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ABSTRACT 

 

 

QUANTITATIVE COMPARISONS OF SATELLITE OBSERVATIONS AND CLOUD 

MODELS 

 

Microwave radiation interacts directly with precipitating particles and can 

therefore be used to compare microphysical properties found in models with those found 

in nature. Lower frequencies (< 37 GHz) can detect the emission signals from the raining 

clouds over radiometrically cold ocean surfaces while higher frequencies (≥ 37 GHz) are 

more sensitive to the scattering of the precipitating-sized ice particles in the convective 

storms over high-emissivity land, which lend them particular capabilities for different 

applications. Both are explored with a different scenario for each case: a comparison of 

two rainfall retrievals over ocean and a comparison of a cloud model simulation to 

satellite observations over land.   

 Both the Goddard Profiling algorithm (GPROF) and European Centre for 

Medium-Range Weather Forecasts (ECMWF) one-dimensional + four-dimensional 

variational analysis (1D+4D-Var) rainfall retrievals are inversion algorithms based on the 

Bayes’ theorem. Differences stem primarily from the a-priori information. GPROF uses 

an observationally generated a-priori database while ECMWF 1D-Var uses the model 

forecast First Guess (FG) fields. The relative similarity in the two approaches means that 
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comparisons can shed light on the differences that are produced by the a-priori 

information. Case studies have found that differences can be classified into four 

categories based upon the agreement in the brightness temperatures (Tbs) and in the 

microphysical properties of Cloud Water Path (CWP) and Rain Water Path (RWP) space.  

We found a category of special interest in which both retrievals converge to similar Tb 

through minimization procedures but produce different CWP and RWP. The similarity in 

Tb can be attributed to comparable Total Water Path (TWP) between the two retrievals 

while the disagreement in the microphysics is caused by their different degrees of 

constraint of the cloud/rain ratio by the observations. This situation occurs frequently and 

takes up 46.9% in the one month 1D-Var retrievals examined. To attain better 

constrained cloud/rain ratios and improved retrieval quality, this study suggests the 

implementation of higher microwave frequency channels in the 1D-Var algorithm. 

 Cloud Resolving Models (CRMs) offer an important pathway to interpret satellite 

observations of microphysical properties of storms. High frequency microwave 

brightness temperatures (Tbs) respond to precipitating-sized ice particles and can, 

therefore, be compared with simulated Tbs at the same frequencies. By clustering the Tb 

vectors at these frequencies, the scene can be classified into distinct microphysical 

regimes, in other words, cloud types. The properties for each cloud type in the simulated 

scene are compared to those in the observation scene to identify the discrepancies in 

microphysics within that cloud type. A convective storm over the Amazon observed by 

the Tropical Rainfall Measuring Mission (TRMM) is simulated using the Regional 

Atmospheric Modeling System (RAMS) in a semi-ideal setting, and four regimes are 

defined within the scene using cluster analysis: the ‘clear sky/thin cirrus’ cluster, the 
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‘cloudy’ cluster, the ‘stratiform anvil’ cluster and the ‘convective’ cluster. The 

relationship between Tb difference of 37 and 85 GHz and Tb at 85 GHz is found to 

contain important information of microphysical properties such as hydrometeor species 

and size distributions. Cluster-by-cluster comparison between the observations and the 

simulations discloses biases in the model including overproduction of supercooled water 

and large hail particles. The detected biases shed light on how the model should be 

adjusted to generate more realistic microphysical relationships for each cluster. Guided 

by the model/observation discrepancies in the ‘convective’ cloud cluster, a new 

simulation is performed to provide dynamic adjustments by generating more but smaller 

hail particles.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Observations and models complement each other in many ways. Observations 

from ground measurements, radars, and satellites have been used to evaluate and validate 

models. Observed discrepancies have helped improve the models. Models, on the other 

hand, are used to understand the physical processes associated with the observations. 

Observations can also be assimilated into well-performing models as constraints.  

Broadly speaking, there are two approaches with which satellite observations and models 

can be compared: the ‘satellite-to-model approach’ and the ‘model-to-satellite approach’. 

In the first approach, satellite retrievals are performed to convert radiances to the physical 

variables that are directly used by the models. The variables may include surface rain rate 

and cloud properties. This approach suffers primarily from the uncertainties associated 

with the retrieval algorithms. In the second approach, observation operators that are 

usually radiative transfer models (RTMs) are used to simulate the satellite radiances (or 

brightness temperatures, denoted by Tb) using the model outputs so that the radiances can 

be compared directly. This comparison will reveal whether the model’s microphysical 

properties can lead to the same radiative properties. This approach avoids the retrieval 
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uncertainties, but is affected by errors brought in from the radiative transfer calculation 

processes such as the amount and placement of clouds (especially in the models with 

coarse resolutions, denoted as the cloud overlapping scheme or beam-filling effects), the 

clouds’ microphysical properties (such as particle size distribution and density), and the 

accuracy of the RTM.    

 Passive microwave observations are unique in that they represent the entire 

column of hydrometeors in cloudy or precipitating atmospheres. Therefore, passive 

microwave methods bear great advantages over traditional visible and infrared imager 

methods. Frequencies from 10 to 85 GHz have been used in microwave imagers (e.g., 

Special Sensor Microwave/Imager [SSM/I] and the Tropical Rainfall Measuring Mission 

[TRMM] Microwave Imager [TMI]) on the polar-orbiting satellites. Lower frequencies 

(<37 GHz) respond to total liquid water content directly and are used in the ‘emission’ 

based rainfall retrieval algorithms over radiometrically cold ocean surfaces. Higher 

frequencies (≥ 37 GHz) are vulnerable to Mie scattering of precipitation-sized ice 

particles including snow, graupel, and hail. This ‘scattering’ signal is used for rainfall 

retrieval algorithms over land.  

 The focus of this study is on the comparison of cloud microphysics using passive 

microwave observations. Because of the direct relationship between microwave radiances 

and cloud microphysics, the derived microphysical properties from observations can be 

used to evaluate the model microphysics directly in the ‘satellite-to-model’ approach. 

These radiances can also be used as proxies of a storm’s microphysical properties and Tb 

simulations can then be compared using the ‘model-to-satellite’ approach. Both 

approaches will be explored in this study. 
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An observationally generated cloud-radiation database has been built from the 

TRMM radar and radiometer combination aboard the TRMM satellite. The cloud 

database will be used as an observation database to compare with the model’s cloud 

schemes. In this work, the 1-D cloud model in the European Centre for Medium-Range 

Forecasts (ECMWF) 1D+4D-Var rain retrieval algorithm over ocean is evaluated using 

this database to identify discrepancies of the algorithm in generating microphysics 

properties. The biases are discussed and solutions to mitigate the bias are investigated. 

 Cloud Resolving Models (CRMs) explicitly resolve convective clouds and cloud 

systems on fine spatial and temporal scales. They have been used to simulate individual 

clouds as well as mesoscale convective systems (Tao and Simpson 1989; Skamarock et 

al. 1994; Parker and Johnson 2004; and many others), to understand cloud and 

precipitation ensembles and the radiative-convective equilibrium (Zeng et al. 2008; Zhou 

et al. 2007; Blossey et al. 2007; and many others), to develop and even replace the cloud 

parameterizations in GCMs (Randall et al. 1996; Randall et al. 2003; Khairoutdinov et al. 

2003), and to build a-priori radiative-cloud databases for physical microwave rainfall 

retrievals (Bauer et al. 2001, Kummerow et al. 2001; Marzano et al. 1999). However, 

CRMs still need parameterizations on scales smaller than their grid resolutions and have 

many known and unknown deficiencies. To fulfill these important applications, the 

robustness of CRMs in simulating cloud and rain processes must be tested against 

observations. In this work, the microphysics in a convective storm over land is evaluated 

against observations using direct satellite observations to avoid the uncertainties in the 

retrieved physical parameters. The identified biases in microphysics can then lead to 
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improvement of the simulations, especially in the microphysical parameterization 

schemes.  

1.2 Objectives 

The objective of this work is using satellite observations to quantitatively evaluate model 

representations of convection, and more specifically, using microwave observations to 

evaluate the simulated microphysics of models. Biases are identified and suggestions are 

given to mitigate these biases and improve the model performances.  

1.3 Roadmap of the Dissertation 

Chapter 2 describes the interaction of cloud microphysics with microwave frequencies in 

greater detail. Chapters 3 and 4 compose individual papers. Chapter 3 compares rain 

retrievals over the oceans from the Goddard Profiling algorithm (GPROF) with ECMWF 

1D-Var products using the ‘satellite-to-model’ approach. Chapter 4 presents a clustering 

approach to compare cloud model simulations to satellite observation over a convective 

storm over land using the ‘model-to-satellite’ approach, followed by Chapter 5, which 

includes conclusions and future work.  
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CHAPTER 2 

INTERACTION WITH HYDROMETEORS AT MICROWAVE FREQUENCIES 

 

The utilization of microwave frequencies in investigating and retrieving cloud 

microphysics is based on the physical interactions between microwave radiation and 

hydrometeors within the cloud. In this chapter, these interactions and the microwave 

radiative transfer in a precipitating atmosphere are described, which lay down the 

physical basis of understanding the applications of comparing cloud microphysics in 

satellite observations and in model simulations in the future chapters. 

2.1 Microwave Radiometry and Interaction with Atmospheric Constituents 

2.1.1 Microwave Radiometry and Microwave Imagers 

Radiometry is the measurement of electromagnetic radiation. Passive microwave sensors 

whose function is to measure the radiant intensity are often referred to as microwave 

radiometers. To understand the fundamentals of microwave radiometry, the concept of an 

ideal blackbody needs to be introduced. A blackbody refers to a material that absorbs all 

incident radiation completely at all frequencies. Matter radiates at all frequencies and an 

ideal blackbody radiates at frequency ν (or wavelength λ with the light speed 

! 

c = "# ) in 

accordance with the Planck function in units of energy/area/time/sr/frequency, or 

[Watt/m2/sr/Hz]: 
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! 

B" (T) =
2h" 3

c
2
(e

h" /KT
#1)

   or       

! 

B"(T) =
2hc

2

"5(ehc /K"T #1)
                                       (2.1) 

where,  

h = 6.626 x 10-34  J s is the Planck constant, 

c = 3.0 x 108 m s-1 is the speed of light in vacuum, 

K = 1.3806 x 10-23 J K-1 is the Boltzmann constant, and 

T  is the absolute temperature. 

By inverting Eq. (2.1), the brightness temperature, denoted by Tb, is derived as: 

  Tb =
h!

K(ln(1+
2h!

3

B!(T )c
2
))

.                                                                        (2.2) 

Tb is the temperature of the blackbody that possesses the brightness of 

! 

B" (T) . However, 

in the real world, many objects such as the Earth’s surface or clouds are not blackbodies 

and they may reflect or scatter some of the incident radiation. How ‘black’ is an object is 

described by the emissivity ε with 

! 

" =1 for a blackbody and 

! 

" <1 for a gray body with 

incomplete absorption. For a gray body, its emissivity is 

!" = B"(Tb ) / B"(T ) .                                      (2.3) 

Kirchhoff’s Law states that upon thermodynamic equilibrium, as an object absorbs 

radiation, it emits a spectrum of radiation at the same temperature at the same time, and 

its absorptivity a!  is equal to its emission εν.  

 There is no firm definition for the exact range of the microwave region, but a 

reasonable convention states that the microwave spectrum extends from 0.3 to 300 GHz 

(1 GHz = 1 gigahertz = 109 Hz), that is equivalent to 1 mm to 1 m in wavelength (Ulaby 

et al. 1981). Figure 2.1 shows the electromagnetic spectrum. 
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Figure 2.1 The electromagnetic spectrum (Figure 3.1 of Petty 2006).  

 

Figure 2.2 shows the microwave total vertical transmittance through a cloud-free 

atmosphere. There are weakly absorbing pressure-broadened 22.235-GHz resonance 

water vapor lines and strong resonant water vapor absorption bands near 183.3 GHz. 
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There are two strong oxygen resonance absorption bands near 60 and 118.75 GHz that 

can be used for temperature sounding in less cloudy atmospheres. Between the absorption 

lines lie the window regions such as at about 31.4 GHz where the air is relatively 

transparent.  

 

Figure 2.2 Spectrum of microwave transmittance from surface to space. Transmittance is 
the fraction of power emitted from the surface that is measured by the satellite without 
being absorbed by the atmosphere. (http://amsu.cira.colostate.edu/spectrum.html) 

 

Microwave imagers utilize the transparent (window) channels so that the surface 

features and precipitation can be observed while microwave sounders utilize the strong 

rotational lines of oxygen in the 50 - 60 GHz portion and the water vapor lines around 

183 GHz for temperature and humidity soundings, individually. Temperature retrieval 

from microwave sounders utilizes the weighting function of each oxygen band that peaks 

at different heights. Compared with infrared sounders, microwave radiation is less 

impacted by clouds and precipitation due to its longer λ. However, microwave sounding 
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is not the focus of this study. Two microwave imagers utilized in the following studies 

will be described in more details: the Special Sensor Microwave/Imager (SSM/I) and the 

TRMM Microwave Imager (TMI). 

 The SSM/I (Hollinger 1989) is carried aboard Defense Meteorological Satellite 

Program (DMSP) F8, F10, F11, F12, F13, and F15. It has seven separate conically 

scanning total-power radiometers at frequencies of 19.35, 22.235, 37, and 85.5 GHz with 

dual polarizations except that 22.235 GHz observes only with vertical polarization. The 

incidence angle is 53.1° and the spatial resolutions range from 69 × 43 km at 19 GHz to 

15 × 13 km at 85 GHz.  

 The TRMM satellite (Kummerow et al. 1998) was launched in November 1997. It 

is the first mission dedicated to measure tropical and subtropical rainfall to help better 

understand rainfall and latent heating distributions. The orbit is inclined at 35˚ to 

maximize observations in the Tropics. TMI is a descendent of SSM/I and it measures  

radiance at viewing angle of approximately 53˚ for nine polarized channels at five 

frequencies of 10.65, 19.35, 21.3, 37.0, and 85.5 GHz. Detailed description of this 

instrument can be found in Kummerow et al. (1998).  

2.1.2 Advantages of Microwave Radiometry 

Microwave is advantageous over visible and infrared because its longer 

wavelength allows its capability to penetrate clouds, and to some extent, even rain so that 

the direct interactions can help establish the relationships between radiation and cloud 

microphysics. It therefore, provides an all-weather measurement capability.  
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2.1.3 Interaction with Atmospheric Constituents 

To calculate the radiative transfer of microwave radiation through an atmosphere, 

it is important to know the atmosphere’s state (temperature, pressure, and composition) 

and understand the radiative properties (absorption, emission, and scattering) of the 

various atmospheric constituents that interact with the radiation. This section will discuss 

the interactions in detail with the subsections of absorption and emission by atmospheric 

gases, the Rayleigh scattering regime, and the Mie scattering regime.  

2.1.3.1 ABSORPTION AND EMISSION BY ATMOSPHERIC GASES 

In clear-sky conditions, the absorption and emission are due solely to atmospheric 

gases. In the microwave spectrum, atmospheric gases and pollutants including O2, H2O, 

O3, SO2, NO2, and N2O all have absorption lines. But compared with the primary gaseous 

absorbers O2 and H2O, the relative concentration of the other gases at sea level are so 

small that their contributions to the microwave gaseous absorption spectrum is negligible 

(Ulaby et al. 1981).   

 As shown in Figure 2.2, the 60-GHz oxygen complex including a large number of 

absorption lines spreading out over the 50 to 70-GHz frequency range under pressure 

broadening and the transitional 118.75-GHz absorption line compose the microwave 

absorption spectrum of oxygen under 300 GHz. Water vapor has a weak pressure-

broadened absorption line at 22.235 GHz and a strong absorption line at 183 GHz. 

Measurements near 22.235 GHz have been used by both SSM/I (22.235 GHz) and TMI 

(21.3 GHz), and column water abundance can be obtained using these measurements 

(Grody et al. 1980). The absorption/emission coefficients of these gases at certain 

frequency can be calculated given the line shapes and their concentration. In this study,  
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the O2 and  H2O absorptions are calculated using Liebe’s MPM93 model. The Liebe’s 

model is an accurate physical model that calculates the attenuation introduced by 

atmospheric gases and its allowed frequency range extends from 1 to 1000 GHz (Liebe et 

al. 1993). 

2.1.3.2 RAYLEIGH SCATTERING REGIME 

When particles are present in the atmosphere, their interactions with radiation 

may involve both absorption and scattering. The significance of scattering by the 

particles is determined by the scattering regime in which they belong (Rayleigh, Mie, or 

geometric optics). The regime is defined by the value of the non-dimensional size 

parameter x, which describes the relative size of the particle with respect to the incident 

wavelength and is defined as the ratio of the particle circumference to the wavelength: 

! 

x "
2#r

$
                                                                                                   (2.4) 

where, r is the radius of a spherical particle (or equivalent radius for a nonspherical 

particle) and λ is the incoming wavelength. 

Figure 2.3 shows the scattering regimes as a function of the particle size and the 

wavelength. For the microwave range that is of interest to our applications (10 - 85 GHz), 

scattering from air molecules and atmospheric aerosols is negligible; scattering from 

cloud droplets (5 - 50 µm), pristine ice crystals (10 - 100 µm), and drizzle (~ 100 µm) 

belongs to the Rayleigh scattering regime; scattering from rain drops (0.1 - 3 mm), 

graupel (0.1 - 3 mm), and hail (~ 1 cm) belongs to the Mie regime. Typical size range for 

each particle species is adapted from Table 12.1 of Petty (2006). 
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Figure 2.3 Relationship between particle size, radiation wavelength and scattering 
behavior for atmospheric particles. Diagonal dashed lines represent rough boundaries 
between scattering regimes (Figure 12.1 of Petty 2006).  
 

Under the assumption of ‘homogeneous, isotropic, and spherical’ particles for the 

Rayleigh scattering regime, where mx <<1 , in which m is the index of refraction, the 

corresponding scattering and absorption cross-sections Qs and Qa, respectively, can be 

expressed as: 

  

! 

Q
s
=
2"2

3#
x
6
K

2                                                       (2.5) 
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where K is a complex quantity defined in terms of m:  

! 

K =
m
2
"1

m
2

+ 2
 .                                        (2.7) 

By comparing Eqs. (2.5) and (2.6), it can be seen that in the Rayleigh region where x 

<<1, Qa is usually much larger than Qs and, therefore, extinction is dominated by 

absorption. For example, at the frequencies that are commonly used for remote sensing of 

the troposphere (approximately 20 – 90 GHz), absorption exceeds scattering by at least 

two orders of magnitude and, therefore, the interaction of microwave radiation with cloud 

droplets is dominated by absorption/emission instead of scattering. The absorption 

coefficient is proportional to the cloud liquid water and is independent of the drop size 

distribution. Absorption by liquid water clouds increases with frequency monotonically. 

Microwaves provide the only direct means for remote-sensing of cloud water content. 

 However, when the particle is made of very weakly absorbing materials with m 

having a very small imaginary part, 

! 

Im "K{ } << K
2 , scattering will be dominant in the 

extinction. For example, extinction of microwave radiation by the ice particles is mostly 

caused by scattering with a very large single scattering albedo even though the total 

extinction Qe = Qa + Qs is much smaller compared with that of the liquid particles.   

2.1.3.3 MIE SCATTERING REGIME 

As x increases with increased r and/or decreased λ, the interaction enters the Mie 

scattering regime where the scattering becomes more and more important and cannot be 

ignored. By solving the Maxwell equations for a spherical particle, the extinction and 

scattering efficiencies of a sphere may be written as: 
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Qe(x,m) =
2

x
2

(2n+1)
n=1

!

" Re(a n+bn )                               (2.8) 

Qs(x,m) =
2

x
2

(2n+1)(
n=1

!

" a n

2

+ bn
2

) ,                               (2.9) 

where an and bn are referred to as the Mie scattering coefficients that are functions of x 

and m and involve the spherical Bessel functions. Therefore, the relative importance of 

absorption and scattering depends both on the relative size of the particle and its 

properties (e.g., density). Liquid, ice, and mixed hydrometeor species are, therefore, 

discussed separately due to their varied dielectric properties. For the polydispersed 

hydrometeors, the drop/particle size distributions are important in determining the Tbs. 

 For water particles such as rain droplets, both the real and imaginary parts of m 

are functions of frequency and temperature (refer to Figure 5.16 in Ulaby et al. 1981) 

with the same order of magnitude. The real part corresponds to the scattering process and 

the imaginary part corresponds to the absorption process. Therefore, both scattering and 

absorption are important in the microwave radiation extinction process.  

 The refractive index of ice is smaller than that of water in the microwave region. 

Its real part is approximately independent of frequency and temperature at the value of 

1.77. Its imaginary part changes with frequency and temperature but with a magnitude 

that is two orders smaller than that of its real part (Ulaby et al. 1981). Therefore, 

scattering is dominant in the extinction process for ice particles (e.g., hail).  

 Snow, aggregates, and graupel particles are all mixtures of ice crystals and dry air. 

Therefore, the calculation of their refractive indexes depends on their densities that are 

functions of the fraction of ice. The density of pure ice is 917 kg m-3, and the density of a 

snowflake is usually between 50 and 300 kg m-3 depending on the percentage of the air 
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inclusion. Thus, for mixed hydrometeors, the extinction efficiency depends not only on 

the particle’s size, but also on its density.  

2.2 Radiative Transfer in a Precipitating Atmosphere  

How radiation travels through a precipitating atmosphere is described in this 

section. Satellite observations using microwave radiometers that operate near the window 

regions are strongly affected by surface emissivity, which varies greatly over different 

surfaces. 

2.2.1 Surface Properties 

The observed microwave radiances at the Top Of the Atmosphere (TOA) may 

consist of radiation from both the Earth’s surface and the atmospheric constituents. The 

contribution from the surface depends on the surface type and its temperature. The 

surface emissivity ε is a key parameter for the interpretation of satellite microwave data 

and is a function of frequency, polarization, incident angle, index of refraction of the 

surface, and the surface roughness. Ocean and land surfaces need to be treated separately 

due to their distinct differences in the emissivities. Usually, the ε over both land and 

ocean varies by about 10% from its mean value (Grody 1993). 

 Over ocean, ε is modeled as a function of surface temperature, salinity, and the 

near-surface wind speed and foam that are closely related to the surface roughness caused 

by wind-driven waves. The model of Wilheit (1979) is used in this study to account for 

the wind speed. The Wilheit model is a physically based sea surface emissivity model 

that considers the sea surface emissivity as a combination of the emissivity given by an 

ensemble of flat facets and the reduction of the facets due to a layer of absorbing 

nonpolarized foam. 
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 ε over land is highly variable and depends on many surface characteristics 

including the surface composition (soil type, soil moisture, snow cover, and vegetation 

cover) and surface geometry (incident angle, surface roughness, canopy geometry, and 

topography) (Prigent et al. 1997; Lin and Minnis 2000; Prigent et al. 2006). Over most 

land surfaces, high ε makes it difficult to separate atmospheric contribution from the total 

signal observed by the spaceborne sensors.  Microwave land emissivity models are being 

built (Weng et al. 2001; Bytheway and Kummerow 2010) for the benefit of many 

applications including physical land rainfall retrievals.  

2.2.2 Radiative Transfer  

The theory of radiative transfer is concerned with the equilibrium balance 

between the radiation emitted, absorbed, and scattered throughout the atmosphere. The 

radiative transfer equation at frequency ν in a local thermodynamic equilibrium is given 

by:  

I!(";µ,#) = $!B!(Ts )T!(ps,0)+ (1%$! )T!(ps,0) B![T(p)]
&T!(ps, p)

&p0

ps

' dp

+ B![T(p)]
&T!(p,0)

&pps

0

' dp+
(

4)
I(";

%1

1

'
0

2)

' µ' ,#' )P(µ,#;µ' ,#' )dµ'd#'
  

                                                                               (2.10)    

where, 

 I is the radiance, 

 τ is the optical depth, 

 µ is the cosine of the zenith angle, 

φ is the azimuth angle, 

ε is the surface emissivity, 
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B is the Planck function, 

T stands for temperature and Ts is the surface temperature, 

T is the transmittance, 

p stands for pressure and ps is the surface pressure, 

ω is the single scattering albedo, and 

P is the phase function. 

The radiances Iν observed at TOA in the direction of µ and φ is composed of the 

contributions from: surface emission (term 1 in the RHS), reflection of downward 

atmospheric emission by the surface into the atmosphere (term 2 in the RHS), the 

atmospheric emission (term 3 in the RHS), and scattering of radiation from other 

directions to the observing direction (term 4 in the RHS).  

 In the microwave regime with frequency less than 100 GHz, at terrestrial 

temperatures of 300 K and below, considering the low-frequency limit (

! 

h" /KT <<1 or λ 

~ 1 mm or longer), Rayleigh-Jeans approximation applies and allows the Planck function 

to be simplified as: 

  

! 

B" (T) # (2"
2
K /c

2
)T .                                                          (2.11) 

The significant feature of Eq. (2.11) is that the Planck radiance is proportional to the 

physical temperature of the object. This approximation significantly simplifies the 

radiative transfer calculations and sensor calibration relationships in the microwave band.  

An equivalent brightness temperature Tb is defined such that 

  I! = (2!
2
K / c

2
)Tb(!)  .                                   (2.12) 

Replacing 

! 

B" (T)  and 

! 

I"  into the RTE of Eq. (2.10): 
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2.2.3 Eddington Approximation 

Diffusion approximation can be made with multiple scattering since there is no 

directional dependence. It is appropriate to consider the transfer of hemispheric upward 

and downward flux densities 

! 

F
" and 

! 

F
" so that the coefficients in the solutions of the 

RTE can be analytically solved and efficient computations can be carried out, which is 

critical in many general circulation and climate models. This simplification is made in the 

two-stream and Eddington approximations. More details of Eddington approximation is 

described in the Appendix Section A.2.1. 

 

2.2.4 T-matrix for Nonspherical Particles 

For smaller raindrops, the shapes are nearly spherical where surface tension 

dominates over hydrodynamic forces; while larger drops exhibit nonspherical behavior. 

The differences between assuming spherical drops and accounting for the nonspherical 

nature of raindrops are usually smaller than the statistical uncertainties due to other 

parameters such as the drop-size distribution (Ulaby et al. 1981). Ice particles exist with a 

wide range of habits, while RTMs often use a spherical ice shape due to simplicity and 

lack of more suitable models. However, the particle’s shape may play a large role in 

determining its radiative properties and is found to be able to cause polarization 

differences of up to 10 K at 85 GHz in stratiform-anvil regions of Mesoscale Convective 

Systems (MCSs). Spencer et al. (1983) observed a polarization difference of 10 to 12 K 
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at 37 GHz at heavy rain events that can only be explained by the nonspherical shape of 

the particles. The polarization differences have been utilized in stratiform/convective 

separation algorithms including Anagnostou and Kummerow (1997), Hong et al. (1999), 

Olson et al. (2001), and Varma and Liu (2010). Therefore, to simulate this polarization 

signal, the nonspherical shape of the snow and aggregate particles in the stratiform anvil 

need to be considered. The T-matrix method was implemented and the details of 

implementation are described in Appendix A.  

2.3 Rainfall Algorithms 

The relationships between microwave radiation and cloud microphysics have 

been utilized in the rainfall retrieval algorithms. Different relationships at different 

frequencies have been utilized for over ocean and over land. Generally speaking, the 

techniques to extract rainfall signature at microwave frequencies primarily rely on the 

emission signals from raindrops at frequencies at or below 37 GHz over the oceans where 

thermal emission from liquid water droplets dominate the atmospheric effects; and the 

scattering signals from precipitating ice particles at frequencies at or above 37 GHz over 

land where propagation of microwave radiation is affected by the interactions with ice 

particles. Specifically, passive microwave rainfall algorithms generally fit in one of the 

following three classes (Kummerow et al. 2007): 1) the emission type algorithms 

(Wilheit et al. 1991; Berg and Chase 1992; Chang et al. 1999) that use the warm signals 

from raining cloud over radiometrically cold ocean surfaces; 2) the scattering type 

algorithms (Spencer et al. 1983; Grody 1991; Ferraro and Marks 1995) that correlate 

rainfall with Tb depressions that are caused by Mie scattering of the precipitation-sized 

ice particles above the rain layer, this is a less direct measurement compared with the 
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emission approach, but it is applicable in a wide range of rain events; and 3) the 

multichannel inversion type algorithms (Olson 1989; Mugnai et al. 1993; Kummerow and 

Giglio 1994; Smith et al. 1994; Petty 1994; Bauer et al. 2001; Kummerow et al. 2001) 

that invert the observed radiances simultaneously to retrieve the rain parameters. The 

application of the inversion type of algorithms over land requires sophisticated surface 

emissivity models. 

 Accordingly, for the applications utilizing microwave imagers (TMI or SSM/I), 

lower frequency channels (e.g., 10, 19, 22 GHz) are used for ocean scenes such as in 

Chapter 3 and higher frequency channels (e.g., 37 and 85 GHz) are used for land scenes 

such as in Chapter 4.  
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CHAPTER 3 

COMPARING RAIN RETRIEVALS FROM GPROF WITH ECMWF 1D-VAR 

PRODUCTS 

 

3.1 Introduction 

Accurate rainfall measurements over the oceans are crucial for many applications 

and microwave radiometers provide physically reasonable rainfall estimates due to the 

direct interaction of the radiation with water in the rain column. Passive microwave 

rainfall algorithms generally fit into one of the following three classes (Kummerow et al. 

2007): 1) the emission type algorithms (Wilheit et al. 1991; Berg and Chase 1992; Chang 

et al. 1999) that use the warm signals from raining cloud over radiometrically cold ocean 

surfaces; 2) the scattering type algorithms (Spencer et al. 1983; Grody 1991; Ferraro and 

Marks 1995) that correlate rainfall with Tb depressions that are caused by Mie scattering 

of the precipitation-sized ice particles in the raining clouds; and 3) the multichannel 

inversion type algorithms (Olson 1989; Mugnai et al. 1993; Kummerow and Giglio 1994; 

Smith et al. 1994; Petty 1994; Bauer et al. 2001; Kummerow et al. 2001) that invert the 

observed radiances simultaneously to retrieve the rain parameters. 

 The future Global Precipitation Mission (GPM, Kummerow et al. 2007; Hou et al. 

2008) will utilize all available polar orbiting satellites, supplemented with a core satellite 
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that will utilize a Dual-frequency Precipitation Radar (DPR) with a multichannel 

microwave imager (GMI) to provide frequent, global, and accurate precipitation 

measurements. To avoid configuration-dependent retrieval biases between the sensors, a 

transparent and parametric algorithm that is based on the same physical principles is 

being developed that does not depend on specific frequencies and therefore ensures 

uniform rainfall products across all sensors (Kummerow et al. 2007). This requirement 

confines the adoptable algorithms only to those that involve physical forward/inverse 

modeling. The Goddard Profiling Algorithm (GPROF, Kummerow et al. 2001) approach 

has been utilized for TRMM Microwave Imager (TMI), Special Sensor Microwave 

Imager (SSM/I) and Advanced Microwave Scanning Radiometer – Earth Observing 

System (AMSR-E) and served as a prototype for a single retrieval approach (Ferraro 

2007). ECMWF in the meantime, has begun assimilating radiances corresponding to 

raining scenes using the Bauer et al. (2001a, 2006a) radiative transfer and a retrieval 

algorithm referred to as  1D+4D-Var (Bauer et al. 2006b,c). 

 Both algorithms are based on the Bayes’ theorem but vary in the implementation 

process such as a-priori information, usage of frequencies, and algorithm formulation. 

The most recent version of GPROF relies on an observationally generated database of 

precipitation profiles that uses a combination of active and passive microwave sensors 

(Kummerow et al. 2011). This database constitutes a pseudo-observational microphysics 

space that defines the cloud/rainwater path ratios that have been observed using the 

active/passive microwave combination flying on TRMM.  

 These ‘observations’ are compared to the ECMWF results. Generally, there are 

two approaches to perform the comparisons between observations and models: the 
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‘satellite-to-model’ approach and the ‘model-to-satellite’ approach. In the first approach, 

retrievals are performed to convert satellite observations to model output variables (e.g., 

Zhou et al. 2007; Geer et al. 2008). In the second approach, observation operators such as 

Radiative Transfer Models (RTMs) are used to simulate observed radiances or Tbs from 

the model variables (e.g., Panegrossi et al. 1998; Chaboureau et al. 2002; Chevallier and 

Kelly 2002; Chevallier and Bauer 2003; Matsui et al. 2009). However, both approaches 

ultimately lead to comparing either rainfall or radiance maps where the comparison in 

radiance space has the advantage that at least the observations are very accurately known. 

In conducting this research, we seek to better understand the microphysical properties 

that lead to differences in the GPROF and ECMWF rainfall, particularly for cases where 

both methods successfully minimize the differences between the model and the observed 

Tb. Detailed descriptions of the GPROF and 1D-Var algorithms are provided in Section 

3.2. Comparisons between them using case studies are depicted in Section 3.3, while the 

statistical analyses of the differences are examined and analyzed in Section 3.4. In 

Section 3.5, solutions to resolve the discrepancies are proposed. 

3.2 GPROF A-priori Database and 1D-Var Retrieval Algorithm 

3.2.1 GPROF Rainfall Algorithm 

GPROF is a Bayesian retrieval scheme, which is currently used operationally for  

radiometers such as TMI, SSM/I, and AMSR-E. GPROF aims to retrieve the 

instantaneous rainfall and the rainfall vertical structure from the satellite microwave 

observations. The original algorithm is described in Kummerow et al. (1996) and was 

further extended to include the latent heating estimation (Olson et al. 1999). 
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 Rainfall retrieval from passive microwave radiances is an ill-conditioned inverse 

problem in the sense that the total information content of the observations is less than the 

independent variables within raining clouds that must be retrieved. Therefore, there is no 

unique solution that can be obtained without introducing prior knowledge and the derived 

solution may even be non-optimal. The Bayesian theorem provides a rigorous 

mathematical formulation to introduce this a-priori knowledge. Following Bayes’ 

formulation, the probability of observing a particular hydrometeor profile R, given the 

observed brightness temperature vector Tb can be written as: 

Pr(R | T
b
) = Pr(R)!Pr(T

b
|R),                                                             (3.1) 

where Pr(R) is the probability of observing a certain rain profile R and Pr(Tb|R) is the 

probability of observing Tb given a particular rain profile R. 

 Older versions of GPROF used Cloud Resolving Models (CRMs) to define Pr(R).  

Pr(Tb|R) in those versions of GPROF was calculated from the CRM output using a 

Radiative Transfer Model (RTM). More details of the CRMs and the RTM applied in 

GPROF are described in Kummerow et al. (2001). In practice, the available sets of CRM 

simulations constituted the assumed a-priori probability of finding a particular profile R 

in nature. In the retrieval process, given an observed Tb, profiles in the database that have 

consistent simulated Tb will be selected and weighted to give the expected value that is 

considered to be the ‘best’ estimate. With x representing the vector of all the physical 

quantities to be retrieved, the expected value of  x is given by: 

Ê(x) = x i
exp !0.5[y!H(x i )]

T (O+S)!1[y!H(x i )]{ }
A

i

"  ,                      (3.2) 
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where x
i
 represents all model simulated profiles in the database, y  represents the 

observation vector, H(x
i
)  is the simulated observation vector corresponding to profile x

i
 

with H representing the observation operator, O  and S  are the observation and model 

error covariance matrices, respectively, and A is the normalization factor, which is a 

scalar constant. For further descriptive details relating to the retrieval process see 

Kummerow et al. (1996) and Kummerow et al. (2001). 

 This algorithm has undergone many improvements over the years. Examples 

include an improved freezing level over oceans to reduce the artificially high rainfall at 

high latitudes, improved convective-stratiform discrimination to significantly decrease 

the precipitation in stratiform areas especially in areas far from convection, including 

melting layers in the RTM (Bauer 2001b), and use of improved rainfall relationship over 

land (Kummerow et al. 2001). Recently, an important improvement consisted of 

replacing the original CRM-based database with an observationally-generated database 

(Kummerow et al. 2011). The choice of database is very important because it is assumed 

that the database accurately represents the true probability of observed situations. 

3.2.2 Observationally Generated GPROF A-priori Database 

The traditional databases generated by CRM simulations suffered from issues 

including the correctness and completeness issues described in Kummerow et al. (2006). 

To avoid these shortcomings, an observationally-generated database of precipitation 

profiles has been constructed using the combination of active and passive microwave 

sensors (i.e., the Precipitation Radar [PR] and TRMM Microwave Imager [TMI] on 

board the Tropical Rainfall Measuring Mission [TRMM] satellite; Kummerow et al. 

1998).  
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 One year of TRMM observations of TMI and PR from 1 June 1999 to 31 May 

2000 were used to build the database. The TRMM operational PR algorithm (TRMM 

2A25, V6) was used as the starting point. When PR indicated no rain, an optimal 

estimation procedure was used to retrieve nonraining geophysical parameters including 

surface wind, Total Precipitable Water (TPW) and cloud Liquid Water Path (LWP) from 

the TMI observations (Elsaesser and Kummerow 2008). The Sea Surface Temperature 

(SST) is specified from the Reynolds weekly climatology (Reynolds et al. 2002).  When 

PR indicates rain, the TRMM 2A25 rainfall profiles are used as the first guess. The SST 

and wind speed are interpolated from the neighboring nonraining fields. Cloud water, 

water vapor and profiles of rain and ice hydrometeors are obtained by matching radar 

profiles to CRM. When matched, CRM hydrometeor profiles are used. This step is 

important in that the CRM provides a first guess for cloud liquid and cloud ice water 

content that are not sensed directly by the PR. RTMs are used to compute the simulated 

Tbs from these hydrometeors and the resulting Tbs are compared to coincident TMI 

observations. Comparisons are accumulated as a function of SST and TPW at 1 K and 1 

mm intervals. Where disagreements at 19 and 85 GHz vertically polarized Tbs occurred, 

an adjustment procedure was performed by first adding rainwater that is below the 

detection threshold of the PR. If the addition of light rain did not correct mean biases, the 

adjustment procedure then focused on rain drop size distributions and ice density to 

match the modeled and observed Tb. The adjusted profiles are then adopted for the 

database construction. Complete details of the procedure, which is only summarized here, 

can be found in Kummerow et al. (2011). The one-year pseudo-observed microphysical 

database will be used to evaluate the modeled microphysics. It should be noted here that 
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because the PR is sensitive primarily to precipitation while TMI is sensitive primarily to 

TPW, there is good reason to assume that the rain and cloud water amounts may, to the 

first order, be representative of observed clouds. 

3.2.3 ECMWF 1D+4D-Var Algorithm 

The ECMWF 1D+4D-Var algorithm has been operational since June 2005 (Bauer 

et al. 2006b,c; Geer et al. 2008) over cloudy and rainy SSM/I observations and may be 

considered as an intermediate step towards the direct 4D-Var assimilation of all-sky 

microwave radiances, which was made operational in March 2009 (Bauer et al. 2010; 

Geer et al. 2010). The 1D+4D-Var algorithm includes two parts: the 1D-Var that includes 

an optimal estimation procedure to retrieve the microphysical properties and TPW from 

SSM/I radiance observations, and the 4D-Var analysis (Rabier et al. 2000) that 

assimilates the TPW as a pseudo-observation. The observation operator includes three 

components: a convection scheme that represents subgrid-scale processes and treats 

convection types defined as shallow, mid-level and deep convection in a unified way; a 

large-scale condensation scheme that uses the convective detrainment prescribed by the 

convection model with a similar precipitation generation formulation; and a multiple-

scattering radiative-transfer model RTTOV-SCATT (Bauer et al. 2006a) with scattering 

calculated using the delta-Eddington approach. The advantage of the 1D-Var over 

ordinary variational retrievals is that it uses the same background state, background 

errors, and moist physics package as the 4D-Var (Bauer et al. 2010). Therefore, its a-

priori information (short-range forecast) is more accurate than the statistical climatology 

as it contains information about physically important features such as fronts, inversions, 

and the tropopause heights. Using 1D-Var allows an extra step of quality control before 
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assimilating radiances into 4D-Var (Bauer et al. 2010). An important aspect of the 1D-

Var retrieval is that the control vector consists of temperature and humidity profiles as 

well as surface wind speed. Cloud and precipitation are calculated from the moist physics 

parameterizations before running a radiative transfer scheme. The optimization is thus 

constrained by the models, the observations and the background fields for temperature, 

moisture and wind speed with associated errors and not by model background 

cloud/precipitation fields and their errors.  

 The processing of rain-affected SSM/I Tbs used in 1D-Var retrieval involves 

several steps including: removing the scan-position-dependent biases known to affect 

SSM/I, a pre-screening process including a land surface and sea-ice check, a check for 

valid Tb observations, and the screening of clear-sky observations not to be treated in the 

retrieval. A check for cloud liquid water and precipitation presence is applied that is 

based on a cloud identification algorithm (Karstens et al. 1994) and the polarization 

signal at 37 GHz. A check of excessive falling snow in the 1D-Var FG profile is also 

performed to avoid unreliable radiative transfer simulations in such conditions (Geer et 

al. 2007). Then the bias correction is performed that is a correction of systematic 

differences between observed and simulated Tbs (Bauer et al. 2006b). 

 In general, it is not uncommon for simulations to have large biases compared to 

the observations, and it is crucial to correct these biases for achieving good assimilation 

results. A multiple linear regression between FG departures (observation minus FG) and 

FG TWP, surface wind speed, and column rain amount is performed to predict the biases 

in the 1D+4D-Var system. The bias correction is then applied to the observation Tbs to 

make them less biased with respect to the 1D-Var FG prior to the assimilation (Geer et al. 
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2008). The bias correction is applied to the 19-GHz vertical polarization channel 

(shortened as 19V hereafter), 19-GHz horizontal polarization channel (shortened as 19H 

hereafter), and 22V. 

 The bias correction scheme may not be proper for cloudy observations because of 

the usage of an asymmetric predictor (Geer and Bauer 2011) that is the FG rain amount in 

the 1D+4D-Var system. Some biases are very large, and they may be due to errors in the 

structure and intensity of forecast cloud and rain, but may also be due to displacement 

errors. The largest error might be coming from the improper cloud overlap scheme (Geer 

et al. 2009) in which assumptions regarding the subgrid-scale cloud variability are made. 

These are known as beam filling biases in the satellite community. 

 The model forecast provides the FG fields including temperature profiles, water 

vapor profiles, surface fields, which include latent heat and sensible heat fluxes, and wind 

stress. These FG fields all serve as inputs to the convection scheme that in turn produces 

detrained convective cloud water, and rain and snow fluxes. Together with the FG fields 

and the detrained cloud water, the large-scale condensation scheme produces cloud-cover 

fraction and models the clouds and precipitation when they are formed by model-resolved 

processes. Using the thermodynamic and hydrometeor information generated above, the 

multiple-scattering microwave RTM is used to calculate the simulated radiances. 

 In a variational retrieval (e.g., Rodgers 2000), the optimal estimation of a state 

vector x  is acquired by minimization of a cost function using the a-priori information 

from the FG. The cost function 

! 

J  is defined as: 

J(x) = (x! x
b
)
T
B
!1
(x! x

b
)+ (y!H[x])

T
R

!1
(y!H[x]),                         (3.3) 
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where 

! 

J  is the cost function, x  is the state vector, containing vertical profiles of 

temperature and specific humidity on 91 model levels in this case, x
b
 is the a-priori state 

vector acquired from model simulation, y  is the observation vector, H  stands for the 

observation operator that maps geophysical space to observational space, B  is the 

background error covariance matrix, R  is the observation error covariance matrix, which 

includes both the observation error and the errors originating from observation operators. 

 The first term is the fit of the solution to the background estimate of the 

atmospheric state weighted inversely by the background error covariance B . The second 

term is the fit of the solution to the measured radiances y  weighted inversely by the 

measurement error covariance R . The solution obtained is optimal in that it fits the a-

priori (or background) information and measured radiances respecting the uncertainty in 

both. 

 1D-Var produces outputs including vertical profiles of humidity, temperature, 

cloud and precipitation. The TPW derived from the retrieved humidity profile is 

assimilated in the main 4D-Var analysis (Rabier et al. 2000). It should be noted that the 

1D+4D-Var algorithm is affected by a sampling bias, which comes from applying 

1D+4D-Var when the observations are cloudy or rainy, but not when the FG is rainy or 

cloudy and the observations are clear (Geer et al. 2008).  

3.3 Case Studies 

Comparing the GPROF retrieval in Eq. (3.2) and the 1D+4D-Var assimilation in 

Eq. (3.3), one can see that these two methods are very similar in the sense that they are 

both performing under-constrained retrievals given the observations. Both methods use a-

priori information. The primary differences are: 1) the GPROF retrieval is constrained by 
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the observation database consisting of PR/TMI observations and CRM simulations, while 

1D-Var retrieval is constrained by the ECMWF model’s FG and the 1D cloud model; 2) 

the x  to be minimized in GPROF represents the microphysics profiles, while in 1D-Var 

it represents the thermodynamic profiles. In this section, detailed comparisons of the 

retrievals are made utilizing several case studies. 

3.3.1 Data 

Data collected within a 12-hour window extending from 0900 to 2100 UTC on 30 

September 2007 are used in this case study. The data are based on a T511 run using the  

default configuration of cycle 35r1 of the Integrated Forecasting System (IFS) and  

include 6619 1D-Var retrievals over the ocean between 60°S and 60°N. The product 

consists of SSM/I Tb vectors, thermodynamic profiles, and microphysical profiles of 

cloud liquid water, cloud ice water, rain flux, and snow flux at 91 levels for both the FG 

and the analysis generated in the 1D-Var observation operator. Figure 3.1a shows the 

SSM/I 19V Tb for 30 September 2007, while Figure 3.1b shows the 19V Tb for all the 

pixels that are used in the assimilation. Over the ocean, the background is radiometrically 

cold due to its low emissivities. Emissions from water vapor, clouds, and rain will 

increase the 19-GHz Tb and, therefore, appear warmer against the background (Chevallier 

and Bauer 2003). 
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Figure 3.1 (a) SSM/I 19V Tb between 0900 to 2100 UTC on 30 September 2007. (b) 19V 
Tb pixels used in the 1D+4D-Var assimilation. The box centered at 120°W and 10°N 
includes the area for further investigation.   
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 A 10° by 10° area at [115°W, 125°W] and [5°N, 15°N] as shown in the enclosed 

box in Figure 3.1b, was selected for the case study. Pixels from this area are expanded in 

Figure 3.2. Three representative pixels along a line are chosen to include a variable range 

of Tb values for case studies, as illustrated in Figure 3.2. 

Figure 3.2 Observed Tbs at 19V within the area of interest. The three pixels chosen for 
case studies are illustrated. 
 

3.3.2 GPROF A-priori Database and 1D-Var Retrieval Comparisons 

In the 1D-Var retrieval algorithm, only the lower frequency channels including 
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RTM, and the sensitivity to surface emissivity modeling biases (Bauer et al. 2006b). 

Accordingly, the observation vector y  in Eq. (3.2) was modified to include only those 

three channels in the GPROF retrieval as well. Given an observation Tb vector y , each 

entry in the a-priori database x
i
 within the TPW and SST ranges (TPW is defined by the 

1D-Var analysis field and SST is defined by climatology) is assigned a weighting based 

on the closeness between the simulated Tb vector !(x
i
)  and the observation Tb vector y . 

From Eq. (3.2), the weighting  for entry x
i
 can be expressed as: 

weighting =
e

! !0.5[yj-H(xi )j
j=1

3

" ]T (Oj+Sj )
!1[yj-H(xi )j ]

A
                           (3.4)             

where j is the channel number. Gaussian error distribution is assumed and Oj  and Sj are 

the diagonal values of the error covariance matrices (off-diagonal elements are not taken 

into account because it is assumed that the errors of different channels are uncorrelated). 

 Eq. (3.4) indicates that more similar Tb vectors will receive larger weight. It will 

be assigned a greater weight in the final solution than a pixel whose Tbs differ 

significantly. All the possible solutions defined by the database within given TPW and 

SST ranges are considered by using the normalized weighting to produce a statistically 

averaged GPROF retrieval. The entry that produces the closest Tb vector is called the 

‘GPROF maximum likelihood’, which has the highest probability of being the solution. 

Comparisons between GPROF retrieval and 1D-Var retrieval are made for all of the 

selected pixels, and the results for pixels 1, 2, and 3 as shown in Figure 3.2 are discussed 

in the following subsection. 
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3.3.2.1 PIXEL 1 

Given TPW and SST, the gray envelope in Figure 3.3 represents the range of 

selected a-priori database profiles with respect to Cloud Water Path (CWP) and Rain 

Water Path (RWP) for the retrieval of this pixel using a cut-off weighting of 0.01. A cut-

off weight of 0.01 as defined in Eq. (3.4) is used to eliminate entries that are too 

dissimilar to the observations. The relationship between CWP, RWP, and Ice Water Path 

(IWP) is considered separately. The basic envelope constitutes a pseudo-observation 

space (that is, for a given 3-channel Tb vector, this is what PR/TMI considers to be  

 
Figure 3.3 The GPROF retrieval weighting contour as a function of CWP and RWP, 
overlaid by the 1D-Var FG water paths (black triangle), 1D-Var analysis water paths (red 
triangle), GPROF weighted/retrieved water paths (asterisk) and GPROF maximum 
weighted water paths (red circle) for pixel 1. The rain rate for each retrieval is shown in 
the upper left box. 
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possible) to evaluate the 1D-Var retrieved microphysics. CWP and RWP values for the 

GPROF retrieval, GPROF maximum likelihood, 1D-Var FG, and 1D-Var analysis are all 

shown in the figure. Corresponding rain rates are 0.041 mm h-1 for GPROF retrieval, 

0.027 mm h-1 for FG, and 0.023 mm h-1 for analysis. This pixel represents a light rainfall 

case. 

 The goal of the 1D-Var retrieval is to adjust the temperature and moisture (and 

cloud and precipitation) profiles to minimize the difference between the simulated and 

observed Tb vectors under the constraints of the background field and the background 

error covariance matrix, as shown in Eq. (3.3).  Table 3.1 shows the comparison of Tb 

departures from the observation of the GPROF maximum likelihood, 1D-Var FG and 

analysis, and also the ECMWF bias correction for the purpose of assimilation. For 

ECMWF, the departures are bias-corrected. 

Table 3.1 Bias corrected Tb departures at channel 19V, 19H, and 22V for GPROF 
maximum likelihood entry, ECMWF 1D-Var FG and ECMWF 1D-Var analysis solution. 
Tb departures (K) 19V 19H 22V 
GPROF maximum 
likelihood departures 

-2.177 -0.471 -0.546 

ECMWF 1D-Var  
FG departures 

-1.662  -5.583  -1.739  

ECMWF 1D-Var 
analysis departures 

0.236  -2.104  0.204  

ECMWF bias 
correction 

-0.043 0.037 2.003 

 

 Table 3.1 shows that Tbs for all channels move closer to the observations in going 

from 1D-Var FG to analysis. This produces a comparable 3-channel departure RMS to 

that of the GPROF maximum likelihood. Figure 3.3 demonstrates that both the FG and 

analysis solutions are enclosed in the database envelope, meaning that both solutions are 

included in GPROF’s possible solutions. FG Tb departure is defined as: 
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  FG departure =y -b -H(xb )                                                                    (3.5) 

where b is the bias correction. Analysis departure is defined similarly. Negative 

departures indicate that the FG may contain too much water. The correct microphysical 

adjustment should, therefore, decrease the emission. In the analysis, both CWP and RWP 

are decreased from FG and, therefore, Tbs are reduced and the analysis solution moves 

closer to the GPROF solution. This is consistent with the direction of the Tb adjustments 

in Table 3.1. In this case, both GPROF and 1D-Var reach similar results in terms of Tb as 

well as rain and cloud water. 

3.3.2.2 PIXEL 2 

Pixel 2 has the highest 19V Tb among all the selected pixels, indicating that this 

pixel has the strongest rain signal (see Figure 3.2). The retrieved rain rates for GPROF, 

1D-Var FG and analysis are 6.527, 1.889, and 5.111 mm h-1, respectively. Figure 3.4 

demonstrates that the selected GPROF database for the observed Tb vector contains 

profiles with RWP ranging from 500 g m-2 to 5000 g m-2 and CWP ranging up to 

approximately 700 g m-2. The closest Tb match from the GPROF database produces less 

than a 1 K bias from the observation for all channels, as shown in Table 3.2. From Table 

3.2, it can also be seen that the 1D-Var FG has overwhelmingly large Tb departures from 

the observation. This means that the FG profile does not match observations particularly 

well. The prominent positive Tb biases in the FG indicate that the modeled liquid water 

must be increased in the analysis. Figure 3.4 shows that the FG solution resides outside of 

the observation based envelope, which is considered to be all the possible observed 

solutions defined by the database. The FG has a CWP that is too large and a RWP that is 

too small. The small RWP corresponds to a smaller retrieved rain rate (1.889 mm h-1)  
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Figure 3.4 Same as in Figure 3.3 except for pixel 2. 
 

Table 3.2 Same as in Table 3.1 except for pixel 2. 
Tb departures (K) 19V 19H 22V 

GPROF maximum 
likelihood departures 

-0.041 0.912 0.843 

ECMWF 1D-Var  
FG departures 

30.448  57.784  9.600  

ECMWF 1D-Var 
analysis departures 

9.190  19.011  2.200  

ECMWF bias 
correction 

-9.030 -17.146 -1.701 

 

compared to the GPROF retrieval (6.527 mm h-1). To produce realistic cloud ranges 

defined by the database, the CWP needs to be reduced and RWP needs to be increased. 

After the 1D-Var retrieval, the bias-corrected Tb departures are greatly reduced from 

30.448 K, 57.784 K, and 9.600 K to 9.190 K, 19.011 K, and 2.200 K, respectively, for 
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channels 19V, 19H, and 22V, and the retrieval has also managed to adjust the 

microphysics to produce a better Tb match to the observation although the departures 

remain larger than those from GPROF. However, Figure 3.4 shows that besides adding in 

some rainwater, the analysis cloud liquid water is moving away from the GPROF. Figure 

3.5 displays the profile distributions of cloud, rain, and ice for GPROF retrieval, 1D-Var 

FG, and analysis. Evidently, GPROF produces more rain than cloud and 1D-Var 

produces more cloud than rain at each level. 

     

Figure 3.5 Profiles of cloud, rain, and ice for GPROF retrieval, 1D-Var FG, and 1D-Var 
analysis for pixel 2. 
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signals, as seen from the analysis Tb biases with bias corrections, shown in Table 3.2. 

This is because the absorption/emission efficiency for clouds in the Rayleigh regime is 

much smaller than that of the rain in the Mie regime as rain droplets have much larger 

size parameters at the same microwave frequency.  

 To demonstrate the efficiency difference, a Tb sensitivity calculation is performed 

using a 1D raining column over ocean, which is shown in Figure 3.6a. In the sensitivity 

test, TPW is kept constant, and rainwater is converted to cloud water.  The rain ratio 

increment as the x-axis is defined as the percentage of rainwater content that is converted 

to cloud water with -100% representing the all-cloud-scenario. As rain is converted to 

cloud along the negative direction of the increment ratio, Tbs at all three channels 

decrease, as shown in Figure 3.6b. 

 

 

Figure 3.6 (a) The cloud and rain profiles for the Tb sensitivity test. (b) Tb sensitivity test 
of the emission signal to the cloud and rain ratios keeping constant liquid water content.  
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The two retrievals for pixel 2 differ primarily in the CWP/RWP ratios. This can 

also be attributed to the under-constrained nature of the retrieval problem and their non-

unique solutions. Even though the analysis rain rate of 5.111 mm h-1 gets closer to the 

GPROF retrieval, and the Tb departures are greatly reduced, the cloud/rain ratio is 

significantly different from what was ever observed by PR/TMI. In 1D-Var, the 

microphysics are generated by the linearized moist physics scheme run at a single point 

and a single time step, with thermodynamic profiles as inputs.  Although producing a 

similar rain rate, the difference in the CWP/RWP points to issues in other aspects, 

especially with the linearized moist physics scheme that deserves further investigation 

and improvement. In this case, GPROF and 1D-Var analysis have large differences, but it 

may be argued that the analysis did not quite converge on the observed Tb. As such, these 

differences may not be very meaningful. 

3.3.2.3 PIXEL 3 

For pixel 3, the rain rates are 0.364, 4.477, and 1.244 mm h-1, respectively, for 

GPROF, 1D-Var FG, and analysis. The analysis rain rate is reduced from FG and moves 

closer to the GPROF retrieval. The FG has large negative Tb biases for all channels, as 

seen in Table 3.3, indicating too much emission from liquid compared to the observation. 

Figure 3.7 shows that the FG CWP and RWP are approximately 2300 and 900 g m-2 and 

significantly outside GPROF’s envelope range of 300 and 600 g m-2. 
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Table 3.3 Same as in Table 3.1 except for pixel 3. 
Tb departures (K) 19V 19H 22V 
GPROF maximum 
likelihood departures 

-0.191 -1.105 -0.222 

ECMWF 1D-Var  
FG departures 

-13.212  -23.246  -4.788  

ECMWF 1D-Var 
analysis departures 

-0.684  0.603  -1.809  

ECMWF bias 
correction 

-22.403 -41.388 -6.961 

 
 
 

 
Figure 3.7 Same as in Figure 3.3 except for pixel 3. 
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successful in matching the Tb vectors, the CWP/RWP ratio is highly biased with an 

extremely large CWP value (1620 g m-2). As the minimization process is trying to 

produce a simulated Tb vector that is close to the bias-corrected observed Tb vector 

instead of the real Tb, large bias corrections may cause 1D-Var to produce biased 

microphysics with respect to the observed one. Also, the analysis IWP of 180 g m-2 is 

larger than the GPROF IWP of 60 g m-2, which will increase the scattering slightly and, 

therefore, reduce the Tbs in the analysis. In this case, both GPROF and 1D-Var reach 

similar results to Tb, while at the same time having very different cloud and rainwater 

solutions. 

3.4 Statistical Analysis 

Differences between the GPROF and 1D-Var retrievals can be categorized into 

four scenarios. 1) Tbs match within given uncertainty ranges and the cloud 

water/rainwater paths are in general agreement defined as the analysis being within the 

observational envelope (e.g., pixel 1). This category includes the cases in which the 1D-

Var retrieval produces CWP/RWP ratios that are observationally possible. 2) Tbs match 

but the CWP/RWP ratios do not (e.g., pixel 3). This category includes the cases in which 

the 1D-Var retrieval successfully matches the observation but allocates microphysical 

properties that are not observed in the PR/TMI database. 3) Tbs do not match and 

microphysics do not match either (e.g., pixel 2). This category includes the cases in 

which the liquid species of rain and clouds match but the rest such as ice species do not, 

which contribute to the unmatched Tbs. 4) Tbs do not match while the investigated 

microphysics properties do match (examples of this were not presented in the examined 

scene). Among these, category 2 is of special interest because in this category, the 



 44 

optimal estimation procedure successfully minimizes the cost function yet the cloud does 

not converge to a solution that is similar or even allowed in the GPROF algorithm; in 

other words, the retrieval results are biased even when the retrieval is successful. Now 

two compelling questions become: How often does this condition occur? And, what are 

the microphysical biases in this category?  The statistical analysis in this section strives to 

answer these questions. 

3.4.1 Data 

ECMWF Cycle 35r1 was operational from 30 September 2008 to 10 March 2009. 

One month of 1D+4D-Var data from October 2008 were extracted from the operational 

ECMWF analysis to perform further statistical analysis. Cloudy and rainy observations 

were assimilated into 4D-Var system and only 1D-Var retrievals that converge and pass 

the ‘excess snow’ check from SSM/I on DMSP F-13 are analyzed. For each pixel, the 

data includes stratiform surface precipitation flux, convective precipitation flux, total 

column water vapor, water paths of rain, snow, cloud and ice, SSMI observed Tb vector, 

simulated Tb vector, and bias corrections for both the FG and analysis. The data represent 

a later version of the assimilation used in the case studies.  

3.4.2 Categorization 

The GPROF Bayesian retrieval is performed over each 1D-Var pixel utilizing the 

analyzed 1D-Var TPW and SST to ensure consistency between model and retrieval. This 

process is equivalent to assigning weights to qualified entries within the given SST and 

TPW ranges from the observationally constrained a-priori database. To avoid using 

entries in the higher latitude out of the TMI-orbit range that have colder SSTs, the 

comparisons are constrained to 40°S and 40°N. Comparisons between GPROF and 1D-
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Var retrievals are classified into four categories based on the Tb and microphysical 

agreement. 

 GPROF retrievals use estimated uncertainties in each of the channels; 1.45 K, 

1.87 K, and 1.46 K at 19V, 19H, and 21V, respectively, to assign weights to individual 

profiles (Elsaesser and Kummerow 2008). The same values are used to determine if the 

1D-Var method has converged as well. If the 1D-Var values differ by more than the 

stated Tb, the pixel is deemed not to have converged for the analysis. 

 The microphysical properties to be examined in this study include the RWP and 

CWP. To determine whether the 1D-Var retrieved RWP and CWP are within the 

database envelope that was described in Section 3.3 for each pixel, a procedure is defined 

as follows and an example is shown in Figure 3.8. First, if the 1D-Var RWP is outside of 

the GPROF envelope, the microphysics are considered unmatched. Otherwise, the 1D-

Var RWP’s 20% uncertainty values are calculated, which is illustrated with dashed lines 

in Figure 3.8a. The database’s CWP distribution within this RWP range is determined.  

 

 

Figure 3.8 Illustration of the procedure to define the match of microphysics. (a) Same as 
in Figure 3.3 with the dash lines showing the 20% RWP variability range. (b) The CWP 
distribution within the 20% RWP range. The weighted mean CWP and 95% mark on 
both sides are drawn. 
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With reference to the distribution’s weighted mean value (weighting is determined by Eq. 

(3.4) in Section 3.3), the distribution’s 95% ranges (95% is equivalent to the 2σ range in  

the Gaussian distribution) on both sides are calculated and illustrated in Figure 3.8b. If 

the 1D-Var CWP falls outside of the 95% range, the microphysics is considered to be 

unmatched. Otherwise, when both the 1D-Var analysis CWP and RWP fall within the 

allowed ranges, the microphysics is considered to be matched, implying that the 1D-Var 

retrieved microphysics falls within the range of values that GPROF deems possible. 

 Based on whether the Tbs and/or microphysics match, each pixel in the one-month 

period is assigned to one of the four categories defined in Section 3.2.3. The percentage 

of each category is 40.7%, 46.9%, 4.5%, and 7.9%, as shown in Table 3.4. It is 

worthwhile to note that category 2 takes up 46.9% of all of the retrievals. In this scenario, 

the variational method works successfully to minimize the cost function with respect to 

the Tbs, but does not converge to the ‘observed’ microphysical properties from the cloud 

schemes. The incorrect properties especially the rain structures, will inevitably impact the 

rain retrieval results. 

 

Table 3.4 Percentage of each category in the database. 
Percentage Tb s match Tb s don’t match 

RWP and CWP match Category 1: 40.7%  Category 3: 4.5% 

RWP and CWP don’t match Category 2: 46.9% Category 4: 7.9% 
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3.4.3 Microphysics Biases in Category 2 

This section explores the nature of the microphysical biases between GPROF and 

1D-Var. It also tries to ascertain if these biases are consistent and universal or have a 

dependence on the regional meteorology. 

3.4.3.1 GLOBAL MICROPHYSICS BIAS 

The bias is first explored using the whole month’s global data between 40°N and 

40°S. The ratio of 1D-Var over GPROF retrieved CWP as a function of RWP is plotted 

in Figure 3.9. The prominent feature of Figure 3.9b is that a very large percentage of the 

category 2 entries in the database produce much larger CWP in the 1D-Var analysis than 

in GPROF for pixels with rain rates greater than 1 mm h-1. Table 3.5 shows the  

 

 

Figure 3.9 Normalized frequency contour of CWP ratio over RWP ratio for category 2 
with (a) all rain rates and (b) rain rate  ≥ 1 mm h-1. The contour intervals for panel a are 
1e-5, 1e-4, 1e-3, and 1e-2. The contour intervals for panel b are 0.0005, 0.001, 0.0015, 
and 0.002.  
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Table 3.5 Percentage of cases in category 2 with different CWP and RWP ratio ranges.  
Values in the parentheses are the percentages for GPROF surface rain rate  ≥ 1 mm h-1. 
Percentage CWP ratio < 0.5 0.5≤CWP ratio≤2.0 CWP ratio > 2.0 

RWP ratio < 0.5 20.50% (0.01%) 41.96% (0.01%) 17.14% (18.17%) 

0.5≤RWP ratio≤2.0   0.56% (0.12%)  2.87% (9.30%) 15.59% (71.35%) 

RWP ratio > 2.0   0.06% (0.01%)  0.09% (0.01%)  1.24% (1.04%) 

 

percentages of different CWP and RWP ratio ranges for category 2. It can be seen that 

only 2.87% of the retrievals can be considered comparable in both CWP and RWP; in 

79.6% of the time, 1D-Var produces less than half of the GPROF-retrieved RWP (in 

93.6% of the time, 1D-Var retrieval produces smaller RWP than GPROF retrieval.), and 

in 34.0% of the time, 1D-Var produces more than two times of GPROF-retrieved CWP. 

Removing the impact of drizzle cases that produce very large ratios, only cases whose 

GPROF-retrieved surface rain rate is greater than 1 mm h-1 are kept for analysis and the 

percentages are shown in the parentheses of Table 5. 90.6% of the time, 1D-Var retrieved 

CWP is at least two times that of the GPROF retrieval.  It is clear that large discrepancies 

exist between the two retrieval algorithms in allocating the water content between 

different liquid hydrometeor species, i.e., cloud water and rainwater. The ratio is directly 

responsible for the unmatched microphysical properties in category 2. In GPROF 

retrievals, the rainwater estimate is driven by PR retrievals and the cloud water estimate 

is driven by CRM simulations but constrained by the PR and TMI observations. In the 

case of 1D-Var retrievals, both are the result of microphysical parameterizations that are 

used in the minimization and are linked by common hydrological processes in clouds and 

convection. 
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3.4.3.2 REGIONAL DIFFERENCES 

Figure 3.10 shows the 1 by 1 degree binned monthly mean cloud/(cloud+rain) 

maps for GPROF, 1D-Var FG, and 1D-Var analysis. Both 1D-Var FG and 1D-Var 

analysis retrievals produce overwhelmingly larger cloud percentages compared with 

GPROF, which is consistent with Figure 3.9. 1D-Var quality control and linearization do 

not account for the large discrepancies. The little difference between Figure 3.10b and 

3.10c indicates that the cloud/rain ratio is not being changed by the observations in the 

1D-Var but instead is completely controlled by the moist physics. However, the two 

algorithms produce similar spatial patterns although with different magnitude (note that 

the scales are different). To explore the regional dependence, four representative regions 

associated with different meteorological regimes are selected based on the difference in 

cloud water/rainwater ratios. The four specific regions are: 

Regime 1: [10°S, 30°S] and [100°W, 70°W]. This is the SE Pacific regime, which is 

identified as the region with relatively low SST, low total precipitable water, and frequent 

stratocumulus and trade cumulus occurrence. The abundance of clouds with relatively 

low rain efficiency associated with the subsidence of air in the high pressure system in 

these clouds cause high cloud/rain ratios. 

Regime 2: [0°N, 10°N] and [120°E, 180°E]. This is the West Pacific regime 

associated with higher SSTs in the warm pool and high relative humidity that provide a 

favorable environment for tropical convections. 

Regime 3: [0°N, 15°N] and [140°W, 100°W]. This is the East Pacific regime. Regime 

3 has relatively lower cloud/rain ratio compared to regime 2. Berg et al. (2002) 

investigated the differences of the storm systems between the East and West Pacific and  
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Figure 3.10 (a) GPROF retrieved cloud/(cloud+rain) map for October 2008. (b) 1D-Var 
FG and (c) 1D-Var analysis cloud/(cloud+rain) map for the same month. The four 
selected regimes are enclosed in boxes.  
 

(a) 

(b) 

(c) 



 51 

found that the storms over the East Pacific have shallower clouds with warmer cloud 

tops, larger proportion of stratiform rain, less ice for similar amounts of rainwater, and 

lower melting layers. 

Regime 4: [30°N, 40°N] and [120°E, 180°E]. This is the Northern Hemisphere storm 

track regime. This regime is generally associated with mid-level convection within the 

mid-latitude frontal storms. This regime may also be influenced by the increased aerosol 

concentration that will increase the ratio of cloud water to rainwater (Berg et al. 2008).   

 CWP/RWP ratios that are not observed in the GPROF database differ 

systematically across the four regimes. Percentage of category 2 is 41.4% in the SE 

Pacific regime, 58.2% in the West Pacific regime, 73.1% in the East Pacific regime, and 

46.0% in the storm track regime. 

 The frequency contours of CWP versus RWP for category 2 in each regime of 

both GPROF and 1D-Var are shown in Figure 3.11. Regime 1 is characterized by small 

RWP and little correlation between CWP and RWP. This is consistent with the relatively 

small rain rates in the stratocumulus and trade cumulus within this regime. For GPROF, 

the relationships of CWP versus RWP are similar for regimes 2, 3, and 4 at a RWP range 

of up to 100 g m-2. At higher RWP values, the amount of CWP needed per amount of 

RWP is highest at regime 2 and lowest at regime 4. This is found to be associated with 

the stratiform portion within each regime. In stratiform rain, GPROF consistently 

retrieves very little cloud water. The relative larger portion of stratiform clouds in regime 

3 compared to regime 2 is consistent with Berg et al. (2002). On the other hand, the 1D-

Var retrieved CWP is much larger than the GPROF retrieved CWP for the same amount 

of RWP for all regimes. A ‘convective fraction’ parameter, defined for 1D-Var as the  
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Figure 3.11 Normalized frequency contour of CWP over RWP in category 2 for all four 
regimes in GPROF (left panels), 1D-Var (middle panels), and convective 1D-Var pixels 
(right panels).  
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ratio of convective rain to total rain produced by the cumulus parameterization and the 

large-scale condensation scheme. It appears that in 1D-Var, the CWP/RWP ratio is 

related to the convective fraction with smaller convective fractions producing larger 

CWP for the same amount of RWP. This indicates that larger CWP in 1D-Var is 

produced by the stratiform rain in the large scale parameterization. 

If the cases with larger convective fractions (>80%) are selected out, their ratios 

fall closer to those of GPROF, as shown in the right columns of Figure 3.11. It is 

worthwhile to note here that the definition of ‘stratiform’ is not equivalent in GPROF and 

1D-Var. Regardless the detailed differences, all regimes contain a consistently different 

distribution of cloud water and rainwater in the 1D-Var algorithm when compared to 

GPROF. 

3.4.3.3 DISCUSSION 

The previous section shows that GPROF and the 1D-Var solutions tended to 

differ quite dramatically in their CWP, and to a lesser extent, in their RWP, despite 

matching the observed Tb. This is further examined below. 

 For each pixel, the Total Water Path (TWP) distribution of the possible solutions 

in the GPROF database is calculated. Similar to Section 3.4.2, the boundary values of 

95% range on each side of the weighted mean TWP is determined. If the 1D-Var 

analyzed TWP falls within this range, it is 95% probable that the analysis TWP is within 

the GPROF observed TWP solutions. For the global dataset, it is found that in category 2, 

although the cloud and rain microphysics do not match, 83.8% of the 1D-Var analysis 

pixels fall within the 95% ranges of GPROF solutions. Specifically, the TWP match ratio 

takes 93.1%, 90.9%, 96.7%, and 80.8%, respectively, for the four selected regimes above. 
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The smaller percentage in regime 4 compared with the other three regimes could 

potentially be caused by a larger portion of ice hydrometeors in the included storms. This 

is consistent with the expectation, and together with the larger amount of cloud liquid 

water, it is clear that although 1D-Var finds comparable TWP in order to match the Tbs, it 

allocates different amounts of cloud and rainwater relative to the GPROF solution. 

3.5 Impact of Higher Frequencies on Constraining the Cloud/rain Ratio 

As previously mentioned, only three channels (e.g., 19V, 19H, and 22V) are used 

in the 1D-Var algorithm. At these lower microwave frequencies, cloud droplets belong to 

the Rayleigh scattering regime in which absorption/emission dominates and scattering is 

only a minor effect. Raindrops begin to fall in the Mie regime – particularly for larger 

rainfall rates. With higher frequencies such as 37 and 85 GHz, cloud droplets still belong 

to the Rayleigh scattering regime, but the absorption and scattering process increased 

more rapidly in the Mie regime due to increased size parameters. It is, therefore, possible 

to differentiate these two hydrometeor species with information from these higher 

frequency channels. 

 Forward model uncertainties also increase somewhat at higher frequencies. 

Elsaesser and Kummerow (2008) used values of 1.45, 1.87, 1.46, 1.50, 2.38, 2.15, and 

3.54 K for 19V, 19H, 22V, 37V, 37H, 85V, and 85H, respectively, as was introduced in 

Section 3.4.2. To perform the sensitivity of using higher frequency channels on the 

cloud/ratio change, three channel combination schemes are evaluated. The 3-channel case 

uses 19V, 19H, and 22V; the 5-channel case uses 19V, 19H, 22V, 37V, and 37H; and the 

7-channel case uses 19V, 19H, 22V, 37V, 37H, 85V, and 85H. Several raining cases are 

examined below. For each case, rainwater and cloud water are converted between each 
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other by redistributing the water content at each level while holding TWP constant. A 

ratio increment is defined with negative values to indicate that rainwater was 

redistributed to the cloud water category while positive values convert cloud water to 

rainwater. For instance, -60% means that 60% of the rainwater at each layer is removed 

and redistributed as cloud. If the changes are less than the Tb uncertainty values for all the 

channels used, the microphysical change is considered too small to be detected by these 

channels. Otherwise, if the Tb change goes beyond the uncertainty value for any channel, 

the microphysics change is detectable. Several representative profiles that produce 

surface rain rates of 0.05, 0.52, 1.00, 5.09, 10.06, and 21.15 mm h-1 are used to explore 

the impact of adding high frequency channels, shown in Figure 3.12, and the results are 

summarized in Table 3.6. 

 
Figure 3.12 Six representative hydrometeor profiles for the case studies. 
 

 

Hydrometeor profiles

0.0 0.2 0.4 0.6 0.8 1.0
Density [g/m3]

1000

Pr
es

su
re

 [h
Pa

]

1000

850

700

500

300

200
1)Cloud

Rain
Pristine
Snow
Graupel

Hydrometeor profiles

0.0 0.2 0.4 0.6 0.8 1.0
Density [g/m3]

1000

Pr
es

su
re

 [h
Pa

]

1000

850

700

500

300

200
2)Cloud

Rain
Pristine
Snow
Graupel

Hydrometeor profiles

0.0 0.2 0.4 0.6 0.8 1.0
Density [g/m3]

1000

Pr
es

su
re

 [h
Pa

]

1000

850

700

500

300

200
3)Cloud

Rain
Pristine
Snow
Graupel

Hydrometeor profiles

0.0 0.2 0.4 0.6 0.8 1.0
Density [g/m3]

1000

Pr
es

su
re

 [h
Pa

]

1000

850

700

500

300

200
4)Cloud

Rain
Pristine
Snow
Graupel

Hydrometeor profiles

0.0 0.2 0.4 0.6 0.8 1.0
Density [g/m3]

1000

Pr
es

su
re

 [h
Pa

]

1000

850

700

500

300

200
5)Cloud

Rain
Pristine
Snow
Graupel

Hydrometeor profiles

0.0 0.2 0.4 0.6 0.8 1.0
Density [g/m3]

1000

Pr
es

su
re

 [h
Pa

]

1000

850

700

500

300

200
6)Cloud

Rain
Pristine
Snow
Graupel



 56 

Table 3.6 Sensitivity test results for all cases. 
Case Rain rate 

(mm h-1) 
Channel  
Combination 

Rain to cloud 
Detection threshold 
(channel) 

Cloud to rain 
Detection threshold 
(channel) 

1 0.05 3 channel None (---)  +41% (19H) 
5 channel None (---) +17% (37H) 
7 channel None (---) +17% (37H) 

2 0.52 3 channel -59% (19H)  +12% (19H) 
5 channel -24% (37H) + 7% (37H) 
7 channel -24% (37H) + 7% (37H) 

3 1.00 3 channel  -26% (19H)  +21% (19H) 
5 channel -14% (37H) +12% (37H) 
7 channel -14% (37H) +12% (37H) 

4 5.09 3 channel  - 4% (19H)  +36% (19H) 
5 channel - 4% (19H) +36% (19H) 
7 channel - 4% (19H) +25% (85V) 

5 10.06 3 channel - 7% (19H)  +85% (22V) 
5 channel - 7% (19H) +29% (37V) 
7 channel - 7% (19H) +19% (85V) 

6 21.15 3 channel  -36% (19H) None (---) 
5 channel - 4% (37V) +44% (37V) 
7 channel - 2% (85V) +30% (85V) 

 

3.5.1 Case 1 

Case 1 rains at only 0.05 mm h-1 with a CWP of 210 g m-2 and a RWP of 20 g m-

2. As a result, even when all the rainwater is converted to cloud water, the Tb changes are 

still within the uncertainty ranges for all the seven channels. However, when cloud water 

is converted to rainwater, Tbs increase for 19, 22, and 37 GHz due to the increased 

emission efficiency from cloud to rain, as previously discussed in Section 3.3.2.2. Tbs 

decrease for 85 GHz due to increased Mie scattering caused by rain drops as well as 

decreased emission from elevated weighting functions that are associated with lower 

temperatures. 

 Considering differences between the cloud and rain profiles, the positive and 

negative ratio increment regimes are discussed separately. Qualitatively, converting 
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rainwater to cloud water cannot be detected because of the small amount of rainwater for 

this case even if all the seven channels are used. When cloud water is converted to 

rainwater, a sensitivity of +41% ratio increment is found for three channel combinations 

with channel 19H first detecting the difference. When 37 GHz is used, the detectable 

ratio increment moves up to +17% at channel 37H but when 85 GHz is added, the 

sensitivity remains at 17%. In this very light rain case, adding 37 GHz is beneficial to 

separate cloud from rain for the retrieval because the emission/absorption efficiency of 

water increases with microwave frequency.  However, further adding 85 GHz is not 

useful in this respect because the Tb uncertainty range of 85 GHz masks the signal. 

3.5.2 Case 2 

Profiles and sensitivity results for case 2 are displayed in Figure 3.12(2) and Table 

3.6. This profile includes 330 g m-2 of CWP and 70 g m-2 of RWP. By moving from three 

channels to five channels and then to seven channels, the detectable ratio increment of 

converting rainwater to cloud water moves from -59% (the detection channel is at 19H, 

shortened as ‘at 19H’ hereafter) to -24% (at 37H) to -24% (at 37H), and the detectable 

ratio increment of converting cloud water to rainwater improves from +12% (at 19H) to 

+7% (at 37H) to +7% (at 37H). For this drizzle case (0.52 mm h-1), adding 37 GHz 

improves the sensitivity significantly while adding 85 GHz does not further improve the 

result. The increased sensitivity at 85 GHz is once again masked by the greater 

uncertainty in these channels. Scattering is still relatively unimportant for this profile. 

3.5.3 Case 3 

The rain rate increases to 1 mm h-1 in this case, which contains more rainwater 

with less cloud water compared to case 2 as seen from Figure 3.12(2) and 3.12(3). The 
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detectable ratio increment of converting rainwater to cloud water moves from -26% (at 

19H) to -14% (at 37H) to -14% (at 37H), and converting cloud water to rainwater 

improves from +21% (at 19H) to +12% (at 37H) to +12% (at 37H). As the rain rate is 

still relatively small, the results match case 2.  

3.5.4 Case 4 

Case 4 rains at 5.09 mm h-1. With the increased rain content, the detection 

sensitivity of converting rain to cloud further increases from previous cases. The 

detectable ratio increment is held constant at -4% for all channel combinations because 

19H sets the strongest constraint. When rain is converted to cloud, channels 19H, 19V, 

and 22V decrease monotonically due to the decreased emission efficiency of the clouds, 

while the sensitivity to channels 37H, 37V, 85H, and 85V increases at first due to 

decreased scattering from rain drops and then it decreases. When cloud water is 

converted to rainwater, the detectable ratio increment moves from +36% (at 19H) to 

+36% (at 19H) to +25% (at 85V). In this scenario, 19V, 19H, and 22V increases with an 

increased emission signal from more rain, while 37H, 37V, 85H, and 85V decreases with 

an increased scattering signal from rain. For 37 GHz, increased scattering and increased 

emission cancel each other out in providing higher sensitivity. The 85-GHz channel is 

beneficial in constraining the cloud/rain ratio in this case.  

3.5.5 Case 5 

Snow and graupel particles start to appear in this case, as seen in Figure 3.12(5). 

The existence of these ice particles masks some of the sensitivity to cloud and rainwater 

changes. The sensitivity mark is held constant at -7% because 19H again sets the 

strongest constraint for all channel combinations when rain is converted to cloud.  In the 



 59 

other direction, the detectable ratio increment moves from +85% (at 22V) to +29% (at 

37V) to +19% (at 85V). In this large rain case (10.06 mm h-1), both 37 and 85 GHz bring 

more sensitivity for differentiating cloud and rain. 

3.5.6 Case 6 

In this intense raining case (21.15 mm h-1) that contains large amounts of snow 

and graupel lying above the liquid layer, the sensitivity moves from -36% (at 19H) to -

4% (at 37V) to -2% (at 85V), and from no signal to +44% (at 37V) to +30% (at 85V). 

When rain is converted to cloud, Tbs at all frequencies increase in the beginning due to 

decreased scattering followed by a decrease due to decreased emission from cloud. The 

sensitivity to the cloud/rain ratio is enhanced by adding in 37 GHz and further enhanced 

by the incorporation of 85 GHz. It is worthwhile to note that these tests are based on 

theoretical sensitivity studies in which the ice contents are fixed. In reality, 85 GHz is 

more sensitive to ice instead of the cloud/rain ratios. It is, therefore, difficult to detect 

these ratios without prior knowledge of the ice.  

 From the case studies above, it is found that higher frequency channels are able to 

constrain the cloud/rain ratio with increased sensitivity. However, 37 GHz is sufficient 

for drizzle cases (rain rate ≤ 1 mm h-1) and 85 GHz is beneficial for large rain rate cases 

(rain rate ≥ 5 mm h-1) due to the increased scattering signal from raindrops. It is, 

therefore, helpful to include the higher frequency channels into the retrieval to improve 

the cloud and rain differentiation. 
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CHAPTER 4 

A CLUSTERING APPROACH TO COMPARE CLOUD MODEL SIMULATIONS 

TO SATELLITE OBSERVATIONS 

 

4.1 Introduction 

Precipitation over land is important in a vast range of applications. Despite its 

importance, global rain gauge networks remain sparse, while the low penetrating 

capabilities of operational infrared and visible sensors (Kidder and Vonder Haar 1995) 

make those measurements reliable only in a statistical sense. Over many parts of the 

world, passive microwave satellite sensors offer the best hope for quantitative rainfall 

estimates. Microwave radiation is able to penetrate clouds and interact directly with 

precipitation-sized hydrometeors. Large ice particles will cause noticeable Tb depressions 

over land at frequencies greater than 30 GHz. The relationships between ice scattering 

represented by indicators such as Tb depressions and surface rain rate form the basis for 

current rainfall retrieval algorithms over land (Spencer et al. 1983; Grody 1991; Ferraro 

and Marks 1995; Conner and Petty 1998; Grecu and Anagnostou 2001; McCollum and 

Ferraro 2003). However, these scattering algorithms implicitly accept a relationship 

between ice aloft and surface rainfall that is known to vary by storm as well as region 

(Kummerow et al. 1996; Kidd 1998). The variations in location, storm type, and 
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microphysical mechanisms will cause variations in the scattering/rainfall relationship of 

or even within the storm. These variations, therefore, need to be accounted for. Cloud 

Resolving Models (CRMs), through their explicit descriptions of cloud microphysical 

properties, offer a convenient tool to interpret remotely sensed data. In particular, they 

can offer important additional information when the remotely sensed data contains 

insufficient information to fully constrain a solution. In this context, CRMs can provide 

the dynamical connection between ice aloft and precipitation at the surface. A 

requirement, however, is that the CRM properly represents the ice microphysics of the 

scene in question.  

CRMs employing the non-hydrostatic governing equations may be used to 

simulate cloud-scale circulations and individual cloud element’s microphysical processes 

at grid spacing of less than a few kilometers. Despite significant advances in cloud 

physics, many issues still exist in microphysical cloud modeling (Khain et al. 2000), 

especially in CRM bulk microphysical parameterizations, in which all microphysical 

processes are described in terms of integral parameters such as mass contents and/or 

number concentrations of a few types of cloud and precipitation particles. These 

parameterizations are known to be imperfect and have limitations. Particularly, cloud 

models tend to produce excessive high-density ice particles (Bauer 2001a; Biggerstaff et 

al. 2006; McFarquhar et al. 2006), and the excessive ice in many simulations was found 

to be problematic even for oceanic rainfall retrievals that relied on CRM simulations as 

described by Smith et al. (1992), Mugnai et al. (1993), Kummerow et al. (1996), 

Panegrossi et al. (1998), and Biggerstaff et al. (2006). Kummerow et al. (2006) 

quantitatively evaluated the retrieval errors associated with the databases built from 
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CRMs in a Bayesian framework. It was stressed that the simulated Tb-rain rate relations 

are sensitive to the sophistication of the models’ microphysical parameterizations, which 

could affect the simulated Tb manifold and thus cause sensitivity to the latent heating and 

hydrometeor profile retrievals (Smith et al. 1992; Panegrossi et al. 1998; Biggerstaff et al. 

2006). There is no universally correct cloud microphysical scheme and different cloud 

types within a storm may possess different dynamical and microphysical properties such 

that they contain diverse ice and rainfall relationships. Therefore, it is informative and 

imperative to evaluate the simulated microphysical properties of each cloud type to 

examine whether the CRM simulation is appropriate for retrieving a given storm. To 

improve retrieval accuracy over land, the potential biases in the CRM microphysical 

properties need to be identified and corrected to build more realistic and representative 

databases of precipitating clouds. Panegrossi et al. (1998) emphasized that similar 

characteristics between the observation- and simulation-generated databases are desired 

to provide numerical stability in rainfall retrievals. If suitable, the scattering database 

built from the simulation is also expected to evolve along with the storm development so 

that more realistic and reliable microphysical scenes can be reproduced from the 

observations.  

 Qualitative discrepancies in storm properties such as location, morphology, 

intensity, and time evolution are evaluated in some observation and simulation 

comparison studies (Chaboureau et al. 2002). In this study, it is not expected that CRM 

simulations match the satellite observations in space and time, especially in a semi-ideal 

setting wherein these discrepancies may originate from model initialization, boundary 

conditions, and/or large-scale forcing. Furthermore, satellite sensors can easily detect the 
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location of the storms. The goal of this work is thus not to produce a perfect model 

simulation, but instead to quantitatively evaluate the microphysical properties of different 

cloud types to ensure realistic and unbiased microphysics in each cloud regime including 

the convective core and the stratiform regime. Therefore, in this study, the criteria of 

defining a good simulation is not based on storm location, morphology, or intensity, but 

on unbiased statistical microphysical properties for each cloud type. 

 In this chapter, cluster analysis of microwave Tbs is used to quantitatively define 

cloud regimes. A numerical simulation of a convective case over the Amazon is 

compared with contemporary satellite observations cluster by cluster to quantitatively 

understand the microphysics discrepancies. This helps clarify the direction of 

improvement for the cloud model. The satellite observation and CRM simulation of this 

convective storm are described in Section 4.2. Section 4.3 describes the cluster analysis 

while Section 4.4 provides the analysis of individual cloud clusters.   

4.2 Satellite Observation and RAMS Simulation of a Convective Event over LBA 

Region 

A tropical squall line event on 23 February 1999 was observed during the 

TRMM-Large scale Biosphere-Atmosphere experiment in the Amazon (TRMM-LBA) 

field campaign. This convective event occurred in the westerly regime wherein the 

convective characteristics are oceanic and monsoon like: weaker, less organized, more 

widespread, and propagating slowly from the west (Cifelli et al. 2002; Rickenbach et al. 

2002).  Widespread convection broke out due to daytime heating and gradually formed 

into lines parallel to the deep tropospheric wind shear. Scattered weak convective cells in 

the late morning around 1400 UTC (1000 LT) initiated the convection; the cells became 
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widespread and were loosely organized into SE-NW bands by early afternoon around 

1700 UTC (1300 LT). The convection was only weakly organized with light 

environmental winds. A relatively long, thin convective line developed by 2000 UTC but 

did not persist for long. The convection died out and completely dissipated from the LBA 

domain by the evening at 0000 UTC on 24 February  (Lang et al. 2007). The TRMM 

satellite took a snapshot of this squall line at 2100 UTC during its decaying stage. 

4.2.1 TRMM Observations 

The TRMM satellite (Kummerow et al. 1998) was launched in November 1997. It 

is the first mission dedicated to measure tropical and subtropical rainfall to help better 

understand rainfall and latent heating distributions. The orbit is inclined at 35˚ to 

maximize observations in the Tropics. Of primary interest to this study are TRMM’s 

Microwave Imager (TMI), the Precipitation Radar (PR), and the Visible and Infrared 

Scanner (VIRS).  

 TMI is a descendent of the Special Sensor of Microwave/Imager (SSM/I) and it 

measures radiance at a viewing angle of approximately 53˚ over a swath width of 760 km 

for nine polarized channels at five frequencies: 10.65, 19.35, 21.3, 37.0, and 85.5 GHz. 

Hereafter, the channels will be referred to 10v, 10h, 19v, 19h, 21v, 37v, 37h, 85v, and 

85h (v represents vertical polarization and h represents horizontal polarization) to identify 

the measurement frequency and polarization in a simple fashion. The spatial resolution 

ranges from 63 × 37 km at 10.65 GHz to 7 × 5 km at 85.5 GHz. 

 PR operates at 13.8 GHz and has a horizontal resolution of approximately 4.3 km, 

a vertical resolution of 250 m, and a swath width of 217 km. TRMM PR data product 

2A25 (Iguchi et al. 2000) is used in this study to provide the retrieved surface rain rate, 
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liquid and ice water paths, and cloud type classification. VIRS senses upwelling radiation 

over a swath width of 720 km in five spectral regions ranging from visible to infrared 

with central wavelength residing at 0.63, 1.60, 3.75, 10.8, and 12 µm. Cloud top 

properties and cloud phase can be inferred from the measured Tbs at a horizontal 

resolution of 2.1 km at nadir.  

 TMI’s 37 and 85 GHz are sensitive to precipitating-size ice particles due to Mie 

scattering of snow, graupel, and/or hail. Tb depressions at these frequencies can, 

therefore, be used to detect convection that is producing large ice particles. The two 

frequencies respond to somewhat different ice particle properties. To demonstrate the 

physical relationship between microwave Tb depressions and hydrometeors more 

intuitively, sensitivity experiments are performed using a set of hydrometeor profiles 

containing large graupel and hail concentration intended to represent deep convection 

situations over land, as shown in Figure 4.1. 

The hydrometeor species consist of cloud water, rain, pristine ice, snow, graupel, 

and hail. The hail category also represents frozen raindrops. In the calculations, the 

densities for mixed particles (snow and graupel) are prescribed and held constant. To 

eliminate sensitivity from non-microphysical factors, the surface temperature is set to 

294.3 K and surface emissivity to 1. The surface is assumed Lambertian. Tb sensitivities 

of four frequencies (19, 22, 37, and 85 GHz) to hydrometeors are shown in Table 4.1. 

Hereafter in this paper, lower frequencies refer to 19 and 22 GHz and higher frequencies 

refer to 37 and 85 GHz. Here, 10 GHz is not used because it depends heavily on the 

surface. Tbs calculated from hydrometeors shown in Figure 4.1 serve as the control run, 

and seven sensitivity experiments and results are described  
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Figure 4.1 The representative hydrometeor profiles including cloud, rain, pristine, snow, 
graupel, and hail.  
 

Table 4.1 Simulated Tbs at 19 to 85 GHz for the control simulation and six sensitivity 
tests. 
 19 GHz 22 GHz 37 GHz 85 GHz 
Control simulation 266.40 258.76 211.60 124.49 
Test 1 268.47 261.73 221.03 135.88 
Test 2 271.51 265.95 239.43 176.39 
Test 3 263.32 256.59 223.85 147.94 
Test 4 269.99 263.74 227.54 136.16 
Test 5 254.63 243.30 173.66 97.19 
Test 6 224.71 207.89 123.54 76.10 
 

below. In test 1, high-density graupel particles are converted to low-density snow 

particles. All frequencies experience a Tb increase with higher frequencies gaining larger 

increases. In test 2, all hail is converted to snow. Results are the same as in test 1 except 

with larger magnitude. The particle density is a critical parameter that determines the 

heterogeneous particle’s dielectric properties. The density of hail is larger than that of 
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graupel, which is larger than that of snow. Larger density ice particles have larger 

scattering efficiencies. Higher frequencies correspond to larger size parameters, which 

further raises the efficiency. As a consequence, higher-density particles produce stronger 

scattering signals at higher frequencies. Meirold-Mautner et al. (2007) explored the 

impact of snow density on simulated microwave Tbs and provided similar results. This 

will be examined in more detail in Section 4.3. In test 3, the supercooled water content is 

increased. Lower frequency experiences some decrease in Tbs due to lower emission 

temperature at elevated weighting function peaks, while higher frequency Tbs experience 

increases for this convective profile. The effect of supercooled cloud water at reducing 

the minima in Tb at high frequencies was identified by Adler et al. (1991) and was found 

to be associated with lowering of the single scattering albedo when liquid is mixed with 

ice particles. Biggerstaff et al. (2006) also reported an average warming of 15 K in Tb at 

85 GHz over the convective region in one of their simulations. However, for non-

convective profiles, cooling at higher frequencies may take place due to the lower 

emission temperature from the cold cloud together with the absence of the scattering 

energy from ice particles. In test 4, the hail particles are broken into much smaller sizes 

keeping the same water content. All frequencies undergo some increase due to decreased 

scattering. However, the increase for 37 GHz is larger than for 85 GHz again due to 

relative changes in the size parameters. The decrease in the particle size causes larger 

reduction in the volume scattering extinction at 37 GHz, which will also be further 

explored in Section 4.3. In test 5, the hail concentration is doubled. All frequencies have 

some degree of Tb decrease due to increased ice scattering. Higher frequencies experience 

more scattering. However, in test 6, when the hail content is doubled again, 85-GHz Tb 
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experience a smaller decrease than that of 37 GHz. This is consistent with Kodama et al. 

(2007) stating that at the presence of intense amounts of hail particles, 85 GHz tends to 

saturate and thus allows 37 GHz to exhibit a stronger sensitivity and serve as a better 

proxy for ice scattering in this situation. The 85-GHz Tb is more sensitive to relatively 

small precipitation-size ice particles in the upper part of clouds, while 37-GHz Tb is more 

sensitive to supercooled or large frozen or supercooled hydrometeors, such as large 

graupel, and large aggregated snowflakes right above the melting layer (Cecil and Zipser 

2002; Kodama et al. 2007). Both 37 and 85 GHz are adopted to detect and classify ice 

microphysics fields in this convective storm.  

 TRMM passed over the LBA convective scene at 2100 UTC. Figure 4.2 shows 

the observed TMI Tbs at 37v and 85v. The enclosed box, measuring approximately 100 

km by 100 km, is the focus of this study. The convective core shows up as Tb depression 

centers in both frequencies. The 85-GHz Tb depression is much deeper than the 37 GHz, 

which is consistent with results in Table 4.1.  

 
Figure 4.2 (left) TMI observed 85v Tb (right) and 37v Tb over a 3° by 3° scene. The 1° by 
1° box enclosed by the dashed line is the focused area for this study. 
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4.2.2 Regional Atmospheric Modeling System (RAMS) Simulation 

RAMS is used to simulate the convective storm for comparison with the 

observations. First of all, the model is described, as well as its microphysics 

parameterization schemes.  

4.2.2.1 RAMS 

The RAMS model (Cotton et al. 2003) is a CRM developed at Colorado State 

University (CSU) by merging a non-hydrostatic cloud model (Tripoli and Cotton 1982) 

and two hydrostatic-mesoscale models (Tremback et al. 1985; Mahrer and Pielke 1977). 

RAMS is built upon a full set of compressible atmospheric dynamic and thermodynamic 

equations using Arakawa-C grid and σz terrain-following coordinate system with variable 

vertical grid spacing to increase resolution near ground and in the boundary layer. The 

‘time-split’ time differencing schemes are adopted to damp the propagation of the fast 

wave modes and several parameterizations are implemented to describe different physical 

processes.  

4.2.2.2 RAMS MICROPHYSICS PARAMETERIZATION 

The bulk microphysical schemes in RAMS (Walko et al. 1995; Meyers et al. 

1997) define seven hydrometeor categories including cloud water, rain, pristine ice 

crystals, snow, aggregates, graupel, and hail. Within a grid, the hydrometeor size 

distributions are represented using a generalized gamma distribution function for each 

class 
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where the number density n is a function of the diameter D. Here, Nt  is the total number 

concentration, Γ is the gamma function, ν is the shape parameter of the gamma 

distribution, and Dn is the characteristic diameter. The mass m of a particle with diameter 

D is expressed in power law formula 

  m = !
m
D

"
m                                                                                               (4.2) 

 where !
m

 and !
m

 are coefficients that are constant for each species. Using the integral 

property of gamma distribution, the mean mass diameter can be calculated by 
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Hydrometeor density is given by 

  !
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For cloud, rain, graupel, and rain that are assumed spherical in the model, !
m
= 3 , 

therefore, their densities are held constant at 1000, 1000, 300, and 900 kg m-3, 

respectively. For pristine ice, snow, and aggregates, their densities vary with diameter. 

The mass mixing ratio of the hydrometeor category is given by 
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 Physical processes in the schemes include nucleation of cloud droplets, nucleation 

of ice crystals, vapor diffusional growth and heat diffusion, evaporation and sublimation, 

freezing and melting, collisions between hydrometeors, shedding of water by hail, 

sedimentation, and secondary ice production. Options of the parameterization include a 

one moment scheme in which either r or Nt is prognosed and Dn is diagnosed from Eq. 

(4.5), and a two moment scheme in which both r and Nt are prognosed given a prescribed 



 71 

ν of the distribution. Between the two, the advantages of predicting two parameters of the 

hydrometeor size spectra in precipitation processes was noted in Srivastava (1978). 

Additionally, two moments can improve the prediction of complex microphysical 

processes by allowing more degrees of freedom of the hydrometeor spectra for each 

category. Improvements should also be expected in the calculations of radar reflectivity 

and radiative transfer calculations, which are both dependent on the realistic 

representation of size and the number concentration of the hydrometeors (Meyer et al. 

1997). Therefore, the two moment scheme is adopted in this simulation.  

4.2.2.3 SIMULATION OF THE STORM 

A semi-ideal simulation starting at 1200 UTC on 23 February was run for 12 

hours at 1 km horizontal resolution using RAMS to reproduce the characteristics of the 

LBA storm shown in Figure 4.2. The model configuration is summarized in Table 4.2. 

Vertical coordinate includes 40 levels with 37-m resolution near the surface so that the 

boundary processes can be well captured. The vertical resolution stretches up to 1028 m 

with a ratio of 1.14 and the model top extends to approximately 23 km. The model is 

initialized with Rebio Jaru station’s 1200 UTC sounding with topography provided by the 

global U.S. Geological Survey (USGS) surface data (approximately 1-km resolution). 

Adopted parameterizations include Klemp/Wilhelmson lateral boundary condition with 

20 m s-1 phase speed and Harrington radiation scheme for both shortwave and longwave 

radiation. The two moment microphysics scheme is adopted and the shape parameter ν of 

the size distribution for each hydrometeor is pre-assigned (3, 2, 2, 2, 2, 2, for cloud, 

pristine ice, snow, aggregates, graupel, and hail, respectively). The surface fluxes are 

nudged as surface forcing to help stimulate convection along thermodynamically unstable 
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Table 4.2 RAMS model configuration for the simulation. 
Model aspect Setting 

Grid 

Arakawa C grid 
Single grid 
Horizontal grid: Δx = Δy = 1 km 
                          100 x 100 points 
Vertical grid:     Δz variable; 40 vertical levels;  
                          Model top ~ 23 km 

Initialization Horizontally homogeneous 
Rebio Jaru station’s 1200 UTC sounding 

Topography Global U.S. Geological Survey (USGS) surface data 
Time step  4 s 

Microphysics scheme 

Two-moment bulk microphysics 
Water species: vapor, cloud water, rain, pristine ice,       
                  snow, aggregates, graupel, hail all activated 
CCN concentration: 250 cm-3 

Convection initiation Observed surface forcing 
Latent and sensible heat fluxes are nudged 

Boundary conditions Klemp/Wilhelmson 
Radiation scheme Harrington 

 

regions. Latent and sensible heat fluxes measurements collected at ABRACOS Hill and Ji 

Parana (Lang et al. 2007) are used to construct the flux time series expressed by cosine 

functions whose amplitudes and periods are determined from the observation data. The 

simulation of the storm is divided into two areas and the inner and outer areas are forced 

with both latent and sensible heat flux time series whose functions have different 

magnitudes but equal 11-hour periods. The Rebio Jaru sounding and details of the surface 

forcing used in this study can be found in Lang et al. (2007). Convection first kicks off at 

the boundary between these two areas where the forcing gradient is the largest and, 

therefore, the most unstable.  

 The first five hours of the simulation is considered “model spin-up time” when 

clouds start to form from the moist air. At around 1730 UTC, the domain-averaged 

surface rainfall is found to increase sharply during the next 1.5 hours and reach its peak at 
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1910 UTC. Rainfall starts to decrease afterwards as the storm decays. Simulation results 

are output every 10 minutes. The 47th output (hereafter referred to as T47), for instance, 

corresponds to 1950 UTC when the storm is experiencing the early stage of the decaying 

process.  Model outputs include thermodynamic properties and hydrometeor profiles, 

from which the optical properties including extinction coefficients, scattering 

coefficients, and asymmetry parameters can be calculated to serve as inputs to simulate 

the Tbs at TMI frequencies. A two-stream radiative transfer model (Kummerow 1993) 

with Eddington approximation and an independent pixel plane-parallel assumption is 

used in this work as the observational operator. The differences between this model and 

an eight-stream discrete ordinate solution for the realistic and multilayered cloud 

hydrometeor profiles did not exceed 3º K for the microwave range between 6.6 to 183 

GHz. Compared to the uncertainties from the microphysical profiles generated by the 

CRM, this model is accurate enough for the current purpose although it provides only an 

approximate 3-D effect and no polarization information of nonspherical particles 

(Kummerow 1993). Surface emissivity is initially fixed at 0.93 for all channels in the 

calculation. This value is based on the 2006 annual mean surface emissivity retrieved 

from Advanced Microwave Scanning Radiometer for EOS (AMSR-E) that carries similar 

frequencies as TMI (Bytheway and Kummerow 2010). The size distributions [Eq. (4.1)] 

and hydrometeor densities [Eq. (4.4)] for RAMS are used in the Tb simulations. The Tbs 

are then averaged from the model resolution to TMI resolutions using a 2-D Gaussian 

filter with the Full Width at Half Maximum (FWHM) set to each frequency’s respective 

footprints (Kummerow et al. 1998). Cyclic boundary conditions are applied in the 

averaging.  
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 The simulated Tb scenes for 37 and 85 GHz at TMI resolutions are displayed in 

Figure 4.3. When compared with the observed scenes presented in Figure 4.2, the  

Figure 4.3 (left) Simulated 37-GHz and (right) 85-GHz Tb for the 1° by 1° study area at 
1950 UTC during the decaying stage. 
 

discrepancies are obvious. The simulated convective core is separated from the observed 

one by about half a degree (50 km) in the SE direction, and there also exists a separate 

weaker core on the NW of the main core. Besides the differences in location and 

morphology, the convection generated in the simulation is also more intense than the 

observation with Tb at 85 GHz around 100 K versus the observed value of 180 K. This 

indicates that either the model is over-producing large ice particles or T47 is early in the 

decaying process with the convections still too strong when compared to the observation 

snapshot.  

4.3 Cluster Analysis 

 Different cloud regimes within the same storm system bear different microphysical 

properties. For example, the convective core contains hail and graupel particles produced 

in the strong updraft, while stratiform clouds are mostly composed of low-density 
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particles including pristine ice, snow, and aggregates. It is crucial for cloud models to 

produce correct microphysical properties for each cloud type so that realistic 

scattering/rainfall relationships are established by simulations for improved rainfall 

retrievals over land. To define cloud regimes in the scenes, “k-means cluster analysis” is 

employed to group pixels or grids with coherent physical properties.  

4.3.1 Description of Analysis 

Cluster analysis is a classification method that groups data with similar properties 

together into self-similar categories. First of all, centroids are chosen and the Euclidean 

distance from each data point to each centroid is computed. The data point is then 

assigned to the closest centroid. The center of each resulting cluster is recalculated and 

the distances are computed again to the new centroid and the clusters are redefined. The 

iterative process continues until the clusters are stable. The clustering analysis follows the 

work of Boccippio et al. (2005) and Finn (2006). The specific clustering technique used 

in this study is the “k-means technique” described by Anderbert (1973). Using cluster 

analysis, the storm scene can be classified into several cloud types, in which each cluster 

is expected to possess distinct microphysical properties. 

 Due to high surface emissivity over land, precipitation is generally retrieved 

through the scattering signals from large precipitating ice particles in the passive 

microwave methods. Targeted at improving land precipitation, the criteria for clustering 

in this study is based on ice microphysics. Tbs at high microwave frequencies are good 

proxies of ice microphysics, as was examined in the previous sensitivity experiments. 

Therefore, the Tb vector was clustered into similar 37v, 37h, 85v, and 85h Tbs. Because 
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the range of Tb at 85 GHz is significantly larger than at 37 GHz, scaling is applied first 

following: 

  Tb = Tb !
max(Tb(85h))"min(Tb(85h))

max(Tb )"min(Tb )
 .                                                 (4.6) 

4.3.2 Determining the Number of Clusters to Use 

 The observation scene can be clustered into an arbitrary number of regimes. The 

optimal number should be chosen based on several criteria described below. Smaller 

mean standard deviations within each cluster are desired to ensure that each cluster 

represents self-similar cloud properties. A distinct range for each cluster is also desired so 

that pixels are not ambiguous in the classification and each cluster has unique 

microphysical characteristics. Finally, it is desirable for clusters to bear physical 

meanings instead of simply representing mathematical constructs. Classifications ranging 

from two to six clusters are assessed next. 

 With only two clusters, the convective and non-convective region emerges due to 

their first order difference in ice microphysical properties. The standard deviation of Tb 

within each cluster, however, is relatively large denoting large variability within each 

cluster. Mean standard deviation generally decreases with the number of clusters adopted. 

The mean and standard deviation of Tbs for each channel when using three, four, five, 

and six clusters are shown in Figure 4.4. 

 With three clusters, each cluster is distinctly separated for all channels. With four 

clusters, there exists overlap at 85 GHz but the clusters are distinct at 37-GHz 

classification; while with five clusters, there exists overlap at 37 GHz but the clusters are 

distinct at 85-GHz classification. However, when six clusters are used, Tb ranges overlap 
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for both frequencies between clusters, allowing ambiguity in classifying pixels located 

within the overlapping range. Therefore, the choice of six clusters is discarded. Cluster 

number three, four, and five are potential candidates with mathematical distinctness in 

each cluster to represent each cloud regime uniquely. The choice was made based on the 

uniqueness in physical properties for each cluster. 

 

Figure 4.4 Tb distributions (mean and standard deviation) at 37 GHz and 85 GHz for each 
cluster at the case of (a) three clusters, (b) four clusters, (c) five clusters, and (d) six 
clusters. 
 

 Observed TMI Tbs, PR retrieved rainfall/water paths, and VIRS retrieved cloud 

properties can be used to infer physical properties of the underlying clouds within TMI 

85-GHz footprints (Rapp et al. 2005). PR surface rain rate, 85-GHz polarization, 37- and 
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85-GHz Tb relationship, and mean visible cloud reflectance are examined together, as 

shown in Figure 4.5.  

 When three clusters are used, cluster 1 contains pixels with warm 37- and 85- GHz 

Tbs with a small standard deviation, as shown in Figure 4.4a. This cluster corresponds to 

nonraining pixels whose variance is mostly caused by factors such as surface emissivity 

and cloudiness. This cluster includes some ice particles that produce 85-GHz polarization 

signal and produces a mean visible reflectance around 0.55. Polarization at 85 GHz is an 

indication of ice particle shape and orientation (Anagnostou and Kummerow 1997; 

Prabhakara et al. 2001). Cluster 2 contains more ice that depresses the mean Tbs by 5 to 

20 K, produces higher 85-GHz polarization and cloud reflectivity as well as some rain. 

Cluster 3 contains pixels with much lower Tb with large standard deviations that 

correspond to an inhomogeneous distribution of precipitating ice particles associated with 

the convective core that contains relatively high rain rates and large cloud reflectance 

(mean reflectance is 0.8), as shown in Figure 4.5.  

 For the case of four clusters, another cloud type between the nonraining cluster and 

convective cluster emerges. The two intermediate clusters, that is, cluster 2 and 3 

correspond to pixels including different amounts and/or species of ice particles so that 

cluster 3 depresses the Tbs more strongly, produces higher rain rates and has larger 

polarization signals. These two clusters may include different microphysics and thus 

deserve being investigated further. Compared with using four clusters, one more 

intermediate cloud type is separated with five clusters. The physical properties of the new 

cluster tend to lie between those of cluster 1 and 2 of the four-cluster scenario, and its 

surface rainfall is very small. This makes this cluster less interesting to this work whose 
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focus is more on the microphysics of raining scenes. Therefore, four clusters are used as a 

compromise between mathematical similarity and physical interpretation. 

 

Figure 4.5 Physical property comparisons for using three clusters (left panels), four 
clusters (middle panels), and five clusters (right panels) including PR surface rainfall 
(upper panels), 85-GHz polarization information (middle panels), and Tb relationship 
between 85-GHz and 37-GHz Tbs (lower panels). 

4.3.3 The Observed Clusters  

 Figure 4.6 displays the four clusters of the observation. Figure 4.7 shows the VIRS 

visible and infrared image of this storm with the contour of cluster 1 overlaid. The visible  
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Figure 4.6 The four clusters for observation with clustering criteria defined by 
observation Tb scenes.  
 

        
Figure 4.7 VIRS (left) visible and (right) infrared image at 10.8 µm. Cluster 1 contour is 
overlaid. 
 

image shows that cluster 1 compares well to the darker region of the visible image that is 

associated with the relatively lower reflectance (mean value for this cluster is 0.53). 

Cluster 1, therefore, can be associated with either clear sky or thin cirrus. The existence 

of thin cirrus is further confirmed by the silk-like morphology in the visible image and 

also the low cloud top temperature inferred from the infrared image. Together with the 
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fact that this cluster includes little rain as shown in Figure 4.5, cluster 1 is called the 

‘clear sky/thin cirrus cluster’. 

 It is clear from the infrared image that the whole area of interest is mostly covered 

with clouds. The reflectance ratio of 0.6 µm/1.6 µm has been used in the MODIS cloud 

mask algorithms to identify the cloud phase (King et al. 1996). The absorption efficiency 

for both water and ice is small but similar around 0.6 µm, while the absorption for ice is 

larger than that for water at around 1.6 µm (Warren 1984; Hale and Querry 1973) such 

that the reflectance at 1.6 µm is smaller for ice than for water. The ratio is thus larger for 

ice than for water. For each TMI pixel that is assigned a cluster number, reflectance ratios 

are calculated for all the VIRS pixels included within the TMI footprint. Figure 4.8 shows  

  
Figure 4.8 Reflectance ratio of the visible versus near-infrared channel on VIRS as a 
function of the cluster number with standard deviation imposed. 
 

the mean and standard deviation of the reflectance ratio for each cluster. The ratio 

increases with cluster number, suggesting that the percentage of ice in the cluster 

increases with cluster number. Cluster 2, therefore, contains higher percentage of water 

!



 82 

phase at the cloud top compared to clusters 3 and 4. Together with the cirrus cover as 

shown in the infrared image of Figure 4.7, cluster 2 is most likely associated with multi-

layer clouds with lower level water clouds covered by cirrus. Figure 4.5 shows that this 

cluster produces small rain rates and this cluster is termed as the ‘cloudy’ regime. 

 Figure 4.5 shows that cluster 3 contains intermediate rain rates and has the strongest 

85-GHz polarization signal with mean value greater than 4 K. Large polarization is 

caused by oriented nonspherical ice particles such as pristine ice, snow, and aggregates 

that exist in stratiform regions of the storm (Heymsfield and Fulton 1994a; Anagnostou 

and Kummerow 1997).  The spatial location of cluster 3, surrounding the deep scattering 

denoted by cluster 4, provides evidence that cluster 3 corresponds to the storm’s 

stratiform anvil region. Figure 4.9 shows the cross section of the radar reflectivity at  

 
Figure 4.9 PR reflectivity cross section at 10.3°S overlaid by the cloud type classification 
from PR 2A25 algorithm.  
 



 83 

10.3° S overlaid by the cloud type classification from PR 2A25 product. It is clear that 

the stratiform anvil lies adjacent to the convective core that corresponds to the high 

reflectivity region. Cluster 3 is defined as the ‘stratiform anvil cluster’. 

 Figure 4.5 shows that cluster 4 is associated with larger rainfall and more intense Tb 

depressions that are produced by strong scattering of large precipitating particles 

representative of the ‘convective core’. Resemblance of cluster 4 to the Tb depression 

areas in Figure 4.2 together with the higher reflectivity in Figure 4.9 further verify the 

convective properties of this cluster. Cluster 4, therefore, is defined as the ‘convective 

cluster’. 

 Liquid Water Path (LWP) and Ice Water Path (IWP) can be calculated from PR 

2A25 products using the linearly interpolated precipitation water parameter coefficients 

from the five nodes (Iguchi et al. 2000). The mean LWP for each cluster is 0.02, 0.12, 

0.59, and 0.76 kg m-2; and the mean IWP for each cluster is 0.01, 0.07, 0.19, and 0.72 kg 

m-2. These values are consistent with the properties of the defined cloud types. 

4.4 Analysis and Discussion 

 To compare the simulation to observation for each cloud type, the simulation 

clusters need to be defined first. 

4.4.1 Assigning Simulation Pixels to Clusters 

The simulation produces significantly different Tbs from the observations as 

evidenced by a comparison of Figures 4.2 and 4.3. Here, each simulation pixel is 

assigned to a corresponding observation cluster based on the pixel’s closeness to the 

clusters’ centroid Tb vectors to ensure that the two sets of clusters are based on the same 

criteria. For example, Figure 4.10 shows the simulation clusters for T47. The convective 
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cluster is consistent with the Tb depressions in Figure 4.3 and the stratiform portion of the 

simulated storm also lies adjacent to the convective core as in Figure 4.6. 

        
Figure 4.10 Simulation clusters at T47 based on the observation cluster criteria.  

4.4.2 Analysis by Cluster  

The CRM simulation for this convective cloud is semi-ideal and it has the ‘cold 

start’ procedure for model spin up before meaningful cloud and precipitation are 

predicted. However, the microphysical properties of a specific cloud type should be 

consistent regardless of the developing stages of the storm. Thus, T35, T47, and T59 at 

two hours’ interval that cover the cumulus, mature and decaying stages of the storm 

ensemble are combined together for analysis instead of deciding upon the closest (e.g., 

Wiedner et al. 2004) or the most appropriate (e.g., Lang et al. 2007) time step in the 

simulation for the comparisons.  

 Figure 4.11 shows the mean microphysical profiles for each simulation cluster. 

The profiles are averaged to TMI’s 85-GHz resolution applying the same Gaussian filter 

that is used in calculating the Tbs. Cluster 1 includes mostly clouds, as shown in panel 
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4.11a, which is caused by the overproduction of clouds in the model. Figure 4.12 shows 

the overwhelming cloud fields at the early stage (T35) and the mature stage (T47) of the  

 

 

Figure 4.11 Mean profile of each hydrometeor species for each simulation cluster. 
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storm. This is most likely caused by the sounding used for the initialization, which is 

contaminated by mid-level clouds. The production of snow and graupel is small in this 

simulation. For clusters 2 to 4, pristine ice, aggregates, and rain amounts increase with 

the cluster number. Hail becomes abundant in cluster 4, which can also be seen from the 

hail mixing ratio contour in the right panel of Figure 4.12.  The distribution of hail is 

consistent with the convective cluster in Figure 4.10. 

        

Figure 4.12 (left) Cloud field at T35 with contour mixing ratio of 0.0 g kg-1; (right) Cloud 
(blue), aggregates (yellow), and hail (orange) fields at T47 with contour mixing ratios of 
0.0 g kg-1, 1.0 g kg-1, and 1.0 g kg-1, respectively.  

4.4.2.1 TB COMPARISONS FOR CLUSTER 1 

Figure 4.13a shows the comparison of the observed and simulated Tb ranges 

(within 1σ) for cluster 1 when the surface emissivity is fixed at 0.93 for each frequency. 

The comparison shows that the simulated Tb ranges at all channels are lower than the 

observed ones, and the discrepancies reach 5 K in some frequencies. Lower Tbs may be 

caused either by too little emission, too much extinction, or an insufficient signal from 

the surface. To test the sensitivity of the Tb discrepancies to potential errors in the column 

water vapor, all the water vapor profiles in this cluster are tuned to saturation. Figure  
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Figure 4.13 Tb comparison of cluster 1 at each frequency between observation and 
simulation in which (a) surface emissivity for each channel is set to 0.93; (b) water vapor 
profiles are set to saturation for each pixel; (c) all cloud particles are removed; d) surface 
emissivities are updated for each frequency.  
 

4.13b shows that Tbs increase slightly, but the impact on reducing the discrepancies is 

negligible. The sensitivity to excessive extinction is examined by removing all the cloud 

particles. Figure 4.13c shows that the removal of cloud produces a negligible impact for 

the lower frequencies, while having an excessive impact over higher frequencies. 

Another potential bias source for the Tb simulation of this cluster is the presumed surface 

emissivities ε. The observed Tbs can be used to find the correct ε to be used in the model 

because thin cirrus is present in the observation cluster but it is basically invisible to the 

microwave frequencies. As such, the observations mostly reflect the surface properties. 

An average ε is obtained for each frequency from this cloud free cluster. A detailed 

!
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description of the physical relationship between Tb and ε can be found in Bytheway and 

Kummerow (2010). The new emissivities are employed for the rest of the clusters. 

4.4.2.2 TB COMPARISONS FOR CLUSTER 2 

With different weighting functions, Tbs at 37 GHz (shortened as Tb(37) hereafter) 

and Tbs at 85 GHz (shortened as Tb(85) hereafter) exhibit different degrees of sensitivity 

to the microphysical properties, as manifested in Table 1. Figure 4.14a shows the Tb 

difference between 37v and 85v (shortened as dTb hereafter) as a function of Tb(85) 

between the observed scene and the simulated storms for cluster 2. A linear regression 

corresponding to the observed relationship (open squares) is plotted to highlight the 

differences with the simulated values (in gray scale). For this cluster, the simulation at 

Tb(85) are somewhat colder than the observation. It also produces smaller dTbs at the 

same Tb(85).   

 To obtain a better match between the observation and the simulation, static 

adjustments of the simulated microphysics are performed. Mean freezing level in the 

simulation is approximately 4.63 km, and Figure 4.11b indicates the existence of large 

amounts of supercooled water in this cluster that is related to the initialization sounding. 

When the supercooled water is completely removed, the Tb(85) range increases and the 

dTb also increases at the same Tb(85) as shown in Figure 4.14b. After the adjustment, the 

observation pixels are mostly included within the simulation. In this non-convective 

scene, the supercooled water can depress Tbs by elevating the weighting functions to 

lower temperatures. This liquid also decreases the dTbs. Therefore, the removal of the 

supercooled water brings the dTbs over Tb(85) relationship closer to that of the 

observation for this cluster. The physical reason will be further explored in Section 4.3. 
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Figure 4.14 The dTb over Tb(85) relationship comparison between the observation and 
the simulation (a) for cluster 2 in the control run, (b) for cluster 2 in the sensitivity test 
when all the supercooled water is removed, (c) for cluster 3 in the control run, (d) for 
cluster 3 in the sensitivity test when all the supercooled water is removed, (e) for cluster 4 
in the control run, and (f) for cluster 4 in the sensitivity test when the intercept of hail 
PSD is increased. Diamonds stand for the observed values, overlaid by its linear 
regression; gray scale contours stand for the simulated values. 
 

!
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4.4.2.3 TB COMPARISONS FOR CLUSTER 3 

Figure 4.11c shows that cluster 3 is dominated by clouds, pristine ice, and 

aggregates. The existence of the large amounts of nonspherical aggregates in the 

stratiform cloud is consistent with the observations, demonstrating the model’s ability to 

produce the correct particle species. The simulated cluster produces higher Tb(85) range 

and smaller dTb at the same Tb(85), shown in Figure 4.14c. As in cluster 2, removing all 

the supercooled water increases the dTb and seems to fix the discrepancies quite well as 

shown in Figure 4.14d. Besides removing all the supercooled water, the match can be 

improved further by increasing the aggregates amounts while increasing the PSD’s 

intercept to produce more but smaller aggregates particles. 

4.4.2.4 TB COMPARISONS FOR CLUSTER 4 

Figure 4.11d shows that all hydrometeor species are further increased in cluster 4, 

especially the hail particles that are generally associated with strong convection. Figure 

4.14e shows that the simulated dTbs are lower than those in the observations and the 

underestimation is especially obvious in the low Tb(85) regime, which is depressed by the  

large precipitating-sized ice particles (hail in this case). A few pixels in this cluster 

contain higher Tb(85)s that extend into the lower cluster regimes. These outliers are found 

to be associated with relatively larger LWPs and lower Tb(37). These lower Tb(37)s will 

cause the pixels to be assigned to a higher cluster number even with relatively warmer 

Tb(85)s. To facilitate our understanding, simplifications are made in this section 

including that the particle densities for all species are held constant and ν, the shape 

parameter defined in Eq. (4.1), is assumed to be 1 for the size distribution of the 

precipitating particles. Figure 4.14f shows that when the intercept of the hail PSD is 
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increased, the simulated slope gets closer to that of the observation although there is still 

lack of agreement. A larger intercept with the same hail IWP produces more but smaller 

hail particles. This modification produces warmer Tb(85) and larger dTb, as was 

demonstrated from test 4 in Table 4.1.  

4.4.3 General Relationships 

Sensitivity tests are performed in this section to better understand the adjustments 

in Section 4.2. Figure 4.15a shows the dTb over Tb(85) relationship as a function of 

hydrometeor species over land. It can be seen that liquid species (cloud and rain) alone 

 

Figure 4.15 The relationship of dTb over Tb(85) as a function of (a) hydrometeor species, 
(b) hydrometeor combination, and (c) hail PSD. Squares denote the cases with the same 
hail IWP.   
 

cannot produce very low Tb(85) or very large dTb. Maximum values for dTb appear to be 

below 10 K. Ice species can produce much lower Tb(85) and much larger dTb. Hail can 

produce larger dTb than graupel or aggregates. When rain is added to hail, as shown in 

Figure 4.15b, dTb is lowered for all brightness temperatures. Figure 4.15c shows the 

impact of changing the intercept parameter on the dTb versus Tb(85) fit. It is revealed that 

hail Particle Size Distribution (PSD) with larger n
0

 can produce larger dTb at the same 

Tb(85). 
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 Mie theory is applied here to understand the above results. The size parameter x is 

defined as x = 2!r / " , where r is the particle radius and λ is the wavelength. As the λ of 

85 GHz is approximately 2.3 times smaller than that of 37 GHz, the x of 85 GHz is 

roughly 2.3 times larger than that of 37 GHz for a particle with the same size.  

 Figure 4.16 shows the Mie extinction efficiency Qext as a function of x for three 

particles with different dielectric properties. Their refractive indices are 1.77+1.0i, 

1.77+0.0001i, and 1.33+0.0001i, that roughly represent properties of rain, hail, and 

graupel, respectively. The real part of a refractive index represents the scattering 

characteristics while the imaginary part represents the absorption characteristics of the  

 
Figure 4.16 Mie extinction efficiency as a function of x for particles with different 
refractive indexes. 
 

particle. For all three cases,the difference in Qext between 37 and 85 GHz increases until x 

for 85 GHz reaches the Qext peak, after which the difference decreases. For rain, the peak 

x is approximately 2, which is equivalent to a radius of 1.1 mm at 85 GHz. Therefore, 

liquid drops cannot produce very large dTb since larger drops reduce the dTb value. 
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Furthermore, adding liquid to ice will weaken the ability to produce large dTb at the same 

85 GHz. Liquid particles have large imaginary refractive indices, so that they are both 

efficient absorbers and emitters. Therefore, liquid drops cannot produce very low Tb(85)s. 

Aggregates, graupel, and hail particles are all regarded as ice matrix with air inclusions in 

the calculation of their dielectric constants (Maxwell-Garnett 1904). The density of hail is 

larger than that of graupel, which is larger than the density of aggregates. These densities 

will determine the fraction of air inclusion and thus the refractive index of the mixture. 

As hail has a larger real part in the refractive index than graupel, its slope before the Qext 

peak is steeper, as shown in Figure 4.16, and, therefore, the dQext  difference is larger. 

This produces a larger dTb. The decrease of dTb after the peak of the curves in Figure 

4.15 is caused by the decrease of 85-GHz Qext after its peak in Figure 4.16. This explains 

the phenomena that in the extremely intense convective storms, Tb(85) saturates while 

Tb(37) has a larger sensitivity on the storm intensity (Kodama et al. 2007).  

 To aid in the interpretation, the special case of ν=1 for the generalized gamma 

distribution, Eq. (4.1) reduces to the exponential distribution:  

n(D) =
Nt

Dn

exp !
D

Dn

"

#
$

%

&
'  .                                                                           (4.7) 

Compared with the general form of the exponential distribution n(D) = n
0
e
!"D , the 

intercept is  

 n
0
=
N

t

D
n

                                                       (4.8) 

and the slope is  
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D
n

 .                              (4.9) 
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Liquid Water Content (LWC) or Ice Water Content (IWC) of spherical particles can be 

expressed as 

LWC / IWC =
!

6
D
3"(D)n(D)dD

0

#

$ =
n
0
!"

%4
 ,         (4.10) 

which gives 
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(
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 .                      (4.11) 

From Eqs. (4.8), (4.9), and (4.11), we can get 
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With the same hail IWC, larger intercept n
0

produces larger Nt from Eq. (4.12), which 

means more hail particles. It also produces larger λ as seen from Eq. (4.11), which means 

a smaller D
n
according to Eq. (4.9) and hence a smaller D

m
according to Eq. (4.3). In 

other words, while the mass is conserved, there will be more but smaller hail particles 

when the intercept n
0

gets larger. Squares in Figure 4.15c correspond to the cases that 

share the same hail IWP at different PSD. By increasing the PSD intercept, more but 

smaller hail particles produce larger dTb at the same Tb(85).  

  The dTb over Tb(85) relationship was demonstrated above to contain information 

of the microphysical properties and the observed relationship. It can, therefore, be used to 

diagnose the model microphysics. 

 4.4.4 Dynamic Adjustments  

The adjustments in Section 4.2 demonstrate that static modification of the 

simulated microphysics can produce improved agreement with the observation. However, 

these static adjustments ignore the pertinent microphysical processes. Changing the hail 
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PSD intercept will not only change the hail sizes, but also the mean terminal fall velocity 

that modulates the collection and coalescence process and also the evaporation and 

melting processes that impact the strength of the downdraft and the intensity of the cold 

pool (Van Den Heever and Cotton 2004). To this end, a dynamic adjustment provides a 

more consistent and physical picture. Taking cluster 4 as the example, the goal of this 

section is to perform a dynamic adjustment that leads to more abundant but smaller hail 

particles compared with the control run. 

 Keeping all the settings identical to the control run, a sensitivity experiment is 

carried out by increasing the hail PSD ν from 2 to 5. This experiment is named 

‘HAILGNU5’. The PSD and particle densities follow the same ones as in RAMS for the 

Tb simulation in this section. Comparison of Figures 4.17a and 4.17b shows that the dTb  

 
Figure 4.17 The dTb over Tb(85) slope comparisons for cluster 4. (a) Control run with 
hail shape parameter set to 2; (b) sensitivity run with hail shape parameter set to 5. 
 

over Tb(85) relationship in HAILGNU5 gets significantly closer to that of the observation 

than in the control run. It is noteworthy again that compared with the improvement in 

Figure 4.14f, this adjustment in HAILGNU5 is physically and microphysically 

consistent. Figure 4.18 shows the comparisons of the mean density and number 

!
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concentration Nt of cluster 4 for each species and also the comparison of the mean Dm for 

hail. Panels 4.18n and 4.18o reveal that HAILGNU5 is capable of generating more 

abundant (larger Nt) but smaller (smaller Dm) hail particles. 

 

 

Figure 4.18 (a-n) Comparison of the mean density and number concentration Nt of cluster 
4 for each hydrometeor species. (note that the scale for Nt is different for each species); 
(o) comparison of the mean hail Dm of cluster 4; (p) comparison of the hail mean Dm 
comparison for the simulation with ν=2, 5, and 10, individually. 
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Figure 4.18 illustrates the model behavior. With a fixed Dm, the distribution gets 

narrower when ν is increased (refer to Figure 1 in Walko et al. 1995) and Dn decreases in 

value. In RAMS, smaller Dn values result in reduced bulk collection rates for hail owing 

to the reduced terminal velocity associated with smaller Dn; the riming efficiency of hail 

in the binned riming scheme is dependent on particle sizes and is, therefore, also 

impacted (Loftus 2011). These changes will on the other hand augment the other 

processes. It can be seen from Figure 4.18 that the mean density and Nt for pristince ice, 

snow, and aggregates all increase. The melting of these ice particles produces more rain 

drops and the increased rain droplets in turn collect more low-density ice particles if these 

rain drops are able to rise above the freezing level, i.e., in updraft, to produce the 

resultant more abundant but smaller hail particles compared with the control run. Figure 

4.18p shows that the Dm of hail is further decreased when ν is increased to 10. This 

verifies that the change of hail properties from increasing hail ν can be reproduced. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

Microwave radiation is unique due to its longer wavelength and its direct 

interaction with the hydrometeors, hence, the microwave radiances contain valuable 

information of the microphysical properties. Chapter 2 described the radiative transfer of 

the microwaves through a precipitating atmosphere and the interaction with hydrometeors 

at microwave frequencies in a great detail, focusing on microwave imagers.  Surface type, 

that is ocean or land, plays an important role in interpretating the microwave observations. 

The ocean surface is radiometrically cold so that the emissions from the raining cloud at 

lower frequencies (< 37 GHz) stand out from the background. The land surfaces 

generally have high emissivities and, therefore, only the scattering signal from 

precipitating-ice particles within the storm can be detected by the higher frequencies (≥ 

37 GHz). These observations can, therefore, serve as microphysics proxies and can be 

used for model and observation comparisons. Chapter 3 and 4 each presented a model 

and observation comparison case using low SSM/I frequencies over ocean and high TMI 

frequencies over land.  

GPROF and 1D-Var rainfall retrievals are compared, as they are both inversion 

algorithms based on the Bayes’ theorem aimed at reproducing the observations given 

available a-priori information. The PR/TMI combination does allow the combined 
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algorithm to partition the cloud and rainwater. GPROF utilizes an observationally 

generated database from PR/TMI while 1D-Var uses the ECMWF model forecast FG 

field of temperature and moisture for a-priori information. The state vector to be solved 

in the minimization procedure includes microphysical profiles in GPROF and 

thermodynamic profiles in the 1D-Var. Retrieved microphysical properties for 1D-Var 

are outputs from the moist physics schemes given the retrieved temperature and humidity 

profiles and other model variables as inputs. However, 1D-Var makes use of an imperfect 

moist physics parameterization, which must also be linearized for assimilation purposes. 

The moist physics controls the ratio of cloud to rain in the 1D-Var retrievals, but this 

ratio is much higher than observed in the GPROF database, i.e., modeled cloud amounts 

are excessive as a fraction of rain amounts. The cloud and rainwater partitioning in the 

1D-Var model was, therefore, evaluated using the GPROF a-priori database in this study. 

 Comparisons were first made using case studies of raining pixels extracted from 

12-hour data on 30 September 2007 over a 10° by 10° region in the tropical east Pacific 

centered at [120°W, 10°N]. Differences between the two retrieval algorithms can be 

categorized into four categories based upon their agreements on three-channel Tbs and on 

their CWP/RWP ratios. Among the four categories, category 2 defined the scenario when 

Tbs agree while microphysics did not. This is the category in which the retrieval is 

successful at reproducing the Tbs but the retrieved cloud and rain properties was not 

observed by PR/TMI. From statistical analysis using one month’s global retrievals in 

October 2008, it was found that category 2 occurred as often as 46.9% of all the 1D-Var 

retrievals. The agreement in Tbs was due to the comparable retrieved TPW between the 

two algorithms to match the same observation signals, while the microphysical 
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discrepancy was found specifically to be due to the difference in allocating the TWP 

between CWP and RWP. The dependence of the bias on regional variability was explored 

by selecting four regimes including the SE Pacific regime, the West Pacific regime, the 

East Pacific regime, and the Northern Hemisphere storm track regime. It was found that 

although all regimes shared the same issue of improper distribution of cloud and 

rainwater within the 1D-Var cloud scheme, the two retrievals produced similar spatial 

patterns. The dependence of the ratio on spatial variability was found to be related to the 

portion of stratiform rain, although the definition of stratiform was not equivalent in these 

two algorithms. 

 This work explored solutions to improve the cloud/rain ratio in the 1D-Var 

retrieval using several representative raining cases that have a wide range of rain 

intensities. It was found that the implementation of higher microwave frequency channels 

was beneficial to better constrain the ratio due to increased sensitivity at these 

frequencies in differentiating cloud water from rainwater. Adding in 37 GHz was 

sufficient for drizzle cases (≤ 1 mm h-1) while adding in 85 GHz had a greater impact for 

larger rain rate cases (≥ 5 mm h-1). Therefore, to improve the retrieval quality, we suggest 

that higher frequencies be added to the 1D-Var’s three-channel retrieval algorithm. The 

comparisons between GPROF and 1D-Var can also be applied to other inversion 

algorithms. 

 Limited by the computation efficiency and current knowledge, CRM 

microphysics parameterizations still require significant assumptions. Biases in the CRM 

microphysics need to be identified and corrected. This work developed a method to use 

remote sensing observations to diagnose the model microphysical deficiencies in 
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different cloud types so that improvement of the simulations of each cloud type can be 

made separately. The work focuses on illustrating the methodology instead of exploring 

the exhaustive solutions of the improvement, which will depend on the specific cloud 

model and simulation. 

 A convective storm was captured by TRMM at its decaying stage over the 

TRMM LBA region. Frequencies at 37 and 85 GHz were sensitive to ice scattering and 

can be used as proxies of ice microphysics in the convective storms. Cluster analysis of 

the Tbs at 37 and 85 GHz of TMI was performed and four clusters are found to be the 

optimal choice for representing the distinct microphysics over the selected storm scene. 

Using the matched retrieval properties from PR and VIRS, the four associated cloud 

types were labeled as: ‘clear/thin cirrus’, ‘cloudy’, ‘stratiform anvil’, and ‘convective’. 

The relationship of dTb versus Tb(85) was found to contain relevant information of the 

microphysical properties including hydrometeor species and size distributions. It was 

found that the semi-ideal simulation produced an overwhelmingly cloudy background, 

and proper surface ε values in the RTM were essential to provide a consistent clear sky 

background. To improve the simulated relationships of the ‘cloudy’ and ‘stratiform’ 

cluster, the large amounts of supercooled water needed to be removed. Keeping the same 

hail content but fixing the hail size distribution generally fixed the Tb for the ‘convective’ 

cluster. Physically consistent microphysical pictures instead of static adjustment of the 

microphysical scenes were desired. To demonstrate the dynamic adjustment with the goal 

of improving the microphysics of the convective cluster, a sensitivity simulation was 

carried out by increasing the hail PSD gamma exponent value. Compared with the control 

run, the new simulation was capable of producing more but smaller hail particles and, 
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therefore, generating a closer relationship to that of the observation.    

 When field experiments are not easily available, the specification of the 

engineering parameters in the parameterizations that need to be prescribed by the model 

users are uncertain and should ideally depend on the types of clouds being simulated. 

This work provides a procedure of using satellite observations to guide the choice of 

these adjustable parameters. In the long term, this work also reveals the potential of 

constraining these parameters using data assimilation techniques.  

 The improved microphysics, especially of the ice species, can help build 

improved microphysics-radiation databases for the microwave physical rainfall retrieval 

algorithms over land. The improved microphysics in the CRMs can also provide 

improved precipitation products at higher temporal and spatial resolutions, which is 

demanded by the hydrological communities. The method can also be applied to other 

types of satellite observations that may contain sensitivity to different microphysical 

properties. 
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APPENDIX A 

IMPLEMENTATION OF T-MATRIX TO THE EDDINGTON RTM FOR 

STRATIFORM/CONVECTIVE SEPARATION 

 

A.1 Introduction 

A.1.1 Observed Polarization Signals in Stratiform Clouds 

Clouds and precipitation can be broadly categorized in two major types, namely 

convective and stratiform. It is well known that convective precipitation regions are 

associated with vigorous turbulent updrafts and downdrafts with high rain rates, while 

stratiform regions are associated with relatively weak updrafts and downdrafts and light 

to moderate rain rates (Zipser 1977; Leary and Houze 1979; Houze 1993). They both 

produce distinct heating profiles and convective rain heats up the entire troposphere while 

stratiform rain heats the upper layers but cools down the lower layers of the troposphere 

(Tao and Simpson 1989). The primary microphysical process responsible for convective 

rainfall is the collection of cloud water by rain particles, or riming in the strong updraft; 

while the primary microphysical process responsible for stratiform clouds and rainfall is 

vapor deposition on ice particles, or aggregation (Houghton 1968). The partition between 

the two is important to understand with regard to clouds and the associated microphysics 

and thermodynamics, and their impacts on tropical hydrological and energy cycles. 
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Furthermore, rain type information is important in the microwave rainfall retrieval 

algorithms (Kummerow et al. 1996; Kummerow et al. 2000). Therefore, 

convective/stratiform separation is of great significance and relevance.  

 The focus of the current work is on microwave observations. Several partition 

algorithms have been developed using passive microwave observations including Liu et 

al. (1995), Anagnostou and Kummerow (1997), Hong et al. (1999), Olson et al. (2001), 

and Varma and Liu (2010), among some of which the polarization information at 85 GHz 

has been utilized. Olson et al. (1999) also utilized the approximate inverse relationship 

between 85.5-GHz polarization difference and the convective fraction to constrain 

retrievals of precipitation and latent heating from SSM/I observations.  

 Spencer et al. (1989) and Heymsfield and Fulton (1994a,b) found that over land, 

SSM/I observations at 85 GHz differed between vertical and horizontal polarizations on 

the order of 5 K or greater in stratiform precipitation regions, while in regions of strong 

convection, 85 GHz is nearly unpolarized. Without physical verifications, they 

hypothesized that the polarization was caused by the precipitation-sized ice particles in 

the stratiform clouds, such as snow and aggregates, which tend to be oriented 

horizontally when falling through the relatively weak vertical motions. The orientation 

then results in preferential scattering in the horizontal polarization; whereas vigorous 

updrafts in convective regions could lead to the potential tumbling of ice hydrometeors 

whose preferred orientation would be lost, and, therefore, similar scattering signatures in 

both polarizations would be produced. Prabhakara et al. (2001) also explored the 

relationship between an 85-GHz polarization difference, hydrometeors, and rain rates.  
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A.1.2 Sensitivity of Polarization to Nonspherical Ice Particle Properties 

Microwave radiative transfer calculations have been performed over the oriented 

aspherical ice hydrometeors in the clouds to test the above hypothesis (Turk and 

Vivekanandan 1995; Petty and Turk 1996; Schols et al. 1997). Polarization differences of 

greater than 5 K in 85 GHz for these oriented particles have been found to support this 

hypothesis. Similar polarization differences are also obtained in Roberti and Kummerow 

(1999) using a Monte Carlo model and their results suggest that besides ice particle 

orientation, the relative amounts of asymmetric snow and more spherical graupel in 

different regimes could also be contributing to the observed differences.  

 Troitsky et al. (2003) investigated the polarization of thermal microwave 

atmospheric radiation due to scattering by ice particles in clouds during the Alliance 

Icing Research Project in Ottawa, Canada during the winter of 1999/2000. They found 

that the magnitude of the polarization difference depended on the ice water path and had 

no correlation with the liquid water path, while the microwave radiation intensity was 

determined by the liquid water path. They also found a relationship between the 

polarization differences at 37 and 85 GHz and the cloud microstructure including ice 

crystal shapes and characteristic sizes.    

 A number of theoretical studies (e.g., Czekala 1998; Evans and Vivekanandan 

1990; Evans and Stephens 1995; Turk and Vivekanandan 1995; Prigent et al. 2001) have 

discussed the polarization of microwave radiation by nonspherical particles and a detailed 

review can be found in Mishchenko et al. (2000). Their findings indicate that the 

emergent polarized brightness temperature will contain not only information on the total 
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ice water path, but also information on the microphysics including size, 

shape/asphericity, orientation, and density of the ice particles.  

 The current Eddington RTM uses scattering properties determined from Mie 

theory and thus assumes that all hydrometeor species are spherical. Therefore, to simulate 

the observed polarization signature from nonspherical ice particles at higher microwave 

frequencies, nonspherical particles must be assumed in the calculation of the scattering 

properties to account for the difference in the vertical and horizontal polarizations. 

Therefore, the T-matrix method has been implemented in this work. 

A.2 Implementation of the T-matrix Method in the Eddington RTM  

A.2.1 Eddington Approximation and Mie Scattering  

Two stream or Eddington approximations are used in many general circulation 

and climate models to parameterize the radiative transfer processes due to their efficient 

computation, which is critical to model simulations (Liou 2002). Eddington’s 

approximation uses a similar approach to that of the two-stream approximation and was 

originally used for studies of radiative equilibrium in stellar atmospheres (Eddington 

1916). In Eddington’s approximation, both the intensity I and phase function P are 

expanded in Legendre polynomial terms:  

  I(z,!,") = I
0
(z)+ I

1
(z)cos!+...                                                             (A.1) 

             P(cos!) =1+3gcos!+...                                                                     (A.2) 

where θ is the zenith angle, φ is the azimuth angle, and Θ is the scattering angle.   
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The approximation can reproduce Tbs quite well compared to discrete ordinate 

models with multiple streams (Kummerow 1993). Furthermore, Tb errors from the 

uncertainty of input parameters are much larger than the ones from the approximations of 

the radiative transfer code.  

 For particles with large size parameters whose phase functions have forward 

diffraction peaks, their peaks cannot be accurately reproduced using a sum of just the 

low-order terms in the expansion. A Dirac δ-function is introduced to represent the 

forward peak and the phase function P is expressed as: 

P(cos!) " AP
'
(cos!)+ 4B#(cos!$1)                                                 (A.3) 

where Θ is the scattering angle, P'
(cos!)  is the δ-scaled phase function, and coefficients 

A  and B determine how the total phase function is partitioned between the two items. 

Subsequently, the asymmetry factor g, optical depth τ, and single-scattering albedo 

! 

˜ "  are 

adjusted using the similarity principle to get: 

! 

g
'
=
g " B

1" B
                                        (A.4) 

! 

" '
= (1# B ˜ $ )"            (A.5) 

! 

˜ " ' = (
1# B

1# B ˜ " 
) ˜ "            (A.6) 

δ-Eddington approximation is adequate enough to handle the brightness temperature 

calculations for the satellite measured microwave frequencies applied in the current 

study. 

 Hydrometeors are generally assumed spherical so that Lorenz-Mie scattering can 

be applied and solutions can be attained from solving the Maxwell equations including 

the extinction efficiency  
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! 

Qe =
2

x
2

(2n +1)Re(an + bn )
n=1

"

#                     (A.7) 

and the scattering efficiency 

! 

Qs =
2

x
2

(2n +1)( an
2

+ bn
2
)

n=1

"

#                   (A.8) 

where x is the size parameter and an and bn are the Mie scattering coefficients that are 

expressed in spherical Bessel functions, which are functions of size parameter x and 

refractive index m.  

 However, the polarization difference described in Section A.1.2 cannot be 

captured under the Mie assumption and, therefore, scattering from nonspherical particles 

must be included. The T-matrix method was used in the Eddington framework 

(Kummerow and Weinman 1988; Wu and Weinman 1984) to explain the observed 

polarization differences without sacrificing computational efficiency. The most up-to-

date T-matrix algorithm is developed by Mishchenko 

(http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html) and its recent 

improvements have made this method applicable to size parameters exceeding 100. The 

algorithm and its implementation in the Eddington RTM framework is both described and 

documented below. 

A.2.2 T-Matrix Method  

Based on numerically solving Maxwell’s equations, the T-matrix method is a 

powerful exact technique for calculating light scattering by nonspherical particles. It was 

initially introduced by Waterman (1965, 1971) for computing electromagnetic scattering 

by single, homogeneous nonspherical particles based on the Huygens principle, which 

states that any point on a wave front of light may be regarded as the source of secondary 
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waves and that the surface that is tangent to the secondary waves can be used to 

determine the future position of the wave. The standard scheme to compute the T matrix 

for single homogeneous scatters in the particle reference frame is based on the Extended 

Boundary Condition Method (EBCM). It produces identical results to the Mie scheme in 

spherically symmetric cases. In many applications, it compares favorably with other 

techniques with respect to efficiency, accuracy, and size parameter range (Mishchenko 

2000).  

 In the case of the scattering of a plane electromagnetic wave by a single 

nonspherical particle in a fixed orientation with respect to the reference frame, the 

incident and the scattered fields (Einc and Esca) can be expanded in vector spherical wave 

functions RgMmn, RgNmn, Mmn, and Nmn as follows: 

  

! 

E
inc
(R) = [amnRgMmn (kR) + bmnRgNmn (kR)]

m="n

n

#
n=1

$

#             (A.9) 

  

! 

E
sca
(R) = [pmnMmn (kR) + qmnNmn (kR)]

m="n

n

#
n=1

$

# ,     

! 

R > r
0
      (A.10) 

where amn, bmn, pmn, and qmn are the expansion coefficients, k is the free-space 

wavenumber, and  r0  is the radius of a circumscribing sphere of the scattering particle. 

Because of the linearity of Maxwell’s equations and boundary conditions, the coefficients 

for the scattered field and for the incident field also has a linear relationship and can be 

expressed by a transition matrix (or T-matrix) T: 

  

! 

pmn = [T
mnm

'
n
'

11

m
'
="n '

n
'

#
n
'
=1

$

# a
m
'
n
' + T

mnm
'
n
'

12
b
m
'
n
' ]                                   (A.11) 

  qmn = [T
mnm'n'
21

m'=!n'

n'

"
n'=1

#

" a
m'n'
+T

mnm'n'
22

b
m'n'
] ,                                                  (A.12) 
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which can be compactly written as: 

p

q
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"
#
#

$

%
&
&
= T

a

b

!

"
#

$

%
&=

T
11

T
12
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"
#
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$
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b
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"
#

$

%
&
                (A.13)

 

This equation lays down the basis of the T-matrix method. Given amn and bmn calculated 

from the incident wave and the knowledge of the T matrix for the given scatter, the 

scattered field Esca(R) can be calculated using equations (A.10), (A.11), and (A.12). The 

T matrix can be computed using the above-mentioned EBCM, for further  details refer to 

Tsang et al. (1985) and Mishchenko and Travis (1998). A fundamental feature of the T-

matrix approach is that it depends only on the physical and geometrical characteristics of 

the scattering particle (shape, size, and refractive index) and is completely independent of 

the incident and scattered field (Mishchenko et al. 2000).  

A.2.3 Implementation of the T-Matrix Algorithm in the RTM 

The Mishchenko’s double-precision T-matrix code for nonspherical particles with 

a fixed orientation provides results only for a single particle. The following tables 

document the output and input parameters of the code. 

 

Table A.1 Output parameters of the T matrix code. 
Parameter  
S11,S12,S21,S22 Elements of the amplitude matrix 
Z11,Z12,Z13,Z14 
Z21,Z22,Z23,Z24 
Z31,Z32,Z33,Z34 
Z41,Z42,Z43,Z44 

Elements of the phase matrix 
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Table A.2 Input parameters of the T matrix code. 
Parameter  
AXI Equivalent-sphere radius 
RAT =1 – the size of the particles is specified in terms of the equal-volume- 

sphere radius. 

! 

"1 – the size of the particles is specified in terms of the surface-
equivalent-sphere radius 

LAM Wavelength of incident light 
MRR & MRI Real and imaginary parts of the refractive index 
NP & EPS Specify the shape of the particles: 

NP = -1: spheroids (EPS is the ratio of the horizontal to rotational                 
               axes. EPS>1 for oblate spheroids and EPS<1 for prolate  
               spheroids) 
NP = -2: cylinders (EPS is the ratio of the diameter to the length) 
NP >  0: Chebyshev particles with NP as the degree of the Chebyshev  
               polynomial (EPS is the deformation parameter) 
NP = -3: generalized Chebyshev particles (describing the shape of  
               distorted water drops.) 

DDELT Desired absolute accuracy of computing the expansion coefficients 
NDGS Parameter controlling the number of division points in computing 

integrals over the particle surface. 
ALPHA & BETA Euler angles (in degrees) specifying the orientation of the scattering 

particle relative to the laboratory reference frame. 
THET0 Zenith angle of the incident beam in degrees 
THET Zenith angle of the scattered beam in degrees 
PHI0 Azimuth angle of the incident beam in degrees 
PHI Azimuth angle of the scattered beam in degrees 
 

For a single scatterer, given size, wavelength, shape, refractive index, incidence 

angles, and orientation angles, the extinction cross section Ce, scattering cross section Cs, 

and asymmetry parameter g for the given polarization can be calculated from the 

following formulas: 

! 

Ce = "
1

k
1

2
E
0

inc
2
Re [amn (pmn )

*
+ bmn (qmn )

*
]

m="n

n

#
n=1

$

#           (A.14) 

! 

Cs = "
1

k
1

2
E
0

inc
2
Re [ pmn

2
+ qmn
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]

m="n

n
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n=1

$

#                           (A.15) 
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g = cos! =
1

4"
dr̂

4"
# P(r̂, n̂

inc
) r̂$ n̂inc =

1

Cs

dr̂
dCs

d%4"
# r̂$ n̂inc               (A.16) 

where,  

k1 is the wave number in the surrounding media, 

Θ is the angle between the incidence 

! 

ˆ n 
inc  and scattering directions 

! 

ˆ r , 

P is the phase function, and 

! 

" is the solid-angle field of view of the detector. 

The expansion coefficients a
mn

, b
mn

, p
mn

, andqmn are functions of the polarization. 

Refer to 5.18a, 5.18b, 2.169 in Mishchenko et al. (2002) for details. 

 Same as the integration over size in the Mie code, ensemble averaging over 

particle shapes, sizes, and orientations have to be performed for each hydrometeor 

species at each layer. The interface to the radiative transfer calculation requires the 

ensemble averaged volume extinction coefficient k
e

, single-scattering albedo 

! 

" , and 

asymmetry parameter 

! 

g  for the Eddington approximation.  

 Ce, Cs, and g are ensemble averaged over size r, and orientation angles α and β to 

get the volume coefficients. Taking the extinction coefficients ke as an example: 

! 

k
e

= C
e
(r,",#)sin#d# $ d" $ n(r)dr

#min

#max

%
"min

"max

%
rmin

rmax

% ,     (A.17) 

where n(r) is the particle size distribution. By using the appropriate normalized 

quadrature formulas, the calculation is carried out as: 

! 

ke = wr,in(ri) w" , j w# ,kCe (ri," j ,#k )sin#k

k=1

n#

$
j=1

n"

$
i=1

nr

$ ,      (A.18) 

where w is the corresponding weighting coefficient. k
s

 can be computed in the same 

manner using Cs. With 

! 

k
e

 and k
s

calculated,  
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! 

" = k
s
/ k

e
 .                 (A.19) 

To calculate 

! 

g , the orientation averaged scattering cross section C
orient

 and 

asymmetry parameter g
orient

 needs to be calculated first. 

g =
1

ks
!r,in(ri ) Cs,i orient

gi orient

i=1

nr

"  .                      (A.20) 

With k
e

, 

! 

" , and 

! 

g  available for each layer for both incident vertical and horizontal 

polarization, the Eddington RTM is then applied to simulate the brightness temperature at 

both polarizations to compute the differences.  Examples are shown in the following 

section. 

A.3 Examples 

The polarization signal is assumed to originate only from the snow particles, and, 

therefore, the T-matrix code replaces the Mie code for snow only. It is worthwhile to note 

that the definition of snow in the current case includes both snow and aggregates 

particles. The specification of the input parameters for the particular implementation is 

described below.   

1) Particle Size 

The particle size distribution for snow is assumed to be exponential: 

n(D)= n
0
e
-!D ,                          (A.21) 

where D is the diameter, n(D) is the particle number density per diameter increment, n0 is 

the distribution intercept, and λ is the slope of the distribution. n0 is prescribed as 108 m-4 

for snow.  Given snow water content at each level together with n0, λ is constrained.  
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 In the code, RAT = 1 to specify the radius to be equal-volume-sphere radius, and 

AXI ranges from 25 µm to 1 cm.  

2) Particle Shape 

Snow particles are assumed to be symmetric oblate spheroids with NP = -1 and 

EPS = 1.5 or 3. 

3) Refractive index 

Snow particles are assumed to be mixtures of ice and air. With snow density 

prescribed as 0.1 kg m-3, ice fraction can be calculated. The Maxwell–Garnett formula 

(Maxwell-Garnett 1904) is then used to calculate the effective permittivity of the mixture 

using the fraction. The MRR and MRI of the refractive index can then be obtained.  

4) Orientation 

The snow particles are assumed to be primarily horizontally oriented with an 

oscillation canting angle of 20°. Therefore, ALPHA ranges between 0° and 360°, and 

BETA ranges between 0° and 20°. 

5) Other parameters 

For the Eddington approximation, cos(THET0) = 0.5, cos(THET) = 0.5, PHI0 = 

0°, and PHI is ranged from 0° to 360° to obtain an azimuthal average. For the current 

calculations, DDELT = 0.001 and NDGS = 2, which are the recommended values for 

compact particles. In this work, Gauss-Legendre quadrature is applied for integration 

over angles (the coefficients are normalized), and trapezoid rule is used for integration 

over sizes in the current work.  

 In the implementation, subroutine MISH_TMATRIX( ) calculates the T matrix 

and saves it as a global variable. Subroutine MISH_SCAT_PROPS2 ( ) calculates Ce, Cs, 
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and g for a single !  and ! at both vertical and horizontal polarizations. The subroutine 

AVG_SCAT_PROPS2 ( ) calculates the orientation (ALPHA and BETA) ensemble 

averaged efficiencies k
e

, k
s

, and 

! 

g . Finally, TMATRIX_SNOW ( ) performs the 

size integration. The vertical and horizontal polarizations are calculated by separate calls 

to the RTM. A subsample of simulation results are shown below. 

A.3.1 Polarization Difference over One Profile 

Figure A.1 shows the selected profiles over land that will be tested. The snow 

layer is expected to produce a polarization signal. RTM is set to simulate Tbs for TMI  

 
Figure A.1 The selected raining scene to test the implementation. 
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with a viewing angle of 53.1°. Since scattering is significant only in higher microwave 

frequencies, Tb differences in 37 and in 85 GHz are compared. Table A.3 enumerates the 

comparison between using the Mie code and the T-matrix code. Note that the results do 

not consider the melting of particles in the RTE. 

 
Table A.3 Tbs for 37 and 85 GHz using Mie code and T-matrix code individually. 
Case  Tb (K) 37H 37V 85H 85V 
1 (snow only) Mie 274.06 274.06 271.50 271.50 
2 (snow only) T-matrix (sphere) 

EPS = 1. 000001 
274.06 274.06 271.50 271.50 

3 (snow only) T-matrix (nonspherical) 
EPS = 1.5 

274.09 274.06 272.24 271.53 

4 (snow only) T-matrix (nonspherical) 
EPS = 3 

274.18 274.10 273.97 272.41 

5 (snow only) T-matrix (nonspherical) 
EPS = 1.5 
Snow × 5 

267.63 267.11 238.24 233.30 

6 (all hydrometeors) Mie 256.10 256.10 237.45 237.45 
7 (all hydrometeors) T-matrix (nonspherical) 

EPS = 1.5 
256.13 256.10 238.00 237.49 

8 (all hydrometeors) T-matrix (nonspherical) 
EPS = 1.5 
Snow × (1/2) 

256.47 256.46 241.80 241.75 

 

A.3.2 Discussion 

Cases 1 through 5 only consider the existence of snow particles in Figure A.1 by 

removing all of the other hydrometeor species and, therefore, the extinction of the 

radiation originates from atmospheric gases and snow, while cases 6, 7, and 8 take into 

account all of the species. Here we focus on Tbs in 37 and 85 GHz because polarization 

signals are more noticeable in higher frequencies, and, therefore, the role of scattering is 

more important in the extinction process.  
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 In case 1, the Tbs are calculated under the Mie assumption that the snow particles 

are assumed to be spherical. Therefore, no polarization signal is produced from isotropic 

scattering. To validate the T-matrix implementation, in case 2, the Tbs are calculated 

using the T-matrix code by assuming spherical snow (the aspect ratio EPS is set to 

1.000001 instead of 1 to avoid potential rare case overflow problems). In cases 1 and 2, 

Tbs converge to meet the same results, confirming the correct implementation of the T-

matrix to the Eddington RTM.  

 In case 3, the nonspherical snow particles are assumed to be oblate spheroids with 

an aspect ratio of 1.5. As the oscillation angles of these particles are constrained within 

20°, the upwelling radiation is polarized by the horizontally oriented spheroids and a 

difference of 0.71 K is produced in 85 GHz Tb. However, the scattering difference is not 

significant enough in 37 GHz and only produces a 0.03 K difference. Increased 

nonsphericity and increased snow content both are expected to increase the polarization 

signal and they are tested individually. In case 4, the aspect ratio is increased to 3 so that 

each snow particle becomes a more effective polarizer. In this scenario, differences in 85 

GHz increase to 1.56 K and in 37 GHz increase slightly up to 0.08 K. In case 5, when the 

snow water content is increased five fold at each level, the polarization reaches 4.94 K at 

85 GHz and 0.52 K at 37 GHz. Therefore, both increasing the snow aspect ratio and 

increasing the snow content can increase the polarization signals, as expected. 

 When all of the hydrometeors are included in the calculation of case 7, Tbs drop 

substantially. Assuming a 1.5 aspect ratio for the snow, a 0.51 K polarization signal in 85 

GHz is produced compared to the 0.71 K in case 3. The 0.2 K decrease is caused by the 

decreased upwelling radiation below the snow layer. In case 8, when the snow content is 
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reduced to half of the original content at each level, the 85-GHz polarization signal is 

negligible.  

 Of the above tested cases, case 5 is more representative of a stratiform cloud with 

an abundance of snow, and case 8 is more representative of a convective cloud with a 

large amount of graupel and hail. The difference between these two cases strongly 

suggests the ability of this implemented code to cope with the stratiform/convective 

separation.     

 The quadrature integrations of ALPHA, BETA, THETA, and PHI are 

extraordinarily time consuming, which as a result prevents the immediate use of the code. 

Therefore, to utilize the T-matrix code efficiently in the future applications, look-up 

tables must be built offline to speed up the calculations. For each frequency, the 

extinction coefficient, single scattering albedo, and asymmetry parameter should be 

tabulated as a function of refractive index, parameters controlling the size distribution, 

shape parameter, and orientation with respect to the reference frame. This will be 

performed in future work. 
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LIST OF ABBREVIATIONS 

 

1D  One-dimensional 

4D  Four-dimensional 

AMSR-E Advanced Microwave Scanning Radiometer – Earth Observing System 

CRM  Cloud Resolving Model 

CSU  Colorado State University 

CWP  Cloud Water Path 

DMSP  Defense Meteorological Satellite Program 

DPR  Dual-frequency Precipitation Radar 

dTb  the Tb difference between 37v and 85v 

EBCM  Extended Boundary Condition Method 

ECMWF European Centre for Medium-Range Weather Forecasts 

FG  First Guess 

FWHM Full Width at Half Maximum 

GCM  Global Climate Model 

GMI  GPM Microwave Imager 

GPM  Global Precipitation Mission 

GPROF Goddard PROFiling algorithm 

IFS  Integrated Forecasting System 

IWC  Ice Water Content 
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IWP  Ice Water Path 

LWC  Liquid Water Content 

LWP  Liquid Water Path 

LT  Local Time 

MODIS Moderate Resolution Imaging Spectroradiometer 

PR  Precipitation Radar 

PSD  Particle Size distribution 

RAMS  Regional Atmospheric Modeling System 

RTE  Radiative Transfer Equation 

RTM  Radiative Transfer Model 

RTTOV-SCATT Radiative Transfer for the TIROS Operational Vertical Sounder 

SCATTering 

RWP  Rain Water Path 

SSM/I  Special Sensor Microwave/Imager 

SST  Sea Surface Temperature 

Tb  Brightness temperature 

Tb(37)  Tbs at 37 GHz 

Tb(85)  Tbs at 85 GHz 

TMI  TRMM Microwave Imager 

TOA  Top Of Atmosphere 

TPW  Total Precipitable Water 

TRMM-LBA Tropical Rainfall Measuring Mission – Large-scale Biosphere Atmosphere 

TWP  Total Water Path 
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USGS  U.S. Geological Survey 

UTC  Coordinated Universal Time 

VIRS  Visible and Infrared Scanner 

 

 


