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ABSTRACT OF DISSERTATION 

MODELING OF LASER-CREATED PLASMAS AND SOFT X-RAY LASERS 

 

 This dissertation describes the development of computer models to simulate laser 

created plasmas used to generate soft x-ray lasers.  These compact short wavelength 

lasers have substantial average powers and very high peak brightness, that make them of 

significant interest for many applications.  A better understanding of the plasmas is 

necessary to advance the development of these lasers into more compact, efficient, and 

higher power sources of coherent soft x-ray light.   

The plasma phenomena involved are complex, and require a detailed computer 

model of the coupled magneto-hydrodynamic and atomic physics processes to simulate 

their behavior.  The computer models developed as part of this work consist of 

hydrodynamic equations, coupled with an atomic model, radiation transport, and a ray 

propagation equation.  The models solve the equations in a 1.5D or 2D approximation, 

and predict the spatio-temporal plasma variation of the parameters, including the electron 

density and temperature, and the ion populations, which are then used to compute the 

population inversion and the resulting laser gain.  A 3D post processor ray trace code was 

developed to simulate the amplification of stimulated emission along the plasma column 

length including saturation effects.  This allows for the direct calculation of the soft x-ray 

laser output and its characteristics.   
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Simulation results were compared with experiments conducted at Colorado State 

University.  The general behavior of the plasma and the soft x-ray laser are well 

described by the model.  A specific comparison of the model results with experimental 

measurements is presented for the case of a collisionally excited 13.2 nm wavelength Ni-

like cadmium laser.  The model predicts that an optical laser pulse of 1 J energy and 8 ps 

duration impinging at 23 degrees grazing incidence into a pre-created laser plasma can 

rapidly heat it to temperatures above 600 eV at a density of 2 x 1020 electrons/cm3.  This 

results in a computed peak small signal gain coefficient of 150 cm-1 in the 4d 1S0 to 4p 

1P1 transition of Ni-like Cd at 13.2 nm.  The model indicates that the amplified beam 

reaches the gain-saturated regime after 2.5 mm of propagation in the plasma, in 

agreement with the experimental observation of saturated behavior for propagation 

lengths of 2.5-3.0 mm.  The computed soft x-ray laser pulse width of 5-9 ps moderately 

exceeds the experimental value of 5 ps and is the result of a stronger saturation 

broadening in the simulation.  The simulated laser output energy of the order of 1 µJ is 

also in agreement with experiments.  Simulations of injection-seeded Ne-like Ti and Ni-

like Ag amplifiers that show very good agreement with the experimental results are 

presented. A direct comparison of the pulsewidth and the near and far-field beam profiles 

is made.   

Finally, the results of a simulation of a plasma created by irradiation of solid 

targets with a 46.9 nm soft x-ray laser, in which single photon photoionization is the 

dominant energy absorption mechanism are presented. Low absorption (silicon, Z=14) 

and high absorption (chromium, Z=24) targets were heated by ~1 ns duration soft x-ray 

laser pulses.  The experimental spectra agree with 1 ½ D simulations in showing that the 
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Si plasmas are significantly colder and less ionized than the Cr plasma, confirming that in 

contrast to plasmas created by visible wavelength lasers the plasma properties are largely 

determined by the absorption coefficient of the target material.  

 

 

 

 Mark Allen Berrill 
 Electrical & Computer Engineering Department 
 Colorado State University 
 Fort Collins, CO 80523 
 Summer 2010 
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CHAPTER I)  INTRODUCTION 

 

 There is a great deal of interest in short wavelength lasers for applications.  One 

area of particular interest is soft x-ray lasers with wavelengths down to 10 nm.  These very 

short wavelength lasers take place in plasmas, where a better understanding of the plasma 

behavior is needed.  These plasmas are extremely complicated, operating across large 

variations of density and temperature, making it difficult to determine the behavior of a 

plasma as it evolves.  To overcome these problems, magneto-hydrodynamic (MHD) codes, 

coupled with an advanced atomic model have been developed.  MHD codes treat the 

plasma as a fluid and follow its evolution.  When coupled to an atomic model, all of the 

plasma properties can be modeled numerically allowing simulations to predict the behavior 

of the plasma at a detailed level.  The computed population densities on the species of 

interest can be used to calculate the laser gain and laser beam characteristics.   

 

 

I.A)  MHD codes: 

 Hydrodynamic simulations are used extensively to solve fluid problems.  These 

problems may include water in a stream, ocean currents, etc.  In addition they are used 

extensively for fluid-like problems such as air flow around an object, atmospheric 

simulations, stellar flows, and many more.  All hydro codes start with the treatment of the 

material as a fluid and solve a system of fluid equations for the movement of the “fluid” 
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subjected to various forces and boundary conditions.  The three fundamental fluid 

equations are the continuity equation, the conservation of momentum, and the conservation 

of energy.  These equations create a complete set of coupled differential equations capable 

of describing the fluid.  In addition to the fluid equation, additional properties are needed to 

describe the fluid, such as the thermal conductivity, the viscosity, etc.  These properties 

enter into the fluid equations and can affect its evolution.   

 In the special case of a plasma, the “fluid” consists of charged particles.  As a result 

it will behave differently under applied electric and magnetic fields.  As a result Maxwell’s 

equations are necessary to describe the interactions with electric and magnetic fields.  

These codes are commonly referred to as Magneto-Hydrodynamic (MHD) codes.  They 

have been used extensively since Hannes Olof Gösta Alfvén received the Nobel Prize in 

1970 for “fundamental work and discoveries in magneto-hydrodynamics with fruitful 

applications in different parts of plasma physics”.1 

 While MHD codes are extensively used in plasma physics, there are few tools 

available for direct use.  The code complexity and geometry can significantly affect their 

application.  Very simple 0D codes can give very basic estimations for a simple geometry, 

while 3D codes are extremely complex requiring vast computation resources to run.  

Intermediate 1D, 1.5D, and 2D codes depend on simplifications that are based on the 

geometry and experimental conditions.  Additionally the plasma properties can change 

rapidly over different conditions.  This makes it very difficult to develop a code that would 

be valid over a large range of possible conditions.  Finally, plasma properties are not fully 

developed for all conditions and are still under investigation.  For all these reasons plasma 

                                                 
1 http://nobelprize.org/physics/laureates/1970/ 



 3

physics codes are usually developed to suit the application.  There are already a number of 

MHD codes developed to handle problems of interest here.  Some of the more sophisticated 

codes are Lasnex2, Ehybrid3, HYDRA4,5, Radex6, and CHIVAS7. 

 This dissertation discusses codes developed for simulating the plasma conditions 

present in the soft x-ray laser experiments conducted here at Colorado State University.  

The first model developed uses a 1D planar geometry in which some lateral effects are 

taken into account using simple approximations.  This type of geometry is commonly 

referred to as 1.5D.  The second code is a full 2D code.  The electrons and ions often have 

different temperatures and need to be treated independently.  The simulated “fluid” is a 

plasma, however Maxwell’s equations are not directly solved as there are no applied 

electric and magnetic fields.  An additional approximation is that there are no self 

generated fields.  This assumption is valid if there is no net current flow within the plasma 

and charge neutrality exists.  Charge neutrality states that on average the net charge of a 

volume element is zero.  If this were not true, internal electric fields would set up inside the 

plasma to redistribute the charge.  An important consequence of charge neutrality is the 

coupling of the momentum equations.  Charge neutrality ensures that the electrons and ions 

move together and only the net forces acting on the volume element need to be considered.  
                                                 
2 G. B. Zimmerman et al., Comments Plasma Phys. Controlled Fusion, Vol. 2, p. 51, 1975. 
3 G. J. Pert, “The hybrid model and its application for studying free expansion”, J. Fluid Mech., Vol. 131, p. 

401, 1983.   
4 M. M. Marinak, S. W. Haan, T. R. Dittrich, R. E. Tipton, and G. B. Zimmerman, Phys. Plasmas 5, 1125 

�1998. 
5 M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. 

� �Haan, Phys. Plasmas 8, 2275 2001 . 
6 V. N. Shlyaptsev, A. V. Gerusov, A. V. Vinogradov, J. J. Rocca, O. D. Cortazar, F. Tomasel, and B. 

Szapiro, in Ultrashort Wavelength Lasers II, edited by S. Suckewer, SPIE Proc. Vol. 2012, pp. 99–110, 
1993. 

7 S. Jacquemot, A. Decoster, “Z scaling of collisional Ne-like X-ray lasers using exploding foils: refraction 
effects”, Laser and Particle Beams, Vol. 9, No. 2, pp. 517-526, 1991. 
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As a result the models discussed are two-temperature, single fluid magneto-hydrodynamic / 

atomic models.   

 

 

I.B)  Soft x-ray lasers: 

 Since the demonstration of the first lasers in 19608,9 there has been an interest in 

soft x-ray lasers for their applications in high resolution metrology, biological imaging, 

studies of atomic physics, photophysics, photochemistry, and diagnostics of high density 

plasmas.  Most soft x-ray lasers, including those at Colorado State University, are based on 

a collisional electron excitation mechanism inspired in part by earlier work in visible and 

ultraviolet lasers10,11.  Specifically these systems use electron impact excitation to excite the 

laser upper level in a charged ion.  This differs from a recombination laser where the laser 

upper level is populated through a recombination process from an upper ion as first 

suggested by Gudzenko and Shelepin12, or a photoionization scheme as proposed by 

Duguay and Rentzepis13.  The first demonstration of substantial amplification at soft x-ray 

wavelengths occurred in 1985 when Matthews14,15 and Suckewer16,17 observed gain in 

                                                 
8 T. H. Maiman, Nature, Vol. 187, p. 493, 1960. 

9 A. Javan, W. R. Bennett, Jr., D. R. Herriot, Physical Review, Vol. 6, p. 106, 1961. 

10 W. B. Bridges, “Ionized gas lasers”, Handbook of Laser Science and Technol. Sec. 2, Vol. II, edited by 
M.J. Weber, 1982. 

11 M. A. Dunn, J. N. Ross, Prog. Quantum Electron, Vol. 4, p. 233, 1976. 

12 G. A. Gudzenko, L. A. Shelepin, Soviet Physics Journal, Vol. 18, 9. 998, 1964. 

13 M. A. Duguay, P. M. Rentzepis, Appl. Phys. Lett., Vol. 10, p. 350, 1967.   

14 D. L. Matthews et al., Phys. Rev. Lett., Vol. 54, p. 110, 1985. 



 5

plasmas using collisional electron impact excitation and collisional electron-ion 

recombination respectively.   

 Early collisional lasers focused on the Ne-like series due to its stable electron 

configuration and well suited energy level structure.  By ionizing atoms to the Ne-like state 

there were 10 electrons which completely filled the 1s, 2s, and 2p orbitals.  Ne-like ions 

also have the ability to produce a steady state population inversion between the 2p53p1 1S0 

and 2p53s1 1P1 levels.  Subsequent experiments focused on the Ni-like series which is better 

suited to short wavelengths.  This difference is due to a different atomic structure that 

involves a larger energy gap for the same degree of ionization and a high quantum 

efficiency.  Lasing using the Ni-like series was demonstrated in 1987 by MacGowan18.  

Since that time a number of different collisional systems have been demonstrated using 

both the neon and nickel like ions, with the shortest wavelengths from the Ni-like series.  A 

major advance in the laser created plasmas came with the use of a two pulse sequence19.  

By using two pulses the plasma conditions could be better controlled.  The first pulse 

ablates the target and creates a large plasma volume.  As the plasma expands the density 

gradients are reduced, minimizing the effects of refraction.  However, the plasma will also 

undergo substantial cooling during the expansion reducing the temperature and the degree 
                                                                                                                                                    
15 M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, 

R. E. Turner, R. W. Lee, Phys. Rev. Lett., Vol. 57, p. 1004, 1986. 

16 S. Suckewer, C. H. Skinner, H. Milchberg, C. Keane, D. Voorhees, Phys. Rev. Lett., Vol. 55, p. 1753, 
1985. 

17 S. Suckewer, C. H. Skinner, D. Kim, E. Valeo, D. Voorhees, A. Wouters, Phys. Rev. Lett., Vol. 57, p. 
1004, 1986. 

18 B. J. MacGowan, S. Maxon, P. L. Hagelstein, C. J. Keane, R. A. London, D. L. Matthews, M. D. Rosen, J. 
H. Scofield, D. A. Whelan, “Demonstration of Soft-X-Ray Amplification in Nickel-like Ions”, Physical 
Review Letters, Vol. 59, No. 19, pp. 2157-2160, 1987. 

19 Joseph Nilsen, Brian J. MacGowan, Luiz B. Da Silva, Juan C. Moreno, “Prepulse technique for producing 
low-Z Ne-like x-ray lasers”, Physical Review A, Vol. 48, No. 6, pp. 4682-4685, 1993. 
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of ionization.  As a result, a second pulse heats and ionizes the plasma creating the correct 

degree of ionization and the temperatures necessary to create a population inversion.  By 

using this approach the energy required to produce a laser decreased dramatically.  

Additionally, the two-pulse scheme reduces refraction of the x-ray laser pulse, allowing it 

to travel long distances through the gain media.   

 The next major advance came with the use of short pump pulses20,21.  By using a 

short pump pulse ~10 ps, the intensity required to achieve the temperatures needed to lase 

can be reached at much lower pulse energies.  This allowed for significantly higher 

transient gain coefficients allowing the x-ray lasers to reach saturation with only 5-10 J of 

pump laser energy22.  Note that because the gain is now transient the short lifetime created 

a new problem in the traveling wave mismatch.  This occurs because the pump pulse 

illuminates the entire target simultaneously, while the x-ray laser requires time to traverse 

the plasma.  For a 1 cm plasma the velocity mismatch is 33 ps.  For a pulse duration of only 

a few tens of ps, the gain will end before the x-ray pulse can finish its amplification.  To 

overcome this problem a traveling wave geometry must be used.  This can be accomplished 

by delaying part of the beam with a stepped mirror23, shifting the pulse front with 

                                                 
20 P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, Will, W. Sandner, “Short Pulse X-Ray 

Laser at 32.6 nm Based on Transient Gain in Ne-like Titanium”, Physical Review Letters, Vol. 78, No. 
14, pp. 2748-2751, 1997.  

21 J. Dunn, A. L. Osterheld, W. E. White, V. N. Shlyaptsev, R. E. Stewart, “Demonstration of X-Ray 
Amplification in Transient Gain Nickel-like Palladium Scheme”, Physical Review Letters, Vol. 80, No. 
13, pp. 2825-2828, 1998. 

22 J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, V. N. Shlyaptsev, “Gain Saturation Regime for 
Laser-Driven Tabletop, Transient Ni-Like Ion X-Ray Lasers”, Physical Review Letters, Vol. 84, No. 21, 
pp. 4834-4837, 2000. 

23 José R. Crespo López-Urrutia, Ernst E. Fill, “Traveling-wave excitation of an X-ray laser medium”, SPIE 
Vol. 2012 Ultrashort Wavelength Lasers II, pp. 258-264, 1993. 
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diffraction gratings24,25, or the use of a longitudinal pumping scheme26,27.  These methods 

can minimize the difference between the pump pulse and the x-ray laser pulse, allowing for 

the continued amplification in very short duration gain media.   

 A final important advance is the use of the Grazing Incidence Pump (GRIP) 

scheme28,29.  In this setup a pre-pulse is focused on the target at normal incidence creating 

the plasma, then a pump pulse is sent in at grazing incidence angle, as shown in figure 1.1, 

                                                 
24 H. J. Polland, T. Elasesser, A. Sellmeier, W. Kaiser, M. Kussler, N. J. Marx, B. Sens, K. H. Drexhage, 

“Picosecond dye laser emission in the infrared between 1.4 and 1.8 μm”, Applied Physics B, Vol. 32, pp. 
53-57, 1983. 

25 Zs. Bor, S. Szatmári, A. Müller, “Picosecond pulse shortening by traveling wave amplified spontaneous 
emission”, Applied Physics B, Vol. 32, pp. 101-104, 1983.   

26 N. H. Burnett, G. D. Enright, “Population inversion in the recombination of optically-ionized plasmas”, 
IEEE Journal of Quantum Electronics, Vol. 26, No. 10, pp. 1797-1808, 1990. 

27 D. C. Eder, P. Amendt, S. C. Wilks, “Optical-field-ionized plasma X-ray lasers”, Physical Review A, Vol. 
49, No. 9, pp. 6761-6776, 1992. 

28 V. N. Shlyaptsev, J. Dunn, S. Moon, R. Smith, R. Keenan, J. Nilsen, K. B. Fournier, J. Kuba, A. L. 
Osterheld, J. J. Rocca, B. Luther, Y. Wang, and M. Marconi, “Numerical studies of transient and 
capillary x-ray lasers and their applications”, in Soft X-Ray Lasers and Applications V, E. E. Fill, S. 
Suckewer, eds., Proc. of SPIE, Vol. 5197, pp. 221-228, 2003. 

29 R. Keenan, J. Dunn, V. N. Shlyaptsev, R. Smith, P. K. Patel, D. F. Price, “Efficient pumping schemes for 
high average brightness collisional x-ray lasers”, in Soft X-Ray Lasers and Applications V, E. E. Fill, S. 
Suckewer, eds., Proc. of SPIE, Vol. 5197, pp. 213-220, 2003. 

Figure 1.1:  Slab target is illuminated by a 120 ps pre-pulse followed by a 8 ps pump pulse.  
Both pulses are line focused.  The soft x-ray laser pulse is emitted along the line. 

8 ps 120 ps 

Pump Pulse 

Pre-Pulse 
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heating the plasma to the required temperature.  The use of grazing incidence pumping can 

significantly decrease the pumping energy by more efficiently depositing the energy into 

the optimum density. As the pump pulse travels through the plasma it is refracted by the 

plasma gradient, allowing it to travel a long distance through the density where total 

internal reflection occurs.  The index of refraction of a plasma is given by ce nnn /1−=  

where ne is the electron density (#/cm3), and nc is the critical density  2211011.1 λ⋅=cn  (λ  

in μm, nc in #/cm3).  Using Snell’s law, the density at which total internal reflection will 

occur is θ2since nn = , where θ is the grazing incidence angle.  At this density a large 

fraction of the laser energy will be coupled into the plasma.  By adjusting the incident 

angle, the energy can be coupled to the region with the density for optimum gain.  Note that 

this geometry is also inherently traveling wave.  Its setup is similar to the longitudinal 

pumping scheme, except for the grazing angle.  This difference will create a small temporal 

mismatch between the gains at the two ends of the plasma.  This mismatch can be 

expressed by ( ) cLt /cos1 θ−=Δ .   
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For experiments conducted at CSU30,31,32,33,34, the pump laser consisted of a 5 Hz, 

800 nm Ti:sapphire laser with three amplification stages.  It produced a 350 mJ, 120 ps pre-

pulse and a 1J, 1-20 ps pump pulse.  These pulses were then focused onto a slab target to 

form a 4 mm x 30 μm line.  Figure 1.2 shows the target chamber with the geometry to 

focus the two laser pulses on the target.  This geometry was used to produce soft x-ray 

lasers with wavelengths ranging from 18.9 nm – 10.9 nm in Ni-like Molybdenum to 

Tellurium (Fig. 1.3).   

 

                                                 
30 B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, M. C. Marconi, J. J. Rocca, and V. N. 

Shlyaptsev, “Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum”, Optics 
Letters, Vol. 30, 2005, pp. 165-167. 

31 J. J. Rocca, Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, A. Weith, M. C. Marconi, and 
C. S. Menoni, V. N. Shlyaptsev, “Demonstration of saturated high repetition rate tabletop soft x-ray 
lasers at wavelengths down to 13.2 nm”, Proceedings of SPIE, Vol. 5919, Soft X-Ray Lasers and 
Applications VI, Ernst E. Fill, Editor, 591901, 2005. 

32 J. J. Rocca, Y. Wang, M. A. Larotonda, B. M. Luther, M. Berrill, and D. Alessi, “Saturated 13.2 nm high-
repetition-rate laser in nickellike cadmium”, Optics Letters, Vol. 30, 2005, pp. 2581-2583.   

33 Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptesev, J. J. Rocca, 
“Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths 
down to 13.9 nm and gain down to 10.9 nm”, Physical Review A, Vol. 72, 053807, 2005. 

34 B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, J. J. Rocca, J. Dunn, R. Keenan, V.N. 
Shlyaptsev, “High repetition rate collisional soft x-ray lasers based on grazing incidence pumping”, 
IEEE Journal of Quantum Electronics, in press. 

Figure 1.2:  Target chamber design used to focus the two 
beams onto the target, Luther, et. al, Ref [28]. 

pump pulse 

pre-pulse 
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As an example, Figure 1.3 shows sample spectra for each of the laser lines obtained 

from the first diffracted order off a variable spaced grating shown in figure 1.2.  The 18.9 

nm Mo (not shown) – 11.9 nm Sn are all saturated, the 11.4 nm Sb laser dominates the 

spectra, while the 10.9 nm laser clearly indicates gain but does not dominate the spectra.  

Figure 1.4 shows the output laser intensity with varying plasma length for Ni-like silver.  

The small signal gain and gain-length product were obtained by fitting the formula from 

Tallents35 that accounts for a line integrated, saturated ASE laser.  The small signal gain 

coefficient was 67.5 cm-1 and the gain-length product was 16.8. 

 

                                                 
35 G. J. Tallents, Y. Abou-Ali, M. Edwards, R. E. King, G. J. Pert, S. J. Pestehe, F. Strati, R. Keenan, C. L. S. 

Lewis, S. Topping, O. Guilbaud, A. Klisnick, D. Ros, R. Clarke, D. Neely, and M. Notley, “Saturated 
and Short Pulse Duration X-Ray Lasers”, X-Ray Lasers 2002: 8th International Conference on X-ray 
Lasers, J. J. Rocca, J. Dunn, and S. Suckewer, eds., AIP Conference Proceedings Vol. C641 (AIP, 2002), 
pp. 291-298. 
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Figure 1.3:  Sample of on-axis spectra obtained for each Ni-like element.  
Yong, et. al., Ref [33].   
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Figure 1.5a shows the intensity vs. grazing incidence angle θ for the Ni-like silver laser.  

Each angle measurement was taken at the optimum delay for that angle.  Figure 1.5b shows 

the intensity vs. delay between the pre-pulse and pump pulsed taken at 20 degrees.  The 

optimum pumping conditions were 20 degrees with a delay of 300 ps.  At a repetition rate 

of 5 Hz the average power of the laser is greater than 2 μW.   

 

 

 

Figure 1.4: Intensity vs. length for Ni-like silver at 20 degrees, 300 ps 
delay.   The small signal gain coefficient is 68 cm-1 with a total gain-
length product of 16.8. Yong, et. al., Ref [33]. 
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 One of the major problems with the ASE lasers is that they have limited spatitial 

coherence (Fig. 1.6), and there is little control of the beam profiles.  One possible 

improvement is by seeding the soft x-ray laser amplifier36,37,38,39. By seeding the amplifier 

with an initial pulse, the coherence of the initial seed can be preserved (Fig. 1.6).   

                                                 
36 Ph. Zeitoun, et. al., “A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high 

harmonic beam”, Nature, 431, p. 426 (2004). 
37 Y. Wang, E. Granados, M.A. Larotonda, M. Berrill, B. M. Luther, D. Patel, C. S. Menoni, J. J. Rocca, 

“High-Brightness Injection-Seeded Soft-X-Ray-Laser Amplifier Using a Solid Target”, Physical Review 
Letters, 97, 123901 (2006). 

Figure 1.5: a) Intensity vs. angle for silver,  b) Intensity vs. 
delay.  Yong, et. al., Ref [33]. 

a) 

b) 
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The experimental setup for seeding a soft x-ray laser is illustrated in figure 1.7.  The 

plasma amplifier is created by the same prepulse and short pulse as previously described.  

A small portion of the Ti:sapphire laser is split and focused into a Ne gas cell to generate 

high harmonic pulses (HHG).  These are then focused using a toroidal mirror into the 

                                                                                                                                                    
38 Y. Wang, E. Granados, F. Pedaci, D. Alessi, B. M. Luther, M. Berrill, J. J. Rocca, “Phase-coherent, injection-

seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm” Nature Photonics 2, pp. 94-98 (2008) 
39 F. Pedaci, Y. Wang, M. Berrill, B. Luther, E. Granados, J. J. Rocca, “Highly coherent injection-seeded 13.2 

nm tabletop soft x-ray laser”, Optics Letters, 33, 491 (2008). 

Seeded beam diam. 80-90 µm 

Unseeded beam diam.~1 mm  

Figure 1.6: Plots of the fringe visibility for different slit widths (a-d) and 
the degree of coherence for a seeded and unseeded soft x-ray laser 
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plasma amplifier.  The center bandwidth of the Ti:sapphire laser can be tuned so that the 

high harmonic pulse is aligned with the wavelength of the amplifier.   

 

 

 

 In addition to improving the spatial coherence, the divergence of the amplified 

pulse can also be improved.  Figure 1.8 shows the far-field beam patterns for a seeded and 

unseeded soft x-ray laser.  By seeding the laser, a ~10x reduction in the divergence is 

observed.  Section VII.D includes simulation and experimental results of the near and far-

field beam profiles for the seeded and unseeded soft x-ray lasers.  Finally, the duration of 

the seeded laser is significantly reduced to ~ 1 ps40.  

 

                                                 
40 Y. Wang, M. Berrill, F. Pedaci, M. M. Shakya, S. Gilbertson, Z. Chang, E. Granados, B. M. Luther, M. A. 
Larotonda, J. J. Rocca, “Measurement of 1-ps soft-x-ray laser pulses from an injection-seeded plasma 
amplifier”, Physical Review A, 79, 023810 (2009) 

Figure 1.7: Experimental setup for the seeded soft x-ray lasers 



 16

 

 

Figure 1.8: Far-field beam pattern for an unseeded (a) and seeded (b) soft x-ray laser 
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CHAPTER II.)  MAGNETO-HYDRODYNAMIC (MHD) EQUATIONS: 

The time evolution of the plasma dynamics can be described by a charged fluid.  

This allows for the use of a set of Magneto-Hydrodynamic (MHD) equations.  The 

equations are similar to the standard hydrodynamic equations except that they include the 

charged particle nature of the plasma.  One of the major differences between a MHD model 

of the type described here and a single fluid, single temperature hydrodynamic model is the 

need to take into account the different temperatures of the electrons and ions.  The plasma 

consists of both free electrons and ions, but because there are different physical processes 

involved the electrons and ions need to be treated separately in many cases.  The models 

described are a single fluid, 2-temperature code with temperatures for both the electrons 

and ions.   

 The plasma can be characterized by several parameters.  The key parameters are the 

electron and ion temperatures Te and Ti, the electron and ion densities Ne and Ni, the 

distribution among the possible ionization states, and the mean degree of ionization Zm 

(average number of free electrons per ion).  In addition there are typical characterizations 

of a fluid such as the velocity vr  and the mass density ρ.  To determine these parameters a 

complete set of equations are used: the continuity equation, the conservation of momentum, 

and the conservation of energy41.  In addition, the equation of state (EOS) and 

thermodynamic properties are needed, as well as an atomic model.  A full atomic code is 

used to calculate the ion populations and the resulting electron density (see chapter V).  

                                                 
41 Victor L. Streeter, Handbook of Fluid Dynamics, McGraw-Hill Book Company, New York, 1961. 
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The absorption of the laser pulse can then be calculated (see chapter VI).  With the 

knowledge of the energy losses and gains, the conservation of energy equation, 

conservation of momentum, and the continuity equation can be solved.   

 

 

II.A)  Lagrangian scheme, convective derivative: 

To write the equations, we use either a Lagrangian or Eulerian formulation.  In the 

case of a Eulerian formulation we write all of the derivatives with respect to a fixed point in 

space.  By contrast, the idea behind a Lagrangian method is to replace the derivatives with 

respect to space with a derivative with respect to a fixed variable.  As a result, instead of 

creating a spatial grid to evaluate the plasma properties, the grid can be with respect to any 

variable, in this work we use mass.  We then create a fixed grid in mass, not in space.  As 

the plasma evolves, the grid will follow the same amount of mass regardless of its spatial 

location.  This presents a clear advantage in the case of an expanding plasma, where the 

spatial extent can be large and where the locations of interest may be small and move.  For 

a similar level of detail, a smaller mass based grid may be used in place of a large or 

complex spatial grid.  This can drastically reduce the required number of calculations.  

Note that because the Lagrangian scheme uses a fixed frame, all temporal derivatives must 

be written with total derivatives instead of partial derivatives.  If we consider G(x,t) to be a 

property of a fluid, the change of G with respect to time in a moving frame with the fluid is 

the sum of the change of G at a fixed point in space and the change of G as the observer 

moves with the fluid 

x
Gv

t
G

dt
dx

x
G

t
G

dt
txdG

x ∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
),(     (Eq. 2.1) 
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If we generalize to three dimensions we obtain the convective derivative 

∇⋅+
∂
∂

= v
tdt

d r        (Eq. 2.2) 

To complete the conversion to our Lagrangian scheme, we need to relate the spatial 

derivatives to derivatives with respect to mass.  If we consider the width of a zone zΔ  and 

the mass density ρ, the mass per unit area within the zone MΔ  is zM Δ=Δ ρ .  In 1D, the 

derivatives are then related by 

Mz ∂
∂

=
∂
∂ ρ   (1D)      (Eq. 2.3) 

We can approximate 2D effects by dividing by a factor 
R

W
2

 to account for the expansion in 

the transverse direction (see section III.A.4), where R is the half width of the expansion and 

W is the full width of the laser beam.  Then, the relationship between the derivative in 

space and the derivative in mass is 

MW
R

z ∂
∂

=
∂
∂ 2ρ  (1.5D)       (Eq. 2.4) 

With these equations we will be able to covert the fluid equations to our Lagrangian 

scheme.   

 

 

II.B)  Continuity Equation: 

The Continuity Equation describes the rate at which the mass density of a species s ( sρ ) 

changes.  It is related to the expansion and the creation rate of the number density of 

species s ( sn& ), the velocity of species s ( svr ), and the mass of species s ( sm ).   
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We start with the change in the mass contained within a material volume42 

∫∫ =
V

ss
V

s dVnmdV
Dt
D

&ρ       (Eq. 2.5) 

Apply Reynolds theorem 

( ) ∫∫ =⎥⎦
⎤

⎢⎣
⎡ ⋅∇+

V
ss

V
ss

s dVnmdVv
dt

d
&

rρρ      (Eq. 2.6) 

Since the control volume is arbitrary, we can let the volume tend toward zero 

( ) ssss
s nmv

dt
d

&
r

=⋅∇+ ρρ       (Eq. 2.7) 

If there are no sources (no particles being created) we arrive at the familiar equation 

( ) 0=⋅∇+ ss
s v

dt
d rρ
ρ

       (Eq. 2.8) 

While traditionally one would expect this to always hold true, it does not hold true for the 

electrons.  As the plasma changes conditions, the atoms and ions will ionize and 

recombine, resulting in free electrons being created and destroyed.  However, the total 

number of atoms and ions must remain constant, resulting in a global conservation of the 

mass.   

( ) 0=⋅∇+ v
dt
d rρρ        (Eq. 2.9) 

Note that for the global continuity equation to hold all the species must have the same 

velocity.  This is referred to as a single fluid model.   

 

We can use the convective derivative (Eq. 2.2) to rewrite the equation in spatial coordinates 

                                                 
42 Dimitri Mihalas and Barbra Weibel-Mihalas, Foundations of Radiation Hydrodynamics, Dover 
Publications, INC, 1999.  pp. 60-61 
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( ) 0=⋅∇+
∂
∂ v

t
rρρ        (Eq. 2.10) 

Integrating over a volume element, we obtain 

0ˆ3 =⋅+
∂
∂

∫∫
SV

danvxd
t

rρρ       (Eq. 2.11) 

Using the cell average value of ρ over the differential volume V we get the final result 

∫ ⋅−=
∂
∂

S

V danv
Vt

ˆ1 rρρ        (Eq. 2.12) 

 

 

II.C)  Conservation of Momentum: 

Again, starting with a material volume, Newton’s 2nd Law states that the time rate of 

change of the momentum associated with material element equals the force43 

∫∫∫ +=
SV

s
V

ss dStdVfdVv
dt
d rrrρ       (Eq. 2.13) 

i
ijj nTt =      t is the surface force 

Assuming single fluid model 

∫∫∫ +=
SVV

dStdVfdVv
dt
d rrrρ       (Eq. 2.14) 

Using global conservation of mass 

∫∫∫ +=
S

i

V

i

V

i

dStdVfdV
dt
dvρ       (Eq. 2.15) 

Using the divergence theorem 

                                                 
43 Mihalas, pp. 70-71 
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( )∫∫∫∫ +=+=
V

ji
j

i

S
j

ji

V

i

V

i

dVTfdSnTdVfdV
dt
dv

,ρ    (Eq. 2.16) 

Again, the volume is arbitrary 

Tf
dt
vd trr

⋅∇+=ρ        (Eq. 2.17) 

Note: Tij is the stress tensor44 

ijijijij QpT ++−= σδ         (Eq. 2.18) 

where ijσ  is the viscous stress tensor and Qij is the artificial viscosity tensor 

The viscous stress tensor is defined as: 

( ) ijkkijjiij vvv δλμσ ∂+∂+∂=      (Eq. 2.19) 

µ is the coefficient of shear viscosity (or the coefficient of dynamical viscosity) and λ 

is the dilation coefficient of viscosity (or the second coefficient of viscosity). 

 If the media is isotropic (violated if there is a magnetic field)45: 

( ) ijijijjiij vvvv δςδμσ rr
⋅∇+⋅∇−∂+∂= 3

2     (Eq. 2.20) 

ς is the coefficient of bulk viscosity and is zero for a monatomic gas46. 

The artificial viscosity tensor is defined as:47 

( )ijijjiQij vvvQ δμ r
⋅∇−∂+∂= 3

2      (Eq. 2.21) 

( )
⎩
⎨
⎧ <⋅∇=⋅∇−

=
otherwise

vdtdlvl
Q 0

0/22 rr ρρ
μ     (Eq. 2.22) 

l  has units of length and is usually chosen to be some small multiple of the grid 

spacing 

                                                 
44 Mihalas, pp. 82-83 
45 Review of Plasma Physics, S.I. Braginskii, “Transport Processes in a Plasma”, pp 205-311.  
46 Schaum's Outiline on Fluid Dynamics, Second Edition, pp.54.  
47 Mihalas, p. 283 
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Note: This is the same form as the viscous stress tensor with ς = 0, so there is no 

need to repeat the analysis in the following equations, simply incorporate it into the 

viscous stress.  

If we have a monatomic gas and perform some simplifications (See APPENDIX D for the 

divergence of the stress tensor): 

extvis fp
dt
vd rt
r

+⋅∇+−∇= τρ       (Eq. 2.23) 

( )vvvis
rrt
⋅∇∇+∇=⋅∇ μμτ 3

12       (Eq. 2.24) 

 

Form 1 (Face-Centered Velocity): 

One natural form for the momentum equation is to calculate the face-centered velocities.  

This is compatible with many finite volume techniques since we need the velocity at cell 

faces to calculate the flux of the different variables.  Starting with equation 2.23, applying 

the convective derivative (Eq. 2.2) and simplifying we get 

( ) ( ) extvis fpvv
t
v rtrr
r

ρ
τ

ρ
11

+⋅∇+∇−+∇⋅−=
∂
∂    (Eq. 2.25) 

The ith component is 

( ) ( ) iextivisi
i fpvv
t
v

,
11
ρ

τ
ρ

+⋅∇+∇−+∇⋅−=
∂
∂ tr    (Eq. 2.26) 
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Form 2 (Cell-centered Momentum): 

While it is natural to write the face-centered velocity, this does not enforce conservation of 

momentum.  If we would like to guarantee conservation of momentum we need a cell-

centered momentum equation.  Starting with  

 
t

v
t
v

t
v

∂
∂

+
∂
∂

=
∂
∂ ρρρ r

rr
 

Using equations 2.25 and 2.10 and looking at the ith component of the momentum 

( ) ( ) iextivisi
i fpvv

t
v

,+⋅∇+∇−+⋅−∇=
∂
∂ τρρ tr     (Eq. 2.27) 

Integrating over a volume element 

( ) ( ) ( )∫∫∫∫ +⋅∇=⋅++
∂
∂

V
iext

V
ivis

S
i

V
i xdfxddanipvvxdv

t
333 ˆˆ

rtr τρρ  (Eq. 2.28) 

Using the cell average value of ρv over the differential volume V we get 

( ) ( )( ) ( ) ( ) ( )∫∫∫∫ +⋅∇+⋅−⋅−=
∂

∂

V
iext

V
ivis

SS
i

Vi xdf
V

xd
V

danip
V

danvv
Vt

v 33 11ˆˆ1ˆ1 rtr τρ
ρ

 

          (Eq. 2.29) 

Alternatively, using a flux-based viscosity and pressure: 

( ) ( )( ) ( ) ( )∫∫∫ +⋅+⋅−=
∂

∂

V
iext

S
ij

S
i

Vi xdf
V

danjT
V

danvv
Vt

v 31ˆˆ1ˆ1 rrρ
ρ

 (Eq. 2.30) 

Note: we are evaluating the momentum directly, not the velocity (see section III.B.4).  This 

has two advantages.  First, it ensures conservation of momentum across refinement levels.  

Second, the mass conservation equation uses the momentum, not the velocity.  The 

disadvantage is that it does not handle discontinuities in density well.  As mass travels 

between cells, the momentum may be conserved, but the velocity changes suddenly 

resulting in an unstable form.  Special care is needed if viscosity is used. 
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II.D)  Conservation of Energy: 

 The final hydrodynamic equation is conservation of energy.  As stated earlier, the 

electrons and ions can have different temperatures and must have independent equations 

governing the conservation of energy.  Proper treatment of energy conservation is vital for 

an accurate description of the plasma, as every property is strongly dependent on the 

temperature.  Also, the plasma temperature is usually not uniform, leading to pressure 

gradients and other effects.   

We can write the energy conservation equation for a material volume48 

∫∫∫∫∫ +⋅−⋅+⋅=
VSSV

ext
V

s dVqSdqdSvtdVvfdV
dt
d

&
rrrtrr

ε    (Eq. 2.31) 

where ε  is the gas dynamic energy (the sum of the internal and kinetic energy), extf
r

 are the 

external forces doing work, t
r

 are the surface forces arising from stresses, qr  is the rate of 

energy flow out of the volume surface, and q&  is a heat source/sink.   

Applying Reynolds theorem 

( ) ∫∫∫∫∫ +⋅−⋅+⋅=⎥⎦
⎤

⎢⎣
⎡ ⋅∇+

VSSV
ext

V
s

s dVqSdqdSvtdVvfdVv
dt

d
&

rrrtrrrεε  (Eq. 2.32) 

Using the divergence theorem 

( ) ( ) 0=⎥⎦
⎤

⎢⎣
⎡ +⋅∇+⋅⋅∇−⋅+⋅∇+∫

V
exts

s dVqqvtvfv
dt

d
&

rrtrrrεε   (Eq. 2.33) 

Since the volume is arbitrary 

( ) ( ) 0=+⋅∇+⋅⋅∇−⋅+⋅∇+ qqvtvfv
dt

d
exts

s &
rrtrrrεε    (Eq. 2.34) 

Note that (see APPENDIX D):  

                                                 
48 Mihalas, pp. 88-89 
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vvpvt rtrrt
⋅+−=⋅ σ  

( ) ( ) ( ) qqvvpv
dt

d
ss

s &
rrtrr
+⋅∇+⋅⋅∇=⋅∇+⋅∇+ σεε    (Eq. 2.35) 

For species s the gas dynamic energy becomes 

sss
s

s vv
p rr

⋅+
−

= ρ
γ

ε
2
1

1
      (Eq. 2.36) 

Note: γ  is the ratio of specific heats 

U
Vp

c
c

v

p

Δ
Δ

+== 1γ        (Eq. 2.37) 

Note: U is the internal energy of the plasma 

ssss vv
V
U rr

⋅+
Δ
Δ

= ρε
2
1        (Eq. 2.38) 

If we split the gas dynamic energy into the internal and kinetic energy 

( ) ( ) ( ) qqvvpvvv
V
Uvv

dt
d

V
U

dt
d

ssss
s

sss
s &

rrtrrrrrr
+⋅∇−⋅⋅∇=⋅∇+⋅∇⎟

⎠
⎞

⎜
⎝
⎛ ⋅+
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⎛ ⋅+⎟
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⎞

⎜
⎝
⎛
Δ
Δ σρρ

2
1

2
1

2
1  

         (Eq. 2.39) 

Using the conservation of mass and the conservation of momentum, noting that all species 

have the same velocity (single fluid model) and assuming there are no external forces: 

( ) ( ) qqvvvpv
V
U

V
U

dt
d

s
ss &

rtrrtrr
+⋅∇−⋅∇⋅−⋅⋅∇=⋅∇+⋅∇⎟

⎠
⎞

⎜
⎝
⎛
Δ
Δ

+⎟
⎠
⎞

⎜
⎝
⎛
Δ
Δ σσ  (Eq. 2.40) 

Let Φ be the dissipation function  (see APPENDIX D): 

( ) qqvpv
V
U

V
U

dt
d

s
ss &

rrr
+⋅∇−Φ=⋅∇+⋅∇⎟

⎠
⎞

⎜
⎝
⎛
Δ
Δ

+⎟
⎠
⎞

⎜
⎝
⎛
Δ
Δ    (Eq. 2.41) 
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Form 1 (Lagrangian Temperature Equation): 

For an ideal plasma or gas 

3
5=γ ,  sss Tnp = ,  ss

s

s Tn
V
U

2
3=

Δ
Δ      (Eq. 2.42) 

( ) ( ) qqvpvTn
dt

Tnd
sss

ss &
rrr
+⋅∇−Φ=⋅∇+⋅∇+

2
3

2
3    (Eq. 2.43) 

By applying the continuity equation: 

 ( ) sss
s nvn

dt
dn

&
r

=⋅∇+        (Eq. 2.44) 

 ( ) ( )( )ssss
s

s
ss nvnT

dt
dTn

dt
Tnd

&
r

+⋅∇−+=     (Eq. 2.45) 

We can apply the previous relationship to the conservation of energy resulting in 

qqnTvp
dt

dT
n sss

s
s &

r
&

r
+⋅∇−Φ=+⋅∇+

2
3

2
3     (Eq. 2.46) 

 

Form 2 (Cell-Centered Energy Equation): 

If we apply the convective derivative to equation 2.41 

qqvpv
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U

t s &
rrr
−⋅∇−Φ+⋅∇−=⎟

⎠
⎞

⎜
⎝
⎛
Δ
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Δ
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∂    (Eq. 2.47) 

Integrating over a volume element 

∫∫∫∫∫ −⋅−+⋅−⋅
Δ
Δ
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         (Eq. 2.48) 
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Note on the heat sources: 

In this model we need to include all atomic processes as well as absorption of the incident 

laser beam and electron-ion collisions.  The atomic losses are split into two terms, 

the stored potential energy and the radiated energy. 

The atomic stored energy is the energy required to obtain the current population 

distribution.  It includes the ionization energies and the energy needed to create the 

excited states weighted by their relative population densities.  It is included directly 

within the internal energy and must be subtracted to obtain the current temperature. 

The radiation is an energy loss term that is treated as an energy sink.  Once the radiation 

rate is obtained it is included in q& . 

The absorption is an energy source that is included in q& . 

The energy transferred from electrons to ions is 

( )ie
eq

e
ei TTnq −=

τ2
3

&        (Eq. 2.49) 

where τeq is the electron-ion equilibrium time and is discussed in chapter IV. 

The thermal flux is simply thermal conduction and is given by the standard conduction 

equation.  The thermal conductivity at cell faces between two cells is given by a flux 

average  (see Appendix D). 

ss Tq ∇−= κr         (Eq. 2.50) 
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II.E)  Magnetic equation and validity of single fluid: 

The use of the single fluid approximation stated previously is due to the electro-

magnetic and electrostatic forces in the plasma.  In general each species will be subject to 

different forces due to the different pressures of the species, the mass of the species, and 

the diffusion rates.  As an example, the electrons typically have a higher temperature and 

therefore a larger pressure.  Combined with their lighter mass, they tend to accelerate very 

quickly creating a charge imbalance between the electrons and ions.  This will lead to an 

electrostatic force between the electrons and ions that will quickly exceed the other force 

terms causing the electrons and ions to redistribute to create a quasi-neutral plasma that 

behaves as a single fluid.   

Despite the single fluid nature of the plasma, it still consists of charged particles and 

can therefore respond to electric and magnetic fields.  To determine the magnetic fields 

within a plasma we would need to solve Maxwell’s equations (ESU units).   

πρ4=⋅∇ D         (Eq. 2.51) 

t∂
∂

+=×∇
DJH π4        (Eq. 2.52) 

t∂
∂

−=×∇
BE         (Eq. 2.53) 

0=⋅∇ B         (Eq. 2.54) 

Using Ohm’s law: 

JBE πη4+×−= vr        (Eq. 2.55) 

( ) ( )JBB πη4×∇−××∇=
∂
∂ v

t
r       (Eq. 2.56) 
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Assuming a quasi-static case  

( ) ( )BBB
×∇×∇−××∇=

∂
∂ ηv

t
r       (Eq. 2.57) 

( ) BBB 2∇+××∇=
∂
∂ ηv

t
  Induction equation  (Eq. 2.58) 

Additionally, the Lorentz force will affect the momentum equation: 

BJ×=f
r

        (Eq. 2.59) 

 

For the remainder of this work, we will be assuming a laser created plasma with no 

external magnetic fields.  As a result there is no net current flow through the plasma and no 

resulting magnetic fields.  It is still possible for the plasma to generate magnetic fields 

internally through cross temperature and density gradients.  In the case of a 1D plasma this 

can not occur.  In addition, the plasmas studied as part of this work have relatively limited 

cross gradients ensuring that the self-generated magnetic fields are weak.  As a result, the 

current model does not need to explicitly solve the magnetic equation simplifying the 

model.  The resulting model that is described only solves the hydrodynamic equations with 

a two-temperature energy equation.   
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CHAPTER III.)  MAGNETO-HYDRODYNAMIC (MHD) MODELS: 

 In chapter II we discussed the hydrodynamic equations that are the foundation of 

any hydrodynamic model.  At this point it is useful to begin to describe the two 

hydrodynamic models created as part of this work.  The plasma parameters used are 

obtained from the conductivity model (see chapter IV) and the atomic properties are 

obtained from the atomic model (see chapter V).  The two models used are a 1.5D and a 2D 

plasma model, both of which solve the full set of hydrodynamic equations using a two-

temperature, single fluid approximation. 

 

 

III.A.)  1D Magneto-Hydrodynamic (MHD) Model 

 The first model created is a 1.5D hydrodynamic model.  This model solves the 

hydrodynamic equations in a 1D approximation using Lagrangian coordinates.  This 

provides a very efficient and relatively simple scheme.  Each equation is written in a 1D 

formulation utilizing the total derivative and solved independently of the other equations.  

By separating the equations we will be able to write efficient numerical forms (see section 

III.A.3).  Each equation can then be solved using an implicit solver, and looping over all of 

the equations using an explicit time integrator.  2D effects on the plasma expansion can be 

approximated through the use of a self-similar solution of the equations (see section 

III.A.4).   
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III.A.1.)  Flow Diagram 

 The basic flow of the 1.5D model is outlined in figure 3.1.  The model starts with a 

desired time step (see section III.A.5).  It will then calculate the atomic properties of the 

plasma using the atomic model described in chapter 5.  Next we will calculate the plasma 

properties such as the electron and ion thermal conductivities, the electron-ion equilibration 

time, and the complex index of refraction using the conductivity model in chapter IV.  We 

can then calculate the laser intensity and the resulting laser absorption using the absorption 

model in chapter VI.  At this point we sequentially solve each of the equations, the electron 

and ion temperatures, the equation of motion, and the continuity equation.  Finally we can 

calculate the self-similar width to approximate the second dimension and repeat until we 

reach the final time.   
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III.A.2.)  Summary of MHD Equations 

 In chapter II we derived the different Magneto-Hydrodynamic (MHD) equations 

starting with the total derivative.  For each hydrodynamic equation we had the equation 

written in terms of the total derivative which is used for the Lagrangian coordinates in the 

1.5D model. The primary equations are summarized below. 
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extvis fp
dt
vd rt
r

+⋅∇+−∇= τρ       (Eq. 3.2) 

qqnTvp
dt

dTn sss
s

s &
r

&
r

+⋅∇−Φ=+⋅∇+
2
3

2
3     (Eq. 3.3) 

We can rewrite these equations in one dimension assuming the quantities of interest vary 

only in the z-direction 
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Converting to Lagrangian coordinates (using mass) and assuming no external forces we 

arrive at the final form of the hydrodynamic equations in 1D 
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III.A.3.)  Numerical Form 

 The continuity equation is the easiest equation to put in numerical form.  By using 

the lagrangian coordinates, we can use the fact that mass is not allowed to cross cell 

boundaries due to mass conservation.  Then, instead of solving equation 3.7 we can use 

equations 2.3 or 2.4 to get the mass density directly.   

 To solve the velocity equation 3.8, we want to know the velocities at the boundaries 

between zones and will use the Crank-Nicholson scheme (see APPENDIX C).  Knowledge 

of the velocity at the boundaries gives the expansion / compression for each zone.  Because 

we know the temperature, density, and the resulting pressure at the midpoints, this works 

very well.  See figure 3.2 for a sample drawing of points where the velocity and pressure 

are known. 
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The temporal derivative may be written as 

2/1

12/1

+

++

Δ

−
= n

n
jz

n
jz

n

j

z

t
vv

dt
dv  

The pressure term can be written as 

( )
j

n
j

n
j

n
j

n
j

n

j M
PRPR

WM
RP

W Δ

−
−=

∂
∂

−
+
−

+
−

+
+

+
+

+ 2/1
2/1

2/1
2/1

2/1
2/1

2/1
2/1

2/1 22  

 Let 
j

n
j

n
j

n
j

n
j

n
n
j M

PRPR
W
t

Δ

−Δ
−=

+
−

+
−

+
+

+
+

+
+

2/1
2/1

2/1
2/1

2/1
2/1

2/1
2/1

2/1
2/1 2γ  

Finally, the viscosity term is written as 

j

n

j

z
n

j

z
n

j

z

M

M
vR

M
vR

W
R

M
vR

MW
R

Δ

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+

−

+

+
+

2/1

2/1

2/1

2/1
2

2/1

2 3
16

3
16

ρηρη

ρη  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

−
−

Δ

−

Δ
=

−

+
−

+
+
−

+
−

+
−

+

++
++

+
+
+

+
++

+

2/1

2/1
1

2/1
2/1
2/1

2/1
2/1

2/1
2/1

2/1

2/12/1
12/1

2/1
2/1
2/1

2/1
2/1

2

2/1
1

3
16

j

n
jz

n
jzn

j
n
j

n
j

j

n
jz

n
jzn

j
n
j

n
j

j

n
j

M
vv

R

M
vv

R

MW
R

ηρ

ηρ

 

Let 
2/1

2/1
2/1

2/1
2/1

2/1
2/1

2/1
1

2

2/1
2/1

3
8

+

+
+

+
+

+
+

+
+

+
+

ΔΔ
Δ

=
jj

n
j

n
j

n
j

n
j

n
n
j MM

RR
W
t ηρ

α  

 
2/1

2/1
2/1

2/1
2/1

2/1
2/1

2/1
1

2

2/1
2/1

3
8

−

+
−

+
−

+
−

+
−

+
+

ΔΔ
Δ

=
jj

n
j

n
j

n
j

n
j

n
n
j MM

RR
W
t ηρ

β  

vz,0 vz,1 vz,2

P1/2 P3/2

Figure 3.2: Sample zoning diagram showing the velocity u at 
the zone boundaries and the pressure P at the zone midpoints. 
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Equating both sides of the differential equation yields 
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We can now write the equation in a tridiagonal form 
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Rewriting in matrix form, we see that it is in fact tridiagonal. 
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The boundary conditions are important to solve the system of equations correctly.  The first 

boundary condition occurs at the plasma-wall interface.  At the surface of the wall, the 

velocity is zero.  At the second boundary, the plasma-vacuum interface, the pressure of the 

vacuum is zero.  We also assume that the viscosity is unimportant at the interface, so α is 

zero.  Note that the unknowns in this system of equations are the velocities of the zone 
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boundaries at the next iteration in time.  They are all solved for simultaneously, using the 

conditions at the previous iteration in time.   

 

Ion Temperature 

 The ion temperature equation was derived in section II.A.4 
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We will evaluate the equation using the implicit form at y=0 (on axis) at the zone 

midpoints. 
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The thermal conduction is next 
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We can write the numerical form for the 1.5D effects 
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Finally we have the electron-ion heat transfer 

n
jeq

n
ji

n
ji

n
je

n
je

n
jeq

n
ji

n
je

n

jeq

ie
TTTTTTTT

2/1

2/1
1

2/12/1
1

2/1
2/1
2/1

2/1
2/1

2/1
2/1

2/1

2/1
2

+

+
+
++

+
+

+

+

+
+

+
+

+

+

−−+
≈

−
=

−
τττ

 

 



 41

We can equate both sides: 
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We can simplify be moving all terms that depend on tn+1 to the left side, and all terms that 

depend on tn+1 to the right size of the equation.   

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+
Δ

+

+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
Δ

−−

−++

+

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
Δ

++

+−−

+

−

+
+
+

+

+

++

+
+

+

+

+

+++

−+

+
+

+
+

+
++

+

+

+
+
+

+
+

+
+

+
+

+
−

+
+

n
j

n
jen

jeq

n

n
ji

n
j

n
jin

jn
jeq

n
n
j

n
j

n
j

n
j

n
ji

n
j

n
ji

n
j

n
jin

jn
jeq

n
n
j

n
j

n
j

n
j

n
ji

n
j

qTtZ

T

Tt

q

T

T

TtZ

q

T

2/1
2/1
2/1

2/1

2/1

2/32/1

2/1
2/1

2/1

2/1

2/1

2/12/12/1

2/12/1

1
2/3

1
2/1

1
2/11

2/1

2/1

2/1
1

2/1

1
2/1

1
2/1

1
2/1

1
2/1

1
2/1

2

1

2

1

τ

α

δ
τ

β

αχ

β

α

δ
τ

β

αχ

β

 

 Let 1
2/1

+
+−= n

jjL β  

 1
2/1

2/1

2/1
1

2/1
1

2/1
1

2/1
1

2/1 2
1 +

+

+

+
+
+

+
+

+
+

+
+ −

Δ
+++−−= n

jn
jeq

n
n
j

n
j

n
j

n
jj

tZqD δ
τ

βαχ  

 1
2/1

+
+−= n

jjU α  



 42

 

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

+
Δ

+

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

Δ
−−−+++

=

+
+
+

+

+

++

++

+

+

++++

−+

n
j

n
jen

jeq

n

n
ji

n
j

n
ji

n
jn

jeq

n
n
j

n
j

n
j

n
j

n
ji

n
j

j

qTtZ

T

Ttq

T

Y

2/1
2/1
2/1

2/1

2/1

2/32/1

2/12/1

2/1

2/1

2/12/12/12/1

2/12/1

2
1

τ

α

δ
τ

βαχ

β

 

Again we have a tridiagonal form: 
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 Electron Temperature 

The electron temperature equation is very similar to the ion temperature: 
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We will evaluate the implicit form in the same manner as the ion temperature. 

 

The temporal term 
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The compression term 
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The viscosity term 
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Thermal conduction 
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We can write the numerical form for the 1.5D effects 
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The terms that correspond to the creation / destruction (ionization / recombination) of 

electrons: 
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Finally, the electron-ion heat transfer: 
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Equating both sides: 
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Simplifying: 
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III.A.4.)  1D vs. 1.5D 

 A simple 1D approximation is often used to reduce the number of calculations.  

This approximation assumes the plasma is infinite in extent transverse to the direction of 

expansion.  While this easily holds for the direction parallel to a line focus, it does not 

necessarily hold for the direction perpendicular to the line.  On the other hand, a more 

complete 2D model requires extensive computational resources.  To overcome these 

limitations, we can implement approximations for the dominant processes in the transverse 

direction, resulting in a so called 1.5 D code.  Under this approximation, the direction 

parallel to the line is taken as infinite, while the perpendicular direction is taken as finite 

with expansion.  We account for the expansion by using the self-similar solution for the 

expansion of a gas in a vacuum.  Under this approximation, we only need to evaluate the 

properties on the axis.  Following Jacquemot49, the mass density transverse to the beam is 

given by: 
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)(2
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2
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where )(tR  is the half width.  The rate of change yv
dt
dR

= .  Note vy is the velocity in the 

transverse direction parallel to the target (y-direction).  The expansion of this self-similar 

solution into a vacuum was analytically derived by Pert50 

 
ρ

π p
dt
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R y

2
=  

                                                 
49 S. Jacquemot, L. Bonnet, L.B. Da Silva, A. Decoster, D. Desenne, J.P. Le Brenton, M. Louis-Jacquemot, 

B.J. MacGowan, D.L. Matthews, “Effects of Line Focus Width Narrowing on Amplification in Ne-
like Se X-Ray Laser Experiments”, SPIE Vol. 2012, 1993, pp. 180-189.   

50 G.J. Pert, “The Hybrid Model and its Application for Studying Free Expansion”, Journal of Fluid 
Mechanics, Vol. 131, 1983, pp. 401-426.  
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If we use the relation between z∂  and M∂  from II.A.1 we obtain the final relation for the 

expansion of the half width 

M
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Similarly, the expression for the self-similar solution of the temperature is given as 
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Here )(tL  is the half width of the temperature and )(tTm  is the temperature on the axis.  

With this profile, we can obtain the expression for the heat flux through the transverse 

direction.  The heat flux is given by 
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If we assume the conductivity does not depend on y we get 
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Now we will calculate the heat flux on axis (y=0): 
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Finally to limit the conduction in the outward moving corona, we multiply q by a factor 

equal to 
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This will account for the fact that heat flows on a path from (x,y=0) to (x0,y=L) in the 

unmoved part of the target.  The heat flux then becomes 
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e

e
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One word of caution, the heat flux limit must be applied to ensure that the heat flux does 

not become unphysical (see chapter II.B.4).  This will be applied at the point Ly 3
5= .   

With these effects transverse effects, the model is capable of including the most important 

2D effects while solving all the equations in a 1D approximation.  This forms  the basis of 

the 1.5D approximation.  

 

 

III.A.5.)  Time Step Considerations 

Once the numerical equations are written, an important question deals with the issue 

of the time step.  Trying to choose the proper time step between iterations has several 

important implications.  First, it determines the total number of iterations.  Since the 

average time per iteration is almost independent of the time step, the smaller the time step, 

the larger the time required to complete the simulation.  For example, if one iteration takes 

20 ms, but 1 million iterations are required then the total simulation time is 6 hours.  

Unfortunately, the time step cannot be arbitrarily large.  Increasing the time step increases 

the error of the numerical formulation.  This error often has large O(t) and O(t2) terms.  In 

addition to an increasing error, feedback between the different equations can occur which 

may result in unstable and erroneous solutions.  For example, a change in the electron 

temperature can affect the degree of ionization and the atomic losses, which can affect the 
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electron temperature.  The net result is that if the time step is too large, then the solution 

may be invalid.   

In order to obtain the most efficient calculations, the largest possible time step 

should be used at each iteration.  This is significantly more efficient than choosing one 

single time step.  Unfortunately, since the different spatial zones are coupled the smallest 

time step for each zone must be used { }n
j

n tt 2/1min +Δ=Δ .  The time step for each zone is 

calculated by checking a number of conditions based on both numerical and physical 

considerations.  Also, we ensure that the time step does not increase suddenly, as this 

would cause problems in a marginally stable system. 

 

 The first constraint on the time step should be a fraction of the FWHM of the 

heating beam.  Note that this does not apply if there is no applied laser, for example the 

time between pre-pulse and pump pulse.  This condition ensures that the conditions do not 

change rapidly because of a rapid change in the intensity of the beam.   

 

 A second constraint should be observed if there is a phase change.  If we reduce the 

time step during phase changes, we can prevent problems where the material may make 

several phase changes in a single iteration. 

 

 A very important consideration is based upon the adiabatic speed of sound.  A 

shock wave should not be allowed to cross a zone in less than a single iteration.  Since 

these shock waves propagate at the adiabatic speed of sound cs, this puts a limit on the time 

step.  In a plasma the adiabatic speed of sound is 
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 In a two temperature model, the time step should be less than the electron-ion 

equilibration time.  If this is not the case, a single temperature model should be used.  Since 

this time is often on the order of hundreds of picoseconds we will always need to use a two 

temperature model. 

 

 Other time step constraints can be derived by setting various limiting conditions.  

Frequently the most important time step is found by requiring that no more than a 10% 

change in the electron temperature can take place in any zone.  Because there are a number 

of processes that can rapidly heat or cool the electrons, this is often the most difficult and 

most rigorous time step consideration.  To see how this works we can write the electron 

temperature in the following form (ignoring heat conduction) 
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Imposing the limitation that the temperature cannot change by more than 10% we can 

separate the equation into two restrictions 
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Simplifying we get the constraints 
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 If we perform the same analysis on the ion temperature, velocity equation, etc., we 

will arrive at similar expressions.  For each iteration the maximum time step is the smallest 

of the various limits imposed.  Additionally, a sudden increase in the time step can yield an 

unstable result.  To prevent this a further limit is imposed that restricts the time step to 

increase by no more than 5% over its previous value.  Note that a sudden decrease does not 

have the same effect and is allowed.  In fact a sudden decrease in the time step may be 

required to recover from a stability problem.  One additional improvement was made to 

enhance stability by allowing the model to recover from a serious stability problem.  In the 

event that a sudden and dramatic change is detected, the model will back up several 

iterations and restart the calculations with a significantly smaller time step.  This prevents 

the problem from occurring and reduces the total time required for the model.   

 

 

 

III.B.)  2D Magneto-Hydrodynamic (MHD) Model 

 The 2D hydrodynamic model is similar to the 1.5D model in that it solves the same 

equations and utilizes the same conductivity and atomic models.  However it differs in 

several key aspects.  These differences arise out of the increased difficulty in solving the 

hydro equations in 2D instead of 1D.   

The first difference is due to the complexity of a Lagrangian formulation.  In 1D a 

Lagrangian formulation has a very direct change from the partial derivative in space to the 
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mass (see equation 2.3).  In 2D this simple transform does not exist.  It is still possible to 

construct a numerical mesh that moves with the mass and does not allow the cells to lose or 

gain mass.  However, these formulations typically suffer from mesh entanglement in which 

the cells of the mesh will move sufficiently that their shape will distort and eventually may 

intersect other cells.  At this point a remapping technique must be employed during which 

conservation must be ensured as well as ensuring that the remapping does not alter the 

simulation.  By contrast a much simpler Eulerian mesh is desireable due to the ease of 

writing the derivatives in space and the lack of a complete remeshing.  Utilizing a simple 

Eulerian mesh has traditionally been computationally prohibitive due to the very large 

numbers of cells necessary to achieve the desired resolution and domain.  To overcome this 

difficulty our 2D model utilizes Adaptive Mesh Refinement (AMR) to achieve these goals 

without the need for a more complex formulation (see section III.B.4).   

The choice of a Eulerian grid necessitates the solution of the partial form of the 

hydrodynamic equation (see section III.B.2).  In addition, the solution of the atomic rate 

equation relies on the material derivative.  Re-writing to account for convection would link 

the cells substantially increasing the computational complexity.  To prevent this, the 2D 

code utilizes only the steady-state atomic model.  Finally, the absorption model is very 

different as the techniques in 1D cannot be extrapolated to 2D (see Chapter VI).   

 

 

III.B.1.)  Model Flow 

 Unlike the 1.5D model, the individual equations cannot be re-written into a 

tridiagonal form.  Instead of solving the equations independently (necessary to preserve the 
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tridiagonal form in 1D), it is desirable to solve them simultaneously.  This has the 

advantage of ensuring that coupling between the equations will not create an instability.  

We can write the time rate of change of the variables as: 
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∂       (Eq. 3.11) 

We can then solve for the variables as a function of time using any time integration 

method.  Currently, we use the simple Forward Euler method. 

 

 

 

III.B.2.)  Summary of MHD Equations 

 In chapter II we derived the different Magneto-Hydrodynamic (MHD) equations 

starting with the total derivative.  The primary equations are summarized below written in a 

conservative form. 
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III.B.3.)  Numerical Form 

 To write the numerical form we will use the fact that on any given level the grid 

contains a uniform spacing in time.  Additionally, we do not need to perform any 

discretization in time.  The first thing to note is that we will need to know the value of 

various points at cell faces for cell-centered variables.  To do this we can use a variety of 

interpolation methods as discussed in appendix C.3.  For stability reasons the choice of an 

upwind or SMART interpolation will usually provide the best option because they are total 

variation diminishing (TVD).   

 

 

III.B.4.)  AMR 

 Adaptive Mesh Refinement (AMR) provides an efficient method of obtaining both 

high resolution and a large spatial domain.  Adaptive Mesh refinement is a relatively new 

mathematical technique and has already been used to solve several problems51.  In addition 

there have been several mathematical packages to help users develop AMR-based models, 

one of which is a package called SAMRAI52 (Structured Adaptive Mesh Refinement 

Application Infrastructure).  The basic idea is to divide the domain into different 

computational regions (patches).  Within each region we can then provide a localized 

refinement that contains a new grid at a higher resolution (levels).  By changing which cells 

                                                 
51 Adaptive Mesh Refinement - Theory and Applications, Series: Lecture Notes in Computational Science and 

Engineering, vol. 41, eds. T. Plewa, T. Linde, and G. Weirs (Berlin: Springer). 
52 https://computation.llnl.gov/casc/SAMRAI/ 
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are refined to higher resolution dynamically, it is possible to simultaneously have a high 

resolution where needed and a coarser resolution where it is not.  While this technique can 

be applied to any structured mesh (Eulerian, Lagrangian, ALE, etc.) I will be assuming a 

fixed Eulerian domain.   

 Figure 3.3 shows a sample mesh that illustrates how different levels of refinement 

can be used to obtain high spatial resolution over a limited spatial region.  In this example, 

the entire domain is covered by a single coarse region.  Next is the yellow level of 

resolution that doubles the resolution.  Finally, there is the blue level which further doubles 

the resolution to achieve the final desired resolution.  At each level, the cells can be 

grouped into rectangular regions called patches.  In this example, the coarsest level can be 

covered by 1 or more patches, the yellow level by 3 or more patches, and the blue level by 

3 or more patches.  These patches are processed separately and can be divided between 

different processors to achieve a high level of parallelism.   

 

 Figure 3.4 shows an AMR grid used to simulate the plasma created by a curved 

target.  The grid shown is the initial gird at the start of the simulation.  Plotted is the mass 

density.  It is necessary to achieve high resolution at the target surface where the target will 

Figure 3.3: Sample mesh showing AMR grid 
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be ablated by an incoming laser beam.  The different colored boxes indicate the different 

patches for the different levels of resolution.  Achieving the desired resolution with a 

simple fixed Eulerian grid would require in excess of 2.3 million cells to achieve the 

desired resolution.  The actual number of cells needed was 94,525 cells, a 36x 

improvement.  Additionally the different patches were distributed among different 

processors for parallel efficiency using 16 processors for this particular resolution.  

 

 

 

III.B.5.)  Time Step Considerations 

 The time step requirements for the 2D model are more complex.  Unlike the 1.5 D 

model we do not treat the equations separately, but instead we combine all the equations 

when we evaluate the nonlinear function.  This means that there are no interactions 

between the equations that would limit the time step.  Instead, all of the time step criteria 

Figure 3.4: AMR grid use to simulate a curved target surface 
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can be considered through the time integrator used.  The most accurate time step criteria 

can be obtained by considering the nonlinear function and the time integrator used.  A 

much simpler criteria is to limit the change in any of the variables.   

 

 

III.C.)  Comparison of 1.5D and 2D Models 

 The general behavior of the two hydrodynamic models is very similar.  While we 

used different formulations for the hydrodynamic equations in a 1D approximation both 

models must still produce the same results.  Figure 3.5 shows the electron temperature 

maps for the 1.5D and 2D models for sample runs used to compare the models.  Detailed 

simulation results and discussion of the physics is included in chapter VIII.  When both 

models are run in a 1D approximation the agreement is vey good.  There are a few slight 

differences in the electron temperature near the peak due to the different absorption 

models.  When run in the 1.5D and 2D approximations respectively the differences are 

more noticeable.  In general both models are able to account for lateral effects either 

directly (in the 2D model) or with the self-similar approximation (in the 1.5D model).  

These effects cause a reduction in the peak electron temperature from ~600 eV to ~450 eV.  

The absorption in the 1.5D model penetrates a little deeper into the plasma due to a 

difference in the absorption model where absorption off line-centered is approximated 

using the self-similar solutions and then averaged along that direction.  The 2D model by 

contrast uses a full 2D absorption model that is able to account for refraction and a non-

uniform absorption profile parallel to the target surface (the second direction).  Finally the 

thermal conduction away from the target surface is different between the two models and is 
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not able to be accounted for by the self-similar solution.  The most important difference 

between the models is we are able to get full 2D profiles for the various properties off the 

line-center without relying on the self-similar solution.   

 

 

 

1.5D code 
1D run 

2D code 
1D run 

1.5D code 
1.5D run 

Figure 3.5:  Plots of the electron temperature comparing the two hydro models in a 1D 
approximation and a 1.5D and 2D approximation.  The plots are a function of time and 
distance from the target surface.   

2D code 
2D run 



 60

 

 

CHAPTER IV)  CONDUCTIVITY MODEL: 

In order to solve the MHD equations, a large number of physical properties of the 

plasma must be known.  These include properties like the thermal conductivity, the 

collision frequency, the viscosity, the absorption coefficient, etc.  These properties depend 

on the physical conditions of the plasma including the electron and ion temperatures, the 

electron and ion densities, and degree of ionization.  The dependencies can be quite 

complex and are in general not linear, however most of the properties are related to a single 

quantity, the electron-ion collision time.  

 

 

IV.A)  The collision time: 

The collision time is the average time between collisions in the plasma.  It affects 

most of the plasma properties, and has different approximations for each region of validity.  

Unless otherwise noted, we will assume that the time scale of interest is larger than the 

collision time.  This allows us to use an analytical velocity distribution to simplify the 

problem.  Also, we assume that the mean free path (average distance between collisions) is 

smaller than the dimensions of interest.  This allows us to assume that the plasma is solely 

determined by collisions and that all of the effects due to its confinement are negligible.    
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The calculation of the collision time and most properties will follow the work of 

Lee and More53,54.  Their model covers the wide range of density and temperature 

combinations needed for the plasma evolution in our model.  In general, the collision time 

between electrons and ions is given by 

eiiei vn στ /1=          (Eq. 4.1) 

where eiσ  is the electron-ion cross section, v  is the velocity of the collision, and in  is the 

ion density.  If we assume that the cross section is due to Coulomb interactions we can use 

the Coulomb cross section given by 
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where bmax and bmin are the upper and lower cutoffs on the Coulomb impact parameter. 

By substituting the Coulomb cross section in the collision time for a single velocity we get 
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This equation represents the collision time for a mono-energetic electron beam with one 

particular charged species.  To calculate the average collision time, this needs to be 

integrated over the velocity distributions and all charged states of the ion.   

The first approximation is the use of the average charge Z instead of the charge of a 

particular ion.  This can yield errors for plasmas with a very low degree of ionization.  In 
                                                 
53 Y.T. Lee and R.M. More, “An electron conductivity model for dense plasmas”, Physics of Fluids, 27, 1984, 

pp. 1273-1285. 

54 Handbook of Plasma Physics, Volume 3, Edited by M.N. Rosenbluth, R.Z. Sagdeev, “Atomic Physics of 
Laser-Produced Plasmas”, Richard M. More, Elsevier Science publishers, 1991. 
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this case the average charge is usually set to a minimum value of 1.  To treat the problem 

correctly, one needs to include the cross section of an electron-neutral collision.   

The second approximation deals with the integration of the collision time over a 

velocity distribution.  If the lifetime of the plasma is much less than the collision time, the 

velocity distribution can be quite complicated.  However, if the lifetime of the plasma is 

much larger than the collision time, the plasma will reach thermodynamic equilibrium.  In 

this case we can assume an analytical velocity distribution.  In a non-degenerate ideal 

plasma, the velocity distribution of interest will be Maxwellian.  This case was solved by 

Spitzer55.   
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While commonly used, these equations neglect a large number of effects including 

degeneracy and non-ideal effects.  To properly incorporate these effects the distribution 

function should be a Fermi-Dirac distribution.  Also special treatment of Coulomb 

logarithm is necessary.  In this case the collision time reduces to 
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where μ  is the chemical potential.  For an ideal plasma 

                                                 
55 L. Spitzer, Physics of Fully Ionized Gases, 2nd ed. Interscience Publishers, 27, 1984.   
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If the plasma is non-ideal, corrections to the chemical potential can be included.  The model 

includes the corrections to μ  from Mohanti56 
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μ         (Eq. 4.8) 

pν  is the plasma frequency 

DN  is the Debye number 

 

If the plasma is ideal and non-degenerate: 1/ >>− kTe μ  
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Λ

=
ln24

3
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ei neZ
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τ    This agrees with the Spitzer limit. (Eq. 4.9) 

In the completely degenerate case: 1/ <<− kTe μ  ( ie nnZ /= ) 

Λ
=

ln4
3

4

3

mZeei
hπτ        (Eq. 4.10) 

This agrees with Ziman’s57 results for a metallic conductor. 

 

To determine the collision time, Lee and More break up the conductivity model into five 

regions (figure 4.1): 

 

                                                 
56 R.B. Mohanti and J.G. Gillgan, “Electrical conductivity and thermodynamic functions of weakly nonideal 

plasma”, J. Appl. Phys., Vol. 68, 1990, pp. 5044-5051. 

57 J.M. Ziman, Principle of Theory of Solids, Cambridge University Press, 1969. 
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Figure 4.1: Density-temperature phase-plane for aluminum plasma.  
Shows the regions of applicability for the different regions (Lee-More: Ref[54]) 

 

Region 1:  The ideal plasma.  In this region the impact paramenters are derived assuming 

an ideal plasma.  The minimum impact parameter bmin is the maximum of the classical 

distance of closest approach and the uncertainty principle.  The maximum impact 

parameter bmax is the Debye-Hückel screening length Dλ .  To account for degeneracy, the 

Fermi energy is used at low temperatures. 
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( )23
22

Fe TTT +=  

In the minimum impact parameter, v and m are the velocity and mass of the electron.  The 

degeneracy of the plasma is taken into account in the maximum impact parameter through 

the effective electron temperature T.  The effective electron temperature contains both the 

actual electron temperature Te and the Fermi temperature TF.   

 

Region 2:  The dense or strongly coupled region.  In this region, the plasma is dense so the 

particles do not travel very far before they collide.  The maximum impact parameter bmax 

must be replaced by the interatomic distance R0.  An adjustable parameter p1 ≈ 1 may be 

used to improve the accuracy.  

 01max Rpb =         (Eq. 4.14) 

( ) 3/1
0 4/3 inR π=  

 

Region 3:  Region 3 represents a region of higher density where the analysis of the 

Coulomb logarithm breaks down.  In this region, a minimum value of 2ln =Λ  is used.  

This is a technique commonly employed by many researchers.   

 

Region 4:  Region 4 occurs between the solid/liquid phase and the traditional plasma phase.  

In this region the analysis of the Coulomb cross section breaks down, so the collision time 

is calculated by placing a constraint on the mean free path.  The mean free path must not be 
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less than the atomic radius.  With the mean velocity ev , the minimum collision time can be 

calculated.  Another adjustable parameter p2 ≈ 1 may be used. 

 02min Rpvl e =⋅=τ        (Eq. 4.15)  

m
Tve

2
=  

 
ev

Rp 0
2min =τ         (Eq. 4.16) 

 

Region 5:  Region 5 is a region used to describe the solid and liquid phases.  Region 5 uses 

the Bloch-Gruneison law to describe conduction.  DΘ  is the Debye temperature, p3 is 

another adjustable parameter, and γ  is chosen for each metal to give the rise in resistivity 

due to melting. 
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e
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Region 0: A 6th region may be used and is governed by the electron scattering by neutral 

atoms.  This region is characterized by a cold, low density region with a mean degree of 

ionization less than one.  It  is weakly approximated and rarely occurs within our model.  

For simplicity a fixed electron-neutral cross section of ~10-14 cm2 can be used.   

 

While the conductivity model proposed by Lee and More can be considered sufficiently 

accurate over a broad range of conditions, additional corrections can be made to improve 
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its accuracy.  These changes primarily affect the solid-density cold region.  For example, 

see Desjarlais58, which is used to adjust the factor p2 for region 4. 

 

 

IV.B)  Electron-Ion Equilibration Time: 

 The electron-ion equilibration time is the time it will take for the electrons and ions 

to thermalize and establish the same temperature.  This is an important quantity because it 

determines if a two temperature model is necessary and will determine the ion temperature.  

In most cases, the time required for the electrons and ions to equilibrate is longer than the 

timescales of interest.  In this situation the electron-ion collision time determines the rate of 

heat transfer between the electrons and ions.  The electron-ion equilibration time is simply 

the product of the electron-ion collision time and the ratio of the masses of the particles.   

 
e

i
eieq m

m
ττ =         (Eq. 4.19) 

 

 

IV.C)  The thermal conductivity: 

 The thermal conductivity is an important property that determines how quickly heat 

is transported within the model.  The thermal conductivity can be directly related to the 

collision time.  Specifically, the electron thermal conduction coefficient is 

 ei
e

ee
e m

kTnB τκ =        (Eq. 4.20) 

                                                 
58 M. P. Desjarlais, “Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator 

Transition”, Contrib. Plasma Phys., Vol. 41, 2001, pp. 267-270. 
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In this equation B is a constant that depends on the degeneracy and any external magnetic 

field.  Braginskii59 solved the transport coefficients for a magnetized ideal plasma.  When a 

magnetic field is present, the thermal conduction perpendicular to the field is inhibited.  

The magnetic field reduces the B coefficient according to the strength of the magnetic field.  

One measure of the strength of the magnetic field is the cyclotron frequency 

 
cm

e

e
e

B
=ω         (Eq. 4.21) 

If 1<<eeωτ , the present analysis is accurate and correcting the B coefficient is sufficient.  

However if 1>eeωτ , this treatment is insufficient and the characteristic property is the 

magnetic field, not the electron-ion collision time.  Even if 1<eeωτ , the B coefficient can 

still be reduced by as much as an order of magnitude due to the presence of a magnetic 

field.  For an ideal unmagnitized plasma the thermal conductivity is 
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Note that the thermal conductivity scales as Te
5/2, resulting in a strong temperature 

dependence. 

 

If the plasma is not ideal, then the B coefficient is dependent on both the plasma 

degeneracy and the magnetic field B.  Lee and More include fitting tables for this case.  If 

the plasma is unmagnitized we can look at the degeneracy limits 

 
π3

128
=B   (Ideal, non-degenerate plasma)  (Eq. 4.23) 

                                                 
59 Review of Plasma Physics, S.I. Braginskii, “Transport Processes in a Plasma”, pp 205-311. 
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3

2π
=B   (Completely degenerate plasma)  (Eq. 4.24) 

 

 

IV.D)  Flux limiter: 

 When the temperature gradients are very large, the thermal conductivity can 

become unphysical.  Recall the classical heat flux Tqc ∇−= κ ; as the temperature gradient 

approaches infinity, the heat transported approaches infinity.  In classical theory60 it is 

assumed that the scale length of the temperature is much larger than the electron mean free 

path.  As the gradient becomes large this assumption does not hold and a heat flux limiter is 

needed.  We use a harmonic heat flux limiter61,62,63 

 ( ) 1/1/1 −+= fc qqq        (Eq. 4.25) 

With this limiter the heat flux is limited to the lesser of the classical heat flux qc or the free 

flow limited qf.  The free flow limit can be expressed as the product of the number of 

particles n, their thermal velocity v , and the energy per particle T.  A constant f is adjusted 

between 0.1-0.3 to control the degree of the free flow limit.   

 mTfnTq f /=        (Eq. 4.26) 

 

                                                 
60 Lyman Spitzer Jr. and Richard Harm, “Transport Phenomena in a Completely Ionized Gas”, Physical 

Review, Vol. 89, No. 5, 1953, pp. 977-981. 

61 R.C. Malone, R.L. McCroy, R.L. Morse, “Indications of Strongly Flux-Limited Electron Thermal 
Conduction in Laser-Targets”, Physical Review Letters, Vol. 24, 1975, pp. 721-724. 

62 P.A. Holstein, J. Delettrez, S. Skupsky, “Modeling nonlocal heat flow in laser-produced plasma”, J. Appl. 
Phys., Vol. 60, 1986, pp. 2296-2300.   

63 J.H. Rogers, J.S. De Groot, Z. Abou-Assaleh, J.P. Matte, T.W. Johnston, M.D. Rosen, “Electron heat 
transport in a steep temperature gradient”, Phys. Fluids B, Vol 1, 1989, pp. 741-749. 
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IV.E)  Electrical conductivity: 

 Electrical conductivity is an important property.  For a DC field the conductivity 

behaves very similar to the thermal conductivity.  The DC conductivity can be written as 

 ei
e

e
e m

enA τσ
2

=        (Eq. 4.27) 

Again, A is a constant that depends on both the degeneracy and the strength of transverse 

magnetic fields.  In an unmagnitized plasma the limits of A are: 

 
π3

32
=A   (Ideal, non-degenerate plasma)  (Eq. 4.28) 

 1=A    (Completely degenerate plasma)  (Eq. 4.29) 

For an ideal, non-degenerate unmagnitized plasma the electrical conductivity is 
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The similar forms of the electrical and thermal conductivity illustrates their connection.  

According to the Wiedemann-Franz law, good heat conductors are also good electrical 

conductors.  If we take the ratio of the thermal conductivity divided by the temperature 

times the electrical conductivity, we can get the Lorentz number 
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⎛== 2e
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κ        (Eq. 4.31) 

Note that L is weakly dependent on the conditions (B/A is 3.3 for the degenerate case and 4 

for the ideal, non-degenerate case). 
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IV.F)  Absorption and the complex index of refraction: 

Of vital importance is the absorption of the incident laser light, it gives the energy 

necessary to create and heat the plasma.  The absorption is due to the imaginary part of the 

index of refraction.  As a result we need to calculate the complex index of refraction.  

Additionally, the real part of the index is important to calculate the effect of refraction on 

the grazing incidence pumping and the propagation of the EUV laser beam.   

 

 To calculate the index of refraction, we need to review some notation.  I will be 

using the same notation as Jackson64.  The plane wave electric and magnetic fields can be 

written as 

tiikxeEtxE ω−= 0),(        (Eq. 4.32) 

tiikxeBtxB ω−= 0),(        (Eq. 4.33) 

The complex wavenumber k can be expressed as cnk /ωωμε == .  The attenuation of 

the plane wave can be directly expressed through the real and imaginary parts of the 

wavenumber. 

2
αβω i

c
nk +==        (Eq. 4.34) 

Here α  is the attenuation constant ( zeI α−= ).  Using the Drude model,65,66 we can express 

the complex index of refraction in terms of the collision time 

                                                 
64 John David Jackson, Classical Electrodynamics, third edition, John Wiley & Sons Inc., New York, 1999. 

65 W. Jones and N. H. March, Theoretical Solid State Physics, Wiley, New York, 1973, Vol. 2. 

66 E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon, Oxford, 1981. 
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Note that pω  is the plasma frequency: 
e

e
p m

ne2
2 4πω =    (Eq. 4.36) 

Simplifying we get 
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However, this is only valid for one collision time while we need the result in terms of the 

average collision time.  When we apply thermodynamic averaging we get 
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We can substitute for pω  
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The conductivity can be defined as )(412 ωσ
ω
πin += , yielding the expression from Price67 
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For DC conductivity ( )0≈ω   
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67 D.F. Price, R.M. More, R.S. Walling, G. Guethlein, R.L. Shepherd, R.E. Stewart, W.E. White, “Absorption of 

Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV”, Physical Review 
Letters, Vol. 75, No. 2, July 1995, pp. 252-255. 
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For frequencies much less then the collision frequency eiνν <<  we need to include 

Spitzer’s electron-electron correction factor Eγ .  This is the missing A coefficient.  We 

now recover the DC conductivity discussed in section IV.E: 
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To get the absorption of an optical laser we start with the expression for the complex index 

of refraction 
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We can simplify 
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In the high frequency limit 
eiτ

ω 1
>>  

 2

12
2 1

ω
ωτ

ω
ω iin eip +

+=
−

      (Eq. 4.47) 

 2

12
2 1

ω
ωτ

ω
ω iin eip +

+=
−

      (Eq. 4.48) 

 
ei

pp in
τω

ω
ω
ω 11 3

2

2

2
2 +−=       (Eq. 4.49) 

If ( ) ( )εε ImRe >>   ( 2n=ε ) 
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First we will look at the real part of the index of refraction 
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The frequency when pωω =  is called the critical frequency, and the electron density that 

corresponds to that point is called the critical density: 
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The real part of the index of refraction can then be written as 
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This derivation is also carried out in Attwood68.   

 

Next we will derive the absorption coefficient. 
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68 David Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press, 1999. 
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The absorption coefficient α  is from the imaginary component of k ⎟
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 from the definition of the critical density 
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If we assume ei
eiei
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==
11 , we get the simplified expression for the absorption 

coefficient: 
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The absorption length is 
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For an ideal, non-degenerate plasma this agrees with the expression from Johnston and 

Dawson69,70 

                                                 
69 T. W. Johnston and J. M. Dawson, “Correct values for high-frequency power absorption by inverse 

bremsstrahlung in plasmas”, Phys. Fluids, 16, 1973, p. 722. 



 76

( ) 222/32

62

/123
ln16

ωωπν

πα
pe

ie

kTmc
ennZ

−

Λ
=        (Eq. 4.62) 

Note that at high frequencies ωω <<p  the laser frequency should be used in place of the 

plasma frequency in the coulomb logarithm71.   

For low densities ( )ce nn << : 
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From the absorption length, we note that there is a strong temperature dependence.  As the 

plasma absorbs the laser light, it will heat reducing the absorption coefficient, which will 

then limit further absorption and heating.  As a result, the hotter a plasma is, the more 

difficult it is to further heat it.  Because the absorption length is 2−∝ en , a higher density 

plasma will absorb more energy per electron and therefore reach a larger temperature.  The 

simple approximations given will break down at electron densities approaching the critical 

density.  In the absorption model (chapter VI) I use the full expression from the Drude 

model, so the index of refraction and absorption are valid for densities much closer to the 

critical density.  

 

 

                                                                                                                                                    
70 J. M. Dawson, “On the Production of Plasma by Giant Pulse Lasers”, The Physics of Fluids, 7, 1964, pp. 

981-987   

71 J. Dawson and C. Oberman, “High Frequency Conductivity and the Emission and Absorption Coefficients 
of a Fully Ionized Plasma”, Phys. Fluids, 5, 1973, pp. 517-524.   
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IV.G)  Viscosity: 

 A final plasma property that is often needed are the viscosity coefficients.  In a 

compressing plasma they can slow the compression and dramatically increase the 

temperature.  While viscosity can slow the expansion, the effect is much less dramatic and 

can often be neglected.  Under most conditions the ion viscosity is much larger than the 

electron viscosity due to the large mass of the ions.  This can cause the ion temperature to 

exceed the electron temperature in a compressing plasma.  From Braginskii, the viscosity 

coefficients are 

eee
e Tn τη 733.00 =  (electron viscosity coefficient)  (Eq. 4.64) 

iii
i Tn τη 96.00 =  (ion viscosity coefficient)   (Eq. 4.65) 

Note that in the presence of a magnetic field the coefficients can be affected due to the 

cyclotronic motion of the electrons and ions.  However this effect is weaker than the 

corrections to the thermal and electrical conductivities.  In addition, viscosity tends to be 

small within a plasma.  See Braginskii for more information. 

 

 

IV.H)  Numerical Implications: 

 The conductivity model for a given cell does not depend on adjacent cells.  As a 

result there is not a numerical form.  Additionally while most of the thermodynamic 

properties affect the plasma, they do not have specific considerations on the time step.  For 

example, the thermal conductivity obviously affects the thermal transport, which affects the 

time step, but those effects are accounted for in the numerical formulation of the 

hydrodynamic equations.  The one variable that has a direct impact on the equations is the 
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electron-ion equilibration time.  If the equations are not solved simultaneously, then the 

time step of the model would need to be less than the electron-ion equilibration time and 

should be included in the time step criteria.  For the plasmas studied in this work, this 

timescale is generally larger than many of the other timescales in the model.   
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CHAPTER V.)  ATOMIC MODEL: 

 In order to understand the plasma dynamics and calculate the plasma properties, we 

need to know the details about the atomic properties of the plasma.  These details include 

the mean degree of ionization (average number of free electrons per ion) and all atomic 

losses.  The detailed level populations of the ions of interest are needed in order to calculate 

the gain.  To obtain this information I have created an accurate atomic model.  The atomic 

model consists of three different cases.  The first case is a simple model in which the 

degree of ionization is calculated assuming a steady-state solution for both the ions and the 

excited states within the ion.  This model is pre-solved with a data lookup table, and can be 

used at high densities where the time scale to achieve steady state is less than the time 

during which the plasma conditions change.  The second case involves a detailed ion 

calculation in which the distributions of different ions are calculated using a full transient 

solution, but a steady-state solution is used for excited states within an ion.  This 

approximation is used for most of the plasma evolution and for most ion species.  The third 

and most complicated case involves a detailed transient calculation for both the ions and 

their excited state populations.  This case must be used for short lived transients and is 

necessary to calculate the population inversion and gain.  In all cases a large number of 

energy levels are needed for an accurate solution.  This is especially important for transient 

populations, in which the upper levels play a more important role.  Within the atomic 

model I use all of the energy levels to within 10% of the ionization potential, which 

typically requires n≥12 for the ions of interest.  These levels are then bundled to form a 
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small number (20-40) of effective levels per ion.  This bundling yields accurate atomic 

physics while keeping the number of calculations to a minimum.   

 

 

V.A)  Overview of the atomic structure 

 In a plasma, the atomic structure is both important and complicated.  First, there are 

the different ion populations.  Ions can change their charge state through various ionization 

and recombination processes, affecting their atomic characteristics.  In addition, each ion 

has a number of excited states that can be excited or de-excited.  Spontaneous, radiative 

transitions can occur between two excited states.  These transitions can be partially trapped 

in which a photon emitted by one ion can be absorbed by another ion resulting in a reduced 

decay rate.  This process is called radiation trapping and must be included.  An important 

physical principle is that for every process there is an inverse process.  This is known as the 

first principle of detailed balance.  Once we are able to calculate one process, using the 

principle of detailed balance we can easily calculate its inverse.   

Consider the energy level diagram in figure 5.1 with both ground and excited states.  

There are many processes at work within this example:  

Z
mnI ,  = Electron impact ionization from the nth level of the Zth ionization to the mth level of 

the Z+1th ionization.  This process involves an energetic free electron colliding with 

an ion, causing it to release an electron resulting in two slower free electrons and 

the next ion state. 

Z
mn,β = 3-Body recombination from the nth level of the Z+1st ionization to the mth level of 

the Zth ionization.  This is the inverse process of electron impact ionization, in 
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which 2 free electrons collide with an ion, one electron is captured and the other 

electron caries the excess energy.  

Z
mn,α = Radiative recombination from the nth level of the Z+1st ionization to the mth level of 

the Zth ionization.  This is the inverse process of photo-ionization (not included) and 

involves a free electron colliding with an ion, being captured by the ion and 

emitting a photon with the excess energy.   

Z
mnD , = Dielectronic recombination from the nth level of the Z+1st ionization to the mth level 

of the Zth ionization.  This is the inverse process of auto-ionization (not included) 

and involves a free electron colliding with the ion, being captured resulting in a 

highly excited state and then radiativly decaying to a stable state.   

Z
pnE , = Electron impact excitation from the nth level to the pth level in the Zth ionization.  This 

process involves a free electron colliding with an ion, imparting some of its energy to 

the ion resulting in an excited state within the ion.   

Z
npd , = Electron impact de-excitation from the pth level to the nth level in the Zth ionization.  This 

is the inverse process of electron impact excitation, involving a free electron collision 

and resulting in a lower excited state. 

Z
npA , = Radiative de-excitation from the pth level to the nth level in the Zth ionization.  Its 

inverse process is photo-excitation (not included) and represents a spontaneous 

decay from an excited state to a lower state, emitting a photon to account for the 

energy difference. 
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jipqC →→ , = Coupling from zone i to j.  Probability that a photon emitted in the q to p 

transition in zone i will be absorbed in zone j, causing p to transition to q (see 

section V.I). 

 

 

 

 

V.B)  Rate Equations 

 All of the possible transitions either populate or de-populate a given level within an 

ion.  As a result a rate equation can be written for the time rate of change of a level.  The 

basic rate equation for ion Z, excited state ρ is 
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Figure 5.1: Atomic level and rate diagram 
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 This includes all of the important populating and de-populating processes.  These are 

electron impact ionization, radiative recombination, dielectronic recombination, 3-body 

recombination, electron impact excitation, electron impact de-excitation, and radiative de-

excitation.   

 

If radiation trapping is included (often important for dense plasmas) 
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In this equation we consider the different spatial regions identified by i and j.   The solution 

of this set of rate equations constitutes a collisional-radiative model with full radiation 

transport.   
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V.C)  Effective Rate Calculations 

 A simpler model can be obtained if a steady-state solution is assumed for all of the 

excited states within an ion.  In this case, the level diagram is simplified (see figure 5.2).  

The rate equation simplifies to 
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The subscript eff refers to the effective rate for the total transition rate from one ion to the 

next.  The effective rates can be calculated using one of three models.  The first model is 

the radiative model.  Under this assumption the excited states quickly decay radiatively to 

the ground state.  This model is typically valid at very low densities.  The next model is the 

collisional model, in this approximation all excited states are populated according to the 

Boltzmann equation.  This is typically valid at very high densities.  The most accurate form 

is solved assuming a steady-state solution with have to be solved taking both collisional 

excitations/de-excitation and radiative decay into account.  The collisional-radiative model 

is valid for all densities, and is the form that I use for the effective rates. 

ZN

1+ZN

1−ZN

Z
effI Z

effβ Z
effα Z

effD

1−Z
effI 1−Z

effβ 1−Z
effα 1−Z

effD

Figure 5.2: Simplified atomic level and rate diagram 
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V.C.1)  Radiative Model 

 Under the radiative approximation, all excited states are quickly depopulated 

through radiative decay.  As a result, the effective rates are very easy to calculate.  The 

effective ionization rate is the sum of all rates from the ground state in the lower ion to all 

states in the upper ion. 
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Z
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The effective recombination rate is the sum of all rates from the ground state of the upper 

ion to the states of the lower ion. 
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The effective energy of the ion is the energy of the ground state. 
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V.C.2)  Collisional Model 

 Under the collisional approximation, all excited states are populated according to 

the Boltzmann equation. 
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Where ng  is the multiplicity of level n, and EΔ  is the energy difference between states n 

and the ground state.  As a result, the effective rates are relatively easy to calculate.  The 

effective ionization rate is the sum of all rates from the nth state in the lower ion to all states 

in the upper ion weighted by the relative populations.   
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The effective recombination rate is the sum of all rates from the nth state in the upper ion to 

all states of the lower ion.   
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The effective energy of the ion is the weighted average of the excited states. 
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V.C.3)  Collisional-Radiative Model 

 In the collisional-radiative model, the excited states must be solved for using the 

rate equation assuming a steady-state solution.  Without radiation trapping, the rate 

equation for the nth level is 
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With trapping this becomes 
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The solution of the system of equations is subject to the normalization condition: 

∑=
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Z
n

Z
total NN  

With the population of the individual levels, the calculation of the effective rates is the same as 

the collisional model weighted by the new level populations.  Note that without trapping the 

populations are temperature and electron density dependent.  With trapping, they are 

completely dependent on the plasma conditions.  This complication can be very expensive and 

difficult to deal with, but is also the most accurate.  In the high density limit of complete 

trapping for all lines, the collisional-radiative model approaches the collisional model.   
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V.D)  Atomic rate calculations 

 The calculation of the actual atomic rates can be very difficult.  There are a number 

of atomic codes which calculate the atomic rates for different species (ADAS72, Cowan’s73, 

FAC74,75, HULLAC76, LANL77, …).  In addition to theoretical codes, some rates can be 

obtained through experiment measurements.  While a complete description of the rates is 

not possible here, a simple description of the physics as well as any simple equations is 

given below.  The majority of atomic data currently used in the model is from FAC.  

However, the model is also capable of using data from ADAS.  At this time the use of other 

atomic data is usually restricted to checking the accuracy of the atomic data, but could be 

included in the future.  The simple ionization rates from Lotz (described in the next 

section) are used in conjunction with the ADAS data sets.  In most cases, only the principal 

cross sections (excitation, collisional ionization, photo-ionization, and auto-ionization) are 

calculated by the atomic code.  The inverse processes are calculated through the principle 

of detailed balance (or microscopic reversibility).   

 

                                                 
72 Atomic Data and Analysis Structure (ADAS) is an interconnected set of computer codes and data 

collections.  See http://adas.phys.strath.ac.uk/ for more information.   

73 Code to calculate the atomic structures and spectra via the superposition-of-configuration method.  
Currently available at ftp://aphysics.lanl.gov/pub/cowan/readme.   

74 The Flexible Atomic Code (FAC) is an integrated software package to calculate various atomic radiative 
and collisional processes.  Developed by M. F. Gu, currently available at http://kipac-
tree.stanford.edu/fac/.   

75 M. F. Hu, “Indirect X-Ray Line-Formation Processes in Iron L_shell Ions”, The Astophysical Journal, Vol. 
582, pp. 1241-1250, 2003.    

76 Bar-Shalom, A.; Klapisch, M.; Oreg, J., “HULLAC, an integrated computer package for atomic processes 
in plasmas”, JQSRT, vol. 71, p. 169-188. 

77 Los Alamos Atomic Physics Codes, See http://aphysics2.lanl.gov/tempweb/ for more information and 
interactive online version.   
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V.D.1)  Collisional Ionization 

 Collisional ionization is the process in which a free electron collides with an ion 

and imparts some of its energy to the ion.  This in turn releases another electron from the 

ion leaving it in an ionized state.  A semi-empirical formula for the ionization rate 

coefficient was developed by Lotz78: 
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In this formula Te and EΔ  are both in eV, a, b, and c are constants that depend on the 

specific ion.  If the a, b, c coefficients are not known, default values of 4, 0, 0 are used.  

The variable q represents the equivalent number of electrons in the outer shell.  The final 

rate coefficient (I) has units of cm3/s.  While easy to implement, Lotz is only accurate to 

about a factor of 2 and tends to be less accurate for highly excited states.  More accurate 

ionization rates may be obtained using atomic codes based on one of several approximation 

techniques: the Born plane-wave approximation (BPWA), the distorted-wave 

approximation (DWA), the Coulomb-Born approximation (CB), K- and R-matrix 

approaches, and the close-coupling method (CC).  Figure 5.3 illustrates a sample electron 

impact ionization cross section and rate coefficient for the Ni-like ion of silver obtained 

from FAC using the Coulomb-Born approximation.  Note that the cross section is zero for 

electron energies below the ionization potential (~880 eV), while the rate coefficient drops 

rapidly for temperatures below ~200 eV. 

                                                 
78 Wolfgang Lotz, “Electron-Impact Ionization Cross-Sections and Ionization Rate Coefficients for Atoms 

and Ions for Scandium to Zinc”, Z. Physik, Vol. 220, pp 466-472, December 19, 1968. 



 90

 

 

V.D.2)  Electron Impact (3-Body) Recombination 

 Electron impact (3-body) recombination is the inverse process of collisional 

ionization.  Two slow-moving electrons collide with the atom, resulting in the capture of 

one electron and the other electron carrying the excess energy.  Because this is a 3-body 

Figure 5.3: a) Plot of the total electron impact ionization cross section from the ground level 
(3d10 1S0) of Ni-like silver to the Co-like silver ion.  b)  Plot of the total electron impact 
ionization rate coefficient from the ground level of Ni-like silver to the Co-like silver ion.   

a) 

b) 
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process involving two electrons the rate depends on 2
en  instead of en .  Regardless of how 

collisional ionization is calculated, 3-body recombination can be calculated using the 

principle of detailed balance.  To apply detailed balance, the relationship between two 

levels in thermal equilibrium is established according to the Saha equation79,80 
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Next, the rate equation can be written assuming steady state 
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Note that while the inverse rate coefficient is calculated assuming steady state, its value is 

based on the intrinsic properties of the ion.  As a result, the recombination rate coefficient 

is valid outside of equilibrium.  The units of the rate coefficient are cm6/s.  Figure 5.4 

illustrates a sample 3-body recombination rate coefficient for the Co-like ion of silver 

obtained from the previous ionization rate in figure 5.3.  Note that unlike ionization, it 

increases as the electron temperature approaches zero.   

                                                 
79 Saha, M.N., “Ionization in the Solar Chromosphere”, Philos. Mag., Vol. 40, No. 238, 1920, pp. 472-489. 

80 Saha, M.N., “On a Physical Theory of Stellar Spectra”, Proc. R. Soc. London, Ser. A, Vol. 99, 1921, pp. 
135-153. 
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V.D.3)  Radiative Recombination 

 Radiative recombination is an important recombination and cooling mechanism of 

the plasma.  It is a single step process that emits a photon.  In radiative recombination, a 

free electron is captured by an ion, which emits a photon that conserves energy and 

momentum.  Radiative recombination is the inverse process of photoionization.  As a 

result, it can be calculated through the principle of detailed balance.  The relationship 

between the radiative recombination and photoionization cross sections can be described by 

the Milne formula81 
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81 E. A. Milne, Philos. Mag., Vol. 47, 1924, p. 209. 

Figure 5.4: Plot of the total electron impact recombination (3-body) rate coefficient 
from the ground level of Co-like silver (3d9 2D2.5) to the Ni-like silver ion.   
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Figure 5.5 illustrates a sample radiative recombination cross section and rate coefficient for 

the Co-like ion of silver obtained from FAC using a distorted-wave approximation.  Note 

that the radiative recombination favors lower energy due to its closer match to the 

resonance of the transition that occurs at zero energy.   

 

   

Figure 5.5: a) Plot of the total radiative recombination cross section from the ground level (3d9 
2D2.5) of Co-like silver to the Ni-like silver ion.  b) Plot of the total radiative recombination rate 
coefficient from the ground level of Co-like silver to the Ni-like silver ion.   

a) 

b) 



 94

V.D.4)  Dielectronic recombination 

 Dielectronic recombination can be an important recombination process for ions.  It 

consists of a two-step process.  In the first step, an ion captures an electron while exciting a 

second electron to an excited state.  This allows the ion to both capture the free electron 

and conserve energy.  This process is the inverse of auto-ionization.  If we let Aa represent 

the autoionization rate and Ar represent the radiative decay rate, we can relate the first step 

of dielectronic recombination to the autoionization rate with the Saha equation 
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where i is the index of the autoionizing state in the lower ion, and n is the index of the 

recombining state in the upper ion.   

In the second step, the highly excited state decays radiatively into a stable state 

below the ionization limit.  The probability of decaying to the lower, stable state is given 

by the radiative branching ratio B(i): 
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Note that in this equation k represents states below the ionization potential, k’ represents 

state above the ionization potential, and a represents the autoionized states in the next ion.  

With the branching ratio, we can calculate the total dielectronic recombination rate from 

state n 
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The total dielectronic process tends to leave the ion in an excited state near the 

ionization limit.  Dielectronic recombination requires a bound electron to form the doubly-

excited state and therefore cannot occur with a bare ion.  Note that a photon is emitted to 

stabilize the ion, so dielectronic recombination can be a cooling mechanism for the plasma.   

 

Figure 5.6 illustrates a sample dielectronic recombination rate coefficient for the Co-like 

ion of silver obtained from FAC.  Note that unlike the other recombination processes, the 

rate coefficient approaches zero as the electron temperature approaches zero.  This is due to 

the fact that dielectronic recombination requires an excitation to the doubly excited state in 

the lower ion.  This state lies above the ionization potential and therefore requires some 

kinetic energy. 

Figure 5.6: Plot of the total dielectronic recombination rate coefficient 
from the ground level of Co-like silver (3d9 2D2.5) to the Ni-like silver ion.   
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V.D.5)  Collisional Excitation 

 Collisional excitation (electron-impact excitation) is the process where a free 

electron collides with an ion, imparting some of its energy to the ion leaving the ion in an 

excited state.  Collisional excitation can occur between any two states in an ion, but is most 

probable for monopole transitions (transitions in which the angular momentum of the ion 

does not change).  Normally collisional excitation cross sections are calculated using a 

plane-wave or distorted wave calculation with an atomic code.  For a dipole allowed 

transition in the high energy limit, the cross section can be described by the Bethe 

formula82,83 
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In this formula Ry is the Rydberg energy, a0 is the Bohr radius, Epn is the transition energy, 

fpn is the absorption oscillator strength, Ee is the electron energy, and Bpn is the high energy 

limit.  Figure 5.7 illustrates a sample electron impact excitation cross section and rate 

coefficient for a monopoles excitation from the 3d10 1S0 level to the 3d9 1S0 level in the Ni-

like ion of silver obtained from FAC.  Note that the cross section is zero for electron 

energies below the excitation energy (~500 eV), while the rate coefficient drops rapidly for 

temperatures below ~100 eV. 

 

                                                 
82 Mitio Inokuti, “Ineleastic Collisions of Fast Charged Particles with Atoms and Molecules ”, Review of 

Modern Physics, Vol. 43, No. 3, 1971, pp 297-347. 

83 L. Vriens and A. H. M. Meets, “Cross-section and rate formulas for electron-impact ionization, excitation, 
deexcitation, and total depopulation of excited atoms”, Physical Review A, Vol. 22, No. 3, 1980, pp 
940-951. 
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V.D.6)  Collisional De-Excitation 

 Collisional de-excitation is the inverse processes of collisional excitation.  In this 

process, a free electron collides with an ion in an excited state, gains some of the potential 

energy of the ion, and leaves the ion in a lower state.  The de-excitation rate can be easily 

Figure 5.7: a)  Plot of the total electron impact excitation cross section from the 
ground level (3d10 1S0) to the laser upper level (3d9 4d 1S0) in the Ni-like silver ion.  
b)  Plot of the total electron impact excitation rate coefficient from the ground 
level to the laser upper level in the Ni-like silver ion.   

a) 

b) 
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calculated using the principle of detailed balance.  In the collisional limit, two states within 

the same ion are populated according to Boltzman’s equation 
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Again, the rate equation can be written assuming steady state 
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Solving for the de-excitation rate coefficient we have 
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Figure 5.8 illustrates the electron impact de-excitation rate coefficient for the same 

transition figure 5.7.   

 

Figure 5.8: Plot of the total electron impact de-excitation rate 
coefficient from the laser upper level (3d9 4d 1S0) to the ground 
level (3d10 1S0) in the Ni-like silver ion.   
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V.D.7)  Radiative Decay 

 Radiative decay (spontaneous emission) is an important process, accounting for all 

of the line radiation and is one of the most important cooling mechanisms in many plasmas.  

An ion in an excited state can spontaneously decay to a lower state emitting a photon with 

the rate given by Einstein’s A coefficient.  A more complete treatment of this process can 

be found in many quantum mechanics textbooks.  Frequently many atomic codes will 

return the weighted oscillator strength (gf).  In this case the radiative decay rate (A) is 

related to the weighted oscillator strength by 

 
ug

gfA
232 ωα

=  

where α is the fine structure constant and ω is the transition energy.  If we substitute for the 

constants (hν in eV) we get: 

 ( )
ug

gfhA 271034.4 ν×=   (s-1) 

 

 

V.E)  Solution of rate matrix 

 The numerical form for the atomic model is more complex.  Unlike the previous 

equations it may not be tridiagonal.  There are two cases of interest.  The first case is the 

simplified rate equation with ion populations only.  This form will be tridiagonal.  The 

more general case, when both the ions and excided states are solved in the full transient 

form, will not be tridiagonal.  The simplified rate equation for the atomic model for the ion 

populations from section V.A is: 
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Note that in this form there is one tridiagonal system of equations for each zone.  Also, any radiation 

coupling between the zones is neglected, as that would affect the forms.  As will be shown below, 

the inclusion of excited states will no longer produce a tridiagonal form.   

 

The full transient solution, in which both the ion and excited state populations are solved 

for, is significantly more complicated.  The rate equation from section V.A is 
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In implicit form: 

( )[ ]

( )[ ]

( )

( )
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
++−−

⎥
⎦

⎤
⎢
⎣

⎡
++−+

++−−

++−

=
Δ
−

∑ ∑

∑ ∑

∑

∑

+= =

+++

−

= =

+++

=

+++

=

−−−++−−

++

+

−

Z

Z

Z

M

q

J

j

Z
q

Zq
ji

nZ
jq

Z
qe

Z
q

nZ
iq

nZ
i

Z
qe

q

J

j

Z
q

Zq
ji

nZ
j

Z
qe

Z
q

nZ
i

nZ
iq

Z
qe

M

q

Z
qe

Z
q

Z
q

nZ
iqe

nZ
i

Z
qe

M

q

Z
qe

Z
q

Z
q

nZ
ie

nZ
iq

Z
qe

nZ
i

nZ
i

ACNdnANNEn

ACNdnANNEn

nDNnNIn

nDNnNIn

t
NN

1 1
,

,2/1,
,,,

2/1,
,

2/1,
,,

1

0 1
,

,2/1,
,,,

2/1,
,

2/1,
,,

0
,,,

2/1,1
,

2/1,
,,

0

1
,

1
,

1
,

2/1,
,

2/1,1
,

1
,

,
,

1,1
,

1

1

ρ
ρ

ρ
ρρρρ

ρ

ρ
ρ

ρρρρρ

ρρρρρ

ρρρρρ

ρρ

βα

βα

 

Simplifying: 
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Note that because of trapping all the zones are coupled.  This creates a computational 

problem.  If J is the total number of zones and M is the total number of states, one needs to 

solve a J*M x J*M matrix.  If the zones are not coupled one only needs to solve J MxM 

matrices.  Since the matrices are not tridiagonal, the computations required scale as O(n3) 

(see APPENDIX C.2), where n is the number of equations.  This causes the time required 

to increase by a factor of 2
3
1 M  due to the excited states, and a factor of 2J  due to 

coupling.  This does not include the time required to calculate the coupling coefficients.  To 

reduce the computational problem, we assume that nZ
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, ≈+  for the purpose of 

calculating the coupling between zones. 
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Note that even in this case, the population of one level is linked to many other levels.  As a 

result, the system of linear equations cannot be written in a tridiagonal matrix.  In this case, 

we can use Gaussian Elimination with back substitution and partial pivoting to solve the 

systems of equations.   

 

 

V.F)  Pressure ionization 

 Pressure ionization is a complex but important phenomena at high densities.  At 

high densities the ions are very close to each other, violating the usual assumption of a 

single ion used in the atomic codes.  This effect causes the central potential of an ion to 

change, freeing previously bound states.  As a result the ionization potential is effectively 

reduced, which in turn affects the rates.  Specifically, it affects the collisional ionization 

rate and the 3-body recombination rates.  From Zaghloul84 the reduction in the ionization 

potential for the zth ion is 

                                                 
84 Mofreh R Zaghloul, “Ionization Equilibrium and Partition Functions of High-Temperature Weakly Non-

Ideal Flibe Gas”, Journal of Physics D: Applied Physics, Vol. 36, 2003, pp 2249-2254.  



 105

( )
8/

1 2

BD
z

ezI
Λ+

+
=Δ
λ

 

Where Dλ  is the Debye length, and BΛ  is the DeBroglie Wavelength. 
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The effect of ionization potential lowering on the collisional ionization rate can be 

observed by examining the expression given by Lotz.  The dominant term involving the 

ionization potential IP is 
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The new ionization potential can be written as IIP Δ−≡ε . 
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If we divide by the uncorrected term we get the correction factor F 
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This factor F should multiply the ionization rate to account for pressure ionization 
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The effect of pressure ionization on the 3-body recombination rate is twofold.  First, 

the correction factor F to the ionization rate is also present because of the relationship 

established using detailed balance.  Second, the correction to the ionization potential affects 

the Saha equation, and therefore the relation between the ionization and recombination 

rates.  The relation between the recombination rate and ionization rate scales as 

( )ekTIP /exp , so the correction to this relation is ( )ekTI /exp Δ− .  The final result is that the 

3-body recombination rate needs to be corrected by the factor 

( )ekTIF /exp Δ−∗  

 

 Radiative and dielectronic recombination are also affected by pressure ionization, 

but the effect can be more difficult to determine.  Because pressure ionization is only 

important at high densities, the primary recombination method is 3-body due to its 2
en  

dependence.  As a result, the effect on radiative and dielectronic recombination can be 

neglected.  For more information on high pressure effects see Griem85,86. 

 

 So far, the discussion on pressure ionization has focused on a single transition.  

However, the effective rates are obviously affected because the individual rates from each 

level are affected.  Additionally, states that were previously below the ionization level may 

now reside above the ionization level.  As a result they should no longer be included in the 

                                                 
85 Hans R. Griem, Principles of Plasma Spectroscopy, Cambridge University Press, United Kingdom, 1997. 

86 Hans R. Griem, “High-Density Corrections in Plasma Spectroscopy”, Physical Review, Vol. 128, No. 3, 
1962, pp. 997-1003. 
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effective rates.  To ease the use of a data lookup table for the effective rates two 

approximations may be made. 

Approximation 1:  0FFn =  

In this approximation, the correction factor F is assumed to be the same for the 

excited states as it is for the ground state.  Its accuracy becomes questionable for 

high-lying states, but greatly simplifies the problem.  In addition, those states are 

less likely to be populated and therefore contribute less to the ionization.  Also, the 

error introduced is equal in both the ionization and recombination so the 

equilibrium point is nearly maintained.  As a result, the time constant may be a little 

off but the steady-state solution is still accurate. 
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 Approximation 2:  Populations do not change, and previously bound states do not affect 

the ionization rate. 

In this approximation, the removal of states above the reduced ionization potential 

does not affect the populations of the other states.  This is likely to be true because 

of the reduced probability of occupation of the highly excited states.  This allows us 

to use the collisional-radiative tables with no modifications. 
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V.G)  Radiation 

 One important cooling mechanism in most plasmas is radiation.  To properly 

calculate the radiative losses it is necessary to have an accurate radiation model.  The 

treatment of the radiation depends on its type.  There are three types of radiation: bound-

bound, free-bound, and free-free radiation, referring to the electrons initial and final states 

respectively.  Each of these radiation types is created by a different physical mechanism 

and interacts with the plasma in a different manner.   

 

Bound-bound radiation: 

 Bound-bound radiation consists of line radiation within the plasma.  It occurs when 

an excited state spontaneously decays to a lower state.  There are many lines emitting 

within a plasma, each of which has a different central frequency and line width (see section 

V.H).  Line radiation is responsible for the distinctive spectra and is often the dominant 

radiation component.  It is also the most difficult to treat.  Because the radiation in a given 

line is emitted in a narrow bandwidth, its intensity can be very large.  This will cause 

absorption and re-emission along the same line, but in a different part of the plasma.  This 

creates an energy transport effect that can re-distribute the energy within the plasma.  As a 

result, radiation trapping and transport effects have to be accounted for (see section V.I).   

 

Free-bound radiation: 

 Compared to bound-bound radiation, free-bound radiation can be treated less 

carefully.  This is justifiable by considering the processes involved; free-bound radiation 
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occurs when an ion recombines with an electron through radiative recombination.  Unlike 

bound-bound radiation, free-bound radiation creates a continuum due to the continuum of 

possible free electron energies.  As a result, the intensity of any single frequency is 

dramatically reduced, so trapping plays a less important role.  However, free-bound 

radiation cannot be neglected as it often emits as much energy as bound-bound radiation.   

 

Free-free radiation: 

 The last and least important radiation type is free-free radiation (Bremsstrahlung 

radiation).  It occurs when an electron travels near an ion and accelerates.  Like free-bound 

radiation its spectrum is a continuum due to the continuum nature of the free electrons.  If 

we neglect trapping effects, the emitted power per unit volume is87 

 ei
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Note that unless the plasma is completely ionized (no bound electrons), Bremsstrahlung 

radiation tends to be several orders of magnitude weaker than any other type of radiation.   

 

 

V.H)  Line Widths 

 Of importance to any radiation model are the atomic line widths.  Both radiation 

trapping and gain depend on the line width.  Additionally if we want to generate a synthetic 

spectrum we need to know the line widths.  Atomic lines can be broadened through a 

                                                 
87 Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic 

Phenomena, Dover Publications Inc., New York, 2002. 
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number of processes including natural broadening, collisional broadening, Doppler 

broadening, and Stark broadening to name a few.    

 

V.H.1)  Natural Broadening 

 Natural broadening occurs because the lifetime of the atomic level is finite.  

According to Heisenberg’s uncertainty principle h≥ΔΔ tE .  The energy of a photon is 

νhE = , so the broadening is 

 
ππ

ν
22

1 ∑
<=

Δ
=Δ ji

jiA

t
 

Similarly, collisional broadening decreases the lifetime of the state and increases νΔ .  

Collisional broadening is often the dominate broadening in dense plasmas.  In both cases, 

the broadening results in a Lorentzian line shape. 

 
( ) ( )22

0 2/2
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ννν
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π
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Δ+−
Δ

=g  

 

V.H.2)  Doppler Broadening 

Doppler broadening is caused by the thermal motion of the ions.  This motion 

causes Doppler shifts in the direction of travel.  Because the thermal motion is random the 

Doppler shifts result in a broadened line.  This broadening is one of the most important 

broadening mechanisms in hot plasmas.  The width of the line is 

20
2ln8

Mc
kT

D νν =Δ  

The resulting line profile is a Gaussian 
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V.H.3) Voigt Profile 

 When more than one broadening mechanism is important, the different line profiles 

must be convoluted.  When adding two profiles of the same type, the widths add.  This is 

not true for different profiles.  For example, when both Doppler broadening and natural or 

collisional broadening are important, you must convolute a Lorentzian and a Gaussian line 

shape resulting in a Voigt profile88. 
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Here DνΔ  and LνΔ  are the Doppler and Lorentzian widths.   

Often only the Voigt cross section on resonance VΓ  is needed.  This can be approximated 

by89 

 ( ) LDLV cc Γ−+Γ+Γ=Γ 1222 , where  3435.0=c . 

The error for estimating the stimulated emission cross section is accurate within about 

0.3%.   

If the full Voigt profile is needed, it can be efficiently approximated by90 

                                                 
88 Z. Shippony and W.G. Read, “A Highly Accurate Voigt Function Algorithm”, J. Quant. Spectrosc. 

Radiative Transfer, Vol. 50, No. 6, pp. 635-646, 1993. 

89 Peter L. Hagelstein, “Development of the MIT tabletop soft x-ray laser”, SPIE Vol. 1551 Ultrashort-
Wavelength Lasers, 1991, pp. 254-274. 

90 A.B. McLean, C.E.J. Mitchell, D.M. Swanston, “Implementation of an efficient analytical approximation to 
the Voigt function for photoemission lineshape analysis”, Journal of Electron Spectroscopy and 
Related Phenomena, Vol. 69, pp. 125-132, 1994. 
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The error in this approximation is less than 0.6%, and the typical error is about 0.03%.  

 

V.H.4)  Stark Broadening 

A final broadening mechanism that may be important for dense plasmas is Stark 

broadening.  Stark broadening is generated by Stark shifts caused by the microfields within 

the plasma.  Because the plasma consists of charged particles, electric fields exist between 

any pair of particles.  If one looks at a single ion, there is a non-zero time average field 

caused by the motion of the surrounding particles.  Statistically, there are many different 

possible configurations of charged particles within the plasma.  Each configuration will 

have a different electric field, which will result in a microfield distribution for the ions.  

Each field can then cause a Stark shift within the ion, resulting in a range of Stark shifts.  

This range is the basis for Stark broadening.  It can be very complex, depending on the 

details of the atomic structure and the approximations used.  In the standard approximation, 

the ions are heavy and static producing a static electric field, while the electrons are light 

producing a time-dependent electric field.  The standard approximation is valid for heavy 

ions or when the electron temperature is greater than or equal to the ion temperature, both 
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assumptions are valid in this model.  Under the standard approximation the expression for a 

Stark broadened line shape is 

( ) ( ) ( )∫
∞

⋅Ρ=Φ
0

, εεωεω dJ , 

where ( )εΡ  is the microfield distribution function for a normalized field strength and 

( )εω,J  is the line shape function with Stark shifts caused by an external electric field ε .  

The microfield distribution function can be described through statistical mechanics.  Under 

a high-temperature, low-density limit we can make an ideal gas approximation, neglecting 

particle correlations due to coulomb interactions.  This was first done by Holtsmark.91 
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Here ε  is the relative field strength, E is the electric field strength, E0 is intrinsic field 

strength, q is the charge of an electron, r0 is the average inter-particle distance, and n is the 

density of electrons.  This microfield distribution can be seen in figure 5.9.  This theory 

was further extended through Monte Carlo simulations by Hooper92,93. 

                                                 
91 J. Holtsmark, “Über die Verbreiterung von Spektrallinien” Annalen der Physik, Vol. 58, No. 7, pp. 577-

630, 1919. 

92 C. F. Hooper, Jr., “Low-Frequency Component Electric Microfield Distributions in Plasmas”, Physical 
Review, Vol. 165, pp. 215-222, 1968.   

93 C. F. Hooper, Jr., “Electric Microfield Distributions in Plasmas”, Physical Review, Vol. 149, pp. 77-91, 
1968.   
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 For each microfield value, we need to know the shift in the energy levels due to the 

Stark effect.  This can be done with the use of quantum perturbation theory.  The 

Hamiltonian under a perturbation can be written as 

VHH += 0  

mVnmHnH nm |||| 0 +=  

The new states can be written as a linear combination of the previous states 

∑=
n

n ncα  

The perturbation potential due to an applied electric field is94 
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94 Robert D. Cowan, The Theory of Atomic Structure and Spectra, University of California Press, Berkeley 

and Los Angeles, California, 1981. 

Figure 5.9:  Plot of the Holtsmark distribution 
used to calculate the microfield distribution. 
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E is the static electric field, )1(P  is the electric dipole moment, and Jγ  is the state ket.  

Note that there is a factor of 2 to account for the fact that the electric field is measured in 

units of e/a0
2, while the energies are measured in rydbergs (e/a0

2).   

 Figure 5.10 shows the shift of the 4d 1S0 state and the splitting and shift of the 4p 

1P1 state in Ni-like silver due to an applied electric field.  In both cases the applied electric 

field causes an interaction between the different levels of the atom.  Note that only like 

values of the magnetic level m are linked with the perturbation potential.  As a result this 

causes the 4d 1P1 m=1 and the 4d 1P1 m=0 levels to interact with different levels.  Because 

the interact with different levels they will behave differently under an applied field.  This 

difference causes the splitting shown.   
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 With the calculation of the Stark shift, we can calculate the Stark broadening.  By 

integrating the line shape function for each level over the microfield distribution we obtain 

the final line shape function.  Figure 5.11 shows the line shape function for the Ni-like 

silver laser transition for different electron densities with Doppler and Stark broadening.  

From the plot it is clear that the Stark effect does not play a significant role until the 

electron density exceeds 1021 electrons/cm3.  In this calculation, collisional broadening was 

Figure 5.10:  Plot of the effects of an applied electric field on the 
laser upper and lower levels in Ni-like silver.   
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not included to illustrate the Stark effect.  When included, it represents the dominate 

broadening at electron densities above 1020 electrons/cm3.  As result, stark broadening is 

not an important broadening mechanism for the collisional soft x-ray lasers.  Note that at 

very high densities (above 2x1022 electrons/cm3) the stark shift is sufficient to alter the 

basic atomic structure of the atoms.  This can alter the A coefficients and could affect the 

laser.   

   

 

V.I)  Radiation Trapping 

 Radiation trapping can be a very important phenomenon in a large variety of 

plasmas.  From a conceptual point of view it is very simple.  A photon emitted on a line by 

one atom can be absorbed by another atom in the lower state.  This will excite the 

absorbing atom to the higher state.  As a net result, the number of atoms in the lower and 

upper states is unchanged.  However, some of the light escapes and a large portion of the 

Figure 5.11:  Stark broadened line shape for the Ni-like silver laser transition 
at different electron densities at an electron temperature of 800 eV and an ion 
temperature of 50 eV.   Note: collisional broadening is not included. 
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light is transferred from one region to another.  Consequently, radiation trapping reduces 

the net radiation loss from the plasma and is an energy transport mechanism.  The different 

spatial regions become linked through the coupling coefficients, which are the probability 

that a photon emitted in one region will be absorbed in another.  The notation I use is 

Zpq
jiC , , where j is the emitting zone (or spatial region), i is the absorbing zone, p and q are 

the upper and lower levels of the radiative transition, and Z is the ion in which the 

transition takes place.  Note that the number of coupling coefficients depends on the total 

number of zones squared times the total number of radiative transitions in each ion, 

summed over all the possible ions.  As a result, a very large number of coupling 

coefficients may be needed.  The solution of the populations and the calculation of the 

coupling coefficients can be extremely time consuming. 

 For the calculation of the coupling coefficients, we will be following the notation of 

Apruzese95.  Here we will only consider one transition.  Additionally, we will be assuming 

an infinite plane geometry.  The plasma is assumed to be uniform and infinite in extent 

parallel to the target.  This assumption is valid if the changes in the plasma properties 

parallel to the target is much less than the direction perpendicular to the target.  The 

coupling coefficients are calculated using the optical depths of the plasma.  For a general 

lineshape the optical depth is: 

( ) ( )νν π
λτ g

g
gAdN
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uulc
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=  

At line center: 

                                                 
95 J.P. Apruzese, J. Davis, D. Duston, K.G. Whitney, “Direct Solution of the Equation of Transfer Using 

Frequency and Angled Averaged Photon-Escape Probabilities, with Applications to a Multistage, 
Multilevel Aluminum Plasma”, JQSRT, Vol. 23, pp. 479-487, 1980.   
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The optical depth for a Doppler-broadened spectral line matches that in Elton96 
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With the optical depth, one can calculate the escape probability following Holstein97 

The probability of radiation traversing an optical depth τ is: 
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Up to this point, we have calculated the probability of escape for a single path.  However 

we need to calculate the probability of escape from one zone.  This requires the use of an 

angle-averaged escape probability.  According to Apruzese this is 
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In the planar limit, the second integral may be replaced by letting 51.0=μ .
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96 Raymond C. Elton, X-Ray Lasers, Academic Press Inc., 1990. 

97 T. Holstein, “Imprisonment of Resonance Radiation in Gases”, Physical Review, Vol. 72, No. 12, pp. 
1212-1233, 1947.   
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The problem can be further simplified by approximating )( 0τeP  
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This is accurate to within 7% for 50 <τ , and 4% for 4
0 1035 ×<≤ τ . 

Now, the coupling coefficient from zone j to zone i is: 
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With the given assumptions the integral of the angle average escape probability can be 

solved analytically: 
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V.J)  Velocity and Temperature Gradients 

 The preceding analysis of radiation trapping can be strongly affected by large 

temperature and velocity gradients.  A temperature gradient will cause the Doppler 
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broadening of two regions to be different.  This in turn will reduce the probability of a 

photon being reabsorbed.  A strong velocity gradient will cause a Doppler shift in the 

emission and absorption widths, which will reduce the overlap and reduce the probability 

of re-absorption.  Figure 5.12 shows the effect of temperature and velocity gradients.  In 

the presence of a temperature gradient the Doppler broadened line profile will have 

different widths depending on the ion temperature.  This will reduce the overlap between 

the two line shapes.  In the presence of a velocity gradient the two line profiles will have a 

Doppler shift with respect to each other.  This will again reduce the overlay.  In both cases, 

the mismatch between the line shapes will reduce the opacity of the plasma.  We can see 

the effect of the temperature and velocity gradients by looking at the line profiles.  For a 

Doppler broadened medium98 
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98 Orazio Svelto, Principles of Lasers, 1998 Plenum Press, New York, p49 
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Figure 5.12: The photoemission and absorption profiles for two cases: 
a) effect of a temperature gradient increasing the FWHM by a factor of 3 
b) effect of a velocity gradient shifting the central peak by the FWHM 

b) 
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If we define a de-coupling constant for the decrease in the optical path length τ  due to 

changes in the frequency profiles from zone i to j: 

∫
∞

∞−
′−−= υγ υυυυ dff ji )(,)(, 00

 

By assuming non-relativistic speeds (vz<<c): 
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jiv ,Δ  is the velocity difference between the two zones, and Ti and Tj are the ion 

temperatures of the two zones.  γ is the factor that represents the decrease in the coupling 

between the two zones.  When γ = 1, the there is no change due to temperature or velocity 

gradients.  When γ = 0, the two line profiles no longer overlap and there is no coupling 

between the zones.  Note that if there is a temperature gradient, but no velocity gradient: 
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Likewise, if there is a velocity gradient, but no temperature gradient: 
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In most cases, the presence of a velocity gradient limits the opacity of the plasma, and the 

temperature gradient has negligible effect.  The presence of a velocity gradient is known as 

the Sobelev effect99,100. 

 

                                                 
99 V.V. Sobelev, Soviet Astronomy A, Vol. 1, 1957, p. 665. 

100 D.G. Hummer, G.B. Rybicki, “The Sobolev Approximation for Line Formation with Partial Frequency 
Redistribution”, The Astrophysical Journal, Vol. 387, 1992, pp. 248-257. 
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V.K)  Spectral Model 

 The atomic model described in this chapter is capable of modeling the spectra of a 

plasma.  If we solve for the atomic level populations in a steady-state equilibrium or 

transient solution, we can use the resulting populations, the A coefficients, and the trapping 

calculations to compute the radiation emitted from the plasma.  This radiation can then be 

integrated over time and space for a direct comparison with experimental results.  For most 

experiments, the spectrometer will introduce additional instrumental broadening to the 

measurement.  The actual spectra can be de-convolved from the measurement, or added to 

the simulation.  When the instrumental broadening represents the dominate broadening 

mechanism, it is easiest to include it in the simulation and allows us to neglect all other 

broadening mechanisms and calculate the line-centered profiles.  This was used to study a 

plasma generated by a soft x-ray laser, and the results are presented in section VIII.E. 
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CHAPTER VI.)  ABSORPTION MODEL:  

 Since the plasmas simulated are laser-created plasmas, the absorption model is very 

important.  We need to calculate the absorption as a function of position and time in the 

plasma.  The incident laser light will be reflected, refracted, transmitted, and absorbed 

throughout the plasma.  As a result, all these processes must be included.  A complete 

simulation could solve Maxwell’s equations directly at all points in the simulation. As an 

example we could use a finite-difference finite-time domain method101,102 to simulate the 

absorption.  Unfortunately, this type of model is both computationally expensive and places 

large restrictions on the spatial grid size.  Depending on the geometry we can make some 

simplifications to the equations allowing us to simulate the absorption accurately with a 

substantial reduction in the computations.  In the 1D model, we can use the planar 

geometry to implement a simple matrix method that will solve Maxwell’s equations 

directly.  In the 2D model we can use a ray-based method in which we include all relevant 

physical processes.  In both cases we use the complex index of refraction computed with 

the Drude model (See section IV.F).   

 

 

                                                 
101 Kane Yee (1966). "Numerical solution of initial boundary value problems involving Maxwell's equations 

in isotropic media". IEEE Transactions on Antennas and Propagation 14: 302–307. 
102 J. Berenger (1994). "A perfectly matched layer for the absorption of electromagnetic waves". Journal of 

Computational Physics 114: 
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VI.A.)  1D Absorption Model: 

 In the 1D plasma model we can take advantage of the geometry to solve the 

electromagnetic equations in a computationally efficient way.  In a 1D planar geometry the 

discretization reduces the problem to a multilayer stack.  Then we can use the same 

techniques used to solve a complex multilayer stack for the plasma absorption.  To do this, 

consider the sequence shown in figure 6.1.   The incident laser field encounters alternating 

layers of surfaces and bulk propagation.  At each layer we wish to write a relation between 

the complex electric fields entering and exiting the layers.  Then we can multiply the 

resulting interaction matrices to get a relationship between the fields entering and exiting 

the stack.  

 

If we let Mr represent the matrix for reflection (see section VI.A.2), Mp represents the 

matrix for propagation (see section VI.A.1).  E1 is the input beam, E2 is the net reflected 

beam. We can write the relationship between the fields: 
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Figure 6.1:  Flow chart for the model. 



 127

φieEE 34 =  

φieMM
EE

1211

1
3 +
=  

( )
θ

θφ
2

22
2

cos
/sin

2
tan nn′−

=⎟
⎠
⎞

⎜
⎝
⎛ ⊥ ,  ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⊥

2
tan

2
tan

2
|| φφ

n
n  

Note θ  is the angle with respect to normal 

 

VI.A.1)  Propagation Matrix Mp 

We would like to derive the interaction matrix for propagation of the electromagnetic 

wave.  Consider the following diagram: 

 

We need to relate E1 and E2 to E3 and E4.  This is relatively simple: 
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k is the wavevector λπ /2=k   

n is the complex index of refraction  

The distance d is the propagation length in the layer, which is simply the layer thickness Δz 

divided by the cosine of the angle with respect to normal θ. 

θcos/zd Δ=  

To get the angle in every zone we can successively apply Snell’s Law at each surface 
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VI.A.2)  Interface Matrix Mr 

Deriving the interaction matrix for a surface is slightly more complicated.  Consider the 

following diagram: 

 

We can then write the expression for a propagating wave at a dielectric interface.    

4241212 τEEE +Γ=  

4343131 Γ−= EEE τ  

where Γ12 is the reflection coefficient from 1 to 2, and τ13 is the transmission coefficient 

from 1 to 3 (see section VI.A.3). 

The interaction matrix can then be writted as: 
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The subscript ⊥ refers to the perpendicular polarization of the input field with respect to 

the plane of incidence. and || is the parallel component.  

Note that p polarization refers to in the plane of incidence which is ||, s polarization refers 

to perpendicular to plane of incidence which is then ⊥ .  η is the impedance of the dielectric 
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VI.A.3)  Reflection and Transmission Coefficients 

The reflection and transmission coefficients are obtained from the Fresnel reflection and 

transmission coefficients103 
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103 John David Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., 1999.  pp. 305-306 
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VI.B.)  2D Absorption Model:  

 For a 2D or 3D plasma, solving for the electromagnetic fields is more complicated.  

As a result, the techniques developed in the previous section do not work.  Instead, we will 

be using a ray-based absorption model.  Some advantages of a ray based model are the fact 

that it does not put limitations on the spatial grid, it is an efficient method, and can be 

written in a parallel form.  The main disadvantages include the fact that it does not solve 

for the fields and cannot include diffraction effects.  Care must also be taken when 

including both transmission and reflection from surfaces and gradients.  For the plasmas 

studied by this model, the feature size is significantly larger than the wavelength so we can 

neglect diffraction.  This allows us to use a ray-based absorption model.  We will include 

refraction, reflection, transmission, and absorption throughout the plasma and from all 

surfaces and gradients.  To do this we first break the laser beam into a series of rays.  We 

then follow each ray path using the ray equation (see section VI.B.1).  If a discrete surface 

is encountered the ray can be transmitted or reflected according to the reflection and 

transmission coefficients (see section VI.A.3).  The new path of the transmitted wave can 

be calculated according to Snell’s law.  Finally the ray will be absorbed as e-αd where α is 

the absorption coefficient and d is the propagation distance of the ray in each cell.   
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VI.B.1)  Ray Equation 

The path of the rays is governed by the ray equation.  To derive it we will start with 

Maxwell’s equations (Gaussian Units): 
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Making the geometrical approximation (k is large) we can collect the terms of order k2: 

( ) 0222 =∇− Skk ψεψ  

( ) ε=∇ 2S        (eikonal equation) 

Collecting terms of order k: 
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Define a ray that is normal to the wavefront: 
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CHAPTER VII)  SOFT X-RAY LASER GAIN AND 3D RAY-TRACE: 

 The ability to calculate the amplification of light in a plasma is of great interest.  

The amplification results from stimulated emission in a transition in which an excited level 

has a larger population density than the lower level creating a population inversion.  To 

understand this behavior, one needs to know how gain is created, how it saturates, and how 

the resulting output laser pulse propagates.  Gain is created through a population inversion 

between the 4d 1S0 and the 4P 1P1 states in the Ni-like ion (see figure 7.).  The laser upper 

level is populated through monopole electron impact excitation from the ground level.  The 

laser lower level is de-populated through a large radiative dipole transition to the ground 

level.  This inversion is created in the high temperature region of the plasma and requires a 

large Ni-like population.  With knowledge of the gain and plasma properties, a 3D ray trace 

can be applied to simulate the soft x-ray laser.  This process is described in the following 

sections. In section VII.A the properties of laser amplification are discussed, followed by 

gain saturation in section VII.B.  Finally the ray propagation and traveling wave mismatch 

are discussed in sections VII.C and VII.D.   

 

Figure 7.1:  Simplified diagram of the Ni-like scheme.  The laser upper level is the 4d 1S0 
state and is excited through electron impact excitation from the ground state.  The laser 
lower level is the 4p 1P1 state, and radiativly decays to the ground level. 

4d 1S0 

3d10 1S0 

4p 1P1 
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VII.A)  Laser Amplifcation 

 The soft x-ray lasers of interest for this work are either Amplified Spontaneous 

Emission (ASE) lasers or seeded soft x-ray lasers.  For both types of lasers there is no laser 

cavity to affect the laser properties.  For an ASE laser, spontaneous radiation emitted at the 

beginning of the gain medium is amplified as it propagates (see figure 7.).  As a result, the 

characteristics of the output laser are entirely determined by the temporal and spatial 

characteristics of the gain medium.  In the case of a seeded laser, the gain material will 

amplify the incident light, but if the gain is not uniform it will affect the characteristics of 

the resulting laser.  

 

The behavior of light amplification and emission can be described by the radiative transfer 

equation 
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s
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where )(νj  and )(νg  are the emissivity and small-signal gain coefficients respectively.  

This equation describes how the light is generated and amplifies as it propagates.  When it 

is coupled with the ray equation (see section VII.C) and saturation effects (see section 

VII.D) a complete understanding of the soft x-ray laser can be obtained.  If we integrate the 
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Figure 7.2: Simple diagram of amplified spontaneous emission 
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ASE laser over a constant gain without refraction the growth of the ASE laser intensity is 

given by104 
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In both formulas )(νΦ  is the line profile.   

 

 

VII.B)  Gain Saturation 

 At sufficiently high intensities, the intensity no longer follows an exponential 

growth.  At these intensities the stimulated emission rate causes changes in the populations.  

As a result, the population inversion decreases, reducing the gain and the growth rate of the 

laser beam.  In the limiting case of a completely saturated beam the intensity increases 

linearly.  In this limit, every ion in the laser upper and lower levels will undergo stimulated 

emission and absorption reducing the population inversion to zero.  To accurately account 

for the effects of saturation, a self-consistent solution is needed.  This requires including 

the stimulated rate coefficients in the atomic model (see chapter V).  The stimulated rates 

for the laser transition are given by 

                                                 
104 Joseph T. Verdeyen, Laser Electronics, second edition, Prentice Hall, New Jersey, 1981, p 210.   
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 )()()( υυρυ ululul BW Φ=  (stimulated rate from the upper level to the lower level) 

 )()()( υυρυ ullulu BW Φ=  (stimulated rate from the lower level to the upper level) 

In these equations Bul is Einstein’s B coefficient from the laser upper level to the laser lower 

level, )(υρ  is the photon density, and )(νΦ  is the line profile.  There are several 

relationships that can help simplify the stimulated rates: 
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With these equations we can rewrite the stimulated rate 
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The total stimulated rate coefficient is the integral over the frequency range 
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Now we can re-solve the rate equations with the stimulated rates included.  This will allow 

us to include all saturation effects in a self-consistent manner. 

 As the laser propagates, it will change the excited state populations, reducing the 

gain.  Solving the populations in a self-consistent manner requires solving for the atomic 

populations as a function of length along the line focus.  This prevents the use of a 1D or 

2D solution.  To overcome these problems I created a post processor to simulate the soft x-

ray laser.  First, the model solves the hydrodynamic equations neglecting the effects of 
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stimulated emission.  Then a 3D ray propagation code calculates the amplification of the 

line of interest coupled with a fully integrated atomic model.  Note that the post-processor 

may take as long as the entire hydrodynamic model to finish.   

 

VII.C)  Ray Propagation: 

 As discussed in section VII.A, the path length through the gain medium is of 

fundamental importance.  However, a simple analysis of a uniform gain medium and the 

geometry shown in figure 7. cannot be used within the plasma.  The gain is not uniform, 

and more important there are strong electron density gradients.  These electron density 

gradients cause a gradient in the index of refraction which will cause the laser beam to 

refract out of the gain region within a very short distance (< 1 cm).  This puts a limiting 

condition on the maximum gain-length product in the plasma.  To account for the refraction 

a propagation code is necessary.   

 The propagation code works by decomposing the output laser into a series of rays.  

Each ray is propagated through the plasma, experiencing gain and refraction.  The output is 

then the sum of all of the rays.  To propagate each ray, a 3D ray-tracing code is 

implemented.  The code accounts for refraction as well as velocity mismatch between the 

pumping velocity and the soft x-ray laser velocity.  Refraction is accounted for by solving 

the ray equation (see section VI.B.1). 
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To simplify the problem, we note that the refraction of the beam is typically several 

milliradians.  As a result, we can invoke the paraxial approximation dxds ≈ : 
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If we are far from critical density, the index of refraction is (see section IV.F) 
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Simplifying yields the final form of the ray equation 
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This is the final form of the ray equation that we solve in the model.  By solving the ray 

equation, we can calculate the path through the plasma, then multiply the differential path 

length by the local gain coefficient, and finally calculate the intensity growth for the ray.  

Note that to achieve a reasonable accuracy; typically 106 - 107 rays are solved per iteration 

for the lifetime of the gain.   

 Samples of the most intense rays from a simulation of a Ni-like Cd laser (section 

VIII.A) at 204 ps from the peak of the pre-pulse, (4 ps after the peak of the pump pulse) for 

the Ni-like Cd laser are shown in figure 7.a.  The electron density profile used to calculate 

the path of the rays is shown in figure 7.b.  Note that since the laser is saturating, the most 

intense rays do not follow a symmetric path about the center of the target length (located at 

2mm).  Instead they tend to originate in the high gain region further from the target surface, 

then follow a path that takes them closer to the target surface where the saturation intensity 

is larger.  The larger saturation intensity in this region allows the rays to reach a higher 

intensity even if the gain coefficient is smaller.  If the rays did not saturate the gain, the 

path of the most intense rays would be symmetric with respect to the center of the plasma.   
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VII.D)  Traveling Wave / Velocity Mismatch: 

 A final issue to consider when calculating the soft x-ray laser amplification is the 

use of a traveling wave geometry and any resulting velocity mismatch that may occur.  

Using the traditional geometry of normal incidence pumping, the requirement for the 

consideration of a traveling wave geometry can be calculated by the time it takes the 

amplified light to travel from one end of the plasma to the other cLt /≈ .  For a 4 mm long 

target, this time is 13 ps.  Since the gain exists for at most ~10 picoseconds, the gain will 

change dramatically and often end before the amplified beam can reach the end of the 

target.   

 A traveling wave geometry is a geometry that shifts the pulse front so that it does 

not illuminate the entire line simultaneously.  By delaying the pulse front the gain can 

“travel” with the amplified laser pulse, allowing for the use of much longer and more 

efficient targets.  The geometry used in the experiments (grazing incidence pumping) is 

Figure 7.3:  a) Plot showing the path of the maximum intensity rays for a Cd plasma at 204 ps 
after the peak of the pre-pulse (4 ps after the peak of the pump pulse).  b) Cut of the electron 
density at 204 ps used for the ray propagation.  The Cd plasma was excited by a 200 mJ, 120 ps 
pre-pulse, followed by a 1 J, 8 ps pump pulse with a delay of 200 ps.   

a) b) 



 141

inherently traveling wave.  As is shown in figure 7., the grazing incidence causes a 

difference between the two path lengths of θcosLL =Δ .  The difference between the 

speed of the amplified beam and the gain creates a velocity mismatch that between the 

creation of the gain and the arrival of the amplified beam. 

 ( )θcos1−=Δ
c
Lt  

For a 4mm target with a pumping angle of 23 degrees, the velocity mismatch is 1 ps (a 10X 

reduction).  

 

 

 

Pump 
Laser

L

ΔL
θ

Figure 7.4:  Grazing incidence pumping showing difference in path lengths 
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CHAPTER VIII)  RESULTS: 

 

The computer models developed as part of this dissertation can be used to model a wide 

variety of experiments.  The 1.5D and 2D hydrodynamic models can be used to simulate 

many laser-created plasmas.  However, the primary focus of this work is the study of laser-

created plasmas used to generate soft x-ray lasers.  The codes were used to study the 

physics of several soft x-ray laser experiments, and the model prediction were compared 

with the experimental results.  

  Simulation results of a 13.2 nm Ni-like Cd laser are presented in section VIII.A 

and compared with the experimental results.  Section VIII.B includes simulation in which 

the code was used to predict the performance of a future experiment, in which a short 

wavelength 8.8 nm Ni-like La laser will be developed.  Section VIII.C discusses the 

properties of an injection-seeded Ne-like Ti laser.  Finally, in section VIII.D the near and 

far-field beam profiles of a seeded and unseeded Ni-like Ag laser are discussed and 

compared to experimental results.   

 In addition to simulating soft x-ray lasers, the models were used to understand the 

dynamics of plasmas created by a soft x-ray laser and simulate the spectra emitted by the 

plasma.  In section VIII.E the results of an experiment in which a 46.9 nm soft x-ray laser 

was focused on Si and Cr targets to generate a plasma are presented.  The plasmas were 

studied using the hydrodynamic model and synthetic spectra resulting from model 

simulations are compared to experimental measurements.   
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VIII.A)  Ni-like Cd Soft X-ray Laser: 

The 1.5D code was used to model the characteristic of a collisional soft x-ray operating at 

13.2 in Ni-like Cd.  This wavelength is of particular interest because it falls within the 

bandwidth of Mo/Si mirrors, and therefore it is of interest for the actinic inspection of 

lithographic masks.  The experimental setup used in the development of the Ni-like Cd 

laser is described in Chapter I.  It consists of a 120 ps, 200 mJ pre-pulse followed by a 1 J, 

8 ps pump pulse focused at a 23° grazing incidence angle.  Both beams are focused into a 

4.1 mm FWHM x 30 µm FWHM line.  The plasma was modeled using the 1.5D 

hydrodynamic model and the results are shown in figure 8.1.  All of the plots show the 

plasma characteristics as a function of time and distance from the target surface.  In the 

figures time t=0 refers to the peak of the 200 mJ pre-pulse.   

The pre-pulse creates and heats the plasma to an electron temperature of about 100 

eV (Fig. 8.1a).  The mean degree of ionization reaches 20 corresponding to the Ni-like state 

of Cd (Fig. 8.1e).  The ions are not directly heated by the laser pulse, but are heated 

through collisions with electrons.  As a result, their temperature lags behind the electron 

temperature, and typically does not exceed 60 eV (Fig. 8.1b). 

 At the arrival of the short pump pulse, the plasma is quickly heated and the electron 

temperature rises above 600 eV (Fig. 8.1a).  This heating occurs at an electron density of ~ 

2 × 1020 cm-3 (Fig. 8.1c), determined by the grazing incidence pumping at 23º.  This rapid 

heating causes a slight increase in the degree of ionization ensuring a large Ni-like 

population (Fig. 8.1e), as well as a large population inversion.  The population inversion is 

transient in nature lasting approximately 15 ps, with a computed peak gain coefficient of 

160 cm-1 (Fig. 8.1g).  The ion temperature does not change significantly on this time scale, 
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remaining at 40-60 eV (Fig. 8.1b).  This is important to limit the Doppler broadening, 

which along with collisional broadening, are the dominant broadening mechanisms.  A 

large fraction of the heat is conducted to the cooler, higher density plasma region near the 

target surface.  As a result of radiation and thermal conduction the plasma cools within 15-

20 ps.  Figure 8.2 shows a detailed view of the temporal evolution of the gain.  From the 

cut of the computed gain, its duration is approximately 15 ps.   
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b) 

e) 

c) 

a) 

d) 

f) 

Figure 8.1: Plots of the plasma properties for a Cd plasma excited by a 200 mJ, 120 ps pre-pulse 
(8x1011 W/cm2), followed by a 1 J, 8 ps pump pulse (6x1013 W/cm2): a) electron temperature, b) 
ion temperature, c) electron density (log10), d) mean degree of ionization, e) Ni-like density 
(log10), and f) gain. 
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The 13.2 nm soft x-ray laser was simulated using the ray-trace described in chapter 

VII. The simulated and measured energy vs. length are shown in figure 8.3.  The simulated 

laser saturates at approximately 2.5 mm, while the experimental laser saturates at 2.5 - 3.0 

mm.  At 4mm, the output energy of the simulated laser is 2.5 µJ, which is larger than the 

Figure 8.2:  Plots of a) the temporal and spatial characteristics of 
the gain and b) the peak gain coefficient vs. time for 13.2 nm Ni-
like Cd plasma excited by a 200 mJ, 120 ps pre-(8x1011 W/cm2), 
followed by a 1 J, 8 ps pump pulse (6x1013 W/cm2). 

a) 

b) 
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measured energy of 0.5 µJ, but this discrepancy is expected as the model is an ideal case in 

which the line focus and the target are assumed to be free of imperfections.    

 

 

 The ray trace simulation also calculates the near field and far field intensity 

distributions as shown in figure 8.4.  From the simulation the beam size at the exit of the 

amplifier covers a region of about 20 µm x 20 µm.  This corresponds to a fluence of 0.8 

J/cm2.  The divergence of the laser is computed to be approximately 5 mrad x 10 mrad, in 

Figure 8.3:  Plot of the simulated (a) and measured (b) 
energy vs. length for the 13.2 nm Ni-like Cd. 

a) 

b) 
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acceptable agreement with the experimental divergence of 7 mrad x 14 mrad.  The 

simulated deflection angle is 3 mrad.  A more detailed discussion of the near-field and far-

field profiles for a 13.9 nm Ni-like Ag amplifier are discussed in section VIII.D.   

 

 

 

Figure 8.4:  Plot of the simulated near field (a) and far field (b) images for the 
13.2 nm Ni-like Cd.  The near field beam is approximately 20 µm x 20 µm, 
while the far field image indicates that the divergence is 7 mrad x 14 mrad. 

a) 

b) 
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Finally, the ray trace calculation is capable of simulating the temporal and 

frequency profiles. These results are shown in figure 8.5.  As the pulse travels through the 

amplifier its temporal profile narrows due to gain narrowing, and then broadens due to gain 

saturation.   The predicted pulse width of 9 ps is larger than the measured 5 ps, but this is 

primarily due to the broadening caused by gain saturation, which does not occur in the 

experiment because the experimental laser intensity is lower and does not reach such a full 

degree of saturation as in the model.  At 4 mm, the intensity of the laser pulse exceeds 8 x 

1010 W/cm2, which is more than 4 times the saturation intensity of  5 x 109 W/cm2.  The 

gain narrowed line width Δυ/υ0 is computed to be 2.5 x 10-5.  At 2mm, saturation 

broadening has not occurred resulting in a pulse duration of 5 ps is good agreement with 

the measured pulse duration.   
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VIII.B)  Ni-like La Soft X-Ray Laser: 

 To illustrate soft x-ray laser amplification at shorter wavelength, the results of a 

simulation in Ni-like La are shown in figure 8.6.  The basic setup and behavior is very 

similar to that of the Ni-like Cd plasma.  However, in order to obtain amplification in the 

higher Z material, more energy must be used.  The simulation was performed for a 2J, 300 

Figure 8.5:  Plot of the simulated (a) and measured (b) temporal 
profile for the simulated 13.2 nm Ni-like Cd laser 

a) 

b) 
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ps pre-pulse focused into a 30 µm x 6 mm line, with a short pump pulse of 3 J, 6 ps focused 

into the same line at a grazing angle of 30°.  As a result of the increased energy, the 

electron temperature is significantly hotter than in the case of the Ni-like Cd laser,  

reaching 800 eV (figure 8.6a) which is necessary to pump the laser transition.  In addition, 

a steeper grazing angle of 30° was used so that the electron density at the peak gain could 

be increased from 2.6 x 1020 to 4.3 x 1020 (figure 8.6c).  This higher density allows for an 

increased population inversion which helps to overcome the decrease in the stimulated 

emission cross section caused by the decreased laser wavelength.  In spite of this increase 

in density, the gain is still significantly lower, reaching a peak gain coefficient of 70 cm-1 

(figure 8.6 (e and f)). 
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a) 

Figure 8.6: Plots of the plasma properties for a La plasma excited by a 2.5 J, 300 ps pre-pulse 
(3x1012 W/cm2), followed by a 3 J, 6 ps pump pulse (2x1014 W/cm2): a) electron temperature, b) 
ion temperature, c) electron density (log10), d) mean degree of ionization, and e,f) gain. 

b) 

c) d) 

e) f) 
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 The soft x-ray laser characteristics of the shorter wavelength La laser is very similar 

to the behavior of the Ni-like Cd laser discussed previously.  The primary difference is due 

to the lower cross section caused by the shorter wavelength.  The resulting lower gain 

coefficient causes the ASE laser to saturate at longer length of ~4 mm (Fig. 8.7).  However, 

the steeper angle used results in a larger population inversion, that causes a higher 

saturation intensity resulting in a higher saturated energy output of ~10 µJ for a 6mm long 

target..   

 

 
Figure 8.7: Simulated energy vs. length for a 8.8 nm Ni-like La soft x-ray laser. 
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 VIII.C)  Seeded 32.6 nm Ne-like Ti Soft X-Ray Laser Characteristics 

 In addition to simulating an ASE laser system, the computer models are capable of 

simulating the amplification of an externally injected seed pulse.  In these experiments a 

seed beam is generated from a high harmonic pulse and in injected into the start of the 

plasma column105.  Figure 8.8 shows the experimental and simulated seeded energy as a 

function of amplifier length.  The amplification behavior can be divided into three distinct 

phases.  The first phase, which takes place in the first ~1 mm of the amplifier, is dominated 

by the gain narrowing of the seed pulse whose initial 0.1 nm spectral bandwidth greatly 

exceeds that of the laser line.  This leads to the amplification of only a fraction of its 

bandwidth (figure 8.9), resulting in the observed slow initial seed pulse energy increase.  

When the seed pulse bandwidth narrows sufficiently to approach the laser linewidth, a 

second amplification phase starts in which a quasi-exponential increase in the energy of the 

seed pulse takes place.  This rapid increase ends after about 2.5 mm into the amplifier.  At 

this length, the measured amplified seed pulse energy reaches a value consistent with the 

computed saturation intensity for the 32.6 nm line of Ne-like Ti at a plasma density of 2.6 x 

1020 electrons/cm3.  The third amplification phase corresponds to the gain saturated regime 

in which efficient energy extraction occurs.  The maximum measured amplified seed pulse 

energy 50–60 nJ is similar to that predicted by the model.   

 

                                                 
105 Y. Wang, E. Granados, M. A. Larotonda, M. Berrill, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, 

“High-Brightness Injection-Seeded Soft-X-Ray-Laser Amplifier Using a Solid Target”, Physical Review 
Letters, 97, 123901 (2006).  
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Figure 8.9: Simulated seeded laser profile as a function of 
frequency for each 0.5 mm cut through the amplifier.

Figure 8.8: Simulated (red dots) and experimental energy (black points) vs. 
length for a seeded 32. 6 nm Ne-like Ti amplifier 
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 Figure 8.10 shows the simulated variation of the amplified seed pulsewidth as a 

function of plasma amplifier length. Initially, the seed pulse broadens as its bandwidth 

narrows dramatically in the narrow bandwidth plasma amplifier. Subsequently, the 

simulations indicate that as the amplified seed pulse approaches the saturation fluence at 

about 2.5 mm within the amplifier the effect of gain saturation starts to contribute to 

additional pulse broadening. The pulsewidth is computed to increase from ~1.0 ps at 2 mm 

to 1.3 ps at 4 mm, an increase caused by additional line narrowing and saturation 

broadening.  The simulated pulse duration of 1.2 ps at 3 mm is in good agreement with the 

measured pulsewidth of 1.1 ps106.  The bandwidth of the amplified seed pulse at this point 

is computed to be 3.6 x 1011 Hz. As a result the computed time-bandwidth product is 0.43, 

close to the transform-limited value of 0.36 for our Voigt profile.  Since the resulting pulse 

is close to transform limited, it is essentially fully temporally coherent.    

                                                 
106 Y. Wang, M. Berrill, F. Pedaci, M. M. Shakya, S. Gilbertson, Zenghu Chang, E. Granados, B. M. Luther, 

M. A. Larotonda, and J. J. Rocca, “Measurement of  1-ps  soft-x-ray laser pulses from an injection-
seeded plasma amplifier”, Physical Review A, 79, 023810 (2009).  
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VIII.D)  Near-Field and Far-Field Simulations of a 13.9 nm Ni-like Ag Amplifier 

 For many applications the beam quality is very important. Therefore for this reason 

as well as for fundamental reasons it is important to understand both the near and far field 

profiles of the seeded and ASE lasers.  To understand all of the important effects the 2D 

plasma model must be used.  Figure 8.11 shows the results of the 2D plasma model for the 

13.9 nm Ni-like plasma amplifier created by a sequence of pump pulses consisting of a 10 

mJ pre-pulse of 120 ps duration, followed after 5 ns by a second ~ 350 mJ pre-pulse 

impinging at normal incidence, which in turn was followed after 200 ps by a ~ 0.9 J pump 

Figure 8.10: Simulated variation of the seeded Ne-like Ti laser pulsewidth as a function of 
amplifier length. In the first 2 mm of the amplifier rapid line narrowing of the amplified 
seed pulse results in a temporally broader pulse. In the last 2 mm the pulse broadens due to 
both additional line narrowing and gain saturation. The pulsewidth is defined as the time 
interval that contains 76% of the pulse energy, corresponding to the FWHM of a Gaussian 
distribution. The inset shows the computed temporal profiles of the amplified seed pulse as a 
function of amplifier length. The proceeding short pulse contains the non-amplified 
frequencies of the injected seed.  
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pulse of 6.7 ps duration impinging at a grazing incidence angle of 23 degrees. The pump 

pulses were focused onto the target to form a 30 µm x 4.1 mm FWHM long line.  The 

length of the target was 3 mm.  A small portion of the pump laser energy (~20 mJ) was 

split, compressed in a separate pulse compressor, and focused into a Ne gas jet with a f 

=1.2 m lens to produce the 59th harmonic seed pulses.   

 Figure 8.11 shows the evolution of the electron density, electron temperature, and 

small signal gain .  The left column shows the plasma properties as a function of time and 

distance from the target surface.  Time t=0 represents the peak of the second (main) pre-

pulse.  The right column shows the 2D spatial distributions of the electron density, electron 

temperature, and small signal gain at the time delay of 202 ps after the peak of the main 

prepulse.  The prepulse is computed to heat the plasma to ~ 90 eV (Fig. 8.11a), resulting in 

a degree of ionization of ~ 18 at the time of arrival of the short pulse.  The short pulse 

rapidly heats the plasma to ~ 400 eV (Fig. 8.11(a,b)) in the region where the electron 

density is 2-3 x 1020 cm-3 (Fig. 8.11(c,d)), resulting in a small-signal gain coefficient of ~ 

80 cm-1 (Fig. 8.11(e,f)) approximately 35 µm from the target surface. 



 159

Figure 8.11:  2D plasma simulations of a 13.9 nm Ni-like plasma amplifier created by a 10 
mJ, 120 ps pre-pulse (2x1011 W/cm2), followed after about 5 ns by a second ~ 350 mJ pre-
pulse (8x1011 W/cm2), which in turn was followed after 200 ps by a ~ 0.9 J, 6.7 ps pump pulse 
(4x1013 W/cm2) at a grazing incidence angle of 23 degrees.  The left column shows the electron 
temperature (a), electron density, (c) and gain (e) as a function of time and distance from the 
target surface.  Time t=0 represents the peak of the second pre-pulse.  The right column 
shows the 2D spatial profiles of the electron temperature (b), electron density, (d) and gain (f) 
at 202 ps corresponding to the time of the injection of the seed pulse. 
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 The behavior of a seeded 13.9 nm Ni-like Ag laser is very similar to the 32.6 nm 

seed Ne-like Ti laser discussed previously.  The energy vs. length, bandwidth vs. length, 

frequency profiles, and temporal profiles are shown in figure 8.12.  As the seed amplifies, 

the amplifier bandwidth does not support the initial bandwidth of the harmonic seed.  As a 

result, the initial amplification phase is governed by a slow growth in energy with 

substantial reduction in the bandwidth, and a corresponding increase in the pulse duration.  

Once the bandwidth of the amplified seed has narrowed to match the amplifier, quasi-

exponential amplification occurs until saturation is reached.  Finally, in saturation the 

maximum energy extraction occurs, and some additional temporal broadening occurs due 

to saturation broadening caused by re-pumping of the laser level.  The left inset of figure 

8.12 shows the dramatic narrowing of the line for the different amplifier lengths, while the 

right inset shows the temporal pulse shapes for the different amplifier lengths.  The 

amplified pulse duration is approximately 1 ps in duration, very similar to the Ne-like Ti 

amplifier.   
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In addition to studying the general behavior of the amplified seed, the near and far-

field beam patterns were measured for the Ni-like Ag plasma amplifier107.  A comparison 

between the measured and simulated far-field beam profiles for each of the two cases is 

illustrated in Fig. 8.13 along with the corresponding profile of the high harmonic seed.  
                                                 
107 M. Berrill, D. Alessi, Y. Wang, S. R. Comingue, D. H. Martz, B. M. Luther, Y. Liu, and J. J. Rocca, 

“Improved beam characteristics of solid-target soft x-ray laser amplifiers by injection seeding with high 
harmonics”, Optics Letters, In Press (2010).   

Figure 8.12: Computed variation of the energy, bandwidth, spectrum and pulse shape of the 
seeded 13.9-nm laser pulse as a function of the Ni-like Ag amplifier length. The left insert 
illustrates the rapid narrowing of the normalized spectrum as the seed pulse is amplified along 
the plasma column. In the main graph, the red curve describes the corresponding variation of 
the spectral bandwidth, defined for the purpose of this figure as the spectral width containing 
76% of the pulse energy. This bandwidth decrease is accompanied by a slow initial increase of 
the pulse energy, which is followed by a quasi-exponential increase that tapers when the 
saturation fluence is reached (blue curve). The insert on the right illustrates the evolution of 
the laser pulse shape, which is characterized by rapid initial width increase due to the 
amplifier bandwidth limitations, and by slight asymmetries caused by gain saturation. The 
amplified pulse is preceded by a short pulse of nearly constant intensity composed of the 
broad spectrum of non-amplified frequencies. 
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When a harmonic seed pulse with a FWHM divergence of 0.5±0.03 x 0.7±0.04 mrad in the 

directions perpendicular and parallel to the target respectively was used to seed the plasma, 

an amplified pulse with a divergence of 1.4±0.14 x 0.7±0.07 mrad was measured to result 

(Fig. 8.13c).  Simulations agree in showing that the divergence of the amplified beam in the 

direction parallel to the target surface closely resembles that of the seed beam, while the 

divergence perpendicular to the target surface is larger due to refraction.  When the 

divergence of the harmonic seed was increased to 1.6±0.3 x 1.4±0.4 mrad, an amplified 

pulse with a divergence of 1.5±0.08 x 1.2±0.15 mrad was measured (Fig. 8.13d).  The 

results show that when the divergence of the input harmonic seed is larger than ~1 mrad the 

far field of the amplified seed is almost completely dominated by the seed, while for 

smaller divergences it is controlled by both the input seed and refraction.  These beam 

divergences are nearly an order of magnitude smaller than those corresponding to the 

unseeded amplifier (Fig. 1.8).   
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Figure 8.13: Comparison of  far-field profiles of : a) and b)  measured high harmonic seeds 
with two different divergences; c) and d) corresponding measured seeded laser beams ; and 
e) and f) simulated seeded laser beams. 
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Figure 8.14 compares the measured near-field profiles of the ASE and seeded 

beams.  The location of the center of the near-field beam spot with respect to the target 

surface (Fig. 8.14a, 8.14c) is dominantly determined by the position of the peak of the gain 

(~ 35 µm from the target in Fig 8.11f), and was measured to be at a distance of 33±4 µm in 

good agreement with the simulated near field profile (Fig. 8.14b & 8.14d).  Model 

simulations show that the location of the gain is in turn dependent on the early pre-pulse 

that is responsible for creating the initial plasma profile, and that the absence of this pre-

pulse shifts the gain closer to the target surface (to a distance of ~ 15 µm).  As the seed 

propagates through the plasma amplifier, its intensity quickly saturates, yielding a near 

field profile that is dominantly determined by the spatial distribution of the saturation 

fluence integrated over the amplifier length.  The measured near-field size of the unseeded 

ASE laser (Fig 8.14a) is characterized by a full-width at half maximum of 11.3±4 x 13.3±3 

µm in the directions perpendicular and parallel to the target surface respectively.   The 

measured size of the seeded laser beam (Fig 8.14c) is smaller, 6.0±0.6 x 8.3±1.5 µm.   The 

larger near-field spot size of the ASE laser in the direction parallel to the target surface is 

due to the larger divergence of the ASE laser, which allows rays with different trajectories 

to amplify across the entire gain region.  By contrast the narrow divergence of the 

harmonic seed causes all the rays to effectively take similar paths, resulting in a narrower 

beam profile.  This size difference is enhanced in the direction parallel to the target surface 

due to the larger gain size, and to the fact that the seeded beam is more sensitive to 

refraction caused by the electron density profile of the plasma amplifier (Fig. 8.11d) which 

acts as a weak negative lens.  It should be noticed that the simulation results shown in Fig. 

8.14 assume a perfect overlap between the laser pulses. Computations show that a 10 µm 
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misalignment causes the gain region and resulting near-field beam size to decrease by 

~20% in the direction parallel to the target surface.   

 

 

 

VIII.E)  Photoionized Plasmas Created by Soft X-Ray Lasers 

The development of high intensity soft x-ray lasers creates the opportunity to study 

the unique properties of plasmas created by intense monochromatic soft x-ray light.  The 

table-top soft x-ray laser beams generated by collisional electron impact excitation of ions 

Figure 8.14: Measured and simulated near-field beam profiles for the un-seeded (ASE) and 
seeded lasers. 
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in discharge-created and laser–created plasmas can be focused to generate plasmas with 

pulses ranging from the nanosecond108 to the picosecond (section VIII.A and VIII.B) time 

scales.  The advent of soft x-ray free electron lasers (FEL)109 will allow the study of 

plasmas heated by extremely intense soft x-ray pulses in the complementary femtosecond 

time scale.  In anticipation to experiments, theoretical studies have been conducted, that 

predict the characteristics of plasmas created with intense monochromatic soft x-ray light 

will depend strongly on the target material and differ significantly from those created with 

visible lasers110.   However, no experimental results of the study of the characteristics of 

such plasmas have been reported.   

We performed a spectroscopic study of plasmas created by focused soft x-ray laser 

pulses of ~1 ns duration on solid targets, and compared the results to hydrodynamic/atomic 

physics model simulations111.  In this experiment, a 1.2 ns, 46.9 nm soft x-ray laser was 

focused onto a Si or Cr sample using a Sc/Si multilayer mirror, producing a focal spot of 

10-15 µm diameter.  Three pulse energies of 0.5 µJ, 3.1 µJ and 17 µJ; corresponding to 

peak intensities of 4x108 W/cm2, 2.5 x109 W/cm2 and 1.4 x1010 W/cm2  respectively were 

used.  The light emitted from the plasma was collected on a spectrometer.  The computer 

models were used to simulate the plasma, which included photoionization as an additional 

absorption method.  A post-processor was used to synthesize spectra based on multi-cell 

radiation transport and the computed populations and opacities. To improve the accuracy of 

                                                 
108 B. R. Benware, A. Ozols, J. J. Rocca, I. A. Artioukov, V. V. Kondratenko, and A. V. Vinogradov, 

"Focusing of a tabletop soft-x-ray laser beam and laser ablation",  Optics Letters, 24, Issue 23, pp. 
1714-1716, 1999.   

109 Ackermann, W. et al. "Operation of a free-electron laser from the extreme ultraviolet to the water 
window" Nature Photonics 1, 336–342 (2007). 

110 M. Fajardo, P. Zeitoun, and J.-C. Gauthier, "Hydrodynamic simulation of XUV laser-produced plasmas", 
The European Physical Journal D, 29, 69-75, 2004. 

111 M. Berrill, F. Brizuela, B. Langdon, H. Bravo, C.S. Menoni, and J.J. Rocca, “Warm Photoionized Plasmas 
Created by Soft X-Ray Laser Irradiation of Solid Targets,” Journal of the Optical Society of America 
B 25, B32, (2008). 
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the synthesized spectra the level energies and transition probabilities were calibrated using 

experimental data when available112.   

At the lowest irradiation energy investigated, 0.5 µJ, all three elements were found 

to be below the ablation threshold, in agreement with the simulations.  At the intermediate 

energy of 3.1 µJ plasma radiation from neutral Cr atoms was observed (Fig. 8.17c).  At this 

energy Si is very close to the ablation threshold, resulting in only very weak emission from 

two of strongest Si I lines in the ultraviolet spectra (Fig. 8.17a).  These observations agree 

with model simulations (Fig. 8.15) that predict that the plasma reaches a peak temperature 

of 1.0 eV and a peak degree of ionization of 0.2 while Si, that is at the threshold of 

ablation, only reaches a peak temperature of 0.2 eV and a degree of ionization Z<0.01. The 

different behavior of these materials is to be expected, as the absorption length of the 46.9 

nm laser light in Si (~300 nm) greatly exceeds that of Cr and Ag (~18 nm and ~7.5 nm 

respectively) Consequently, in Si the soft x-ray light interacts with a much larger volume of 

material which results in a higher ablation threshold, and in a colder plasma.   

At the highest experiment irradiation energy (17 µJ) plasma radiation was observed 

for all three elements.  Figure 8.17 shows the measured time integrated visible spectra 

corresponding to Si (Fig. 8.17(b) and Cr (Fig. 8.17 (d)) plasmas for this irradiation 

condition.  The Si spectra of figure 8.17 (b) still only displays lines associated with neutral 

Si (Si I). Classified lines from singly charged silicon (Si II) that fall within the spectral 

window of the measurement (eg: 207.27 nm, 290.43 nm, 290.57 nm) are not observed, an 

indication that this is a very low temperature plasma, in agreement with model calculations.  

In contrast, spectra of plasmas created by irradiation of Cr targets with the same soft x-ray 

laser intensity show lines of Cr II (Fig. 8.17(d)).  Figure 8.16 shows the computed plasma 
                                                 
112 NIST Atomic Spectra Database Version 3, http://physics.nist.gov/PhysRefData/ASD/index.html 
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parameters for Si and Cr plasmas created under these irradiation conditions.  The peak 

temperature for Si is 1.1 eV (Fig. 8.16(a)) while the Cr reaches a significantly higher 

temperature of 3.5 eV (Fig. 8.16(b)).  This again reflects the difference in the 

photoionization cross sections at 46.9 nm: 6.1x10-19 cm2 and   9.5x10-18 cm2 for Si and Cr 

respectively.  This difference in the cross section results in more energy being absorbed by 

fewer atoms for Cr than for Si. The larger Cr plasma temperature results in a computed 

peak degree of ionization of 1.6 for Cr as compared with a degree of ionization of only 0.2 

for Si (Fig. 8.16(f) and 8.16(e) respectively).  Due to the higher temperature the Cr plasma 

has an increased expansion velocity (Fig. 8.16(c,d)), that results in significantly denser 

plasma away from the target surface.   

Figure 8.18 shows simulated spectra for Si and Cr for the irradiation conditions 

corresponding to the experimental spectra of Fig. 8.17(b) and 8.17(d).  The computed Si 

spectra resembles well that observed in the experiments, showing only Si I lines. The 

synthesized Cr spectrum also reproduces most of the features of the experimental data, but 

shows a slightly larger ratio between Cr II and Cr I lines and the presence of weak Cr III 

lines. This is in part due to the fact that the synthetic spectra is calculated for the plasma 

conditions on axis of the irradiated spot, where the plasma has the highest temperature.   
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Figure 8.15:  Simulated plasma parameters corresponding to Si and Cr plasmas generated by 3.1 
µJ energy, 1.2 ns duration soft x-ray laser pulse irradiation ( λ = 46.9 nm ) of solid targets .  Due 
to the smaller absorption cross section the Si (a) plasma is significantly colder that the Cr (b) 
plasma and does not reach the ablation threshold (c,d). Due to the lower temperature the Si 
plasma (e) has a much lower degree of ionization than the Cr plasma (f).   

a) Si 

c) Si 

e) Si 

b) Cr

d) Cr 

f) Cr 
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Figure 8.16:  Simulated plasma parameters corresponding to Si and Cr plasmas generated by 17 
µJ energy, 1.2 ns duration soft x-ray laser pulse irradiation ( λ = 46.9 nm ) of solid targets .  Due 
to the smaller absorption cross section the Si (a) plasma is significantly colder that the Cr (b) 
plasma. The Cr plasma expands at a significantly higher rate (d). Due to the lower temperature 
the Si plasma (e) has a much lower degree of ionization than the Cr plasma (f).   

a) Si b) Cr

c) Si d) Cr 

e) Si f) Cr 
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Figure 8.17: Measured spectra of Si and Cr plasmas created irradiating solid targets with 
3.1 µJ and 17 µJ 46.9 nm soft x-ray laser pulses.  At 3.1 µJ Si is only slightly above the 
ablation threshold (a), while for Cr (c) strong lines from the neutral atoms are present.  At 
17 µJ only neutral atom lines are present for Si (b), while the Cr (d) spectra show lines from 
both the neutral atoms and the singly charged ions. 
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Simulations were also conducted for higher irradiation energies.  The results show 

that as the intensity of the soft x-ray laser is increased, the behavior of the different 

elements tends to converge.  When the laser energy is increased by a factor of 10, the 

temperature of the Si plasma is computed to increase slightly above 3.5 eV while the Cr 

plasma increases to 9.0 eV.  Additionally, the mean degree of ionization increases to Z= 1.4 

for Si and to 2.5 for Cr.  If the laser energy is further increased by a factor of 60, to 1 mJ, 

Figure 8.18:  Simulated spectra for Si and Cr plasmas created by 17 µJ 
soft x-ray laser (λ = 46.9 nm) pulse irradiation.  The Si spectra is 
completely dominated be neutral atom lines (Si I) (a), while the hotter 
Cr spectra contains large numbers of both Cr I and Cr II lines (b). 
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the electron temperature is computed to reach 7 eV for Si (Fig. 8.19(a)) and 16 eV for Cr 

(Fig. 8.19(b)), while the degree of ionization of the Si plasma, Z= 2.5 (Fig. 8.19(c)), is 

calculated to approach that for Cr, Z= 3.0 (Fig. 8.19(d)).  The predicted convergence of the 

plasma parameters as the irradiation flux is increased is caused by the fact that the amount 

of mass ablated from the three materials tends to equalize at increased irradiation.  This is 

caused by the more rapid increase in the degree of ionization for Cr and Ag that causes 

these plasmas to become more rapidly transparent than Si to the 25 eV laser photons 

(depleted of the absorbing neutral and singly charged ions).  At high irradiation energies 

plasmas with a very uniform degree of ionization can be created.  For example, the degree 

of ionization of a Cr plasma created under the high intensity condition (1 ns after the peak 

of a 1.7 mJ laser pulse) is computed to vary by less than 10% over 90% of the entire 

plasma volume.  However, the plasma density within the volume changes significantly due 

to expansion.  The degree of ionization at which the plasma becomes transparent increases 

with decreasing laser wavelength. Therefore shorter wavelength soft x-ray lasers will create 

hotter plasmas, and preserve the differences between elements until the plasma reaches a 

higher degree of ionization.   
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Figure 8.19:  Simulated plasma parameters corresponding to Si and Cr plasmas generated by 1 
mJ energy, 1.2 ns duration soft x-ray laser pulse irradiation (λ=46.9 nm) of solid targets .  Due to 
the higher energy, the differences between the Si and Cr plasmas are significantly reduced.  The 
Si (a) plasma is slightly colder that the Cr (b) plasma, while the electron densities are very close 
(c,d).  The Si plasma (e) still has a significantly lower degree of ionization than the Cr plasma (f). 

a) Si b) Cr

c) Si d) Cr 

e) Si f) Cr 



 175

 

 

CHAPTER IX.)  CONCLUSIONS: 

 

 The goal of this research was to create a computer model to better understand the 

physics involved in laser created plasmas and soft x-ray lasers.  The soft x-ray lasers are 

pumped by electron impact excitation of highly charged ions in dense laser-created 

plasmas.  To accomplish this, I created a 1.5D and a 2D hydrodynamic / atomic model 

capable of simulating laser created plasmas and used it to simulate the plasmas that give 

rise to the soft x-ray amplifiers.  The models include all of the hydrodynamic equations, an 

equation of state, a complete thermodynamic model, and a comprehensive atomic model 

with multi-cell radiation transport.  The atomic physic model includes all of the necessary 

ion species with atomic data for thousands of levels and is capable of computing the 

population inversion that gives rise to laser amplification.  A 3D post processor ray trace 

was developed included to simulate the generated soft x-ray lasers.  The simulations 

performed can fully characterize all of the important plasma properties as well as the 

resulting soft x-ray laser.  Direct comparisons with experimental results allowed for a better 

understanding of the physics of laser created plasmas used for the generation of soft x-ray 

lasers, and provides a tool to advance their design. 

 The model was used to understand the physics and plasma dynamics involved in the 

generation of transient EUV lasers in Ni-like and Ne-like ions pumped by heating a laser 

created plasma with a picosecond laser pulse impinging at grazing incidence.  For efficient 

laser amplification to occur, several conditions must be met.  The density gradients must be 
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small to allow extended propagation of the amplified radiation in the gain media, the 

electron temperature and density must be sufficient to create a large population inversion in 

the Ni-like or Ne-like species, and the desired degree of ionization must be maintained.   

With the two pulse scheme described in the introduction, these conditions can be met. 

 The model was used to simulate a Ni-like Cd laser operating at 13.2 nm wavelength 

created by a 120 ps, 200 mJ pre-pulse focused at normal incidence, pumped by an 8 ps 

duration optical laser pulse of 1 J energy focused at a grazing incidence angle of 23 

degrees.  The first laser pulse allows the plasma to expand which will create small electron 

density gradients.  The model simulated the plasma density profiles and predicted that they 

are approximately exponential and expand with time.  The grazing incidence angle of the 

second pulse refracts in the plasma, coupling the pump energy into a localized region with 

electron density around 2 x 1020 cm-3.  The model shows that this allows the plasma to 

reach temperatures in excess of 600 eV, which results in the creation of a large population 

inversion in the Ni-like ions.  This heating is significantly more efficient than the heating 

that would have occurred if the short pulse beam was directed at normal incidence.  In the 

latter case most of the pulse energy would be absorbed closer to the target, where the 

density gradients are too steep for adequate propagation of the soft x-ray light along the 

gain region.  In that case the more optimum gain region (at an electron density of 2 x 1020 

cm-3) heats up to only 400 eV, resulting in a significantly lower gain.  As a result, the 

grazing incidence pumping geometry allows for a significantly increase in the pumping 

efficiency, that allows for implementation of saturated lasers with wavelengths in the 13 

nm wavelength region using short pump pulse energies of only 1 J.    
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 The simulation results confirm that the soft x-ray laser is the result of a transient 

population inversion that is much higher than those that can be created in steady state.  This 

gives rise to large gain coefficients that allow soft x-ray laser to reach gain-saturation after 

only a few millimeters of amplification in the plasma.  The transient gain coefficients can 

reach as much as an order of magnitude larger than the steady-state value, reaching a peak 

value of 150 cm-1.  Gain is computed to take place in a region of about 20 µm x 20 µm 

located at a distance of about 15 µm from the target surface.  The large transient gain is 

possible because the laser upper level is directly pumped by strong monopole electron 

impact excitation from the ground level before the laser lower level has a chance to 

populate.  The model also identified several mechanisms that terminate the gain.  The first 

mechanism is cooling of the plasma by radiation and thermal conduction.  The model 

predicted that significant cooling will occur within ~ 15 ps.  A second mechanism is over 

ionization due to the increased temperatures.  This ionization takes place in 10-20 ps.  

While both of these mechanisms will limit the duration of the EUV laser amplification, the 

model indicates that the gain is very transient in nature further limiting its duration.  The 

transient nature of the gain puts an additional limitation on the lifetime of the gain that 

favors very short pulses.   

Simulations of the 13.2 nm Ni-like Cd soft x-ray laser show good agreement 

between the computed laser output pulse characteristics and the observed experimental 

characteristics.  The soft x-ray laser saturates at about 2 mm compared to the saturation in 

the experiment at 2.5-3.0 mm in the experiment due to the larger gain of the model.  This 

difference in the gain can be attributed in part to the fact the model assumes an ideal 

plasma, while in reality the uniformity of the plasma, overlap between the pre-pulse and 
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pump pulse line focus, etc, are less than ideal.  The higher gain, earlier saturation, and ideal 

nature of the modeled plasma produce pulses with an output energy of 2.5 µJ, compared to 

the experimental pulse energy of  ~ 0.5 µJ.  The simulated near field and far field images 

are in reasonable agreement with the experiment.  The simulated beam shows a divergence 

of 5 mrad x 10 mrad while the experimental divergence is 7 mrad x 12-14 mrad.  The 

simulated laser pulse duration is somewhat longer in duration (9 ps), than that measured in 

the experiment (5 ps) but this can be easily explained by the stronger saturation re-

broadening in the simulation.   

 The model was used to better understand how the observed lasing in multiple 

elements along the Ni-like isoelectronic sequence from Mo to Sn was possible with 

practically the same pump pulse energy.  Simulations at higher pulse energies were 

performed in Ni-like La in preparation for future experiments.  The general behavior of the 

La laser was very similar to the behavior of the Ni-like Cd laser previously discussed.  The 

primary difference is due to the smaller laser cross section caused by the shorter 

wavelength.  To partially overcome this, a steeper angle was used to pump a higher density 

region.  In spite of this, the gain was still lower resulting in saturation at a longer length of 

~4 mm compared with ~2mm for the Ni-like Cd laser.  However, due to the higher density 

and shorter wavelength, the saturation intensity is higher, allowing for approximately 10 µJ 

for a 6mm long amplifier.   

In addition to the ASE lasers, simulations and experiments were performed in 

which the soft x-ray amplifier was seeded by a pulse generated through high harmonic 

generation.  The seeding of the amplifier allows for a fully spatially coherent beam and 

better near and far-field beam profiles.  The results of a seeded 32.9 nm Ne-like Ti seeded 



 179

laser and a 13.9 nm Ni-like Ag seeded laser were discussed.  The behavior of the seed is 

governed by the bandwidth limitations of the amplifier and the initial seed pulse.  When the 

pulse first starts to amplify, its bandwidth significantly narrows until it matches the 

bandwidth of the amplifier.  As a result of the dramatic narrowing the pulse duration of the 

laser significantly broadens until it is essentially transform limited.  Then the pulse 

experiences a quasi-exponential amplification until the saturation fluence is reached.  In 

saturation, efficient extraction of the soft x-ray laser occurs along with a slight increase in 

the pulse duration due to saturation broadening.  The final pulsewidth is ~1 ps in duration 

in good agreement with the experimental results.  Simulations of the soft x-ray laser near-

field and far-field profiles were conducted using results of the 2D hydrodynamic model.  

Comparisons with experimental results show very good agreement in both the beam size 

and the divergence.  By seeding, a dramatic decrease in the divergence of ~10x was 

observed.   

 In addition to simulating the plasmas used for the generation of soft x-ray laser, we 

have studied warm plasmas generated by focusing 46.9 nm soft x-ray laser pulses of 

nanosecond duration onto Si and Cr solid targets. The critical density corresponding to this 

wavelength ( 5 x 1023 cm-3) exceeds solid density, and the absorption is dominated by 

single photon photoionization.  Spectra of the soft x-ray laser-created plasmas were 

compared with those of plasmas created with an optical (λ= 800 nm) laser. The results 

agree with hydrodynamic model demonstrating that the soft-x-ray laser plasmas differ from 

those created by visible lasers and are strongly element-dependent, with characteristics 

largely determined by the position of the laser wavelength relative to absorption edges and 

resonances. Measured spectra agree with model simulations in showing that soft x-ray 



 180

laser-created Si plasmas, a low absorption material at 46.9 eV, are significantly colder and 

less ionized than plasmas created from more highly absorbent materials such as Cr.  This 

strong elemental dependence is computed to soften at higher nanosecond pulse irradiation 

intensities that deplete the low charge species, whose photoionization cross sections 

dominate the plasma absorption.  High intensity soft x-ray lasers generating shorter pulses 

will be able to create highly uniform warm dense plasma over large volumes.  
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APPENDIX A)  VARIABLE LIST 

 

Constants 

sm  - Mass of species s (g) 

em  - Electron mass (9.11x10-28 g) 

pm  - Proton mass (1.67x10-24 g) 

e  - Electronic charge (4.8x10-10 esu) 

c  - Speed of light (3.0x1010 cm/s) 

h  - Plank’s constant (6.626x10-27 ergs-s) 

h  - Modified Plank’s constant, π2h=h  

α  - Fine structure constant (7.297x10-3) 

Coordinates 

z - Distance from target surface (cm) 

y - Distance from line center (cm) 

x - Distance along the line focus (cm) 

 

Density variables 

im  - Ion mass (g) 

sρ  - Mass density of species s,  

  sss nm=ρ  (g/cm3) 

ρ  - Mass density of the plasma (g/cm3) 

M - Mass of zone (g/cm2) 

sn  - Density of species s (cm-3) 

en  - Electron density (cm-3) 

in  - Ion density (cm-3) 

sn&  - Net creation rate of species s (cm-3s-1) 

Velocity equation 

svr  - Velocity of species s (cm/s) 

vr  - Plasma Velocity (cm/s) 

p  - Total pressure (dynes/cm2) 

sp  - Partial pressure of species s, sss Tnp =  

(dynes/ cm2) 

visτr  - Viscosity tensor  

η  - Viscosity coefficient  

Q - Artificial viscosity 

extf - External Forces 
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Energy Conservation 

sT  - Temperature of species s (ergs) 

eT  - Electron Temperature(ergs) 

iT  - Ion Temperature (ergs) 

sε  - Gas Dynamic Energy Density 

(ergs/cm3) 

q&  - Heat flux (ergs cm-3 s-1) 

absE - Absorbed energy (ergs cm-3 s-1) 

atomE  - Atomic energy losses (ergs cm-3 s-1) 

1.5 D Properties 

R - Half width of plasma density profile 

L - Half width of plasma temperature 

profile 

W - Full width of laser beam 

vx - Plasma velocity along the z axis 

vy - Plasma velocity along the y axis 

 

Electro-Magnetic Variables 

E
r

 - Electric Field (statvolt/cm) 

B
v

 - Magnetic Induction (gauss) 

j
r

 - Current Density (statamp/cm2) 

 

Conductivity properties 

eiττ , - Electron-ion collision time (s) 

eiν  - Electron-ion collision frequency (s-1) 

eiσ  - Electron-ion collision cross section 

(cm2) 

Λln - Coulomb logarithm 

μ  - Chemical potential (ergs-1) 

ev  - Thermal velocity (cm/s) 

0r  - Inter-atomic spacing (cm) 

sc  - Adiabatic speed of sound (cm) 

eqτ  - Electron-ion equilibration time (s) 

iκ  - Ion thermal conduction coefficient    

(s-1cm-1) 

eκ  - Electron thermal conduction 

coefficient (s-1 cm-1) 

pν  - Plasma frequency (s-1) 

pω  - Plasma frequency (rad/s) 

DN - Debye number (rad/s) 

Dλ  - Debye length (cm) 

BΛ - DeBroglie wavelength (cm) 

eω  - Cyclotronic frequency (rad/s) 

σ  - Electrical conductivity (s-1) 
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cn  - Critical density (cm-3) 

n  - Index of refraction 

gv  - Group velocity (cm/s) 

ω  - Laser frequency (rad/s) 

λ  - Laser wavelength (cm) 

k  - Wave number (cm-1) 

α  - Absorption coefficient (cm-1) 

absl  - Absorption length (cm) 

Gain Variables 

ω  - Laser frequency (rad/s) 

λ  - Laser wavelength (cm) 

I  - Laser Intensity (ergs cm-2 s-1) 

j  - Emissivity (ergs cm-3 s-1) 

g  - Gain (cm-1) 

)(νΦ - Line profile 

νΔ - FWHM line width (s-1) 

 

 Atomic Model 

Z  - Mean degree of ionization, ie nnZ /=  

atomE - Atomic losses (ergs cm-3 s-1)  

Z
iN - Population of the ith level in the Zth 

ion (cm-3) 

gi - Multiplicity of the ith level 
Z

jiI ,  - Ionization rate coefficient from the ith 

level of the Zth ionn to the jth level of 

the Z+1th ion (cm3/s) 
Z

ji ,β - 3-Body recombination rate coefficient 

from the ith level of the Z+1st ion to 

the jth level of the Zth ion (cm6/s) 
Z

ji,α - Radiative recombination rate 

coefficient from the ith level of the 

Z+1st ion to the jth level of the Zth ion 

(cm3/s) 
Z

jiD , - Dielectronic recombination rate 

coefficient from the ith level of the 

Z+1st ion to the jth level of the Zth ion 

(cm3/s) 
Z

jiA ,
α - Auto-ionization rate from the ith 

level of the Zth ion to the jth level of 

the Z+1st ion (s-1) 
Z

jiE , - Excitation rate coefficient from the ith 

level to the jth level in the Zth ion 

(cm3/s) 
Z

jid , - De-Excitation rate coefficient from 

the ith level to the jth level in the Zth 

ion (cm3/s) 
Z

jiA , - Radiative De-Excitation rate from the ith 

level to the jth level in the Zth ion (s-1) 

jiC → - Coupling coefficient from zone i to j.  

Z
jiE ,Δ - Energy difference between the ith 

level to the jth level in the Zth ion 

(ergs) 
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gf  - Weighted oscillator strength 

τ  - Optical depth 

)(τeP - Photon escape probability 
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APPENDIX C)  NUMERICAL TECHNIQUES 

 

APPENDIX C.1)  The Crank-Nicholson Method 

 The first step in writing a computer simulation is producing the numerical form.  

While there are many possible techniques, one commonly used technique is the Crank-

Nicholson method113.  In this technique both the spatial and temporal derivatives are 

written in an implicit scheme.  As a quick review, consider a grid with zones identified by 

j.  The value of a variable X at the point xj at time tn is written as n
jX .  The value of a 

variable X at the midpoint of zone j in the Crank-Nicholson scheme is written as n
jX 2/1+ .  

In the Crank-Nicholson scheme this is 
2

1
2/1

n
j

n
jn

j

XX
X

+
= +

+
 

The derivative of quantity X with respect to x at the midpoint between the points xj and 

xj+1 at time tn may be written as 

 x
XX

dx
dX n

j
n
j

n

j Δ

−
= +

+

1

2/1  

By using the Crank-Nicholson method with all derivatives written in an implicit form, the 

equations are unconditionally stable.  This means that a perturbation in the input will be 

reduced and will not amplify.  This is very important for insuring an accurate solution.  

Clearly, if an unstable solution is present the actual solution is impossible to determine.  

Note that the unconditional stability only applies if all derivates are written in the implicit 
                                                 
113 J. Crank and P. Nicholson, “A Practical Method for Numerical Evaluation of the Solutions of Partial 

Differential Equations of the Heat-Conduction Type”, Proceedings of the Cambridge Philosophical 
Society, vol. 50, 1947, p. 50-67. 
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scheme.  Within an equation this is possible, however since the equations are coupled this 

is not possible for all variables simultaneously.  For example the velocity equation 

depends on the pressure gradients which depend on the temperature profiles.  However, 

the temperature equations depend on the expansion and compression, which depend on 

the velocity profile.  As a result, the solution of one equation affects the solution of the 

other.  This can give rise to instabilities even if the individual equations are stable.   

 

APPENDIX C.2)  Solution of Linear Equations 

 Many numerical equations are written as a set of coupled linear equations.  In this 

method the systems of linear equations are written in a matrix form bAx = .  Here A is a 

matrix, x is a vector of unknowns, and b is the solution vector.  A fast and accurate 

solution of the linear equations is important.  Details on this topic can be found in any 

numerical analysis or linear equation textbook.  The standard method for solving the set 

of equations is through Gaussian elimination with back substitution.  Most computer 

packages are capable of performing this operation.   

 As was seen in section III.A.4 many equations can be written in a tridiagonal 

form.  In this form, non-zero entries are only found along the primary diagonal, upper-

diagonal, and lower-diagonal.  As a result, it is possible to use a special algorithm to 

solve the system considerably faster than any other method.  The algorithm employed is 

Crout Factorization for Tridiagonal Linear Systems.  As a comparison, the number of 

multiplications/divisions needed to solve n linear equations using Gaussian Elimination is  

nnn 6
52

2
13

3
1 −+ , while the tridiagonal solution requires only 45 −n   multiplications / 
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divisions.  Because there is no n3 or n2 dependence, a tridiagonal system can usually be 

solved orders of magnitude faster for large systems of equations.   

 

 

APPENDIX C.3)  Interpolation 

 Frequently, when calculating the plasma properties the need for information 

between known points arises.  This requires the use of interpolation to approximate the 

data.  For a description of a number of interpolation methods see Burden and Faires114. 

 

 

Linear 

One of the simplest interpolation methods is linear interpolation.   This was used when 

we identified the midpoint in the Crank-Nicholson method.  In general, linear 

interpolation between any two points is 

 
( )1

21

21
1)( xx

xx
yyyxy −

−
−

+=
 

Often, interpolation is needed in multiple dimensions.  Linear interpolation can be easily 

extrapolated to 3 or more dimensions.  (See figure C.1) 

                                                 
114 Richard L. Burden, J. Douglas Faires, Numerical Analysis, Sixth Edition, Brooks/Cole Publishing 

Company, 1997. 
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Linear interpolation: 

( ) ( ) )(/)(/1 100 νν fapfapg +−=  

( ) ( ) )(/)(/1 321 νν fapfapg +−=  

( ) ( ) )(/)(/1 542 νν fapfapg +−=  

( ) ( ) )(/)(/1 763 νν fapfapg +−=  

 

Bilinear interpolation: 

( ) ( ) 100 //1 gaqgaqh +−=  

( ) ( ) 231 //1 gaqgaqh +−=  

 

Trilinear interpolation: 

( ) ( ) 10 //1 harharf +−=  

Higher order linear interpolation can be easily extracted from the method for trilinear 

interpolation.   

Figure C.1:  Diagram illustrating points for trilinear interpolation 
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Upwind 

 Upwind interpolation is one of the simplest interpolation methods.  The upwind 

schemes attempts to use differencing biased in the direction determined by the sign of the 

characteristic speeds.  If we consider two points x1 and x2: 

⎩
⎨
⎧

>
<

=
0
0

2

1

vy
vy

f  

When applied to a simple finite difference problem, it can introduce artificial diffusion.  

When applied to our hydrodynamic model, it offers the advantage of preserving the 

boundedness (monotonicity) of the solution.   

 

QUICK 

 The Quadratic Upstream Interpolation for Convective Kinematics (QUICK) 

method115 was developed to increase the order of the interpolation.  It is based on 

quadratic interpolation favoring the points upwind.  If we consider interpolation to the i-

1/2 point: 

( )
( )⎩

⎨
⎧

<−+
>−+

=
+−

−−

063
063

118
1

218
1

vyyy
vyyy

f
iii

iii  

This interpolation has the advantage of being higher order, but can suffer from spurious 

oscillations.   

 

                                                 
115 B. P. Leonard, “A stable and accurate convective modeling procedure based on quadratic upstream 

interpolation”, Computer Methods in Applied Mechanics and Engineering, 19, pp. 59-98 (1976).   
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SMART 

The SMART method116 was developed by Gaskell to provide a high order method 

for interpolation while still preserving the monotonicity of the solution.  It can be shown 

that total variation diminishing (TVD) schemes preserve the monotonicity117.  However, 

according to Gonunov’s theorem118 only first order linear schemes preserve monotonicity 

and are therefore TVD.  To get around this, the SMART method is actually a 

combination of several interpolation method including QUICK and upwind interpolation.  

When possible, the QUICK method is used, but when this would violate the TVD 

properties the scheme reverts to an upwind scheme.  To understand the scheme, consider 

figure C.2.  Unless otherwise noted, the indices will be based of the figure below, and 

velocities will be assumed to be positive (flow to higher index cells) 

 

                                                 
116 P. H. Gaskell, A. H. C. Lau, "Curvature-Compensated Convective  Transport: SMART, A New 

Boundedness-Preserving Transport Algorithm", International Journal for Numerical Methods in 
Fluids, 8, 617-641 (1988) 

117 Godunov, Sergei K. (1959), “A Difference Scheme for Numerical Solution of Discontinuous Solution of 
Hydrodynamic Equations”, Math. Sbornik, 47, 271-306, translated US Joint Publ. Res. Service, JPRS 
7226, 1969. 

118 P. H. Gaskell, A. H. C. Lau, "Curvature-Compensated Convective  Transport: SMART, A New 
Boundedness-Preserving Transport Algorithm", International Journal for Numerical Methods in 
Fluids, Vol. 8, 617-641 (1988) 

Figure C.2:  Sample illustration showing the cell indecies for SMART interpolation
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The variable is φ  

 
2

2ˆ
−

−

−
−

=
ii

ik
k φφ

φφφ   k = i-2, i-3/2, ..., i 

The interpolation is then 

 

[ ]
[ )
( ]
[ ]⎜

⎜
⎜
⎜
⎜

⎝

⎛

∈/++
∈/

∈/−
∉/

=

−−−

−

−−−

−−

−

6
5

6
1

128
1

18
6

8
3

6
5

1

6
1

121

11

2/1

,ˆ
1,ˆ

,0ˆ23
1,0ˆ

iiii

ii

iii

ii

i

fi
fi
fi
fi

φφφφ
φφ
φφφ
φφ

φ  

 

 

APPENDIX C.4)  BLAS & LAPACK 

 For complicated models, efficient programming is required to reduce the 

computational requirements.  I use a set of free packages programmed in Fortran to 

perform certain common operations as efficiently as possible.  BLAS119 (Basic Linear 

Algebra Subprograms) is a set of functions for performing basic linear algebra 

operations.  LAPACK120 (Linear Algebra PACKage) is a set of functions for solving 

common linear algebra problems.  It includes algorithms such as Gaussian Elimination 

and matrix factorization. BLAS is available at http://www.netlib.org/blas/, and LAPACK 

is available at http://www.netlib.org/lapack/. 

                                                 
119 C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, “Basic Linear Algebra Subprograms for 

FORTRAN usage”, ACM Trans. Math. Soft., 5 (1979), pp. 308--323. 
120 Anderson, et. al., LAPACK Users' Guide, Third Edition, Society for Industrial and Applied 

Mathematics, Philadelphia, PA , 1999, 0-89871-447-8. 
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APPENDIX D)  Mathematical Derivations 

This appendix contains some of the mathematical derivations used in the dissertation.   

 

 

APPENDIX D.1)  The divergence of the stress tensor: 

σt
t

⋅∇+−∇=⋅∇ pT  

( ) ijkkijjiij vvv δλμσ ∂+∂+∂=  

ςμλ += 3
2  

( ) zxzyxyxxxx σσσσ ∂+∂+∂=⋅∇
t  

( ) ( )[ ] ( )[ ] ( )[ ][ ] ( )[ ]vvvvvvvv xzxxzzyxxyyxxxxxx
rrt
⋅∇∂+∂+∂∂+∂+∂∂+⋅∇−∂+∂∂=⋅∇ ςμμμσ 3

2  

( ) ( ) ( )[ ] ( )[ ]vvv xxxx
rrt
⋅∇∂+⋅∇∂+∇⋅∇=⋅∇ ςμμσ 3

1  

( ) ( )[ ] ( )[ ]vvvpT rrrt
⋅∇∇+⋅∇∇+∇⋅∇+−∇=⋅∇ ςμμ 3

1  

 

APPENDIX D.2)  The dissipation function Φ: 

( ) σσ trrt
⋅∇⋅−⋅⋅∇=Φ vv  

Note that j
ij

i nvv σσ =⋅
rt  

( ) ijk
k

ijij vE δμςμσ ,3
22 −+=  

Calculate vrt
⋅σ  

Look at the x component 

( ) zx
z

yx
y

xx
xx vvvv σσσσ ++=⋅

rt  
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( ) ( )[ ] [ ] [ ]zx
z

yx
y

k
k

xx
xx EvEvvEvv μμμςμσ 222 ,3

2 ++−+=⋅
rt  

  ( )ijjiij vvE ,,2
1 +=  

( ) ( ) ( ) ( )[ ] ( ) k
kx

zxxz
z

yxxy
y

xxxx
xx vvvvvvvvvvvv ,3

2,,,,,, μςμσ −++++++=⋅
rt  

( ) ( )[ ] ( )( )vvvvvvv xxxx
rrrrrt
⋅∇−+∂⋅+∇⋅=⋅ μςμσ 3

2  

( ) ( )[ ] ( )( )vvvvvvv rrrrrrrt
⋅∇−+⋅∇+∇⋅=⋅ μςμσ 3

2
2
1  

Calculate ( )vrt
⋅⋅∇ σ  

( ) ( ) ( )[ ] ( )( )vvvvvvv rrrrrrrt
⋅∇−⋅∇+⋅∇+∇⋅⋅∇=⋅⋅∇ μςμσ 3

2
2
1  

( ) ( ) ( )[ ] ( )( )vvvvvvv xxxxxxx
rrrrrt
⋅∇−∂+⋅∂+∇⋅∂=⋅∂ μςμσ 3

2
2
1  

Recall: 

( ) ( )[ ] ( )[ ]vvv rrrt
⋅∇∇+⋅∇∇+∇⋅∇=⋅∇ ςμμσ 3

1  

 

The dissipation function is121: 

ijij v∂′=Φ σ  

μςλ 3
2−=  

In Cartesian Coordinates (3D): 
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In Cylindrical Coordinates (3D): 

                                                 
121 Schaum's Outiline on Fluid Dynamics, Second Edition, pp.54, 326. 
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In Spherical Coordinates (3D): 
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If we substitute for λ, let ς = 0 we get: 

In Cartesian Coordinates (1D): 
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In Cylindrical Coordinates (2D): 
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Numerical form for the dissipation function (2D): 

We are using the indexing of SMARAI, where v is a face centered quantity, u is a cell 

centered quantity.  If we assume a uniform grid spacing. 
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APPENDIX D.3)  The Viscous Force 

Recall the viscous force (with ς = 0) 
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In Cartesian Coordinates assuming µ is constant (2D): 
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In Cartesian Coordinates (3D): 
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Numerical form for viscous force (face-centered): 

We are using the indexing of SMARAI, where v is a face centered quantity, u is a cell 

centered quantity.   
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Numerical form for viscous force (cell-centered): 

We are using the indexing of SMARAI, where v and u are cell centered quantities.   
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APPENDIX D.4)  Thermal conduction: 

 For the thermal conduction in the hydrodynamic models we need to determine 

how to properly calculate the thermal flux between cell boundaries.  The difficulty lies in 

the proper way to interpolate the thermal conductivity between the cell center (where the 

thermal conductivity is calculated and the cell face (where it is needed).  While we could 

average the thermal conductivity, it is more accurate to match the thermal flux in each 

cell and let the midpoint temperature vary.  Consider the equation for the thermal flux: 

ss Tq ∇−= κr  

Consider two regions ( 1 & 2 ): 

 

If the thermal conductivity is uniform, the energy conducted from 1 to 2: 
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If the thermal conductivity is not uniform: 
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Note: 21, xx ΔΔ  are the distance from the zone midpoints to the wall 

If the zones are equally spaced, but have different conductivities (Δx is the zone width): 
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