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ABSTRACT 

EVALUATION OF INTERNATIONAL SATELLITE CLOUD CLIMATOLOGY 

PROJECT (ISCCP) D2 CLOUD AMOUNT CHANGES AND THEIR CONNECTIONS 

TO LARGE-SCALE DYNAMICS 

The International Satellite Cloud Climatology Project (ISCCP) D2 dataset 

exhibits a 2.6% per decade decrease in the global all-cloud cloud amount from July 1983 

through September 2001 . This result is consistent with other recent findings that provide 

evidence that the cloud amount has decreased on a decadal-scale. Such changes in cloud 

amount should have an obvious impact on the climate system through changes in heating 

and the radiation budget of the atmosphere. However, the changes evident in the ISCCP 

data seem too large to be accepted without question. Because these data are used as a 

verification tool for the global climate modeling community, it is imperative that the 

nature of these changes are better understood and verified for similarities with other data 

sources. Otherwise, climate studies might be comparing their results with faulty 

information. This study represents an attempt to characterize and verify the ISCCP D2 

cloud amount changes. 

One possible reason why the ISCCP D2 trend might be too large is the presence 

of artifacts in the data related to changes in the number of geosynchronous satellites in 

orbit. This leads to changes in the viewing angle for each pixel in the dataset artd 

explains roughly one-third of the trend in the global cloud amount. In order to account 

for this phenomenon, this study focuses on the region from 90°E to 180° and 30°N to 

30°S where the satellite coverage has been relatively constant. It is shown that the slope 
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of the cloud amount change in this region is still very large. This leaves open the 

possibility that there is other contamination in the ISCCP data, and calls into question the 

validity of the large cloud amount trend. 

Several steps are taken to examine the nature of the cloud amount changes in this 

region. First of all, the changes in the ISCCP cloud amount data are characterized by 

three criteria: where and when the changes are occurring and the types of clouds 

expressing them. These patterns are examined for features that appear physically 

reasonable. These patterns can then be checked against patterns obtained from the 

NOAA Interpolated OLR and P ATMOS-A cloud amount datasets. These data, from 

sensors mounted on polar-orbiting satellites, do not experience the viewing-angle 

problem of ISCCP but should still corroborate evidence of real cloud amount changes. 

The most unique aspect of this study is the use of reanalysis data to look for 

signals of climate change that are related to changes in the ISCCP cloud amount data. 

The average ISCCP all-cloud cloud amount for the region of interest is regressed onto 

wind fields, geopotential height fields, divergence fields, and other data that represent 

how the climate has changed over the span of the ISCCP dataset. Maps of regression 

coefficients represent how those fields change in response to a unit increase in cloud 

amount. These patterns help to identify atmospheric phenomena that are connected with 

variations in cloud amount in the region of interest. Furthermore, the true cloud amount 

trend in the region of interest can be diagnosed by making time series of how well the 

regression maps project onto reanalysis fields at each time step. These "proxy cloud time 

series" represent how the true cloud amount must be changing to effect the observable 
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changes in the reanalysis data. Both results provide a unique way to discover whether 

the ISCCP D2 cloud amount changes are also evident in other data sources. 

It is shown that the cloud amount changes evident in the ISCCP D2 dataset are 

indicative of changes in the intensity and location of convection associated with the Inter-

Tropical Convergence Zone (ITCZ). The spatial patterns of these changes are somewhat 

consistent with the NOAA Interpolated OLR and PATMOS-A cloud amount datasets. 

However the trends in the regionally averaged time series of these data are not 

significantly different from zero. This supports the conclusion that the ISCCP trend is 

too large. Using data from the NCEP/NCAR reanalysis and the ERA-40 reanalysis, it is 

shown that the changes in the ISCCP D2 cloud amount time series in the region of 

interest are highly correlated with changes in the Walker-Hadley circulation. The 

patterns of these changes are consistent with the redistribution of convection indicated by 

each of the satellite datasets, and appear to be associated with ENSO since they are also 

consistent with the results of Bjerknes (1969). The reanalysis data also provide 

independent confirmation that the actual cloud amount in the region of interest is likely 

not changing in a statistically significant way during the period spanned by the ISCCP D2 

dataset. Therefore, while the variability of cloud amount due to ENSO is evidently 

captured by the ISCCP D2 dataset, the long-term trend in the ISCCP cloud amount is 

likely not physically realistic. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Recent studies by Wielicki et al. (2002), Chen et al. (2002), and Palle et al (2004) 

provide evidence of a decadal-scale decrease in the cloud amount (cloud fraction) in the 

tropics. Wielicki et al. use data from the Earth Radiation Budget Experiment (ERBE, 

Barkstrom 1984) to demonstrate a decadal-scale upward trend in the tropical mean 

longwave (L W) flux time series since 1985. They argue that this change must be 

reflected in changes in the tropical cloud amount because the anomalies are a factor of 4 

to 8 larger than can be explained simply by surface and atmospheric warming. Chen et 

al. correlate ISCCP D2 data (Schiffer and Rossow 1983) to a principal component (PC) 

time series that shows decadal-scale changes in the tropical and sub-tropical top-of­

atmosphere (TOA) L W flux. Their results show that the change in L W flux correlates 

with a decrease in the cloud amount in these regions. Palle et al. correlate measurements 

of the Earth's reflectance, which are deduced from measurements of the earthshine on the 

lunar surface, with ISCCP D1 data. Their analysis concludes that the Earth's albedo 

decreased from 1999-2001, but that the reflectance was then beginning to increase 

afterwards. These observations are apparently consistent with the ISCCP D2 global all­

cloud cloud amount time series shown in Figure 1.1. 

The changes evident in these data have sparked de bate in recent years, since a 4 to 

5% decrease in the global all-cloud cloud fraction over a 19-year record seems 

unreasonably large. Recent work on ISCCP data has shown that this is indeed the case 



(Campbell 2004). As the number of geosynchronous satellites in orbit has changed over 

the course of the 19 years spanned by ISCCP, the angles at which the satellites view 

certain regions of the world have declined in a nearly stepwise fashion. This decline is 

illustrated in Figure 1.2, which shows the ISCCP D2 all-cloud cloud amount anomaly, 

averaged over 50°N - 50°S, with the time series of the diurnal and regional average of 

1/cosine(viewing angle) with the seasonal cycle removed for the same region. This 

quantity, called the air mass factor, approximates the depth of the atmosphere through 

which the satellites are observing. The step-like changes evident in the air-mass factor 

appear to be concurrent with low-frequency amplitude changes in the cloud amount. 

Furthermore, the air mass factor explains 54% of the variance in the cloud amount time 

series. It is evident that the changes in this quantity are a significant source of artificial 

cloud amount changes in the ISCCP D2 dataset. 

This phenomenon is further demonstrated by comparing the map of the ISCCP D2 

all-cloud cloud amount trends (Figure 1.3(a)) with a map showing the correlation of the 

time series of the air mass factor at each location to the collocated ISCCP all-cloud cloud 

amount time series (Figure 1.3(b)). The sharpest gradients in the cloud trends are 

coincident with regions where changes in the air mass factor account for most of the 

variance in the cloud amount time series. This indicates that there are artifacts in the 

cloud amount data; a situation referred to hereafter as the "viewing angle problem." 

However, this problem has only been shown to explain roughly one-third of the slope in 

the all-cloud global cloud amount time series (Campbell 2004). While this result calls 

into question the validity of the huge slope shown in Figure 1.1, two-thirds of the trend 

remains unaccounted for. Therefore, it is important to understand the nature of the cloud 
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amount changes and to look for patterns in those changes that suggest whether they are 

physically reasonable or not. 

In order to do this, one must first find a way to reduce or eliminate the influence 

of the viewing angle problem. In this study, this requirement is addressed by examining 

the cloud amount in an area where the cloud amount and the air mass factor are not 

highly correlated. In Figure 1.3(b ), the region spanning 30°N to 30°S and 90°E to 180° 

shows a relatively low correlation between these time series due to the relatively constant 

satellite coverage that existed in this area. This area will be hereafter referred to as the 

"region of interest". Figure 1.4 shows the average ISCCP D2 all-cloud cloud amount 

time series for this region. Despite this attempt to account for the large trend in cloud 

amount, the slope of this time series is still severe. This could either mean that there is 

another source of error in the ISCCP cloud amount data, or it could mean that the cloud 

amount in this region changes a great deal between 1983 and 2001. Either way, other 

data must be examined for signals of this kind of cloud change before there can be any 

confidence in the magnitude ofthe changes evident in Figure 1.4. 

Satellite data provide a good place to start a search for signals of cloud amount 

changes. Datasets based on different sensors that either measure cloud amount or 

variables that can be related to cloud amount provide an independent estimate of how, 

when, and where the cloud amount in the region of interest is changing. This is 

especially true of data from polar-orbiting satellites since they do not suffer from the 

viewing angle problem and would provide results without the influence of changes in the 

air mass factor. Such data would not only help confirm the presence of a long-term trend, 

but would also help confirm some of the patterns of change evident in the ISCCP data. 
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Another means of observing signals of the cloud amount is through the use of 

reanalysis data. It has been shown that changes in cloud amount would almost certainly 

have important implications for the climate system. For example, Chen et al. (2002) 

show that the PCs for L W flux in the tropics correlate with changes in the 500 mb 

vertical velocity field of the NCEP/NCAR reanalysis dataset (Kalnay et al. 1996). This 

suggests that there are also decadal-scale changes in the general circulation of the 

atmosphere, although the use of reanalysis vertical velocity data in the tropics is suspeet 

because large-scale dynamical forcings in that region are generally weak. There is also 

agreement that clouds are part of an important feedback mechanism affecting tropical 

SST, although there is broad disagreement as to whether this mechanism is a positive or 

negative feedback (see Miller 1997, Pierrehumbert 1995, Lindzen et al. 2001, Lin et al. 

2002, and others). In light of this, reanalysis data provide a unique and perhaps more 

interesting opportunity for analysis. Changes in the general circulation that correlate with 

the cloud amount time series would not only provide a means to verify the cloud amount 

trend, they would also provide information on the patterns of coupling between cloud 

amount in the region of interest and the climate system as a whole. Such relationships 

would prove valuable in understanding processes that control long-term variations in 

cloud amount. 

I . 2 Thesis goals and outline 

The overall goal of this project is to understand the nature of cloud amount 

changes in the region of interest and their connections with changes in the general 

circulation of the tropical atmosphere through the use of the ISCCP D2 cloud amount 

dataset. In order to achieve this goal, there are several tasks that must be accomplished. 
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First of all, the ISCCP D2 cloud amount data are characterized in terms of where and 

when the cloud amount is changing in the region of interest and the types of clouds that 

are expressing these changes. This not only sheds light on the nature of the cloud amount 

changes evident in the ISCCP data, but it also provides a basis for comparison with other 

data in the hopes of verifying that the cloud amount changes are evident in other datasets 

as well. The next task is to compare these results with the NOAA Interpolated OLR 

(Liebmann and Smith 1996) and the P ATMOS-A cloud amount datasets (Stowe et al. 

2002), both of which are based on sensors mounted on polar-orbiting satellites. After 

that, reanalysis data are then used to look for how changes in the climate system relate to 

changes in the ISCCP cloud amount. These steps will not only help to verify the changes 

evident in the ISCCP data, but the use of reanalysis data will also help to highlight how 

cloud amount changes are connected to changes in the climate system. 

This thesis is divided into several distinct parts covering each of the tasks outlined 

above. Chapter 2 describes and characterizes each of the datasets used in this study as 

well as the methods used to process that data and the unique analyses used to study the 

nature of the ISCCP trend and its connections with the climate system. Chapter 3 shows 

the various aspects of the ISCCP D2 cloud amount changes, including where and when 

they are occurring and the types of clouds expressing them. This chapter also contains a 

discussion of preliminary evidence showing that the patterns of change may be related to 

variations in the general circulation of the atmosphere. Chapter 4 then characterizes any 

changes shown the NOAA Interpolated OLR and PATMOS-A cloud amount datasets. 

These results are shown to be significantly different from the ISCCP D2 cloud amount 

dataset and seem to indicate that some of the changes evident in ISCCP are anomalous. 
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Chapter 5 presents the most interesting results of this study. Using reanalysis data, this 

chapter demonstrates how the general circulation of the tropical atmosphere changes in 

cmmection with variations in the ISCCP D2 all-cloud cloud amount data. It is shown that 

much of the variation in the ISCCP cloud amount data can be explained by fluctuations in 

ENSO. The reanalysis data also demonstrate that the actual changes in the circulation of 

the tropical atmosphere are not consistent with a statistically significant change in the 

cloud amount of the region of interest. In conclusion, this study shows that, while the 

ISCCP D2 data captures variations in cloud amount that appear to be directly related to 

changes in ENSO, the long-term all-cloud cloud amount trend evident in the data is not 

reflected in any of the other datasets and does not appear to reflect the real cloud amount 

changes in the region of interest. 
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Figure 1.2: Time series of ISCCP D2 monthly mean all-cloud cloud amount anomaly from SON to 50S 
(black) plotted over the anomaly time series of the diurnally averaged "air-mass factor" of the 
contributing satellites (blue). The air mass factor anomaly plotted above is calculated using the 
ISCCP Dl daily cloud data at each 3 hourly period to determine the average viewing angle for each 
grid point and then using: 

amf(t) = 2 2 1 
- 2 2 1 

( 

50'N 360'( l) ( 50'N 360'( l) 
t/>= 50'S A= 0' /-l; (A,</>, t) t/>= 50'S A= o· /-l; (A, <f>,t) climo 

where !.1. is the cosine of the viewing angle each month and brackets denote the monthly average 
value. At the edges of the geosynchronous satellite views or when one satellite is missing for a certain 
time of day, some A VHRR data is used and the view angles from that satellite are mixed in. The air­
mass factor thus defined accounts for 54% of the variability evident in the cloud amount time series. 
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CHAPTER 2: DATA AND METHODOLOGY 

2.1 Description of Data and Data Processing 

This study relies on the use of both satellite observational data and atmospheric 

reanalysis data to validate and characterize the changes in the ISCCP D2 cloud amount 

and to evaluate how they are connected to changes in large-scale dynamics. Each of the 

datasets used in this study require different processing techniques in order to ensure that 

the analyses are logically consistent. In this section, each dataset is described in terms of 

its structure and characteristics, why it has been selected for this study, and the methods 

required for processing them. 

2.1. 1 The JSCCP D2 Cloud Climatology 

The ISCCP D2 cloud dataset uses a combination of radiance measurements from 

up to five geostationary and two polar orbiting satellites along with NOAA TIROS 

Operational Vertical Sounder (TOVS) atmospheric temperature-humidity and ice/snow 

data to obtain information about clouds and the surface. The D2 data provides monthly 

averaged cloud and surface properties based on algorithms that use revised calibrations, 

improved cirrus detection, an improved radiative model, and improved product 

calculations over the C-series products produced through 1991 (Rossow et al 1996.) The 

resulting product is plotted on a 280 km2 equal-area global grid that can be easily 

converted to a 2.5° latitude by 2.5° longitude equal-angle global grid using ancillary data 
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provided with the fi les. These data can be obtained in HDF format from the Langley 

Atmospheric Research Center (LARC). 

The ISCCP D2 dataset includes 130 different variables at each point in the equal­

area grid for each month from July 1983 through September 2001 . These include mean 

cloud amount, cloud top pressure, cloud top temperature, cloud optical thickness, and 

cloud water path for all clouds at each grid point. It also provides this same information 

for each of 15 different cloud types, defined by cloud top pressure, optical thickness, and 

water phase, along with average values of these variables for all cloud types that fall into 

broad categories of low, middle, and high clouds. The cloud types found in the D2 

dataset are defined in Table 2.1 . In order to characterize the nature of the changes in the 

cloud amount in the region of interest, the all-cloud cloud amount and a subset of these 

cloud categories and types are analyzed. These categories are low cloud, middle cloud, 

cirrus cloud, cirrostratus cloud, and deep convective cloud (Rossow et al. 1996). While it 

was deemed unimportant to separate the low and middle cloud categories into more 

specific cloud types, high clouds are separated into distinct cloud types because deep 

convective clouds have a much different impact on their dynamic and thermodynamic 

environments than cirrus or stratocirrus clouds have. Therefore, it is important to note 

how each cloud type is changing when conducting a study involving cloud impacts on the 

climate system. 

The equal-area grid on which the ISCCP D2 data are provided simplifies the 

process of creating a time series of the spatial-average of a given variable. This is 

because there is no need for weighting the data at each grid point by the cosine of the 

latitude at that point before calculating the average like there is for an equal-angle grid. 
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Therefore, creating a time series of a variable averaged over a regional or global domain 

only involves taking the arithmetic mean of that variable for each grid box in the region 

of interest. Linear regressions are then performed to quantify the slope of any changes 

detected in these cloud amount time series over the length of their time domain. 

In order to verify the downward changes in the ISCCP D2 cloud amount time 

series, those changes are tested for statistical significance using the Student's t-test. In 

order to conduct this test, however, one first needs to know how many degrees of 

freedom there are in the data. Many atmospheric datasets exhibit some redness, which 

means that the value of a given measurement is not wholly independent of prior 

measurements. Wilks (1995) provides a mechanism to estimate the degrees of freedom 

for such a dataset, assuming that it follows a first-order autoregressive process. Using the 

autocorrelation at a lag of one month, Wilks uses the following relation to determine an 

effective sample size that reflects the number of truly independent data points: 

N* = N(l -r(M)) 
1+ r(M) 

(1) 

where N' is the effective sample size, N is the original sample size, r is the lag-1 

autocorrelation coefficient, and L1t is the time interval between samples. According to 

Figure 2.1, which shows the autocorrelation of the average ISCCP D2 all-cloud cloud 

amount in the region of interest as a function of lag, the lag-1 autocorrelation is 0.37. 

According to Equation 1, this means that there are 99 degrees of freedom in the ISCCP 

cloud amount time series. This estimate is applied to all of the significance tests 

conducted in this study since it is assumed that, because the other satellite data are related 

to cloud amount, they will have similar lag -1 autocorrelations and degrees of freedom. 
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2.1.2 NOAA Interpolated 0 LR 

The NOAA Interpolated OLR dataset is based on estimates of the outgoing long­

wave radiation from twice daily A VHRR OLR soundings on NOAA Polar Orbiting 

Environmental Satellites. The interpolated nature of this dataset comes from the fact that 

missing values are interpolated both linearly in time and spatially with neighboring grid 

points (Liebmann and Smith 1996). This algorithm is applied as an improvement to the 

original NOAA OLR dataset described by Gruber and Krueger (1984). OLR data can be 

used as an analog for cloud amount since OLR is related to the cloud top temperature of 

optically thick clouds. Therefore, an increase in OLR from a given area would be a 

signal of a decrease in the amount of optically thick high clouds. It will be shown in the 

next chapter that high clouds are responsible for most of the downward changes in the 

ISCCP cloud amount data, and therefore, if these changes are actually occurring they 

should be reflected by changes in OLR. Since these data are derived from polar-orbiting 

satellites, it should be free of the viewing angle problem described in the introduction, 

and therefore, will serve as an independent verification of the changes in cloud amount 

exhibited by the ISCCP D2 cloud amount dataset. 

The NOAA Interpolated OLR dataset is plotted on a 2.5° x 2.5° equal-angle grid, 

and is available from June 1974 through the present in NetCDF format from the Climate 

Diagnostics Center (CDC) of NOAA. For this study, the monthly mean OLR data from 

July 1983 to September 2001 are selected in order to coincide with the temporal coverage 

of the ISCCP D2 dataset. Because the OLR dataset is plotted on an equal-angle grid, 

spatial averages require weighting the data by the cosine of the latitude at the center of 

each grid box to account for the fact that the area of the globe covered by an equal-angle 
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grid box decreases with distance from the equator. Otherwise, the procedures for 

analyzing the OLR data are the same as for the ISCCP D2 data. 

2.1.3 A VHRR Pathfinder Atmosphere (P ATMOS-A) Project Cloud Amount 

The AVHRR Pathfinder Atmosphere Project (PATMOS-A) is part of the NOAA­

NASA Pathfinder project. It uses five-channel A VHRR data from NOAA Polar Orbiting 

Environmental Satellites to produce a long-term record of atmospheric products covering 

the period from September 1981 through December 1999. This dataset includes channel 

reflectances, infrared reflectances, components of the earth's radiation budget at the top 

of the atmosphere, OLR, absorbed solar radiation, and total cloud amount (Stowe et al. 

2002). The P A TMOS processing system is based on the Clouds from A VHRR Phase-1 

(CLA VR-1 ) algorithm (Stowe et al. 1999). The cloud amount from PATMOS-A tends 

to be about 10-15% less than that given by the ISCCP D2 data, which is believed to be 

caused by differences in the way the two algorithms classify partially cloud-filled or 

overcast pixels with variable cloud heights and thicknesses (Stowe et al. 2002). This 

offset should not affect this study since it focuses on long-term changes in the cloud 

amount and not absolute measurements of the cloud amount. 

The P ATMOS-A data used in this study was obtained by request from the 

Comprehensive Large-Array Stewardship Site ofNOAA NESDIS in NetCDF format for 

the period from July 1983 through December 1999. The monthly mean cloud amount 

data are plotted on a 1° x 1° equal-angle grid, which means that spatial averages must 

employ cosine weighting as described in the previous section. The data for each month 

comes in two fi les, one each for the ascending (mostly daytime) and descending (mostly 

nighttime) nodes. The ascending node is affected by the gradual shifting of the 
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equatorial-crossing times of the satellite platforms since gradual changes in the solar 

zenith angle may introduce a trend in any algorithms using visible channels to deduce 

cloud amount (G.G. Campbell, personal communication). Therefore, in order to avoid 

introducing an anomalous trend to the analysis, only the descending node data are used in 

calculating the time series of cloud amount. Finally, because this dataset is derived solely 

from polar-orbiting satellites, it also should not be affected by the viewing angle problem 

the way the ISCCP D2 data are, and can therefore be to evaluate the presence of a long­

term change in the cloud amount in the region of interest. 

2.1.4 NCEPINCAR 40-Year Reanalysis 

The NCEP/NCAR 40-Year Reanalysis provides a global analysis of atmospheric 

data fields that spans more than four decades designed to support the climate modeling 

and research communities. It assimilates quality-controlled land surface, rawinsonde, 

pibal, ship, aircraft, and satellite observational data into an operational model designed to 

calculate several variables at 17 different pressure levels, plus the surface and tropopause 

(Kalnay et al. 1996). These data are available in NetCDF format from the Climate 

Diagnostics Center (CDC) and covers the period from January 1948 through the recent 

past and is plotted on a 2.5° x 2.5° equal-angle grid. 

For this study, reanalysis fields from July 1983 through September 2001 were 

selected to examine correlations in the changes of the general circulation of the 

atmosphere with changes in the ISCCP D2 cloud amount. These include 200 mb zonal 

wind, 200 mb meridional wind, 850 mb zonal wind, 850 mb meridional wind, and sea 

level pressure. Vertical velocity reanalysis data are often problematic because of the lack 

of large-scale dynamical forcings in the tropics. Therefore, divergence is used to identify 
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large-scale vertical motions that are correlated with changes in cloud amount. The 

divergence at each grid point is calculated on both the 200 mb and 850 mb levels by 

applying a finite-differencing scheme to the zonal and meridional wind fields at each 

level. Where regions of divergence aloft are collocated with regions of convergence at 

low levels, one can assume by continuity that there is upward vertical motion occurring. 

Conversely, downward motion is implied where convergence aloft is collocated with 

divergence at low levels. Finally, it will be shown that there is a connection between 

changes in the ISCCP time series and changes in the El Nifio - Southern Oscillation 

(ENSO). As this connection became apparent, the 200 mb and 850 mb geopotential 

height fields were examined in order to identify regions where the redistribution of 

convective heating associated with ENSO has led to greater 850-200 mb thicknesses in 

accordance with the results found by Horel and Wallace (1981). 

2.1.5 ECMWF 40-Year Reanalysis (ERA-40) 

The European Centre for Medium-range Weather Forecasting (ECMWF) 

developed the ERA-40 40-year Reanalysis to assimilate observational data into their 

global forecasting model to create a record describing the state of the atmosphere and 

land and ocean-wave conditions from mid 1957 through 2001 (Simmons and Gibson 

2000). Similar to the NCEP/NCAR Reanalysis described in the previous section, the 

ERA--40 project ingests surface, upper-air, and satellite data into their model to produce 

consistent pictures of how the atmosphere is behaving. These reanalyses are also 

available on 2.5° x 2.5° equal-angle grids and are available in both GRIB and NetCDF 

format from the ECMWF Data Center online. 
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This dataset was used to provide an independent verification of the results found 

using the NCEP/NCAR reanalysis data, since ERA-40 uses different forecast and data 

assimilation procedures. For this reason, the same meteorological fields as those selected 

from the NCEP/NCAR reanalysis were also selected from the ERA-40 dataset: 200 mb 

zonal winds, 200 mb meridional winds, 200 mb geopotential heights, 850 mb zonal 

winds, 850 mb meridional winds, 850 mb geopotential heights, and sea level pressure. 

The ERA-40 dataset does not actually report geopotential heights, but rather 

geopotentials, which are converted to geopotential height by dividing by g, the 

gravitational acceleration constant at sea level. The ERA-40 dataset also provides 

divergence fields that have already been calculated, so that the 200 mb and 850 mb 

divergence fields can be downloaded "as is" without the need for any additional 

preprocessing. 

It should be noted, however, that difficulties arise when ERA-40 data are used to 

calculate long-term trends. Bengtsson et al. (2004) demonstrate that changes in the data 

assimilation system for ERA-40, specifically in the amount and type of satellite 

information ingested, may have introduced anomalous trends in the temperature, 

integrated water vapor, and kinetic energy fields. They point specifically to two changes: 

the significant upgrade to the satellite observing system that began in 1979 and the 

addition of more extensive Special Satellite Microwave Imager (SSM/I) data around 

2000. Obviously, the first change is not relevant to this study since the temporal 

coverage ofiSCCP begins in 1983. The second was documented to have had an effect on 

temperature, which means that there is a possibility that this may have cascaded into 

other fields, including ones selected for this study. While this should have no effect on 
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most of the analyses in this study since in many cases the data were detrended first, it 

could have an impact on calculating trends using only ERA-40 data. No study has yet 

explored whether this effect is evident in the NCEP/NCAR dataset. While the 

NCEP/NCAR reanalysis also ingests SSM/I surface wind speed data, there has been no 

report of similar problems. In fact, Kistler et al. (2001) show that there are noted 

differences between temperature trends of the NCEP/NCAR and ERA-15 reanalyses. 

Therefore, when trends in reanalysis fields are calculated, only the NCEP/NCAR data are 

used. 

2.1.6 Precipitation Datasets 

Two different reanalysis datasets were used to examine connections between the 

ISCCP D2 cloud amount time series and precipitation: the Global Precipitation 

Climatology Project (GPCP) version 2 combined precipitation dataset (Huffman et al. 

1997) and the Climate Prediction Center (CPC) Merged Analysis of Precipitation 

(CMAP; Xie and Arkin 1997). Both datasets merge rain gauge observations with satellite 

observations to create global climatologies of precipitation. The CMAP dataset, 

however, uses more observational data sources (6 versus 3 for the GPCP data) and also 

ingests NCEP/NCAR reanalysis precipitation forecasts in its merging algorithm. Thus, 

these data are different enough that both provide independent analyses of rainfall. The 

GPCP dataset is provided as yearly unformatted binary files containing 12 monthly 2.5° x 

2.5° equal-angle grids. These can be obtained from the World Data Center (WDC-A) for 

Meteorology, Asheville. The CMAP data are provided as NetCDF files on 2.5° x 2.5° 

equal-angle grids as well, and can be obtained from the CDC. 
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2.1. 7 Other Datasets 

There were two other datasets used in this study. The first is the NOAA Optimal 

Interpolation version 2 SST (OI v.2 SST) dataset (Reynolds et al. 2002). These data were 

used to explore connections between the ISCCP D2 cloud amount and the variability of 

SST in the tropics. It is available in a 1 o x 1° equal-angle grid from 1981 through present 

and is available in ASCII format from the CDC. The other dataset used in this study is 

the Nifio-3.4 Index for the El Nifio - Southern Oscillation (Trenberth and Stepaniak 

2001). This index is based on SST anomalies in the Nifio-3.4 region (defined as 5°N -

5°S, 170°- l 20°W), and generally indicates the presence ofEl Nifio events when the value 

of this index exceed 0.4°C. Data covering the period from July 1983 through September 

2001 are used to evaluate the connection between the ISCCP D2 cloud amount and 

ENSO. 

2. 2 Overview of Analysis Methodology 

This project can be divided into two distinct types of analysis because each 

involves a completely different methodology. The first involves characterizing the 

ISCCP D2 cloud amount changes in the region of interest and then verifying these 

changes by comparing them with characterizations based on the OLR and PATMOS-A 

data. Meanwhile, the second half of this study uses the various reanalysis data for two 

purposes: to confirm or deny the presence of an ISCCP all-cloud cloud amount trend and 

to explore the relationships between the changes in the ISCCP all-cloud cloud amount 

and each of the reanalysis fields. In this section, the methodologies for each part of the 

analysis are described in detail. 
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2.2.1 Characterization and Evaluation of ISCCP Changes 

The process of characterizing the changes in the ISCCP D2 cloud amount in the 

region of interest involves examining how, when, and where the cloud amount is 

changing. The first step of this process requires calculating time series of how the 

regionally averaged total cloud amount is changing and a map of the linear regression 

coefficients that shows where those changes are largest for the all-cloud cloud amount 

and each of the 5 categories listed in section 2.1.1. These time series are tested to see of 

their slopes are significantly different from zero using a two-tailed Student's t-test at the 

95% confidence level with 99 degrees of freedom using the coefficient of correlation 

between the time series in question and the linear best-fit line. In order to determine 

when the changes are largest, the regionally averaged all-cloud cloud amount time series 

is subdivided into 12 time series representing how the cloud amount changes from year to 

year for each month. Linear regressions are performed on each of these time series to 

determine the slope of those changes. 

Once the ISCCP changes have been characterized, these procedures are then 

applied to both the NOAA OLR and PATMOS-A data by calculating the regional 

average time series, calculating maps of where each dataset is changing, and then 

calculating when those changes are strongest. These results are then used to 

independently verify the characteristics of the ISCCP changes. The regionally averaged 

time series ofOLR and PATMOS-A are also correlated to the ISCCP cloud amount time 

series to see how much of the variance in ISCCP is also captured by the other datasets. 

However, when examining the correlations of two independent time series, it must be 

noted that the presence of trends in both will lead to anomalously high correlations even 

when the time series are not physically related. Therefore, before calculating 
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correlations, the linear trends in the time series were removed, leaving time series that 

describe variations about those trends. Furthermore, because the presence of seasonal 

cycles in two otherwise independent time series might also cause anomalously high 

correlations, the monthly climatologies of each of these three datasets were calculated 

and removed from the data. After performing both of these operations, the resulting time 

series describe departures from their respective seasonal cycles as well as variations 

about their trends. These time series, hereafter called "anomaly time series," can then be 

correlated to examine how they are related. 

2.2.2 Utilization of Reanalysis Data to Evaluate ISCCP Changes and Their Connections to Large-Scale 

Dynamics 

As mentioned previously, the second part of this study uses reanalysis data to both 

independently verify how the cloud amount is changing in the region of interest and study 

how changes in the ISCCP cloud amount are associated with changes in the general 

circulation of the tropics. In order to accomplish this, three important questions must be 

answered. First of all, what are the patterns of change in the reanalysis fields associated 

with changes in the ISCCP cloud amount? Then, which of those patterns are 

significantly correlated with the cloud amount changes? And finally, have the patterns of 

change in the reanalysis field indicated that the cloud amount must be changing in a 

significant way? The methodology that follows allows each of these questions to be 

explored simultaneously. 

Initially, the reanalysis data listed in sections 2.1.4-2.1. 7 are used to generate 

anomaly maps for each field and for each month by removing the monthly climatology 

from each of the monthly maps for a given field. This also creates time series of changes 
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in the anomaly field at each grid point if one looks at variations along the time domain. 

The anomaly time series of the ISCCP D2 cloud amount for the region of interest is then 

regressed onto and correlated with the anomaly time series at each location, generating 

maps of both regression and correlation coefficients. The map of the regression 

coefficients shows where and by how much a given field changes with a one-percent 

increase in cloud amount while the map of correlation coefficients shows how the time 

series of the reanalysis data at each point correlate with the anomaly time series of cloud 

amount. By applying a one-tailed Student's t-test at the 95% confidence level and 99 

degrees of freedom to the map of correlation coefficients, one can also determine which 

regression coefficients are statistically significant. A one-tailed test is used because there 

is an a priori expectation for what sign the regression coefficients will take based on the 

overall spatial patterns shown by the regression map. These maps can then help to 

answer the questions of what the patterns of change look like as well as which changes 

are correlated with the ISCCP D2 cloud amount in the region of interest. 

The regression coefficient map is also used to answer the question of whether the 

reanalysis data indicate that the cloud amount in the region of interest has actually 

changed. First of all, if maps of the trends in the NCEP/NCAR reanalysis fields show 

similar spatial patterns to the regression coefficient maps, this can be used to draw 

conclusions about the sign and magnitude of the actual cloud amount changes in the 

region of interest and reinforce any conclusions drawn from looking at the satellite data 

from the first part of this study. Therefore, trend maps were calculated for each of the 

NCEP/NCAR reanalysis fields for comparison with the respective regression maps. 

Taking the inner product of the regression coefficient map, weighted by the cosine of the 
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latitude of the center of each grid box, with the corresponding anomaly map for each 

month of the time series results in an expansion coefficient time series that shows how 

strongly the anomaly field reflects the pattern of the regression map over time. As the 

regression map shows how a field changes in response to increasing cloud amount, this 

time series then reflects how the cloud amount in the region of interest is actually 

changing. For example, an increase in the expansion coefficient time series would 

indicate that the regression map pattern is expressed more strongly by the anomaly 

reanalysis field with time. By proxy, the true cloud amount in the region of interest must 

then be increasing with time. Therefore, this time series will hereafter be referred to as a 

"proxy cloud time series" corresponding to that field. Finally, since we are using the 

anomaly time series of ISCCP cloud amount, there is no trend in the cloud amount data. 

Therefore, any statistically significant trend in the proxy cloud time series will only 

reflect actual changes in the average cloud amount of the region of interest. 

Finally, it is acknowledged that reanalysis data ingest selected satellite 

information to calculate various fields, especially over the oceans where there is a dearth 

of surface-based data. If unaccounted for, this could lead to the presence of artificially 

high correlations between the reanalysis and satellite data. However, the use of a 

combination of different reanalysis products likely minimizes any impact this may have 

on our ability to verify the presence of a trend in the ISCCP cloud amount. Thus, the 

analyses included in this methodology should produce robust conclusions about how the 

ISCCP D2 cloud amount dataset is changing in the region of interest, whether those 

changes reflect how the cloud amount is truly changing in that same region, and how 

those changes are connected with changes in the general circulation of the atmosphere. 
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Figure 2.1: Autocorrelation of the ISCCP D2 total cloud amount anomaly time series as a function of 
lag. The dotted line represents the e-folding time scale, which indicates the value below which lag 
correlations demonstrate a sufficient lack of memory to be considered independent. 
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Table 2.1: Definitions of the ISCCP D2 cloud amount types as specified in 
Rossow and Schiffer (1991) 

Cloud Type Optical Depth Cloud Top Pressure (mb) Liquid Phase 

Cumulus 0.02 :s "(; :s 3.55 p>680 Liquid 

Cumulus 0.02 :S"C :s 3.55 p>680 Ice 

Stratocumulus 3.55 < "(; :s 22.64 p> 680 Liquid 

Stratocumulus 3.55 < "(; :s 22.64 p >680 Ice 

Stratus "(; > 22.64 p>680 Liquid 

Stratus "(; > 22.64 p>680 Ice 

ILow Cloud 0.02 s. s 378.65 p> 680 Liquid and Ice 

Altocumulus 0.02 :s. s 3.55 440 < p s 680 Liquid 

Altocumulus 0.02 s 1: s 3.55 440 < p s 680 Ice 

Altostratus 3.55 < "(; s 22 .64 440 < p s 680 Liquid 

Altostratus 3.55 < "(; s 22.64 440 < p s 680 Ice 

Nimbostratus "(; > 22.64 440 < p s 680 Liquid 

Nimbostratus "(; > 22.64 440 < p s 680 Ice 

Middle Cloud 0.02 s • s 378.65 440 < p s 680 Liquid and Ice 

Cirrus 
"(; s 3.55 310 < p s 440 

Ice 
• s 9.38 ps 310 

Stratocirrus 
3.55 < 't s 22.64 310 <ps 440 

Ice 
9.38 <. s 22.64 p s 310 

Deep Convection • >22.64 p s 440 lee 

High 0.02 :s 1: s 378.65 p s440 Ice 

Boldface indicates that this cloud type was included in this study 
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CHAPTER 3: CHARACTERIZATION OF THE ISCCP D2 CLOUD AMOUNT 

TREND 

3.1 Introduction 

This chapter describes the characteristics of the ISCCP D2 cloud amount changes 

in the region of interest obtained using the data and methods described in the previous 

chapter. This includes showing where the all-cloud cloud amount is changing, how much 

it is changing, and whether those changes have a seasonal dependence. It also 

demonstrates how those attributes vary by cloud type so that it is possible to determine if 

certain kinds of clouds are dominating the overall cloud amount trends. Using these 

results, it is possible to draw some preliminary conclusions about the kinds of 

mechanisms that might be associated with the evident changes and develop expectations 

about what the remainder of the analysis should show if these changes are in fact real. 

3. 2 Changes in the total cloud amount 

Following the procedure outlined in Section 2.2, the average all-cloud cloud 

amount change for the region of interest (90°E - 180°, 30°N - 30°S) is calculated as a 

function of time. This time series, which is first displayed as Figure 1.4, is reproduced as 

Figure 3. 1. The slope of the linear fit to this time series is -0.26% yf1
, which translates to 

a 2.6% decrease per decade. The t-score for this trend is -5.77, which exceeds the critical 

t-score of -2.00. Therefore, the downward trend in these data is statistically significant at 

the 95% confidence level. While there is a lot of small amplitude, high-frequency 

variability, there are also some large excursions from the linear trend evident in the time 
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series. Most notable is the downward excursion in 1997-8, which coincides with the 

large El Nifio event that occurred around the same time. This could be an indication that 

there is a connection between the cloud amount in the region of interest and ENSO. As 

we proceed through the various analyses in this study, we will come back to this point 

several times and hope to build a case that demonstrates that ENSO is indeed related to 

each of the large excursions evident in the all-cloud cloud amount time series. 

Figure 3.2(a) shows the spatial distribution of the all-cloud cloud amount trend in 

the region of interest. The most significant downward trends are located over open ocean 

eastward of 150°E longitude, with the primary center of action located just south of the 

Equator and a secondary center of action located around 15°N latitude. Over land, the 

all-cloud cloud amount is shown to be slightly increasing with time, but over the water 

and much of the maritime continent the cloud amount is decreasing with time. The 

pattern of downward trends in the eastern portion of Figure 3.2(a) is consistent with the 

location of the Inter-Tropical Convergence Zone (ITCZ) as determined by the satellite 

climatology of Waliser and Gautier (1993). This suggests that the amount of convection 

in the ITCZ over the West Pacific Ocean could be decreasing, or that the distribution of 

convection in the ITCZ is changing in such a way as to cause an apparent decrease in the 

all-cloud cloud amount associated with the ITCZ. Figure 3.2(b) shows that these 

featured changes are significantly different from zero at the 95% confidence level. 

Figure 3.3(a) shows how the zonal mean all-cloud cloud amount trend varies as a 

function of month of year. From this figure, it appears that the strongest negative trends 

occur from August through December for the cloud amount at and just south of the 

Equator. Meanwhile, the trends in the all-cloud cloud amount near 15 - 20°N are 
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strongest from March through June. Beginning in May and running through October, 

there is an oscillatory behavior to the trends in the region around 20°N that seems 

suspect. This feature, along with all of the others noted in this chapter, will be 

readdressed when the ISCCP data are compared with other satellite data in Chapter 4. 

Figure 3.3(b) indicates that these features are statistically significant. 

The pattern of the strongest trends appears to be out of phase with the undulation 

of the ITCZ. In April, the ITCZ is often found near the Equator and is just beginning to 

move northward in the Western Pacific, but it doesn't often get to 15°N until late summer 

and early fall and is back down near the Equator by January (Waliser and Gautier 1993). 

Thus, the trends in the ISCCP D2 cloud amount seem to be strongest when the ITCZ is 

elsewhere. This would seem to contradict the previous conclusion that the strength of the 

ITCZ convection is changing. However, by examining how the amounts of different 

cloud types are changing, a resolution to this contradiction can be found. 

3. 3 Changes in cloud amount for individual cloud types 

In order to further investigate the ISCCP D2 cloud amount trend, it is broken 

down into the five cloud type categories described in Chapter 2: low cloud, middle cloud, 

cirrus cloud, cirrostratus cloud, and deep convective cloud. Figure 3.4 shows the time 

series of the average cloud amount in the region of interest for each of these categories. 

Table 3.1 lists characteristics of these changes, including the slopes of the linear fits to 

each time series and the t-scores for those slopes. From these data, it is apparent that low 

cloud and cirrus cloud changes are dominating the all-cloud cloud amount changes 

evident in Figure 3. 1, though all of the cloud types listed are changing in a statistically 

significant manner at the 95% confidence level. 
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Figure 3.5 shows the spatial distributions of the trends for each cloud type, similar 

to Figure 3.2(a) and Figure 3.7 shows the zonal mean cloud amount changes as functions 

of latitude and month, similar to Figure 3.3(a). Figures 3.6 and 3.8 present evidence of 

the statistical significance of Figures 3.5 and 3.7 respectively. From these figures, it is 

apparent that the cloud amount changes occurring around l5°N in the spring and early 

summer are primarily low cloud changes, while the cloud amount changes occurring near 

the equator in the fall and early winter are primarily cirrus cloud changes. However, 

there is also a signal of decreasing cirrus cloud amount at l 5°N latitude from January 

through July shown in Figure 3. 7. It is impossible to say whether there is or is not a low 

cloud amount change near the equator in the northern hemisphere winter because, due to 

the preponderance of cirrus cloud near the Equator, the satellites will not be able to detect 

emissions from low clouds since that radiation would be masked by the optically thick 

high level clouds. 

If one focuses on the cirrus clouds and assumes that the cirrus cloud in this region 

is a signal of the cirrus anvils of convective clouds, then one could argue that the 

decrease in cirrus cloud away from the location of the ITCZ is an indication of decreased 

anvil coverage in the tropics. This could indicate a decrease in the amount of convection 

in the ITCZ. The portion of Figure 3.7 that corresponds to deep convective cloud does 

indicate a small decrease in deep convection near the Equator from November to April, 

which may be consistent with this conclusion. However, there is no corresponding 

decrease in deep convective cloud near l5°N from May through October. Instead, the 

deep convective cloud shows more of the strange oscillatory trend pattern mentioned 

previously in regard to Figure 3.3(a). Therefore, it would be difficult to say for certain 
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that there is a decrease in ITCZ related convection using ISCCP cloud amount alone. 

This is another point that will be revisited in the subsequent chapters. 

3. 4 Conclusions 

It has been shown that the character of the ISCCP D2 cloud amount changes in 

the region of interest indicates a possible change in the strength and/or spatial distribution 

of ITCZ convection in the Western Pacific Ocean. Overall, the cloud amount is changing 

by 2.6% per decade and is predominately driven by changes in low and cirrus clouds. 

The spatial distribution of these trends seem to indicate that the trends are strongest when 

the ITCZ is located elsewhere and may reflect changes in the spatial coverage of the 

cirrus anvils associated with ITCZ convection. However, there are inconsistencies with 

this conclusion because the deep convection data do not wholly corroborate the cirrus 

cloud data and because this conclusion does not explain the low cloud changes located at 

l5°N. Therefore, the characterization of the ISCCP D2 cloud amount changes is 

incomplete without looking toward independent data sources for additional information. 
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Figure 3.1: Time series showing the average ISCCP D2 all-cloud cloud amount anomaly for the 
region of interest (30°N - 30°S, 90°E- 180°). The slope is 0.26% yr·1

• This is the same as Figure 1.4, 
reprinted for convenience. 
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Figure 3.2: (a) Map of ISCCP 02 all-cloud cloud amount trends (in % yr-1
) for the region of interest 

(30°N- 30°S, 90°E- 180°). The contour interval is 0.05% yr_1
·• Negative values are contoured with 

dotted Jin,es and zero is represented by the thickest contour. (b) Map of coefficients of correlation 
between the ISCCP D2 all-cloud cloud amount time series and the corresponding linear best-fit trend 
at each point. Colored regions indicate where the trends from (a) are significantly different from 
zero (the absolute value of the t-score exceeds 2.00). 
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Figu re 3.3: (a) Zonal mean ISCCP D2 all-cloud cloud amount trends as functions of latitude (left) 
and latitude and month of year (right) for the region of interest. Contour interval is 0.05% yr·1

• 

Negative values are shown with dotted contours and zero is represented by the thickest contour; (b) 
Map of coefficients of correlation between the ISCCP D2 all-cloud cloud amount monthly time series 
and the corresponding linear best-fit trend at each latitude. Colored regions indicate where the 
trends from (a) a re significantly different from zero (the absolute value of the t-score exceeds 2.11). 
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Table 3.1. 
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Figure 3.5: ISCCP D2 cloud amount trends for the region of interest (in % yr-1
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Figure 3o6: Maps of coefficients of correlation for the linear best fit trends for the 5 cloud types of the 
ISCCP D2 cloud amount in the region of interest and their corresponding time series: low cloud (top 
left), middle cloud (top right), cirrus (middle left), cirrostratus (middle right), and deep convection 
(bottom left). Colored regions indicate where the trends from Figure 3.5 are significantly different 
from zero (the absolute value of the t-score exceeds 2.00). 
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Cloud 
Types 

Change 
(o/oy(l) . 
t-score 

Table 3.1: Regionally averaged characteristics of selected ISCCP D2 
cloud types for the region of interest 

Low Middle Cirrus Cirrostratus 

-0.22 0.06 -0.26 0.05 

-9.77 3.37 -6.06 3.40 

Deep 
Convective 

0.02 

2.21 

*To reject null hypothesis that slope is zero at 95% confidence level, t-score must exceed ±2.00 

Bold values represent those that pass the significance test. 
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CHAPTER 4: COMPARISON OF ISCCP D2 CLOUD AMOUNT DATA TO 

OBSERVATIONS FROM POLAR-ORBITING SATELLITES 

4.1 Introduction 

There are two main reasons why conclusions drawn from the ISCCP D2 dataset 

about the behavior of cloud amount in the region of interest should be verified by polar­

orbiting satellite data. First of all, there is the matter of the viewing angle problem as 

described in Chapter 1. While the selection of the region of interest is meant to mitigate 

problems that arise due to this phenomenon, the use of polar-orbiting satellite data will 

enable an analysis that is truly independent of viewing angle difficulties. The other 

reason is the problem of the apparent inconsistencies in the conclusions drawn from the 

behavior of the changes in the ISCCP data. As demonstrated in the previous chapter, if 

we believe that the distribution of convection is indeed changing in such a way that the 

regional all-cloud cloud amount is decreasing, then the deep convective cloud amount 

data are not wholly consistent with the cirrus cloud data. Furthermore, changes in the 

intensity or distribution of convection do not explain the low cloud changes. Therefore, 

in order to obtain more robust conclusions, characteristics evident in the ISCCP data 

should also be looked for in polar-orbiting satellite data. 

In Chapter 2, the two polar-orbiting satellite datasets used for this verification 

process, the NOAA Interpolated OLR and the PATMOS-A datasets, are described in 

detail. In order to look for characteristics similar to those of the ISCCP D2 cloud amount 

data, they are subjected to the same analysis. This chapter describes the sign and 

41 



magnitude of the changes in these polar-orbiting data, where those changes are occurring, 

and when they are strongest. 

4. 2 Characteristics of the NOAA Interpolated OLR dataset 

Figure 4.1 presents the attributes of the changes evident in the NOAA 

Interpolated OLR dataset. It includes a time series of how the average OLR over the 

region of interest (90°E - 180°, 30°N - 30°S) changes with time, a figure showing how 

the zonal--mean OLR trend changes as a function of latitude and month, and a map 

showing where the OLR changes are occurring. This figure also shows coefficients of 

correlation for the latitude/month and map plots so that it is possible to evaluate the 

significance of those trends. Colored regions on these plots signify statistical 

significance. 

Keeping in mind that OLR and cloud amount are inversely related, the two 

datasets should show similar patterns in terms of where and when their changes are 

occurring. Indeed, both do show some interesting similarities. The OLR data exhibit a 

strong positive trend centered on the Equator and east of 150°W longitude - a center of 

action that is collocated with the strongest trends in ISCCP all:.cloud cloud amount and 

cirrus cloud amount. The OLR data show strong positive trends both north and south of 

the Equator from November through April. This may be similar to the trends shown in 

Figure 3.3 since the strongest negative cloud amount trends tend to occur to the north of 

the Equator. It must be conceded, however, that it is difficult to conclude that there is a 

strong relationship between ISCCP and the OLR in this region. 

The differences in these data, however, are more remarkable. First of all, there is 

no indication of a secondary trend located at 15°N latitude in either the trend map or the 
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plot of zonal mean trends as a function of month. Given that the ISCCP data showed the 

trend in this region to be dominated by low cloud, the presence of any higher clouds that 

are not changing might be responsible for masking this trend in the OLR data. Secondly, 

there are negative OLR trends located to the west of the 150° meridian and poleward of 

the Equator and over water. These should correspond to positive cloud amount trends, 

but there is no evidence of this from ISCCP data. There is also no indication that OLR 

trends oscillate in time around 15° - 20°N like the trends evident in Figure 3.3 (all-cloud) 

and Figure 3.7 (deep convection). This supports the conclusion that there is likely 

something suspect occurring in the ISCCP data. Finally, an examination of the time 

series of the regionally averaged OLR indicates that there is a small, but statistically 

insignificant negative trend in OLR, which would correspond to an equally small positive 

cloud amount trend. This discrepancy occurs even though the OLR and ISCCP cloud 

amount time series are significantly correlated at the 95% confidence level as shown in 

Table 4.1. This indicates that, while the shorter-term variability in cloud amount is 

captured by both datasets, there is also a serious disagreement in the nature of long-tenn 

trends between them. By examining the PATMOS-A cloud amount data, one can 

determine which of these datasets is likely providing the more accurate picture of what is 

going on with the cloud amount in the region of interest. 

4.3 Characteristics of the PATMOS-A cloud amount dataset 

Figure 4.2 presents the characteristics of the PATMOS-A cloud amount data in a 

manner similar to that of Figure 4.1. Immediately, one can see that the patterns exhibited 

by the PATMOS-A data are more consistent with the OLR data than the ISCCP cloud 

amount data. This is to be expected since the data come from the same A VHRR sensor. 
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There are, however, a couple of limited similarities between the PATMOS-A and the 

ISCCP D2 data. An examination of Table 4.1 shows that the variations in the P ATMOS­

A and ISCCP data are significantly correlated, which likely means that both datasets are 

capturing the same sorts of short-term variability. There are also negative trends in the 

PATMOS-A cloud amount east of 150°W longitude, though they are not centered on the 

Equator but are poleward to the north and south. Thus, they are roughly collocated with 

the strongest negative ISCCP cloud amount trends. This is, however, the apparent extent 

of their similarities. 

The differences between the PATMOS-A and ISCCP cloud amount data are much 

more obvious and remarkable. First of all, the trend in the PATMOS-A cloud amount is 

both statistically insignificant and positive, again in spite of the fact that both datasets are 

significantly correlated and apparently capturing similar short-term variations. The map 

showing where PATMOS-A trends are strongest demonstrates that there are only small 

regions of decreasing cloud amount in the region of interest. The regions of increasing 

cloud amount west of 150°E longitude in the PATMOS-A data are consistent with those 

in the OLR dataset, but not ISCCP, which is dominated by negative trends. Finally, the 

PATMOS-A data indicate that the cloud amount is increasing poleward of the Equator 

towards both the north and the south during the months of February through May. This 

result seems inconsistent with both the ISCCP and OLR da.tasets, though it seems to have 

a little more in common with the OLR results since, among other reasons, it does not 

show evidence of oscillatory trends near 15-20°N. Overall , though, the PATMOS-A data 

and the ISCCP D2 data appear to lead to completely different trend results. 
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4. 4 Conclusions 

The OLR and PATMOS-A data present some features that appear consistently in 

both datasets, though the overall spatial correlation in the region of interest is -0.174, 

which is statistically insignificant if we assume that there are no more than 20 spatial 

degrees of freedom. This assumption is likely valid since a back of the envelope spatial 

autocorrelation calculation indicates that there are likely less than 1 0 spatial degrees of 

freedom; a result that is consistent with the fact that atmospheric phenomena in the 

tropics tend to be large in the absence of a strong coriolis force. Therefore, the most 

valid conclusion that can be made with these data is that their common result, that the 

cloud amount in the region of interest is not changing in a statistically significant way, is 

more like:ly to represent what is really happening with cloud amount in the region of 

interest. This casts doubt on the results obtained from the ISCCP analysis of the 

previous chapter. In fact, only two of the conclusions from that analysis remain intact. 

The first is that the trends all seem to gradually become more negative from west to east 

over the region of interest. All three datasets demonstrate that their most negative or least 

positive doud amount trends occur to the east of 150°W while the most positive or 

weakest negative trends occur to the west of that line. More importantly though, all data 

point toward changes in the amount or distribution of convection in the tropics over the 

time period studied. These datasets appear to exhibit trends that are symmetrical about 

the Equator during the time of year when the ITCZ is closest to the Equator. While 

neither the OLR or PATMOS-A data have specific information about the types of clouds 

that are exhibiting these changes, the pattern does seem to suggest that these may be 

changes in the distribution of cirrus anvils as a result of ITCZ convection. If this is true, 
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then t ere should be signatures of these changes evident in the general circulation of the 

atmospf..ere. In the following chapter, reanalysis data will be used to determine if there 

are chartges in the general circulation that correlate with changes in the ISCCP all-cloud 

cloud amount and to provide more insight into the true nature of the cloud amount 

changes in the region of interest. 

46 



20 

-20 

'I 

,,/ .. 
I I"\ 
I ' \ \ 

1983 1935 1987 19$~ 1991 1993 1995 1997 19:'19 200 l 

1! 
~ 

.::1 

"'" 
XIII 

IV II 

EO 

I V$. 

::vs 

30 s 
·I.V .()_!; V.U U.:) LV 
VLP. T•.,ndf'l'i m -:: p<>• ~·~ -· 

'"" 

XIII 

Jj /1 

lVII 

EO 

IV S 

.:.V5 

3J S 

• 

F 1-1 

'"" 

• .. 
.. 
~ 

J J 

w 
0 

-2.0 -;,c. -1. 2 -o.s -o...a o.o o.~ o.s 1.2 1.s 2.0 

' (eil• 

~0 N • 
20 N -
\C<N 

EO '· 

10 s .. 
20 s • • .... ... 
3 (1 s 

II D J F M A M J J A S 0 N D 

.,~lc::=::::J "'" 

'"" "'" 

· 1.0 -0.3 ·O.E ·0 .4 -0.2 C•.l) 0 .2 IJA 0.6 O.S 1.0 

·:o: 

•. w 
0 

Figure 4.1: (top) The NOAA Interpolated OLR anomaly time series for the region of interest with 
trend plotted in green. (middle) The slope of zonal mean OLR plotted as functions of latitude (left) 
and latitude and month (middle) in W m·2 yr-1

• The coefficients of correlation between the linear best 
fit trends and their corresponding time series are shown on the right. (bottom) OLR trends in the 
region of interest in W m-2 yr-1 (left) and the coefficients of correllation between the OLR time series 
and the corresponding linear best-fit trend at each point. Colored regions on the correlation maps 
indicate where the trends are significantly different from zero. Note that the color bars are reversed 
to indicate that positive OLR changes are equivalent to decreasing cloud amount changes. 
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Figure 4.2: (top) The PATMOS-A cloud amount anomaly time series for the region of interest with 
trend plotted in green. (middle) The slope of the zonal mean PATMOS-A cloud amount plotted as 
functions of latitude (left) and latitude and month (middle) in % yr-1

• The coefficients of correlation 
between the linear best fit trends and their corresponding time series are shown on the right. ( 
(bottom) PATMOS-A cloud amount trends in the region of interest in % yr-1 (left) and the 
coefficients of correlation between the PATMOS-A time series and the corresponding linear best-fit 
trend at each point. Colored regions on the correlation maps indicate where the trends are 
significantly different from zero. 
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Table 4.1: Regionally averaged characteristics ofOLR and PATMOS-A cloud amount time series 
and correlations to the ISCCP D2 cloud amount time series 

Data Set NOAA Interpolated OLR P A TMOS-A Cloud Amount 

Slope of Change -0.10 W m-2 yr-1 0.05 %y{1 

T-score for trend* -1.72 1.01 

Correlat ion to ISCCP D2 -0.86 0.35 

T-score for correlation 
.. 

-16.78 3.56 

To reject null hypothesis that slope is zero at 95% confidence level, t-score must exceed :±:2.00 
.. To reject null hypothesis that there is no correlation at the 95% confidence level, t-score must exceed 

:±:2.00 
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CHAPTER 5: CORRELATION OF ISCCP D2 CLOUD AMOUNT CHANGES 

TO CHANGES IN THE GENERAL CIRCULATION OF THE 

TROPICS 

5.1 Introduction 

The previous chapter highlights inconsistencies between the cloud amount 

changes evident in the ISCCP D2 cloud amount data and the corresponding results 

obtained from using OLR and cloud amount data from polar-orbiting satellites. In 

particular, while ISCCP indicates a large decrease in cloud amount in the region of 

interest, the other data suggest that the cloud amount is not changing significantly over 

the same period. While the consistency of the polar-orbiting satellite data might 

encourage the conclusion that those data are more likely to be representative of reality, it 

is still important to draw in yet another source of information to finally make that 

determination. 

As mentioned in the introduction, clouds and the heating associated with them 

have a perceptible influence on the general circulation of the atmosphere. While the true 

nature of the feedback loop between clouds and climate is still a matter of investigation 

and discussion, the fact that such interactions occur is not disputed. Therefore, changes 

in the cloud amount, if real, should also manifest themselves in the way the climate 

changes. By following the methodology laid out in Section 2.2, one can use reanalysis 

data both to determine how the general circulation of the atmosphere changes in 

association with cloud amount changes and also obtain more information about how the 

actual cloud amount in the region of interest might be changing. 
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Figures 5. 1 through 5.21 show the results of this analysis. From top to bottom, 

each figure presents the map of regression coefficients, the map of correlation 

coefficients, and the proxy cloud time series corresponding to each reanalysis field. 

Colored portions of the correlation coefficient maps show regions where regression 

coefficients are statistically significant. Table 5.1 shows how well each of the proxy 

cloud time series correlates to the ISCCP D2 cloud amount time series for the region of 

interest. It also shows the linear regression coefficients for each proxy cloud time series 

and the t-score for the significance of each slope. These results not only identify the 

physical mechanism that explains much of the low-frequency variability in the ISCCP 

cloud amount, but they also provide a strong argument for why the polar-orbiting satellite 

data, which did not indicate a significant trend in the cloud amount, are more likely to be 

indicative of the true nature of cloud amount changes in the region of interest. 

5. 2 Changes in the general circulation that are correlated with JSCCP cloud amount 

changes 

A complete examination of the regression coefficient maps reveals a consistent 

pattern of how the reanalysis data change in connection with a 1% increase in the ISCCP 

all-cloud cloud amount for the region of interest. In the wind field analyses, an increase 

in cloud amount is correlated with increased NCEP/NCAR 200mb westerlies to the east 

of 150°W and 200 mb easterlies to the west of that meridian, shown in the regression 

map of Figure 5. 1. According to the regression map in Figure 5.2, this feature is 

collocated with a modest increase of the NCEP/NCAR 200mb equatorward flow to the 

north and south of the Equator in the region from 130°W to 150°E. The patterns in the 

regression maps of the NCEP/NCAR 850mb wind fields, shown in Figures 5.3 and 5.4, 
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are similar though with opposite sign. Not surprisingly, the regression map for the 

NCEP/NCAR 200 mb divergence field in Figure 5.5 shows a region of increased 

divergence aloft centered on this region while the regression map of Figure 5.6 shows 

that there is increased low level convergence in response to an increase in cloud amount 

in the region of interest. The regression maps from ERA-40 data, shown in Figures 5.7-

5.12, corroborate these results. By fluid continuity arguments, the patterns of divergence 

indicate that a decrease in cloud amount in this region should correlate with a collocated 

decrease in upward motion. Comparing these patterns to the maps of satellite trends, all 

of these patterns appear to be consistently centered over the main region of decreasing 

cloud amount. Furthermore, because convection has been demonstrated to be primarily 

responsible for upward motion in the tropics (Riehl and Malkus 1958), this result appears 

to support the conclusion that the cloud amount changes in this region are primarily due 

to changes in convection. This conclusion is also supported by the regression patterns 

from both the GPCP (Figure 5.13) and CMAP (Figure 5.14) precipitation reanalyses, 

which indicate that a change in the ISCCP cloud amount is correlated with a change in 

precipitation of the same sign. 

This conclusion, that the reanalysis data suggest a systematic change in the 

location or intensity of convection in the region of interest is also consistent with 

previous results. In Chapter 3, it was noted that the patterns of ISCCP D2 cirrus cloud 

amount changes are consistent with changes in the intensity and/or location of convection 

associated with the ITCZ. This result was then corroborated in Chapter 4 using the 

NOAA Interpolated OLR and PATMOS-A datasets . No explanation has thus far been 

offered for the kind of mechanism that could cause the kinds of systematic relocation of 
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convection suggested by these results. The remaining results, however, will show that 

the redistribution of convection and associated increases in cloud amount are consistent 

with changes in the phase ofENSO. 

There are several pieces of information that indicate that the ISCCP cloud amount 

changes are colll1ected with ENSO. First of all, Figures 5.15 and 5. 16 respectively show 

the regression coefficient maps for the NCEP/NCAR and ERA-40 200mb geopotential 

height reanalysis fields. According to Horel and Wallace ( 1981 ), these maps are 

consistent with the patterns of changes in the 200 rub heights associated with the 

redistribution of convective heating that occurs as ENSO changes phase. Secondly, 

Figures 5. 17 and 5.18 show the results from the NCEP/NCAR 850 rub geopotential 

height and sea level pressure fields respectively. The patterns shown in these regression 

coefficient maps are consistent with the statistically derived definition of the Southern 

Oscillation as determined by Sir Gilbert Walker since the pressure is decreasing near the 

surface in the West Pacific and increasing in the East Pacific (Bjerknes 1969). The ERA-

40 data for 850 mb geopotential height and sea level pressure, shown in Figures 5.19 and 

5.20 respectively, show the same patterns and support the same conclusion. Another 

piece of evidence comes from the regression map for the NOAA OI v.2 SST data, which 

shows that increased cloud amount in the region of interest is COill1ected with the 

presence of a tongue of cold water in the Equatorial East Pacific Ocean. The presence of 

a "cold tongue" is a convincing signature of a colll1ection between the ISCCP D2 cloud 

amount and the phase of ENSO. Furthermore, the proxy cloud time series shown in each 

of the aforementioned figures show signatures of ENSO. Each of these figures show 

large negative excursions in El Nino years, including 1986-7, 1991-2, 1994-5, and 1997-
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8, and large positive excursions in La Nifia years, such as 1988-9 and 2000-2001 . (Smith 

and Sardeshmukh 2000) It is no great surprise then that Figure 5.22 shows that the 

detrended ISCCP D2 all-cloud cloud amount anomaly time series exhibits a strong 

negative correlation with the Nifio 3.4 Index (Trenberth and Stepaniak 2000). This index, 

which is based on the SST in a specific region of the tropical Pacific Ocean, accounts for 

29.5% of the variance in the cloud amount time series. Therefore, one can conclude that 

most of the long-term variability demonstrated in the ISCCP D2 cloud amount data is 

directly related to variations in ENSO. 

5. 3 Diagnosis of the true cloud amount change in the region of interest using reanalysis 

data 

The use of reanalysis data also provides several more ways of characterizing the 

cloud amount trend in the region of interest. First of all, because it has been shown that 

ENSO accounts for a large part of the long-term variability in cloud amount, the trend in 

the Nifio 3.4 index should reflect how the true cloud amount has changed. Maps of the 

trends in the reanalysis fields can be compared with the patterns of the corresponding 

regression maps. Because the regression maps reflect how the reanalysis fields would 

change with a 1% increase in the ISCCP cloud amount, if the trends in the reanalysis 

fields appear to show the same patterns, then one can surmise the sign and magnitude of 

the real cloud amount trend in the region of interest. Finally, the proxy cloud time series, 

generated for each reanalysis field by taking the inner product of the regression map with 

the map of the corresponding reanalysis field for each month of the record, show how 

well the reanalysis fields reflect the regression map patterns. Again, because the 

regression map represents how the reanalysis field changes in response to an increase in 
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cloud amount, the proxy cloud time series are an analog for how the cloud amount in the 

region of interest would have to change if all of the changes in the reanalysis fields were 

due to the cloud amount. Using these means, the results presented in this section 

demonstrate that the cloud amount in the region of interest does not change in a 

statistically significant way. 

Section 5.2 outlines the evidence provided by reanalysis data that indicates that 

ENSO is connected with the long-term variability in the ISCCP D2 cloud amount time 

series. Furthermore, because the location of the primary center of action for all of the 

reanalysis maps (east of 150°E and centered on the Equator) appears to be coincident 

with the centers of action visible in the OLR and PATMOS-A data, it is reasonable to 

expect that ENSO also accounts for much of the long-term variability in the true cloud 

amount in the region of interest. Therefore, we can expect that the trend in the Niiio 3.4 

index should be representative of the trend in the actual cloud amount in the region of 

interest, though with opposite sign. Returning to Figure 5.22, the blue line represents the 

linear fit to the Niiio 3.4 index. The slope of this line is -4.3 x 10-4 y{1 and has at-score 

of -0.30. Because this t-score does not exceed ±2.00, this trend is not significantly 

different from zero, and is consistent with the conclusions reached in Chapter 4 that the 

true cloud amount trend is not different from zero. 

Comparing the regression maps for each reanalysis field to maps of the trend of 

the corresponding reanalysis fields also provides a sense of the sign and magnitude of the 

true cloud amount changes in the region of interest. Figures 5.23, 5.24, and 5.25 show 

the trend maps for each of the NCEP/NCAR reanalysis fields plus the NOAA OI v.2 SST 

reanalysis and the GPCP and CMAP precipitation reanalyses. For reasons mentioned in 
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Chapter 2, the ERA-40 reanalysis data are not used for this portion of the study. By 

examination, all of the reanalysis trend maps shown in these figures show patterns of 

opposite sign than their corresponding regression maps except for the 850 mb meridional 

wind in Figure 5.23 (bottom). Because the regression maps represent how the reanalysis 

fie lds would change with an increase in cloud amount, the overwhelming majority of the 

reanalysis fields are changing in a manner consistent with a decrease in cloud amount. 

However, the magnitudes shown in the reanalysis trend maps appear to be smaller than 

the magnitude reflected by any of the regression maps. This indicates that the true 

magnitude of the cloud amount trend is likely to be less than 1% per year. While it is 

impossible to tell from a visual inspection if the trends in cloud amount indicated by 

these reanalysis trends are significantly different from zero, this result is consistent with 

previous observations that the true cloud amount change is small in magnitude. 

Finally, the trends in the proxy cloud time series that are calculated for each 

reanalysis field can give a sense of how the true cloud amount in the region of interest is 

changing with time. Table 5.1 gives a summary of how the proxy cloud time series 

correlate with the ISCCP D2 anomaly cloud amount time series and also shows the t­

score for the slope of each time series. From this table, and also by visual inspection of 

each of these time series, two observations become immediately apparent. First of all, 

each of these time series are highly correlated with the anomaly cloud amount time series 

shown in Figure 5.22. This is not a great surprise since the anomaly cloud amount time 

series is one of the inputs for the procedure that generated them. However, while some 

are negative and some are positive, it is immediately apparent that regardless of sign the 

true cloud amount trend is likely not different from zero. 
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5. 4 Conclusions 

The use of reanalysis data provides several opportunities to evaluate the cloud 

amount trends evident in the ISCCP D2 cloud dataset. By examining the patterns of how 

the ISCCP D2 all-cloud cloud amount anomaly time series regresses onto each of the 

reanalysis fields, it is evident that most of the long-term variability in the ISCCP data is 

due to variations in ENSO. Since the trend in the Nifio 3.4 index is not significantly 

different from zero, this is consistent with a true cloud amount trend that is also not 

different from zero. This result is verified by comparing the regression coefficient maps 

with the corresponding maps for trends in the reanalysis data. These comparisons 

indicate that the trend in the true cloud amount may be negative, but also that it is less 

than 1% yf 1
• Finally, by observing the trends in the proxy cloud time series for each of 

these reanalysis fields, it is apparent that the expression of the regression map patterns in 

the reanalysis data does not change significantly in time. These results all support the 

conclusion that the true cloud amount trend is not significantly different from zero. 

The results presented in this portion of the study are consistent with many of the 

conclusions drawn from the previous chapters. First of all? because ENSO is shown to be 

responsible for much of the long-term variability in the ISCCP D2 total cloud amount 

time series, it is then reasonable to expect that the characteristics of the ISCCP cloud 

amount data should reflect changes in the location and/or intensity of convection in the 

region of interest, such as those changes evident in Chapter 3. Furthermore, because the 

OLR and PATMOS-A data also show patterns that appear to be consistent with changes 

in the intensity or location of convection, this gives additional support to the conclusion 

that ENSO variability is a significant part of the variability of the true cloud amount in 

57 



the region of interest. The result that the reanalysis data indicate that there is no 

significant long-term trend in the true cloud amount in the region of interest is consistent 

with the polar-orbiting satellite datasets, which also did not show significant trends. 

While the OLR and PATMOS-A data seemed to indicate a small positive trend in the 

cloud amount, the reanalysis data do not support a consistent conclusion about the sign of 

the true cloud amount trends. Therefore, the only conclusion that can be reached is 

simply that the trend in the true cloud amount over the period of record is not 

significantly different from zero. This means that the ISCCP D2 regionally averaged all­

cloud cloud amount trend evident in Figure 3. 1 must be rejected as a realistic 

representation of the cloud amount trends in the region of interest. 
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Figure 5.1: (top) The map showing the distribution of regression coefficients obtained from 
regressing the KSCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of NCEP/NCAR 200 mb zonal wind at each grid point. (middle) The map showing the 
distribution of correlation coefficients obtained from correlating those time series. Colored contours 
indicate regions where the regression coefficients are statistically significant. (bottom) The proxy 
cloud time series obtained from projecting the regression coefficient map onto the map of 200 mb 
zonal wind at each time step plotted with the linear trend in green. 
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Figure 5.2: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
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showing the distribution of correlation coefficients obtained from correlating those time series. 
Colored contours indicate regions where the regression coefficients are statistically significant. 
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the map of200 mb meridional wind at each time step plotted with the linear trend in green. 
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Figure 5.3: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP 02 all-cloud cloud amount anomaly time series of the region of interest onto 
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distribution of correlation coefficients obtained from correlating those time series. Colored contours 
indicate regions where the regression coefficients are statistically significant. (bottom) The proxy 
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Figure 5.4: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of NCEP/NCAR 850 mb meridional wind at each grid point. (middle) The map 
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Colored contours indicate regions where the regression coefficients are statistically significant. 
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Figure 5.5: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
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distribution of correlation coefficients obtained from correlating those time series. Colored contours 
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cloud time series obtained from projecting the regression coefficient map onto the map of 200 mb 
zonal wind at each time step plotted with the linear trend in green. 
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Figure 5.9: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
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distribution of correlation coefficients obtained from correlating those time series. Colored contours 
indicate regions where the regression coefficients are statistically significant. (bottom) The proxy 
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Figure 5.10: (top) The map showing the distribution of regr·ession coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of ERA-40 850 mb meridional wind at each grid point. (middle) The map showing the 
distribution of correlation coefficients obtained from correlating those time series. Colored contours 
indicate regions where the regression coefficients are statistically significant. (bottom) The proxy 
cloud time series obtained from projecting the regression coefficient map onto the map of 850 mb 
meridional wind at each time step plotted with the linear trend in green. 
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Figure 5.11 : (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of ERA-40 200 mb divergence at each grid point. (middle) The map showing the 
distribution of correlation coefficients obtained from correlating those time series. Colored contours 
indicate regions where the regression coefficients are statistically significant. (bottom) The proxy 
cloud time series obtained from projecting the regression coefficient map onto the map of 200 mb 
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Figure 5.12: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
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indicate regions where the regression coefficients are statistically significant. (bottom) The proxy 
cloud time series obtained from projecting the regression coefficient map onto the map of 850 mb 
divergence at each time step plotted with the linear trend in green. 
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Figure 5.13: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of GPCP precipitation at each grid point. (middle) The map showing the distribution 
of correlation coefficients obtained from correlating those time series. Colored contours indicate 
regions where the regression coefficients are statistically significant. (bottom) The proxy cloud time 
series obtained from projecting the regression coefficient map onto the map of precipitation at each 
time step plotted with the linear trend in green. 
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Figure 5.14: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of CMAP precipitation at each grid point. (middle) The map showing the distribution 
of correlation coefficients obtained from correlating those time series. Colored contours indicate 
regions where the regression coefficients are statistically significant. (bottom) The proxy cloud time 
series obtained from projecting the regression coefficient map onto the map of precipitation at each 
time step plotted with the linear trend in green. 
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Figure 5.15: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of NCEP/NCAR 200 mb geopotential height at each grid point. (middle) The map 
showing the distribution of correlation coefficients obtained from correlating those time series. 
Colored contours indicate regions where the regression coefficients are statistically significant. 
(bottom) The proxy cloud time series obtained from projecting the regression coefficient map onto 
the map of200 mb geopotential height at each time step plotted with the linear trend in green. 
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Figure 5.16: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of ERA-40 200 mb geopotential height at each grid point. (middle) The map showing 
the distribution of correlation coefficients obtained from correlating those time series. Colo1·ed 
contours indicate regions where the regression coefficients are statistica lly significant. (bottom) The 
proxy cloud time series obtained from projecting the regression coefficient map onto the map of 200 
mb geopotential height at each time step plotted with the linear trend in green. 
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Figure 5.17: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of NCEP/NCAR 850 mb geopotential height at each grid point. (middle) The map 
showing the distribution of correlation coefficients obtained from correlating those time series. 
Colored contours indicate regions where the regression coefficients are statistically significant. 
(bottom) The proxy cloud time series obtained from projecting the regression coefficient map onto 
the map of850 mb geopotential height at each time step plotted with the linear trend in green. 
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Figure 5.18: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of NCEP/NCAR sea level pressure at each grid point. (middle) The map showing the 
distribution of correlation coefficients obtained from correlating those time series. Colored contours 
indicate regions where the regression coefficients are statistically significant. (bottom) The proxy 
cloudl time series obtained from projecting the regression coefficient map onto the map of sea level 
pressure at each time step plotted with the linear trend in green. 
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Figure 5.19: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of ERA-40 850 mb geopotential height at each grid point. (middle) The map showing 
the distribution of correlation coefficients obtained from correlating those time series. Colored 
contours indicate regions where the regression coefficients are statistically significant. (bottom) The 
proxy cloud time series obtained from projecting the regression coefficient map onto the map of 850 
mb geopotential height at each time step plotted with the linear trend in green. 

77 



'\, 

"' I 
\ 
i 

>: 

-·~· 

\ 

·&:· .J(I 

' .(~ 

-.:.:· -~· 

·· · ·~ •V U 

/ 
l 
' 

::; 

·I I) -').2- ·0 6 -0 ~ -0.2 0.0 0.2 0.4 0.6 0.2- 1.0 

30 6 0 150 ISO -1 ~·0 ·120 -9C' · 60 -30 
C• • • -~ - -r .... ;::; .~, 

·\ 

\ ,\ . 

\',. .. ( ' .. ,, l" •, \. 
C • I I 

r \ "'-; \ 
' /• i 

' 
( .. ' .. : 

C • ' ) y 

"'' ..... 
30 60 9 0 12C1 150 I SO · 150 · 120 -90 -60 -3 Q •=> 

·I . 00 -(' 80 -0 60 -0.40 ·0. I:? C•. DC• 0. I ~· C•.4C• 0. f ,C• r:-,2.0 I . 00 

0 .2 

0 .1 

00 

-0 .1 

-0.2 

-0 4 
1988 1985 1987 1 98~ 19£•1 1992· E•9S 1 S•97 1 ~99 2001 

Figure 5.20: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time series of ERA-40 sea level pressure at each grid point. (middle) The map showing the 
distribution of correlation coefficients obtained from cor relating those time series. Colored contours 
indicate regions where the regression coefficients are statistically significant. (bottom) The proxy 
cloud time series obtained from projecting the regression coefficient map onto the map of sea level 
pressure at each time step plotted with the linear trend in green. 
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Figure 5.21: (top) The map showing the distribution of regression coefficients obtained from 
regressing the ISCCP D2 all-cloud cloud amount anomaly time series of the region of interest onto 
the time ser ies of NOAA 0 1 v.2 SST at each grid point. (middle) The map showing the dist ribution 
of correlation coefficients obtained from correlating those time series. Colored contours indicate 
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Figure 5.25: Maps of trends in reanalysis data from July 1983 to September 2001 for (from top to 
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Table 5.1: The slopes of the proxy cloud time series for each reanalysis field and their correlations to the 
regionally averaged ISCCP D2 all-cloud cloud amount anomaly time series 

Correlation to Cloud 
T-score for Slope of Proxy Cloud 

Dataset Amount Variance Time T-score for Slope 
Series 

Correlation Time Series 

N CEP IN CAR Reanalysis 

200mb Zonal Wind 0.75 11.14 5.2xl0-3 ms·' yr" 1 0.64 

850 mb Zonal Wind 0.79 12.81 -3.2xl0·4 ms·' yr" 1 -0.28 

200 mb Meridional 
0.74 11.02 1.5xl0-3 ms·' yr" 1 1.05 Wind 

850 mb Meridional 
0.72 10.22 2.3xl0-5 ms·' yr" 1 0.11 Wind 

200 mb Divergence 0.76 11.70 1.4x10-16 s·' yr" 1 0.41 

850 mb Divergence 0.69 9.38 -1.6xl0- 16 s·' yr"1 -1.63 
200 mb Geopotential 

0.68 9.20 4.5xlo-' m yr"1 0.96 
Height 

850 mb Geopotential 
0.58 7.10 6.7xl0·2 m yr·' 0.79 Height 

Sea Level Pressure 0.56 6.80 7.5x104 mb yr"1 0.65 

ERA-40 Reanalysis 

200 mb Zonal Wind 0.75 11.27 1.7xl0·3 ms·' yr" 1 0.21 

850mb Zonal Wind 0.79 12.89 5.3xl0·4 ms·' yr" 1 0.51 

200 mb Meridional 
0.75 11.31 4.4xl0-5 ms·' yr"1 0.03 

Wind 
850 mb Meridional 

0.65 9.52 4.8xl0-5 ms·' yr"1 0.23 
Wind 

200 mb Divergence 0.80 13.27 -2.4x l0-16 s·' yr·' -0.56 

850 mb Divergence 0.83 14.67 -2.0x 1 o·'6 s·' yr·' -1.27 

200 mb Geopotential 
0.69 9.39 -6.5x10-1 m yr" 1 -1.35 

Height 
850 mb Geopotential 

0.58 7.07 1.6xl0·2 m yr" 1 0. 18 
Height 

Sea Level Pressure 0.57 6.83 1.6xl04 mb yr" 1 0. 13 

Other Reanalysis Data 

CMAP Precipitation 
0.78 12.39 1.7xl04 mm day" 1 yr" 1 0.22 

Reanalysis 

GPCP Precipitation 
0.80 13.05 5.4x10·5 mm day"1 yr" 1 0.08 

Reanalysis 

NOAA 01 v.2 SST 0.61 7.74 - l.Oxl0-5 ·c yr" 1 -0.09 

For statistical significance at the 95% confidence level, the t-scores must exceed ±2.00. Values in bold pass this 
test allowing us to reject the null hypothesis that either there is no correlation or that the slope is not different 

than zero. 
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CHAPTER 6: SUMMARY OF CONCLUSIONS AND CONCLUDING 

REMARKS 

6.1 Summary of results and conclusions 

The purpose of this study is to characterize and verify the trends in the ISCCP D2 

dataset. In order to avoid the influence of the high correlation between the cloud amount 

and the changing viewing angle of the geosynchronous satellites, the region defined as 

90°E to 180° and 30°N to 30°S is selected for study because the satellite coverage is 

relatively constant. The presented analysis shows: 

0 

0 

0 

The average cloud amount from July 1983 through September 2001 has been 

decreasing by 2.6% per decade according to ISCCP; 

The patterns of the ISCCP changes suggest a relationship to changes in the 

distribution and/or intensity of convection, though not all ISCCP data consistently 

support this conclusion; 

The NOAA Interpolated OLR and PATMOS-A data also support a relationship 

between cloud amount changes in the region of interest and the redistribution of 

convection, but unlike ISCCP, trends in these two polar-orbiter based datasets are 

not significantly different from zero; 

c Reanalysis data demonstrate that the nature of how cloud amount changes in the 

region of interest are related to changes in the general circulation in a manner are 

indeed consistent with a redistribution of convection; 
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o The correlation analysis with reanalysis data shows that most of the long-term 

variations in cloud amount are correlated with variations in ENSO. This explains 

why the results from all three satellite datasets consistently indicate changes in the 

distribution of convection; 

o The reanalysis data confirm that the change in the true regionally averaged cloud 

amount is not significantly different from zero, in agreement with the polar­

orbiter based satellite data; 

Therefore, while the ISCCP D2 dataset has apparently captured the climate variability 

associated with ENSO also evident in other independent data sources, there is no 

corroborating evidence that the long-term trend in the all-cloud cloud amount in the 

region of interest is real. 

6. 2 Concluding remarks 

These results call the climate trend analyses of Chen et al. (2002) and Palle et al. 

(2004) into question, since both studies used ISCCP data as an input to their algorithms 

for finding long-term trends. In doing so, these analyses were likely predetermined to 

produce trends. The Wielicki et al. (2002) results are not as easily dismissed, though in a 

letter of response to their findings, Trenberth (2002) points out possible contamination 

due to calibration issues among platforms and that the data processing used in their data 

may introduce errors through the aliasing of semiannual and diurnal cycles. These 

results serve to highlight the dangers of using satellite data to diagnose climate changes 

without first testing to see if the satellite data is not introducing anomalous signals into 

the analyses. 

86 



It is important to note, however, that the ISCCP dataset was not developed for the 

purpose of long-term climate trends. Rather, it was established to deduce the physical 

properties of clouds for use in improving the parameterization of clouds in climate 

models (Rossow et al. 1996). Based on the fact that a strong ENSO signal was found in 

the ISCCP data, there is however demonstrated potential for being able to use ISCCP 

data to study climate variability in clouds. This suggests that in the future it may be 

possible to use ISCCP data in studying other modes of climate variability. However, it is 

apparent that further work must be done before ISCCP cloud amount data can be used for 

any trend analysis. Despite efforts to select a region that minimized the viewing angle 

problem, the magnitude of the slope of the ISCCP data was shown to be unreasonably 

large and negative while the slopes observed in the rest of the datasets do not differ 

significantly from zero. Therefore, there must be other contamination in the ISCCP data. 

This contamination may take the form of calibration errors when new satellite platforms 

are introduced, but it may also involve data processing errors that have not yet been 

identified. It is the author's hope that efforts in the near future will be able to identify 

and correct the problems highlighted by this study. Until this work is completed, ISCCP 

D2 data should probably not be used for any studies that require the detection of long­

term trends in cloud data. 

87 



REFERENCES 

Barkstrom, B.R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. 

Meteor. Soc., 65, 11 70-1185. 

Bengtsson, L., S. Hagemann, and K.I. Hodges, 2004: Can climate trends be calculated 

from reanalysis data? J Geophys. Res., 109, Dl1111, doi:10.1029/2004JD004536. 

Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. 

Rev., 97, 163-172. 

Campbell, G.G., 2004: View angle dependence of cloudiness and the trend in ISCCP 

cloudiness. Extended Abstracts, Thirteenth Conf on Satellite Meteorology and 

Oceanography, Norfolk, VA, Amer. Meteor. Soc., Online, P6.6. 

- . Personal Communication. August 2004. 

Chen, J., B.E. Carlson, and A.D. Del Genio, 2002: Evidence for strengthening of the 

tropical general circulation in the 1990s. Science, 295, 83 8-841. 

Gibson, R., P. Kallberg, and S. Uppala, 1996: The ECM\VF Re-Analysis (ERA) project. 

ECMWF Newsletter 73, 7-1 7. [Available on PDF from ECMWF, 

http://www.ecmwf.int/publications/newsletters/list.html] . 

Gruber, A and A.F. Krueger, 1984: The Status of the NOAA outgoing longwave 

radiation dataset. Bull. Amer. Meteor. Soc., 65, 958-959. 

Borel, J.D. and J.M. Wallace, 1981: Planetary-scale phenomena associated with the 

southern oscillation. Mon. Wea. Rev., 109, 813-829. 

Huffman, G.J., and Coauthors, 1996: The Global Precipitation Climatology Project 

(GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 77, 5-20. 

88 



Kalnay, E.M., and Coauthors, 1996: The NCEP/NCAR reanalysis project. Bull. Amer. 

Meteor. Soc., 77,437-471. 

Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-Year Reanalysis: Monthly Means 

CD-ROM and Documentation. Bull. Amer. Meteor. Soc., 82,247-268. 

Liebmann, B. and C.A. Smith, 1996: Description of a complete (interpolated) outgoing 

longwave radiation dataset. Bull. Amer. Met. Soc, 77, 1275-1277. 

Lin, B., B.A. Wielicki, L.H. Chambers, Y. Hu, and K-M Xu, 2002: The iris hypothesis: a 

negative or positive feedback?, J Climate, 15, 3-7. 

Lindzen, R., M.D. Chou, and A Hou, 2001: Does the Earth have an adaptive iris?, Bull. 

Amer. _Meteor. Soc., 82,417-432. 

Miller, R.L., 1997: Tropical thermostats and low cloud cover. J Climate, 10, 409-440. 

Palle, E., P.R. Goode, P. Montafies-Rodriguez, S.E. Koonin, 2004: Changes in the 

Earth's reflectance over the past two decades. Science, 304, 1299-1301. 

Pierrehumbert, R., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J 

Atmos. Sci., 52, 1784-1806. 

Reynolds, R.W. , N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang, 2002: An 

improved in situ and satellite SST analysis for climate. J Climate, 15, 1609-1625. 

Riehl, H. and J.S. Malkus, 1958: On the heat balance in the equatorial trough zone. 

Geophysica, 6, 503-537. 

Rossow, W.B. and R.A. Schiffer, 1999: Advances in understanding clouds from ISCCP. 

Bull. Amer. Meteor. Soc., 80, 2261-2287. 

89 



-, A.W. Walker, D.E. Beuschel, and M.D. Roiter, 1996: International Satellite Cloud 

Climatology Project (ISCCP) documentation of new cloud datasets. WMO/TD-No. 

73 7, World Meteorological Organization, 11 5 pp. 

Schiffer, R.A. and W.B . Rossow, 1983: The International Satellite Cloud Climatology 

Project (ISCCP) - the first project of the World Climate Research Project, Bull. Amer. 

Meteor. Soc., 64, 779-784. 

Simmons, A.J. and J.K. Gibson, eds, 2000: The ERA-40 project plan, ERA-40 Project 

Report Series, No. 1, 63 pp. [Available on PDF from ECMWF, 

http://www. ecmwf. int/publicationsllibrary I do/references/list/192] . 

Smith, C.A. and P. Sardeshmukh, 2000: The effect of ENSO on the intraseasonal 

variance of surface temperature in winter. Int. J Climatol., 20, 1543-1557. 

Stowe, L.L., P.A. Davis, and E.P. McClain, 1999: Scientific basis and initial evaluation 

of the CLA VR-1 global clear/cloud classification algorithm for the Advanced Very 

High Resolution Radiometer. J Atmos. Oceanic Techno!, 16, 656-681. 

- , H. Jacobowitz, G. Ohring, K.R. Knapp, and N.R. Nalli, 2002: The Advanced Very 

High Resolution Radiometer (A VHRR) Pathfinder Atmosphere (PA TMOS) climate 

dataset: initial analyses and evaluations. J Climate, 15, 1243-1260. 

Trenberth, K.E., 2002: Changes in tropical clouds and radiation. Science, 296, 2095. 

- ,and D.P. Stepaniak, 2000: Indices ofEl Nifio evolution. J Climate, 14, 1697-1701. 

Waliser, D.E. and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J 

Climate, 6, 2162-2174. 

Wielicki, B.A., and Coauthors, 2002: Evidence for large decadal variability in the 

tropical mean radiative energy budget. Science, 295, 841-844. 

90 



Wilks, D.S., 1995: Statistical Methods in the Atmospheric Sciences. International 

Geophysical Series, Vol. 59, Academic Press, 467 pp. 

Xie, P. and P.A. Arkin, 1997: Global precipitation: a 17-year monthly analysis based on 

gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. 

Meteor. Soc., 78, 2539-2558. 

91 


