
THESIS

DISTRIBUTED SYSTEMS IN SMALL SCALE RESEARCH ENVIRONMENTS:

HADOOP AND THE EM ALGORITHM

Submitted by

Jason Remington

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2011

Master’s Committee:

Advisor: Bruce Draper
Co-Advisor: Wim Böhm

Patrick Burns

Copyright Jason Remington 2011

All Rights Reserved

ABSTRACT

DISTRIBUTED SYSTEMS IN SMALL SCALE RESEARCH ENVIRONMENTS:

HADOOP AND THE EM ALGORITHM

Distributed systems are widely used in large scale high performance computing en-

vironments, and often conjure visions of enormous data centers full of thousands of

networked machines working together. Smaller research environments may not have

access to such a data center, and many jobs in these environments may still take

weeks or longer to complete. Systems that work well on hundreds or thousands of

machines on Terabyte and larger data sets may not scale down to small environments

with a couple dozen machines and gigabyte data sets.

This research determines the viability of one such system in a small research

environment in order to determine what issues arise when scaling down to small envi-

ronments. Specifically, we use Hadoop to implement the Expectation Maximization

algorithm, which is iterative, stateful, inherently parallel, and computationally ex-

pensive. We find that the lack of support for modeling data dependencies between

records results in large amounts of network traffic, and that the lack of support for it-

erative Map/Reduce magnifies the overhead on jobs which require multiple iterations.

These results expose key issues which need to be addressed for distributed systems

to perform well in small research environments.

ii

ACKNOWLEDGEMENTS

It is my pleasure to sincerely thank those who supported me and made this thesis

possible. I will never forget the enduring support and encouragement of my thesis

advisors Dr. Bruce Draper and Dr. Wim Böhm who’s help and guidance enabled

me to develop a much deeper understanding of the subject, and helped drive this

research to completion despite all of the obstacles along the way. I would also like

to thank Dr. Patrick Burns, who generously provided advice and assistance, despite

only having been added to my committee at the last minute.

I am deeply grateful to my wife Elizabeth for her unselfish, and tireless support

which kept my eyes open and a smile on my face, even when my confidence was

wavering. I can’t imagine having done this research without her.

It is an honor for me to thank my late Father, whos never ending interest in my

life and work bolstered my ambition and confidence, and who taught me how to tackle

problems that seem insurmountable. I will never forget how hard he worked to make

sure his children could succeed and be happy in this world, and his unfailing ability

to brag about us to his friends.

I would like to show my gratitude to both my Mother and Sister. It is their

strength of spirit that has inspired me to continue pushing forward in times when I

have felt like giving up. I am indebted to them for helping shoulder my burdens, and

for their selfless desire to see me succeed.

Lastly, I would like to thank all of my friends and colleagues. Thank you so much

for your moral support, and for all of the memories.

iii

To my cherished family; future, past, and present. May nothing ever separate us.

iv

TABLE OF CONTENTS

1 Introduction 1

2 Background 4

2.1 Expectation Maximization . 4

2.1.1 EM - Mixture of Gaussians . 5

2.1.2 EM in High Dimensional Spaces . 7

2.1.3 EM Log Transform . 8

2.2 Distributed Systems - Reliability and Fault Tolerance 9

2.2.1 Reliability . 9

2.3 Hadoop Map/Reduce . 11

2.3.1 HDFS . 12

2.3.2 Map Reduce . 14

2.4 Iso-Efficiency . 15

2.4.1 Iso-efficiency Framework . 16

2.4.2 Adding Numbers on a Hypercube . 18

3 Experimental Design 20

3.1 The Data . 20

3.2 The Processing Cluster . 22

3.3 Math Libraries . 22

3.4 The Implementation . 22

3.4.1 Sequential Implementation of EM . 22

3.4.2 Parallel Implementation of EM . 25

3.5 Hadoop . 26

v

3.6 Metric . 27

3.7 Protocol . 27

4 Results 29

4.1 Sequential Baseline . 29

4.2 Distributed Results . 33

5 Conclusion 38

5.1 Future Work . 39

A 41

A.1 Mapping Phase Means and Std. Deviations 41

A.2 ATLAS CBLAS Matrix Multiple Runtime Anomaly 42

A.3 Sample Randomly Generated Dataset . 44

A.4 Sample Clustering Using EM . 45

A.5 Sample Clustering Using EM (Hard) . 46

A.6 Fullsized Work and Overhead Plots . 47

A.7 Smaller Data Set Results . 59

vi

LIST OF TABLES

A.1 Mean Map times and corresponding standard deviations for each iteration

of EM on various datasets. The standard deviations are small com-

pared to the means, making the mean a good indicator of the total

time spent in the map phase by each mapper. 41

vii

LIST OF FIGURES

2.1 The HDFS architecture which consists of a primary NameNode that co-

ordinates access to the data, DataNodes which store the 64MB data

splits, and a secondary NameNode which duplicates the state of the

primary NameNode in case of failure. The DataNodes typically run on

the same machines as the map and reduce tasks for data locality. . . 13

2.2 The MapReduce framework uses the split data blocks stored in the HDFS

as input to map tasks which run local to the data. A JobTracker coor-

dinates the distribution of map and reduce tasks to the TaskTrackers

running on each of the machines. All data are passed in the form of

key value pairs. The outputs of the map tasks are shuffled and sorted

based on the key’s and all values with the same key are guaranteed

to be passed to the same reducer. The output of the reduce task is

written back to the HDFS. 15

3.1 Block Diagram of the sequential implementation of the EM algorithm.

The white boxes represent steps which are distributed in the parallel

version while the shaded boxes represent steps which remain sequen-

tial. The initialization steps are not included in the timings, and the

normalization step is taken care of in the reducer in the distributed

version. 24

4.1 Runtime per iteration as the number of samples N is varied. Compare to

Figure A.16 in Appendix A.6 for directly comparable runtimes. This

serves as one of three baseline plots for the experiment. 30

viii

4.2 Runtime per iteration as the underlying source cluster count K is var-

ied. Compare to Figure A.12 in Appendix A.6 for directly comparable

runtimes. This serves as one of three baseline plots for the experiment. 31

4.3 Runtime per iteration as the data dimensionality D is varied. Compare

to Figure A.8 in Appendix A.6 for directly comparable runtimes. This

serves as one of three baseline plots for the experiment. 32

4.4 Percentage improvement vs. the sequential baseline as the number of

samples N (top), the number of underlying clusters (and therefore

processors) K (middle), and data dimensionality D (bottom) are var-

ied. At best there is zero improvement over the sequential baseline

which indicates that the system does not scale down well enough in

this case. 34

4.5 Runtimes for a single iteration of EM broken into overhead (left column),

map and reduce phase work (center columns), and total runtime (right

column) as the number of samples N (top row), underlying source clus-

ter count K (center row), and data dimensionality D (bottom row) are

varied. The work grows linearly with the data size despite quadratic al-

gorithmic runtime bounds. This implies the computation is IO bound.

The overhead accounts for most of the runtime. Since the work scales

linearly, the system is scalable, and cost optimality may be possible on

much larger data sets. 36

A.1 ATLAS CBLAS matrix multiply runtimes with fill values ranging from

1e-0 to 1e-300. The runtime for a loop containing the matrix multiply

jumps by an order of magnitude when the matrices contain values

smaller than 1e-150. 42

A.2 A sample 2D Dataset randomly generated using the data generation code

developed for thesis. See Section 3.1 for details. 44

ix

A.3 The same sample dataset as displayed in Appendix A.3, now clustered

using the EM code developed for this thesis. The centers, and eigen-

vectors are displayed to represent the multivariate normal distributions

found by EM to have the highest probability of generating the data.

The eigenvectors are scaled to one standard deviation from the cluster

center. 45

A.4 A sample 2D Dataset randomly generated using the data generation code

developed for thesis clustered using the EM code developed for this

thesis. In this case some of the clusters are overlapping making this

a hard data set to correctly cluster. As expected, the resulting model

does not match the true underlying source clusters from which the data

is generated. The centers, and eigenvectors are displayed to represent

the multivariate normal distributions found by EM to have the highest

probability of generating the data. The eigenvectors are scaled to one

standard deviation from the cluster center. 46

A.5 Time spent in the mapping phase per iteration as data dimensionality D

is varied. The Mapping phase contains algorithms which are quadratic

in D, but the growth appears linear which suggests the runtime is IO

bound. 47

A.6 Time spent in overhead per iteration as data dimensionality D is varied.

The overhead appears to grow linearly, the slight curve seen in this

figure is most likely due to noise. Subsequent runs of the experiment

result in a variety of noisy linear plots. This may be due to random

network delays, or the fact that Hadoop is implemented in Java, and

is subject to random garbage collection delays. 48

x

A.7 Time spent in the reduce phase per iteration as data dimensionality D is

varied. Data dimensionality plays no role in the reduce phase since the

reducer only deals with a NxK matrix of probabilities. As expected

the time spent in the reduce phase is unaffected by varying data di-

mensionality. 49

A.8 Total time spent per iteration including overhead, map, and reduce time as

data dimensionalityD is varied. The total runtime is largely dominated

by overhead. 50

A.9 Time spent in the mapping phase per iteration as the underlying source

cluster count K is varied. The parameter K determines the inherent

parallelizability of the EM algorithm given the data, and therefore the

number of processors used to distribute the work. Since increasing K

both linearly increases workload in the mapping phase and increases

parallelism of the algorithm we see only a slow linear growth in runtime. 51

A.10 Time spent in overhead per iteration as the underlying source cluster count

K is varied. The parameter K determines the inherent parallelizability

of the EM algorithm given the data, but has no effect on the data set

size. As expected, we see no change in overhead as K is varied since

there is no change in data size. 52

A.11 Time spent in the reduce phase per iteration as the underlying source

cluster count K is varied. The parameter K determines on dimension

of the resulting NxK probability matrix which is processed by the

reducer. The reducer phase is linear in K which is consistent with this

figure although the reduce phase is most likely IO bound. 53

xi

A.12 Total time spent per iteration including overhead, map, and reduce time

as the underlying source cluster count K is varied. The total time

is dominated by overhead, but grows very slowly. Since increasing K

linearly increases workload, has no effect on overhead, and increases

the inherent parallelism of the algorithm, we see that increasing K is

nearly free from a runtime perspective when compared to the other

parameters. 54

A.13 Total time spent in the mapping phase per iteration as the number of

samples N is varied. The Mapping phase contains algorithms which

are linear in N which is consistent with this plot. 55

A.14 Total time spent in overhead per iteration as the number of samples N

is varied. The size of the NxD dataset grows linearly in N and as

expected, the overhead grows linearly as well. 56

A.15 Total time spent in the reduce phase per iteration as the number of samples

N is varied. The size of the NxK probability matrix grows linearly in

N and as expected, the time spent in the reducer grows linearly as well. 57

A.16 Total time spent per iteration including overhead, map, and reduce time

as the number of samples N is varied. The total time is dominated by

overhead, but is still linear since the workload and overhead are both

linear. 58

A.17 Percentage improvement vs. the sequential baseline as the number of

samples N (top), the number of underlying clusters (and therefore

processors) K (middle), and data dimensionality D (bottom) are var-

ied. This is the same experiment which produced the results in Chap-

ter 4repeated on smaller datasets. 59

xii

A.18 Runtimes for a single iteration of EM broken into overhead (left column),

map and reduce phase work (center columns), and total runtime (right

column) as the number of samples N (top row), underlying source

cluster count K (center row), and data dimensionality D (bottom row)

are varied. This is the same experiment which produced the results in

Chapter 4 repeated on smaller datasets. 60

xiii

Chapter 1

Introduction

Distributed systems are widely used in large scale high performance computing en-

vironments, and often conjure visions of enormous data centers full of thousands of

networked machines working together. Smaller research environments may not have

access to such a data center, and many jobs in these environments may still take

weeks or longer to complete. Systems that work well on hundreds or thousands of

machines on Terabyte and larger data sets may not scale down to small environments

with a couple dozen machines and gigabyte data sets. These distributed systems

are often benchmarked on large clusters consisting of thousands of machines using

granular data consisting of a large number of small data records. Examples of these

benchmarks include word count, grep, sorting numbers, and processing log files [1, 2].

Use of these systems for scientific computing on non-granular data records is a po-

tentially useful benchmark for use in a research environment. Such data sets may

consist of only a few dozen records, each of which are very large.

Use of a distributed system in small research environments, such as those found

at many universities, is of great interest. Many research jobs consist of complex

calculations on large scale data sets. These jobs can take days or weeks to complete on

a sequential system. A distributed system has the potential to cut the runtime down

on these jobs dramatically allowing for more productive research. Some distributed

systems may be more applicable to this type of environment, while others may not

scale down well or may not handle the task of scientific computing well. The goal is

1

to determine the viability of such systems in small research environments in order to

determine what issues arise when scaling down to such an environment.

One such system is Apache’s Hadoop MapReduce framework [1, 3, 2]. Hadoop

is widely used in industry by companies such as Amazon, Adobe, AOL, Ebay, Face-

book, Hulu, Twitter, Yahoo!, and even Google uses Hadoop in some of its university

teaching initiatives [1, 2]. Hadoop is open-source and freely available making it a

good candidate for small research environments. We use Hadoop to implement the

Expectation Maximization algorithm, which uses non-granular data and is iterative,

stateful, inherently parallel, and computationally expensive. This algorithm is appli-

cable to a wide range of scientific fields including computer vision, machine learning,

and artificial intelligence, and provides a realistic scientific benchmark for Hadoop.

The goal of this research is not to test a wide variety of distributed systems, but

rather to use a single distributed system to learn more about the interaction and

requirements of such a system in a small research environment. Similarly the goal is

to use EM simply as a benchmark, meaning many of the possible non-deterministic

optimizations are removed such as those which check for convergence. The EM algo-

rithm is implemented efficiently, but is intended only to be used to provide a realistic

source of work for the system, allowing for useful analysis.

Hadoop has been shown to work very well on granular data both on large and small

processing clusters. The authors of [4] show a near linear speedup can be achieved for

collaborative filtering based recommendation systems using Hadoop, and the authors

of [5] have used Hadoop extensively in a university setting for the purpose of student

projects, showing its viability as a learning tool. In both cases the projects use data

which is highly granular, consisting of a large number of small data records. The

research we conduct here deals with relatively few large data records.

The authors of [6] show that modifying Hadoop to gain more explicit control over

the data distribution provides significant speedups when using Hadoop for scientific

computing. One such optimization is allowing for the enforcement of splitting along

2

record boundaries. Their experiments still take place on large processing clusters.

The research we conduct is restricted to small research environments, and therefor a

small processing cluster.

Many authors have explored modifications to Hadoop’s code to support different

features. The authors of [7] look at the task scheduling algorithm used by Hadoop

to improve performance in heterogeneous environments to limit the number of tasks

which are restarted due to timeouts. The authors of [8, 9] both explore adding the

support for iteration to Hadoop, but their systems are not nearly as widely used or

supported the way Hadoop is.

Hadoop is just one of many systems available. Examples include the Granules sys-

tem [10, 11] which supports Map/Reduce as well as iterative, periodic, and data driven

models, but is not available at the time of this research, and Google Map/Reduce [12]

which supports iteration, although the Google Map/Reduce system is proprietary and

is not available for detailed performance testing.

The remainder of this thesis is divided into several Chapters. Chapter 2 pro-

vides background information on the EM algorithm, distributed systems, Hadoop

Map/Reduce, and iso-efficiency analysis. Chapter 3 provides information on the data,

data generation, the cluster specifications, code libraries, implementation details for

the sequential and parallel code, details on the Hadoop deployment, and experimen-

tal protocol. Chapter 4 provides an analysis of the results of the experiments, and

Chapter 5 provides information on future work and the conclusion.

3

Chapter 2

Background

This chapter provides background information for the concepts, algorithms, and

frameworks used in this thesis. The material covered here is by no means com-

plete, but provides a level of coverage sufficient for the understanding and analysis of

the experiments. The remainder of this section is as follows: First is a discussion of

the expectation maximization algorithm including modifications to the algorithm to

allow it to run reliably in high dimensional spaces on computers which are limited by

finite precision. Next we discuss distributed systems and fault tolerance, defining the

key characteristics of each. We then introduce the Hadoop Map / Reduce framework

for fault tolerant distributed computing; the target of much of the analysis in this

paper, and finally we give an overview and example of iso-efficiency analysis.

2.1 Expectation Maximization

Expectation Maximization, commonly referred to as EM, is an iterative method for

finding maximum likelihood parameter estimates for underlying distributions given

incomplete data [13, 14, 15, 16, 17]. EM is broadly applicable to many statistical

models, including mixtures of Gaussian densities and Hidden Markov Models [18].

One well known application for EM is its use as a supervised clustering algorithm in

machine learning, although its scope extends into a variety of fields.

The remainder of this Section is broken into the following parts. First a discus-

4

sion of the standard expectation maximization algorithm as applied to a mixture of

multivariate normal distributions is provided. Next is a discussion of a variant of

this algorithm which stabilizes EM for use in high dimensional spaces. Finally a log

transform is introduced which allows for a more robust implementation on computers

with finite precision.

2.1.1 EM - Mixture of Gaussians

A well known use for EM is to estimate the maximum likelihood parameters of an

underlying mixture of multivariate Gaussian distributions with latent variables, where

the latent variables are the likelihoods that samples belong to clusters. This parameter

estimate produces a fuzzy clustering of the data where each data point has soft

membership in each of the multivariate Gaussian distributions in the mixture.

The algorithm is often broken down into two steps. The expectation (E) step

calculates the expected value of the likelihood function given the model defined by

the current parameter estimates and the observed data. The likelihood function

estimates the likelihood that the current model is the process which produced the

observed data. The maximization (M) step estimates the process parameters which

maximize the likelihoods, given the process source estimates from the E step [13].

When using a Gaussian mixture model, each Gaussian is represented by its mean

µi and covariance matrix Σi. Collectively they are referred to as the parameters

Θi = {µi,Σi}. Let χ = {x1, x2, x3, · · · , xn} be a data set of independent observations

from a mixture of k multivariate Gaussian distributions of dimension D, and let

Θ = {Θ1,Θ2,Θ3, · · · ,Θk} be the parameter estimates for the k multivariate Gaussian

distributions from which χ originates. Then the likelihood that a sample x originated

from distribution i with parameters Θi can be estimated using the probability of that

sample given those parameters [13, 18, 19]. This probability is calculated using the

probability density function of a multivariate normal distribution.

P (x|Θi) =
1

(2π)
D
2 |Σi|

1
2

e−
1
2

(x−µi)T Σ−1
i (x−µi)

5

The probabilities across all clusters for each sample are normalized to sum to one,

and the means and covariance matrices are then updated to maximize the likelihood

estimates from the previous step.

Each mean µi is updated using a weighted average of the samples, where the

weights are the normalized probabilities for that distribution calculated in the previ-

ous step.

µi =

∑n
j P (xj|Θi)xj∑n
j P (xj|Θi)

Each covariance matrix Σi is calculated using samples weighted with the normal-

ized probabilities for that distribution. Let χ̂i be the samples χ weighted with the

probabilities calculated for distribution i.

Σi = cov (χ̂i)

The E step and M step are repeated in this sequence until convergence which can

be determined by measuring the changes in the probability matrix and comparing

them to some threshold value. There is no guarantee that this algorithm will result

in a globally optimal solution, and in some cases, the covariance matrix may be

singular. One such case is when the number of samples is smaller than the number of

dimensions. An example of when this might occur is in the field of computer vision,

where feature vectors are calculated from images. These vectors often have the same

dimensionality as the number of pixels in that image, and a typical 1000x1000 HD

image produces a feature vector of length 1 million. This would require a million

image data set to avoid a singular covariance matrix. It is difficult to come up with

a million image dataset, and if such a set were obtained the time to produce feature

vectors for each image might be unreasonable. In this case the number of samples will

likely be far less than the number of dimensions, and clustering the feature vectors

from these images using EM would result in singular covariance matrices. The next

section discusses the solution provided in [19], which is used in this thesis.

6

2.1.2 EM in High Dimensional Spaces

In the case of high dimensional data, where there are more dimensions than there

are samples, the covariance matrix used to represent the multivariate Gaussian dis-

tribution will be singular. To get around this problem, the authors in [19] propose

representing the distribution using its eigenvalues and eigenvectors in place of the

covariance matrix, and forcing the eigenvalues to maintain a small minimum value ε

which prevents any dimensions with small or zero variance from completely collaps-

ing. As shown in [19], this helps solve convergence problems seen with other high

dimensional variants of EM which generally fit a lower dimensional distribution to

higher dimensional data by throwing out the dimensions with small variance. Keep-

ing these small dimensions can help convergence because in some cases where those

small variance dimensions are the dimensions which are most discriminating between

two clusters of data. Throwing these small dimensions out may prevent the algorithm

from finding separation between those two clusters.

As described in [19], the eigenvalues and eigenvectors for each distribution are

calculated using the singular value decomposition of the samples weighted with the

normalized probabilities for that distribution. Let Λj = {λ1, λ2, λ3, · · · , λD} be the

eigenvalues for distribution j, and let Qj be the eigenvector matrix for distribution

j, collectively they are referred to as the parameters Θj = {Qj,Λj}. Then, given a

sample xi, the projection of that sample into the subspace defined by Qj is yij = Qjxi.

Then, as before, the likelihood that a sample x originated from distribution j with

parameters Θj can be estimated using the probability of that sample given those

parameters [19].

P (xi|Θj) ≈
1

(2π)
D
2
∏D
d=1max

(
ε, λ

1
2
d

)e− 1
2

∑D

d=1
y2ijd/max(ε,λi)

As before, the probabilities across all clusters for each sample are normalized to sum to

one, and then the eigenvalues and eigenvectors are updated to maximize the likelihood

estimates from the previous step using the singular value decomposition. The E step

7

and M steps are repeated until convergence. This variant, like the standard version

in the previous section, provides no guarantee of global optimality.

2.1.3 EM Log Transform

If EM is implemented as shown in the previous sections in a computer, it is very possi-

ble that underflow issues may occur in some of the calculations. Underflow can occur

when calculating the exponential in the numerator, or when calculating the product

of eigenvalues in the denominator. Even though the numbers in these calculations

can be extremely small, they are still significant for the purpose of the algorithm

since the probabilities are later normalized. To solve this issue, the probabilities are

log-scaled.

Log scaling data is a method where data are represented as the log of a quantity

instead of the quantity itself which brings data that covers a large range of values into

a smaller more manageable range. This method is widely used in mathematics, and

well known examples include the Richter magnitude scale for measuring the seismic

energy of earthquakes, the Decibel scale for measuring acoustic power, and Entropy

in thermodynamics. Using this method, the above equation can be stabilized to

avoid underflows. The equation below is produced simply by taking the log of the

equation in the previous section, and produces the log of the probability instead of

the probability itself. The exponential in the numerator, and the product in the

denominator become summations under this transform, and are much less likely to

underflow.

log (P (xi|Θj)) ≈ −
1

2

D∑
d=1

y2
ijd

max (ε, λi)
− 1

2

D∑
d=1

log (max (ε, λd))−
D

2
log (2Π)

Since the probabilities are normalized, the constant can be dropped from the end

giving the form of the equation used in this thesis.

log (P (xi|Θj)) ≈ −
1

2

D∑
d=1

y2
ijd

max (ε, λi)
− 1

2

D∑
d=1

log (max (ε, λd))

8

Once these values are calculated for a given sample across all clusters, the max of

those values for that sample is subtracted from those same values. This effectively

scales the maximum value to zero, which corresponds to a probability of one. This is

done to prevent an underflow from occurring when taking the exponential of all values

to remove the log transform. Underflows can still occur, but only when a cluster has

a normalized probability that is so close to zero that a roundoff occurs. In this case,

the issue is negligible.

2.2 Distributed Systems - Reliability and Fault Tol-

erance

The Google Code University (GCU), which provides supplemental curriculum and

coursework for computer science students and educators, defines a distributed system

as “an application that executes a collection of protocols to coordinate the actions

of multiple processes on a network, such that all components cooperate together to

perform a single or small set of related tasks” [20, 21]. In large distributed systems,

with thousands of nodes, systems fail, are removed, and are replaced on a daily basis,

but the system must continue to run uninterrupted 24/7. System failure is business as

usual in this environment, and as a result fault–tolerance is a system requirement [20,

21, 1]. If a system is fault–tolerant, and disks are failing daily, it doesn’t matter if

the data center uses high-end server grade disks, or standard commodity hardware,

therefore a fault–tolerant system allows for cheaper data centers [21]. The goal, then,

is for a distributed system to run reliably on unreliable commodity hardware in the

presence of node failures and network failures in a scalable fashion. The remainder

of this section defines what reliability and fault–tolerance mean in this environment.

2.2.1 Reliability

A distributed system provides significant parallel resources to remote users allowing

them to execute large tasks which would otherwise take too long to execute on a

9

sequential system. Such a system must be reliable, and reliability is the central

issue in the design of a distributed system [22, 21]. A reliable distributed system

is fault–tolerant, highly available, recoverable, consistent, scalable, predictable, and

secure [22].

A fault–tolerant system will continue to operate correctly in the presence of regular

component failures. When a component fails, a fault–tolerant system will recover

without having performed any incorrect actions [22, 21]. This is one of the most

difficult aspects of reliability to achieve. Fault–tolerance is often achieved through

replication and redundancy of data, tasks, and bookkeeping along with avoiding state

through the use of indempotency, or keeping state recoverable through the use of

transactions, and the use of data verification techniques such as checksums.

A highly available system can be restored after component failures allowing it to

continue working with minimal downtime [22, 21]. If fault–tolerance is achieved, the

data will not be corrupted, and with sufficient tracking and logging, incomplete tasks

can be restarted or resumed, and the system can continue providing service.

A recoverable system can reintegrate failed components on the fly once they have

been repaired [22, 21]. A recoverable system will rebalance its workload and begin

utilizing recovered components as they are added back in [22, 21]. This can involve re-

registering one or more nodes with the system, redistributing data, and rescheduling

tasks to utilize the newly available components.

A consistent system will complete the specified jobs through the efficient coordina-

tion of available components as one system working concurrently and in the presence

of failures [22, 21]. A consistent distributed system appears to be one large non-

distributed system, which is accomplished through the creation of complex protocols

which allow all the components to communicate and coordinate execution with one

another [22, 21].

A scalable system will not degrade in performance as various aspects of the system

are made larger in size [22, 21]. Adding more nodes, more network connections, more

10

data, more users, etc. should not have a major negative impact on the performance

of the system [22, 21]. Scalability is achieved through minimal tracking of state, and

through efficient and clever use of buffers, storage, and network bandwidth.

A predictable system provides acceptable levels of responsiveness to its users [22,

21]. Jobs should execute efficiently, and return in an acceptable amount of time [22,

21]. This is achieved through concurrency, efficient management of resources, and

efficient use of resources. A predictable system will make good use of the connected

components as required by the job.

A secure system authenticates users of the system, preventing unauthorized users

from gaining access to the data and services provided by the system [22, 21]. This

is accomplished through the usual means using per user secure login information,

biometrics, or other security protocol for gaining access to the system.

All of these aspects are present in some form or another in any modern day

distributed system, although they don’t come without cost. Increasing one aspect of

reliability may have negative impacts on another aspect of reliability. The goal is to

obtain acceptable levels of each.

2.3 Hadoop Map/Reduce

The Apache Hadoop MapReduce project is a distributed computing framework that

enables developers to write applications which run reliably on a large number of un-

reliable machines with the goal of processing Terabyte and larger data sets in parallel

on clusters consisting of thousands of nodes [1]. Hadoop is an open source implemen-

tation of the MapReduce framework inspired by Google MapReduce, and the Google

File System (GFS) [12, 23], although the two systems are very different. These dif-

ferences include a difference in implementation language, differences in support for

iteration, and many other differences that are unknown since Google MapReduce and

the Google File System are both proprietary private systems that are not available

for public analysis.

11

The remainder of this section will be organized as follows. First an overview of

the Hadoop Distributed Filesystem (HDFS) will be given. After that, the Hadoop

Map/Reduce framework will be discussed.

2.3.1 HDFS

The Hadoop Distributed File System (HDFS), inspired by GFS from Google [23], is a

distributed filesystem which runs on low cost commodity hardware in a fault tolerant

manner to redundantly store Terabyte and larger data sets [3]. HDFS differs from

GFS in many fundamental ways, but has many of the same goals, the most important

of which is to provide reliable distributed access to large amounts of data. Typically,

this filesystem is running on the same nodes as the Map/Reduce framework to allow

tasks to execute locally to the data [1]. The data is stored in 64MB or larger blocks

in a set of DataNodes which serve data to the applications, and there is typically

one DataNode per node in the cluster [3]. A master NameNode maintains all of

the metadata associated with the data stored on the DataNodes. The NameNode

is responsible for coordinating access to the data, and coordinating replication of

the data [3]. The NameNode stores all of this information in RAM for fast access,

but keeps an image on disk in case of failure. If the NameNode fails, this image

may be used to restart the NameNode [3]. The DataNodes themselves store no

information about the data they contain [3]. The DataNodes simply store each block

of data as a separate file on the local file system [3]. When the NameNode splits and

distributes data it does not respect record boundaries in the data. It is often the case

that the first and last record in a split are truncated [3]. In the case of truncated

records DataNodes will transfer the remaining portion of the truncated records to the

appropriate machines during runtime [3].

12

ClientNameNode

Secondary
NameNode

DataNode DataNode DataNode

Replication

Hadoop Distributed File-System (HDFS)

Figure 2.1: The HDFS architecture which consists of a primary NameNode that
coordinates access to the data, DataNodes which store the 64MB data splits, and a
secondary NameNode which duplicates the state of the primary NameNode in case of
failure. The DataNodes typically run on the same machines as the map and reduce
tasks for data locality.

The HDFS architecture is designed to be a write-once, read-many system [3]. Once a

file is closed, it is replicated across the cluster, and cannot be written to again. The

system is optimized for high sustained throughput streaming reads. This means it

is faster to read an entire 64MB block, filtering out information that isn’t needed,

than it is to do a low latency seek to specific locations in that block to read the same

information [3].

The Apache team identifies three types of failures. NameNode failures, DataNode

failures, and network partitions [3]. The NameNode is a single point of failure, and

if the NameNode fails, it must be manually restarted using the most recent image.

This image may be replicated on multiple machines in case of disk failure on the

NameNode. In the case of a network partition or a DataNode failure, data on the

affected DataNodes are unavailable and are re-replicated on the surviving DataN-

odes [3]. A heartbeat message is repeated across the network during execution to

13

track the availability of the DataNodes for this reason [3].

Data in the HDFS can be accessed using the command line, a Java API, or a

C language wrapper for that same API. From the users perspective, the data access

is similar to that of a normal file system. The details of data storage in the HDFS

discussed in this section are hidden from the user. The Java API for accessing HDFS

data is very similar to the API’s used for normal file access, allowing for all of the

familiar operators including implementations of input and output streams which allow

for buffered reads and writes using the standard Java API [3].

2.3.2 Map Reduce

The data sets for Hadoop MapReduce are stored in the Hadoop Distributed File

System (HDFS) in data blocks which can be processed independently by map tasks

in parallel. The entire Map/Reduce framework operates on 〈key, value〉 pairs, and

individual map tasks never communicate with one another [1].

Each map task processes input records in isolation [1]. It is often the case that

a record is simply a single newline delimited piece of data, although this aspect

is highly customizable [1]. The map task then outputs zero to many intermediate

output records [1]. Optionally, the output records from the map tasks may be sent

through a combiner which consolidates the records local to a map task into a smaller

set of equivalent records before being sent to the reducer [1]. This combiner can be

implemented using the same function used for the reduce task [1]. The records are

sorted by key, and all values with the same key are processed together by the same

reducer in no particular order [1]. The reducer phase cannot start until the map phase

has completed [1], and each reducer produces zero to many output records for the

Map/Reduce job [1]. The data types used as the inputs to any given phase do not

need to be the same as the outputs [1]. Furthermore, the application is not required

to use the input keys or values for anything. It is also the case that a Map/Reduce

job may not need both a Map and Reduce phase. Many jobs use an identity map

14

task, and simply process data in the reduce tasks, or vice versa.

Data

Split

Split
Split

Split
Split
Split
Split
Split
Split
Split
Split

Client JobTracker

TaskTracker
Map Task
Map Task
Map Task

TaskTracker
Map Task
Map Task
Map Task

Shuffle/Sort

Shuffle/Sort

TaskTracker
Reduce Task
Reduce Task
Reduce Task

Split Split

Split
Split

Split
Split
Split
Split
Split
Split
Split
Split

Split

TaskTracker
Reduce Task
Reduce Task
Reduce Task

Hadoop Map/Reduce

Figure 2.2: The MapReduce framework uses the split data blocks stored in the HDFS
as input to map tasks which run local to the data. A JobTracker coordinates the
distribution of map and reduce tasks to the TaskTrackers running on each of the
machines. All data are passed in the form of key value pairs. The outputs of the
map tasks are shuffled and sorted based on the key’s and all values with the same
key are guaranteed to be passed to the same reducer. The output of the reduce task
is written back to the HDFS.

The minimum job length is estimated to be around thirty seconds to a minute, al-

though the typical use case for Hadoop results in jobs which take hours, or days to

complete on thousands of machines [2]. This thirty second overhead multiplies when

the algorithm requires multiple Map / Reduce iterations, and is an important factor

to consider when choosing whether to use the Hadoop framework for a given job.

2.4 Iso-Efficiency

On a sequential machine, algorithms are often evaluated by their runtime in terms

of their asymptotic complexity (i.e. Big-O). On parallel machines, other factors such

15

as overhead, number of processors, and how well the algorithm can be parallelized

become issues. The best known algorithms for a given problem on a sequential ma-

chine may be terrible choices in a parallel environment. Even among good parallel

algorithms, the number of machines, and the size of the problem become issues as

some algorithms scale better than others, or are better suited to certain environ-

ments [24]. The question to be answered is how scalable is a given parallel algorithm

in terms of problem size, topology, and number of processors [25, 26]. To resolve this

issue, a metric known as iso-efficiency is used to analyze the efficiency and scalability

of a system. Specifically, iso-efficiency analyzes the size of a problem in terms of

the topology and number of processors in order to keep efficiency constant [25, 26].

This is necessary since increasing the number of machines increases overhead, while

increasing the problem size increases load on each machine. The goal is to match

the right number of machines to the problem size in order to utilize the machines

resources efficiently [25, 26].

2.4.1 Iso-efficiency Framework

The iso-efficiency framework defines cost, speedup, overhead, and efficiency in terms

of the number of processors, topology, and the complexity of the algorithm [25, 26].

The first step is to concretely define these terms. Let Tp be the time an algorithm

takes to solve a problem on P processors, and let T1 be the time taken to solve the

problem on one processor. Let T1 be equal to the total work W done to solve a given

problem.

T1 = W

Let cost Cp be the number of processors multiplied by the time spent on each pro-

cessor.

Cp = PTp

A system is cost optimal Coptimal if cost is asymptotically equal to W .

16

Coptimal = O (W) = O (C)

Let overhead Toverhead be defined as the cost minus the work, and assume no overhead

in the case of just one processor.

Toverhead = PTp −W

Let speedup Sp be the ratio of the time spent on a single machine over the time spent

per processor on P processors.

Sp =
T1

Tp

Let efficiency Ep be the ratio of speedup to the number of processors used.

Ep =
Sp
P

Speedup is typically limited by the number of processors. Speedup on a single ma-

chine is equal to one, but does not necessarily increase linearly with the number of

processors [25, 26]. Speedup tends to saturate due to increasing overhead, and as

a result efficiency decreases as the number of processors increases [25, 26]. This is

known as Amdahl’s law, and is true for all parallel systems. Conversely speedup on

a scalable system tends to increase as the problem size increases since overhead on a

set number of processors does not increase as fast as the workload, and as a result

efficiency goes up [25, 26]. For a system to be scalable, the ratio of work to overhead

must remain constant [25, 26]. Let K be the constant ratio of Toverhead to W .

Toverhead
W

= K

W = KToverhead

Iso-efficiency analysis determines the rates at which to increase the problem size

and the number of processors used in order to keep the efficiency fixed for a given

system [25, 26].

17

The growth of the problem size compared to the growth of the number of proces-

sors determines the scalability of the system. If the problem size must grow exponen-

tially with respect to the number of processors, then good speedups are impossible

for a large number of processors unless the problem size is massive [25, 26]. Such a

system is poorly scalable; whereas if the problem size grows linearly with the number

of processors the system is highly scalable [25, 26]. The iso-efficiency function deter-

mines the level of speedup obtainable from a system proportional to the number of

processors used, and therefore when comparing two algorithms, the algorithm with

the lower iso-efficiency function is the better choice [25, 26].

2.4.2 Adding Numbers on a Hypercube

The authors of [25, 26] use a simple parallel algorithm for adding numbers in parallel

to demonstrate the use of iso-efficiency in a real scenario. This algorithm uses the

topology of the hypercube as the basis for distributing the workload. Assume we

have n numbers to be added on p processors, and n ≥ p. We model the problem so

that processors reside on the corners of a hypercube, and each processor is given n
p

numbers. The processor adds all of the numbers in its queue in n
p

steps, and then

half of the processors send their partial sum to a neighboring processor, thus reducing

the dimensionality of the hypercube. Each processor adds the two partial sums, and

the values get sent again, reducing the dimensionality of the hypercube again. We

assume the send step and the add step both take one time step. The send step and

the add step are repeated log(p) times. Using the equations in the previous section,

we have the following relations.

T1 = W = n

Tp =
n

p
+ 2log (p)

C = n+ 2plog (p)

18

Toverhead = n+ 2plog (p)− n = 2plog (p)

Sp =
np

n+ 2plog (p)

Ep =
n

n+ 2plog (p)

If n = p, then the cost is p+2plog (p) = O (plog (p)). This is not asymptotically equal

to T1 = p = O (p) and therefore not cost optimal. If n = plog (p), then the cost is

3plog (p) = O (plog (p)) which is asymptotically equal to T1 = plog (p) = O (plog (p)),

and therefore cost optimal. Furthermore, the ratio of work to overhead is constant if

n = plog (p). If we want to keep 80% efficiency then the iso-efficiency function can

be calculated by setting Ep = 0.80, and solving for n.

0.80 =
n

n+ 2plog (p)

n = 8plog (p)

This function now describes the rate at which to scale the number of processors

with respect to the problem size in order to keep constant efficiency, and can be

compared to the iso-efficiency function of another algorithm to determine which will

scale better.

19

Chapter 3

Experimental Design

This chapter describes the methods used to evaluate the use of Hadoop on an iter-

ative algorithm, on sub-Terabyte datasets, on a cluster consisting of a single rack of

machines. The remainder of this Section is divided into the following parts. First,

section 3.1 describes the data, as well as the method used to generate them. Next, sec-

tion 3.2 describes the specifications of the computers used in the cluster. Section 3.3

details the libraries used in the implementation of the EM algorithm. Section 3.4

describes implementation details of both the sequential and parallel versions of the

code. Section 3.5 describes experiment specific details of the Hadoop deployment on

the cluster. Section 3.6 describes the metric used to evaluate the systems. Lastly,

Section 3.7 details the experimental protocol used in this thesis.

3.1 The Data

The data used to benchmark EM on Hadoop are randomly generated from a mixture

of Multivariate Normal Distributions. The points for each cluster are generated using

the Box-Muller method [27], are rotated using a random rotation matrix, offset from

the origin by a random distance, and once again rotated around the origin. This

data generation has been tuned to give good separation between clusters, although

overlapping clusters are still possible. This method also gives access to data sets of

arbitrary size, dimension, and underlying cluster count. The implementation chooses

20

the number of points in each cluster from a normal distribution, so each cluster has

a similar number of points, although not exactly the same number of points. As a

final step, points are added or removed from random clusters to correct the sample

count. Sample data sets generated using this method are displayed in Appendix A.

Since the data are generated from Gaussian processes, it is well suited for the

application of EM as a clustering algorithm since EM models the data as a mixture

of Gaussians. The data sets range in sample count N from 50, 000 to 350, 000, and

in dimension D from 2 to 90; the source process ranges from 5 to 25 source data

clusters K. The dimensionality and sample count determine the raw size of the data,

and the source cluster count determines the parallelizability of the algorithm on that

data set. The values are chosen to evenly cover the testable range of data sizes on the

cluster. Larger sizes result in file transfer failures that may be the result of system

quotas being exceeded, bandwidth throttling, or other administrative restrictions.

Unfortunately these issues are beyond user control on the cluster, and the specific

issue preventing the larger file transfers is still unknown.

The generated data sets vary one parameter at a time. As one parameter is varied

the other two are held constant at the following values: the sample count N is held

constant at 250, 000; the dimension D is held constant at 50; and the source cluster

count K is held constant at 15. The source cluster count determines the inherent

limit on the parallelization of the data. The number of processors is bounded by the

underlying source cluster count.

The experiment is repeated on a smaller data set which has the same data ranges

as the larger one, but the values at which the non-varied parameters are held constant

are smaller. This is done to verify that the runtime trends are consistent at different

workloads. These values are the following: the sample count N is held constant at

50, 000; the dimension D is held constant at 10; and the source cluster count K is held

constant at 10. The results for these smaller data sets are included in Appendix A.7.

21

3.2 The Processing Cluster

The processing cluster used in this thesis consists of 30 rack-mounted x64 based

SunFire X4100 servers each with dual 2.8Ghz AMD Opteron 254 processors and 8Gb

of RAM. The machines all run 64 bit Linux, and are connected to a NFS share,

and have drives available for local storage. All experiments are conducted on the

processing cluster in the absence of other users. Some of the experiments do not

utilize all of the machines, see Section 3.1 for details on the data dependent limitations

on parallelization of the EM algorithm.

3.3 Math Libraries

The matrix operations required by the EM algorithm are all implemented using AT-

LAS optimized CLAPACK and CBLAS routines [28, 29, 30, 31, 32, 33, 34]. These li-

braries provide C language wrappers for Fortran-based linear algebra routines. Specif-

ically, the functions for the singular value decomposition of a matrix as well as matrix-

matrix and matrix-vector multiplies are used.

3.4 The Implementation

We test a computationally expensive algorithm that is widely used in the fields of

machine learning and computer vision known as Expectation Maximization which

is described in detail in section 2.1. The algorithm is iterative in nature, and in a

Map/Reduce context requires both a map and reduce phase for each iteration due to

the normalization step. This algorithm makes a good candidate because it is parallel

in nature, its computationally expensive, and provides a realistic use case for Hadoop.

3.4.1 Sequential Implementation of EM

In order to provide the best baseline possible, a sequential version of EM is heavily

optimized. The algorithm is implemented in C++ and all matrix operations are

22

implemented using the libraries described in section 3.3. The matrices which store

the eigenvalues, eigenvectors, probabilities, and data samples are allocated once, and

never copied or moved. All matrix operations involving these matrices are performed

in place.

The initialization of the cluster centers uses the subset furthest first algorithm [35].

This algorithm is used because it is more resistant to outliers than the standard

furthest first algorithm, while still producing an initialization that is well spread

across the data. Careful attention is paid in the implementation of this algorithm,

since a naive implementation results in an unacceptable time-bound and runtime, and

a much more careful implementation is required to obtain the time-bounds advertised

by the authors in [35].

The centers are used to initialize the probabilities using the normalized inverse

euclidean distance from each sample to each center as per the recommendations in [19].

The first cycle through EM uses these initial probabilities to calculate new centers

before the first set of true probabilities are calculated.

The main EM loop consists of three steps, the first of which updates the matrix

containing the cluster centers. The second step uses a singular value decomposition of

the samples weighted by their probabilities to update the eigenvalue and eigenvector

matrices. The final step uses the updated centers, eigenvalues, and eigenvectors to

update the probability matrix. All of the loops and functions have been meticulously

optimized to maximize code locality, minimize cache misses, and written in such a

way as to give the compiler as much of an opportunity to internally optimize the code

as possible.

23

Initialization Centers Eigenvalues/vectors Probabilities

Eigenvalues &
Eigenvectors

- O(kd)

Subset
Furthest First

- O(ndk²log(k))

Weighted Mean
- O(nkd)

Center Data
- O(nkd)

Weight Data
- O(nkd)

Store Centers
- O(dk)

Probabilities
- O(nkd)

Matrix Multiply
- O(kd³)

Singular Value
Decomposition

- O(kd³)

Probabilities
- O(nkd)

Matrix / Vector
Multiply
- O(nd²)

Normalization
- O(kd)

Figure 3.1: Block Diagram of the sequential implementation of the EM algorithm.
The white boxes represent steps which are distributed in the parallel version while
the shaded boxes represent steps which remain sequential. The initialization steps
are not included in the timings, and the normalization step is taken care of in the
reducer in the distributed version.

24

3.4.2 Parallel Implementation of EM

The Hadoop Pipes interface provides a C++ access point to the Map/Reduce frame-

work via a wrapper which uses sockets to communicate with the Java code. This

allows the direct reuse of code from the sequential implementation of EM in the par-

allel version. The initialization stage is not done in parallel and is handled outside of

the Map/Reduce framework. Nearly all of the code from the sequential version can

be parallelized, so each mapper contains the portion of the code from the sequential

version needed to update a single data cluster. Since each processor updates a single

data cluster, the inherent parallelization of the algorithm is limited by the number of

underlying data clusters. The only code that is not in the mapper is the normaliza-

tion step, which requires the output of all the mappers to complete. For this reason,

the normalization is taken care of in the reducer.

Since EM is iterative, and since each iteration is a complete Map/Reduce job, the

job submission and iteration is handled by a Java based driver which submits job

configurations programmatically via the Submitter object. Each submission starts a

full Map/Reduce iteration, the output of which becomes the input to the next itera-

tion. Timings are only taken during the iterations, so the negligible amount of time

between iterations is not included in the timings. Unfortunately, the Map/Reduce

framework itself has no concept of iteration. Once mapper outputs are reduced, they

cannot be fed into another Map/Reduce cycle in the same job.

One of the great strengths of Hadoop is also one of its great weaknesses. The

fact that data are distributed and replicated automatically is a very nice feature, but

in EM there are major internal data dependencies, and while the structure of the

data can be modeled in Hadoop, these dependencies cannot. As a result there is an

inevitable slow down when data are unavailable to mappers that need it. Hadoop

handles this situation, but it slows things down, and the resulting network overhead

is one of the limiting factors on scaling the workload on the infrastructure used for

this paper.

25

3.5 Hadoop

Version 0.20.0 of Hadoop Map/Reduce [1] is used in this research. In order to provide

the most direct comparison between the serial C++ implementation of EM, and the

Hadoop implementation, the Hadoop Pipes interface is used, which provides a C++

interface to the Map/Reduce framework. This allows direct reuse of nearly all of the

code used in the serial C++ version.

The configuration of the Hadoop software for use on the SunFire cluster is based

on recommendations found in [1, 2]. The DataNodes use the local temp directories

on each machine for storing data, while the Hadoop installation is located on NFS.

The read-only data matrix needed by all of the mappers is stored in the distributed

cache, and the matrix of probabilities from each iteration is stored in the HDFS.

The number of map tasks is directly dependent on the number of clusters in the

data. As a result, this value is set programmatically and is specified as an input

to the job. Each map task executes the EM algorithm for a single cluster in the

data, excluding the normalization step. The output of each task are the updated

probabilities for the cluster assigned to that map task. There is a single reduce task,

whose sole job is to collect all of the probabilities for each of the clusters, and then

execute the normalization step of the EM algorithm. The output of the reduce task

becomes the input to the next Map/Reduce job submitted to Hadoop.

Clusters are pre-balanced using a priming job, since the first iteration after a fresh

cluster startup was observed to take much longer than successive iterations due to

initial load balancing. This priming job, which consisted of a dummy map reduce job,

prevented that effect from affecting the data, making all iterations comparable. The

motivation is that in a real environment, the cluster would not be restarted frequently.

Normally, iterations will continue until a convergence criteria is met, but in the

case of this research, the same number of iterations is used across all runs to provide an

equal comparison. The number of iterations chosen exceeds the number of iterations

needed for convergence on the data sets used.

26

3.6 Metric

The metric used to evaluate the performance of EM on Hadoop is the empirical run-

time measured on the cluster in the absence of any other users or jobs. The serial

version is executed on one of the machines in the cluster in order to provide the most

directly comparable results possible. The runtimes are collected using millisecond ac-

curate timings, and runtimes are recorded for both the overall runtime of the Hadoop

job, as well as times spent inside of each mapper and reducer. This allows for a

calculation of overhead contributed by the Hadoop framework.

3.7 Protocol

Before each experiment, the Hadoop system is stopped, HDFS is formatted, and

Hadoop is configured for the experiment. The cluster is started, and the job is

submitted. This gives each experiment an equal environment to eliminate any possible

interaction effects from previous jobs. As described in Section 3.5, a priming job

is used before each experiment to get rid of the first run spike due to initial load

balancing after cluster startup.

Detailed timings are recorded for both work and overhead. For the parallel version,

the work timings are recorded separately within mappers and reducers, allowing for a

further breakdown. Timings are recorded in both the sequential and parallel versions

as data parameters are varied. Each of the sample count N , the underlying cluster

count K, and the dimensionality of the data D are varied one at a time to show the

growth of work and overhead with respect to those parameters. This process results

in a large number of timing values from each map and reduce task from each iteration

from each job with varied values of N ,K, or D. Within a given job, the timings for

all of the mappers tend to have very small standard deviations, and therefore can be

summarized accurately by their means. Since all map tasks execute in parallel, this

time represents the portion of the total time spent in the mapping phase. Both the

27

means and standard deviations for the map phase are reported in the appendix in

section A.1. Reporting just the mean allows for a much simpler visualization of the

data. Since there is only one reducer, the reported timings for that phase are not

summarized in statistics.

Each of the data dimensions N ,K, and D are varied from a small value up to

the maximum achievable range for that parameter on the experiment infrastructure.

Larger data sets result in errors which Hadoop logs indicate to be caused by failed or

timed out file transfers on the underlying system.

The overhead is calculated by taking the total time taken by a job, and subtracting

the mean time spent in the map phase for each iteration, as well as the time spent

in the reduce phase for each iteration. The time left over consists of time spent by

Hadoop in initializing map and reduce tasks, IO overhead, load balancing etc, while

no map or reduce is executing. In an iso-efficiency sense, we are taking the total cost

minus the work to get this value of the overhead.

The serial version has no parallel overhead, and has no sense of a map or reduce

phase. The serial timings consist of the difference in time between the start and finish

of each iteration in a given job. These timings act as the baseline for comparison of

the parallel timings. These timings are collected on all of the same data sets used in

the parallel version.

The goal is to determine if Hadoop is viable on a widely used, easily parallelizable,

computationally expensive, iterative algorithm in a small research environment, and

to identify what factors, if any, limit the viability of Hadoop in this environment. If

Hadoop fails to serve as the framework for this algorithm, the results will give insight

into both the weak and strong points of the framework.

28

Chapter 4

Results

This chapter explains the results of the experiments described in section 3.7 for com-

paring the Hadoop implementation of EM to the sequential baseline implementation.

This chapter is divided into two sections. Section 4.1 discusses the sequential baseline

results, while section 4.2 compares the results from the Hadoop implementation to

that baseline.

4.1 Sequential Baseline

The sequential baseline timings show the time spent in a single iteration as each

data parameter is varied. These experiments use the same datasets as the Hadoop

experiments. All three figures display roughly linear growth as the parameters are

varied. This implies that the runtime scales linearly with the work as a whole. The

lack of overhead gives the sequential version an advantage on smaller datasets, but

the assumption is that as work is scaled up, a crossover point will be found. Cost

optimality is achieved when a P fold speed-up over this sequential baseline is achieved

where P is the number of processors.

29

Number of Samples

R
un

tim
e

/ I
te

ra
tio

n
(s

)

0 50000 100000 150000 200000 250000 300000 350000

0
15

30
45

60
75

90
10

5
12

0

Figure 4.1: Runtime per iteration as the number of samples N is varied. Compare to
Figure A.16 in Appendix A.6 for directly comparable runtimes. This serves as one of
three baseline plots for the experiment.

30

Underlying Cluster Count

R
un

tim
e

/ I
te

ra
tio

n
(s

)

0 5 10 15 20 25

0
15

30
45

60
75

90
10

5
12

0

Figure 4.2: Runtime per iteration as the underlying source cluster count K is varied.
Compare to Figure A.12 in Appendix A.6 for directly comparable runtimes. This
serves as one of three baseline plots for the experiment.

31

Data Dimensionality

R
un

tim
e

/ I
te

ra
tio

n
(s

)

0 20 40 60 80

0
15

30
45

60
75

90
10

5
12

0

Figure 4.3: Runtime per iteration as the data dimensionality D is varied. Compare
to Figure A.8 in Appendix A.6 for directly comparable runtimes. This serves as one
of three baseline plots for the experiment.

The next Section compares these baseline results to the timings from the Hadoop

implementation. This will determine if a crossover point is reached, and if cost opti-

mality is attainable in a small research environment.

32

4.2 Distributed Results

The runtimes for the Hadoop implementation of EM are broken down into three sets

of numbers: overhead time, which is the time spent outside of the map and reduce

phases; map time, which is the mean time spent within the mappers for a given job;

and reduce time which is the mean time spent in the reduce phase for a given job. The

means are reported here because we find that the standard deviations of the times

spent in the map and reduce phases are small. For those interested, these standard

deviations are included in appendix A.

33

50000 100000 150000 200000 250000 300000 350000

−
20

0
−

10
0

0
% Improvement over Sequential Baseline vs. N

N

%
 Im

pr
ov

em
en

t

5 10 15 20 25

−
25

0
−

10
0

0

% Improvement over Sequential Baseline vs. K

K

%
 Im

pr
ov

em
en

t

0 20 40 60 80

−
20

00
−

10
00

0

% Improvement over Sequential Baseline vs. D

D

%
 Im

pr
ov

em
en

t

Figure 4.4: Percentage improvement vs. the sequential baseline as the number of
samples N (top), the number of underlying clusters (and therefore processors) K
(middle), and data dimensionality D (bottom) are varied. At best there is zero
improvement over the sequential baseline which indicates that the system does not
scale down well enough in this case.

In Figure 4.4 we visualize the total runtimes for the Hadoop implementation of the

code as a percentage improvement over the sequential version when run on the same

“large” scale data sets. We vary the number of samples N , the underlying source

cluster count K, and the dimensionality of the data D within the testable limits of

34

our infrastructure, and as the figure shows, at the upper most testable limit of each set

of experiments, we can only match equally the performance of the sequential version

at best. This is partially due to the upfront overhead incurred when using Hadoop,

and partially due to the network transfers which occur since the data consist of non-

granular large records which require multiple 64MB blocks per record. Since there

is no control over data distribution, and since record boundaries are not respected

when splitting the data, no machines typically start out with a complete record to

process. This transfer overhead along with the minimum upfront overhead of Hadoop

is magnified by the iterative nature of the EM algorithm which requires the overhead

to be paid in each iteration since the output data is written back to the HDFS and

redistributed with no respect for record boundaries, and because each iteration is a

new MapReduce job.

While we are able to at least hit the crossover point in our environment at the

uppermost limit of our infrastructure, we are nowhere near cost optimal, and we find

that the system does not scale down well enough in this case. Smaller datasets are

also tested and visualized in the same manner. The plot for those data can be found

in Appendix A.7.

From an iso-efficiency perspective, the observed speedup is less than or equal to

one. Cost optimality is unachievable in this environment since the data can not be

scaled large enough on the infrastructure used in this experiment. To see why, the

next figure displays an analysis of runtimes broken down into overhead and workload.

Additionally, the workload is also broken down into the workloads for both map and

reduce.

35

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

0

50

100

150

Overhead Time vs. N

N

T
im

e
(s

)

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

0

50

100

150

Map Time vs. N

N

T
im

e
(s

)

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

0

50

100

150

Reduce Time vs. N

N

T
im

e
(s

)

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

0

50

100

150

Total Time vs. N

N

T
im

e
(s

)

5 10 15 20 25

0

50

100

150

Overhead Time vs. K

K

T
im

e
(s

)

5 10 15 20 25
0

50

100

150

Map Time vs. K

K

T
im

e
(s

)

5 10 15 20 25

0

50

100

150

Reduce Time vs. K

K
T

im
e

(s
)

5 10 15 20 25

0

50

100

150

Total Time vs. K

K

T
im

e
(s

)

0 20 40 60 80

0

50

100

150

Overhead Time vs. D

D

T
im

e
(s

)

0 20 40 60 80

0

50

100

150

Map Time vs. D

D

T
im

e
(s

)

0 20 40 60 80

0

50

100

150

Reduce Time vs. D

D

T
im

e
(s

)

0 20 40 60 80

0

50

100

150

Total Time vs. D

D

T
im

e
(s

)

Timing Details for Work and Overhead
OVERHEAD________________ WORK__________________________________ TOTAL_____________

Figure 4.5: Runtimes for a single iteration of EM broken into overhead (left column),
map and reduce phase work (center columns), and total runtime (right column) as the
number of samples N (top row), underlying source cluster count K (center row), and
data dimensionality D (bottom row) are varied. The work grows linearly with the
data size despite quadratic algorithmic runtime bounds. This implies the computation
is IO bound. The overhead accounts for most of the runtime. Since the work scales
linearly, the system is scalable, and cost optimality may be possible on much larger
data sets.

Figure 4.5 shows an overview of the runtimes for the Hadoop implementation of EM

as the number of samples N , the underlying source cluster count K, and the data

dimensionality D are each varied. Larger versions of these plots are included in

Appendix A.6. The figure shows that in every case, the majority of the total runtime

36

is accounted for in the overhead. As N and D grow, the overhead also grows, but

as K is increased, the overhead stays constant. In the map phase runtime increases

linearly as N , K and D are increased despite quadratic algorithmic time bounds. This

indicates that the runtime is driven by the space complexity of the data, meaning the

map phase is IO bound. The reduce phase runtimes increase linearly in N, and K,

but remain constant in D as expected since D plays no part in the reduce. Smaller

datasets are also tested and visualized in the same manner. The plot for those data

can be found in Appendix A.7.

As parameters increase, overhead appears to increase linearly, and in the testable

data range the work increases linearly as well. From an iso-efficiency perspective this

means that the ratio between work and overhead stays constant, which means the

algorithm does scale well, and there does exist a point where this system becomes

efficient. The large minimum overhead due to iteration effectively sets a requirement

for a large minimum workload to obtain good efficiency, but the infrastructure used

in this experiment cant support that workload.

37

Chapter 5

Conclusion

Hadoop is useful when the problem lends itself to the Map/Reduce framework. Mul-

tiple iterations of Map/Reduce are required for implementing EM using Hadoop,

and those iterations are a major contributing factor to Hadoop not scaling well in a

small research environment. Each iteration requires large non-granular records to be

split without respect for record boundaries resulting in overhead from network traffic,

combined with the minimum startup overhead for each iteration.

Iso-efficiency tells us that at some point we can find an efficient combination of

workload and processors such that EM will be efficient. The workload cannot be

scaled up large enough in our environment due to data dependencies that can not be

modeled in Hadoop, which result in too much network overhead during execution.

The infrastructure itself is a small research cluster comparable consisting of a single

rack of machines. In small research environments, sequential implementations of

algorithms such as EM may take weeks on sizable datasets. It is of great interest to

find a framework that will allow easy parallelization of these projects to allow for more

timely execution. This paper examines the use of an easily parallelizable algorithm

which is computationally expensive and widely used in many fields of research with

the goal of examining the performance of Hadoop in a small research environment

and analyzing any possible issues that may prevent such a framework from working

well.

38

5.1 Future Work

This research has brought up several questions which remain unanswered. The iso-

efficiency analysis shows that at the testable ranges of data, computation is largely

IO bound. It may be the case that on data sets orders of magnitude larger this will no

longer be the case due to the increased workload. If that is so, then the iso-efficiency

analysis will change, and what is currently a very scalable algorithm may no longer

be so. Speedup may saturate before reaching an acceptable level of efficiency, or

either the workload or overhead may begin to grow exponentially with the number of

processors.

We are unable to test these larger data ranges because the underlying file transfers

used by Hadoop begin to fail at larger data ranges. Since the data consists of very

few, but very large records, no one machine has a complete record to start with

since data splits do not respect record boundaries. Since the entire cluster starts off

with truncated files, there is a burst of network traffic at the start of each iteration

as Hadoop transfers the required pieces. This burst of network traffic may be a

contributing factor to the failed network transfers which prevent larger data-sets

from being used. It is also possible that this may be an issue with disk quotas,

bandwidth throttling, or some other administrative issue. These experiments may be

run using much larger data sets that increase workload to processor capacity on a

small research cluster which does not have these limitations. One possible workaround

may be to use a binary data format which allows for larger datasets in the presence of

these limitations. Another possible solution is to directly support iteration, where the

< key, value > pairs are sent from the reducer straight back into another MapReduce

cycle, bypassing the HDFS altogether. This would eliminate the issue of non-granular

records being split and reformed each iteration.

It is also yet to be seen how well other frameworks will perform using the same

EM implementation. Hadoop is one of many distributed systems available, and other

frameworks which support iteration or modeling of data dependencies may perform

39

better. The Google Map / Reduce system [12] differs from Hadoop in many ways in-

cluding support for iteration, although the Google Map / Reduce system is proprietary

and is not available for detailed performance testing. The Granules system [10, 11]

supports Map / Reduce as well as iterative, periodic, and data driven models. A sur-

vey of several systems would be beneficial to the community to determine the pro’s

and con’s of each and to allow for informed choices.

40

Appendix A

A.1 Mapping Phase Means and Std. Deviations

Table A.1: Mean Map times and corresponding standard deviations for each iteration
of EM on various datasets. The standard deviations are small compared to the means,
making the mean a good indicator of the total time spent in the map phase by each
mapper.

N K D Mean Time (s) Std. Deviation (s)
50000 15 50 3.90 0.15
150000 15 50 12.16 0.37
250000 5 50 17.75 0.61
250000 10 50 18.95 0.59
250000 15 2 1.94 0.07
250000 15 10 4.90 0.17
250000 15 50 19.97 0.62
250000 15 90 37.73 1.14
250000 20 50 21.47 0.68
250000 25 50 23.04 1.02
350000 15 50 28.01 0.69

The analysis in section 4 reports the mean time spent in the mapping phase for

each iteration on each data set. That analysis uses only the means in visualizing

the results since the standard deviations are relatively small making the means a

good representation of all iterations on a given data set. The standard deviations are

reported here along side of the corresponding mean values used in the analysis.

41

A.2 ATLAS CBLAS Matrix Multiple Runtime Anomaly

●
●

●
●

●
●●

●
●

●
●

●●
●

●
●

●

●●●●●●●●●
●

●●●●

1024x1024 Matrix Multiply Runtime

Fill Value

S
ec

on
ds

1e−300 1e−260 1e−220 1e−180 1e−140 1e−100 1e−60 1e−20

0
10

20
30

40
50

60
70

80
90

Figure A.1: ATLAS CBLAS matrix multiply runtimes with fill values ranging from
1e-0 to 1e-300. The runtime for a loop containing the matrix multiply jumps by an
order of magnitude when the matrices contain values smaller than 1e-150.

The ATLAS optimized CBLAS matrix multiply significantly slows down when the

matrix contains very small numbers around 1e-150 or so. To demonstrate this phe-

nomenon, we constructed a pair of 1024x1024 matrices and timed a looped CBLAS

matrix multiply operation while varying the values used to fill the matrices. The

42

values ranged from 1e-0 down to 1e-300. Figure A.1 shows the results. The matrix

multiply operations on values larger than 1e-150 took less than 4 seconds, while the

same operations on matrices containing values of 1e-150 and smaller took more than

ten times as long. We chose not to pursue the reason for this, but we did modify the

EM code to round matrix values in the normalized probability matrix whose value

is equal to or smaller than 1e-150 to zero. This resulted in a substantial boost in

run time with no discernible impact on the output of the algorithm. This is be-

cause normalized probabilities of that magnitude are negligible and indicate that the

corresponding data point is unlikely to be a member of the corresponding cluster

anyway.

43

A.3 Sample Randomly Generated Dataset

●

●

●
●
●

●●

●

●

●
● ●

●
●●

●●

●

●
● ●

●
●

●

●● ●

●

●
● ●

●

●

●

●
●

●
●

● ●

●

●
●

● ●●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

● ●
●

●
●

●

● ●

●

●

●

● ●

●
●

●

●
●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

−20 −15 −10 −5 0 5

−
5

0
5

10
15

20
Sample Randomly Generated Dataset

X

Y

Figure A.2: A sample 2D Dataset randomly generated using the data generation code
developed for thesis. See Section 3.1 for details.

The data set shown in Figure A.2 is an example of a 2D dataset generated by the

method described in Section 3.1. A 2D dataset is chosen for this example because

it is easily visualized. A clustering of this data is presented in Appendix A.4 for

reference.

44

A.4 Sample Clustering Using EM

●

●

●
●
●

●●

●

●

●
● ●

●
●●

●●

●

●
● ●

●
●

●

●● ●

●

●
● ●

●

●

●

●
●

●
●

● ●

●

●
●

● ●●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

● ●
●

●
●

●

● ●

●

●

●

● ●

●
●

●

●
●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

−20 −15 −10 −5 0 5

−
5

0
5

10
15

20
EM Clustering Results

X

Y

●

●

●

●

●

Figure A.3: The same sample dataset as displayed in Appendix A.3, now clustered
using the EM code developed for this thesis. The centers, and eigenvectors are dis-
played to represent the multivariate normal distributions found by EM to have the
highest probability of generating the data. The eigenvectors are scaled to one stan-
dard deviation from the cluster center.

The dataset shown in Figure A.3 shows the resulting clustering of the data from

Appendix A.3 by the EM code used in this thesis. The dots and lines represent

the means and eigenvectors of the multivariate normal distributions which have the

45

highest probability of having been the process which produced the data. The length

of the eigenvectors are scaled to represent one standard deviation from the mean.

A.5 Sample Clustering Using EM (Hard)

●
● ●

●
●

●
●

●
●

●

●● ●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●
● ●

●
●

●
●

●

● ●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●●

●

●

●

●
●● ●
●

●

●

●●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●● ● ●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●
●

●● ●

●

●

●● ● ●●●

●
●●

●
●

●

●
●

●
●

●● ●

●

●
●

−15 −10 −5 0 5 10 15

0
5

10

EM Clustering Results

X

Y

●

●

●

●

●

Figure A.4: A sample 2D Dataset randomly generated using the data generation
code developed for thesis clustered using the EM code developed for this thesis.
In this case some of the clusters are overlapping making this a hard data set to
correctly cluster. As expected, the resulting model does not match the true underlying
source clusters from which the data is generated. The centers, and eigenvectors are
displayed to represent the multivariate normal distributions found by EM to have
the highest probability of generating the data. The eigenvectors are scaled to one
standard deviation from the cluster center.

This is another example of a randomly generated data set clustered using EM. In this

example, five Gaussian processes are used to generate the data, but by chance some

46

of them are overlapping. The resulting fit does not match the original processes used

to generate the data, and is shown as an example of EM on a harder data set.

A.6 Fullsized Work and Overhead Plots

Data Dimensionality

M
ap

 T
im

e
(s

)

0 20 40 60 80

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.5: Time spent in the mapping phase per iteration as data dimensionality D
is varied. The Mapping phase contains algorithms which are quadratic in D, but the
growth appears linear which suggests the runtime is IO bound.

47

Data Dimensionality

O
ve

rh
ea

d
T

im
e

(s
)

0 20 40 60 80

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.6: Time spent in overhead per iteration as data dimensionality D is varied.
The overhead appears to grow linearly, the slight curve seen in this figure is most
likely due to noise. Subsequent runs of the experiment result in a variety of noisy
linear plots. This may be due to random network delays, or the fact that Hadoop is
implemented in Java, and is subject to random garbage collection delays.

48

Data Dimensionality

R
ed

uc
e

T
im

e
(s

)

0 20 40 60 80

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.7: Time spent in the reduce phase per iteration as data dimensionality D is
varied. Data dimensionality plays no role in the reduce phase since the reducer only
deals with a NxK matrix of probabilities. As expected the time spent in the reduce
phase is unaffected by varying data dimensionality.

49

Data Dimensionality

To
ta

l T
im

e
(s

)

0 20 40 60 80

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.8: Total time spent per iteration including overhead, map, and reduce
time as data dimensionality D is varied. The total runtime is largely dominated by
overhead.

50

Underlying Cluster Count

M
ap

 T
im

e
(s

)

0 5 10 15 20 25

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.9: Time spent in the mapping phase per iteration as the underlying source
cluster count K is varied. The parameter K determines the inherent parallelizability
of the EM algorithm given the data, and therefore the number of processors used
to distribute the work. Since increasing K both linearly increases workload in the
mapping phase and increases parallelism of the algorithm we see only a slow linear
growth in runtime.

51

Underlying Cluster Count

O
ve

rh
ea

d
T

im
e

(s
)

0 5 10 15 20 25

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.10: Time spent in overhead per iteration as the underlying source cluster
count K is varied. The parameter K determines the inherent parallelizability of the
EM algorithm given the data, but has no effect on the data set size. As expected, we
see no change in overhead as K is varied since there is no change in data size.

52

Underlying Cluster Count

R
ed

uc
e

T
im

e
(s

)

0 5 10 15 20 25

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.11: Time spent in the reduce phase per iteration as the underlying source
cluster count K is varied. The parameter K determines on dimension of the resulting
NxK probability matrix which is processed by the reducer. The reducer phase is
linear in K which is consistent with this figure although the reduce phase is most
likely IO bound.

53

Underlying Cluster Count

To
ta

l T
im

e
(s

)

0 5 10 15 20 25

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.12: Total time spent per iteration including overhead, map, and reduce time
as the underlying source cluster count K is varied. The total time is dominated by
overhead, but grows very slowly. Since increasing K linearly increases workload, has
no effect on overhead, and increases the inherent parallelism of the algorithm, we see
that increasing K is nearly free from a runtime perspective when compared to the
other parameters.

54

Number of Samples

M
ap

 T
im

e
(s

)

0 50000 100000 150000 200000 250000 300000 350000

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.13: Total time spent in the mapping phase per iteration as the number of
samples N is varied. The Mapping phase contains algorithms which are linear in N
which is consistent with this plot.

55

Number of Samples

O
ve

rh
ea

d
T

im
e

(s
)

0 50000 100000 150000 200000 250000 300000 350000

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.14: Total time spent in overhead per iteration as the number of samples
N is varied. The size of the NxD dataset grows linearly in N and as expected, the
overhead grows linearly as well.

56

Number of Samples

R
ed

uc
e

T
im

e
(s

)

0 50000 100000 150000 200000 250000 300000 350000

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.15: Total time spent in the reduce phase per iteration as the number of
samples N is varied. The size of the NxK probability matrix grows linearly in N and
as expected, the time spent in the reducer grows linearly as well.

57

Number of Samples

To
ta

l T
im

e
(s

)

0 50000 100000 150000 200000 250000 300000 350000

0
15

30
45

60
75

90
10

5
12

0
13

5
15

0

Figure A.16: Total time spent per iteration including overhead, map, and reduce time
as the number of samples N is varied. The total time is dominated by overhead, but
is still linear since the workload and overhead are both linear.

58

A.7 Smaller Data Set Results

50000 100000 150000 200000 250000 300000 350000

−
25

00
−

10
00

0

% Improvement over Sequential Baseline vs. N

N

%
 Im

pr
ov

em
en

t

5 10 15 20 25

−
40

00
−

20
00

0

% Improvement over Sequential Baseline vs. K

K

%
 Im

pr
ov

em
en

t

0 20 40 60 80

−
80

00
−

40
00

0

% Improvement over Sequential Baseline vs. D

D

%
 Im

pr
ov

em
en

t

Figure A.17: Percentage improvement vs. the sequential baseline as the number
of samples N (top), the number of underlying clusters (and therefore processors) K
(middle), and data dimensionalityD (bottom) are varied. This is the same experiment
which produced the results in Chapter 4repeated on smaller datasets.

59

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

0

20

40

60

80

Overhead Time vs. N

N

T
im

e
(s

)

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

0

20

40

60

80

Map Time vs. N

N

T
im

e
(s

)

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

0

20

40

60

80

Reduce Time vs. N

N

T
im

e
(s

)

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

0

20

40

60

80

Total Time vs. N

N

T
im

e
(s

)

5 10 15 20 25

0

20

40

60

80

Overhead Time vs. K

K

T
im

e
(s

)

5 10 15 20 25
0

20

40

60

80

Map Time vs. K

K

T
im

e
(s

)

5 10 15 20 25

0

20

40

60

80

Reduce Time vs. K

K
T

im
e

(s
)

5 10 15 20 25

0

20

40

60

80

Total Time vs. K

K

T
im

e
(s

)

0 20 40 60 80

0

20

40

60

80

Overhead Time vs. D

D

T
im

e
(s

)

0 20 40 60 80

0

20

40

60

80

Map Time vs. D

D

T
im

e
(s

)

0 20 40 60 80

0

20

40

60

80

Reduce Time vs. D

D

T
im

e
(s

)

0 20 40 60 80

0

20

40

60

80

Total Time vs. D

D

T
im

e
(s

)

Timing Details for Work and Overhead
OVERHEAD________________ WORK__________________________________ TOTAL_____________

Figure A.18: Runtimes for a single iteration of EM broken into overhead (left column),
map and reduce phase work (center columns), and total runtime (right column) as
the number of samples N (top row), underlying source cluster count K (center row),
and data dimensionality D (bottom row) are varied. This is the same experiment
which produced the results in Chapter 4 repeated on smaller datasets.

60

REFERENCES

[1] Map/reduce tutorial, 2010. ”http://hadoop.apache.org/common/docs/
current/mapred_tutorial.html”.

[2] Cloudera hadoop training: Mapreduce and hdfs, 2009. ”http://vimeo.com/
3584536”.

[3] Hdfs architecture, 2010. ”http://hadoop.apache.org/common/docs/current/
hdfs_design.html”.

[4] Zhi-Dan Zhao and Ming sheng Shang. User-based collaborative-filtering recom-
mendation algorithms on hadoop. International Workshop on Knowledge Dis-
covery and Data Mining, 0:478–481, 2010.

[5] Richard A. Brown. Hadoop at home: large-scale computing at a small college.
SIGCSE Bull., 41:106–110, March 2009.

[6] Chen Zhang, Hans De Sterck, Ashraf Aboulnaga, Haig Djambazian, and Rob
Sladek. Case study of scientific data processing on a cloud using hadoop. In
Douglas Mewhort, Natalie Cann, Gary Slater, and Thomas Naughton, editors,
High Performance Computing Systems and Applications, volume 5976 of Lecture
Notes in Computer Science, pages 400–415. Springer Berlin / Heidelberg, 2010.

[7] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion
Stoica. Improving mapreduce performance in heterogeneous environments. In
Proceedings of the 8th USENIX conference on Operating systems design and im-
plementation, OSDI’08, pages 29–42, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

[8] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae,
Judy Qiu, and Geoffrey Fox. Twister: a runtime for iterative mapreduce. In
Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 810–818, New York, NY, USA, 2010.
ACM.

[9] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop:
efficient iterative data processing on large clusters. Proc. VLDB Endow., 3:285–
296, September 2010.

61

[10] S. Pallickara, J. Ekanayake, and G. Fox. An overview of the granules runtime for
cloud computing. In eScience, 2008. eScience ’08. IEEE Fourth International
Conference on, pages 412 –413, dec. 2008.

[11] S. Pallickara, J. Ekanayake, and G. Fox. Granules: A lightweight, streaming
runtime for cloud computing with support, for map-reduce. In Cluster Comput-
ing and Workshops, 2009. CLUSTER ’09. IEEE International Conference on,
pages 1 –10, 31 2009-sept. 4 2009.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[13] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society Series: B
(Methodological), 39(1):1–38, 1977.

[14] C F Jeff Wu. On the convergence properties of the em algorithm. The Annals
of Statistics, 11(1):95–103, 1983.

[15] Rolf Sundberg. Maximum likelihood theory and applications for distributions
generated when observing a function of an exponential family variable. PhD
dissertation, Stockholm University, 1971.

[16] Rolf Sundberg. Maximum likelihood theory for incomplete data from an expo-
nential family. Scandinavian Journal of Statistics, 1(2):49–58, 1974.

[17] Rolf Sundberg. An iterative method for solution of the likelihood equations
for incomplete data from exponential families. Communications in Statistics -
Simulation and Computation, 5(1):55–64, 1976.

[18] Jeff Bilmes. A gentle tutorial of the EM algorithm and its application to pa-
rameter estimation for Gaussian mixture and hidden Markov models. Technical
Report TR-97-021, ICSI, 1997.

[19] Bruce A. Draper, Daniel L. Elliott, Jeremy Hayes, and Kyungim Baek. Em in
high-dimensional spaces. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 35(3):571–577, 2005.

[20] Bill Venners. Designing distributed systems, a conversation with ken arnold,
part iii, 2002. ”http://www.artima.com/intv/distrib.html”.

[21] Introduction to distributed system design, 2010. ”http://code.google.com/
edu/parallel/dsd-tutorial.html”.

[22] Ken Birman. Reliable Distributed Systems Technologies, Web Services, and Ap-
plications. Springer, 2006.

[23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-
tem. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

62

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, New York, 2001.

[25] Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algorithms
and architectures. J. Parallel Distrib. Comput., 22:379–391, September 1994.

[26] Ananth Y. Grama, Anshul Gupta, and Vipin Kumar. Isoefficiency: Measuring
the scalability of parallel algorithms and architectures. IEEE Concurrency, 1:12–
21, 1993.

[27] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal
deviates. The Annals of Mathematical Statistics, 29:610–611, June 1958.

[28] R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance
costs in supporting persistently optimized BLAS. Software: Practice and Ex-
perience, 35(2):101–121, February 2005. ”http://www.cs.utsa.edu/~whaley/
papers/spercw04.ps”.

[29] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated em-
pirical optimization of software and theATLAS project. Parallel Computing,
27(1–2):3–35, 2001. Also available as University of Tennessee LAPACK Work-
ing Note #147, UT-CS-00-448, 2000(”http://www.netlib.org/lapack/lawns/
lawn147.ps”).

[30] R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Algebra Soft-
ware. In Ninth SIAM Conference on Parallel Processing for Scientific Comput-
ing, 1999. CD-ROM Proceedings.

[31] R. Clint Whaley and Jack Dongarra. Automatically tuned linear algebra soft-
ware. In SuperComputing 1998: High Performance Networking and Computing,
1998. CD-ROM Proceedings. Winner, best paper in the systems category.
URL: ”http://www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps”.

[32] R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Algebra Soft-
ware. Technical Report UT-CS-97-366, University of Tennessee, December 1997.
URL : http://www.netlib.org/lapack/lawns/lawn131.ps”.

[33] See homepage for details. Atlas homepage. ”http://math-atlas.
sourceforge.net/”.

[34] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, third edition, 1999.

[35] Douglas Turnbull and Charles Elkan. Fast recognition of musical genres using
rbf networks. IEEE Trans. on Knowl. and Data Eng., 17:580–584, April 2005.

63

[36] Lei Xu and Michael I. Jordan. On convergence properties of the em algorithm
for gaussian mixtures. Neural Computation, 8:129–151, 1995.

[37] Martaza Jamshidian and Robert I. Jennrich. Acceleration of the em algorithm
by using quasi-newton methods. Journal of the Royal Statistical Society Series:
B (Methodological), 59(3):569–587, 1997.

64

