases (review: [92]).  131Xe has also 

been used near the supercritical point (289 K, 6 MPa) for MRI to provide contrast that is 

sensitive to the adsorption of water on aerogel surfaces [46].  The NMR spectrum of 

131Xe dissolved into liquid crystalline phases [86] contains a triplet of peaks attributed to 

interactions of the nuclear quadrupole moment with the net alignment of the liquid crystal 

anisotropy.  This quadrupolar splitting has been further observed in the gas phase where 

anisotropy is provided by the walls of the NMR tube, and the quadrupolar splitting is 

found to be dependent on the magnetic field strength [93].  Two theoretical treatments for 

the dependence of the quadrupolar splitting of 131Xe on magnetic field strength exist [94; 

95], although there is disagreement on the functional form of the dependence.  The 

observation of quadrupolar splitting in the gas phase is unique to 131Xe and has not been 

observed in the gas phase for either of the other quadrupolar noble gas nuclei to date.   

Hp 131Xe has been produced by SEOP and studied with optically detected NMR 

(OD-NMR) inside of the SEOP cell.  The spin exchange cross section for 131Xe with 

rubidium was determined [8] and a study of relaxation caused by adsorption on the SEOP 

cell walls was reported [96].  In the SEOP cell, quadrupolar splitting of 131Xe on the order 

of one Hz has been observed [97; 98; 99; 100; 101]  with dependences on cell dimensions 

[97; 98; 99; 100; 101], orientation in the magnetic field [98], chemical treatment of SEOP 

cell wells [100], and temperature [101].  Luo et al. explored 129Xe and 131Xe SEOP using 

caesium  in a high magnetic field (11.7 T) [102].  Additionally, Donley et al. used SEOP 

to explore the nuclear quadrupole resonance (NQR) of 131Xe in the transformation of 

NQR spectra from the NQR to the NMR regime [103].  
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CHAPTER 2 

Quadrupolar Relaxation of Hyperpolarized Krypton-83 as a Probe for Surfaces 

This chapter is a reproduction of the journal article by Karl F. Stupic, Zackary I. 

Cleveland, Galina E. Pavlovskaya, and Thomas Meersmann, titled: “Quadrupolar 

Relaxation of Hyperpolarized Krypton-83 as a Probe for Surfaces”, published in the 

journal of Solid State Nuclear Magnetic Resonance in 2006, pages 79-84.  This article is 

reproduced for the dissertation under the privileges afforded to the authors of the paper 

by the publisher, Elsevier.  

 The publication presented in Solid State Nuclear Magnetic Resonance was written 

by Thomas Meersmann, Karl F. Stupic, and Zackary I. Cleveland with Karl F. Stupic and 

Zackary I. Cleveland collecting the data presented in the publication. Galina E. 

Pavlovskaya provided technical advice and edited the manuscript.    A discussion of data 

concerning hp 83Kr relaxation on glass beads including an altered version of Fig. 2.2 

appeared in the dissertation of Zackary I. Cleveland.  
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2.1. Introduction 

The only stable NMR active isotope of the noble gas krypton, 83Kr, has a natural 

abundance of 11.5 % and a NMR resonance frequency of 15.4 MHz at 9.4 T magnetic 

field strength. Because of its spin I = 9/2, the nucleus of 83Kr possesses an electric 

quadrupole moment (Q = 0.28 10-28 m2). An anisotropic environment will induce an 

electric field gradient in the electronic cloud of the noble gas atom, and quadrupolar 

coherence can cause quadrupolar splitting if the anisotropy has a macroscopic net 

alignment with respect to the magnetic field. This has been observed previously by 

conventional NMR with krypton dissolved in nematic phase liquid crystals [1; 2; 3] and 

by optically detected magnetic resonance in quadrupole nutation experiments of gaseous 

krypton within non-spherical macroscopic glass containers [4; 5]. In the absence of 

unpaired electrons, the quadrupole moment is the dominating factor for relaxation of the 

83Kr nuclear spin in gas, liquid, and solid phases [6; 7; 8]. The 83Kr NMR relaxation in 

various liquid solutions has been studied in the past [3; 9; 10; 11; 12; 13], and the 

chemical shift in gas and dissolved phases has been investigated [3; 9; 14; 15]. Krypton 

has also been used to explore nanoporous materials indirectly through 129Xe NMR 

chemical shift measurements in xenon-krypton gas mixtures within zeolites [16; 17]. 

Recently, direct 83Kr NMR observations of this noble gas inside a number of zeolites 

have been reported [18]. The 83Kr lineshape was found to strongly depend on internal 

cage structure and the charge of the cations inside the nanoporous materials. The field 

dependence of the lineshape observed in some Ca2+ exchanged zeolites has been 

attributed to long-range disorder. The 83Kr chemical shift has been studied as a function 

of krypton loading in these materials, but the contributions from the second-order 
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quadrupolar interactions to the observed shift remain unexplored thus far.  Despite the 

low sensitivity of natural abundance 83Kr (i.e. about 3.8% of the sensitivity obtained from 

thermally spin polarized 129Xe), meaningful 83Kr NMR measurements in zeolites can 

typically be accomplished within a few hours at medium field strength (i.e. 9.4 T) with 

thermally polarized krypton. This is possible because of the relatively fast longitudinal 

relaxation of 83Kr that ranges from milliseconds to tens of milliseconds in these materials.  

The usage of thermally polarized 83Kr as a probe for materials with small surface 

to volume ratios is hampered in part by the lower krypton loading compared to those 

found in zeolites. Even more problematic for 83Kr NMR are the increased longitudinal 

relaxation times in large pore materials with typical values ranging from seconds to many 

tens of seconds. However, experiments with small surface areas have become feasible 

because of recent developments in optical pumping that lead to the production of 

hyperpolarized (hp) 83Kr for NMR and MRI applications [19]. The theoretical 

longitudinal relaxation time of 83Kr in the pure gas phase (i.e. in the absence of a 

container wall) at 300 K, 100 kPa and 2.1 T can be estimated as T1 = 470 s [8]. However, 

longitudinal relaxation times of 90–150 s have been measured in 10–11.5 mm diameter 

and 4–5 cm long glass cylinders at 289 K, 100–200 kPa, and 9.4 T (with the relaxation 

rates also depending on the treatment of the glass surface).  The long relaxation time of 

83Kr in the gas phase allows for the production of hp 83Kr by spin exchange optical 

pumping with rubidium vapor [20] and for the subsequent separation of the alkali metal 

from the hyperpolarized 83Kr gas [19]. Signal enhancements of more than three orders of 

magnitude compared to thermally polarized 83Kr NMR signals at ambient temperature 

and 9.4 T have been achieved. The apparatus and procedure for the production of hp 83Kr 
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is briefly described in the Section 2. Details of the proof of principle optical pumping 

work including the first applications of hp 83Kr MRI are discussed elsewhere [19].  

 

2.2. Methods and materials 

2.2.1. Krypton optical pumping 

A number of researchers have explored alkali metal vapor optical pumping of 

quadrupolar noble gas isotopes, including 83Kr, in the past [4; 5; 20; 21; 22; 23; 24; 25; 

26; 27]. The setup described here has been used for the first successful separation of a hp 

noble gas with a quadrupolar nucleus from the rubidium vapor [19]. The separation 

process is similar to the ones previously used for production of non-quadrupolar hp noble 

gases in batch or continuous flow modes [28; 29; 30; 31; 32; 33; 34]. The separation of 

the hp gas from the rubidium vapor is crucial for NMR and MRI applications because of 

the reactivity of alkali metals. The experimental setup is similar to the one reported in 

literature for the production of hp 129Xe (I = 1/2) [31; 33; 34]. The gas mixture used for 

all experiments reported in this publication consists of a high concentration of natural 

abundance krypton (typically 95%) and about 5% of molecular nitrogen added for 

radiation quenching purposes [35]. The gas pressure in the pumping cell ranged from 110 

kPa to 220 kPa. Pumping with high noble gas density has been thoroughly explored for 

129Xe [33; 35; 36; 37; 38] and is found to be vital for obtaining the highest signal 

intensities with hp 83Kr. A COHERENT 60 W continuous wave diode array solid-state 

laser system is applied to the stopped flow type pumping process and leads to a signal 

enhancement of about 1200 times greater than the thermal signal at 9.4 T and 300 K [19]. 

Research grade natural abundance krypton (99.995%; Airgas, Radnor, PA) is used for the 
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pumping in a cylindrical Pyrex cell (length = 125 mm, I.D. = 24 mm) that contains 2.5 – 

5.0 g of rubidium (99.6%; Sigma-Aldrich, Milwaukee, WI & 99.75%; Alfa Aesar, Ward 

Hill, MA).  The temperature of the cell is maintained at approximately 433 K, a pumping 

cell temperature that is about 40 K higher than the temperature typically used for hp 

129Xe. In the stopped flow experiments the sample is evacuated to 0.1 kPa and the 

krypton-nitrogen gas mixture is kept under laser radiation for 10 min. Subsequently, the 

optically pumped krypton is transferred using pressure equalization into the sample cell 

where a krypton gas pressure range of 100 – 200 kPa is maintained. The rubidium vapor 

is separated from the krypton by an air-cooled filter located inside the transfer line 

between the pumping cell and the detection cell. 

2.2.2. NMR measurements 

Experiments are performed at 15.4 MHz with a Chemagnetics CMX II 

spectrometer and a 9.4 T wide-bore (89 mm) superconducting magnet. T1 values from 

optical pumping data are calculated by nonlinear least-squares fitting of the 83Kr signal 

intensity as a function of time and number of applied medium flip angle (12⁰) r.f. pulses 

(see Fig. 2.1). 

2.2.3. Preparation of samples 

The 0.1 – 2.5 mm diameter glass beads (Biospec Products, Inc., Bartlesville, OK) 

are degassed overnight at a pressure of less than 0.1 Pa and stored under dry nitrogen 

until use. The beads used as obtained from the supplier except for overnight degassing 

under vacuum conditions are referred to within this text as ‘untreated beads’. The 

‘pretreated glass beads’ are obtained by washing untreated beads for 15 min with a 1:1:5 

solution of 30% v/v NH4OH, 30% v/v H2O2, and distilled water while stirring vigorously.  
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Fig. 2.1: Signal intensity decay resulting from T1 relaxation and the application of a 

series of medium flip angle r.f. pulses. Using stopped flow optical pumping, 

hyperpolarized 83Kr is transferred into a sample of porous polyethylene (mean pore size 

70 m).  Signal is acquired by applying a series of sixteen 12⁰ r.f. pulses spaced evenly 

every 0.4 s. Similarly robust decay patterns are observed in all of the porous samples 

studied. 
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Following NH4OH/H2O2 treatment, the beads are washed for 15 min at 358 K 

with a 1:1:5 solution of 30% v/v HCl, 30% v/v H2O2, and distilled water while stirring 

vigorously. The beads are then washed five times with distilled water and dried in a 

vacuum desiccator at 523 K for 1 h. ‘Siloxane treated beads’ are pretreated beads 

siliconized with a 1:10 mixture of SurfaSilTM (Pierce Biotechnology Inc., Rockford, IL) 

in acetone and washed with distilled water in accordance with the manufacturer’s 

instructions. ‘Fluorosilane treated beads’ are obtained from pretreated beads through 

reaction with a 1:100 mixture of (3,3,3-Trifluoropropyl) tri-methoxyl silane (Gelest Inc., 

Morrisville, PA) in toluene with occasional stirring for 3 hours and later washed with 

toluene 4 times followed by drying in a vacuum desiccator at 398 K overnight.  

The 70 - 250m porous polyethylene samples (Small Parts, Inc., Miami Lakes, 

FL) are degassed overnight at pressure of less than 0.1 Pa and stored under dry nitrogen 

until use. 

 

2.3. Results and discussion 

Glass beads of four different sizes (i.e. 0.1 mm, 0.5 mm, 1.0 mm and 2.5 mm) are 

separately placed in a 10.8 mm I.D. sample cell that is connected to the pumping cell 

through a PFA transfer line. The beads are assumed to be in an arrangement resembling 

the closest packing of spheres with a constant total pore volume of 26% of the overall 

sample. The pores are the tetrahedral and octahedral holes expected from the closest 

packing and can accommodate spherical objects of radii up to r = 0.223 and r = 0.414 

respectively, if the radius of the closest packed beads is r = 1. Deviations from the ideal 

packing occur because of the finite sample container dimensions and are most 
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pronounced for the beads with the largest diameter (2.5 mm). Nevertheless, these test 

systems are reasonably well defined especially for beads with smaller radii and can easily 

be reproduced. Four different types of surfaces have been explored by 83Kr NMR, namely 

untreated, pretreated, siloxane treated and fluorosilane treated glass beads as described in 

Section 2. The results of the 83Kr NMR relaxation measurements are summarized in 

Table 2.1 and Fig. 2.2. The 83Kr relaxation rates are found to increase with decreasing 

pore size for all surfaces studied except for the fluorosilane sample where only one bead 

size was used. The geometry of the pores is unaffected by the bead diameter.  Thus the 

effect must be caused by the surface to volume ratio of the material that is directly 

proportional to the inverse radius of the spheres if ideal packing is assumed. Fig. 2.2 

depicts the relaxation rates as a function of inverse bead radius. The general dependence 

of the observed relaxation on inverse radius (i.e. surface to volume ratio) is not 

unexpected since longitudinal relaxation in quadrupolar noble gasses caused by surface 

collisions has been observed before in the case of 131Xe (I = 3/2) [26; 39; 40; 41].  In the 

current study the noble gas is detected in the bulk gas phase, but the major source of 

relaxation is caused by the particularly pronounced quadrupolar interactions during brief 

adsorption periods of the atoms on the surrounding surfaces. The longest 83Kr relaxation 

times of T1 = 90–150 s are observed in detection cells without beads where the container 

walls remain as the sole exposed surface.  If quadrupolar interactions on the surface are 

the only source for the observed relaxation, a linear dependence of the relaxation rates on 

the inverse radii is anticipated. A clear deviation from the expected linear behavior is 

observed in particular for the larger diameter beads probably because of non-ideal 

packing and a more significant contribution from relaxation at the container glass wall.  
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Bead 
Dia. 

(mm) 

Untreated 
Beads 
T1 (s) 

Pretreated Beads 
T1 (s) 

Fluorosilane 
Treated Beads 

T1 (s) 

Siloxane 
Treated Beads 

T1 (s) 
2.5 53  1 35.2 --- 21.1  0.9
1.0 35.3 

34.3 (200 kPa)a 
20.5 15.2  0.5 9.0  0.2 

9.0 (200 kPa) a 
0.5 29.0 17.9 --- 6.1  0.3 
0.1 15.0 6.5 --- 2.5  0.1 

2.6 (thermal) b 
 
Table 2.1: 83Kr T1 relaxation times in the void spaces of surface treated glass beads. 

T1 values were measured using hyperpolarized 83Kr at 100 kPa and 9.4 T unless 

otherwise specified. The uncertainties are the standard deviation in T1 measurements and 

are reported only when at least four measurements were performed. 

a The value was obtained from hyperpolarized 83Kr at 200 kPa.  

b The reported value was obtained from thermally polarized 83Kr at 100 kPa and a 

magnetic field strength of 14.1 T. The saturation experiment used to measure the T1 value 

comprises 6000 signal acquisitions at each time delay.  The total experimental time for 

this data point was approximately 4 days.  
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Fig. 2.2: Relaxation rates versus inverse bead radii from the experimental results 

summarized in Table 2.1. The inverse radius is directly proportional to the surface to 

volume ratio in the porous samples. Relaxation rates for the various bead surfaces are 

represented by the following symbols: siloxane treated – open circles, pretreated – closed 

diamonds, and untreated – closed circles. The single data point for a flourosilane treated 

surface (1.0 mm beads) is represented by an open square. Error bars represent standard 

deviations resulting from at least four replicate measurements.  The lines are only 

intended as guides to the eye.   
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A more detailed mapping of the relaxation dependence on bead diameter (with bead 

diameters < 0.5 mm) is needed to quantify the effect.  Note that generation of 

quadrupolar coherence [40; 41; 42; 43; 44] is not investigated in this work. In ideal 

closest packed spheres such coherence is not predicted because of the high symmetry of 

tetrahedral and octahedral pores. 

Beyond the surface to volume ratio a second parameter has to be considered, 

namely the van der Waals interactions that are the driving force for the hp 83Kr 

adsorption on the surface.  The non-polar but highly polarizable krypton electron cloud 

leads to more favorable surface adsorption enthalpies with non-polar (i.e. hydrophobic) 

surfaces than with polar (i.e. hydrophilic) surfaces.  The slopes for linear fitting in Fig. 

2.2 are correlated to the strength of the interaction between the surface and the krypton 

atoms.  The longitudinal relaxation depends significantly on the chemical composition of 

the surface, that may influence the adsorption time, the surface coverage, and the 

magnitude of the quadrupolar coupling.  The relaxation times are therefore shorter in 

glass beads with siloxane treated (i.e. non-polar) surfaces than in the untreated or 

pretreated beads. The opposite effect is observed with 129Xe and 3He NMR I = 1/2 [45; 

46], because the surface coating insulates the noble gas atoms from magnetic sites in the 

glass surface [47] and therefore prolongs the lifetime of the hp magnetization for spin I = 

1/2 noble gasses.  However, the quadrupolar relaxation of 83Kr dominates over all other 

types of relaxation in this study resulting in the observed trend.  

The cause for the difference in the observed krypton relaxation between untreated 

and pretreated surfaces is less obvious than the source of the difference between 

untreated and siloxane treated surfaces. In addition to being more fully covered with 
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hydroxyl groups than the untreated surfaces, it can be speculated that the pretreated 

surfaces have activated adsorption sites or perhaps greater surface corrugation. The only 

fluorosilane sample tested is made of coated 1.0 mm glass beads and results in slower 

relaxation than the siloxane (hydrophobic) treated surface but faster relaxation than that 

found in pretreated and untreated 1.0 mm beads.  

Little effect on the relaxation rates is observed when the krypton gas pressure is 

varied by a factor of 2 (from 100 kPa to 200 kPa), therefore the method can be considered 

rather robust.  At a first glance this may appear suprising since the 83Kr bulk gas phase 

relaxation rate is directly proportional to the gas density [8] and therefore directly 

proportional to the gas pressure (assuming ideal gas behavior). However, any change in 

the bulk gas phase relaxation will have little effect on the observed relaxation, because 

pure gas phase relaxation is about one order of magnitude slower than the observed rates 

that are dominated by surface processes.  At the conditions used in this study, the surface 

coverage of krypton atoms should approximately be directly proportional to the gas 

pressure (i.e. Langmuir isotherm for case with low surface coverage).  Therefore, the 

ratio between atoms in the gas phase and atoms adsorbed on the surfaces should be 

somewhat constant leading to relaxation rates that are relatively independent of the gas 

pressure.  Although not tested in this work, a more extreme change in pressure should 

have a stronger influence on diffusion, surface adsorption and therefore on the relaxation 

rates.  

The measurement of longitudinal relaxation in the 0.1 mm siloxane coated sample 

with thermally polarized 83Kr at 100 kPa and 14.1 T field strength did not show 

significant deviation from the optical pumping data at 9.4 T (Table 2.1). This indicates 
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there is no dramatic field dependence at these field strengths as is to be expected from 

quadrupolar relaxation under these conditions (i.e. short mean adsoption times and 

therefore short correlation times τc). Because the thermal measurement for even the 

fastest relaxing sample took about four days (as opposed to less than 15 min for the 

optical pumping experiments), only one such measurement is available to date. 

This new method is also explored in systems that are less ideal than the glass 

beads. Fig. 2.3 shows the 83Kr NMR spectrum of krypton inside a porous polymer sample 

with 70 m mean pore size and of bulk gas phase krypton at 100 kPa pressure. The gas 

phase peak has been referenced to 0 ppm, and the krypton gas inside the polymer appears 

upfield shifted at -1.84 ppm. The 83Kr is observed to resonate between -1 to -2 ppm for 

the glass beads and the polymer, respectively. From previous experience in 129Xe NMR 

spectroscopy, it is unexpected to observe a signal from the bulk gas phase that resonates 

at higher frequency than the noble gas contained in a porous material [48; 49; 50; 51; 52; 

53]. However, the krypton chemical shift inside the macroscopic pores in the polymers 

used in this work is very small (The 129Xe chemical shift on macroscopic polymer 

surfaces at ambient temperature is only a few ppm [54], and the krypton chemical shift is 

generally only a fraction of the xenon shift). Most likely the small downfield krypton 

chemical shift is not strong enough to offset the shielding effect caused by the magnetic 

susceptibility of the material.   Fig. 2.3 demonstrates the effect of longitudinal relaxation 

in this sample, clearly distinguishing the gas phase krypton from the krypton in the 

polymer void spaces because of the higher relaxation rate in the material.  
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Fig. 2.3: 83Kr NMR spectrum of 70 m hydrophobic porous polymer (-1.8 ppm) and of 

(bulk) gas phase at 100 kPa (referenced as 0 ppm). The bulk gas phase is contained inside 

a PFA tube with a 3.0 mm OD and a 1.65 mm ID located with axial symmetry in a 

cylindrical polymer sample. The negative (upfield) shift of the krypton inside the material 

is caused by shielding through the macroscopic magnetic susceptibility of the polymer. 

The 83Kr NMR spectrum is shown at different delay times,  , after the transfer of the 

hyperpolarized gas into the sample. The gas phase peak is clearly identified by its slower 

relaxation compared to the krypton inside the porous polymer.  
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Table 2.2 shows the longitudinal relaxation times of hp 83Kr in porous polymers 

recorded in samples without bulk gas phase.  As expected, the relaxation time increases 

with a more hydrophilic surface compared to a hydrophobic surface with similar pore 

dimension (90 - 130 m pore range for the hydrophilic and 120 m mean pore size for 

the hydrophobic sample). However, the trend in relaxation dependence on pore sizes in 

the hydrophobic samples seems to contradict the results obtained with the glass beads. 

The polymer with the largest mean pore size has the shortest relaxation time, and the 

polymer with the smallest pores has the longest relaxation time. It is important to note 

however, that the 83Kr relaxation time does not directly depend on the pore sizes but 

rather on the surface to volume ratios. In the well-defined glass beads both parameters are 

directly correlated, however the polymer micrograph in Fig. 2.4 demonstrates a very 

complex internal structure of the porous polymeric solid that is more difficult to describe 

explicitly. The surface area could increase with increasing corrugation of the polymer 

microparticles, even if the average pore size increases.  Generally, the 83Kr relaxation 

times depend directly on surface to volume ratios and not necessarily on the mean pore 

size that may be determined by alternative techniques.  

 

2.4. Conclusion 

It is shown that hp 83Kr NMR relaxation measurements are highly sensitive to the 

chemical composition of surfaces and to the surface to volume ratios in porous materials. 

In contrast to direct observation of surfaces by traditional solid-state NMR, hp 83Kr NMR 

does not require the use of any line narrowing techniques. Sensitivity is often a limiting 
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Porous Polymer T1 (s) 
Hydrophobic: 70 m pores a 3.6  0.1 
Hydrophobic: 120 m pores a 2.7  0.1 
Hydrophilic: 90-130 m pores b 7.1  0.2 
Hydrophobic: 250 m pores a 2.1  0.1 

 
Table 2.2: 83Kr T1 relaxation times in porous polyethylene samples. 

The reported uncertainty is the standard deviation resulting from four replicate T1 

measurements. 

a Mean pore size as stated by the supplier. 

b Pore range as stated by the supplier.   
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Fig. 2.4:  Micrograph of porous polyethylene obtained from an inverted microscope. The 

sample has a mean pore size of 70 m as characterized by the supplier. For 83Kr NMR 

spectra of this sample see Fig. 2.1 and 2.3.   
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factor in NMR of surfaces but is not an obstacle for hp 83Kr. Furthermore, there is no 

need to discriminate between signals arising from the sample surface and from the bulk 

gas phase, since the technique is entirely surface selective. An advantage hp 83Kr NMR 

has over optical and other surface techniques is that it can be easily applied to opaque and 

amorphous materials even under atmospheric or greater pressures.  Like the well-

established 129Xe NMR spectroscopy, the new technique is only an indirect probe for 

surface structure. However, for the first time a quadrupolar noble gas in a hyperpolarized 

state is available for materials science studies that provides information highly 

complementary to that obtained from 129Xe NMR. The closest packed glass beads are an 

ideal test system for the exploration of the surface sensitivity of new technique. Hp 83Kr 

NMR might be helpful for instance, in characterizing the homogeneity of grafting, 

wetting and other surface treatments in amorphous materials.     
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CHAPTER 3 

Hyperpolarized 131Xe NMR Spectroscopy 

The results presented in this chapter are being prepared for submission as a 

journal article with authorship as follows: Karl F. Stupic, Zackary I. Cleveland, Galina E. 

Pavlovskaya and Thomas Meersmann.  Karl F. Stupic and Thomas Meersmann wrote the 

submission with Zackary I. Cleveland and Galina E. Pavlovskaya providing edits.  Karl 

F. Stupic designed, built, and carried out all the experimental work.  Zackary I. Cleveland 

and Galina E. Pavlovskaya provided useful discussions and technical support.  
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3.1. Introduction 
 

In contrast to the extensive literature reporting nuclear magnetic resonance 

(NMR) studies with the spin I = 1/2  isotope 129Xe (110.5 MHz resonance frequency at 

9.4 T, 26.4 % natural abundance) [1; 2; 3; 4; 5; 6; 7], the only other NMR active stable 

isotope of this noble gas, 131Xe,  has attracted much less attention since its first reported 

NMR observation in 1954 [8]. The 131Xe isotope (41.2 MHz resonance frequency at 9.4 

T, 21.2% natural abundance) has a spin I = 3/2 and thus possesses a nuclear electric 

quadrupole moment [9]. The electric quadrupole moment of the xenon nucleus is 

susceptible to interactions with electric field gradients (EFGs) and serves therefore as a 

very sensitive probe for distortions of its large surrounding electron cloud [7]. 

Quadrupolar interactions are the dominating cause for 131Xe nuclear spin relaxation in all 

phases unless a high concentration of paramagnetic substances is present. Confirming the 

earlier theory of Staub [10], Brinkmann et al. [11] determined the 131Xe relaxation time 

(T1) to be inversely proportional to the gas density   with 

  1/ T
1
  3.96 102amagat1s1  (1 amagat is the density   of the gas under standard 

conditions). For pure xenon gas at ambient pressure a 131Xe a relaxation time of T1 ≈ 25 s 

can be extrapolated, neglecting relaxation caused by the surrounding container walls.  

Warren and Norberg [12; 13] found that frozen natural abundance 131Xe has a 

longitudinal relaxation time of 1 390 T s at 9 K that decreases monotonically by more 

than three orders of magnitude with increasing temperature to T1 ≈ 200 ms at 

temperatures close to the melting point (161 K). Upon melting, a fivefold acceleration of 

the relaxation was observed that slows down with increasing temperature and follows an 

approximate 1
AE RTT e dependence, with 12.68 0.13 kJ molAE     as the activation 
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energy for the thermal motion processes in the liquid phase. At 3 MPa and 250 K the 

relaxation slowed to T1 ≈ 80 ms and later work [14] determined T1 = 110 ms at 

conditions just below the critical point, i.e. 298 K and 5.8 MPa. Fast longitudinal 

relaxation leads to rapid depolarization and makes usage of hp 131Xe in the condensed 

phase impractical, except perhaps in the frozen state at temperatures far below that of the 

liquid nitrogen. 

The 131Xe relaxation behavior of xenon dissolved in various solvents has been 

subject to various experimental NMR spectroscopy and computational studies in the past 

(see [15] for a review). Longitudinal relaxation in polar solvents is fairly fast (T1 < 10 

ms) due to the electric field gradient fluctuations induced by the dipoles. However, even 

in non-polar solvents, the 131Xe T1 relaxation times are typically below 50 ms and hence 

to short for most application of hyperpolarized 131Xe. Rapid signal averaging with 

thermally polarized 131Xe NMR spectroscopy is the method of choice for these samples. 

Using thermally polarized 131Xe, NMR studies have been reported in a variety of material 

sciences related systems such as liquid crystalline phases where 131Xe a triplet caused by 

interactions of the nuclear quadrupole moment with the anisotropic environment  (see 

[16] for a review), liquid crystals contained in micro channel [17], and in bicells [18]. 

Other studies extended 131Xe NMR spectroscopy to surfaces at low temperatures [19], 

porous materials [20; 21; 22; 23; 24], to macro molecules [25] and even to actual xenon 

compounds [26; 27]. Thermally polarized 131Xe magnetic resonance imaging (MRI) 

provides a contrast that is sensitive to water adsorbed on aerogel surfaces [28]. 

Unfortunately, the fast longitudinal relaxation in all these systems does not permit for 
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meaningful applications of hp 131Xe NMR, unless interfaces or material regions in 

immediate vicinity to the gas phase were to be studied.  

Previously, spin exchange optical pumping (SEOP) with alkali metal vapor [29; 

30] was successfully applied to produce hyperpolarized 131Xe, as studied in detail by 

Volk [31; 32], Happer [33; 34; 35], Pines [36] and Mehring [37] and their respective co-

workers. Luo et al. explored 131Xe SEOP using caesium in high magnetic fields [38].  

The hp 131Xe is never without a surrounding container wall in these experiments, 

affecting apparent gas phase 131Xe relaxation behavior. Effects of glass surfaces on the 

gas phase 131Xe relaxation were measured in the presence of alkali metal vapor in 

optically detected NMR experiments using SEOP [33; 34; 35; 36; 37]. Moreover, the 

shape of macroscopic containers with centimeter-sized dimensions can cause an 

anisotropy in the effective electric field gradient that in turn can produce a small 

quadrupolar splitting observed in the gas phase [33; 34; 35; 36; 37; 39; 40]. In cylindrical 

cells an observable splitting, typically in the Hz regime or less, was observed that 

depends on the aspect ratio of the cell dimensions and the cell orientation within the 

magnetic field. This splitting is averaged out in cells with spherical symmetry if 

macroscopic gas diffusion allows the xenon atoms to sample surface segments with 

different orientations during the relevant NMR timescale. Quadrupolar splitting caused 

by an anisotropic macroscopic surface orientation can also be observed in NMR tubes 

with thermally polarized 131Xe NMR spectroscopy [14; 39; 40]. In an intriguing 

experiment, Mehring and co-workers used optical detection and hp 131Xe in a rotating 

glass cell to construct a gyroscope that utilizes geometric quantum-phase [41; 42; 43] 

(see refs. [44; 45] for further theoretical work).  



74 
 

A quadrupolar splitting can also be generated in the bulk gas phase, independent 

of the presence of surfaces [14]. The high magnetic field 0B


 used in NMR spectroscopy 

generates an electric field gradient in atoms that are placed into this field. This EFG is 

always aligned with 0B


 and can lead to a 0B


dependent 131Xe quadrupolar splitting of a 

few Hz or less in the bulk gas phase. The EFG is a result of interactions of the external 

magnetic field 0B


with the ring current and its resulting magnetization M


 induced by 0B


 

into the atomic electron cloud. The resulting quadruplolar splitting shows, therefore, a 

quadratic dependence upon 0B


 as shown previously [14]. Theory papers following the 

experimental observation of the quadratic magnetic field dependence of the splitting 

disagree about the presence of an additional linear term [46; 47]. At the currently 

available magnetic field strengths, this effect has only be observed by NMR spectroscopy 

of the noble gas isotope 131Xe, utilizing the unique combination of its large and easily 

distortable electron cloud, the spherical symmetry of the unbound noble gas atoms, its 

‘high resolution grade’ NMR linewidth in the gas phase and its large nuclear electric 

quadruple moment at a relatively small spin I = 3/2 value. 

The work presented here is concerned with the production of alkali metal free hp 

131Xe, a general treatment of hp noble gas polarization in spin I > 1/2, and a study of the 

effects of gas composition including the presence of water vapor upon the 131Xe 

quadrupolar splitting.   
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3.2. Methods and materials 

3.2.1. Generating alkali-metal free hp 131Xe    

 As detailed in the introduction, 131Xe has been previously explored through spin-

exchange optical pumping (see introduction), however separation from the alkali metal 

vapor has never been reported.  Separation from the alkali metal vapor is well developed 

for 3He, 129Xe, (both spin I =1/2) [48; 49] and was accomplished with 83Kr [48; 50; 51; 

52; 53; 54; 55; 56], a noble gas isotope with spin I = 9/2. The major obstacle for 

producing alkali metal free hyperpolarization with spin I > 1/2 noble gases is the nuclear 

electric quadrupole moment of these isotopes. Quadrupolar interactions caused by gas 

phase collisions, in van der Waals complexes of noble gas atoms (within the gas phase), 

and during brief surfaces adsorption of the noble gas atoms typically lead to fast 

longitudinal relaxation that diminishes the hyperpolarization. Although the spin I = 1/2 

isotope 129Xe has a T1 time on the order of many tens of minutes at near ambient 

pressures and temperatures [57], T1 of only 5 s for the quadrupolar 131Xe isotope was 

obtained in this work at a pressure of 120 kPa (using mixture III at 9.4 T in a 12.6 mm 

I.D. glass cell). This value is much shorter than T1 ≈ 25 s expected from pure gas phase 

relaxation (see introduction) because of the relatively large surface to volume ratio in the 

NMR tubes. The fast longitudinal relaxation makes 131Xe more problematic than 83Kr that 

exhibits T1 times of around 150 s under similar conditions [58; 59]. This predicament is 

amplified in continuous flow optical pumping where the hp noble gas is generated 

outside the superconducting magnet and slowly transported through tubing into the NMR 

detection cell in the center of the magnet. The tubing has typically a high surface to 
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volume ratio compared to that of the pump cells and causes fast depolarization that is 

even further accelerated due to increased relaxation at low magnetic field strengths [54].  

Because the T1 for 131Xe in the solid phase is extremely short (at 77 K a T1 

slightly above 1 s was observed [12]), freezing the hp noble gas at liquid nitrogen 

temperatures - a methods frequently used for 129Xe separation from 4He gas used in the 

pumping process [60; 61]- would be completely destructive to the 131Xe polarization. As 

a consequence, either no helium is used for 131Xe optical pumping or the helium is not 

removed from the mixture after optical pumping. 

In this work, a “batch” or stopped-flow delivery method [53; 54; 55; 56] is used  

that quickly shuttles the hp 131Xe after 5-10 minutes of SEOP through transfer tubing to 

the detection cell as shown in Fig. 3.1. SEOP is carried out in cylindrical Pyrex glass 

cells (length = 125 mm, I.D. = 27 mm) containing 1 to 2 g of rubidium (99.75%; Alfa 

Aesar, Ward Hill, MA).  Illumination of the SEOP cell is provided by a Coherent diode 

array laser system producing 40 W of circularly polarized light at 794.7 nm.  The gas 

pressure in the pumping cell ranged from 120 kPa to 460 kPa depending on the desired 

final pressure.  Three gas mixtures are used in this work, 5% Xe, 5% N2, and 90% He 

(mixture I); 20% Xe, 5% N2, and 75% He (mixture II); or 93% Xe and 7% N2 (mixture 

III), produced from research grade Xe (99.995%, natural abundance), N2 (99.9997%), 

and He (99.9999%) (Airgas, Radnor, PA).  The 131Xe T1 relaxation in the 27 mm I.D. 

SEOP cell at operation temperatures of T = 453K in 0.05 G magnetic fields was not 

determined. The shuttling is accomplished by pre-evacuation of the detection cell to a 

pressure of less than 0.1 kPa, followed by pressure equalization between the detection 

cell and the pumping cell that allows for rapid transfer of hp 131Xe. Loosely packed glass  
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Fig. 3.1: Experimental setup for production and delivery of hp 131Xe. Following 

polarization build up in the SEOP cell, the hp gas valve is opened allowing hp 131Xe to 

follow into a two valve section that releases some hp gas to ensure only polarized gas 

goes to the sample region. After releasing the un-polarized gas, the vacuum valve is 

closed and the sample cell valve is opened to allow hp 131Xe to be shuttled by pressure 

equalization into the sample cell for detection.  After detection the vacuum valve is 

opened to re-evacuate the detection cell to < 10 Pa. 
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wool filters in the transfer line can be applied to remove the alkali metal vapor from the 

hp 131Xe. For experiments that involve water vapor, two systems were employed. At 9.4 

T, hp 131Xe was streamed over 3 mL of water in a storage vessel prior to entering the 

detection cell.  At 14.1 T, a container of water was placed in the system at a junction; this 

vessel was filled with 10 mL of water, placed under vacuum, and closed off from the rest 

of the system.  After the rest of the system was evacuated following the previous 

discussed stopped-flow method, the water vessel was opened and allowed the system to 

be filled with ~3.2 kPa of water vapor, compared to the 1.9 kPa of water vapor for 

saturation at ambient temperature.  The vessel was then closed again and delivery of hp 

131Xe gas was carried out.   

 

3.2.2. NMR measurements 

 Experiments are performed at three field strengths, i.e. at 9.4 T using a 

Chemagnetics CMX II spectrometer, at 11.7 T with a Varian INNOVA spectrometer, and 

at 14.1 T with a Chemagnetics Infinity spectrometer. The 11.7 T and 14.1 T systems used 

a commercial 10 mm broadband probe tuned to 131Xe frequency (41.23 MHz and 49.47 

MHz, respectively).  Both 11.7 T and 14.1 T were shimmed using an external D2O 

standard, also used for the field lock. The D2O is located between the walls of the outer 

tube (10.0 mm OD, 9.1 mm ID; Wilmad-LabGlass, Vineland, NJ) and the inner detection 

tube (Custom-built medium wall NMR 8 mm OD for 11.7 T; 5 mm OD, 4.2 mm ID for 

14.1 T; Wilmad-LabGlass, Vineland, NJ) that contains the hp gas. The polarization build 

up curves and relaxation measurements were collected at 9.4 T in a custom built flow 

probe tuned to the 131Xe frequency at 32.81 MHz using a 15 mm O.D., 12.6 mm I.D. 
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Pyrex glass sample tube with no external D2O for shimming since the quadrupolar 

splitting did not need to be resolved for this purpose.  

T1 values for hp 131Xe are calculated by nonlinear least-squares fitting of the 131Xe 

signal intensity as a function of time and number of applied medium flip angle (12.3°) 

radiofrequency (RF) pulses. All T1 data are the averages of four replicate measurements 

and the errors reported are the standard deviations resulting from those replicate 

measurements. The signal enhancements for hp 131Xe are referenced to the thermal signal 

obtained from a sample containing 810 kPa of natural abundance Xe at the corresponding 

field strengths.  Quadrupolar splittings, 2υQ, are obtained from the difference of peak 

position of the satalite transitions obtained by deconvolution of the 131Xe NMR spectrum 

by multi-peak fittings.  Additional parameters obtained from deconvolution are full-

width, half-height (FWHH) and peak height. Deconvolution allows for these parameters 

to be determined without the influence of the other peaks in the spectrum. 

 

3.3. Results and discussion 

Fig. 3.2 shows the spectra of 131Xe and 129Xe obtained from thermally polarized 

and hyperpolarized (hp) samples for comparison. Some differences between the two 

xenon isotopes become immediately apparent. First, the NMR spectra of the quadrupolar 

spin I = 3/2 isotope 131Xe display a clear triplet caused by quadrupolar interactions. This 

is the case for either thermally polarized 131Xe or hp 131Xe spectra, whereas NMR spectra 

of the spin I = 1/2 129Xe isotope both result to the expected singlet. The remarkable 

appearance of a 131Xe triplet in the gas phase is discussed in the introduction and in more 

detail examined below (see section 3.3.5). A further difference  
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Fig. 3.2: Gas phase NMR spectra collected at 11.7 T of natural abundance 129Xe (A and 

B) and 131Xe (C and D) with their associated energy levels at thermal, high temperature 

equilibrium (A and C) and after optical pumping using transition 1m    (B and D). (A) 

129Xe  NMR spectrum of natural abundance xenon at 400 kPa partial pressure of pure 

xenon and 100 kPa (partial pressure) oxygen using 250 transients;  (B) hyperpolarized 

129Xe NMR spectrum with 10 kPa (partial pressure) xenon from a 200 kPa, 5% xenon gas 

mixture after a single stopped-flow delivery; (C) thermal 131Xe NMR spectrum after 1260 

transients with a partial pressure of 93 kPa of xenon from a 100 kPa, 93% xenon gas 

mixture; and (D) hyperpolarized 131Xe NMR spectrum after a single stopped-flow 

delivery using 10 kPa xenon partial pressure of a 200 kPa, 5% xenon gas mixture.  All 

hyperpolarized spectra are collected with one transient.  When correcting for xenon 

partial pressures and number of transients, enhancements of 33,000 and 1,500 were 

achieved for 129Xe and 131Xe, respectively.  Enhancements of up to 5000 have been 

observed in other hp 131Xe spectra.  The differences in the relative phase are discussed in 

section 3.3.2.
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between the two noble gas spectra shown in Fig. 3.2 is that thermally polarized 131Xe and 

hp 131Xe  are 180° out of phase with respect to each other while both 129Xe spectra posses 

the same phase. The discrepancy in the relative phases for the two isotopes is caused by 

the absolute signs of the respective gyromagnetic ratios and explained in section 3.3.2 

below. Finally, as discussed in the following section 3.3.1, the linewidth of the 131Xe 

center transition is substantially narrower than its differentially broadened satellite 

transitions and the line width found in the 129Xe spectra.  

 

3.3.1. Linewidth of the 131Xe Triplet 

A 3.4 fold linewidth ratio is expected from the difference in the gyromagnetic 

ratios γ for the two xenon isotopes if the dominating cause for linewidth was magnetic 

field inhomogeneity. The observed linewidth for the 131Xe center transition was 0.3 Hz 

full width, half height (FWHH), while 1.8 Hz FWHH was observed for the 129Xe spectra. 

The 0.3 Hz FWHH of the center transition for 131Xe is approximately constant for all the 

pressures used in this work.  For all experiments in Fig. 3.2 the same detection (glass) 

cell was used and the applied B0-field shimming (using an external D2O container) was 

very similar for all measurements but was not quantified. 

Quadrupolar interactions are likely to be responsible for the observed 131Xe 

differential line broadening of 0.6 Hz  FWHH between the 131Xe center transition and the 

satellite transitions with 0.8 Hz  and 0.6 Hz, respectively at higher and lower Hz values 

(as shown in Fig. 3.2D).  Unlike the center transition, the FWHH of the satellite 

transitions broadens as the pressure increases.  Differential broadening of this type can be 

produced by different relaxation rates for the satellite transition compared to the center 
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transition  [62]. However, this necessitates that the extreme narrowing condition 

 2

0 1c    is no longer fulfilled and thus requires long correlation times       τc ≥ 10-9 s 

that are not expected in the gas phase. Binary collisions in the gas phase are on the order 

of a few picoseconds and short-lived Xe-Xe van der Waals molecules have life times 

around 10-10 s at 1 amagat xenon density [63].  The correlation times of interactions at the 

surface are dictated by the averaged adsorption time, τa, that is approximately 10-10 s for 

xenon atoms on glass surfaces at 300 K. This value is obtained using 

   a
 

0
exp(E / k

B
T )  with the desorption activation energy E = 0.12 eV of xenon on 

borosilicate glasses [37] and assuming τ0 = 10-12 s. Although none of the correlation times 

associated with these events are long enough to cause biexponential relaxation, it is 

possible however that strong xenon adsorption sites are present on the Pyrex surface. The 

prolonged correlation times at these locations may lead to a violation of the extreme 

narrowing condition and thus to differential linebroadening.  

An additional hint for surface interactions as the source for the satellite 

broadening is the differential broadening between the two satellite transitions. Such 

differential broadening may be the result of paramagnetic – quadrupolar cross correlation 

that was observed recently by Jerschow and co-workers by 23Na  NMR in the presence of 

paramagnetic contrast agents [64]. The only source for paramagnetism for the spectra in 

Fig. 3.2 is on the Pyrex surface. Further causes may be CSA-quadrupolar cross-

correlation effects during prolonged surface adsorption. Alternatively, the lineshape may 

be inhomogeneously broadened by differences in EFG experienced by the xenon atoms in 

various parts of the container that are not averaged by gas diffusion at the gas pressures 

used.  
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Although the precise mechanism of the satellite broadening remains speculative 

thus far, it most likely originates from interaction with the Pyrex surface that are scaled 

down by exchange with the gas phase where the NMR signal is observed. Note that the 

scaling also takes place for quadrupolar splitting that is on the order of 6 MHz on a Pyrex 

surface [65] but that is observed as a few Hz splitting in the gas phase. As discussed in 

section 3.3.5, the line width and the quadrupolar splitting are significantly affected by the 

gas composition and overall pressure.  

 

3.3.2. Relative phase and the sign of γ 

The 180° phase difference found between the thermally and the hp 131Xe spectra 

warrants a more detailed explanation. 131Xe is unique among the stable (i.e. non-

radioactive) noble gas isotopes because it is the only isotope with a positive 

gyromagnetic ratio γ. Therefore, according to 0m zE m B   , the energy level Em with the 

highest possible positive z-quantum number, i.e. mz = + 3/2, constitutes the ground state 

for 131Xe, whereas mz = − 1/2 is the ground state for the 129Xe isotope. Indeed, with the 

exception of 131Xe all NMR active and stable noble gas isotopes, namely 3He, 21Ne, 83Kr 

and 129Xe have negative gyromagnetic ratios and the respective ground state is the one 

with the most negative mz quantum number. The sign of the coherence generated by a 

90° pulse ( rf-pulse, 0
ˆ ˆ

x xH B I  ) depends on the sign of γ and can be important in 

magnetization transfer or coherence transfer NMR experiments. However the appearance 

of single-pulse NMR spectra is not affected by the sign of γ except for a 180° phase 

difference that is difficult to detect between nuclei with different resonance frequencies. 

However, in SEOP experiments, the relative sign of γ determines how the energy levels 
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are being pumped by either σ− or σ+
 circular polarized light. Therefore, it has 

consequences even for the outcome of a 1-pulse NMR experiments because the  -sign 

affects the spin population before the RF-pulse is applied. This effect is depicted in Fig. 

3.2 where the energy levels and the spin population are sketched for the two isotopes. In 

SEOP the sign of ∆m in the nuclear spin transitions depends only on the choice of either 

σ− or σ+
 circular polarized light for the pumping process and is independent of the sign of 

γ.  Although the sign of γ does not affect ∆m itself, it still has consequences on the 

population of the energy levels. For 129Xe, the optical pumping transition ∆m= -1 pumps 

the higher energy spin state (mz = +1/2) down to the lower energy spin state (mz = −1/2) 

and thereby causes a reduction in the spin-temperature. In contrast, the same optical 

pumping transition, ∆m= −1, pumps low energy spin states in the 131Xe system into higher 

energy spin states leading to an inverted spin population distribution. The phase 

difference between the thermally polarized spectrum and the hp spectrum of either 

isotope is straightforward to compare. When using ∆m= −1 optical pumping, no phase 

difference is observed for 129Xe whereas a 180° relative phase shift is observed for 131Xe.  

 

3.3.3. Polarization in spin I > 1/2 nuclei 

A general definition of the nuclear spin polarization P is given by Wenckebach 

[66]: 

    
 1 1 ˆ

zP Z Tr I
I




    [Eq. 3.1] 

written here in slightly different form where Z−1
 the inverse partition function for the spin 

I system that normalizes its density matrix ρ. The polarization P in Eq. 3.1 is obtained 
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from the magnetization zM  normalized through its maximum possible value of 

zM I    at the theoretical limit of T = 0 K. 

To obtain a simple to use equation for the polarization P, Eq. 3.1 is rewritten as: 
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[Eq. 3.2] 

 

For 0 / BT B k   , the polarization simplifies to: 

 
0

0
/ 1

3BT B k
B

B
P I

k T


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
      

[Eq. 3.3] 

 
The polarization P of a thermally polarized spin I ≥ 1/2 system can be readily 

calculated using Eq. 3.3 that transforms into the well-known equation 

0

1 2
, 0 2I

B T BP B k T    for spin I = 1/2 systems. However, the definition of polarization P 

is only useful if P is linearly dependent upon the observed signal intensity at any 

temperature. For instance, this is not the case if one defines the spin polarization of a spin 

I > 1 systems through the sum of the population differences between two adjacent energy 

levels [67]. The signal intensity S
tp

B0 ,T  caused by thermal polarization (i.e. Boltzmann 

polarization) of the sample at temperature T and magnetic field B0 is determined by: 
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[Eq. 3.4] 

with m as the z-quantum number of spin I and kB as the Boltzmann constant. Note that 

Eq. 3.4 describes total integrated signal intensity – i.e. obtained from the sum of all 
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integrated peaks if a spitting is present. Eq. 3.4 is allowed to depend on the sign of the 

gyromagnetic ratio in order to accommodate the absolute phase of the signal discussed in 

section 3.3.2. The transition matrix elements 

  22

,
ˆ, 1 ,I mC I m I I m
              [Eq. 3.5] 

are obtained from 

   ˆ , 1 1 , 1I I m I I m m I m               [Eq. 3.6] 

All contributions to the signal intensity other than γ, B0, and the populations of the 

various quantum states are combined in the coefficient A. At ambient temperatures (i.e. 

0 / BT B k  ), Eq. 3.4 can be simplified to: 

  0

3 2
, 0

, high T

2
1

3
B T
tp

B

A B
S I I

k T


  


             [Eq. 3.7] 

where the intensity has been allowed once again to be phase sensitive to the sign of γ. 

Using the signal intensity 0 ,B T
tpS  from Eqs. 3.4 or 3.7, the maximum enhancement can be 

defined as:  

0 0 0, , 0 ,
max
B T B T K B T

tp tpf S S         [Eq. 3.8] 

where 0 , 0B T K
tpS  is the maximum possible (thermal) signal intensity expected at T = 0 K 

(phase sensitive): 

  0

3 3
2, 0

0 , 0 2B T K
tp I m IS A B C A B I

 
 

 
           [Eq. 3.9] 

Using Eqs. 3.7, 3.8, and 3.9, the maximum enhancement factor from hyperpolarization 

(assuming non-thermal equilibrium but still Boltzmann type of population distribution) 

compared to a thermal signal at ambient temperature is [67]: 
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BB T B k Bk T
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


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

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           [Eq. 3.10] 

The maximum enhancement factor 0 ,
max
B Tf   in Eq. 3.10 is the inverse of the polarization P 

at high temperatures given in Eq. 3.3. Further, 0 ,
max
B Tf  in Eq. 8 (inserting Eqs. 3.4 and 3.9) 

is the inverse to the polarization P in Eq. 3.2 at any temperature. As a practical 

consequence, the polarization P of a hyperpolarized system with arbitrary spin I ≥ 1/2  

can be calculated from the polarization of the thermally polarized system using Eq. 3.3 

multiplied with the enhancement factor of the hp signal over the thermal signal.  

The thermal polarization for 131Xe at 9.4 T magnetic field strength and 300 K is 

131 6
9.4 ,300 4.4 10Xe

T KP    and therefore a signal enhancement of 9.4 ,300 5
max 2.27 10T Kf    times 

the thermal equilibrium signal at 9.4 T and 300 K corresponds to 100% polarization. For 

comparison, the thermal polarization for 83Kr is 
83 6

9.4 ,300 4.4 10Kr
T KP    

( 9.4 ,300 5
max 2.21 10T Kf   ) and for 129Xe is   P9.4T ,300K

129Xe  8.9 106 ( 9.4 ,300 5
max 1.12 10T Kf   ). 

Fig. 3.3A shows the thermal polarization P (or  0
1,

max
B Tf


) at 9.4 T field strength as a 

function of the temperature T (i.e. spin temperature) for all stable, NMR active noble gas 

isotopes. Remarkably, the spin temperature dependence of the polarization P is almost 

identical for all three quadrupolar noble gas isotopes. This is not very surprising in the 

case of 131Xe and 21Ne since both isotopes have the same spin and similar gyromagnetic 

ratios. However, in the case of 83Kr the effect of the smaller gyromagnetic ratio 

(compared to 131Xe and 21Ne) is compensated by the higher spin I = 9/2.  

 

   



88 
 

 
Fig. 3.3:  Semi-logarithmic plots of normalized polarization versus temperature obtained 

from Eq. 2 for the spin active noble gas nuclei and a theoretical Kr isotope with spin I = 

3/2.  A) Normalized polarization curves as a function of temperature are displayed at 

temperatures up to 0.05 K, highlighting the deviations in polarization curves at very low 

temperatures. B) Normalized polarization curves as a function of temperature extended 

out to 3 K. To reach 1% polarization, the following polarization enhancement compared 

to the samples at 300 K and 9.4 T needed for each nuclei: 410 for 3He; 1123 for 129Xe; 

2373 for 21Ne; 2206 for 83Kr; 2273 for 131Xe; and 4855 for the theoretical Kr isotope For 

the three quadrupolar isotopes (21Ne, 83Kr, 131Xe) nearly identical polarization curves 

arise - see section 3.3.3 for details. 
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3.3.4. Polarization buildup of 131Xe  

 Using the stopped-flow optical pumping method, 131Xe signal enhancements on 

the order of 5000 times greater than thermal signal at B0 = 9.4 T, 150 kPa and 297 K are 

achieved (approximately 2.2% spin polarization) when using a 5% mixture of xenon 

(mixture I).  The 131Xe polarization build up reaches a steady state relatively quickly 

compared to other isotopes (3He, 129Xe, 83Kr) due to very short 131Xe T1 times. Therefore, 

the fast longitudinal relaxation is not only problematic because of the decay of 

hyperpolarization but it also limits the spin polarization obtained from the SEOP process.    

 The time dependence for the hp 131Xe polarization buildup is shown in Fig. 3.4 for 

the three different mixtures (5, 20, 93% Xe) under 20 W of circularly polarized 794.7 nm 

laser light. To monitor the 131Xe polarization build-up the magnetic field at the SEOP cell 

remains switched off initially and the cell is maintained under constant laser illumination 

at a constant temperature (453 K) and pressure (150 kPa). This procedure allows for a 

‘starting point’ with little or no 131Xe spin polarization present.  The magnetic field of a 

pair of Helmholtz coils was then turned on for incremented time period, tp, after which 

the hp 131Xe was transferred to the sample cell where it is detected. At the longest optical 

pumping times (on the order of several minutes) used for the experiments, mixture I (5% 

Xe) produced a polarization of 2.19%, mixture II (20% Xe) produced a polarization of 

0.45%, and mixture III (93% Xe) produced a polarization of 0.04%.   

The time dependent build-up of hyperpolarization is described as [61]: 

 

   
  131

1 se pop z tXe se
SEOP i

se sd iop z
i

P e
M


  

   
  

         [Eq. 3.11] 



90 
 

 

Fig. 3.4: Polarization of hp 131Xe as a function of polarization time t.  Optical pumping 

was carried out for mixtures I (5% xenon, open circle), II (20% xenon, open square), and 

III (93% xenon, open triangle) under 20 W laser illumination in a pair of Helmholtz coils.  

Data was collected at 9.4 T after a stopped-flow delivery cycle of duration t. The 

theoretical curves are obtained by fitting the data to Eq. 3.12.  Values for the exponential 

term, B, for the three mixtures are as follows: mixture I, 0.030 ± 0.001; mixture II, 0.037 

± 0.002; mixture III, 0.085 ± 0.006.  Inset: Magnification of polarization versus time plot 

for mixture III.  
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where γse is the Rb–Xe spin exchange rate and Γ the quadrupolar driven fast self-

relaxation rate of 131Xe that cannot be treated as negligible as is the case for 129Xe optical 

pumping [61]. The destruction of Rb spin polarization by collisions with inert gas atoms 

is described by the sum of the products of the rate constants, i
sd , with their 

corresponding gas atom number densities  iM . The optical pumping rate per Rb atom, 

 op z , depends on experimental parameters such as laser power, SEOP cell design, and 

SEOP temperature that are kept constant for all build up experiments reported here. 

However only a comparison of a reduced form of Eq. 11 was used for fitting of the 

experimental data since se, Γ, and i
sd  are unknown under the SEOP conditions used in 

this work:   

   131

1 pBtXe
SEOPP t A e           [Eq. 3.12] 

The lower the xenon concentration in the gas mixture, the larger the pre-exponential 

parameter A. The value obtained for A with mixture I is 5 times greater than the value of 

mixture II and 86 times greater than the value obtained for mixture III. This effect reflects 

mainly the increased 131Xe self relaxation Γ at higher densities caused by 131Xe-Xe 

collisions [10; 11]. In comparison, 131Xe-He collisions are much less efficient 

contributors to the 131Xe self-relaxation. Xenon density dependent changes are also 

observed in the exponential factor B where mixture III provides the greatest value and is 

about 3 times greater than mixture I and 2 times greater than mixture II.  Again, this can 

be explained by the increase in the self-relaxation rate constant  for the increasing 

xenon concentrations. The general xenon-density dependence follows that of 129Xe SEOP 

curves [68] but is much more amplified for 131Xe because of the quadrupolar driven 
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relaxation. The consequences of these effects on hp 131Xe spectra can also be seen in Fig. 

3.5. A distinct decrease in optical pumping efficiency was observed in mixture II and 

mixture III as the pressure was increased. At 100 kPa pressure only 0.03% polarization 

was generated for mixture III and the signal was barely observable at higher pressures. At 

the lowest xenon concentration (mixture I), the pressure had a negligible effect on the 

SEOP conditions, The likely source for this behavior is that the accelerated relaxation at 

increasing pressure was compensated by increasing SEOP efficiency due to improvement 

of  op z  caused by broadening of the rubidium adsorption line width. 

 

3.3.5. Influence of pressure and concentration on quadrupolar splitting of 

131Xe 

A dependence of the quadrupolar splitting on both the total pressure of the sample 

and the gas composition at a field strength of 11.7 T was observed with hp 131Xe. In Fig. 

3.5 the hp 31Xe spectra are shown for mixtures I and II with pressures ranging from 100 

to 400 kpa and for mixture III with pressures ranging from 25 to 100 kPa. Higher 

pressures for mixture III could only be detected using signal averaged thermally polarized 

131Xe NMR the temperature conditions that would likely differ compared to stopped-flow 

SEOP experiments and that have not been attempted.  

The quadrupolar splitting varies from the smallest observed value of 2.40 Hz at 

400 kPa in mixture II to the largest value of 3.05 Hz at 100 kPa of mixture I.  The 

quadrupolar splitting of 131Xe observed in mixture I decreases slightly over the pressure 

range of 100 to 400 kPa.  At 100 kPa the quadrupolar splitting is 3.05 Hz and it decreases 

to 2.71 Hz at 400 kPa, a change of 0.34 Hz.  Mixture II has a greater decrease in   
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Fig. 3.5: Hp-131Xe gas phase NMR spectra at various compositions and pressures.  Hp-

131Xe gas was contained in an 8 mm plain NMR tube at 11.7 T field strength and 289 K.  

Mixtures I, II, and III are represented with associated percentages of xenon along the y-

axis and the pressure of the sample cell at the time of detection along the x-axis.  

Magnification factors are presented beside each spectrum.  Mixture I and II (5% and 20% 

xenon, respectively) are shown from 100 to 400 kPa while mixture III (93% xenon) is 

shown from 25 to 100 kPa.  Pressures (Ptot: total pressure, PXe: xenon partial pressure) are 

denoted beside each spectrum along with the associated quadrupolar splitting. 
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 quadrupolar splitting than was observed in mixture I over the same pressure range. The 

quadrupolar splitting was 3.00 Hz at 100 kPa and 2.40 Hz at 400 kPa, for an overall 

change of 0.60 Hz, almost double the change observed in mixture I. The quadrupolar 

splitting observed in mixture III decreases from 2.91 Hz at 25 kPa to 2.54 Hz at 100 kPa, 

a change of 0.37 Hz over the pressure range.   

The pressure dependence of the appearance of the 131Xe spectra could be caused 

by changes in quadrupolar splitting arising from the interactions with the glass surface. 

Noble gases at ambient temperature will exhibit a very low surface coverage rate, θ, that 

is dependent on xenon density [Xe] as described by the Henry isotherm. This would 

predict a constant θ/[Xe] and hence alternating xenon densities will not affect the splitting 

observed in the gas phase. However, this picture would change in the presence of strong 

xenon adsorption sites caused by defects on the surface that may experience xenon 

coverage rates close to saturation under the used pressure conditions. As noted above, 

strong adsorption sites may also be a possible explanation of the observed differential 

line broadening. 

 

3.3.6. The effect of H2O vapor on 131Xe relaxation and quadrupolar splitting. 

The addition of co-adsorbing molecules can be used to demonstrate that the gas 

phase quadrupolar splitting is indeed influenced by changing surface interactions. It was 

previously shown [28] that the adsorption of water onto an aerogel surface changes the 

spin-spin relaxation, an effect that was used for MRI contrast.  The addition of water 

vapor had a clear effect on the 131Xe NMR spectra. The 131Xe quadrupolar splitting 

observed at 14.1 T in a 5 mm NMR tube at 100 kPa and 290 K without the presence of 



95 
 

water vapor is 5.24 Hz (see Fig. 3.6A).  Upon the addition of 3.2 Pa of water vapor as 

described in the experimental section, the splitting is reduced to 4.46 Hz as shown in Fig. 

3.6B.  The influence of the water vapor is be removed from by evacuating the NMR tube 

and flushing with dry nitrogen at least three times.  Following this treatment, quadrupolar 

splittings within 0.2 Hz of the values obtained prior to addition of water vapor are 

observed.  The effect that water vapor reduces the xenon interactions with the NMR tube 

glass wall can also be observed from the 131Xe T1 relaxation time. The three gas mixtures 

(I, II, and III) were optically pumped and spin-lattice relaxation times for each mixture 

were collected in a 15 mm OD Pyrex sample tube at a field strength of 9.4 T and a 

temperature of 290 K.  These data are presented in Table 1 and demonstrates the reduced 

131Xe relaxation in the presence of water vapor where the relaxation time (T1 = 14.0 ± 0.2 

s) is extended by almost 50% compared to the dry gas mixture (T1 = 9.9 ± 0.1 s). The 

effect of water vapor on 83Kr relaxation was previously demonstrated to have a similar 

tendency as observed with 131Xe in this work [12; 69; 70; 71].   

 

3.4. Conclusion 

Alkali metal vapor free hp 131Xe was generated with a signal enhancement up of 

5000 times the thermal equilibrium polarization at 9.4 T field strength and ambient 

temperatures for dilute xenon mixture. A general equation was derived to describe the 

thermal spin polarization P at high temperatures for nuclei with any spin I value (Eq. 3). 

Like in spin I = 1/2 systems, the polarization of hp noble gases with spin I > 1/2 can be 

calculated by simple multiplication of the thermal high temperature polarization with the  
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Fig. 3.6: NMR spectra of hp 131Xe (A) and hp 131Xe with water vapor (B) in a 5 mm plain 

NMR tube. Both spectra were collected at a pressure of 100 kPa of mixture I (5 % 

xenon).  A: The measured quadrupolar splitting is 5.24 Hz in the plain NMR tube.  B: 

The measured quadrupolar splitting is 4.46 Hz under conditions identical to A except for 

the admission of water vapor (3.2 Pa) prior to hp 131Xe delivery.  The data were collected 

at 14.1 T with 131Xe frequency of 49.47 Hz.   



97 
 

 

Dehydrated Dehydrated Dehydrated Hydrated  
glass tube glass tube glass tube glass tube 

5% Xe 20% Xe 93% Xe 20% Xe 
19.3 ± 0.3 s 9.9 ± 0.1 s 4.7 ± 0.1 s 14.0 ± 0.2 s 

 
Table 3.1: T1 values for hp 131Xe with various gas compositions on surfaces 

T1 values measured for hp 131Xe at 140 kPa and 9.4 T for gas mixtures I, II, and III.  The 

values reported are the mean and standard deviation of four replicate T1 measurements. 
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enhancement factor of the hp signal over the thermal high temperature NMR signal. The 

maximum 131Xe enhancement obtained in this work corresponds to 2.2 % spin 

polarization.  Because of its positive gyromagnetic ratio, unique for 131Xe among all 

stable noble gas isotopes, the relative phase between thermal signal and hp signal is 

opposite to that of any other noble gas isotope. The time dependence of the polarization 

build up accelerated and the maximum polarization value decreases with increasing 

xenon partial pressure. Because of xenon partial pressure dependent quadrupolar 

relaxation, this effect is much more pronounced with 131Xe than with 129Xe. The obtained 

hp 131Xe signal displays a quadrupolar splitting that is known to be magnetic field - and 

surface interaction dependent. In this work, an additional xenon partial pressure 

dependence upon the splitting was found. A possible explanation may be the effects 

arising from strong adsorption sites on the surface that may also be responsible for the 

observed differential line broadening between center and satellite transitions. Finally, it 

was found that the presence of water vapor significantly reduces the observed 131Xe 

quadrupolar splitting. 

The fast 131Xe T1 relaxation in porous media caused even by only moderate 

surface to volume ratios makes widespread applications of hp 131Xe NMR spectroscopy 

and imaging unlikely. However, the quadrupolar splitting in the gas phase is uniquely 

observed thus far with 131Xe NMR spectroscopy. The disagreement in theoretical work 

makes the experimental study of the magnetic field dependent contribution to the 

quadrupolar splitting important. However, the investigation of this effect is masked by 

surface interactions and by the newly found xenon partial pressure dependence of the 

quadrupolar splitting. Hp 131Xe may provide better insights into the surface relaxation 
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processes including those that produce higher rank tensor elements [22] and that may 

interfere with the observed coherent processes [22; 40]. Further, hp 131Xe may help to 

provide insights into another probe system, i.e. hp 83Kr (I = 9/2), that has recently been 

explored as a new MRI contrast agent with potential applications for pulmonary studies 

[53; 56; 67; 72]. 
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CHAPTER 4 

Understanding the Influence of High Magnetic Field Strength and Pressure on the 

Quadrupolar Splitting of 131Xe 

This chapter contains data that were collected by Karl F. Stupic at both Colorado 

State University and Environmental Molecular Sciences Laboratory at Pacific Northwest 

National Laboratory.  Proposals for time and subsequent renewals were written by Karl 

F. Stupic and edited by Thomas Meersmann.  Karl F. Stupic designed and executed the 

experiments as detailed in those proposals.  This chapter was written by Karl F. Stupic 

and edited by Thomas Meersmann.  
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4.1. Introduction 

Of the many isotopes of the noble gas xenon, only two isotopes are stable, non-

radioactive, and observable by nuclear magnetic resonance (NMR) spectroscopy.  These 

two isotopes 129Xe and 131Xe have different nuclear spin states of I = 1/2 and I = 3/2, 

respectively.  Only citing a small portion of the literature, 129Xe has been studied 

extensively for its use in material [1; 2; 3; 4; 5], medical [6; 7; 8; 9; 10] and fundamental 

physics [11; 12]; however, 131Xe has been studied to a much lesser extent [13; 14; 15].  A 

comparison of natural abundances (129Xe: 26.44%, 131Xe: 21.18) and gyromagnetic ratios 

(129Xe 27.81% of 1H, 131Xe: 8.25% of 1H) shows that 131Xe is a less favorable nuclei for 

studies involving NMR spectroscopy and imaging.  Due to its quadrupolar nuclear spin (I 

> 1/2), the nucleus of 131Xe has a non-spherical nuclear charge distribution which can be 

extremely sensitive to electric field gradients (EFGs) caused by adsorption onto surfaces 

and pore structures in materials, making 131Xe a feasible probe.   

Previous work with 131Xe has shown that its properties can be used as a probe for 

surfaces [13; 14] with examples including studying hydration [15], orientation of surfaces 

and anisotropic media [16; 17; 18], and temperature [19].  The non-spherical charge 

distribution of the 131Xe nucleus results in an electric nuclear quadrupolar moment that 

will interact with EFGs produced by the surrounding electron cloud.  Hence, for surfaces, 

this interaction between the quadrupolar moment and the EFG can lead to an observable 

splitting of an NMR signal.  This splitting is caused by a shifting of the four possible 

nuclear energy levels (assigned by their respective mz values 3/2, 1/2, -1/2, -3/2) that 

breaks the equally spaced separation of the energy levels thus producing three different 

energy transitions [20; 21]. It is possible to observe in the gas phase the quadrupolar 
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splitting that was induced by surface absorption of the xenon atom because of exchange 

between the surface and bulk gas phase over the course of an NMR experiment [13; 19; 

22; 23; 24; 25].   

The quadrupolar splitting (2νQ) of 131Xe also has been observed in the gas phase 

where the magnetic field strength alone can induce an EFG in the xenon electron cloud 

that is easy to distort due to its large size.  This effect has only been observed with 131Xe 

thus far as originally reported by Meersmann and Haake [26].  In the original study [26], 

it was shown that the observed quadrupolar splitting seen in a single 90º pulse is 

correlated to coherence described by the second (T2±1) rank element in irreducible tensor 

representation. This coherence that is reminiscent to anti-phase coherence in scalar 

coupled spin I =1/2 systems; it is not directly observable, but its effect can be seen 

indirectly by monitoring the observable coherence described by a first rank (T1±1) tensor 

element (reminiscent to ‘inphase’ coherence). However, small splittings are often masked 

by line broadening cannot be seen in single pulse experiments. Small splittings can, 

however, by studied through double quantum filtered (DQF) experiment [26].  By 

watching the changing in peak intensity throughout a DQF experiment, splitting that 

would otherwise be obscured by the line width is obtained using sinusoidal fittings.   

Further, it was shown [26] that even in situations where surface to volume was increased 

by the addition of capillaries into the sample tube, thereby increasing the surface area and 

hence the observed quadrupolar splitting arising from the surface, the difference in the  

observed splitting (Δ2νQ) at different magnetic fields B0 was approximately the same as 

the Δ2νQ for sample tubes without capillaries.  Therefore, while the splitting, 2νQ, itself 

was dependent of the surface area, the surface dependence was not affected by the field 
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strength. It was therefore concluded that two effects contributed to the observed splitting 

in the gas phase: (1) a field independent surface induced splitting and (2) a surface 

independent magnetic field dependent splitting.  The latter contribution was considered to 

be induced by the magnetic field in the gas phase.  When considering 2νQ as a function of 

the magnetic field strength, any changes in the observed overall quadrupolar splitting are 

solely due to the magnetic field induced splitting. 

From the data of Meersmann and Haake [26], two theoretical models have been 

developed for the dependence of the field dependent field induced quadrupolar splitting, 

one by Salsbury and Harris [27] and another by Vaara and Pyykkö [28].   Both of these 

models have a similar base assumption, that the quadrupolar splitting dependence on the 

applied magnetic field has at least a quadratic term based on the quadratic Zeeman effect.  

This is manifested from diamagnetic interaction of the electronic Hamiltonian for an 

atom in a magnetic field and in the presence of a nuclear quadrupole.  However, the 

similarities for the two models end at the quadratic term.  Salsbury and Harris [27] 

introduce a linear term for the dependence of the quadrupolar splitting on magnetic field 

into their model, accounting for coupling of the magnetic field to the nuclear spin.  As 

such, a reduced equation of the model proposed by Salsbury and Harris follows:  

22 Q aB cB       [Eq. 4.1] 

Salsbury and Harris [27] compare their theory only to the data from liquefied xenon of 

Meersmann and Haake [26].  Provided the information stated above is accurate, that the 

surface contribution does not have a field dependence, the theory put forth by Salsbury 

and Harris [27] would be extendable to all phases of xenon.   
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Vaara and Pyykkö [28] do not include the linear term used by Salsbury and Harris 

[27]; instead they include a residual constant contribution from the surface.  A reduced 

equation of the model proposed by Vaara and Pyykkö follows:  

22 Q aB C        [Eq. 4.2] 

However, this residual constant contribution means that even at zero field strength a 

quadrupolar splitting would be observed.  Additionally Vaara and Pyykkö do not 

consider the zero field point from Butscher et al. [22] for xenon in their model [28], 

despite Meersmann and Haake utilizing it in their model [26].     

In this study, we revisit the aspects of the quadrupolar splitting of 131Xe in the 

presence of high magnetic fields in an effort to better model interactions of quadrupolar 

noble gases. Additionally, we explore the dependence of the quadrupolar splitting and 

other dependences, namely 2νQ as a function of pressure.   Previously, no dependence of 

2νQ on pressure dependence was found [26]; however, this contribution has found clear 

differences in 2νQ between pressures varying from 100 to 400 kPa for the container 

surfaces used in this work. This difference in findings indicates that the pressure 

dependence may be caused by the surface induced contribution to the quadrupolar 

splitting. The goal of this research is to show experimental results supporting one of the 

two previous theories [27; 28].  These pursuits are of particular interest not only for the 

fundamental understanding of quadrupolar nuclei but also as this understanding could 

easily be applied to more complex spin systems, such as 83Kr (I = 9/2).  In these more 

complex spin systems the quadrupolar splitting has not yet been observed in the gas 
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phase, yet the effects may still exist that can be observed using various experiments such 

as a multiple quantum filtered spectroscopy.   

 

4.2. Methods and Materials 

4.2.1. NMR instrumentation and methods 

4.2.1.1. Experiments carried out at EMSL/PNNL 

Experiments performed at EMSL/PNNL were carried out on a variety of 

instruments ranging from 11.7 T to 18.8 T.  The 11.7 T is a narrow bore magnet (52 mm) 

equipped with a Varian Infinity CMX console and operated at the 131Xe resonant 

frequency of 41.23 MHz.  The 14.1 T is a narrow bore magnet (52 mm) equipped with a 

Varian Unity console and operated at the 131Xe resonant frequency of 49.47 MHz.  The 

17.6 T is a narrow bore magnet (52 mm) equipped with a Varian Inova console and 

operated at the 131Xe resonant frequency of 61.84 MHz.  The 18.8 T is a medium bore 

magnet (65 mm) equipped with a Varian Inova console, which was operated at the 131Xe 

65.96 MHz.  All spectra were collected using a single 90⁰ pulse sequence with each 

spectrum collected with a minimum of 100 transients.  All NMR measurements were 

conducted with the magnet temperature stabilized to 303 K for at least one hour prior to 

data collection.  To ensure the magnet was temperature stabilized, the chemical shift 

separation of ethylene glycol peaks were observed and temperature was calculated from 

that separation [29].  To remove any magnetic drifting, the 4 mm OD sample NMR tube 

containing the xenon gas (described in more detail below) was inserted into an ultra-thin 

walled 5 mm OD NMR tube (Wilmad-LabGlass, Vineland, NJ) with D2O to provide the 

2D reference signal for the magnetic field lock channel.  D2O also served as a sample to 
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shim the magnetic field homogeneity to a high enough degree to resolve the 131Xe 

splitting.  

  

4.2.1.2. Experiments carried out at Colorado State University 

Experiments performed at Colorado State University were carried out on a 11.7 T 

narrow bore magnet (52 mm) equipped with a Varian Inova console and operated at the 

131Xe resonant frequency of 41.23 MHz.  All spectra were collected using a single 90⁰ 

pulse sequence and a minimum of 100 transients were collected.  Procedures for 

temperature stability and deuterium lock were carried out at CSU as described in the 

previous section.   

 

4.2.2. Sample cell preparation 

 4.2.2.1. Single pressure sample cells 

Sample cells for single pressure measurements were prepared by evacuation of a 4 

mm NMR tube (Wilmad-LabGlass, Vineland, NJ) at an elevated temperature of 400 K 

for a minimum of 8 hours.  After evacuation the sample containers were filled with 

research grade Xe gas (99.995%, Airgas, Radnor, PA), which is 21.18% 131Xe by natural 

abundance.  The samples were then pressurized based on a pressure calculated by ideal 

gas laws to account for differences in ambient temperature at the time of gas filling.  

These tubs were then frozen in liquid nitrogen and flame sealed to prevent any chance of 

leaking.   
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4.2.2.2. Variable pressure sample cells 

Sample cells for variable pressure measurements were prepared identically to 

single pressure sample cells with the exception that instead of being flame sealed these 

tubes had a stop-cock valve built onto the top of the 4 mm NMR tube that was capable of 

handling both high and low pressure experiments (ranging from ~ 15 kPa to greater than 

400 kPa).  Between spectra each sample cell was re-evacuated for 8 hours to maintain 

sample cell purity.   

 

4.3. Results and discussion 

 4.3.1. Quadrupolar splitting as a function of magnetic field strength 

Individual single pressure NMR samples were placed in up to four different high 

magnetic field strengths ranging from 11.7 to 18.8 T.  As seen in a previous study [26], 

the quadrupolar splitting (2νQ) of 131Xe is observable in the NMR spectrum where the 

only anisotropy is the container walls of the NMR tube.  This contribution can be 

estimated from [26], by comparison of plain versus capillary filled NMR tubes, to be 

about 1.5 Hz in 8mm O.D. NMR tubes.   This can be seen in Fig. 4.1 where each of the 

four pressures investigated in this report (101, 202, 306, 402 kPa) are displayed for three 

different field strengths (14.1, 17.6, 18.8 T).   Deconvolution of the quadrupolar splitting 

present in spectra, collected at each field strength, is presented in Table 4.1.   

The data presented in Table 4.1 were collected solely at the EMSL/PNNL facility.  

When possible each sample cell was observed at each magnet field strength and some 

sample cells were observed multiple times to ensure reproducibility after ejection and 

insertion, thereby ensuring minimal error in the measurement.  Additionally before and  
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Fig. 4.1: 131Xe spectra for four pressures (101 to 402 kPa) at three different field 

strengths (14.1, 17.6, and 18.8 T).  A dashed line at four Hz spacing is provided as 

guidance for the eyes to illustrate the effect of pressure and magnetic field on the 

quadrupolar splitting.   
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 Field Strengths  
Pressure (Tube #) 11.7 T 14.1 T 17.6 T 18.8 T 
101 kPa  (1) 3.59 Hz 4.36 Hz 5.85 Hz 6.48 Hz 
101 kPa  (2) 4.42 Hz 5.10 Hz 6.55 Hz 7.26 Hz 
202 kPa  (3) 2.53 Hz 3.76 Hz 5.41 Hz 5.85 Hz 

  3.71 Hz   
202 kPa  (4) 2.34 Hz 3.55 Hz 5.16 Hz 5.68 Hz 

  3.60 Hz   
306 kPa  (5)  3.53 Hz 5.05 Hz 5.64 Hz 
306 kPa  (6)  3.29 Hz 4.82 Hz 5.51 Hz 
306 kPa  (7)  3.58 Hz 5.07 Hz 5.52 Hz 

    5.56 Hz 
402 kPa  (8)  3.11 Hz 4.61 Hz 5.15 Hz 
402 kPa  (9) 2.19 Hz 3.01 Hz 4.57 Hz 5.03 Hz 

    5.08 Hz 
402 kPa  (10) 2.41 Hz 3.26 Hz 4.77 Hz 5.36 Hz 

  3.25 Hz   
402 kPa  (11)  3.24 Hz   

Table 4.1: Quadrupolar splittings of 131Xe in sealed NMR tubes at various field strengths 

and pressures at 303 K.  For samples with replicate runs, both values are reported in the 

same block. Quadrupolar splitting values are found by a multi-peak deconvolution to 

extract the center of each satellite peak in a 131Xe NMR spectrum.  
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after each sample is used, a 1H reference spectrum is collected of ethylene glycol to 

ensure temperature stability during the measurement [29]. The quadrupolar splitting 

presented in Table 4.1 is a multi-peak deconvolution to determine the precise position of 

the center for each satellite peak and thereby the difference in the obtained positions 

gives the splitting.  The data from Table 4.1 and Fig. 4.1 show a decreasing 2νQ with 

decreasing field strength from 18.8 to 11.7 T.  Fig. 4.2 illustrates the 2νQ based on a 

single pressure sample (403 kPa, tube #9) and plots it against field strength.  The fittings 

displayed in Fig. 4.2 are taken from the two conflicting theoretically proposed models, 

using Equ. 4.1 and 4.2 [27; 28].  However, due to the close range of magnetic fields that 

have been explored to this point, our data do not invalidate either model.   

At the present time, there are pending proposals to continue this work and extend 

the range of magnetic fields down to 7.05 T as well as up to 21.1 T.  With the extension 

of the magnetic field range to these field strengths, it should be possible to better 

discriminate between the two models.  Additionally each model is considered to have a 

constant included in the fitting to represent the quadrupolar splitting that arises from 

131Xe atoms interacting with the surface.  This term would be constant in each experiment 

as the surface induced splitting is field independent and pressure is static inside the 

sample container (i.e. sealed).  It should be noted that the same single pressure sample 

cell could not be used for variable pressure experiments because it is made from sealed 

glass tubes. Therefore, data obtained at different pressures are taken from different NMR 

tubes that may have different surfaces. However as high-resolution NMR tubes are 

produced with high precision, we assume to a first approximation that the surfaces of all  
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Fig. 4.2: A plot of quadrupolar splitting for sample #9 versus field strength.  The solid 

line is a fitting function consisting only of a quadratic term plus a constant.  A dashed line 

(not visible here due to near perfect overlap) is a fitting function consisting of a quadratic 

term, a linear term, and a constant.  The two fittings are the theoretically proposed 

models, Equ. 4.1 and 4.2 [27; 28], for the quadrupolar splitting of 131Xe.  The constant 

term is used for the quadrupolar splitting resulting from the surface; this remains constant 

due to the use of constant pressure over the course of the experiment. 
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the NMR tubes are similar, thus providing a similar surface induced quadrupolar 

splitting. 

 

4.3.2. Quadrupolar splitting as a function of pressure 

Although the effect of magnetic field on the quadrupolar splitting of 131Xe was 

expected [26], one unexpected finding is the influence of pressure on the quadrupolar 

splitting.  Careful examination of the position of the outer peaks to the four Hz reference 

lines displayed in Fig. 4.1 at any field strength shows a distinct trend of greater 

quadrupolar splitting at lower pressures.  Additional analysis of the data in Table 4.1 

shows that the pressure of the sample has a distinct influence on the quadrupolar splitting 

(i.e. at 18.8 T, 2νQ for 202 kPa is approximately 5.7 Hz while at 402 kPa 2νQ is 

approximately 5.1 Hz depending on the sample).  This influence was not expected and 

previous literature [26] did not report a pressure dependence.   

By plotting the data from Table 4.1 as a function of 2νQ versus pressure, one 

observes that 2νQ decreases with increasing pressure (see Fig. 4.3).  In Fig. 4.3, a linear 

fitting has been applied to each field strength data set.  Based on the fitting, with 

allowances for error in measurements, we find that the slope for each line is nearly 

identical in value and there are significant differences in the intercepts.  Below are the 

equations of fit for each line: 

18.8 T:  17.6 T:         [Eq. 4.3, Eq. 4.4] 

14.1 T:          11.7 T:         [Eq. 4.5, Eq. 4.6] 

One immediate issue arises from the data collected at EMSL/PNNL that each NMR tube 

used, while precision manufactured, could contain different surface defects, anomalies, 

6.672 0.00371* X 6.123 0.00366* X

4.539 0.00351* X 3.424 0.00311* X
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Fig. 4.3: A plot of of data presented in Table 1 with each field strength shown as a 

function of pressure.  Linear fittings were applied to each field strength and displayed as 

Eq. 4.3 – 4.6 in the text.   
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and variations.  This could lead to each tube having a different quadrupolar surface 

splitting.  A variable pressure sample tube is used at CSU, whereby the surface can be 

kept constant over the entire pressure range of the experiment.  These data are presented 

in Fig. 4.4 with 2νQ plotted against pressure at a field strength of 11.7 T, currently the 

highest field strength, high resolution NMR spectrometer available at CSU.  The linear 

trend observed in Fig. 4.3 is not observed in Fig. 4.4.  It should be noted that the 

experiments that make up Fig. 4.3 are all single pressure, sealed NMR tubes while the 

experiments that comprise Fig. 4.4 are from a variable pressure NMR tube.  As these are 

two different tubes, 2νQ from the surface of each tube could be different.  The influence 

of the 2νQ from the surface could be different at different pressures therefore observation 

of similar 2νQ at high pressures while very different 2νQ at lower pressures.  A fitting is 

not applied to Fig. 4.4 as the field strength of 11.7 T is not sufficiently high enough to 

induce strong quadrupolar splittings at high pressures.  However, in Fig. 4.3 a linear 

fitting is applied to the 11.7 T field strength data based on the observed trend seen in the 

other field strengths (14.1, 17.6, and 18.8 T). The low splitting values obtained by 

deconvolution of the spectra at higher pressures contain larger uncertainties and these 

experiments are worth repeating at higher field strengths such as those available at 

EMSL/PNNL when resources and time permit.  

One way around the low sensitivity and need for signal averaging is to use a non-

equilibrium system such as spin-exchange optical pumping whereby high polarization is 

achieved and can simplify these experiments down to a single acquisition.  Previous work 

(Chapter 3 of this dissertation) has presented data for hyperpolarized (hp) 131Xe produced 
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Fig. 4.4: A plot of quadrupolar splitting for 131Xe at 11.7 T recorded at Colorado State 

University (CSU) as a function of pressure.      
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by spin-exchange optical pumping, and by plotting 2νQ versus total pressure with three 

different Xe mixtures for a single field strength we obtain Fig. 4.5.  A linear dependence 

of the quadrupolar splitting as a function of pressure is obtained from the fittings of the 

data presented in Fig 4.5.  However, the fittings in Fig. 4.5 are different from the varying 

field fittings (see Fig. 4.3).  Unlike in Fig. 4.3, where each field showed similar slopes 

with differing intercepts, these data show varying slopes but similar intercepts.  The 

fittings for these three different xenon mixtures are presented below:  

    5% Xe, 5% N2, 90% He: 3.1725 0.11625* X   [Eq. 4.7]

 20% Xe, 5% N2, 75% He: 3.1907 0.20222* X   [Eq. 4.8] 

  93% Xe, 7% N2,   0% He: 3.0313 0.49214* X   [Eq. 4.9] 

In considering the equations of fit presented in Eq. 4.3 – 4.9, Eq. 4.7 – 4.9 

represent three different xenon concentrations (5, 20, and 93% Xe) at the same field 

strength (11.7 T).  In these three equations of fit, the intercepts are similar in value while 

the slopes of the lines are different values.  Additionally, comparing the intercepts of Eq. 

4.7 – 4.9 to Eq. 4.6, data from 11.7 T at PNNL, the intercept found with pure xenon is 

similar in value to the intercept values of Eq. 4.7 – 4.9. A complication in this similarity 

is that the NMR tubes used in the two different locations, CSU and PNNL, are different 

inner dimensions (CSU: 6.4 mm, PNNL: 3.2 mm).  This could account for the intercepts 

not matching to a higher degree.  By making the assumption that the observed 

quadrupolar splitting from the high magnetic field is independent of pressure, this 

indicates that information regarding this interaction could be contained in the intercept.  

This assumption is reinforced by the different intercepts obtained in the equations of fit
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Fig. 4.5: A plot of hp 131Xe gas phase quadrupolar splitting as a function of various 

compositions and pressures.  Hp 131Xe gas was contained in an 8 mm plain NMR tube at 

11.7 T field strength and 289 K.  Each gas composition is plotted separately and a linear 

fit was applied to each composition with equations of fit displayed at Eq. 4.7 – 4.9.   
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for Eq. 4.3 – 4.6 over the four different field strengths (11.7, 14.1, 17.6, and 18.8 T) used 

in this work.  

Using similar reasoning, the change in slope that is observed in Eq. 4.7 – 4.9 for 

the three different xenon concentrations and the similar values of the slope observed in 

Eq. 4.3 – 4.6, could provide information regarding interactions of 131Xe on the surface.  If 

the assumption that the observed quadrupolar splitting from the surface is dependent on 

the xenon concentration; then the slopes of these equations of fit could contain the 

quadrupolar splitting contribution of 131Xe adsorbed onto the surface.  This argument is 

reinforced by the slope of the lines in Eq. 4.3 – 4.6, which are similar in value over four 

different magnetic field strengths.  The samples used for these experiments are sealed, 

therefore the surface contribution is held constant with the constant pressure while the 

magnetic field strength changes.  Additionally, as slopes of Eq. 4.3 – 4.6 do not show any 

dependence on field strength, any information about the magnetic field dependent 

splitting must not be contained in the slope.   

These assumptions should be considered only a first approximation as more data 

will be needed to fully understand how the contributions from field dependent and 

surface induced quadrupolar splitting can be studied by plots similar to those of Fig. 4.3 

and Fig. 4.5 which plot quadrupolar splitting as a function of pressure.  In addition, the 

2νQ obtained from hp 131Xe requires verification with thermal samples of identical 

pressures and gas composition as variables such as gas temperature and equalized 

pressure in the sample region are ignored in this discussion.  While more work is needed 

to verify these hypotheses, the ability to distinguish between interactions on the surface 
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and in the bulk gas phase, can be used for developing a surface sensitive probe for the 

fields of material science and material characterization.   

  

 4.3.3. Possible model for quadrupolar splitting as a function of pressure 

While the data at various pressures, collected from both EMSL/PNNL and CSU 

(including data from hp 131Xe), have shown that 2νQ is a function of pressure, currently 

there is not a good model to describe the exact mechanism for how the quadrupolar 

splitting is influenced by pressure. Insight into the behavior of 131Xe at the sample cell 

walls is provided by Song et al. [30] who demonstrated partially restricted diffusion at 

the sample boundaries using hp 129Xe MRI.  This behavior has also been observed in hp 

3He [31] and 1H [32; 33; 34].  The restricted diffusion means that atoms on the surface of 

the container walls may not diffuse back into the center of the sample over the course of 

the NMR experiment.  As seen in the images of [30], the boundary region of the 

container provides a different signal strength compared to that of the rest of the sample.  

For 131Xe, this restricted diffusion could be expressed by changes in the quadrupolar 

splitting.  As diffusion is a function of pressure [35], this would change the relative 

contributions observed from the high field splitting and the surface splitting.  For this 

restricted diffusion to be applicible, the root-mean-squared (RMS) displacement of Xe 

would have to be smaller than the ID of the sample container.  RMS displacement is 

defined by the equation:  

2RMS XeX D t     [Eq. 4.10] 

Our system XRMS is the RMS displacement in a single dimension, DXe is the self-

diffusion constant for Xe (as given by [35]), and t is the time of the NMR experiment 
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(500 ms) defined by the Nyquist condition (considered here to be 1/(2*2νQ).  For 

reference, the ID of the 4 mm OD NMR tube is 3.2 mm for all experiments done at 

EMSL/PNNL.  A 101 kPa sample, with a corresponding DXe of 0.0565 cm2/s given by 

[30; 35], the RMS displacement is 2.4 mm.  This value could be sufficient to average the 

interactions of the high field and surface splitting in the 4 mm NMR tube, but it could 

also be partially restrictive.  

Using information about the RMS of Xe and partially restricted diffusion,  we 

construct an initial model system to describe the magnetic field dependent (2νQ-HF) and 

the surface induced (2νQ-S) quadrupolar splittings broken into two separate contributions.  

In Fig. 4.6, the contribution from the surface at the lowest pressure (Fig 4.6A) is 

considered to be everywhere in the sample tube, if the RMS displacement of the Xe 

atoms is on the order of the tube diameter.  Therefore, this considers the splitting in Fig. 

4.6A to be the result of the sum from both the surface and the high-field effect splittings. 

The observed splitting could also have been the difference of the two splittings. This is 

apparently not the case for the given orientation of the NMR tube surface normal with 

respect to the magnetic field. However, if the surface normal would be parallel with the 

magnetic field the sign of the surface splitting would change and would therefore be 

opposite to the high field splitting.  For the moderate pressure (Fig 4.6B), the contribution 

of the surface is limited to a region closer to the surface as the RMS displacement is 

significantly less than the diameter of the tube.  In this regime, the surface contribution is 

broadened due to quadrupolar broadening from increased time on the surface or increased 

surface collisions. For the largest pressure (Fig 4.6C), the main contribution to the 

observed splitting is from the high field as the surface contribution is significantly  
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Fig. 4.6: Graphical representation of quadrupolar splitting contributions from the high 

magnetic field (represented by 2Q-HF) and the surface (represented by 2Q-S) with the 

xenon pressures as follows: (A) low, (B) intermediate, and (C) high (see [30] for 

restricted diffusion observed by hp 129Xe MRI).  For all pressures, the contribution from 

the high magnetic field is considered to be constant.   

 

  



131 
 

suppressed due to broadening. The RMS displacement in these pressure regimes would 

be small, perhaps 10 % of the diameter or less. Note that the overall splitting observed 

from xenon in the bulk of the gas phase is no longer the sum of the splitting caused by the 

field effect and the surface induced splitting. This is because the xenon atoms in contact 

with the surface do not exchange any longer with the bulk of the gas phase.  Any 

contribution to the observed surface splitting is broadened to a degree that would be hard 

to detect in the NMR spectrum.   

  Currently, this is only a hypothetical model and requires further testing.  It is 

worth mentioning that our model ignores the presence of persistent Xe dimers, which 

could be contributing to the quadrupolar splitting.  Work by Saam and coworkers [12; 36] 

concerning 129Xe relaxation has shown that Xe-Xe dimers are created through a three-

body collision and allows for the dimer to survive until a third body contacts and 

separates them (a van der Waals molecule).  Xe-Xe dimers have a lifetime of 

approximately 115 ps [12] and Chann et al. [37] found the persistent dimer concentration 

to be 1.2% for one amagat of xenon.  Given the small concentration and short lifetime of 

the Xe-Xe dimer, any influence on the quadrupolar splitting of 131Xe should be negligible 

compared to interactions arising from the surface, the magnetic field strength, and the 

pressure.    

 

4.4. Conclusion 

In this work, we examine several experimental conditions that influence the 

quadrupolar splitting of 131Xe in the presence of sample container walls.  These results 

are encouraging for furthering development of models that describe quadrupolar noble 
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gas atom interactions on surfaces.  131Xe (I = 3/2) is the only noble gas nuclei with an 

observable quadrupolar splitting, which is sensitive to changes in its surrounding 

environment.  Our new model for understanding 131Xe could be applied to other types of 

spin systems and be applied toward the development of higher order spin systems, such 

as 83Kr, for use in medical [38; 39; 40] and material science [41; 42] fields.  Considering 

the significant signal enhancements achieved by spin-exchange optical pumping, one 

application would be the use of DQF MRI with hp 83Kr in lungs, similar to the work of 

Keinan-Adamsky et al. with 2D in cartilage [43].   
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CHAPTER 5 

Magnetic Field Dependence of Hyperpolarized 129Xe and 83Kr Longitudinal 

Relaxation in the Presence of Metal Surfaces and Oxygen. 

The results presented in this chapter are being prepared for publication as a 

journal article.  Karl F. Stupic conducted all experiments presented in this chapter along 

with experimental setup construction at Colorado State University.  Karl F. Stupic wrote 

the manuscript and Thomas Meersmann edited it.   
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5.1 Introduction 

  Since its first report five years ago [1], hyperpolarized (hp) 83Kr has been utilized 

in a variety of nuclear magnetic resonance (NMR) and magnetic resonance imaging 

(MRI) applications.  Hp 83Kr has been applied to studies of materials and surface 

chemistry/composition [2; 3; 4], gas phase relaxation [5], and to imaging of tobacco 

smoke deposition [6] and small animal lungs [7].  These studies are possible because the 

high spin polarization generated through alkali metal spin-exchange optical pumping 

(SEOP) leads to many orders of magnitude increase in signal enhancement [8; 9] 

compared to thermal polarization.  A disadvantage of 83Kr (I = 9/2) is that it possesses a 

nuclear electric quadrupole moment that dominates the longitudinal relaxation (T1).  

During gas phase collisions and surface interactions, distortions in the electron cloud 

generate electric field gradients (EFGs) which couple to the quadrupole moment causing 

the relaxation.  Thus, the relaxation times observed in 83Kr [2; 3; 10] are in general 

shorter than relaxation times observed for I = 1/2 noble gas nuclei, 3He and 129Xe [11; 12; 

13; 14; 15], in the gas phase.   

 3He and 129Xe have long relaxation times in the gas phase, on the order of hours.  

However, in the presence of paramagnetic species (e.g. oxygen), these relaxation times 

are reduced to tens of seconds [16; 17; 18; 19].  The sensitivity of 3He and 129Xe T1 

values to oxygen has been exploited to study oxygen partial pressures [20] and blood 

oxygenation levels [21; 22].  Whereas the sensitivity to oxygen of 3He and 129Xe is 

useful, it also obscures surface sensitive relaxation in studies conducted in the presence of 

oxygen (i.e. in vivo lung tissue).  129Xe has a large chemical shift range (≈300 ppm) that 

is sensitive to its environment and provides information on changes in surface chemistry 
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or structure.  3He possesses no chemical shift range, but its resonant frequency is higher 

than 129Xe and 83Kr, providing better resolution in imaging experiments.  83Kr, with its 

quadrupolar interaction dominated relaxation, does not experience the same reduction in 

T1 as 3He and 129Xe in the presence of oxygen.  A 16% reduction in T1 for 83Kr in the 

presence of oxygen and canine lung tissues has been observed [1].  The weak interaction 

of 83Kr when in the presence of oxygen still allows the relaxation to be dominated by 

adsorption on surfaces.  Therefore 83Kr can provide surface sensitive information in the 

presence of oxygen that would be obscured in 3He and 129Xe studies, making hp 83Kr a 

complementary tool to I = 1/2 nuclei.  

  In this work, the relaxation behavior of hp 129Xe and 83Kr, generated by SEOP, is 

studied in the presence of metal surfaces and oxygen at various magnetic field strengths.  

These data will be useful in developing storage and transport systems for hp noble gases, 

as prolonged relaxation is desired in these systems.  Additionally, understanding 

relaxation on paramagnetic surfaces is important when administering hp noble gases for 

in vivo studies.  Because radiofrequencies (RF) cannot penetrate metal, we employ 

remote NMR detection, a tool that allows for the spatial and temporal separation of the 

system of interest from the detection coil of the NMR probe.  To achieve this we use 

rapid pressure equalization to move hp noble gases from the SEOP cell to the storage cell 

(i.e. the system of interest).  This allows relaxation to occur for a predetermined period of 

time, and then allows the detection coil to observe the different decayed signals as a 

function of storage time.  Similar procedures have been used previously [8; 23] and allow 

for a unique opportunity to study materials that otherwise would not be accessible by 

standard NMR methodologies.  This remote NMR detection methodology can be 
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extended to non-magnetic metal samples and to oxygen/hp noble gas mixtures used to 

explore relaxation behavior.  The latter is applicable to in vivo studies of living animals 

where oxygen must be supplied with the hp gas.      

 In this work, measured T1 values for 129Xe and 83Kr range from as short as 14 s 

for 129Xe with oxygen to as long as 178 s for 83Kr on an untreated glass surface, 

depending on the surface or presence of oxygen.  On stainless steel surfaces, the T1 times 

of 129Xe are 40 – 60 % shorter than those of 83Kr at various field strengths.  In addition, 

the T1 times for 83Kr in the presence of a breathable mixture of oxygen (20 %) are found 

to be field dependent (92 – 130 s) over the magnetic field strengths explored in this work, 

whereas the T1 of 129Xe is found to be field independent and approximately an order of 

magnitude shorter than the T1 of 83Kr.      

 

5.2 Methods and materials 

 5.2.1 Spin-exchange optical pumping of noble gases 

  Spin-exchange optical pumping (SEOP) of 129Xe and 83Kr is performed in 

untreated, cylindrical Pyrex cells (ID = 24 mm, length = 125 mm) as described 

previously [3; 8; 24].  The three gas mixtures used in this work are composed of research 

grade gases (Airgas, Randor, PA).  Each mixture contains either 5% Xe (99.995% pure), 

5% Kr (99.995% pure) or 20% Kr, with 5% N2 (99.9997% pure) and a balance of helium 

(99.9999% pure).  Each SEOP cell contains ~1 g of rubidium (99.75% pure, Alfa Aesar, 

Ward Hill, MA), and is housed in a quartz and aluminum oven to maintain a constant 

temperature across the cell (393 ± 5 K for 129Xe, 438 ± 5 K for 83Kr).  Unpolarized light 

generated by two fiber coupled Coherent FAP diode-array laser systems (2 nm linewidth, 

30 W each; Santa Clara, Ca, USA), passes through polarization optics targeting the front 
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of the SEOP cell with a final power of approximately 42 W.  A second laser system, a 

Spectra-Physics Comet diode array laser module (0.2 nm linewidth, 35 W; Santa Clara, 

Ca, USA), passes through polarization and telescoping optics, targeting the back of the 

SEOP cell with a final power of approximately 27 W.  The magnetic field needed for 

SEOP is provided by the fringe field of a superconducting magnet, ~ 0.05 T across the 

SEOP cell.  Pressure in the SEOP cell is maintained between 255 – 260 kPa for 

measurements on all surfaces with the exception of a pressure between 215 – 220 kPa for 

measurements with molecular oxygen already in the storage volume.  Rb vapor is 

separated from hp gas mixtures by an air-cooled trap situated at the outlet of the SEOP 

cell, providing Rb free hp gas to the detection and storage cells.   

  

5.2.2 NMR measurements 

  Experiments are performed at 15.4 MHz with a Chemagnetics CMX II 

spectrometer and a 9.4 T wide-bore (89 mm) superconducting magnet for detection.  A 

wide-bore (89 mm) magnet (capable of 4.7 T) is used to produce varying field strengths 

of 0.5, 1.0, 2.0, and 3.0 T, which is directly measured by a gauss meter to ensure less than 

3% deviation in the magnetic field over a region greater than the storage cell.  Fig. 5.1A 

shows the experimental setup for all remotely detected NMR measurements in this work.  

Displayed in Fig. 5.1B is the experimental sequence used for all measurements, where the 

hp gas is delivered by pressure equalization to both the detection cell and the storage cell.  

The storage cell had a target pressure of 125 kPa for all experiments in this work. A 90º 

RF pulse provides a calibration measurement to ensure any change in SEOP efficiency is 

accounted for, shown as t = 0 s in Fig. 5.2A.  Immediately after the calibration 
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Fig. 5.1: Experimental system and procedure used for production and delivery of hp 

noble gases.  A) Drawing of the experimental system used in a stopped-flow 

configuration for remotely detected relaxometry with various magnetic field strengths.  

B) Diagram of stopped-flow experiment used for remotely detected relaxometry with a 

second superconducting magnet providing the field strength being studied.  Hp noble gas 

is moved between the storage cell and the detection cell via pressure equalization.  

Shown is the RF pulse sequence, the position of the hp noble gas within the different 

magnetic fields, and the status of the gas valves.  Not shown is the introduction of 

molecular oxygen to the storage cell prior to hp gas delivery; this is described in the 

methods and materials section.     
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measurement, a valve (Valve C in Fig. 5.1A) separates the storage cell from the detection 

cell so the detection cell can be cleared and placed under vacuum.  Following an 

incremented length of time, t, the vacuum system clearing the detection cell is separated 

by a valve (Valve B in Fig. 5.1A) and the valve between the detection and storage cell 

(Valve C in Fig. 5.1A) is opened, delivering hp gas back to the detection volume.  This 

hp gas is in contact with a number of different materials or additional gaseous species and 

experiences a degree of decay observed in the second RF pulse, shown as t = 120 s in Fig. 

5.2A.  A pressure gauge (DV100, Vacuum Research, Pittsburgh, Pa, USA) monitors the 

pressure at all times in the detection cell for both calibration and decay measurement 

pulses.  Prior to data fitting, the integrated signal intensity of the decay measurement is 

corrected by factors, including pressure and SEOP efficiency, before being normalized to 

the shortest time data were collected for.  The shortest time, t, in each experiment is then 

defined at t = 0 s for all data fittings.  Data collected using this experimental scheme are 

then plotted as normalized intensity versus time (t) and fit to mono-exponential functions 

to obtain longitudinal relaxation times (T1), see Fig. 5.2B.    

 

5.2.3 Detection and storage cell preparation 

  The detection cell used for all measurements was constructed of Pyrex and built 

to fully fill the detection coil.  Storage cells are composed of different materials (glass, 

brass alloy 260, aluminum 6061, and stainless steel 304); each of these is used as 

received from the supplier, after cleaning the surface to ensure no contamination was 

present.  Cells had similar, but not identical, inner diameters, 21.2 mm (stainless steel and 

aluminum), 22.1 mm (brass), and 21.5 mm (glass).  All cells have glass tops and bottoms 
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Fig. 5.2: Spectra and relaxation curve for hp 83Kr on a material surface (stainless steel 

shown at 3 T).  Similar spectra and curves are observed for both nuclei with all materials.  

A) Typical result from the RF pulse sequence is described in the methods and materials 

section with two resulting spectra per pulse sequence.  The first spectrum (denoted as t = 

0 s) is the calibration spectrum from the delivery of hp gas to both the storage and 

detection cell.  This pulse gives the relative efficiency of the optical pumping during the 

course of the experimental series.  The second spectrum (denoted as t = 120 s) is the 

relaxation decayed spectrum of the hp gas delivered from the storage cell to the detection 

cell.  B) Relaxation curve of the corrected and normalized intensities from a series of 

experiments for a surface at one field strength.  The functional form of the curve is based 

on a monoexponential function.  Due to the time required for the collection of a complete 

T1, the replication of time points instead of the entire experiment were used to ensure 

reproducibility and provide a gauge of experimental error.         
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attached to provide connections to the rest of the delivery system.  The use of glass 

avoids the deposition of magnetic particles onto the surface.  Additionally, the volume of 

the gas mixture in the glass connections is small compared to the storage cell containing 

the surface of interest, so it has a minimal contribution  to the signal.  Each cell is 

evacuated and flushed with dry N2 gas at least three times and left under vacuum 

conditions for one hour prior to any experiments.  For experiments where oxygen is 

mixed with hp noble gases to study relaxation behavior, the glass storage cell is used and 

evacuated (<10 Pa).  Then, 25 – 26 kPa of O2 is introduced into the cell and the cell is 

sealed from the system by “Valve C” in Fig 5.1A until delivery of hp gas.  

 

5.3 Results and discussion 

  5.3.1. Requirements for field dependent longitudinal relaxation   

 For T1 to be dependent on the magnetic field strength, the correlation time (τc) 

must be on the inverse order of the larmor frequency (ω0) for the nucleus of interest (i.e. 

10 ns for 100 MHz).  This arises from the spectral density function J(ω): 

  2 2
01

c

c

J

 




          [Eq. 5.1] 

where τc is the correlation time, and ω0 is the larmor frequency.  Each relaxation 

mechanism depends on the normalized spectral density, and the interaction responsible 

for the magnetic field fluctuations defines the exact functional dependence of the 

longitudinal relaxation on J(ω).  A general mathematical expression describes the 

relationship between T1 and J(ω) [25]: 
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where γ is the gyromagnetic ratio and 
20

xLB   is the root mean squared fluctuations in the 

x-component of the magnetic field.  The extreme narrowing condition, which occurs 

when τc << 1/ω0, is applied to Eq. 5.2: 

22 0
11 / 2 xL cT B        

    
[Eq. 5.3] 

From Eq. 5.3, T1 is field independent in this regime as ω0 is the only field dependent 

variable.  Applying the extreme narrowing condition to Eq. 5.1 removes all field 

dependence in the normalized spectral density equation.  Thus, under the extreme 

narrowing condition, field independent relaxation can be expected.  It should be noted 

that depending on the functional form of 0
xLB   , for a given relaxation mechanism, a field 

dependence could still be observed.  

 It is only in the aforementioned regime, 
0

1
c  , that field dependent T1 times 

are expected.  However, the long correlation times needed to observe field dependent 

relaxation, τc ≈ 10 ns, are not expected in the gas phase where binary collisions are on the 

order of a few picoseconds and short-lived van der Waals molecules have life times 

around 10-10 s (Xe-Xe at 1 amagat xenon density, where 1 amagat is the density of the gas 

under standard conditions [14]).  Average adsorption times on surfaces are expected to be 

on the order of 10-10 s, based on work with xenon on borosilicate glasses at room 

temperature [26].  Whereas the correlation times from these events are not long enough to 

produce field dependent T1 times, strong adsorption sites on the surfaces could lead to 
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correlations times long enough for field dependent relaxation.  In this work, the 

temperature is held constant for all experiments.  Note that the correlation time can be 

influenced by temperature and therefore temperature changes could satisfy the condition 

of 
0

1
c  , to make T1 field dependent.  

 

  5.3.2. Behavior of longitudinal relaxation on surfaces at differing field 

strengths  

  There have been extensive studies [12; 27; 28; 29; 30] to find the ideal conditions 

to store the hp noble gas isotopes 3He and 129Xe, i.e. the factors for the slowest relaxing 

system.  For these two nuclei, the main source of relaxation is paramagnetic centers on 

the surface of the storage container that can relax the hp gas even during brief periods of 

adsorption.  Variables considered for storage of hp noble gases include the material for 

storing the gas [12; 27; 28] and the cryogenic temperature used for storage [29; 30].  Care 

is also taken with these nuclei to ensure that paramagnetic oxygen does not contaminate 

the storage cell.  For hp 83Kr, there is relaxation data pertaining to various surface 

modifications of glass [2] as well as relaxation behavior at low temperatures [31].   

  Fig. 5.3 and Fig. 5.4 display T1 times as a function of field strengths for hp 83Kr 

and hp 129Xe, respectively.  Numerical values for each data point are presented in Table 

5.1.  Previous reports of hp 83Kr relaxation [2; 8] have shown that the longest relaxation 

times are for untreated glass, which is also observed here, see Fig. 5.3.  In addition to 

glass having the longest relaxation for 83Kr, it also displays a strong field dependent 

relaxation as the field increases from 0.5 to 3 T.  While there appears to be a less 
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Fig. 5.3: Longitudinal relaxation times of hp 83Kr in different materials plotted against 

field strength, with each material shown as a different symbol.  20% hp 83Kr is shown 

stored in glass (open diamond and solid line), glass with 20% molecular oxygen (open 

circle and solid line), aluminum (open triangle, pointing up, and dashed line), stainless 

steel (open triangle, pointing down, and solid line), and brass (open square, and dotted 

line).  5% hp 83Kr is shown only for stainless steel at 2T field strength (diagonal cross).  

Error bars represent the error from fitting the data and include replicate data points at 

certain time points.  The pressure in the storage cell for all measurements was 125 kPa ± 

1 kPa, including the 20% oxygen added for certain experiments. 
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Fig. 5.4: Longitudinal relaxation times of hp 129Xe in different materials plotted against 

field strength, with each material shown as a different symbol.  5% hp 129Xe is shown 

stored in glass with 20% molecular oxygen (diagonal cross) and stainless steel (horizontal 

line marker).  Error bars show the error from fitting the data and include replicate data 

points at certain time points.  The storage pressure for all measurements was 125 kPa ± 1 

kPa, including the 20% oxygen added for certain experiments.    
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Field 
strength 
(Tesla) 

Relaxation times (s) on material surfaces: 

5% hp 129Xe 20% hp 83Kr 5% hp 83Kr 

Stainless   
steel 

Glass with       
20% oxygen 

Glass 
Glass with  

20% oxygen
Stainless   

steel 
Brass Aluminum 

Stainless       
steel 

3.0 49.5 ± 0.7 16.2  ± 0.5 178 ± 3 130 ± 4 81.2 ± 0.8 85 ± 1 84 ± 1    

2.0 37.2 ± 0.6 15.0 ± 0.6 182 ± 3 126 ± 5 80.1 ± 0.9 74.7 ± 0.9 86 ± 1 95 ± 2 

1.0 28.2 ± 0.5 15.1 ± 0.5 146 ± 3 112 ± 4 55.7 ± 0.9 55.4 ± 0.9 58.7 ± 0.7    

0.5 21.4 ± 0.9 13.9 ± 0.4 117 ± 3 92 ± 2 56 ± 1 53 ± 1 58 ± 1    

 
Table 5.1: T1 relaxation times on material surfaces at different magnetic field strengths. 

T1 values were measured by remotely detected relaxometry for hp 129Xe and 83Kr on various material surfaces at differing field 

strengths.  The uncertainties are the error from the fitting of the data including replicated time points providing error in reproduced 

measurements.  The storage pressure of all measurements was 125 kPa ± 1 kPa, including the 20% oxygen added for certain 

experiments. 
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pronounced changing in the relaxation curve for glass as it approaches 3 T, a previous 

report for hp 83Kr [8] reported longer relaxation times in a glass sample cell at a higher 

field strength of 9.4 T.  From [8], T1 of hp 83Kr relaxation observed in a glass cell was 

found to be ~120 s at 3 T field strength compared to 178 s at 3 T reported here.  83Kr 

relaxation has been shown to be very sensitive to surface-to-volume ratios, and the glass 

cell used by [8] had an I.D. of 12.5 mm compared to the I.D. of 21.5 mm used in this 

work.  The difference in cell I.D. can account for the different T1 times observed when 

comparing [8] and this work.  Additionally, the less pronounced change in T1 times could 

be due to the changes in ω0 as the field increases, thereby changing from a field 

dependent regime to a field independent regime.  This would be the expected trend as the 

field dependence of T1 would be most sensitive where 01c  , and as ω0 increases 

with increasing field, this condition is no longer valid.   

  Fig. 5.3 shows the relaxation of hp 83Kr on non-magnetic metals: brass, 

aluminum, and stainless steel.  For each of these three metals, the T1 for 83Kr is shorter 

than that of glass for all field strengths examined in this work.  The relaxation behavior 

for 83Kr in these metallic cells does not follow the same pattern observed in glass cells.  

The relaxation behavior is not a well-described function (i.e. linear, exponential), instead 

it appears to be a step function.  To fully understand 83Kr relaxation on these surfaces, 

more field strengths need to be explored to determine if the flat behavior observed from 

0.5 to 1 T and from 2 to 3 T is continued at lower and higher fields, respectively.  One 

similarity between all the measurements, for glass and metals, is that the reduction in T1 

time from 3 to 0.5 T is very similar.  The reduction in T1 for glass is 34%, similar to the 

31% reduction observed in aluminum and stainless.  Brass has the largest reduction for T1 
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of 83Kr of 38%.  Relaxation behavior of 83Kr on these metal surfaces indicates that the 

relaxation induced by paramagnetic centers (present on stainless steel) does not 

accelerate the T1 times beyond that of the quadrupolar interactions on a non-magnetic 

surface (such as aluminum).  This indicates that the while the presence of a metal is 

destructive to the polarization of hp 83Kr, the composition of the metal is not of particular 

concern to the 83Kr nucleus.   

  For comparison, hp 129Xe gas is studied in the stainless steel cell where the T1 

times are found to be very dependent on field strength, ranging from 49.5 ± 0.7 s for 3 T 

down to 21.4 ± 0.9 s for 0.5 T.  This represents a reduction in T1 times of 57 %, the 

largest reduction observed in this work.  Interestingly, with the increased relaxation time 

of hp 129Xe on stainless steel, it is plausible that for systems such as a canula (used for 

attachment to the trachea of small animals to carry out lung studies), minimal relaxation 

should be expected from the stainless steel construction in the high field region of a 

superconducting magnet.  However, these data also indicate that at low field systems [32; 

33], or even near earth-field systems [34], the presence of stainless steel between the 

SEOP cell and the detection region could depolarize the hp 129Xe.  Remarkably, the T1 

times for hp 129Xe are always shorter on stainless steel than those for hp 83Kr on stainless 

steel, due to its larger gyromagnetic ratio.[6]  Therefore, the relaxation mechanism of 

129Xe is primarily through interactions with local paramagnetic regimes on the surface of 

the metal, even if the overall metal sample is considered non-magnetic.   

  Although each of these metals can be considered as a homogenous system, the 

surface of these metals will contain oxides and could have exposed paramagnetic sites.  

These paramagnetic species could be the primary source of relaxation for hp noble gases 
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and cannot be removed without special treatment of the surface (i.e. machining or 

coating), which could induce larger variations.  It should be noted that while care is taken 

to minimize the volume of hp gas contained in transfer lines and connections between the 

delivery system and the storage cells, this volume cannot be eliminated. Therefore, the T1 

values obtained from this experimental setup should be considered as the upper limit due 

to signal that might survive in the connections.   

 

5.3.3. Longitudinal relaxation in the presence of oxygen at various field strengths 

  Hp 129Xe and hp 83Kr were each mixed with a breathable mixture of oxygen 

(approximately 20%, the necessary amount for in vivo studies).  T1 times are obtained to 

provide insight into the relaxation behavior of hp gases and how they change as a 

function of field strength.  Previous studies [17; 35; 36] have shown that the long T1 of 

129Xe in the gas phase (typically on the order of hours) is reduced to between 10 – 20 s in 

the presence of oxygen.  Jameson et al. [18] previously studied the effect of oxygen on 

the relaxation of 129Xe; the xenon partial pressure used for the studies in [18] was 5 

amagat with 9 - 33 amagat of oxygen partial pressure.  These mixtures contain greater 

than the 20% oxygen required for in vivo studies and the pressures far exceed ambient.   

83Kr T1 time studies have shown reductions of approximately 18% in the presence of 

oxygen in canine lung tissue [1], from 10.5 to 8.6 s.  It should be noted that an initial 

study of hp 83Kr T1 times conducted in ex vivo rat lungs (Chapter 6) has shown no 

reduction of T1 times in the presence of oxygen.   

  A field dependence in T1 is observed for hp 83Kr gas in the presence of a 

breathable mixture of oxygen (Fig. 5.3, open circles).  Compared to the T1 of 83Kr in the 



155 
 

same glass cell at 3 T (178 ± 3 s), the T1 for 83Kr mixed with oxygen is reduced to 130 ± 

4 s, a reduction of 27%.  This reduction is very similar to that at the lowest field, 0.5 T, 

where T1 of 83Kr in the gas phase is 117 ± 2 s, compared to 92 ± 2 s when mixed with 

oxygen, a reduction of 21%.  By comparing the two extremes for both gas mixtures, a 

reduction in T1 time for 83Kr in the presence of oxygen from 3 to 0.5 T, corresponding to 

29%, is very similar to the reduction of T1 times observed by 83Kr in the same glass cell 

without oxygen (34% reduction in T1 times).  Considering the relevance of this T1 

behavior to in vivo MRI, the T1 reduction represents a loss in useable signal; however, the 

reduced T1 time for 83Kr is still longer than T1 times for 83Kr obtained on other surfaces 

(brass, aluminum, stainless steel).  This indicates that the 83Kr T1 times are still sensitive 

to surfaces, even in the presence of oxygen.  Also the T1 of 83Kr still exceeds one minute 

when mixed with oxygen; this suggests that hp 83Kr can be premixed with oxygen in a 

storage container before being administered to a subject, provided that inhalation follows 

soon after (within 10-15 s).  A similar slowing of changes in the T1 of 83Kr, as observed 

on glass, is also observed in the presence of oxygen on glass.  Although the presence of 

oxygen has reduced the T1 of 83Kr, relaxation on the surface is still the dominant 

mechanism.  Therefore it is expected that a slowing of change in T1 would be present as 

observed on glass.  The correlation time for 83Kr with the oxygen could also be 

influencing the change in T1 time; however, further experiments would be needed to 

separate the correlation time for the surface from the correlation time with the oxygen.  

  While the 83Kr T1 has a field dependence in the presence of oxygen, 129Xe T1 does 

not under similar conditions. Fig. 5.4 and Table 5.1 show the T1 times collected for hp 

129Xe in the presence of 20% oxygen for magnetic field strength ranging from 0.5 – 3 T.  
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The T1 times for 129Xe are reduced from hours in the absence of oxygen [17; 35; 36] to 13 

– 16 s when mixed with oxygen, and the magnetic field shows little influence on the T1 

times.  It is likely that in the presence of oxygen in the gas phase, extremely short 

correlation times maintain the τc << 1/ω0 condition, therefore T1 is field independent in 

the presence of oxygen.  It can also be concluded that, due to the shortening of T1 for hp 

129Xe in the presence of oxygen, it is unlikely that surface sensitive relaxation would be 

observed.  However, it should be noted that chemical shift data would still be accessible 

for in vivo MRI using 129Xe mixed with oxygen. For this reason, hp 83Kr can provide very 

complimentary data to hp 129Xe as 83Kr retains its surface sensitive characteristics even in 

the presence of oxygen.  While these data would suggest premixing hp 129Xe and oxygen 

would relax most of the polarization, this is typically bypassed for hp 129Xe in vivo 

studies where mixing with oxygen is done as close to the subject as possible [37].  This 

prevents depolarization of the hp 129Xe gas prior to inhalation, thereby providing the 

largest signal enhancement possible.  For hp 83Kr, the ability to mix the hp gas with 

oxygen allows for large quantities of gas to be inhaled for in vivo studies.  This may be 

necessary due to the lower polarization of hp 83Kr produced compared to that of hp 129Xe.  

Additionally krypton gas does not have the anesthetic properties of xenon gas [38]; 

therefore high concentrations of krypton could be higher than the concentrations useable 

by xenon without causing anesthetic effects [38; 39].   
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5.4 Conclusion 

  A survey of 83Kr and 129Xe relaxation in the presence of metal surfaces and 

oxygen is presented in this work.  The longest relaxation times for both nuclei are in 

systems with minimal concentration of paramagnetic species (i.e. glass), although it is 

possible to measure relaxation times for paramagnetic systems (i.e. oxygen and stainless 

steel).  For 83Kr, relaxation times of as long as 180 s were found for an untreated glass 

container at 3 T, while for metal surfaces relaxation times of approximately 80 s were 

found.  In untreated glass, 83Kr relaxation is found to be field dependent with relaxation 

times as short as 120 s at 0.5 T.  Relaxation on metal surfaces is not well defined as a 

function of magnetic field strength and requires further investigation at this time.  When 

compared to 129Xe, 83Kr relaxation is found to be longer on the stainless steel surface in 

all magnetic field strengths explored thus far.  This is partially due to the smaller 

gyromagnetic ratio of 83Kr compared to that of 129Xe as well as the quadrupolar 

interactions, which is the dominant relaxation pathway over that of paramagnetic 

interactions.  For all surfaces studied, 83Kr T1 times ranged from 50 s (on brass, 0.5 T) to 

180 s (on glass, 3T) while 129Xe T1 times ranged from 21 s to 49 s on stainless steel at 0.5 

to 3 T, respectively.  The relaxation data presented in this work will help to modify SEOP 

conditions by prolonging relaxation in cells by use of higher field strengths and may have 

implications for longer term storage of hp 83Kr.   

  In addition to metal surfaces, the behavior of relaxation for 129Xe and 83Kr in the 

presence of oxygen is also reported.  A reduction in the relaxation times for both nuclei is 

observed, although the behavior at various field strengths is quite different.  For 129Xe, T1 

is found to range from 13.9 to 16.2 s at magnetic field strengths of 0.5 to 3 T in the 
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presence of oxygen.  These, mostly field independent, T1 times are significantly reduced 

from a T1 of hours for 129Xe in the gas phase [17; 35; 36].  For 83Kr the general behavior 

of relaxation time in the presence of oxygen is similar to the behavior of 83Kr on glass 

without oxygen; however, T1 is reduced by approximately 30 %.  83Kr T1 times with 

oxygen present range from 92 to 130 s at magnetic field strengths of 0.5 to 3 T, compared 

to 117 to 178 s without oxygen on the same glass surface and field strengths.  

Measurements for 83Kr indicate that while a reduction in T1 will occur in the presence of 

oxygen and at lower fields, hp 83Kr and oxygen mixtures potentially have a long enough 

T1 to be inhaled by small animals [7], and eventually humans, for in vivo studies.  Even 

though the T1 of 83Kr is reduced, the reduction is not as severe as for 129Xe, and therefore 

should still provide surface sensitive relaxation, even in in vivo systems such as lungs.  

This surface sensitive relaxation of hp 83Kr could be utilized as a relaxation based 

contrast agent for in vivo imaging. 
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CHAPTER 6 

Longitudinal Relaxation and Magnetic Resonance Imaging of Lungs with 

Hyperpolarized 83Kr 

The results presented in this chapter are being prepared for submission as a 

journal article with authorship as follows: Karl F. Stupic, Nancy D. Elkins, Galina E. 

Pavlovskaya, John E. Repine, and Thomas Meersmann.  Karl F. Stupic and Thomas 

Meersmann wrote the submission with edits provided by John E. Repine, Nancy D. 

Elkins, and Galina E. Pavlovskaya.  Nancy D. Elkins performed the lung extractions and 

prepared the lungs for experiments.  Galina E. Pavlovskaya performed the MR imaging 

and processed the image data.  Karl F. Stupic and Thomas Meersmann performed the hp 

83Kr gas delivery and lung inflation for imaging experiments and the relaxation 

measurements.  Karl F. Stupic produced the hp 83Kr, built the experimental setup, and 

processed all data from relaxation measurements.    
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6.1. Introduction 

 Since the first reported separation of highly polarized 129Xe gas from the 

extremely reactive alkali metal spin-exchange agent [1], hyperpolarized (hp) noble gases 

are seen as a key diagnostic tool to the biomedical community for the lungs. A variety of 

biomedical applications (see reviews [2; 3; 4; 5])  are enabled due to the orders of 

magnitude increases in signal intensities achieved by spin-exchange optical pumping 

(SEOP) [6]. Since the first images with hp 129Xe [7] and hp 3He [8] were recorded 15 

years ago, many different techniques have been developed using hp noble gas nuclei.  Hp 

3He has found use in studies of oxygen partial pressure [9] and alveolar size [10; 11], 

while hp 129Xe, with high tissue solubility and 300 ppm chemical shift range [3], has 

provided information about gas exchange in lungs [12; 13; 14].  Hp 129Xe was also 

explored for molecular imaging using functionalized xenon biosensors [15; 16] and was 

infused directly into blood for MR imaging applications [17].   

 Hp 3He and 129Xe are the most well known noble gas nuclei and the only stable 

noble gas isotopes  with spin I = 1/2.  However, there are three more NMR active noble 

gas isotopes, namely 21Ne (I = 3/2, natural abundance 0.27%), 83Kr (spin I = 9/2, natural 

abundance 11.5%), and 131Xe (spin I = 3/2, natural abundance 21.2%).  Each of these 

nuclei possesses a nuclear electric quadrupolar moment and it is the quadrupolar 

interactions in these noble gas atoms that dominate spin relaxation and cause coherent 

spin evolution.  These interactions were exploited in NMR measurements in the past [18; 

19; 20; 21; 22; 23; 24] including MRI usage of thermally polarized, liquefied 131Xe [25]. 

Sufficient signal strength was obtained through rapid signal averaging that is possible in 

micro porous materials with large  surfaces areas that causes fast longitudinal relaxation 
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time (T1) of quadrupolar noble gases.  However, the signal intensity from thermally 

polarized gas phase atoms is too low for practical NMR spectroscopy and MRI 

application in materials with pore sizes above a hundred micrometer. Rapid data 

acquisition required for many in vivo studies does not allow for signal averaging at all 

and in vivo MR is therefore not feasible with thermally polarized noble gases.  However, 

recent developments in hyperpolarization of 83Kr allow for a host of new NMR and MRI 

studies [26; 27; 28].  Hp 83Kr is achieved by SEOP similar to methodology developed for 

129Xe and 3He [6], and while the T1 of solid krypton does not allow for cryogenic 

accumulation [29], the gas phase T1 is sufficiently long enough to achieve separation of 

the alkali metal vapor from the hp gas [26].  The gas phase T1 of 83Kr was found to be on 

the order of hundreds of seconds at atmospheric pressure [20; 30; 31]; however, in the 

presence of a surface, the T1 of 83Kr was found to be sensitive to surface chemistry[32; 

33], surface hydration [34], surface temperature [26], and to the surface-to-volume ratio 

[32].  This sensitivity in T1 of 83Kr was shown to provide MRI contrast [27; 33] and could 

provide complimentary information to that obtained with hp 129Xe, which has 300 ppm 

chemical shift range but no relaxation sensitivity, or 3He, which has no chemical shift or 

relaxation sensitivity.  With the large 83Kr spin polarization produced through SEOP, 

rapid imaging sequences such as variable flip angle FLASH [35] can be used to acquire a 

full image from a single polarization period as shown with hp 83Kr  MRI detection of 

tobacco deposition on glass capillaries [33].   

 Previous reports with hp 83Kr provide the proof-of-concept of 83Kr relaxation as a 

surface sensitive contrast agent [27], feasibility of rapid imaging [33], and imaging of a 

rat lung [28], however a model for relaxation of 83Kr in different regions of the 
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respiratory track (the trachea, the bronchi and bronchioles, and the alveoli) has yet to be 

developed.  This work provides a first study of region specific hp 83Kr relaxation in intact 

and freshly excised small animal (rat) lungs, using natural abundance krypton and an 

improved storage and delivery system for the hp 83Kr gas.  Additionally improved 

polarization from the use of two 35 W line-narrowed diode array lasers leads to better 

signal intensity for relaxation measurements as well as implementation of variable flip 

angle FLASH imaging sequence in a rat lung while achieving improved resolution over 

previous work with lungs [28].   

 

6.2. Methods and materials 

  6.2.1. MR imaging 

 Experiments were performed on a Chemagnetics CMX II NMR spectrometer with 

a 9.4 T wide-bore (89 mm) superconducting magnet equipped with an imaging system 

(Resonance Research, Billerica, MA).  The imaging system consists of triple axis 

gradient coils (100 G/cm x,y axes and 720 G/cm z axis) and low-noise linear gradient 

amplifiers.  The custom built probe used for imaging was tuned to the 15.4 MHz 83Kr 

resonance frequency.  A variable flip angle FLASH imaging sequence [33; 35], 

comprised of 16 phase-encoding steps with no slice selection, was employed to fully 

utilize the non-Boltzmann polarization resulting from the 83Kr hyperpolarization.  The 

sequence [33; 35] increases the flip angles of subsequent RF pulses in accordance to the 

equation:  

1 1
tann

N n
      

                     [Eq. 6.1] 
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where N is the total number of RF pulses applied, n is the acquisition increment, and θn is 

the flip angle of the nth RF pulse.  The last pulse in the sequence where N = n corresponds 

to a 90º pulse utilizing the remaining polarization.  Such a manipulation of RF pulse 

lengths in the sequence insures that equal amounts of polarization were used to record 

each phase-encoding step. This technique is very effective under the assumption that T1 

relaxation in the system of interest (here, lung tissue) is negligible during image 

acquisition time.  To increase the signal to noise ratio in the image shown in this work, 

the raw data from four images were added together (in the time domain) in MATLAB 

R2009b (maci64, Math-works, Natick, MA) with zero-filling from 32x16 (raw data) to 

32x32 and apodized using a cosine function before Fourier transformation in both 

dimensions.   

 

 6.2.2. Longitudinal relaxation measurements 

 T1 measurements were taken in a second custom built probe tuned to the 15.4 

MHz 83Kr resonance frequency at 9.4 T.  The second probe was capable of holding 

inflation chambers up to a diameter of 40 mm, allowing for lung expansion without 

contacting the inflation chamber walls.  A pulse sequence consisting of 32 small flip 

angle (12º) RF pulses spaced evenly in time at intervals of 0.2 s was used to collect a 

spectrum at each time interval.  From this spectra set, data were taken for T1 fittings that 

occurred 0.4 s after the maximum integrated intensity in the spectra (defined at t = 0 s).  

This data were the result from a linear fitting of the natural logarithm of the integrated 

signal as a function of time and corrected for the polarization destruction occurring from 

the 12º flip angle RF pulse, as shown in Eq. 6.2: 
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    
1

1 1ln cos if t tT
   
 

             [Eq. 6.2] 

In Eq. 6.2, τ is the even time spacing of RF pulses, θi is the applied flip angle of the RF 

pulse, T1 is the longitudinal relaxation time, and t is the experimental time [33; 36]. The 

natural log of the signal was normalized to its value at t = 0 s. The linear fitting was 

applied to data obtained between a t = 0 s up to t = 2.6 s. Non-linearity occurring after 

this time in all data sets did not allow for further fitting with Eq. 6.2 that assumes mono-

exponential relaxation (discussed further in results and discussion).     

 

 6.2.3. Spin exchange optical pumping of 83Kr 

  Hyperpolarized (hp) 83Kr was produced with the use of two 35 W line-narrowed 

diode array lasers (Spectra Physics, Santa Clara, Ca) with a line width of 0.3 nm tuned to 

the Rb D1 transition at 794.7 nm. Lasers were oriented such that simultaneous 

illumination from the front and back of the cylindrical glass SEOP cell (Pyrex glass, no 

surface treatment, ID = 24 mm, length = 125 mm) was achieved.  Stopped flow optical 

pumping was employed as previously described [28] with a pump cell pressure of 135 

kPa.  Polarization buildup of hp 83Kr occurred in the SEOP cell for 10 – 20 min to 

produce proper polarization levels.  Each SEOP cell was loaded with 1 g of Rb (99.75%; 

Alfa Aesar, Ward Hill, MA) and the krypton mixture was produced from research grade 

gases (Airgas, Radnor, PA) composed of 25% krypton (99.995% pure), 5% nitrogen 

(99.9997% pure), and 70% helium (99.9999% pure).  During operation the SEOP cell 

containing the gas mixture was heated to 438 ± 5 K inside an aluminum and quartz oven 

to provide even heating across the cell.  All SEOP operation took place in the fringe field 

of the superconducting magnet at approximately 0.05 T.  An air-cooled condenser placed 
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at the outlet of the SEOP cell was used to separate the Rb vapor from the hp gas.  The Rb 

free hp gas is then passed onto the lungs via storage units as described in section 6.2.5.   

 

6.2.4. Animal care and usage 

 Following the University of Colorado Health Sciences Center approved protocol, 

30 healthy, male Sprague-Dawley rats (Charles River Laboratories, Inc., Wilmington, 

MA) rats (175 – 400 g) at the time of lung excision were anesthetized with ketamine (80 

mg/kg) (University of Colorado Hospital pharmacy) and xylazine (16 mg/kg) (MWT 

Veterinary Supply, Meridian, ID).  100 USP units heparin (American Pharmaceutical 

Partners, Inc., Schaumburg, IL) were allowed to circulate for 10-15 s before the lungs 

were placed on a ventilator. The lungs were perfused with 50 mL of Belzer-MPS solution 

(UW Kidney Preservation Solution, Trans-Med Corporation, Elk. River, MN) and the 

trachea was clamped at time of inhalation to avoid collapsing the airways while removing 

the heart and lungs en bloc from the chest cavity.  The excised lungs were then 

cannulated with an adapter tube positioned 5 mm above the bifurcation of the lungs.  

Following excision, the lungs, with the heart still attached, were immediately transferred 

into a Pyrex ventilation chamber shown in Fig. 6.1(A-C) (for imaging: ID = 24 mm and 

height = 100 mm, for relaxation: ID = 34 mm and height = 100 mm) and immersed in 

~60 mL of Belzer-MPS solution.  The lungs were then inflated to 5-6 mL of air and 

transported to the imaging facility at a temperature of 277 K.   
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Fig. 6.1: Overview of experimental setup and gas delivery system for hp 83Kr NMR and 

MRI. A) Experimental setup focusing on delivery of hp 83Kr to the lung for detection.  

Hp 83Kr flow is marked by arrows and valve status are shaded (dark/black: closed, 

lighter/gray: open) to indicate experimental procedure.  Prior to hp 83Kr delivery, the 

system up to valve 1 and 4 are closed to allow the system to be cleaned of any absorbed 

contaminants.  Hp 83Kr is first delivered to storage volume A where it is collected.  Valve 

1 is then closed and valve 4 is opened allowing for krypton to be delivered into storage 

volume B, where it is stored until the lung is inflated.  As shown in the figure, the lungs 

were inverted (trachea pointing down) and fully immersed in Belzer-MPS solution (UW 

Kidney Preservation Solution).  B) Expanded view of gas delivery to storage volume B.  

As hp 83Kr pass by the lung orifice where the trachea is connected to the delivery system, 

the lung remains in a collapsed state.  This prevents any lung expansion due to pressure 

preventing premature entry of hp 83Kr into the lung.  Also the volume of storage volume 
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B is expandable allowing for the volume of hp 83Kr being delivered to the lung to be 

controlled precisely.  Any excess hp 83Kr delivered beyond the capacity of storage 

volume B is exhausted to open air.  C) Delivery of hp 83Kr to the lungs.  After pressure 

has equilibrated in storage volume B, a syringe connected to the top of the ex vivo lung 

ventilation chamber pulls causing the solution level to rise inflating the lungs thereby 

pulling the hp 83Kr gas into the lung for detection. 

   



173 
 

6.2.5. Lung ventilation 

 Prior to any experiments being carried out the lungs were inflated to check that no 

gas bubbling occurred from the adapter tube to the bottom of the inflation chamber, 

sutures connecting the trachea to the adapter tube, or from the lung itself.  This ensured 

that any gas delivered to the lungs would not leak out thereby disrupting the data 

acquisition.  After verification that leaking would not occur, all lungs were kept at 290 K 

which corresponded to the bore temperature of the superconducting magnet.  

To avoid substantial relaxation of hp 83Kr and to avoid causing any damage to the 

lung from risk of over pressurization a system was developed that is shown in Fig. 6.1.  

Following polarization buildup in the SEOP cell for 10 – 20 min, hp 83Kr was delivered 

to a pre-evacuated (pressure < 10 Pa) 50 mL borosilicate glass syringe (Chemglass, 

Vineland, NJ) – i.e. “Storage Volume A” - by pressure equalization as shown in Fig. 

6.1A.  After delivery of approximately 50 mL of hp 83Kr the valve between syringe and 

the SEOP cell was closed, while the valve between the syringe and the gas delivery 

manifold for the ventilation chamber – i.e. “Storage Volume B”, - was opened.  This 

allowed for the controlled injection of hp 83Kr from the syringe into “Storage Volume B”, 

until a selected volume of hp 83Kr was delivered (see Fig. 6.1B).  During the transfer 

process the lungs were not allowed to expand, thus preventing the premature entry of hp 

83Kr into the lung.  The hp 83Kr was transferred from “Storage Volume B” into the lung 

through inhalation. The inhalation was obtained through suction above the Belzer-MPS 

solution caused by a second syringe attached to the top of the inflation chamber. The 

applied suction allowed for inflation of the lung to the desire inflation volume (see Fig. 

6.1C).   
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  For measurements with a set of different preselected volumes of hp 83Kr gas 

mixture, “Storage Volume B” was adapted to suit the necessary volume of gas needed.  

The outer glass tube of “Storage Volume B” had a determined volume of 6 mL and 

therefore additional glass pieces would be fitted to expand the volume as needed.  

However, the experimental setup also allowed for measurements where the lungs inhaled 

an initial volume of hp 83Kr followed by a further volume of non-hp gas (‘dark’) gas. 

Vice versa, the lungs could also inhale non-hp gas followed by a selected volume of hp 

83Kr.  In the case of measurements where molecular oxygen was mixed with hp 83Kr prior 

to delivery to the lungs, oxygen was delivered to “Storage Volume A” prior to the 

delivery of hp 83Kr from the SEOP cell.   

  All longitudinal relaxation (T1) measurements of hp 83Kr as a function of the lung 

inflation fall into three different schemes.  In scheme 6.1, an excess of hp 83Kr gas 

mixture was provided for inhalation.  A second, modified scheme (scheme 6.2) is the 

inhalation of non-hp gas prior to inhalation with hp 83Kr. In this work, volumes of 6 mL 

and 12 mL of un-polarized krypton gas were used to keep the lungs partially inflated 

before hp 83Kr inhalation. The most advanced scheme (scheme 6.3) used initial inhalation 

of 6 mL hp 83Kr gas immediately followed by un-polarized gas until the final inflation 

volume was reached. This is achieved through selection of a total volume of 6 ml for 

“Storage Volume B” and assumes no mixing of the un-polarized gas with hp 83Kr within 

this storage volume during the inhalation process.   

 

6.3. Results and Discussion 

 Polarization levels of hp 83Kr, from the addition of line-narrowed diode array 

lasers illuminating the SEOP cell from the front and the back, reached an enhancement 
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factor of 13,000, corresponding to 5.88% polarization.  This is an increase of a factor of 

three from the highest polarization previously reported for hp 83Kr [28].   While certain 

reductions in polarization are expected due to the relatively slow flow of hp 83Kr from the 

syringe to the lung orifice (see Fig. 6.1), it is expected to be less than 50% [34].  

Therefore, utilizing this high polarization with improvements in technique used to 

administer hp 83Kr, higher signal-to-noise is obtained for all experiments in this work.  

   

  6.3.1. MRI of lungs 

 An hp 83Kr MR image of an excised rat lung is shown in Fig. 6.2 obtained from 

variable excitation pulse FLASH experiments (raw data added together, x,y projection, 

no slice selection) using signal averaging from four experiments (NT = 4) separated by 

20 min of SEOP.   Image resolution of 0.83 mm x 1.66 mm (raw data) was obtained and 

shows clear improvement over the previously obtained hp 83Kr rat lung image resolution 

of 2.33mm x 2.33 mm (raw data) that required 16 individual experiments, each 

corresponding to a different gradient increment [28]. This represents an improvement of a 

factor of four in time required for these imaging experiments, caused in part by the 

increase in polarization through the use of line-narrowed diode-array lasers. Further 

contributing factors for the signal improvement were the illumination of the front and the 

back of the pump cell during the polarization time, higher laser power 70 W, and a better 

hp 83Kr gas delivery system for the inhalation process.  The white dashed line 

encompassing the image in Fig. 6.2 provides the location of the inner wall of the inflation 

chamber, which constraints the lungs’ position.  The image provides clear separation  
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Fig. 6.2: Transverse hp 83Kr MR image of an ex vivo rat lung.  A variable excitation pulse 

FLASH sequence comprising 16 phase-encoding steps with no slice selection was 

employed to fully utilize the 83Kr polarization. The raw data matrix size was 32 x 16 with 

a FOV of 2.656 cm and a BW of 14 KHz (NEX = 4, no slices selection).  The image 

scale is displayed in the lower left corner and a dashed ring outlines the inner wall of the 

ventilation chamber.  The direction of the applied magnetic field is defined as the z-axis.   
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between the left and right lungs. A dark area, between the two lungs, occurs in the bottom 

center region of the image corresponding to the heart, which is devoid of hp 83Kr.   

   

  6.3.2. Fitting of longitudinal relaxation data from lungs  

 T1 times were obtained for lungs using a pulse sequence which collects 32 spectra 

equally spaced in time.  A typical spectra set for inflations of 20 and 6 mL with full lung 

inflation using hp 83Kr gas (scheme 6.1) are shown in Figs. 6.3A and 6.4A.  As each 

experiment begins, the inflation of the lung is “captured” as the signal intensity of 83Kr 

grows with each subsequent spectrum until the signal intensity reaches a maximum. This 

maximum is assumed to be the point in time where the lung has reached it full inflation 

volume.  However as small fluctuations in lung volume could still occur, data points 

considered for the T1 fittings start two spectra after the maxima (corresponding to 0.4 s 

after the maxima).  At this point in experimental time, labeled as t = 0 s, the dependence 

of the 83Kr signal intensity is assumed to be caused solely by longitudinal relaxation since 

no significant volume change in the lung is expected.  The t = 0 s point is marked in Figs. 

3A and 4A by a diamond marker.   

 Data used in the fittings of T1 extended, therefore, from t = 0 s for 2.6 s and data 

collected further than 2.6 s was not considered in the fitting.  The 2.6 s cutoff is due to 

deviations from mono-exponential relaxation behavior.  Signal decay that cannot be 

described by a single time constant (or rate constant) is called multi-exponential behavior 

and can be caused by multiple effects in the studied system.  As lungs and the associated 

airways are a complex system by which one would expect multiple relaxation rates, a 

mono-exponential fitting would appear to be a gross simplification of this system. A  
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Fig. 6.3: Experimental and fitting data for a 20 mL lung inflation using full inflation 

volume of 20% hp 83Kr gas available during the inflation of ex vivo rat lungs.  A) Signal 

intensity rise and decay resulting from inflation of the ex vivo rat lung, where by the 

signal rises as the lungs inhale hp 83Kr, and after the lungs stop inhaling T1 relaxation 

provides for the signal decay.  Signal is acquired from a series of 12º RF pulses spaced 

evenly every 0.2 s.  The diamond marker, also marked at t = 0 s, is the time point where 

only T1 decay is observed without interference from lung movement influencing the 

observed signal.  B) Plot of the natural logarithm of the integrated intensity from the data 

shown in A versus time.  Three regions are shown, data acquired prior to t = 0 s (open 

circle), data acquired at or after t = 0 s (closed circle), and data acquired 2.6 s after t = 0 s 

(crosses).  Only data acquired between t = 0 to 2.6 s are fitted to a linear function with a 

correction factor for the polarization destroyed by the RF pulse to calculate the T1 value.   
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Fig. 6.4: Experimental and fitting data for a 6 mL lung inflation using full inflation 

volume of 20% hp 83Kr gas available during the inflation of ex vivo rat lungs.  With the 

exception of the spectra presented and the data plotted on the graph, all markings are 

identical to those used in Fig. 6.3.    
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single rate constant may still be a good description of the hp 83Kr relaxation in lungs as 

long as the dominant contribution to the signal arises for hp 83Kr contained in the alveolar 

space of the lung, assuming that the relaxation times from the various alveoli do not 

deviate excessively from an averaged alveolar T1 time.  However as time progresses, fast 

longitudinal relaxation in the high surface-to-volume ratio alveoli may reduce the relative 

contribution of the hp 83Kr signal arising from the alveolar region compared to that from 

the airways hp 83Kr in the airways will exhibit much slower relaxation with various rate 

constants depending on the diameter of the airway. Because of slower relaxation, its 

relative contribution to the signal intensity will therefore rise over time. At t  = 2.6 s, a 

time period of two to three times the T1 time of 83Kr in the alveolar space, the remaining 

signal has decayed to about one tenth or less of the original signal from the alveolar 

space. At this point the decay of the signal arising from various areas of the airways will 

contribute to the overall appearance of the signal decay.  The situation may be further 

complicated by the possibility that un-relaxed hp 83Kr from “Storage Volume B” or its 

adapter tube to the lung could diffuse into the airways, thereby causing a perceived 

slower relaxation.  To illustrate this, a semi-logarithmic plot with the natural logarithm of 

the integrated intensity normalized to t = 0 s versus experimental time is shown in Figs. 

6.3B and 6.4B.  Figs. 6.3B and 6.4B show the increasing intensity from the inhalation in 

the lung (shown as open circles) including an additional 0.4 s time period, up to the point 

where data fitting begins (shown as closed circles).   

 The linear fitting displayed on both Figs. 6.3B and 6.4B is the fitting to the solid 

circles and extended both backwards and forwards in time to show the deviations from 

this fitting as the lung inflates and for times beyond 2.6 s. As mentioned above, data 



181 
 

occurring after the solid circles are not considered in the T1 fittings and are displayed as 

crosses. As a requirement for consideration, all spectra sets had to include at least one 

spectrum prior to reaching the maximum to ensure proper fitting of data, otherwise the 

spectra set was discarded.   

   

  6.3.3. Influence of different inflation schemes 

 As mentioned in the Methods and materials section, three different inflation 

schemes were developed for use in this work.  These schemes were developed as a way 

to, at lease crudely, discriminate hp 83Kr relaxation behavior in the larger airways from 

the relaxation in the alveoli and to obtain first approximations of 83Kr T1 times in these 

regions. Previously, hp 83Kr T1 has been shown to have a dependence on surface-to-

volume ratio [32] and as such it would be expected that the T1 times for 83Kr in these 

different regions could have different T1 times.   

 The first scheme does not discriminate between airways and alveoli since all of 

the void space of the lung is filled with hp 83Kr. As a result, an average value for all 

regions of the lung is obtained. Note that the behavior may still appear as mono-

exponential relaxation because the contribution from the airways is relatively small since 

an estimated 90% of the lung gas volume is contained within the alveoli. As time 

progresses, different relaxation in the different regions leads to a stronger relative 

contribution of the airways to the signal and the multi exponential nature of the hp 83Kr 

decay becomes apparent. This happens typically after 2.6 s in the studied rat lungs. 

However, the contribution from the airways can also be emphasized by the second 

scheme described in the methods section.    
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 In the second scheme, the lung is initially inflated with un-polarized gas for a pre-

determined volume, 6 and 12 mL respectively, and then the rest of the volume is filled by 

hp 83Kr.  The idea behind this inflation scheme is to keep hp 83Kr in the airways and out 

of the alveoli. The alveoli will be inflated with gas that first enters the lung and will 

therefore contain only thermally polarized gas. The following hp 83Kr would not be able 

to reach all alveoli and remain to some extent in the airway. This assumption uses a 

strong simplification of the breathing process, because it ignores that different lobes of 

the lung expand at different times in the breathing cycle. Note further, that airways 

consist of very different regions, namely the trachea, the bronchi at different levels of 

branching and bronchioles. All regions have different surface-to-volume ratios and may 

additionally provide different 83Kr surface relaxation.  Nevertheless, the described 

scheme should direct hp 83Kr towards the airways and should therefore provide the 

longest T1s.  Two different volumes of un-polarized gas are used to see whether the 

relaxation time increases further with increasing ‘dark’ inhaled gas volume. 

 The third scheme uses only a small portion of hp 83Kr at the beginning of the lung 

inflation. In this case, the smallest volume that could be achieved with “Storage Volume 

B” from Fig. 6.1 was 6 mL.  Using the same arguments as for the second scheme, this 

inflation scheme should direct hp 83Kr towards the alveoli as opposed to the larger 

airways. Theoretically this would give the shortest T1 times as the surface-to-volume 

ratio for the alveoli would be the largest compared to the airways.   

 Fig. 6.5 shows the results from these three different inflation schemes (two data 

sets for scheme 6.2 for the two different amount of ‘dark’ gas volume used), where the 

data for each fitting is plotted as the natural logarithm of the normalized intensity at t = 0  
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Fig. 6.5: Hp 83Kr signal decay in an ex vivo rat lung under different inflation conditions.  

Presented here are four different inflation conditions for 20 mL lung inflation: only 6 mL 

of 20% hp 83Kr gas available at the beginning of inflation (open circle), greater than 20 

mL of 20% hp 83Kr gas available at the start of inflation (open square), 6 mL un-

polarized gas delivered prior to remaining volume being hp 83Kr gas (diagonal crosses), 

and 12 mL un-polarized gas delivered prior to remaining volume being hp 83Kr gas 

(closed crosses).  The y-axis presented here is the natural log of the signal intensity at t = 

0 s, as defined in the methods and materials section.  These intensities are measured from 

a 12º RF pulse applied to the lung during the course of the NMR experiment.  Lines are a 

linear fitting including a compensation term for spin destruction by the applied pulse.  T1 

values obtained from this fitting are presented in Fig. 6.5 and Table 6.1.   
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s versus time.  For all four data sets shown in Fig. 6.5, the data is for a final lung inflation 

volume of 20 mL, thereby keeping the lung inflation the same for each scheme. The 

inflation with an initial 6 mL of hp 83Kr gas mixture followed by non-hp gas (scheme 6.3) 

exhibits the steepest slope and thus shortest relaxation time constant T1 of 1.00 ± 0.08 s 

(see Fig. 6.5).  The upper line in Fig. 6.5 corresponds to 12 mL of un-polarized gas 

administered before the balance of hp 83Kr gas (scheme 6.2) and represents the slowest T1 

time of 1.48 ± 0.07 s.  The remaining lines are the 6 mL of un-polarized gas administered 

before the balance of hp 83Kr gas (also scheme 6.2) resulting to T1 of 1.31 ± 0.05 s and 

full hp 83Kr gas mixture (scheme 6.1) resulting to T1 of 1.25 ± 0.07 s as the second and 

third lines from the top respectively.  The order of the observed relaxation times for the 

three inflation schemes follows expected order if regional isolation of the respiratory 

system was achieved.  These inflation schemes can be applied to other inflation volumes 

to develop a better understanding of 83Kr relaxation in different regions of the respiratory 

system.  Application of the inflation schemes to various lung inflation volumes is 

discussed in the following section.    

 

  6.3.4. Longitudinal relaxation times in lungs 

 By extending the inflation schemes discussed earlier to inflation volumes ranging 

from 3 to 20 mL in rat lungs, T1 times have been acquired and are presented as a function 

of inflation volume in Fig. 6.6 and numerically in Table 6.1.  Each relaxation time is the 

average of at least two T1 fittings per inflation volume per rat and of five individual but 

similar rats (see methods section).  The standard deviation shown is obtained from the 

deviation of individual values from the calculated average value.  Similar to the trend  
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Fig. 6.6: Average longitudinal relaxation times as a function of final inflation volume for 

different inflation patterns.  The four different inflation conditions with various final 

inflation volumes are shown: only 6 mL of 20% hp 83Kr gas available at the beginning of 

inflation (open circle and dashed line), a greater volume of 20% hp 83Kr gas available 

than needed at the start of inflation (closed circle and solid line), 6 mL un-polarized gas 

delivered prior to remaining volume being hp 83Kr gas (open triangle and dot-dashed 

line), and 12 mL un-polarized gas delivered prior to remaining volume being hp 83Kr gas 

(solid triangle and dotted line).  Error bars represent one standard deviation for the 

individual experiments from the averaged value for all rats used in this study.  The 

dashed light for only 6 mL of 20% hp 83Kr gas available was extended to the lower 

inflation volumes with a greater volume of 20% hp 83Kr gas available as a reference.   
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Final 
Inflation 

Only hp 83Kr 
gas T1 (s) 

6 mL hp 83Kr gas 
at start of 

inflation T1 (s) 

6 mL of un-polarized 
gas at start of 
inflation T1 (s) 

12 mL of un-
polarized gas at start 

of inflation T1 (s) 

3 mL 2.1 ± 0.8 

1.6 ± 0.2 

1.4 ± 0.1 

1.31 ± 0.08 

1.3 ± 0.1 

1.28 ± 0.08 

1.25 ± 0.07 

       

 

2.0 ± 0.2 

1.57 ± 0.07 

1.42 ± 0.09 

1.36 ± 0.05 

1.31 ± 0.05 

   

 

2.2 ± 0.3 

1.58 ± 0.08 

1.48 ± 0.07 

6 mL      

9 mL 1.2 ± 0.1 

1.07 ± 0.08 

1.01 ± 0.09 

1.01 ± 0.07 

1.00 ± 0.08 

12 mL 

15 mL 

18 mL 

20 mL 

Table 6.1: Table of averaged longitudinal relaxation times for ex vivo rat lungs.  

Averaged T1 values for all rats used in this study shows different inflation patterns for 

different final inflation volumes.  The error values are representative of one standard 

deviation for the individual experiments from the averaged value.   
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observed in Fig. 6.5 for a single inflation volume, scheme 6.2 provides the longest T1 

values, followed by scheme 6.1, and the shortest T1s are for 6 mL of hp gas administered 

before un-polarized gas to complete the lung inflation volume (scheme 6.3).   

 Several trends are observed in Fig. 6.6.  One trend is that as the inflation volume 

increases for all schemes, T1 times become shorter.  In the case of schemes 6.1 and 6.3,  

the T1 times are shown to decrease and eventually stabilize at about 12 ml inflation 

volume to values of T1 = 1.3 s and T1 = 1.0 s, respectively.  In the case of inflation 

scheme 6.2, where un-polarized gas is administered prior to hp 83Kr gas, the T1 times 

decrease with increasing inflation volume and do not reach a stabilized T1 time over the 

measured lung inflation volumes.  This indicates that with increasing inhalation volume 

an increasing fraction of hp 83Kr is contained in the alveolar space where the fastest 

relaxation is expected due to its high surface-to-volume ratio.  

For the inflation scheme 6.2 where 6 mL of un-polarized gas is inhaled first, the 

T1 values decrease rapidly with increasing inhalation volume, an effect that is even more 

pronounced with scheme 6.2 using 12 mL un-polarized gas. This trend can be explained 

again by the concept of increasing contributions from the alveoli compared to the airways 

at higher inhalation values. The effect is more pronounced with scheme 6.2 than with 

scheme 6.1 because a larger proportion of alveolar space is occupied by an un-polarized 

gas in scheme 6.2 than in scheme 6.1. The relaxation contribution from the airways is 

therefore more important in scheme 6.2 than in scheme 6.1.  

 By considering only the measurements that introduced the smallest amount (3 

mL) of hp 83Kr into the lungs, namely 3mL full hp 83Kr (scheme 6.1) and 3 mL of hp 83Kr 

after 6 and 12 mL of un-polarized gas (scheme 6.2), T1 times of approximately the same 
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value are obtained (2.1 ± 0.8, 2.0 ± 0.2, and 2.2 ± 0.3 s respectively). Given the current 

polarization capabilities, 3ml is the smallest volume of hp 83Kr that could be introduced 

into the lung.  Hp 83Kr gas in the airways will strongly contribute to these measurements 

although relaxation from the alveoli will also be a factor. The results indicate a lower 

limit of T1 = 2 – 2.2 s for the averaged relaxation in the airways of rat lungs.  The 

measurement with inflation scheme 6.1 at 3 mL has a large uncertainty but the obtained 

T1 is supported by the T1 times obtained from scheme 6.2.  It is possible that the errors 

come from slight variations in lung structure from rat to rat or from precision in the 

inflation of the lung.  At such small inflations as 3 mL, small deviations in the experiment 

could induce the greatest changes physiologically in the lungs and airways. 

 Experiments using scheme 6.3 were designed to isolate the T1 times of 83Kr in the 

alveolar space and are performed with final inflation volumes ranging from 9 to 20 mL. 

At inflation volumes beyond 12 ml, the T1 times are found to be inflation independent 

with T1 values of about 1 s. This is the fastest relaxation observed in the lungs studied.  

While some mixing could occur in the inhalation process, it is reasonable to consider the 

hp 83Kr gas to be isolated to the alveolar space and perhaps in the bronchioles and smaller 

bronchia. The inflation independent relaxation time in the alveoli (and nearby airway 

regions) is remarkable because one would expect for the alveoli to further expand with 

increasing inhalation volume. The larger the alveoli, the smaller their surface-to-volume 

ratio is expected to be. Therefore an increase in the observed T1 relaxation times with 

increasing inflation would be expected that is however not observed. There are a number 

of possible interpretations of the absence of increases in relaxation time with increasing 

inflation volume. One explanation is that the changing relative volume contribution 
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between airways and alveoli increases the observed relaxation and counteracts any 

decrease in relaxation due to the expanding alveoli. A second explanation is that the 

surface interaction for the krypton changes with increasing expansion and counteracts the 

decreasing surface-to-volume ratio. Most likely however, is the (third) explanation that 

the alveoli do not expand beyond an inflated volume that they initially assumed. In other 

words, when an alveolus expands, it expands rapidly into its inflated state and remains 

there until deflation. The gradual process of inhalation is then a consequence of 

individual alveoli expanding at different times rather than individual alveoli expanding 

gradually. This explanation can be supported by an argument that considers the alveolar 

surface tension dependence on alveolar expansion. In the collapsed state the tension is 

large because of the small radius r. However upon alveolar expansion, the surface tension 

will be reduced with increasing radius r (i.e. barring changes in the surface composition). 

This in turn would facilitate rapid alveolar expansion to its final inflated state. Vice versa, 

deflation should follow a similarly rapid process.  More conclusive results may be 

obtained from further improved signal intensities that could be exploited for spatially 

resolved T1 and T2 relaxation measurements focusing on particular regions of the lungs.  

Previous work with hp 83Kr has explored the T1 dependence not only on surface-to-

volume ratios [32; 34] but also on surface composition [32], a fact that needs to be 

explored for lungs, in particular as a probe for lung diseases such as adult respiratory 

distress syndrome (ARDS) [37] and chronic obstructive pulmonary disease (COPD) [38].   
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  6.3.5. In vivo consideration 

 While the work presented here is done with ex vivo rat lungs, it is necessary to 

consider the demands of studies to be carried out in vivo in anesthetized small animal.  

The foremost consideration for in vivo experiments is to use a breathable mixture of hp 

83Kr gas and oxygen combined prior to inhalation.  Previous work with 83Kr T1 times has 

reported a reduction of T1 by 18% from 10.5 to 8.6 s in desiccated canine tissue with 20% 

oxygen present [27].  This reduction is smaller than the reduction experienced by 3He and 

129Xe, which in the presence of 20% oxygen are reduced from hours (or even days in the 

case of 3He) to 10-20 s [7; 39; 40; 41].   

 The low degree of sensitivity of 83Kr relaxation to paramagnetic species (i.e. 

oxygen) is due to the smaller gyromagnetic ratio of 83Kr compared to those of 3He and 

129Xe (4%, 76%, and 28% of 1H, respectively).  Although previous data has shown a 

reduction in T1 times in the presence of oxygen, the faster T1 times in rat lungs do are not 

affected by oxygen.  In the presence of 20% oxygen and inflating the lung to 18 mL with 

this gas mixture (20% oxygen, 80 % hp 83Kr gas mixture), the relaxation time of 83Kr was 

found to be 1.25 ± 0.01 s from three replicate measurements.  Increasing the percentage 

of oxygen, 40% oxygen and 60% hp 83Kr gas mixture, the T1 value was found to be 1.22 

± 0.01 s from two replicate measurements.  These measurements were conducted 

identically to the inflation scheme 6.1 but with hp 83Kr gas mixed with 20% oxygen.  

Comparison of these oxygen measurements to their hp 83Kr analog find the T1 times 

obtained are within the error of the full hp 83Kr gas mixture T1 (T1 = 1.25 ± 0.07 s).  This 

demonstrates that the presence of oxygen has no appreciable effect on 83Kr T1 when 

inside of the lungs.  However, a 25% reduction in the hp 83Kr signal for the oxygen 
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experiments was observed after accounting for the replacement of hp gas by oxygen.  

This is likely given the premixing of hp 83Kr at low field (<0.1 T, stray field of magnet) 

with oxygen.  Despite the premixing with oxygen, the signal intensity obtained for an 18 

mL inflation with oxygen was a factor of three stronger than the best signal intensity 

obtained for any 3 mL inflation volume with only hp 83Kr gas mixture.   

 Previous work with 83Kr has shown a T1 dependence on the surface-to-volume 

ratio [32] as well as on temperature [26]. While T1 times of 83Kr in rat lungs ranges from 

0.9 to 2.2 s depend on the inflation scheme, it is presumable that T1 times of 83Kr in a 

human lung would be longer due to the lower surface-to-volume ratio in the alveoli. The 

average alveolar diameter of a rat is 94 µm while the average alveolar diameter of a 

human is 225 µm [42].  Additionally longer T1 times for 83Kr have been shown with 

increasing temperature, caused by decreased surface adsorption times on the surface [26].  

While not explored in this report, it is presumed that by increasing the temperature of the 

lungs to the physiological temperature of a rat (310.5 K [43]) an increase in the T1 time of 

83Kr might be observed.   

 

6.4. Conclusions 

  With the employment of line-narrowed laser sources [44] at moderate power (70 

W total) with illumination from the front and the back of the SEOP cell, signal 

enhancements of 13,000 were obtained for hp 83Kr, corresponding to 5.88% polarization.   

This is the highest polarization obtained for 83Kr reported to date; however, this 

polarization will be reduced by relaxation during the delivery to and inhalation by the 

lungs.  Along with improvements in the delivery system, the high polarization of 83Kr 
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was able to provide reproducible high signal-to-noise in rat lungs from a small flip angle 

(12°) RF experiment.  This signal-to-noise was sufficient to produce the first hp 83Kr 

FLASH image of a rat lung, allowed for small volumes of hp 83Kr to be administered, and 

made the extensive data collection possible that provided reproducible T1 times in 

multiple lungs.   

 T1 times for hp 83Kr in rat lungs were found to range from 1.0 to 2.2 s depending 

on the degree of lung inflation and on the applied inhalation scheme.  This range of T1 

times should allow for in vivo hp 83Kr MRI in rats, which breathe at a rate of 1 to 5 times 

per second.  Additionally, initial work has shown that the quadrupolar relaxation of 83Kr 

is not influenced by the presence of a breathable mixture of hp 83Kr with up to 40% 

oxygen. Therefore the measured relaxation is from interactions of 83Kr with the surface of 

the lungs, making this potentially important for in vivo diagnostics for lung diseases such 

as adult respiratory distress syndrome (ARDS) [37] and chronic obstructive pulmonary 

disease (COPD) [38]. 

 The T1 relaxation of 83Kr is found to slow down with increasing inflation volume 

of the excised rat lungs. Using different inflation schemes, the relaxation time increase 

upon increasing inflation was attributed to a decrease of the relative contribution from hp 

83Kr in airways compared to hp 83Kr  in the alveoli. An inflation scheme was designed to 

reduce contributions from the airways. For this scheme, a small initial volume of hp 83Kr 

was inhaled, followed by an incremented volume of un-polarized gas using a custom 

designed breathing apparatus. This scheme resulted into inflation independent relaxation 

times T1 at higher inflation volumes. An increase of the T1 time with increasing 

inhalation volume was never observed although it was expected assuming that alveoli 
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expand continuously with increasing lung inflation. Future studies will have to apply 

spatially resolved relaxation measurements to provide a better understanding of the effect 

and further improvements in the hp 83Kr signal intensity are therefore crucial.  

Improvements to hp 83Kr signal intensity could come from SEOP cell design [45; 46], 

higher powered lasers [47], other line-narrowed laser sources [48; 49; 50], and improved 

delivery methods [51; 52].  Understanding fundamental biological mechanics of the lung 

[53; 54] may also be possible with higher signal intensity of hp 83Kr.  Excluding system 

improvements mentioned here, an improvement of nearly a factor of eight can be 

achieved by using isotopically enriched krypton.  With the employment of these 

improvements, hp 83Kr could reach polarization levels capable of in vivo applications in 

small animals. 
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