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ABSTRACT 

 

MULTI-SCALE TRAFFIC PERFORMANCE MODELING OF TRANSPORTATION  

SYSTEMS SUBJECTED TO MULTIPLE HAZARDS 

 

Transportation systems are very vulnerable to natural or manmade hazards, such as earthquakes, floods, 

hurricanes, tsunamis, terrorism, etc. In the past years, extreme hazards have caused significant physical and 

functional damages to transportation systems around the world. Disruption of transportation systems by 

multiple hazards will impede social and commercial activities, and hamper the post-disaster emergency 

response and long-term recovery of the damaged community. The main purpose of this dissertation is to 

develop advanced performance assessment techniques of transportation systems subjected to multiple 

hazards in the link level and network level. It is expected that the developed techniques in this dissertation 

will help stakeholders to make risk-informed decisions in terms of effective prevention and preparation 

measures to enhance and facilitate resilience of transportation systems. A suite of simulation methodologies 

are developed to evaluate the performance of critical transportation components (e.g. bridges and road 

segments) and transportation networks subjected to multiple hazards in this dissertation. Firstly, an 

advanced traffic flow simulation framework is developed to predict the post-hazard performance of a typical 

highway system under hazardous conditions. Secondly, a simulation methodology is developed to study the 

traffic performance of degraded road links being partially blocked following extreme events. Thirdly, a new 

approach is proposed to develop travel time functions of partially blocked roads in urban areas through 

microscopic traffic simulation. Fourthly, an integrated model is developed to assess single-vehicle traffic 
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safety performance of stochastic traffic flow under hazardous driving conditions. Finally, an integrated 

probabilistic methodology is developed to model the performance of disrupted infrastructures due to fallen 

urban trees subjected to extreme winds. 
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 CHAPTER 1 INTRODUCTION 

 

1.1 Background 

Transportation systems play an important role in modern society by providing the movement of people 

and goods between different places, and therefore have significant influence on the political, social, 

economic development of nations. About 11% of income of Americans is spent on transportation, which 

directly contributes about 10% of the gross domestic product of US (BTS 2017). However, with 

development of urban cities and fast growth of population and vehicles, transportation-related problems 

(e.g. traffic congestion, vehicle accidents and air pollution) are becoming increasingly serious throughout 

the world. It becomes a primary concern for city planners and traffic engineers to develop efficient, safe, 

and convenient transportation systems. 

Transportation systems are very vulnerable to natural or manmade hazards, such as earthquakes, floods, 

hurricanes, tsunamis, terrorism, etc. In the past years, extreme hazards, such as 2004 Indian Ocean tsunami 

in Indonesia, 2005 Hurricane Katrina in the USA, 2008 Sichuan earthquake in China, and 2010 Haiti 

earthquake in Haiti, have caused significant physical and functional damages to transportation systems 

around the world. Transportation systems play a vital role before, during and after hazards by evacuating 

people and supporting emergency response and various post-hazard restoration efforts. Disruption of 

transportation systems will not only affect the emergency and rescue operations immediately after hazards, 

but also inhibit the effort to restore other lifeline infrastructures (e.g. transmission lines, water pipes), and 

further aggravate the loss of impacted communities. Therefore, it is imperative to develop efficient tools to 

model the impact of hazards through performance evaluations so that the stakeholders can make risk-
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informed decisions in terms of effective prevention and preparation measures to reduce the risk and 

vulnerability of transportation systems and further improve the resilience of the whole community subjected 

to hazards.  

1.2 Literature review 

1.2.1 Traffic flow theory and modeling 

1.2.1.1 Traffic flow characteristics 

Traffic flow theory describes the interactions between the vehicles and infrastructure in a mathematical 

way. Traffic flow theory and modeling started in 1930s by Bruce Greenshields (Greenshields 1934, 1935). 

However, with the rapid development of computing power and significant increase of traffic demand, traffic 

flow theory and modeling have received enormous attention since the 1990s (Treiber and Kesting 2013).  

In the microscopic level, a time-space diagram shows graphically the movement of individual vehicles 

in a traffic flow in both space and time (Fig. 1.1). Typically, time is displayed along the horizontal axis, and 

distance is shown along the vertical axis. Each line in the time-space diagram represents the trajectory of 

an individual vehicle. Vehicles follow each other along a lane, so there are a number of parallel trajectories 

in a time-space diagram. The slope of a trajectory line is the instantaneous speed of the vehicle. Curved 

parts of a trajectory indicate there are speed variations due to vehicle acceleration or deceleration. 
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Figure 1.1 Time-space diagram 

In the macroscopic level, traffic flow can be described with three main variables: speed, density and 

flow. Because it is hard to measure the speed of every vehicle in traffic accurately, it is common to obtain 

the average speed of some sample vehicles. Time mean speed and space mean speed are two commonly 

used average speeds. The time-mean speed is the arithmetic average speed of all vehicles for a specified 

period of time (Eq. (1.1)). In practice, it is measured at a reference point on the roadway. For example, loop 

detectors are usually used to detect vehicles passing a certain point and measure their speeds. The space-

mean speed is the average speed of vehicles traveling a given segment of roadway during a specified period 

of time, which is calculated with the roadway segment length and average travel time (Eq. (1.2)). For 

example, Bluetooth technology has been recently used to collect vehicle travel time in a roadway segment 

by tracking the Bluetooth ID of passing vehicles. An average travel time is calculated from individual 

vehicle travel times. Then, the space mean speed is computed by dividing the distance between two 

Bluetooth devices by the average travel time. 
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𝑣𝑡 = 1𝑚∑𝑣𝑖                                 (1.1) 𝑣𝑠 = 𝐿∑𝑡𝑖𝑚 = 𝐿∗𝑚∑𝑡𝑖                                 (1.2) 

where 𝑣𝑡 is the time mean speed; 𝑣𝑠 is the space mean speed; 𝑚 is the number of observations; 𝑣𝑖 is 

the speed of the 𝑖th vehicle; 𝐿 is the length of roadway segment; 𝑡𝑖 is the travel time of the 𝑖th vehicle. 

The time-mean speed is associated with a point over time, whereas the space-mean speed is associated with 

a section of roadway. 

Density is defined as the number of vehicles observed on a unit length of road, which is expressed by 

Eq. (1.3). Density can also be expressed by the inverse of spacing with Eq. (1.4), which is the distance 

between two vehicles. 

𝜌 = 𝑁𝐿                                  (1.3) 

𝜌 = 1𝑠̅                                 (1.4) 

where 𝜌 is density; 𝑁 is the number of observed vehicles; 𝐿 is the road length; 𝑠̅ is the average spacing 

between two adjacent vehicles. 

Flow is defined as the number of vehicles passing a reference point per unit of time, which has a 

common unit of vehicles per hour. The inverse of flow is time headway, which corresponds to the time 

between passages of the front ends of two successive vehicles, as shown Eq. (1.5). There is a relationship 

between flow, speed and density given in Eq. (1.6), which is called the fundamental equation. It can be seen 

from Eq. (1.6) that the flow depends on both the speed and density. 

𝑞 = 1ℎ                                 (1.5) 

𝑞 = 𝑣 ∗ 𝜌                               (1.6) 

where 𝑞 is flow; ℎ is time headway; 𝑣 is speed. 
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Fundamental diagrams, as shown in Fig. 1.2 (Immers and Logghe 2002), describe the relationship 

between speed, flow, and density of traffic, which are primary tools to study traffic flow. There are three 

different two-dimensional graphs consisted in fundamental diagrams: flow-density, speed-flow, and speed-

density. A diagram describes the relationship between two of three variables and the third variable can 

always be recovered by means of Eq. (1.6). Typically, fundamental diagrams are developed by plotting 

observed field data points and fitting those data points with mathematical expressions. Many mathematical 

models have been developed for the fundamental diagrams, such as Greenshield model, triangular shaped 

model (Elefteriadou 2014). 

 

Figure 1.2 Fundamental diagrams (Immers and Logghe 2002) 

1.2.1.2 Traffic flow simulation 

Generally, traffic flow simulation model can be classified into two types: macroscopic and microscopic 

simulation models. Macroscopic models regard traffic flow as liquids or gases in motion by assuming the 

aggregate homogeneous behavior of drivers. In contrast, microscopic simulation examines traffic flow by 
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modeling the behavior of individual vehicles. In microscopic models, each vehicle and its driver are treated 

as a single unit, whose movement is replicated by considering dynamic interactions with surrounding traffic. 

Car-following model and cellular automaton (CA) model are two famous microscopic models. Many 

microscopic simulation programs have been developed and widely used for traffic analysis, such as VISSIM, 

SUMO, TRANSIMS, CORSIM, AIMSUN, INTEGRATION, Paramics and SimTraffic. 

As a stochastic microscopic traffic flow simulation model, CA model is able to simulate the traffic 

flow realistically. Because of its high efficiency and simplicity, CA model is one of the most widely used 

microscopic traffic simulation methods. At each time step, the velocity and position of each vehicle are 

updated through the single-lane forwarding rules (i.e. acceleration, deceleration, random brake, and 

movement) and the lane-changing rules. Fig. 1.3 shows the forwarding rules in the well-known one-lane 

NaSch’s CA model (Nagel and Schreckenberg 1992). 

 

Figure 1.3 Forwarding rules in the one-lane NS CA model 

1.2.2 Simulation of traffic flow under hazardous driving conditions 

A typical highway system consists of bridges, connecting roadways and moving traffic. For many years, 

simulation of the traffic moving over a bridge had been greatly simplified. In many studies, a single vehicle, 
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uniformly distributed vehicle platoon or random vehicle pattern with the assumption of certain distributions 

were often adopted for both short- and long-span bridges (Cai and Chen 2004; Chen and Cai 2007; Xu and 

Guo 2003; O’Connor and O’Brien 2005). It was not until recently that advanced traffic flow simulation on 

a microscopic scale has been adopted in the field of bridge engineering by offering detailed time-dependent 

vehicle information and considering realistic traffic rules and speed limits. For example, the CA traffic flow 

simulation technique was adopted to study the live load on a long-span bridge from the stochastic traffic 

(Chen and Wu 2011) and applied on investigating the dynamic performance of the bridge (Chen and Wu 

2010; Zhou and Chen 2015a). As the first-time effort on incorporating microscopic traffic flow simulation 

in studying bridge performance, such a model (Chen and Wu 2011) was primarily developed for normal 

driving conditions.  

Moving vehicles in a highway system do not only impose external loads on the infrastructure (i.e. 

bridges) from the vehicle self-weight, but also in the meantime, are supported by the infrastructure to stay 

safe and move smoothly. The resilience of a highway system subjected to various hazards depends on not 

only post-hazard integrity of infrastructure, but also safe driving of vehicles through the system during and 

immediately after hazards (Chen and Chen 2010). On the one hand, post-hazard traffic by panicking drivers 

can easily cause local congestion and concentrating loads on bridges. Although such load concentration 

may not be critical to bridges in normal conditions, it may be disastrous to those bridges that have already 

been severely damaged by hazards. On the other hand, the accident risks of vehicles following hazards may 

considerably increase because of more irrational driving behavior and traffic congestion. These accidents 

may further cause severe congestion and traffic disruption, which can be critical to the emergency response 

and evacuation efforts through the highway system.  
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In recent years, based on the well-known NaSch’s model (Nagel and Schreckenberg 1992), several 

extended CA models have been introduced to incorporate more realistic driving behaviors. Li et al. (2006) 

revised the symmetric lane-changing rules (Chowdhury et al. 1997) to take into account the aggressive lane-

changing behavior of fast vehicles. Xie and Zhao (2013) considered different driving behaviors in the 

deceleration step by anticipating the velocity of the preceding vehicle. Zamith et al. (2015) used the 

probability density function of the Beta distribution to model three types of driving behavior when 

determining the effective distance and effective velocity of a vehicle at next time step. Zhao et al. (2016) 

defined aggressive driving behavior with larger maximum speed and higher lane-changing probability.  

1.2.3 Simulation of disrupted traffic flow 

Following some natural hazards, transportation systems play a critical role in evacuating people and 

supporting emergency response and various post-hazard restoration efforts. In addition to direct impacts 

from hazards (e.g. damaged bridges or roads), post-hazard traffic networks are often disrupted due to those 

indirect impacts originated from interdependent nature with other infrastructure systems and environments 

(Ouyang 2014; Fotouhi et al. 2017; Edrissi et al. 2015). For example, traffic networks especially those in 

urban areas may suffer from blockage of debris from adjacent buildings, fallen trees or light poles 

(Anastassiadis and Argyroudis 2007; Argyroudis et al. 2015). In addition to long-term (e.g. bridge or 

pavement damage) and short-term disruptions (e.g. major debris) following natural hazards, some minor 

incidents (e.g. vehicle accidents) can also fully or partially block the roads temporarily, causing 

considerable traffic delay (Calvert and Snelder 2015). A rational prediction of traffic performance of 

degraded roads, such as travel capacity, speed and delay, is critical to hazard resilience research of not only 

individual transportation networks but also the whole community (Sullivan et al. 2009; Mattsson and 
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Jenelius 2015).  

In contrast to abundant historical traffic data under normal conditions, one primary challenge for 

degraded roads is that existing post-hazard traffic data on disrupted scenarios are very rare and simulation-

based approaches have become the primary option. Different from traffic studies on intact roads which have 

been extensively explored, existing traffic simulations on disrupted roads with sufficient details are very 

limited and most were focused on the connectivity studies about fully-blocked scenarios. Following some 

natural hazards, some partially-blocked roads and bridges often remain open to vehicles supporting 

emergency response, early recovery, evacuation and general traffic. Due to the limited resources following 

some major hazards, clearing some debris from all roads in a community often take days to months. In 

addition, some critical bridges with minor or moderate damages may open a limited number of lanes 

following hazards to maximize the emergency response, recovery and evacuation efficiency. For all these 

scenarios with degraded roads and bridges following some extreme events, traffic capacity and travel time 

are very different from those with intact road infrastructure, which can only be rationally predicted in a 

microscopic scale.  

During the past years, there have been some limited simulation-based studies of disrupted traffic flow 

in a microscopic scale with CA models and car-following models (Huang and Huang 2002; Pottmeier et al. 

2002). These studies include multi-lane traffic flow simulation with a partially closed lane induced by 

various traffic bottlenecks, e.g., accidents, work zone, and lane reduction (Kurata and Nagatani 2003; 

Nassab et al. 2006; Zhu et al. 2009; Jia et al. 2003Hou and Chen 2019a). Lan et al. (2009) proposed a CA 

model with piecewise-linear speed variation and limited deceleration and implemented the model to 

simulate the traffic flow at highway work zone. Various traffic control schemes (e.g. setting various reduced 
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speed limits and reduced speed zone lengths) were investigated. 

Chen et al. (2014) investigated the influence of car accident location on three-lane traffic flow. In the 

study by Weng and Meng (2011), the randomization probability parameter in their CA model was 

formulated as a function of some parameters related to the work zone based on the calibration data sets, and 

the model was validated with the work zone data microscopically and macroscopically. To simulate realistic 

merging behaviors in a work zone, Fei et al. (2016) applied different lane-changing rules and position 

update rules for vehicles in different areas, i.e., the normal area, merging area, and work zone. 

1.2.4 Travel time function for disrupted urban arterials 

Travel time functions are usually developed based on measured or simulated traffic data. It is a 

traditional approach to estimate travel time functions by calibrating empirical travel time models based on 

observed traffic data (Davis and Xiong 2007), which can be collected with various techniques, such as 

floating car, license plate matching, ITS probe vehicle, loop detector and radar (Gastaldi and Rossi 2011). 

In addition to the well-known Bureau of Public Roads (BPR) function, there are other common empirical 

travel time estimate models, such as conical travel time function, Akcelik model, Singapore model, 

Skabardonis-Dowling model and HCM formula (Moses et al. 2013). Mtoi and Moses (2014) calibrated four 

volume delay functions with archived detector data for different facility types (e.g. freeway, toll road, HOV 

lane, and arterial). It was found in their study that each volume delay function is suitable for a particular 

facility type. Kucharski and Drabicki (2017) estimated the travel time function of a three-lane arterial road 

by calibrating the BPR function with field data collected by a loop detector. Zhang and Waller (2018) 

studied the link performance function for contiguous High Occupancy Vehicle (HOV) lanes on freeways 

with real traffic data. 
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However, it is often very difficult and expensive to gather real traffic data under all different traffic 

conditions, such as various volumes and vehicle compositions. With the rapid development of computing 

power and computing technology, many microscopic traffic simulation models have been developed to 

provide an alternative to collected data. Microscopic traffic simulators, such as VISSIM, SUMO, 

TRANSIMS, CORSIM, AIMSUN, INTEGRATION, Paramics and SimTraffic, are popular for generating 

traffic data under various conditions, which otherwise cannot be easily obtained through data collection in 

real world (Tian et al. 2002). Several researchers developed travel time functions based on the simulated 

traffic data. Lu (2010) proposed an analytical travel time function for urban arterials and calibrated the 

parameters based on microscopic simulation data from CORSIM. Lu et al. (2016) estimated travel time 

functions for different vehicle types in heterogeneous freeway traffic flow based on the simulated data with 

VISSIM. 

Compared to freeways, travel time on arterials is influenced by more factors, such as traffic signals, 

lane width, lane utilization, parking maneuvers, and pedestrians. Travel time on an arterial link includes 

running time and signal delay. Since the total link travel time is significantly affected by the signal delay, 

traffic signal information such as cycle length, effective green ratio and vehicle arrival type should be 

considered when estimating travel time on arterials. Travel time functions of arterials have been investigated 

extensively in several existing studies: speed-flow functions of urban arterials with four classes were 

developed based on the micro-simulation results by Yun et al. (2005). Davis and Xiong (2007) evaluated 

several travel time models with measured field data of 50 arterial links in Twin cities. Kajalic et al. (2018) 

examined several traffic time models of urban streets (e.g. Akcelik model, HCM model, Singapore model, 

and BPR function) and found the Akcelik model had the best performance in estimating travel time for road 
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sections with a high number of signals. 

Accounting for a considerable portion of urban traffic, trucks in heterogeneous traffic flow often 

significantly contribute to traffic delay due to their different sizes, travel speeds, mechanical properties, and 

headways from cars. Previous studies indicate that the flow rate and speed decrease with the increase of 

truck ratio (Li et al. 2016). The standard BPR function does not reflect the effect of traffic flow 

heterogeneity caused by different vehicle types on traffic congestion. The conversion of trucks into cars by 

using the passenger car equivalent method only recognizes the size difference but ignores the operational 

difference between those vehicle types. Truck’s impact on the traffic time function has been included in 

some previous researches (Lu et al. 2016; Muller and Schiller 2015; Yun et al. 2005). 

Blockage size is another factor that affects the performance of PBR, which has been preliminarily 

considered in existing studies. For example, lateral and longitudinal blockage sizes have been incorporated 

in the empirical equations to calculate the remaining traffic capacity (Adeli and Jiang 2003). Blockage size 

(e.g. work zone length) has been found to directly influence the travel time required for a vehicle to 

transverse a road (Cassidy and Han 1993). Given various possible blockage scenarios following different 

hazards, to incorporate the effect of the blockage size in travel time function can be challenging, but crucial 

for more rationally evaluating the post-hazard performance of disrupted transportation networks by 

considering the interaction between roads and other interdependent infrastructures. 

Several studies have considered the impact of PBR in the post-hazard urban transportation network 

analysis, most of which focused on the connectivity analysis of disrupted transportation networks with 

fully- and partially-closed roads (Argyroudis et al. 2015; Goretti and Sarli 2006; Zanini et al. 2017). Only 

a few studies took into account the effect of PBR on traffic delay by modeling the post-hazard traffic 
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demand. Tamima and Chouinard (2017) evaluated system vulnerability of transportation networks after 

earthquakes and considered road closure due to fallen debris from damaged buildings. The reduced capacity 

of PBR was estimated by assuming there is a linear relationship between the remaining capacity and the 

percentage of the road width being covered by debris. However, the travel time on PBR in this study was 

calculated by the standard BPR function including the normal free-flow time and reduced capacity rather 

than realistic travel time functions for disrupted scenarios of PBR. 

Despite the essential role of travel time of PBR for the resiliency analysis of disrupted transportation 

networks, extensive literature review has not identified any published literature regarding travel time 

functions of PBR. One big challenge for developing travel time functions of PBR is the unavailability of 

real traffic data. As discussed earlier, microscopic traffic simulation can become a good alternative. Among 

those existing microscopic traffic simulation models, CA model is one of the most widely used models, 

thanks to its high efficiency and flexibility (Hou et al. 2017). Many existing studies investigated disrupted 

traffic flow on PBR induced by tollbooths, accidents, lane reduction, and work zone with CA models (Fei 

et al. 2016; Huang and Huang 2002; Jia et al. 2003; Kurata and Nagatani 2003; Meng and Weng 2011; 

Nassab et al. 2006; Pottmeier et al. 2002; Zhu et al. 2009; Hou, Chen and Han 2019).  

In spite of recent effort towards realistic simulation of disrupted traffic, one major challenge for CA-

based traffic flow simulation is about unrealistic deceleration behavior. There are generally two types of 

unrealistic deceleration behavior in existing CA models for disrupted traffic. Firstly, when a vehicle 

approaches a static obstruction or traffic jam, it may make a sudden stop by sharply reducing its maximum 

velocity in order to avoid a rear-end crash. In this situation, the required deceleration rate is much higher 

than the mechanical deceleration capability by most vehicles, making the deceleration rate unrealistic. This 
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is caused by some limitations of most existing models: vehicle’s velocity is determined only by the gap 

between itself and its preceding vehicle, and vehicles tend to brake abruptly at the last second. Secondly, 

on a disrupted road, when a vehicle enters the merging area before an obstruction, it usually decelerates 

gradually to a safe speed (e.g. posted reduced speed limit). However, such a deceleration process would be 

completed regardless within 1 second in existing CA models, which may lead to an unrealistically high 

deceleration rate. Although unrealistic driving behavior may still lead to reasonable long-term averaged 

cumulative outcome for normal traffic flow, it may cause erratic local results for disrupted traffic flow 

which are important for PBR performance. Lan et al. (2009) improved the CA model with piecewise-linear 

speed variation to avoid the first type of unrealistic deceleration behaviors in the work zone traffic 

simulation. However, the second type of unrealistic deceleration behavior still existed in their model. 

Therefore, a general CA-based model for simulation of disrupted traffic flow that can fully consider realistic 

deceleration driving behavior is still needed. 

1.2.5 Vehicle accident simulation in adverse conditions 

Under some adverse driving conditions (i.e. strong crosswind, icy or snowy road surface), vehicles 

often experience increased risks of single-vehicle accidents, such as rollover or sideslip accidents (Baker 

1994; Chen and Cai 2004). Past three decades have witnessed considerable amount of research efforts on 

single-vehicle accidents with several deterministic and probabilistic accident assessment models being 

developed such as those by Baker (1986, 1987, 1991, 1994), Sampson (2000), Gaspar et al. (2004, 2005) 

and Batista and Perkovic (2014), among many others. In these studies, a single-unit vehicle was typically 

modeled with multiple connected mass units, dampers and springs. By considering some typical adverse 

environments such as icy/snowy/wet road surface conditions, crosswinds and road curvature, Chen and 
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Chen (2010) developed a new single-vehicle accident simulation model. In the study, more comprehensive 

dynamic interactions between vehicles, excitations and environments were considered along with some 

new accident criteria developed based on the characterizations of the transient process of rollover and 

sideslip accidents. Recently, Wang et al. (2016) proposed a nonlinear safety assessment model for vehicles 

moving on the ground under a sudden crosswind. Different from linear models, the wind loads and the mass 

moments vary with the angular displacements of the vehicle in a nonlinear way (Wang et al. 2016).  

Based on the deterministic vehicle accident models, a few probabilistic models were also developed 

to consider uncertainties of critical variables, such as vehicle parameters, vehicle speed, wind velocity, 

coefficient of friction on roads, and superelevation (Snaebjornsson et al. 2007; Chen and Chen 2011; You 

et al. 2012; Shin and Lee 2014, 2015; Kim et al. 2016).  Compared to road vehicles on roadways, those 

on long-span bridges under hazardous driving environments are usually more vulnerable to single-vehicle 

accidents due to the dynamic interactions (Deng et al. 2015; Deng and Cai 2010; Cai and Chen 2004) and 

more open environments. Several researchers have investigated single-vehicle safety of vehicles on long-

span bridges (Chen and Cai 2004; Guo and Xu 2006; Chen et al. 2015; Wang and Xu 2015; Zhou and Chen 

2015b; Ma et al. 2015).  

1.2.6 Probabilistic modeling of disrupted infrastructures due to fallen trees 

Tree failures due to strong winds in both forest and urban areas cause extensive direct and indirect 

economic and environmental losses. Wind damage to managed forests leads to huge loss of timber yield. 

For example, storm Martin in 1999 in southwest France caused estimated losses of 26.1 million m3 of wood, 

which is about 3.5 years of harvest in that area (Cucchi et al. 2004). In urban areas, the destructions of trees 

under extreme winds result in considerably more indirect loss and disruptions to human life and 
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infrastructures than the direct economic loss of fallen trees. Fallen trees due to extreme winds may threaten 

human safety, damage buried water pipes and buildings, cause power outage of overhead powerlines or 

block transportation routes. All these can seriously jeopardize the resilience of an urban community facing 

various wind hazards, hamper post-hazard evacuation and rescue operations, and delay critical recovery 

efforts. For instance, the Great Storm in 1987 caused at least 13 deaths in England, most of whom were 

killed by fallen trees (Mitchell et al. 1989). After hurricane Isabel in 2003, it took 84 days to remove the 

tree debris with a total amount of 52,865 m3 from roads in Bertie County, North Carolina (Laefer and 

Pradhan 2006). In hurricane Katrina and Rita in 2005, uprooting of trees due to high winds was the main 

cause of the damage to the buried water and wastewater pipes in some cities of Louisiana (Chisolm and 

Matthews 2012). It is therefore very important to develop an efficient risk assessment tool to predict and 

further reduce the disruptions to critical infrastructures caused by fallen trees in future wind events. 

Over the last decades, some models have been developed to predict the risk of tree failure under strong 

winds, which can be categorized as two main types: statistical models and mechanistic models. Statistical 

models can predict the windthrow probability and identify key factors associated with wind damage (Lavoie 

et al. 2012). However, these models are unable to provide evidence of actual damage mechanism and also 

hard to be generalized for other locations and environments. Although mechanistic models need some 

modeling simplifications and supporting empirical relationships, they can provide clear understanding of 

windthrow mechanism by linking the wind events and tree’s performance. Several developed mechanistic 

models have been widely adopted in the research community for forest trees such as HWIND (Peltola et al. 

1999), GALES (Gardiner et al. 2000), and FOREOLE (Ancelin et al. 2004), which can predict the critical 

wind speeds required to break or overturn trees. These models are commonly employed to estimate wind 
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damage to the forest, serving as forest management decision support tools. Compared to forest trees, urban 

trees tend to have a broader crown, and more and larger branches, indicating larger applied wind loads and 

likely higher windthrow risk. However, there have been very few research studies that have focused on 

failure modeling of urban trees due to strong winds (Ai et al. 2016; Kocatepe et al. 2018).  

Fragility is defined as the probability of exceeding a prescribed limit state for a given measure of 

hazard intensity, and fragility analysis has been widely conducted for the performance assessment of various 

structures in seismic and wind hazards. However, tree fragility study under strong winds has not received 

deserving attention. Ciftci et al. (2014) proposed a method to obtain the fragility curves for amenity trees 

due to wind storms, and dynamic time history analysis of a detailed finite element tree model was carried 

out to determine the maximum wind-induced bending moment in the tree stem. However, in their study the 

fragility analysis was conducted for only two specific trees rather than a number of tree classes for each 

species, making it inappropriate for the risk assessment covering various uncertainties. Kocatepe et al. 

(2018) identified four common tree species in Tallahassee, Florida based on the convolutional neural 

network (CNN) method and estimated tree fragility curves with the Monte Carlo simulation. However, the 

mechanistic model for predicting tree failure induced by winds was rather simplified. Moreover, only stem 

breakage was considered and another type of major failure type- uprooting was not covered in the tree 

fragility studies as illustrated above.   

There have been many research works related to infrastructure disruption due to the interaction 

between damaged buildings and the infrastructure itself subjected to natural disasters. Road blockages due 

to fallen debris from collapsed buildings after earthquakes cause reduced traffic capacity and increased 

travel delay, which will significantly affect the post-earthquake emergency response and recovery of other 
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infrastructures. The interaction between transportation networks and buildings damaged by earthquakes 

have been extensively studied (Goretti and Sarli 2006; Argyroudis et al. 2015; Zanini et al. 2017). In contrast, 

despite catastrophic consequences to human life and infrastructures resulting from tree failure in past wind 

storms, researches on disruption risk of critical infrastructures caused by tree damage, however, are very 

limited. Kocatepe et al. (2018) evaluated the accessibility to critical emergency facilities in a disrupted 

transportation network caused by tree failure during hurricanes with a GIS-based methodology. Laefer and 

Pradhan (2006) proposed a methodology to identify potentially hazardous trees that may endanger 

transportation routes by utilizing GIS and airborne laser altimetry data, which has the potential for 

evacuation routes selection. Poulos and Camp (2010, 2011) developed a decision support system for 

identifying locations where powerlines can be disrupted by vulnerable trees during storms. 

1.3 Current research gaps 

1.3.1 Simulation of traffic flow under hazardous conditions 

In order to assess the post-hazard performance of a highway system in terms of structural integrity, 

traffic safety and highway functionality, realistic simulation of traffic flow through a typical highway 

system under hazardous conditions is apparently critical. Unfortunately, there is no available tool that can 

provide microscopic traffic flow simulation by incorporating different driving behavior and other unique 

characteristics associated with hazardous driving environments. Despite some improvements on including 

driving behavior in traffic flow simulation in recent years, these studies still primarily focus on normal 

driving conditions. Hamdar (2004) investigated drivers’ behavior under extreme conditions with a modified 

car-following model, in which different individual panic behaviors were defined. However, this study only 

focused on the homogeneous traffic flow rather than the heterogeneous traffic flow, and the influence of 
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panic behavior on the overall traffic properties was not investigated. There is little study to systematically 

incorporate unique features essential to hazardous driving conditions in the traffic flow simulation of a 

general highway and bridge system. 

1.3.2 Simulation of disrupted traffic flow 

As discussed in Section 1.2.3, existing studies on disrupted transportation systems are relatively limited. 

These studies include multi-lane traffic flow simulation with a partially closed lane induced by various 

traffic bottlenecks, e.g., accidents, work zone, and lane reduction. Despite their merits, these studies were 

about specific scenarios of disrupted infrastructure based on different simulation tools and assumptions. 

There is no general approach that can be used to study different scenarios of a partially-blocked road or 

bridge due to typical causes, such as infrastructure damage, debris, vehicle accidents etc. 

1.3.3 Travel time function for disrupted urban arterials 

Despite reduced traffic capacity, partially blocked roads (PBR) of some critical urban traffic networks 

often remain open to traffic before, during and after many hazards. To conduct effective traffic planning of 

road networks involving PBR highly depends on accurate prediction of travel time on PBR, which is very 

different from those on intact roads. Because there is so far no available travel time function for PBR, the 

standard BPR function for intact roads has been often adopted by simply applying the reduced capacity for 

post-hazard transportation demand modeling. However, not only the traffic capacity is reduced for PBR, 

but also the travel time-volume relationship has significantly changed from its normal condition as a result 

of the interaction between vehicles and obstructions. Thus, the standard BPR function will likely give 

inaccurate travel time prediction on PBR, which may lead to erratic results in the post-hazard transportation 
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network analysis. So there is great need to develop travel time functions for PBR that reflect the relationship 

between travel time and traffic volume realistically. 

According to the literature review in Section 1.2.4, studies related to travel time functions mainly focus 

on normal traffic and very few researches have examined the development of travel time functions on PBR. 

In the meantime, the impact of trucks on travel time under normal condition has been studied previously, 

but the effect of blockage size also needs to be incorporated when estimating travel time on PBR. Moreover, 

existing CA-based traffic simulation models need to be improved to fully consider realistic deceleration 

driving behavior.  

1.3.4 Vehicle accident simulation under adverse driving environments 

Despite the progress made by the existing studies as summarized in Section 1.2.5, most of the existing 

works were conducted based on a single vehicle moving at a constant speed without considering realistic 

driving scenarios. Depending on the traffic volume, a vehicle on highways accelerates, decelerates, and 

switches lanes along with other vehicles, and it is more realistic to evaluate the traffic safety of a moving 

vehicle as a part of traffic flow, rather than a standalone vehicle with a constant speed. Zhou and Chen 

(2015b) recently carried out a preliminary vehicle safety study of traffic flow on a long-span bridge 

subjected to crosswinds, without considering complex road surface, geometry and weather conditions. A 

general traffic safety assessment methodology of traffic flow on a transportation system including both 

roads and bridges under various adverse driving conditions is still lacking. Moreover, for those very limited 

existing studies considering road curvatures (e.g. Chen and Chen 2010), wind was usually assumed to be 

perpendicular to the vehicle driving direction all the time. In fact, the angle between the wind direction and 

the instantaneous driving direction varies during the curving process and the corresponding vehicle safety 
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performance when subjected to a specific wind event needs to be evaluated based a more realistic way of 

characterizing the wind loads. 

1.3.5 Probabilistic modeling of disrupted infrastructures due to fallen trees 

Wind damage of forest trees have been studied extensively over the last decades. Urban trees have a 

broader crown, and more and larger branches than forest trees, indicating larger applied wind loads and 

likely higher windthrow risk. However, failure modeling of urban trees due to strong winds have not 

received enough attention. Moreover, there are very limited studies related to tree fragility, although 

windthrow fragility curves are very important tools to assess vulnerability of trees subjected to winds and 

evaluate performance of disrupted infrastructures due to tree damages with probabilistic analysis. Finally, 

there are very few studies concerning disruptions risk of critical infrastructures caused by tree damage, 

despite catastrophic consequences to human life and infrastructures resulting from tree failure in past wind 

storms. 

1.4 Objectives 

Disruption of transportation systems by multiple hazards will impede social and commercial activities, 

and hamper the post-disaster emergency response and long-term recovery of the damaged community. 

Transportation performance are easily impaired in the link level (e.g. road capacity, link travel time, and 

traffic safety) and network level (e.g. network connectivity, total network travel cost and network flow 

capacity). As discussed in Section 1.3, previous simulation approaches to assess transportation performance 

in these levels are not sufficient given their limitations in modeling methodologies. Therefore, this 

dissertation will focus on developing advanced performance assessment techniques of transportation 

systems subjected to multiple hazards in two levels: link-level and network-level. It aims to (1) develop an 
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advanced traffic performance assessment framework to evaluate various critical traffic performance aspects 

(e.g. travel time, traffic capacity, and traffic safety) of key transportation components (e.g. bridges and road 

segments) subjected to multiple hazards; (2) develop a probabilistic framework to assess the performance 

of transportation networks subjected to multiple hazards. Specifically, the objectives of the current 

dissertation are as follows: 

The first objective is to develop an advanced traffic flow simulation framework on a typical highway 

system under hazardous conditions. This framework can help predict rationally the post-hazard 

performance of a highway system including both structural integrity and traffic functionality. 

The second objective is to develop a simulation methodology to study the traffic performance of 

degraded road links being partially blocked following extreme events. The proposed methodology can 

predict the traffic performance of degraded transportation systems due to various causes, which can lead to 

a wide array of future studies such as community resilience modeling, emergency response and evacuation 

planning, etc. 

The third objective is to develop travel time functions for PBR in urban areas based on microscopic 

traffic simulation. The developed travel time functions will be helpful for accurate travel demand estimate 

in post-hazard transportation network analysis. 

The fourth objective is to develop an integrated model to assess single-vehicle traffic safety 

performance of stochastic traffic flow under hazardous driving conditions. This study has potential 

applications to not only regular vehicles, but also advanced traffic management and control algorithms for 

connected and autonomous vehicles in hazardous driving environments. 
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The fifth objective is to develop an integrated probabilistic methodology to model the performance of 

disrupted infrastructures due to fallen urban trees subjected to extreme winds. The proposed model can help 

people understand the risks of the tree failure and the impacts to some critical infrastructures and the 

community resilience in a specific wind event.  

1.5 Outline of the dissertation 

The outline of the dissertation is as follows:  

Chapter 1 provides the research background for this dissertation and presents the literature review on 

five main research topics. Meanwhile, the current research gap for each research topic are identified and 

the research objectives are described.  

In Chapter 2, an advanced traffic flow simulation framework on a typical highway system under 

hazardous conditions is proposed. As an improved CA microscopic traffic flow simulation methodology, 

limited deceleration rate, anticipation effect, realistic vehicle properties and different driving behaviors can 

be considered for replicating realistic traffic flow. Traffic flow on a prototype highway system under normal 

and hazardous conditions are simulated and examined by the proposed framework. The influences of 

limited acceleration and anticipation effect are investigated on the characteristics of traffic flow. Finally, 

the effect of panic driving behavior during a hypothetical hazard process is evaluated and discussed in terms 

of the traffic load on the bridge, overall traffic flow properties and individual vehicle driving performance. 

 Chapter 3 studies the traffic performance of degraded road links being partially blocked following 

extreme events. A CA-based microscopic simulation methodology is proposed for modeling traffic 

performance of partially-blocked roadway and bridge links due to hazardous events, which can be applied 

to degraded road/bridge links with various types of obstacles (different sizes, numbers and distributions). 
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Two typical partially-blocked scenarios are investigated to demonstrate the feasibility of the proposed 

methodology in studying the traffic performance of disrupted roadway links following extreme events. 

In Chapter 4, travel time functions for PBR in urban areas are developed based on microscopic traffic 

simulation. Firstly, an improved CA model for traffic flow simulation on disrupted urban arterials is 

proposed based on the two-lane safety driving (SD) model, with which unrealistic deceleration behaviors 

can be fully avoided and driver’s behaviors during traffic signal change intervals can be realistically 

replicated. Secondly, the proposed model is calibrated and validated at microscopic and macroscopic levels 

with measured traffic data from an urban road. Finally, traffic data under various scenarios with different 

traffic volumes, truck ratios and blockage ratios are generated through microscopic simulation experiments. 

A continuous traffic time function is then developed for disrupted traffic flow and its parameters are 

estimated with the generated traffic data. 

In Chapter 5, an integrated framework is proposed to evaluate the overall safety performance of 

vehicles in realistic stochastic traffic passing through highway infrastructure systems. The proposed 

framework evaluates individual vehicle safety performance based on the time-dependent simulation results 

of stochastic traffic flow, including instantaneous speeds and positions of each vehicle as a part of simulated 

traffic flow. With the safety information of each individual vehicle, an overall safety performance index of 

the whole traffic flow on the highway system is further introduced, which serves as a potential traffic safety 

performance measure and resilience indicator of transportation infrastructure systems under various hazards. 

The proposed framework is then applied to a bridge-roadway system for demonstration purposes. 

Chapter 6 evaluates the performance of disrupted infrastructures due to fallen urban trees subjected to 

extreme winds in a typical community with an integrated probabilistic methodology. We firstly develop 
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allometric equations for three urban tree species to facilitate the development of the mechanistic model and 

fragility curves. Secondly, a mechanistic model based on finite element modeling is built with the direct 

stiffness method by considering wind profile, wind loads and self-weight of trees. Thirdly, fragility curves 

of three tree species are generated for both stem-breaking and uprooting limit states through Monte Carlo 

simulation. Finally, the performance of disrupted critical infrastructures in a small community in the city of 

Fort Collins, such as transportation and overhead powerline infrastructures, due to fallen trees, is evaluated 

with the proposed probabilistic method. 

Chapter 7 concludes the dissertation by highlighting the main findings and suggesting some future 

research directions. 
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 CHAPTER 2 FRAMEWORK OF MICROSCOPIC TRAFFIC FLOW SIMULATION ON 

HIGHWAY INFRASTRUCTURE SYSTEM UNDER HAZARDOUS DRIVING CONDITIONS1 

 

2.1 Introduction 

A typical highway system includes infrastructures, such as roadways and bridges, and moving traffic 

flow. The resilience of a highway system subjected to various hazards depends on not only post-hazard 

integrity of infrastructure, but also safe and smooth movements of vehicles through the system during and 

immediately following hazards. On the one hand, post-hazard traffic by panicking drivers can easily cause 

local traffic congestion and concentrating loads on bridges, which can become disastrous to those bridges 

already severely damaged by hazards. On the other hand, the accident risks of vehicles following hazards 

may considerably increase because of more irrational driving behavior and traffic congestion, threatening 

the post-hazard functionality of the highway system. To rationally predict the post-hazard performance of 

a highway system including both structural integrity and traffic functionality, an advanced traffic flow 

simulation tool of a highway system under hazardous conditions is needed.  

This chapter aims to develop an advanced traffic flow simulation framework on a typical highway 

system under hazardous conditions. Based on the cellular automaton (CA) microscopic traffic flow 

simulation methodology, the proposed framework can consider limited deceleration rate, anticipation effect, 

realistic vehicle properties and different driving behaviors. The proposed framework is then applied to a 

prototype highway system for traffic flow simulation under normal and hazardous conditions. The 

influences of limited acceleration and anticipation effect are investigated on the characteristics of traffic 

                                                             

1 This chapter is adapted from a published paper by the author (Hou et al. 2017) with permission from Taylor & 

Francis. 
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flow. Assuming a typical hazard occurrence process, the effect of panic driving behavior on the traffic load 

on the bridge, overall traffic flow properties and individual vehicle driving performance are evaluated and 

discussed.  

2.2 Model formulations 

Since Nagel and Schreckenberg (1992) first proposed the CA model (also called NaSch’s model), some 

progress has been made in developing more sophisticated models by mainly focusing on three aspects: 

update rule, realistic vehicle performance and driving behavior (Barlovic et al. 1998; Benjamin et al. 1996; 

Esser and Schreckenberg 1997; Knospe et al. 2000). In the proposed model, the lanes are discretized into 

many identical cells with the length of 0.5 m, each of which is either empty or occupied by a vehicle at a 

time. Depending on the length of each individual vehicle, different numbers of cells may be occupied by 

each vehicle. The adoption of a finer discretization than that being used in traditional NaSch’s models (e.g. 

7.5 m) makes it easier to define more realistic driving and acceleration/deceleration movements of different 

types of vehicles with sufficient accuracy (e.g., the vehicle length, abrupt acceleration/deceleration).  

Let 𝑥𝑖𝑡 and 𝑉𝑖𝑡 be the longitudinal position and velocity of vehicle 𝑖 at the beginning of time step 𝑡. 
At next time step 𝑡 + 1, position 𝑥𝑖𝑡+1 and velocity 𝑉𝑖𝑡+1 can be updated through the improved double-

lane CA rules: the single-lane forwarding rule and lane-changing rule. The forwarding rule can be described 

as follows: 

(1) Acceleration:  

𝑉𝑖𝑡+1 = 𝑚𝑖𝑛(𝑉𝑖𝑡 + 𝑎𝑐𝑐𝑖 , 𝑉𝑖,𝑚𝑎𝑥)                               (2.1) 

(2) Deceleration:  

𝑉𝑖𝑡+1 = 𝑚𝑖𝑛(𝑉𝑖𝑡+1, 𝑉𝑖,𝑑𝑡+1)                                  (2.2) 
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(3) Safety:  

𝑉𝑖𝑡+1 = 𝑚𝑖𝑛(𝑉𝑖𝑡+1, 𝑉𝑖,𝑠𝑎𝑓𝑒𝑡+1 )                               (2.3)  

(4) Randomization with probability pb: 

𝑉𝑖𝑡+1 = 𝑚𝑎𝑥(𝑉𝑖𝑡+1 − 𝑑𝑒𝑐𝑖 , 0), if 𝑉𝑖𝑡 − 𝑉𝑖𝑡+1 < 𝑑𝑒𝑐𝑚𝑎𝑥 − 𝑑𝑒𝑐𝑖          (2.4)           

(5) Braking:  

𝑏𝑟𝑖𝑡+1 = 1, if 𝑉𝑖𝑡 − 𝑉𝑖𝑡+1 > 0                             (2.5) 

𝑏𝑟𝑖𝑡+1 = 0, if 𝑉𝑖𝑡 − 𝑉𝑖𝑡+1 ≤ 0                             (2.6) 

(6) Movement:  

𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝑉𝑖𝑡+1                                 (2.7) 

where 𝑉𝑖,𝑚𝑎𝑥 denotes the desired speed of vehicle 𝑖, which is typically considered as the road speed limit 

under normal driving conditions. Only for aggressive drivers under hazardous driving conditions, the 

desired speed is set higher than the speed limit. 𝑎𝑐𝑐𝑖  and 𝑑𝑒𝑐𝑖  denote the normal acceleration and 

deceleration rates of vehicle 𝑖, respectively. 𝑑𝑒𝑐𝑚𝑎𝑥 is the maximum deceleration rate, which can’t be 

exceeded due to the mechanical constraint of a specific vehicle and the friction of road surface. 𝑉𝑖,𝑑𝑡+1 

denotes the maximum velocity for vehicle 𝑖 braking with 𝑑𝑒𝑐𝑡ℎ when its headway is 𝑑 at time step 𝑡 +
1 . 𝑉𝑖,𝑠𝑎𝑓𝑒𝑡+1   denotes the maximum safe velocity for vehicle 𝑖  braking with 𝑑𝑒𝑐𝑚𝑎𝑥  at time step 𝑡 + 1 . 

𝑏𝑟𝑖𝑡 is the state of braking light of vehicle 𝑖 at time step 𝑡. 𝑏𝑟𝑖𝑡 = 1 or 0 means braking light of vehicle 

𝑖 is on or off, respectively. 

The lane-changing behavior of vehicle 𝑖 will be triggered with a probability of 𝑝𝑐ℎ, once all the 

following conditions are satisfied:  

    𝑔𝑎𝑝𝑖𝑡 ≤ 𝑉𝑖𝑡                                  (2.8) 
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   𝑔𝑎𝑝𝑜𝑖,𝑓𝑟𝑜𝑛𝑡𝑡 > 𝑉𝑖𝑡                             (2.9) 

        𝑔𝑎𝑝𝑜𝑖,𝑏𝑎𝑐𝑘𝑡 > 𝑉𝑖,𝑚𝑎𝑥                                         (2.10) 

where 𝑔𝑎𝑝𝑖𝑡 = 𝑥𝑖+1𝑡 − 𝑥𝑖𝑡 − 𝐿𝑖+1 ; 𝐿𝑖  is the length of vehicle 𝑖 . 𝑔𝑎𝑝𝑖𝑡  is the clear distance between 

vehicle 𝑖 and its preceding vehicle 𝑖 + 1 on the current lane at time step 𝑡; 𝑔𝑎𝑝𝑜𝑖,𝑓𝑟𝑜𝑛𝑡𝑡 = 𝑥𝑓𝑖𝑡 − 𝑥𝑖𝑡 −𝐿𝑓𝑖  and 𝑔𝑎𝑝𝑜𝑖,𝑓𝑟𝑜𝑛𝑡𝑡
  is the clear distance between vehicle 𝑖  and the nearest vehicle on the target lane 

ahead of vehicle 𝑖 at time step 𝑡; vehicle 𝑓𝑖 is the nearest vehicle on the target lane ahead of vehicle 𝑖; 
𝑔𝑎𝑝𝑜𝑖,𝑏𝑎𝑐𝑘𝑡 = 𝑥𝑖𝑡 − 𝑥𝑏𝑖𝑡 − 𝐿𝑖  and 𝑔𝑎𝑝𝑜𝑖,𝑏𝑎𝑐𝑘𝑡  is the clear distance between vehicle 𝑖  and the nearest 

vehicle on the target lane behind vehicle 𝑖 at time step 𝑡; vehicle 𝑏𝑖 is the nearest vehicle on the target 

lane behind vehicle 𝑖. 
2.2.1 Adoption of improved rules for more realistic traffic flow simulation 

The following improved rules are applied to the proposed model in order to simulate more realistic 

traffic flow, especially under hazardous conditions. 

1) Limited deceleration and deceleration rates 

In traditional NaSch’s model, when a sudden brake is applied to avoid a rear-on crash under some 

emergency situations, a vehicle may make a sudden stop from its maximum velocity, which may lead to 

some unrealistic deceleration rate (Bham 2002; Chen and Wu 2011) and in turn cause inaccurate simulation 

results of traffic flow. Different from the deceleration rule in NaSch’s model, a deceleration threshold decth 

is introduced to avoid an abrupt brake at the last second (Yamg et al. 2007). The stopping distance 𝑆𝐷 

with an initial speed of 𝑉0 can be expressed as: 

𝑆𝐷 = 𝑉0 + ∑ (𝑉0 − 𝑑𝑒𝑐𝑡ℎ × 𝑘)[𝑉0/𝑑𝑒𝑐𝑡ℎ]𝑘=1                       (2.11)  

where [𝑥] denotes the nearest integer less than or equal to 𝑥.  
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If 𝑆𝐷 is less than or equal to the headway 𝑑 of a vehicle, the vehicle can move with a maximum 

velocity of 𝑉𝑑, a function of headway 𝑑. Thus, the vehicle can decelerate gradually before a complete stop 

within the headway 𝑑 without applying an abrupt brake. At next time step 𝑡 + 1, velocity 𝑉𝑑 of vehicle 

𝑖 can be obtained by 

𝑉𝑡+1𝑖,𝑑 = 𝑚𝑎𝑥 {𝑣| 𝑣 + ∑ (𝑣 − 𝑑𝑒𝑐𝑖,𝑡ℎ × 𝑘) ≤ 𝑑[𝑣/𝑑𝑒𝑐𝑖,𝑡ℎ]𝑘=1 }              (2.12) 

where 𝑑 = 𝑔𝑎𝑝𝑖𝑡 , if 𝑏𝑟𝑖+1𝑡 = 1 ; or 𝑑 = 𝑔𝑎𝑝𝑖𝑡 + 𝑉𝑡𝑖+1 − 𝜆𝑎𝑛𝑡,𝑖 × 𝑑𝑒𝑐𝑖+1 , if 𝑏𝑟𝑖+1𝑡 = 0 ; 𝜆𝑎𝑛𝑡,𝑖  is a 

parameter to anticipate the velocity of the preceding car. 𝑑𝑒𝑐𝑖,𝑡ℎ is the deceleration threshold of vehicle 𝑖.  

Another safety rule is introduced to avoid exceeding the vehicle’s deceleration limits (Yang et al. 2007). 

If vehicle 𝑖  that brakes with the maximum deceleration rate 𝑑𝑒𝑐𝑚𝑎𝑥  is safe at time step 𝑡 + 1 , its 

stopping distance cannot be larger than its headway plus the minimum stopping distance of the front vehicle 

𝑖 + 1. By satisfying this safety condition, the maximum safe velocity of vehicle 𝑖 at time step 𝑡 + 1 can 

be expressed as 

𝑉𝑡+1𝑖,𝑠𝑎𝑓𝑒 = 𝑚𝑎𝑥 {𝑣| 𝑣 + ∑ (𝑣 − 𝑑𝑒𝑐𝑚𝑎𝑥 × 𝑘)[𝑣/𝑑𝑒𝑐𝑚𝑎𝑥]𝑘=1 ≤ 𝑔𝑎𝑝𝑡𝑖 +∑ (𝑉𝑡𝑖+1 − 𝑑𝑒𝑐𝑚𝑎𝑥 × 𝑗)[𝑉𝑡𝑖+1/𝑑𝑒𝑐𝑚𝑎𝑥]𝑗=1 } (2.13) 

AASHTO (2004) recommends a maximum deceleration rate 3.4 m/s2, which is a typical deceleration 

rate limit for ordinary drivers. Braking with a deceleration rate higher than 3.4 m/s2 can be deemed as an 

abrupt brake. Considering deceleration rate needs to be in multiples of 0.5, the deceleration rate threshold 

of 3.5 m/s2 is adopted for normal drivers. In the absence of more specific experimental data, the deceleration 

thresholds for timid and aggressive drivers are set to be 2.0 m/s2 and 5.0 m/s2 in this study, respectively. 

Different from the deceleration threshold, the maximum achievable deceleration is related to the mechanical 

constraint of a particular vehicle and the coefficient of friction of the road surface. Fambro et al. (1997) 

found that the maximum deceleration rate ranges from 0.7 g to 0.9 g (g = 9.8 m/s2). In this model, the 
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maximum achievable deceleration is set as 8.0 m/s2 for all the vehicles. 

2) Anticipation effect 

Anticipation means that the velocity of a vehicle is updated in the following time step based on not only 

the gap distance from its preceding vehicle, but also the velocity of the preceding vehicle (Li et al. 2001; 

Xie and Zhao 2013). In the deceleration step of their models, the velocity of vehicle 𝑖 at time step 𝑡 + 1 

is obtained by using the following equation:  

𝑉𝑖𝑡+1 = 𝑚𝑖𝑛(𝑉𝑖𝑡 , 𝑔𝑎𝑝𝑖,𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑡 )                          (2.14) 

where  

  𝑔𝑎𝑝𝑖,𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑡 = 𝑔𝑎𝑝𝑖𝑡 + 𝑉𝑖+1,𝑎𝑛𝑡𝑖𝑡+1                          (2.15) 

𝑔𝑎𝑝𝑖,𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑡
 is the effective gap of vehicle 𝑖 from its preceding vehicle at time step 𝑡, and 𝑉𝑖+1,𝑎𝑛𝑡𝑖𝑡+1  

denotes the anticipated velocity of the preceding vehicle 𝑖 + 1  at time step 𝑡 + 1 . The effect of 

anticipation increases the traffic capacity for free flow by reducing the gap distances among vehicles 

(Larraga et al. 2004). However, it is found that the effect from anticipation becomes weak for dense traffic 

flow, and cars tend to have smaller velocities than headways (Knospe et al. 2000). 

In this model, the anticipation parameter 𝜆𝑎𝑛𝑡 is used in the deceleration step when calculating the 

effective headway of the following vehicle, which is equal to the sum of actual headway and anticipated 

velocity of the preceding vehicle. The values of 𝜆𝑎𝑛𝑡 for timid, normal and aggressive drivers are set as 2, 

1 and 0, respectively. 𝜆𝑎𝑛𝑡 = 0 means that aggressive drivers have higher anticipation level and tend to 

drive with small gap distances between vehicles. Larger anticipation parameters of timid and normal drivers 

represent lower anticipation levels and more conservative driving behavior. 
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2.2.2 Incorporation of different vehicle properties 

It is common that traffic flow is composed of different types of vehicles with different properties (e.g., 

dimensions and acceleration/deceleration performance). In this model, three types of vehicle groups are 

considered (i.e. cars, buses, and trucks) to capture the main traffic classifications on highways.  

1) Vehicle dimension 

In the traditional NaSch’s model, the length of each cell is 7.5 m and each vehicle occupies one cell at 

a time. Thus vehicle velocity and acceleration/deceleration rates are restricted to multiples of 7.5 m. Finer 

discretization has been introduced to enable more realistic acceleration and more speed bins (Hafstein et al. 

2004; Knospe et al. 2000; Lan and Chang 2005; Larraga and Alvarez-Icaza 2010; Rajeswaran and 

Rajasekaran 2013). With a much smaller cell length (0.5 m) in the present study, different types of vehicles 

and a whole range of driving speeds can be modeled to investigate the movements of mixed traffic flow. 

Following the study by Oketch et al. (2004), the lengths of cars, buses, and trucks in this model are defined 

as 5 m, 10 m and 19 m, occupying 10 cells, 20 cells and 38 cells, respectively. 

2) Normal vehicle acceleration and deceleration rate  

Different from deceleration threshold 𝑑𝑒𝑐𝑡ℎ, which is used to avoid an abrupt brake at the last second, 

normal deceleration rate 𝑑𝑒𝑐 refers to vehicles’ deceleration under normal situations. 𝑑𝑒𝑐 has a lower 

value than 𝑑𝑒𝑐𝑡ℎ. 𝑑𝑒𝑐 is used in the randomization step when the vehicle slows down with the probability 

of 𝑝𝑏 and in the deceleratioin step when calculating the headway 𝑑. Similarly, normal acceleration rate 

𝑎𝑐𝑐 refers to vehicles’ acceleration under normal traffic situations. Wang et al. (2007) summarized the 

acceleration and deceleration data that were obtained empirically and applied them in some car-following 

models for highway traffic and urban network. According to their findings, normal acceleration and 
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deceleration rates usually range from 1 to 2 m/s2 and 1 to 3 m/s2, respectively. In this paper, given the fact 

that acceleration and deceleration rates should be the multiples of 0.5, the acceleration/deceleration rates in 

normal driving conditions of cars, buses, and trucks are set as 1.5 m/s2, 1.0 m/s2, and 1.0 m/s2, respectively. 

2.2.3 Incorporation of different driving behavior under normal and hazardous conditions 

1) Characterization of different driving behaviors 

Due to differences on their knowledge, skill, perceptual and cognitive abilities, drivers may perform 

differently even under the same traffic scenario (Evans 2004). Timid drivers tend to keep large headways 

with the preceding vehicle, maintain a steady speed and change lane rarely, while aggressive drivers tend 

to keep short headway with the preceding vehicle and change lanes more frequently to get a higher speed. 

It is found that aggressive driving is one of the most serious traffic safety threats and a major contributor to 

traffic accidents (AAA Foundation for Traffic Safety 2009). For congested freeway traffic, both timid and 

aggressive driving behaviors are found to be the causes of traffic oscillations (Laval and Leclercq 2010).  

Timid, normal and aggressive driving behaviors are considered in this study by defining different 

deceleration thresholds, lane-changing probability values and anticipation parameters in the model. These 

parameters for different drivers such as deceleration threshold and anticipation parameter often require 

detailed driving behavior study from specific groups of driver populations.  

2) Proportions of different driver groups 

Under normal driving conditions, there are usually different proportions of three types of driver groups 

(i.e. timid, normal and aggressive) for a particular highway. Given the uncertainties associated with the 

proportions of driver groups at different highways at different time, generic proportions of drivers are nearly 

impossible to identify. Under hazardous driving conditions, the proportion of aggressive drivers will usually 
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increase because of panic behavior, and the proportions of the other two types of drivers will also change 

accordingly. Depending on the nature of the hazards and site-specific conditions, these proportions of 

different driver groups could all vary considerably.  

2.3 Demonstrative example 

2.3.1 Prototype highway system and CA model parameters 

Both roadways and bridges are supporting structures for moving traffic. Compared with bridges, 

roadways are much stiffer and the interaction between the roadways and vehicles can be ignored when the 

vehicles move on roadways. When the vehicles in the traffic flow move on the bridge, the vehicle wheels 

are assumed to have point contact with the bridge deck all the time. As the bridge and vehicles are vibrating 

when the vehicles are in motion, bridges, especially long-span bridges, experience much more significant 

impact on structural dynamic response than roadways under moving traffic loads. In the meantime, the 

vibration of the bridge may in turn affect the dynamic behavior of the vehicles because of the significant 

interaction effects between bridge and vehicles (Zhou and Chen 2015a). Therefore, vehicles on bridges 

usually experience stronger dynamic vibration and higher traffic accident risks than on roadways. The 

proposed traffic flow framework can be used for traffic flow simulation on any general highway system 

including both bridges and roadways. To demonstrate possible impacts on structural integrity and traffic 

safety performance on bridges, a typical 4-lane highway system is selected in the demonstrative study with 

two lanes in each direction and it includes a prototype long-span bridge and a piece of approaching roadway 

on each side of the bridge (Fig. 2.1). The lengths of the bridge and roadway on each side are 840 m and 

1,005 m, respectively, making the total length of 2,850 m for this “roadway–bridge–roadway’’ system, 

similar to the one being studied by Chen and Wu (2011).  
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Figure 2.1 Bridge and road system 

In this CA model, periodic boundary conditions are used. Each cell represents an actual roadway/bridge 

segment with the length of 0.5 m and there are a total of 5,700 cells in one lane. The percentage values of 

different groups of vehicles vary significantly on different roads and at different time. There is no general 

guideline in terms of vehicle composition of the traffic flow that is widely accepted. Therefore, in the 

present study, it is assumed that the values following some existing studies (Chen and Wu 2010, 2011) for 

demonstration purposes only, without representing any specific site or time. For three types of vehicles, i.e. 

car, bus and truck, their proportions are assumed to be 50%, 25%, and 25%, respectively. The initial location 

of each vehicle in the lane is randomly generated and the initial velocity of each vehicle is zero. At each 

time step, the vehicle velocity will be updated according to the CA rules as introduced earlier. The total 

simulation time period is 17,400 s and the time simulation step is 1 s. To capture the steady traffic flow 

characteristics, the simulation results of the first 11,400 s are discarded and only those of the last 6,000 s 

will be used and presented in the following sections.  

Existing data related to the driving behavior and driver group classifications are usually location-

specific and often require comprehensive experiments to quantify. Currently, the related data are still very 

rare and no widely accepted generic data are available that can be directly used for the proposed model. In 

order to demonstrate the proposed framework, some parameters need to be appropriately set based on 

1005 m 840 m 1005 m
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existing literature and reasonable assumptions. In this study, the lane-changing probability pch of timid 

drivers, normal driver, and aggressive drivers are assumed to be 0.2, 0.5 and 0.8, respectively. Under normal 

driving conditions, the proportions of timid, normal and aggressive drivers for each type of vehicles are 

assumed as 20%, 60%, and 20%, respectively. While under hazardous driving conditions, the proportions 

of three types of drivers are set to be 20%, 20%, and 60%, respectively. 

Drivers in heavy traffic are usually more cautious and responsive to varying driving environments and 

therefore the randomization probability can be assumed to increase with the increase of traffic occupancy. 

The relation between randomization probability 𝑝𝑏 and traffic occupancy 𝜌 is defined as: 𝑝𝑏 = 0.5 ∗
√𝜌 (Yamg et al. 2007). Apparently, all the vehicles have different instantaneous driving speeds on the 

roadway and bridge system and the number of total vehicles remaining on the bridge also varies when the 

traffic flow moves over the bridge. It is well known that space mean speed is commonly used in traffic 

engineering to describe the overall traffic speeds. However, the proposed framework is aimed to provide 

information to evaluate both overall structural loads/performance on the bridge and individual vehicle 

response/safety risks. Therefore, an average of the instantaneous speeds of all the vehicles remaining on the 

bridge at any time instant is used to assess the overall traffic condition on the bridge, which can serve as an 

indication of the potential loads on the bridge. Mean velocity 𝑉̅ and mean standard deviation 𝜎̅ of all 

vehicles on the bridge for a certain simulation time T are used as the main evaluation indicators, which are 

defined as follows. 

 𝑉̅ = 1𝑇∑ (1𝑁∑ 𝑉𝑗𝑁𝑗=1 )𝑇𝑖=1                             (2.16) 

𝜎̅ = 1𝑇∑ (√1𝑁∑ (𝑉𝑗 − 1𝑁∑ 𝑉𝑘𝑁𝑘=1 )2𝑁𝑗=1 )𝑇𝑖=1                    (2.17) 

where 𝑁 denotes the total number of vehicles on the bridge at time step 𝑖. 
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Traffic flows under both normal and hazardous (panic) driving conditions are simulated. As discussed 

earlier, compared to normal driving conditions, hazardous (panic) driving conditions usually involve a 

higher proportion of aggressive drivers who behave more aggressively due to possible panicking nature. 

For example, the acceleration rates of three types of vehicles are higher and drivers tend to brake with a 

higher deceleration rate. In addition, during hazardous driving conditions, it is assumed that aggressive 

drivers may exceed the posted speed limits up to 50%. Parameters used in normal and hazardous (panic) 

traffic conditions are summarized in Tables 2.1 and 2.2, respectively. 

Table 2.1 Parameters and benchmark value used in normal traffic 

Parameter Value Parameter Value 𝐿𝑐𝑎𝑟 5 m 𝑑𝑒𝑐𝑐𝑎𝑟 1.5 m/s2 𝐿𝑏𝑢𝑠 10 m 𝑑𝑒𝑐𝑏𝑢𝑠 1.0 m/s2 𝐿𝑡𝑟𝑢𝑐𝑘 19 m 𝑑𝑒𝑐𝑡𝑟𝑢𝑐𝑘 1.0 m/s2 𝑉𝑚𝑎𝑥 20 m/s 𝑑𝑒𝑐𝑡ℎ,𝑡𝑖𝑚𝑖𝑑 2.0 m/s2 𝑅𝑐𝑎𝑟 0.5 𝑑𝑒𝑐𝑡ℎ,𝑛𝑜𝑟𝑚𝑎𝑙 3.5 m/s2 𝑅𝑏𝑢𝑠 0.25 𝑑𝑒𝑐𝑡ℎ,𝑎𝑔𝑔𝑟 5.0 m/s2 𝑅𝑡𝑟𝑢𝑐𝑘 0.25 𝑑𝑒𝑐𝑚𝑎𝑥 8.0 m/s2 𝑅𝑡𝑖𝑚𝑖𝑑 0.2 𝑝𝑐ℎ𝑡𝑖𝑚𝑖𝑑 0.2 𝑅𝑛𝑜𝑟𝑚𝑎𝑙 0.6 𝑝𝑐ℎ𝑛𝑜𝑟𝑚𝑎𝑙 0.5 𝑅𝑎𝑔𝑔𝑟 0.2 𝑝𝑐ℎ𝑎𝑔𝑔𝑟 0.8 𝑎𝑐𝑐𝑐𝑎𝑟 1.5 m/s2 𝜆𝑎𝑛𝑡,𝑡𝑖𝑚𝑖𝑑 2.0 𝑎𝑐𝑐𝑏𝑢𝑠 1.0 m/s2 𝜆𝑎𝑛𝑡,𝑛𝑜𝑟𝑚𝑎𝑙 1.0 𝑎𝑐𝑐𝑡𝑟𝑢𝑐𝑘 1.0 m/s2 𝜆𝑎𝑛𝑡,𝑎𝑔𝑔𝑟 0 

 

Table 2.2 Parameters and benchmark value used in panic traffic 

Parameter Value Parameter Value 𝐿𝑐𝑎𝑟 5 m 𝑎𝑐𝑐𝑡𝑟𝑢𝑐𝑘 1.5 m/s2 𝐿𝑏𝑢𝑠 10 m 𝑑𝑒𝑐𝑐𝑎𝑟 2.0 m/s2 𝐿𝑡𝑟𝑢𝑐𝑘 19 m 𝑑𝑒𝑐𝑏𝑢𝑠 1.5 m/s2 𝑉𝑚𝑎𝑥,𝑡𝑖𝑚𝑖𝑑 20 m/s 𝑑𝑒𝑐𝑡𝑟𝑢𝑐𝑘 1.5 m/s2 𝑉𝑚𝑎𝑥,𝑛𝑜𝑟𝑚𝑎𝑙 20 m/s 𝑑𝑒𝑐𝑡ℎ,𝑡𝑖𝑚𝑖𝑑 2.0 m/s2 𝑉𝑚𝑎𝑥,𝑎𝑔𝑔𝑟 30 m/s 𝑑𝑒𝑐𝑡ℎ,𝑛𝑜𝑟𝑚𝑎𝑙 3.5 m/s2 
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𝑅𝑐𝑎𝑟 0.5 𝑑𝑒𝑐𝑡ℎ,𝑎𝑔𝑔𝑟 5.0 m/s2 𝑅𝑏𝑢𝑠 0.25 𝑑𝑒𝑐𝑚𝑎𝑥 8.0 m/s2 𝑅𝑡𝑟𝑢𝑐𝑘 0.25 𝑝𝑐ℎ𝑡𝑖𝑚𝑖𝑑 0.2 𝑅𝑡𝑖𝑚𝑖𝑑 0.2 𝑝𝑐ℎ𝑛𝑜𝑟𝑚𝑎𝑙 0.5 𝑅𝑛𝑜𝑟𝑚𝑎𝑙 0.2 𝑝𝑐ℎ𝑎𝑔𝑔𝑟 0.8 𝑅𝑎𝑔𝑔𝑟 0.6 𝜆𝑎𝑛𝑡,𝑡𝑖𝑚𝑖𝑑 2.0 𝑎𝑐𝑐𝑐𝑎𝑟 2.0 m/s2 𝜆𝑎𝑛𝑡,𝑛𝑜𝑟𝑚𝑎𝑙 1.0 𝑎𝑐𝑐𝑏𝑢𝑠 1.5 m/s2 𝜆𝑎𝑛𝑡,𝑎𝑔𝑔𝑟 0 

2.3.2 Influence of limited acceleration and anticipation effect 

Two major improvements such as limited deceleration of vehicles and anticipation ability of drivers 

are incorporated in the proposed model. Although existing studies found that limited deceleration of 

vehicles and anticipation effects are respectively important to improve the simulation results, the impact 

and significance of simultaneous inclusion of these two improvements in the proposed traffic flow 

simulation still need to be evaluated. The evaluation focuses on the impact on the simulation results of 

overall traffic flow and also individual vehicles by comparing the results from the proposed model with 

those from another two comparative models. The differences between the two comparative models and the 

proposed model are: for Model 1, limited deceleration is not considered; for Model 2, the anticipation ability 

of drivers is not considered.  

Mean flow rate and mean standard deviation of the velocities of the proposed model, Model 1 and 

Model 2 are plotted in Fig. 2.2a and 2.2b, respectively. It is shown in Fig. 2.2a that the mean flow rate from 

Model 1 is higher than the proposed model, especially in low-occupancy traffic. Such a gap reaches the 

largest when the occupancy is about 0.3 for busy flow. At this point, the mean flow rate from Model 1 is 

81% higher than the proposed model. Apparently, the mean flow rate is overestimated with Model 1 due to 

the unlimited deceleration of vehicles, especially in low-occupancy traffic, in which vehicles usually have 
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relatively large headways. It is also shown in Fig. 2.2a that the mean flow rate from Model 2 is lower than 

the proposed model in low-occupancy traffic, but higher in dense traffic. This result corroborates the 

conclusion from Knospe et al. (2000). The inclusion of anticipation effect of drivers causes the traffic speed 

to increase in low traffic occupancy, but this is not the case in dense traffic flow. 

It can be seen from Fig.2.2b that the mean standard deviation of velocities on the bridge in Model 2 is 

smaller than the proposed model. This is because without considering anticipation effect, drivers in Model 

2 tend to drive more conservatively than the proposed model. It is also shown in Fig. 2.2b that the mean 

standard deviation of the velocities in Model 1 exhibits much larger fluctuations, which is lower in low-

occupancy traffic flow and yet higher in high-occupancy flow than the other two models. For Model 1, the 

standard deviation of velocities in low-occupancy traffic is nearly zero because vehicles do not decelerate 

with relative large headways. Vehicles only decelerate at the last second, leading to an unrealistically high 

deceleration rate in dense traffic.  

 

(a) Mean flow rate 
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(b) Mean SD of velocity 

Figure 2.2 Comparison of overall flow 

Velocity time history data of a selected car with a typical driver in three models are plotted in Fig. 2.3. 

It is found from Fig. 2.3a that in busy flow, the car in Model 1 moves at speeds around the speed limit (20 

m/s) and brakes very rarely. The car in the proposed model moves at about 11 m/s, which is much lower 

than that in Model 1. By introducing the rule of limited deceleration, drivers tend to adjust their speed to 

avoid uncomfortable braking and possible accident occurrence. Without anticipation of the velocity of the 

preceding car, the driver of the rear car in Model 2 determines its velocity only by the free space in front of 

the car and therefore moves slower than in the proposed model. 

It is shown in Fig. 2.3b that when the traffic occupancy is 0.4, the car in Model 1 moves with a high 

velocity before a sudden brake is taken at 36 s at a deceleration rate of 14 m/s2. Apparently, such a 

deceleration rate will be unrealistically high. In the proposed model, the car moves more steadily at around 

9.5 m/s, and no sudden brake happens. Without considering anticipation effects, the car in Model 2 moves 

slower than the proposed model, contributing to a lower mean flow rate of the overall traffic. The 
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comparison between the proposed model and two comparative models as summarized above clearly shows 

that the inclusion of improved rules can considerably affect and lead to more realistic simulation results. 

Therefore, the incorporation of limited deceleration and anticipation effects in the proposed model is found 

to be necessary and important.  

 

(a) Occupancy = 0.3 

 

 (b) Occupancy = 0.4 

Figure 2.3 Comparison of velocity time history of individual vehicle 
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2.3.3 Influence of panic driving behavior on the overall traffic flow characteristics 

Under both normal and panic driving conditions, traffic congestion begins to form in traffic flow with 

occupancy of 0.4. When traffic occupancy is higher than 0.4, congestion becomes more significant and the 

flow rate gets lower. However, since vehicles in such traffic flows have very limited space to move, they 

are much less likely to be influenced by the panic driving behaviors. Therefore, the study only investigates 

the influence of panic driving behavior on the traffic flows with occupancy below 0.4. Traffic flows with 

occupancy of 0.1, 0.2, 0.3 and 0.4 are hereafter called free, moderate, busy and congested traffic flow, 

respectively.  

Time histories of instantaneous mean velocities of congested flow for normal and panic traffic 

conditions are plotted in Fig. 2.4. Different from the overall mean velocity of a traffic flow defined in Eq. 

(2.16), the instantaneous mean velocity is obtained by averaging the velocities of all vehicles in the traffic 

flow at each time instant. The mean values of the two curves are very close, but the standard deviation of 

panic traffic is 61% higher than that of normal traffic. Hazardous (panic) condition is found to significantly 

increase the velocity fluctuations of vehicles, which are closely related to potential accident risks (Chen et 

al. 2011).  
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Figure 2.4 Time history of instantaneous mean velocity of congested flow for normal and panic traffic 

The mean velocity of the traffic flows under normal and hazardous conditions with respect to 

occupancy are plotted in Fig. 2.5. The mean velocity decreases as the occupancy of the traffic flow increases 

under both normal and panic traffic conditions. The mean velocity of normal traffic flow decreases almost 

linearly with the increase of occupancy. Compared to normal traffic flow, the decreasing rate of mean 

velocity in panic traffic flow gradually becomes smaller when traffic occupancy increases, as seen by the 

smaller slope of the curve with a larger occupancy. The largest discrepancy of mean velocity occurs when 

traffic occupancy is 0.2, in which the mean velocities of normal and panic traffic flow are 14.9 and 15.8 

m/s, respectively.  
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Figure 2.5 Mean velocity of normal and panic traffic 

The mean velocities are very close among different types of drivers in either normal or panic traffic 

flow. However, the mean standard deviations have remarkable difference among different types of drivers. 

To show the variation of vehicle velocity corresponding to different driver types in both normal and panic 

traffic flows, the mean standard deviations of the vehicle velocities are obtained for timid, normal, 

aggressive drivers and all drivers irrespective of the driver type. Figs. 2.6a and 2.6b demonstrate the mean 

standard deviation values for normal and hazardous (panic) traffic driving conditions, respectively. The 

velocities of aggressive drivers have larger fluctuations than those of normal and timid drivers in both traffic 

scenarios as evidenced by larger standard deviations. For both normal and panic traffic scenarios, the largest 

mean standard deviation of velocities occurs in congested flow for all types of drivers. In free flow, the 

mean standard deviation values are very similar among different drivers in normal traffic conditions. In 

contrast, vehicles operated by aggressive drivers in free flow have more fluctuating velocities than other 

drivers under panic traffic conditions. The mean standard deviation increases significantly when traffic 

occupancy increases from 0.1 to 0.2 except for the aggressive driver in the panic flow, while the value 
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remains steady when the traffic occupancy is in the range between 0.2 and 0.3. After traffic occupancy 

increases beyond 0.3, the mean standard deviation increases at similar rates for different types of driver 

groups. The mean standard deviations for all drivers are very close to the corresponding values for normal 

drivers under normal traffic conditions. However, under panic driving conditions, the values for all drivers 

get close to the corresponding value for aggressive drivers in each traffic flow case. By comparing Figs. 

2.6a and 2.6b, it is found that the standard deviation of the vehicle velocity is larger in the panic flow than 

the corresponding value in the normal flow, which is true for each type of drivers, especially for the 

aggressive driver in the free flow condition. This indicates that aggressive drivers play an important role in 

the overall traffic flow performance under panic driving conditions.  

 

(a) Normal traffic 
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 (b) Panic traffic 

Figure 2.6 Mean standard deviation of velocity of normal and panic traffic 

2.3.4 Application on simulating traffic flow throughout hazard process 

In order to investigate the influence of a change in driving behavior on the vehicle performance, a 

realistic traffic scenario is simulated throughout a whole process of hazard occurrence including before and 

after a hazard (e.g., earthquake, blast) suddenly occurs. It is assumed that a hazard happens suddenly and 

has been detected by drivers on the bridge-roadway system at a certain time instant. The reaction time of a 

driver is assumed to be very short and the transition of driving behavior occurs immediately. Therefore, the 

traffic flow before that time instant is normal and after the instant it becomes panic traffic flow. Based on 

the simulated traffic flow results over the hazard occurrence process, the traffic loads acting on the bridge 

and the performance of individual vehicles are further evaluated in the following. 

2.3.4.1 Traffic loads on the bridge 

A time-space diagram of congested traffic flow (occupancy = 0.4) on the bridge under normal and 

hazardous conditions are plotted in Fig. 2.7. In Fig. 2.7, the horizontal axis represents time and the vertical 
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axis represents vehicle position. The black clusters represent traffic congestions formed by the stopped 

vehicles. It is assumed that a hazard happens, and normal traffic flow turns into panic traffic flow at 300 s. 

After 300 s, vehicle trajectories become different, as shown in Figs. 2.7a and 2.7b. It is found in Fig. 2.7 

that the results of normal and panic traffic flow exhibit different congestion patterns. Congestion clusters 

in normal traffic are more concentrated than those in panic traffic. Due to larger fluctuation of vehicle 

velocity, the congestion clusters in panic traffic are more sparsely located. However, panic flow has more 

congestion clusters and a larger congestion area than those in normal flow.  

 

(a) Normal flow (Note: no hazards happen) 

 



48 
 

 

 

 (b) Normal to panic flow (Note: a hazard happens at 300 s) 

Figure 2.7 Time-space diagram of congested traffic flow on the bridge 

Time history of live loads on the bridge under congested flow is plotted in Fig. 2.8. Local peak values 

of live load indicate congested traffic. It is found the largest live load on the bridge due to normal traffic is 

6,641 kN at about t = 1050 s, while the largest value due to panic traffic is 7,187 kN at about t = 2800 s, 

which increases by 8.2 %. This indicates that the bridge may experience larger live load in congested flow 

under panic driving conditions than in normal driving conditions. Because there is no congestion in free, 

moderate and busy flow, concentrating loads do not form locally on the bridge. Thus, the loading condition 

of the bridge under panic and normal driving conditions do not exhibit significant differences for traffic 

flows with low traffic occupancy. 
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Figure 2.8 Time history of live load due to congested flow on the bridge 

2.3.4.2 Time history of individual vehicle velocity 

The velocity time histories of a representative truck in free, moderate and busy flow for two types of 

traffic scenarios are shown in Figs. 2.9a, 2.9b and 2.9c, respectively. One type of traffic scenario is the one 

including the transition from normal to panic traffic due to the hazard occurrence (labeled as “normal to 

panic traffic”). For comparison purposes, the results of the other type of traffic scenario, labeled as “normal 

traffic”, which is the normal traffic flow without the occurrence of any hazards, are also plotted in Figs. 

2.9a-c. It is found in Fig. 9 that the mean velocity of the truck (about 19 m/s) in free flow is higher than 

moderate flow and busy flow (about 15 m/s and 11 m/s, respectively) due to more open space for vehicles 

to maneuver. It is shown in Fig. 9(a) that the maximum velocity of this truck increases from 20 m/s to 25 

m/s and the minimum velocity decreases from 18.5 m/s to 14.5 m/s. This is because there are more drivers 

who change their driving behavior from normal to aggressive behavior after the hazard occurs. Similarly, 

truck velocity fluctuates more dramatically after the hazard than before in moderate and busy flow. However, 

the impact due to aggressive driving behavior on the vehicle in moderate and busy flow is less significant 
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than that in free flow. 

 

 

(a) Free flow 

 

(b) Moderate flow 
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 (c) Busy flow 

Figure 2.9 Time history of velocity of a truck in traffic flows with different densities 

2.3.4.3 Influence of panic driving behavior on vehicle dynamic response  

Panic driving behavior may lead to the increase of vehicle driving speed in hazardous conditions, 

which may further affect the vehicle dynamic response as well as its safety situation. It is known that 

infrastructure details, vehicle properties, and hazard types can significantly affect vehicle response. In order 

not to lose generality, no specific hazard is defined in this section and the focus will be on the impacts on 

vehicle response only due to the changes of traffic condition from normal to panic. To assess the potential 

impact on vehicle response, some basic information about vehicle-infrastructure interaction needs to be 

briefly introduced. The vehicles are modeled as a combination of several rigid bodies, wheel axles, springs, 

and dampers. The heavy truck model has two rigid bodies associated with 19 degrees of freedom (DOFs), 

including 8 independent vertical, 8 lateral and 3 rotational DOFs. The bus and car model have one rigid 

body with 12 DOFs, including 5 independent vertical, 5 lateral and 2 rotational DOFs. Each wheel axle is 

connected to main rigid bodies through one upper spring and damper each at left and right sides in the 
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vertical and lateral directions. Each wheel axle on the ground has contact with the ground through one lower 

spring and damper on the left and right sides in the vertical and lateral directions. The vehicle dimensions 

and dynamic parameters can be found in the references (Zhou and Chen 2015a) and are not shown here for 

the sake of brevity.  

Since a long-span bridge is involved and considerable wind usually exists at the deck height of long-

span bridges, the steady-state wind speed is assumed to be 20 m/s and the wind direction is assumed to be 

perpendicular to the vehicle driving direction. The wind speed relative to the vehicle UR(t) can be obtained 

in Eq. (2.18a).  

)())(()( 22
tUtuUtU

vemR
++=                          (2.18a) 

where Um, u and Uve are steady-state wind speed, turbulent wind speed and vehicle driving speed, 

respectively; t is the time instant. The yaw angle ψ is the angle between the direction of relative wind speed 

and the vehicle driving direction in the range from 0 to π, defined in Eq. (2.18b). 

 )()(arctan tUtuU
vem

+=                           (2.18b) 

The wind forces acting on the vehicles have six components, which are drag force, side force, lift force, 

rolling moment, pitching moment and yawing moment. The wind forces can be expressed as the functions 

of UR(t), wind coefficient and vehicle dimensions, which can be found in the reference (Zhou and Chen 

2015a). Vehicle dynamic analyses are conducted on the vehicles in the free traffic flow under excitations 

from road surface roughness and wind. Dynamic response time histories are obtained at each independent 

DOF of the vehicles.  

It is assumed that the drivers detect the incident and respond with panic driving behavior starting at 300 

s, which is the median time instant of the simulation time period. The same truck as the one with the driving 
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speed history shown in Fig. 2.9a is selected as the representative vehicle for demonstration. The vertical, 

pitching, rolling and lateral displacements of the 1st rigid body of the vehicle over the time period including 

the transition from normal to panic traffic (with hazard occurrence) are shown in Fig. 2.10a-d, respectively. 

The vehicle response time history with normal traffic (without hazard occurrence) is also given in each 

direction for comparison. It can be seen that the extreme dynamic response of the vehicle has a significant 

increase in each direction after panic traffic starts. The extreme values of vehicle responses in both “normal 

traffic” and “normal to panic traffic” are obtained from 300 s to 330 s for comparison. For the “normal 

traffic”, the extreme values of vertical, lateral, rolling and pitching displacements of the 1st rigid body of 

the truck are 0.0384 m, 0.0533 m, 0.0563 rad and -0.0125 rad, respectively. For the “normal to panic traffic”, 

the extreme values of vertical, lateral, rolling and pitching displacements of the 1st rigid body of the truck 

are 0.0425 m, 0.0568 m, 0.0604 rad and -0.0128 rad, respectively. The extreme response of the vehicle 

increases from normal to panic traffic by 10.7 %, 6.6 %, 7.3 % and 0.8 % for vertical, lateral, rolling and 

pitching directions, respectively.  

By comparing Fig. 2.10 with Fig. 2.9a, it is seen that the influence of panic driving behavior on the 

dynamic response of the vehicle is not as significant as that on the vehicle driving speed. However, the 

increase of the vehicle extreme dynamic response due to the change of driving behavior is still very 

remarkable especially in the vertical, lateral and rolling directions, suggesting that the change of normal to 

panic driving behavior may pose larger safety risks for the vehicles. Due to the limit of the scope, this study 

is to demonstrate the potential impacts of traffic flow on vehicle response and safety. More detailed 

investigations need to be made on a specific highway system subjected to a particular hazard in order to 

quantify the impact on the bridge structure performance and vehicle safety risks.   
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(a) Vertical displacement of the 1st rigid body 

 

(b) Lateral displacement of the 1st rigid body 
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(c) Rolling displacement of the 1st rigid body 

 

 (d) Pitching displacement of the 1st rigid body 

Figure 2.10 Time history of vehicle dynamic displacement of the representative truck in free flow 

2.4 Conclusions 

A new CA-based traffic flow simulation framework for hazardous driving environments is proposed, 

which considers more reasonable vehicle properties, anticipation effect, and different driving behaviors 

among drivers. This framework can provide traffic flow simulation under both normal traffic and hazardous 

(panic) traffic conditions. Both the overall traffic flow properties focusing on potential effects on highway 
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infrastructure (e.g., bridges) and safety performance of individual vehicles in a “roadway–bridge–roadway’’ 

system are studied for a demonstration. Based on the demonstrative analysis results, the following 

conclusions can be made: 

(1) Compared to the proposed model, the mean flow rate is overestimated if limited deceleration is not 

incorporated, while underestimated if anticipation effect is not incorporated. With limited deceleration, 

individual vehicles in the proposed model generally move slower and avoid unrealistic sudden braking. 

After anticipation effect is incorporated, an individual vehicle typically moves faster.  

(2) Compared to the traffic under normal driving conditions, hazardous driving conditions can increase the 

mean traffic velocity when the occupancy is low. The standard deviation of the vehicle velocity is larger 

in the panic flow than the corresponding value in the normal flow, which is true for each type of drivers, 

especially remarkable for aggressive drivers in the free flow condition. In free flow, the mean standard 

deviation values are very similar among different drivers in normal traffic conditions. In both normal 

and panic traffic scenarios, the velocities of aggressive drivers have larger fluctuations than those of 

normal and timid drivers. The largest mean standard deviation of velocities occurs in congested flow 

for all types of drivers.  

(3) In high-occupancy traffic, congestion will be formed under both normal and hazardous traffic 

conditions but with different congestion patterns. Compared to normal traffic, the time-space diagrams 

show that there are more congestion clusters distributed on the bridge under panic driving conditions 

than those under normal driving conditions, which have a larger size and are more sparsely located. 

Thus, the bridge may experience increased local concentrations of live loads on the bridge under high-

occupancy traffic, which may become critical to a structure that has been partially damaged by the 
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hazards.  

(4) Panic driving behavior is found to lead to larger extreme values and fluctuation of vehicle driving 

speeds. This is more remarkable in free flow than in moderate and busy flow. Panic driving behavior 

may significantly influence the extreme dynamic response of vehicles, especially in the vertical, lateral 

and rolling directions. The change from normal to panic driving behavior with increased speed 

fluctuations may suggest that some more attention should be paid to possible increased safety risks of 

the vehicles. 
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 CHAPTER 3 TRAFFIC PERFORMANCE ASSESSMENT METHODOLOGY OF DEGRADED 

ROADWAY LINKS FOLLOWING HAZARDS2 

 

3.1 Introduction 

Post-hazard traffic networks are often disrupted due to not only direct impacts on transportation 

infrastructures, but also indirect impacts originated from interdependent nature with other infrastructure 

systems and environments. These indirect impacts include road blockage of debris from adjacent buildings, 

traffic accidents, fallen trees or light poles. For all these scenarios with partially-blocked roads and bridges 

following extreme events, traffic capacity and travel time are very different from those with intact road 

infrastructures and therefore become hard to predict. A new simulation methodology of traffic performance 

of partially-blocked roadway and bridge links due to hazardous events is proposed. This is based on 

improved microscopic-scale traffic flow simulation techniques that can be applied to degraded road/bridge 

links with various types of obstacles (different sizes, numbers and distributions). Following the validation 

with the published results of traffic congestion induced by a work zone, two typical partially-blocked 

scenarios due to infrastructure damage and accidents are numerically analyzed to demonstrate the feasibility 

of application to the traffic performance prediction of disrupted roadways due to extreme events. Parametric 

studies such as the impact of truck proportion, blockage configuration and traffic control measures are also 

conducted. It is found that the proposed framework can predict the traffic performance of degraded 

transportation systems due to various causes, which can lead to a wide array of future studies such as 

community resilience modeling, emergency response and evacuation planning, etc. 

                                                             

2 This chapter is adapted from a published paper by the author (Hou, Chen and Han 2019) with permission from 

ASCE. 
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3.2 Formulations 

3.2.1 CA-based traffic flow simulation algorithm on roadway links with partial obstruction 

Cellular automaton (CA) model is a popular microscopic-scale traffic flow simulation method, which 

has been widely applied in many studies in normal traffic conditions (Nagel and Schreckenberg 1992; Fukui 

and Ishibashi 1996; Chowdhury et al. 1997; Barlovic et al. 1998; Knospe et al. 2000; Kerner et al. 2002; 

Bham and Benekohal 2004; Larraga et al. 2004; Lan and Chang 2005). A CA-based traffic flow model for 

hazardous driving conditions was recently developed by the authors (Hou et al. 2017). Compared to 

previous works, the model has several advantages, including consideration of more realistic acceleration 

and deceleration, driving behavior under hazardous conditions etc. Similar algorithms are adopted with 

significant improvements in this study to enable considering highways with any partial obstruction, 

including different numbers, shapes and distributions of obstacles on a highway.  

The lanes of highways are discretized into many identical cells with a length of 0.5 m instead of 7.5 m 

in the traditional NaSch’s model (Nagel and Schreckenberg 1992). With such a finer discretization, realistic 

properties of different types of vehicles (e.g. vehicle length, acceleration/deceleration) can be defined with 

sufficient accuracy to capture the realistic traffic features in heterogeneous traffic flow. For example, the 

acceleration/deceleration rate in the proposed model can be defined as a multiple of 0.5 m/s2 instead of 7.5 

m/s2 in NaSch’s model. To reproduce realistic smooth deceleration behavior, a safety criterion is adopted 

in the deceleration rule to consider the limited deceleration capability, which was firstly proposed by Lee 

et al. (2004). By satisfying Eq. (3.1), the velocity of vehicle 𝑖 at the next time step 𝑡 + 1 can be obtained: 

𝑉𝑖,𝑠𝑎𝑓𝑒𝑡+1 = 𝑚𝑎𝑥 {𝑣| 𝑣 + ∑ (𝑣 − 𝑀𝑖 ∗ 𝑘)[𝑣/𝑀𝑖]𝑘=1 ≤ 𝑔𝑎𝑝𝑖𝑡 + ∑ (𝑉𝑖+1𝑡 −𝑀𝑖+1 ∗ 𝑗)[𝑉𝑖+1𝑡 /𝑀𝑖+1]𝑗=1 }     (3.1) 

where 𝑉𝑖,𝑠𝑎𝑓𝑒𝑡+1   denotes the maximum safe velocity of vehicle 𝑖  at time step 𝑡 + 1 ; 𝑉𝑖+1𝑡   denotes the 
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velocity of the front vehicle 𝑖 + 1 at time step 𝑡; 𝑀𝑖 denotes the maximum deceleration rate of vehicle 

𝑖; 𝑔𝑎𝑝𝑖𝑡 denotes the clear distance between vehicle 𝑖 and the front vehicle 𝑖 + 1 in the current lane at 

time step 𝑡; [𝑥] denotes the nearest integer less than or equal to 𝑥. 

Based on NaSch’s single-lane CA model, the forwarding rules of the proposed model are given as 

follows: 

Step 1, Acceleration. 

 𝑉𝑖𝑡+1 = 𝑚𝑖𝑛 (𝑉𝑖𝑡 + 𝑎𝑖 , 𝑉𝑚𝑎𝑥)                            (3.2a) 

Step 2, Deceleration. 

 𝑉𝑖𝑡+1 = 𝑚𝑖𝑛(𝑉𝑖𝑡+1, 𝑉𝑖,𝑠𝑎𝑓𝑒𝑡+1 )                            (3.2b) 

Step 3, Randomization with the probability 𝑝𝑟. 

 𝑉𝑖𝑡+1 = 𝑚𝑎𝑥(𝑉𝑖𝑡+1 − 𝑑𝑖 , 0), if 𝑉𝑖𝑡 − 𝑉𝑖𝑡+1 < 𝑀𝑖 − 𝑑𝑖                 (3.2c) 

Step 4, Movement. 

 𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝑉𝑖𝑡+1                               (3.2d) 

where 𝑥𝑖𝑡  and 𝑉𝑖𝑡  denote the longitudinal position and velocity of vehicle 𝑖  at time 𝑡   respectively; 

𝑉𝑚𝑎𝑥 denotes the road speed limit; 𝑎𝑖 and 𝑑𝑖 are the normal acceleration and deceleration rates of vehicle 

𝑖, respectively. 

In addition to moving forward, vehicles on highways with multiple lanes will switch lanes for better 

driving conditions. The symmetric lane-changing rules are adopted in this model, which include the 

incentive criteria and safety criterion. Once the lane-changing rules are satisfied, a vehicle will perform a 

lane-changing maneuver with a probability of 𝑝𝑐ℎ. 

The incentive criteria: 
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𝑔𝑎𝑝𝑖𝑡 < 𝑚𝑖𝑛(𝑉𝑖𝑡 + 𝑎𝑖 , 𝑉𝑚𝑎𝑥)                      (3.3a) 𝑔𝑎𝑝𝑖,𝑓𝑡 > 𝑔𝑎𝑝𝑖𝑡                              (3.3b) 

The safety criterion: 

𝑔𝑎𝑝𝑖,𝑏𝑡 > 𝑚𝑖𝑛(𝑉𝑖,𝑏𝑡 , 𝑉𝑚𝑎𝑥)                        (3.4) 

where 𝑔𝑎𝑝𝑖,𝑓𝑡  is the clear distance between vehicle 𝑖 and the nearest vehicle in the target lane ahead of 

vehicle 𝑖 at time step 𝑡; 𝑔𝑎𝑝𝑖,𝑏𝑡  is the clear distance between vehicle 𝑖 and the nearest vehicle in the 

target lane behind vehicle 𝑖 at time step 𝑡; 𝑉𝑖,𝑏𝑡  is the velocity of the nearest vehicle in the target lane 

behind vehicle 𝑖 at time step 𝑡. 
To study partially-blocked scenarios, the algorithms developed for intact roads (i.e. no any blockage) 

(Hou et al. 2017) are modified by introducing the concept of “dead cell” to represent any obstacle. When 

there is no obstacle on the road link, all the cells are “live cells” and each “live cell” can be open or occupied 

by only one vehicle at any time step. For scenarios with partial blockage, depending on the footage of the 

blocked area, the corresponding cells of the blockage will become “dead cells”, which cannot be occupied 

by any vehicle for the time duration of the blockage. Such “dead cells” can be those covered by debris, 

fallen trees, light poles, construction equipment or pulled-over vehicles for different durations of simulation 

time periods. When a vehicle reaches the dead cell, it may switch lanes by following the lane-changing 

rules. Even for more complex scenarios, such as the lane being gradually narrowed, or the presence of 

detouring or warning signs, the corresponding cells can also be adjusted accordingly to become “dead”. 

Once the blockage is cleared, the corresponding “dead cells” will become “live cells” again. In this way, 

the traffic flow simulation of roadways with any type of blockage (obstruction) (e.g. number, size, location) 

can be easily simulated by taking advantage of existing advances on CA-based algorithms. Furthermore, 
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the adoption of “dead cells” and “live cells” also offers flexibility to simulate the time-progressive traffic 

flow throughout the occurring and recovery processes of a hazard.  

3.2.2 Representative post-hazard scenarios of partially-blocked roadway and bridge links 

A typical traffic network is often separated into some nodes, roadway and bridge links based on 

topological and design features. Following typical extreme wind events, roadway or bridge links may suffer 

long-term (months to years), short-term (hours to days) and temporary (minutes to hours) disruptions from 

different causes, such as damaged bridge/pavement, work zone for maintenance/construction, debris, fallen 

trees/light poles, or accidents (Fig. 3.1). These disruptions, despite different nature, are reflected in the 

proposed CA-based traffic flow simulation that different number of cells become “dead” for different 

durations of time. A road or bridge is practically closed to traffic under several situations: 1) sections of a 

roadway or bridge are fully blocked physically by obstacles; 2) there are still small gaps between obstacles 

on the road or bridge links. But the gaps are small enough to deter or discourage people from using the road; 

and (3) the road or bridge is closed by traffic authority or law enforcement. The focus of this study is on 

the partially-blocked scenarios that are still open to traffic. Table 3.1 summarizes some typical partially-

blocked scenarios due to various incidents in real life.  

Table 3.1 Different disruption types and their causes 

Disruption type Example causes 

Long-term • Damaged bridges or pavement causing partial closure 

• Work zone for maintenance/construction, etc. 
Short-term • Large debris from damaged buildings due to some hazards 

 • Fallen trees and light poles. 
Temporary • Vehicle accidents. Pulled-over vehicles  

• Temporary repair 

By adopting appropriate models to simulate structure fragility, debris distribution, and accidents, the 
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specific disrupted infrastructure scenarios can be characterized. Accordingly, roadways/bridges will have a 

certain number of “dead cells” distributed in corresponding patterns and for certain time periods (e.g. long-

term, short-term or temporary), depending on the scenario. The sizes and distributions of these “dead cells” 

due to obstacles have large variations and uncertainties. Fig. 3.1 gives the illustrative views of CA-based 

simulation model with partial blockages of three typical types of scenarios. 

(a) 

Long-term disrupted infrastructure (e.g. partially-blocked bridges) 

 

(b) Short-term degraded infrastructure (e.g. by debris) 

 

 (c) Temporarily degraded infrastructure by accidents and emergency response 

Figure 3.1 Typical scenarios of disrupted infrastructure of transportation system 

 

Based on the traffic flow simulation results, traffic performance assessments, including those with 

some popular transportation functions (e.g. travel time function), can be conducted to support any traffic 

network-level studies of resilience. In the following sections, after the model validation is conducted, a 

demonstrative study is made to investigate the feasibility of applying the CA-based traffic flow simulation 
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techniques to conduct traffic flow simulation of disrupted roadway links.  

3.2.3 Model validation 

Due to the unavailability of post-hazard traffic data, the proposed traffic flow simulation model is 

validated with the published data of traffic congestion induced by a work zone (Fei et al. 2016). In the 

reference, the length of the studied two-lane highway system was 3,500 m, and the length of the work zone 

was 800 m. Two types of vehicles including fast vehicles and slow vehicles were considered in the traffic, 

which had the maximum velocity of 28 m/s and 17 m/s, respectively. The ratio of the fast vehicles to the 

slow vehicles was 1/3. The proposed model adopts the same parameters to replicate the same scenario for 

validation purposes. The flow-density diagram from the simulation result of the proposed framework is 

compared with that from the reference and presented in Fig. 3.2. It can be seen the simulation result has 

good agreement with the published data. The small discrepancy is likely due to the difference in model 

details between two simulation models, e.g. lane changing rules and position updating rules. Therefore, this 

framework is found to have reasonable prediction accuracy for the selected disrupted scenario and will be 

used to simulate other disrupted scenarios in the following study. 
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Figure 3.2 Flow-density diagrams from the simulation result and the reference data 

3.3 Demonstrative simulation of partially-blocked roadway links following extreme events 

3.3.1 Disrupted scenarios and model parameters 

A two-lane road link of 2,000 m is selected in the following demonstrative study. There is no traffic 

light, major entrance and exit on this segment. The speed limit of the road segment is set as 𝑉𝑚𝑎𝑥 = 30 m/s 

(108 km/h). To study heterogeneous traffic flow on highways, three types of vehicle groups are considered 

(i.e. cars, buses, and trucks). The lengths of cars, buses, and trucks are defined as 5 m, 10 m and 19 m, 

respectively (Oketch et al. 2004). The normal acceleration/deceleration rate of a car is set to be 1.5 m/s2, 

and that of a bus and a truck is set to be 1.0 m/s2 (Hou et al. 2017). In this paper, only traffic flow on dry 

pavement is investigated. Following the study by Li et al. (2016), the maximum deceleration rate of all 

three types of vehicles on dry pavement is 5.0 m/s2. Properties of different types of vehicles are summarized 

in Table 3.2. Initial positions of all vehicles on the road are randomly generated and their initial velocities 

are zero. The randomization probability is set as 0.1 and the lane-changing probability 𝑝𝑐ℎ is assumed to 

be 1 (Zhu et al. 2009). In the numerical simulation, periodic boundary conditions are used. It should be 
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noted that the parameters adopted in this study were selected with assumed values to demonstrate the 

methodology in this study. Like most microscopic traffic flow simulation tools, all the parameters need to 

be calibrated with site-specific actual traffic data to give customized results for transportation applications.  

The computational formulas for the mean flow, density and mean velocity used in the numerical 

simulation are given as follows: 

𝑓 = 𝜌 ∙ 𝑣̅                                   (3.5) 

𝜌 = 𝑁/𝐿                                   (3.6) 

𝑣̅ = 1𝑇∑ (1𝑁∑ 𝑣𝑗𝑁𝑗=1 )𝑇𝑖=1                            (3.7) 

where 𝑓 is the mean flow, 𝜌 is the density, 𝑣̅ is the mean velocity, 𝑁 is the total number of vehicles, 𝐿 is the road length, 𝑇 is the simulation time, 𝑣𝑗 is the velocity of vehicle 𝑗. In each simulation run, the 

total simulation time period is 20,000 s and the time simulation step is 1 s. To capture the steady traffic 

flow characteristics, the simulation results of the first 10,000 s are discarded and only those of the last 

10,000 s will be used.  

Table 3.2 Vehicle properties 

Vehicle type Length (m) 𝑎 (m/s2) 𝑑 (m/s2) 𝑀 (m/s2) 
Car 5 1.5 1.5 5.0 

Bus 10 1.0 1.0 5.0 

Truck 19 1.0 1.0 5.0 

The three types of disruptions as shown in Fig. 3.1 include time-dependent information of disruptions. 

From the simulation perspective, these three types of disruptions can be combined to two types of scenarios: 

(1) single extended partial blockage and (2) scattered multiple small partial blockages, which are shown in 

Fig. 3.3. In Scenario A, lane 1 is partially closed due to a damaged bridge/pavement or large debris (Fig. 



67 
 

 

3.3a). Because the road has periodic boundary conditions, the location of the disruption would have no 

influence on the traffic simulation results. In Scenario B, both two lanes are partially blocked by two small 

partial blockages such as caused by multiple wind-induced accidents or small debris (Fig. 3.3b). Existing 

studies suggested that multiple accidents may occur at the similar time due to a strong crosswind event 

(Chen and Chen 2010).  

 

(a) Scenario A: single extended partial blockage (e.g. damaged bridge/pavement or large debris) 

 

(b) Scenario B: scattered multiple small partial blockages (e.g. accidents & small debris) 

Figure 3.3 Schematic illustration of two disrupted scenarios for simulation 

 

3.3.2 Scenario of single extended partial blockage 

3.3.2.1 Traffic flow dynamics  

For the disrupted scenario induced by a single extended partial blockage as shown in Fig. 3.3a, we will 

firstly investigate the traffic flow dynamics. The proportions of cars, buses, and trucks in the traffic flow 

are assumed to be 80%, 10%, and 10%, respectively. The fundamental diagrams and lane-changing 
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frequency are plotted in Fig. 3.4. Zhu et al. (2009) found three regions in the fundamental diagrams of 

disrupted traffic induced by an accident car, namely, unsaturated traffic, saturated traffic, and oversaturated 

traffic. Besides those three regions, a new transition region is found between unsaturated traffic and 

saturated traffic in Fig. 3.4. Four regions are separated by three critical densities, namely, 𝜌1 = 17.5 veh/km, 

𝜌2 = 37.5 veh/km, and 𝜌3 = 182.5 veh/km. When 𝜌 ≤ 17.5 veh/km, the flow increases with the increase 

of vehicle density in a linear manner and finally reaches the maximum value at 𝜌 = 17.5 veh/km, which is 

the traffic capacity. The mean velocity is nearly constant and close to the speed limit, 30 m/s. The lane-

changing frequency is zero. This means there is no vehicle moving in lane 1, and all vehicles in lane 2 move 

with free-flow speed. When 17.5 veh/km < 𝜌 ≤ 37.5 veh/km, the lane-changing frequency increases and 

mean velocity decreases significantly. The flow decreases from the traffic capacity to a stable value finally. 

In the saturated region (37.5 veh/km < 𝜌 ≤ 182.5 veh/km), there is a largely flat plateau in the flow-density 

diagram, which is a typical phenomenon in disrupted traffic caused by local blockage. The mean flow rate 

is independent of density and remains very similar, although the mean velocity decreases with the increasing 

density. In the saturated region (𝜌 > 182.5 veh/km), the flow decreases with the increase of vehicle density 

in a linear way. The mean velocity and lane-changing frequency further decrease.  
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(a) Fundamental diagrams. (upper) flow-density diagram; (lower) velocity-density diagram. 

 

(b) Lane-changing frequency 

Figure 3.4 Fundamental diagrams and lane-changing frequency 

To gain more insight into the traffic dynamics under disrupted conditions, time-space diagrams at 

traffic density 𝜌 = 17.5 veh/km and 20 veh/km are plotted in Fig. 3.5. Steep trajectory lines indicate that 

the velocities are rather low. Lane-changing behaviors are indicated by the disappearance and reappearance 

of the trajectory lines on the two lanes. The grid pattern region represents the blocked area. From Fig. 3.5a 

and 3.5c, it can be seen that there is no traffic in lane 1 and traffic flow on lane 2 is a free-flow traffic. This 

is because vehicles prefer moving in the unblocked lane, which has a much better driving condition in 
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unsaturated traffic. As long as the unblocked lane can accommodate enough vehicles without causing any 

local jams, there will be no traffic in the blocked lane. When the traffic density increases to a higher value 

from the first critical traffic density 𝜌1, traffic jams appear in both lane 1 and lane 2 (Fig. 3.5b and 3.5d). 

When vehicles on lane 1 approach the blockage (e.g. the damaged bridge), they slow down and then change 

to lane 2 for better driving conditions. Because these vehicles usually have low velocities after changing 

lanes and consequently prevent following vehicles in lane 2 from moving ahead, queues are formed in lane 

2. After passing through the blockage, some vehicles in lane 2 change back to lane 1, where the driving 

conditions are better.  

 

(a) Lane 1 (𝜌 = 17.5 veh/km)               (b) Lane 1 (𝜌 = 20 veh/km) 

 

(c) Lane 2 (𝜌 = 17.5 veh/km)                   (d) Lane 2 (𝜌 = 20 veh/km) 

Figure 3.5 Time-space diagrams 

3.3.2.2 Impact of truck proportion 

In this subsection, we will investigate the influence of the proportion of trucks 𝑅𝑡𝑟𝑢𝑐𝑘  on the 

heterogeneous traffic flow. Here we fix the proportion of buses as 0.1 and change the proportion of trucks 
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and cars. Traffic flow with the truck proportion 𝑅𝑡𝑟𝑢𝑐𝑘 = 0.1, 0.2, and 0.3 are investigated. Fig. 3.6 gives 

the fundamental diagrams for different truck proportion. Fig. 3.7 shows the lane-changing frequency of cars 

and trucks. A similar trend is observed on the flow-density and velocity-density diagrams (Fig. 3.6) for 

traffic flow with different truck proportions. As the truck proportion changes, there are still four regions on 

the diagrams and it is found in Fig. 3.6 that truck proportion has a negative effect on the flow and velocity 

in all traffic regions except the unsaturated region. 

 

(a) Flow-density diagram 

 

(b) Velocity-density diagram 



72 
 

 

Figure 3.6 Fundamental diagrams for different truck proportion 

It can be seen from Fig. 3.7 that lane-changing frequency of cars is much higher than that of trucks in 

traffic with different truck proportions. This is because a truck is much longer than a car, making it harder 

for the truck to find sufficient space on the other lane to make a lane change. As shown in Fig. 3.7a and 

3.7b, the increase of the truck proportion leads to the decrease of the critical density 𝜌2 and 𝜌3. It is also 

found that the lane-changing frequency of cars and trucks has a same trend: as the truck proportion increases, 

the lane-changing frequency remains zero in the unsaturated region, increases in the transition and saturated 

regions, and finally decreases in the oversaturated region. Such results are consistent with the recently 

published findings by Li et al. (2016). Meanwhile, compared to cars, the influence on the lane-changing 

frequency of trucks is more significant (Fig. 3.7). It is believed that the change of lane-changing frequency 

in different regions of traffic flow is caused by the lane-changing maneuvers of trucks. When the traffic 

density is high enough, trucks will try to obtain higher velocity by switching lane. The large gap caused by 

lane change of trucks will also prompt lane-changing maneuvers by other vehicles. In this case, more trucks 

on the road will cause higher lane-changing frequency. However, when the traffic density is very high, 

trucks seldom switch lane because of small space, which also hinders the lane change of other vehicles. In 

this situation, more trucks will lead to lower lane-changing frequency. 
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(a) Car 

 

(b) Truck 

Figure 3.7 Lane-changing frequency for different truck proportions 

3.3.2.3 Impact of traffic control for heavy vehicles 

Large vehicles, such as heavy trucks, often experience more frequent crashes in the lane reduction 

bottlenecks, e.g. work zones, road blockage due to fallen debris. In order to improve traffic safety, some 

traffic control measures are often implemented at lane reduction bottlenecks for the heavy vehicles, e.g. 

encouraging them to vacate the closed lane farther upstream; and setting a reduced speed limit for those 
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vehicles. In this subsection, the impact of traffic control measures on the heavy vehicles, namely, trucks 

and buses, will be investigated. Two traffic control measures are applied to heavy vehicles, i.e., (1) 

restricting heavy vehicles to lane 2 at the initial state and setting the lane-changing probability of heavy 

vehicles as 0, namely prohibiting lane change of trucks in the area; (2) setting a reduced speed limit 𝑉ℎ𝑣. 

After the traffic control measures are implemented, the trucks and buses can only move in lane 2 with a 

reduced speed limit 𝑉ℎ𝑣, while the cars can move in both lanes with the normal speed limit 𝑉𝑚𝑎𝑥.  

Fig. 3.8 shows the flow-density diagrams with and without traffic control. It is found that the transition 

region on the flow-density diagram disappears after the traffic control is implemented. In the unsaturated 

region, the flow rate with traffic control is smaller than the free flow without traffic control. That’s to say, 

the unsaturated traffic becomes congested flow from free flow due to the traffic control. It is also found the 

flow throughout the whole density region decreases after the traffic control is implemented. Different speed 

limits of heavy vehicles 𝑉ℎ𝑣 mainly affect the unsaturated traffic. The higher the 𝑉ℎ𝑣 is, the lower the 

flow. Then, we further inspect the standard deviation of velocity of trucks, which is an important indicator 

of traffic safety performance.  

Speed deviations of trucks with and without traffic control measures are plotted in Fig. 3.9. It can be 

seen that traffic control can greatly reduce the speed deviation of velocity of trucks and improve the overall 

traffic safety. For example, under traffic control with 𝑉ℎ𝑣 = 72 km/h, the maximum speed deviation of 

velocity of trucks is decreased by 39%. Fig. 3.10 presents the time-space diagrams of traffic flow under 

traffic control with 𝑉ℎ𝑣 = 72 km/h at density 𝜌 = 15 veh/km. In Fig. 3.10, the black, blue and pink dots 

indicate cars, buses and trucks, respectively. Due to the traffic control, the trucks and buses only move in 

lane 2 and their speeds are relatively stable. Overall, traffic control of buses and trucks can improve traffic 
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safety in terms of lower speed variation, although the traffic flow efficiency is reduced. 

 

Figure 3.8 Flow-density diagrams with and without traffic control measures 

 

Figure 3.9 Speed deviation of velocity of trucks with and without traffic control measures 

 

(a) Lane 1                              (b) Lane 2 
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Figure 3.10 Time-space diagrams of traffic flow under traffic control 

3.3.3 Scenario of scattered multiple small partial blockages 

3.3.3.1 Traffic flow dynamics  

In this section, we will investigate the disrupted traffic flow induced by two accidents or two small 

pieces of debris, as shown in Fig. 3.3b. This represents some scenarios that multiple accidents happen at 

the similar time, such as due to adverse driving conditions before or after some natural hazards. The 

proportions of cars, buses, and trucks in the traffic flow are assumed to be 80%, 10%, and 10%, respectively. 

The distance between two accidents is set as 𝐷 = 800 m. The fundamental diagrams and lane-changing 

frequency are plotted in Fig. 3.11. It can be seen that three regions are also observed from the fundamental 

diagrams, namely, unsaturated traffic, saturated traffic, and oversaturated traffic. Throughout three regions, 

the mean velocity and lane-changing frequency decrease with the increase of density. In the unsaturated 

region, the flow increases as the density increases. However, the mean velocity is below the free-flow speed. 

This indicates that the two-accident traffic becomes congested even when the traffic density is very low. In 

the saturated region, a plateau is also found on the flow-density curve. It is interesting to find that the plateau 

is not fully flat, but with a very small negative slope, i.e. the flow rate decreases from 1840 veh/h to 1770 

veh/h. It is likely due to the fact that the local increase of density cannot fully compensate for the reduced 

local velocity in this region. In the oversaturated region, the flow decreases with the increase of vehicle 

density in a linear manner. 
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(a) Fundamental diagrams. (upper) flow-density diagram; (lower) velocity-density diagram. 

 

(b) Lane-changing frequency 

Figure 3.11 Fundamental diagrams and lane-changing frequency 

Time-space diagrams at traffic density 𝜌 = 10 veh/km and 15 veh/km are plotted in Fig. 3.12. The 

shaded vertical bars indicate the accident locations. It can be seen in Fig. 3.12a and 3.12c that vehicle 

clusters appear near the accidents in both the blocked lane and through lane even at a relatively low traffic 

density (𝜌 = 10 veh/km). There are two congestion regions in each lane. This means that some vehicles 

need to slow down at least twice in order to finish the trip, and frequent braking makes the traffic flow 
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unstable. When the traffic density increases to 𝜌 = 15 veh/km (Fig. 3.12b and 3.12d, the cluster lengths 

become longer, and vehicles velocities become lower near the accidents. 

 

(a) Lane 1 (𝜌 = 10 veh/km)               (b) Lane 1 (𝜌 = 15 veh/km) 

 

 (c) Lane 2 (𝜌 = 10 veh/km)               (d) Lane 2 (𝜌 = 15 veh/km) 

Figure 3.12 Time-space diagrams 

3.3.3.2 Impact of blockage configuration 

Traffic flow characteristics are related to blockage configuration, such as the shape, dimension and 

distribution of blocked areas (Meng and Weng 2011). In this subsection, we will investigate the influence 

of the distance between two accidents 𝐷 on the two-accident traffic. We assume the distance to be 𝐷 = 

100 m, 200 m, 400 m, 600 m and 800 m, respectively. The proportions of cars, buses, and trucks in the 

traffic are fixed as 80%, 10%, and 10%, respectively. Flow-density diagrams for traffic flow with different 

values of 𝐷 are given in Fig. 3.13. It is found that the distance between two accidents mainly affects the 

flow rate in the saturated region. As the distance 𝐷 increases, the flow rate increases. However, the flow 

rate has little change with different 𝐷 when 𝐷 ≥ 600 m. 
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Figure 3.13 Flow-density diagrams for different distances between two accidents 

Fig. 3.14 shows the lane-changing frequency for traffic flow with 𝐷 = 100 m and 600 m. It is found 

that in the unsaturated region, the lane-changing frequency is higher when 𝐷 = 100 m; in the saturated 

region, the lane-changing frequency is higher when 𝐷 = 600 m; and in the oversaturated region, the lane-

changing frequencies of two cases are very close. It can be found that the lane-changing frequency has 

different trends with the flow in different traffic regions: the influence of the distance between two accidents 

𝐷 on the flow can’t be explained by the lane-changing frequency-density relationship in Fig. 3.14. An 

attempt is made in the following to further investigate the results in Fig. 3.13 by studying the lane-changing 

frequency at different positions along the road. Fig. 3.15 gives the spatial distribution of lane-changing 

frequency when 𝐷 = 100 m and 600 m. Figs. 3.15a and 3.15b correspond to the lane-changing frequency 

at density 𝜌 = 20 veh/km in the unsaturated region, while Figs. 3.15c and 3.15d correspond to the lane-

changing frequency at density 𝜌 = 60 veh/km in the saturated region. It can be seen from Figs. 3.15a and 

3.15b that when the density is not very high, lane change mostly occurs near the accidents, e.g. 1000 m in 

Fig. 3.15a, and 700 m and 1300 m in Fig. 3.15b. Even if the total lane-changing frequencies are different 
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for these two cases, they have very close flow rates because of their similar spatial distribution of lane 

change. When the density is high enough, lane change occurs in a wider area, as shown in Figs. 3.15c and 

3.15d. The difference between these two cases with different 𝐷 values is that the lane change distributes 

evenly when 𝐷 = 600 m, while the lane change distributes unevenly when 𝐷 = 100 m. The traffic flow 

efficiency is improved by more evenly distributed lane change, as the 𝐷 increases. The ideal situation is 

the normal two-lane traffic without any blockages, which has the best traffic flow efficiency, because the 

lane change is evenly distributed throughout the whole road. 

 

Figure 3.14 Lane-changing frequency for different distances between two accidents 

   

(a) 𝐷 = 100 m, 𝜌 = 20 veh/km               (b) 𝐷 = 600 m, 𝜌 = 20 veh/km 



81 
 

 

    

 (c) 𝐷 = 100 m, 𝜌 = 60 veh/km               (d) 𝐷 = 600 m, 𝜌 = 60 veh/km 

Figure 3.15 Spatial distribution of lane-changing frequency 

3.3.3.3 Impact of traffic control in accident area 

Extreme events, such as strong winds, often cause vehicle accidents. Before vehicles involved in 

accidents are removed from roads, traffic control is often needed to prevent further accidents or injury. 

Usually, a warning sign is placed at the upstream of the accident scene, showing how far ahead the lane is 

closed, and often along with reduced speed limits. We will study the impact of traffic control schemes for 

the two-accident scenario in this subsection. The schematic illustration of the two-accident scenario with 

traffic control is shown in Fig. 3.16. The area between the warning sign and the first accident is called the 

restriction zone, and the area between the two accidents is called the accident zone. The lengths of the 

restriction zone and the accident zone are set to be 200 m and 800 m, respectively. Under the traffic control, 

vehicles in the restriction zone and accident zone will perform differently with vehicles in other areas. In 

the restriction zone, vehicles on lane 1 will try hard to switch to lane 2, and vehicles on lane 2 will not 

change to lane 1. Additionally, all vehicles in the restriction zone and accident zone must comply with the 

reduced speed limit 𝑉𝑟𝑠. Therefore, the lane-changing rules are modified to consider these differences. 
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Figure 3.16 Schematic illustration of the two-accident scenario with traffic control 

Now we evaluate the effect of different speed limit 𝑣𝑟𝑠 within the restriction zone and accident zone. 

Different speed limits 𝑣𝑟𝑠 = 36 km/h, 54 km/h, 72 km/h and 90 km/h are studied. Fig. 3.17 shows the flow-

density diagrams by setting different speed limits in the restriction zone and accident zone. It is found that 

the flow decreases after the traffic control is enforced, and the speed limit 𝑣𝑟𝑠 has a negative effect on the 

flow. As the speed limit increases, the flow increases especially in the unsaturated region. This is consistent 

with previous research results (Lan et al. 2009). However, when the speed limit is larger than 72 km/h, the 

speed limit has a very limited effect on the flow. Fig. 3.18 gives the time-space diagrams under traffic 

control with the speed limit 𝑣𝑟𝑠 = 36 km/h and 72 km/h at density 𝜌 = 20 veh/km. In Fig. 3.18, the black, 

blue and pink dots represent cars, buses and trucks, respectively. The black arrow indicates the position of 

the warning sign. It can be found the vehicle trajectories in the restriction an accident zone are steeper than 

those in other areas, indicating lower velocity in those areas. Moreover, as the speed limit 𝑣𝑟𝑠 increases, 

the cluster length in front of the accidents becomes longer, and more lane changes occur. It is also found 

that the vehicle clusters are mostly formed by large vehicles (buses and trucks) when the speed limit 𝑣𝑟𝑠 
is relatively high (e.g. 72 km/h), which usually need to wait for longer time than cars before making a 

successful lane change. 
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Figure 3.17 Fundamental diagrams with different speed limit 

 

   

(a) Lane 1 (𝑣𝑟𝑠 = 36 km/h)                    (b) Lane 1 (𝑣𝑟𝑠 = 72 km/h) 

   

 (c) Lane 2 (𝑣𝑟𝑠 = 36 km/h)                   (d) Lane 2 (𝑣𝑟𝑠 = 72 km/h) 

Figure 3.18 Time-space diagrams 

In order to find an appropriate speed limit in the accident scene, the standard deviation of the velocities 

of all vehicles by setting different speed limits 𝑣𝑟𝑠 are further investigated with the results displayed in 

Fig. 3.19. It is found that, in general, the standard deviation of velocities decreases as the speed limit 𝑣𝑟𝑠 
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increases. However, when the speed limit 𝑣𝑟𝑠 is less than 54 km/h, the standard deviation of velocities 

increases with the increase of the speed limit at low-density traffic. Based on overall consideration, 𝑣𝑟𝑠 = 

72 km/h is selected as the optimal speed limit, under which the flow is relatively large. Meanwhile, there is 

also relatively low standard deviation of velocity, which usually suggests lower traffic crash risks, such as 

rear-ends. 

 

Figure 3.19 Standard deviation of velocity with different speed limit 

3.4 Discussions and conclusions 

In this study, a new methodology was proposed to study the traffic performance of degraded road links 

being partially blocked following extreme events. Firstly, by defining the stationary obstacles as “dead 

cells”, existing CA-based traffic flow simulation algorithms were modified to conduct the traffic flow 

simulation of roadways with partial traffic blockage scenarios induced by obstacles with any size and 

distributed pattern. Secondly, in the demonstrative example, two typical partially-blocked scenarios were 

further analyzed to demonstrate the feasibility of applying the proposed methodology to study the traffic 

performance of disrupted roadway links following extreme wind events. Although this methodology was 
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proposed for the traffic study of disrupted bridge and roads following extreme wind events, it is noted that 

the same methodology can also be applied to disrupted scenarios due to other hazards.  

In the numerical demonstrative study, the fundamental diagrams, time-space diagrams and lane-

changing frequency were developed to investigate the traffic flow characteristics and traffic dynamics under 

various scenarios. The impact of truck proportion, blockage configuration and traffic control were also 

studied. The main findings of the numerical study can be summarized as follows: 

(1) Four regions are found in the fundamental diagrams of disrupted traffic with single extended partial 

blockage (scenario A), namely, unsaturated traffic, transition traffic, saturated traffic, and oversaturated 

traffic. 

(2) For scenario A, the truck proportion has a negative effect on the flow and velocity; traffic control of 

buses and trucks can improve the traffic safety in terms of lower speed variation, although the traffic 

flow efficiency is reduced. 

(3) There are three regions in the fundamental diagrams, namely, unsaturated traffic, saturated traffic, and 

oversaturated traffic for the scenario with scattered multiple small partial blockages (scenario B). 

(4) For scenario B, as the distance between two partial blockages increases, the traffic flow is improved by 

more evenly distributed lane change; traffic control in the accident area could improve traffic safety but 

reduce the flow, and an appropriate speed limit in the accident scene is deemed necessary. 
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 CHAPTER 4 DEVELOPMENT OF TRAVEL TIME FUNCTIONS FOR DISRUPTED URBAN 

ARTERIALS WITH MICROSCOPIC TRAFFIC SIMULATION3 

 

4.1 Introduction 

Transportation networks are critical for post-disaster evacuation, emergency response and long-time 

recovery activities. Urban roads are easily disrupted during a disaster due to debris, traffic accidents or 

damages of other interdependent infrastructures. As a result, urban traffic networks consisting of some 

partially blocked roads (PBR) are often required to remain open to traffic before, during and after disasters 

because of their vital roles to hazard preparation, emergency response and recovery of urban communities. 

To conduct effective traffic planning of road networks involving PBR highly depends on accurate prediction 

of travel time on PBR, which is very different from those on intact roads. Due to the lack of appropriate 

models to predict the travel time on PBR, travel time prediction approaches of intact roads have been often 

applied to PBR, leading to inaccurate travel time estimates. Unrealistic travel time estimates of PBR as well 

as the whole traffic network further affect traffic planning, emergency response and other decision-makings 

which are heavily reliant on travel time prediction.  

A new approach to develop travel time functions for PBR in urban areas is proposed to close this gap 

based on microscopic traffic simulation. After the proposed traffic flow simulation model is validated at 

microscopic and macroscopic levels with measured traffic data from an urban road, traffic simulations under 

various scenarios with different traffic volumes, truck ratios and blockage ratios are conducted through 

microscopic simulation experiments. A set of continuous traffic time functions are further developed for 

                                                             

3 This chapter is submitted to a journal in a paper that is currently under review (Hou, Chen and Bao 2019). 
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disrupted traffic flow with parameters estimated from the generated traffic data. Comparison with the 

standard BPR function suggests that the standard BPR function would considerably underestimate the travel 

time for PBR and the proposed travel time functions can offer more realistic prediction. 

4.2 Formulation of microscopic traffic simulation model 

4.2.1 A typical PBR scenario 

For urban transportation systems in the US, four-lane arterials (i.e. two lanes in each direction) and 

two-lane arterials (i.e. one lane in each direction) are the most popular arterial types. If one lane of a two-

lane arterial is blocked, there will be no any traffic in that direction unless manual traffic intervention is 

applied, such as alternate one-way traffic for both directions. Such a scenario involves very low traffic 

capacity and is beyond the scope of the present study. This study will focus on the two-lane traffic in each 

direction on four-lane arterials. Depending on the specific hazard and surrounding environment, road links 

can be blocked in many ways. Traffic performance of a PBR is determined by the specific blockage scenario. 

One of the most common blockage scenarios for two-lane traffic is that one lane is partially closed, and the 

other lane is open to traffic, which is similar to the two-lane traffic with a work zone, as shown in Fig. 4.1. 

Although there are other more complicated blockage scenarios, this study will focus on the most typical 

disruptive scenario in Fig. 4.1. This is because other blockage scenarios either lead to full closure (e.g. 

multiple blockages near to each other) or can be simplified into the scenario being studied here (e.g. multiple 

blockages far apart). 
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Figure 4.1 Schematic diagram of a road section with a blockage 

As shown Fig. 4.1, a blocked area with a length of 𝐿𝑏 is included in the road section. A warning sign 

is usually placed at the upstream of the blockage showing how far ahead the lane is closed, often along with 

reduced speed limit. The area between the warning sign and the blocked area is called merging area with 

the length of 𝐿𝑚 , where drivers on the blocked lane will try to switch lane to the adjacent lane. In the 

meantime, vehicles often need to slow down to the reduced speed limit before moving into the blocked area. 

Any area beyond the blocked and merging areas is called normal area. 

In some situations, warning signs may not be immediately available following an incident or a hazard 

before the traffic management is implemented. In this situation, the length of the merging area and reduced 

speed limit will depend on individual drivers and traffic conditions. Due to different driving behavior, timid 

drivers may merge lane far before the blockage, and drive slowly in the blocked area, while aggressive 

drivers may begin to merge lane very late and drive relatively fast. 

As shown in Fig. 4.1, vehicles enter the road section from the left end of the figure and there is a traffic 

light at the right end with the cycle length of 𝑇. The durations of green-light, yellow-light and red-light 

phases are 𝑇𝑔, 𝑇𝑦 and 𝑇𝑟, respectively. If a vehicle reaches the right end of the road section, it will leave 

when the traffic light is green and stop when the traffic light is red. During a change interval, drivers will 

stop or proceed through the intersection depending on the distance to the intersection and the driving speed. 
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4.2.2  CA-based model 

In order to fully avoid unrealistic deceleration behavior mentioned in Section 1.2.4, an improved 

cellular automaton (CA) model is proposed for heterogeneous traffic flow on partially blocked urban roads 

by extending the two-lane safety driving (SD) model (Li et al. 2016). In this model, the lanes are discretized 

into many identical cells. Each cell is either empty or occupied by a vehicle at a time. Depending on the 

length of each individual vehicle, different numbers of cells may be occupied by each vehicle. The vehicle 

velocity is an integer varying from 0 to 𝑣𝑚𝑎𝑥, which is the maximum velocity of a vehicle. At each time 

step, the position and velocity of each vehicle are updated through the forwarding rule and lane-changing 

rule.  

Open boundary conditions are used in this model. Vehicles enter the road section from the left end with 

a flow rate of 𝑞, and the time headway ℎ is assumed to follow a displaced exponential distribution, which 

has a cumulative probability distribution 𝐹(ℎ) = 1 − 𝑒−𝜆(ℎ−𝑡𝑚) , where 𝑡𝑚  is the minimum headway 

between vehicles and 𝜆 = 𝑞/(1 − 𝑡𝑚𝑞). We assume that the position of the left-most vehicle is 𝑥𝑙𝑎𝑠𝑡, and 

the maximum velocity and length of the new vehicle 𝑛  are 𝑣𝑛,𝑚𝑎𝑥  and 𝑙𝑛 , respectively. If 𝑥𝑙𝑎𝑠𝑡 >𝑣𝑛,𝑚𝑎𝑥 + 𝑙𝑛 and vehicle 𝑛 meets the time headway condition, it will enter the system at the position of 

𝑥𝑛 = 𝑚𝑖𝑛(𝑥𝑙𝑎𝑠𝑡 − 𝑙𝑛 − 𝑣𝑛,𝑚𝑎𝑥 , 𝑣𝑛,𝑚𝑎𝑥) with a velocity of 𝑣𝑛,𝑚𝑎𝑥. 

4.2.2.1 Forwarding rule 

During different traffic light phases, drivers have different driving behavior so the forwarding rules in 

the CA model are also different. Therefore, we will introduce the forwarding rules with two parts as follows. 

4.2.2.1.1 Green-light phase 

There are four consecutive steps in the forwarding rules during the green-light phase, which are 
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performed in parallel for all vehicles. 

S1: Safe distance. Obtain three safe distances for vehicle 𝑛, including safe acceleration distance 𝑑𝑎𝑐𝑐𝑛 , 

safe keep velocity distance 𝑑𝑘𝑒𝑒𝑝𝑛  and safe deceleration distance 𝑑𝑑𝑒𝑐𝑛 . 

For the normal vehicle-vehicle cases, where vehicle 𝑛 + 1 is followed by vehicle 𝑛, 𝑑𝑎𝑐𝑐𝑛 , 𝑑𝑘𝑒𝑒𝑝𝑛  

and 𝑑𝑑𝑒𝑐𝑛 are obtained with the following equations: 

𝑑𝑎𝑐𝑐𝑛 = 𝑚𝑎𝑥 (0, ∑ [(𝑣𝑛(𝑡) + 𝑎) − 𝑖𝑀𝑛](𝑣𝑛(𝑡)+𝑎)𝑑𝑖𝑣 𝑀𝑛
𝑖=0 − ∑ [(𝑣𝑛+1(𝑡) − 𝑀𝑛+1) − 𝑖𝑀𝑛+1](𝑣𝑛+1(𝑡)−𝑀𝑛+1)𝑑𝑖𝑣 𝑀𝑛+1

𝑖=0 )         (4.1) 
𝑑𝑘𝑒𝑒𝑝𝑛 = 𝑚𝑎𝑥(0, ∑ [𝑣𝑛(𝑡) − 𝑖𝑀𝑛]𝑣𝑛(𝑡)𝑑𝑖𝑣 𝑀𝑛

𝑖=0 − ∑ [(𝑣𝑛+1(𝑡) − 𝑀𝑛+1) − 𝑖𝑀𝑛+1](𝑣𝑛+1(𝑡)−𝑀𝑛+1)𝑑𝑖𝑣 𝑀𝑛+1
𝑖=0 )         (4.2) 

𝑑𝑑𝑒𝑐𝑛 = 𝑚𝑎𝑥 (0, ∑ [(𝑣𝑛(𝑡) − 𝑑) − 𝑖𝑀𝑛](𝑣𝑛(𝑡)−𝑑)𝑑𝑖𝑣 𝑀𝑛
𝑖=0 − ∑ [(𝑣𝑛+1(𝑡) − 𝑀𝑛+1) − 𝑖𝑀𝑛+1](𝑣𝑛+1(𝑡)−𝑀𝑛+1)𝑑𝑖𝑣 𝑀𝑛+1

𝑖=0 )          (4.3) 
For special car-truck cases, when both the velocity 𝑣𝑛(𝑡) and limited deceleration capability 𝑀𝑛 of 

vehicle 𝑛 (car) are higher than 𝑣𝑛+1(𝑡) and 𝑀𝑛+1 of the leading vehicle 𝑛 + 1 (truck), 𝑑𝑎𝑐𝑐𝑛 , 𝑑𝑘𝑒𝑒𝑝𝑛 

and 𝑑𝑑𝑒𝑐𝑛 are calculated with the following equations: 

For 𝑑𝑎𝑐𝑐𝑛, we set ∆𝑣 = 𝑣𝑛+1(𝑡) − 𝑀𝑛+1 − (𝑣𝑛(𝑡) + 𝑎), ∆𝑀 = 𝑀𝑛+1 −𝑀𝑛, 𝜏1 = ∆𝑣𝑑𝑖𝑣 Δ𝑀, 𝜏2 =(𝑣𝑛(𝑡) + 𝑎)𝑑𝑖𝑣 𝑀𝑛. 

𝑑𝑎𝑐𝑐𝑛 = 𝑚𝑖𝑛 { ∑ [((𝑣𝑛(𝑡) + 𝑎) − 𝑖𝑀𝑛) − ((𝑣𝑛+1(𝑡) − 𝑀𝑛+1) − 𝑖𝑀𝑛+1)]𝜏1 𝑜𝑟 𝜏2
𝑖=0 }          (4.4) 

For 𝑑𝑘𝑒𝑒𝑝𝑛 , we set ∆𝑣 = 𝑣𝑛+1(𝑡) − 𝑀𝑛+1 − 𝑣𝑛(𝑡) , ∆𝑀 = 𝑀𝑛+1 −𝑀𝑛 , 𝜏1 = ∆𝑣𝑑𝑖𝑣 Δ𝑀 , 𝜏2 =𝑣𝑛(𝑡)𝑑𝑖𝑣 𝑀𝑛. 

𝑑𝑘𝑒𝑒𝑝𝑛 = 𝑚𝑖𝑛 { ∑ [(𝑣𝑛(𝑡) − 𝑖𝑀𝑛) − ((𝑣𝑛+1(𝑡) − 𝑀𝑛+1) − 𝑖𝑀𝑛+1)]𝜏1 𝑜𝑟 𝜏2
𝑖=0 }                  (4.5) 

For 𝑑𝑑𝑒𝑐𝑛, we set ∆𝑣 = 𝑣𝑛+1(𝑡) − 𝑀𝑛+1 − (𝑣𝑛(𝑡) − 𝑑), ∆𝑀 = 𝑀𝑛+1 −𝑀𝑛, 𝜏1 = ∆𝑣𝑑𝑖𝑣 Δ𝑀, 𝜏2 =
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(𝑣𝑛(𝑡) − 𝑑)𝑑𝑖𝑣 𝑀𝑛. 

𝑑𝑑𝑒𝑐𝑛 = 𝑚𝑖𝑛 { ∑ [((𝑣𝑛(𝑡) − 𝑑) − 𝑖𝑀𝑛) − ((𝑣𝑛+1(𝑡) − 𝑀𝑛+1) − 𝑖𝑀𝑛+1)]𝜏1 𝑜𝑟 𝜏2
𝑖=0 }          (4.6) 

For vehicle-obstacle cases, where vehicle 𝑛 is the nearest vehicle behind an obstacle, 𝑑𝑎𝑐𝑐𝑛, 𝑑𝑘𝑒𝑒𝑝𝑛 

and 𝑑𝑑𝑒𝑐𝑛 are calculated with the following equations: 

𝑑𝑎𝑐𝑐𝑛 = 𝑚𝑎𝑥 (0, ∑ [(𝑣𝑛(𝑡) + 𝑎) − 𝑖𝑀𝑛](𝑣𝑛(𝑡)+𝑎)𝑑𝑖𝑣 𝑀𝑛
𝑖=0 )                                (4.7) 

𝑑𝑘𝑒𝑒𝑝𝑛 = 𝑚𝑎𝑥 (0, ∑ [𝑣𝑛(𝑡) − 𝑖𝑀𝑛]𝑣𝑛(𝑡)𝑑𝑖𝑣 𝑀𝑛
𝑖=0 )                                      (4.8) 

𝑑𝑑𝑒𝑐𝑛 = 𝑚𝑎𝑥 (0, ∑ [(𝑣𝑛(𝑡) − 𝑑) − 𝑖𝑀𝑛](𝑣𝑛(𝑡)−𝑑)𝑑𝑖𝑣 𝑀𝑛
𝑖=0 )                                (4.9) 

S2: Slow to accelerate.  Determine the stochastic noise parameter 𝑅𝑎 based on the vehicle’s velocity 

𝑣𝑛(𝑡). 𝑅𝑎 = 𝑚𝑖𝑛(𝑅𝑑 , 𝑅0 + 𝑣𝑛(𝑡) ∙ (𝑅𝑑 − 𝑅0)/𝑣𝑠)                  (4.10) 

S3: Update the velocities of all vehicles simultaneously by comparing the vehicle’s space gap 𝑑𝑛(𝑡) 
with the calculated three safe distances. When vehicles approach the merging area, they need to decelerate 

to the reduced speed limit 𝑣𝑟 gradually in a short time period and obey the speed limit until moving out of 

the blocked area. At the same time, in the merging area, vehicles in the blocked lane (lane 1) will try to 

change to the unblocked lane (lane 2) as soon as possible. Therefore, the forwarding rules in the merging 

and blocked areas are different from those in the normal area. 

S3a: Acceleration.  

In the normal area, where the maximum velocity is 𝑣𝑚𝑎𝑥, if 𝑑𝑛(𝑡) ≥ 𝑑𝑎𝑐𝑐𝑛, or in the merging and 

blocked areas, where the maximum velocity is 𝑣𝑟, if 𝑑𝑛(𝑡) ≥ 𝑑𝑎𝑐𝑐𝑛 and 𝑣𝑛(𝑡) ≤ 𝑣𝑟  
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𝑣𝑛(𝑡 + 1) = {𝑚𝑖𝑛(𝑣𝑛(𝑡) + 𝑎, 𝑣𝑚𝑎𝑥  𝑜𝑟 𝑣𝑟), 𝑖𝑓 𝑟𝑎𝑛𝑑𝑓() ≤ (𝑅𝑎)𝑣𝑛(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             (4.11) 

S3b: Random slowing down.  

In the normal area, if 𝑑𝑎𝑐𝑐𝑛 > 𝑑𝑛(𝑡) ≥ 𝑑𝑘𝑒𝑒𝑝𝑛  , or in the merging and blocked areas, if 𝑑𝑎𝑐𝑐𝑛 >𝑑𝑛(𝑡) ≥ 𝑑𝑘𝑒𝑒𝑝𝑛  and 𝑣𝑛(𝑡) ≤ 𝑣𝑤𝑧 

𝑣𝑛(𝑡 + 1) = {𝑚𝑎𝑥(𝑣𝑛(𝑡) − 𝑑, 0), 𝑖𝑓 𝑟𝑎𝑛𝑑𝑓() ≤ (𝑅𝑠)𝑣𝑛(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                (4.12) 

S3c: Braking.  

In the normal area, if 𝑑𝑘𝑒𝑒𝑝𝑛 > 𝑑𝑛(𝑡) ≥ 𝑑𝑑𝑒𝑐𝑛, 

𝑣𝑛(𝑡 + 1) → 𝑚𝑎𝑥(𝑣𝑛(𝑡) − 𝑑, 0)                       (4.13) 

In the merging and blocked areas,  

𝑣𝑛(𝑡 + 1) = {𝑚𝑎𝑥(𝑣𝑛(𝑡) − 𝑑, 0), 𝑖𝑓 𝑣𝑛(𝑡) ≤ 𝑣𝑟  𝑎𝑛𝑑 𝑑𝑘𝑒𝑒𝑝𝑛 > 𝑑𝑛(𝑡) ≥ 𝑑𝑑𝑒𝑐𝑛𝑚𝑎𝑥(𝑣𝑛(𝑡) − 𝑑, 0), 𝑖𝑓 𝑣𝑛(𝑡) > 𝑣𝑟 𝑎𝑛𝑑 𝑑𝑛(𝑡) ≥ 𝑑𝑑𝑒𝑐𝑛𝑣𝑛(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (4.14) 

S3d: Emergency braking. If 𝑣𝑛(𝑡) > 0 and 𝑑𝑛(𝑡) < 𝑑𝑑𝑒𝑐𝑛, 

𝑣𝑛(𝑡 + 1) → 𝑚𝑎𝑥(𝑣𝑛(𝑡) − 𝑀𝑛, 0)                       (4.15) 

S4: Vehicle movement. 

𝑥𝑛(𝑡 + 1) → 𝑥𝑛(𝑡) + 𝑣𝑛(𝑡 + 1)                        (4.16) 

where  𝑥𝑛(𝑡)  and 𝑣𝑛(𝑡)  denote the longitudinal position and velocity of vehicle 𝑛  at time step t, 

respectively; 𝑑𝑛(𝑡) denotes the space gap of vehicle 𝑛 , which is the clear distance between vehicle 𝑛 

and its preceding vehicle 𝑛 + 1 on the current lane, 𝑑𝑛(𝑡) = 𝑥𝑛+1 − 𝑥𝑛 − 𝑙𝑛; if vehicle 𝑛 is the first 

vehicle on its lane, a large value will be assigned to 𝑑𝑛(𝑡); 𝑙𝑛 denotes the length of vehicle 𝑛; 𝑎 and 𝑑 

denote the normal acceleration and deceleration rate, respectively; 𝑋𝑑𝑖𝑣 𝑌 denotes the integer division, and 

it is defined as 𝑋𝑑𝑖𝑣 𝑌 = [𝑋/𝑌], where "/" denotes normal division and [𝑧] is the floor function; 𝑣𝑠 is a 
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constant velocity slightly above 0; 𝑅0 and 𝑅𝑑 are given constants that control the velocity fluctuations of 

vehicles, 0 < 𝑅0 < 𝑅𝑑 ≤ 1; 𝑅𝑎 = 𝑅0 when the 𝑣𝑛(𝑡) = 0, and 𝑅𝑎 = 𝑅𝑑 when 𝑣𝑛(𝑡) ≥ 𝑣𝑠; 𝑅𝑠 is the 

slowing down probability. 

4.2.2.1.2 Yellow- and red-light phases 

Once the yellow light is on, drivers must decide to stop or to cross the intersection. Therefore, at the 

onset of yellow light, the status of a vehicle needs to be determined based on the vehicle’s distance to the 

intersection and the driving speed. There are three possible statuses for each vehicle, namely “cross status”, 

“stop status” and “follow status”. A vehicle with a cross status will cross the intersection during the yellow-

light phase. With a stop status, the vehicle will stop in front of the intersection during the yellow and red-

light phases. There is only one vehicle with a stop status on each lane. All the vehicles behind any vehicle 

in “stop status” are in “follow status”, which will move by following their preceding vehicles. A vehicle’s 

status will be determined by three algorithms in the proposed CA model. The first algorithm is used to 

reflect the uncertainty of a driver’s decision with a distance-dependent stopping probability function. A 

logistic function adopted by Hsu and Chiou (2018) is used to compute the probability of stop decision of a 

vehicle at the onset of yellow light, as expressed in Eq. (4.17). The logistic function describes the 

relationship between the stopping probability of a vehicle and its distance to the intersection. Generally, as 

the distance to the intersection decreases, the stopping probability increases. 𝑃𝑠 = 11+𝑒−𝛼(𝑑𝑠𝑖𝑔−𝛽)                             (4.17) 

where 𝑃𝑠 is the stopping probability of a vehicle; 𝑑𝑠𝑖𝑔 is the distance to the intersection; 𝛼 and 𝛽 are 

two shape parameters. 

The second algorithm is that if a vehicle cannot stop in front of the intersection during the yellow-light 
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phase by decelerating from its current speed with the maximum deceleration rate, it will have a “cross 

status”. If not, the vehicle may have a “stop status”. The stopping distance during the yellow-light phase 

can be expressed with Eqs. (4.18) and (4.19). 𝑡𝑑 = 𝑣𝑛(𝑡)𝑑𝑖𝑣 𝑀𝑛                                    (4.18) 

𝑆𝑑 =
{  
  ∑[𝑣𝑛(𝑡) − 𝑖𝑀𝑛], 𝑖𝑓 𝑡𝑑 ≤ 𝑡𝑦𝑡𝑑
𝑖=1∑[𝑣𝑛(𝑡) − 𝑖𝑀𝑛]𝑡𝑦
𝑖=1 , 𝑖𝑓 𝑡𝑑 > 𝑡𝑦                                                     (4.19) 

The third algorithm is that if a vehicle driver decides to proceed through the intersection but cannot 

reach the intersection by accelerating with the normal deceleration rate, the vehicle will have a “stop status” 

when it reaches the intersection. The driving distance during the yellow-light phase can be calculated with 

Eqs. (4.20) and (4.21). 𝑡𝑐 = (𝑣𝑚𝑎𝑥 − 𝑣𝑛(𝑡))𝑑𝑖𝑣 𝑎                         (4.20) 

𝑆𝑐 =
{  
  ∑[𝑣𝑛(𝑡) − 𝑖𝑎]𝑡𝑐
𝑖=1 + (𝑡𝑦 − 𝑡𝑐)𝑣𝑚𝑎𝑥 , 𝑖𝑓 𝑡𝑐 ≤ 𝑡𝑦

∑[𝑣𝑛(𝑡) − 𝑖𝑎]𝑡𝑦
𝑖=1 , 𝑖𝑓 𝑡𝑐 > 𝑡𝑦                            (4.21) 

We set the identifier of “stop status”, “cross status” and “follow status” as 𝑠𝑡 = 2, 1, 𝑎𝑛𝑑 0 , 

respectively. The “stop status” and “cross status” will be firstly determined by the logic algorithm displayed 

in Fig. 4.2 by considering all three above-mentioned conditions. The algorithm will be checked for all 

vehicles from the first to the last one on each lane. As long as vehicles with “stop status” and “cross status” 

are identified, the statuses of the rest vehicles will be assigned accordingly. 
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Figure 4.2 Logic algorithm for vehicle status determination 

After vehicle statuses are all identified, vehicles with different statuses will move by following 

different forwarding rules. Forwarding rules used in the green-light phase will still apply to vehicles with a 

“cross status” and “follow status”. However, those forwarding rules will need some revisions before 

applying to vehicles with “stop status”. Firstly, three safe distances in step S1, including safe acceleration 

distance 𝑑𝑎𝑐𝑐𝑛 , safe keep velocity distance 𝑑𝑘𝑒𝑒𝑝𝑛  and safe deceleration distance 𝑑𝑑𝑒𝑐𝑛  , will be 

calculated with Eqs. (4.7) to (4.9), respectively. Secondly, in step S3, space gap 𝑑𝑛(𝑡) will be substituted 

with 𝑑𝑠𝑖𝑔(𝑡). 
4.2.2.2 Lane-changing rule 

The symmetric lane-changing rules are adopted in this model with the incentive and safety criteria. 

Once the lane-changing rules are satisfied, a vehicle will perform lane-changing maneuver with a 

probability of 𝑅𝑐. Vehicles in different areas have different lane-changing behavior: vehicles in the blocked 

area cannot change lane; moreover, vehicles in the merging area will try to switch from lane 1 to lane 2, but 

are not allowed to switch lane from lane 2 to lane 1. Therefore, different lane-changing rules will be applied 

depending on which area any vehicle is currently at. 
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4.2.2.2.1 Normal area 

The incentive criterion: 𝑑𝑛 < 𝑑𝑎𝑐𝑐𝑛  and 𝑑𝑛,𝑜𝑡ℎ𝑒𝑟 ≥ 𝑑𝑎𝑐𝑐𝑛,𝑜𝑡ℎ𝑒𝑟                  (4.22) 

The safety criterion: 𝑑𝑛,𝑏𝑎𝑐𝑘 > 𝑑𝑑𝑒𝑐𝑏𝑎𝑐𝑘,𝑛                           (4.23) 

where 𝑑𝑛,𝑜𝑡ℎ𝑒𝑟 denotes the gap between vehicle 𝑛 and the nearest vehicle in front of it in the adjacent 

lane, i.e. the front vehicle; 𝑑𝑛,𝑏𝑎𝑐𝑘 denotes the gap between vehicle 𝑛 and the nearest vehicle behind it 

in the adjacent lane, i.e. the back vehicle; 𝑑𝑎𝑐𝑐𝑛,𝑜𝑡ℎ𝑒𝑟  denotes the safe acceleration distance of vehicle 𝑛 

if it switches to the adjacent lane; 𝑑𝑑𝑒𝑐𝑏𝑎𝑐𝑘,𝑛 denotes the safe deceleration distance of the back vehicle if 

vehicle 𝑛 is switched to the adjacent lane. 

4.2.2.2.2 Merging area 

Because vehicles in the merging area will try hard to switch from lane 1 to lane 2, the incentive criterion 

of lane change for them becomes less strict than that of vehicles in the normal area. Therefore, the incentive 

criterion is modified as follows. 𝑑𝑛,𝑜𝑡ℎ𝑒𝑟 ≥ 𝑑𝑑𝑒𝑐𝑛,𝑜𝑡ℎ𝑒𝑟                               (4.24) 

where 𝑑𝑑𝑒𝑐𝑛,𝑜𝑡ℎ𝑒𝑟  denotes the safe deceleration distance of vehicle 𝑛 if it switches to the adjacent lane. 

The safety criterion of lane change is same as that in the normal area. Besides, vehicles in lane 2 will not 

change lane in the advance warning area, and therefore the lane-changing probability is set as 𝑅𝑐 = 0.  

4.3 Model calibration and validation 

4.3.1 Data collection 

The data used in this study was collected from Drake Road between Shields Street and Taft Hill Road, 
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a two-lane arterial road in the City of Fort Collins, Colorado. There are two reasons why this road was 

chosen. Firstly, there was a work zone area on one of the two lanes on this road, which can be treated as a 

typical PBR scenario. Secondly, there was a data collection system Bluetoad installed on both ends of the 

road. The total length of the road is 1,610 m with the speed limit of 18 m/s (40 mph). The work zone was 

located from 644 to 1,079 m, with a length of 435 m. There was a warning sign located at 300 m upstream 

of the work zone and there was no posted work zone speed limit. The durations of green-, yellow- and red-

light phases were 25 s, 5 s, and 60 s, respectively. The data used in this study was collected between 

December 9th and December 23th of 2018 when the work zone was under construction. Two types of traffic 

data were collected: microscopic and macroscopic data. Macroscopic data include travel time, speed, and 

vehicle volume, which are accessible from the data collection system BlueTOAD installed on both ends of 

the road section. The system measures travel time and delay of travelers by detecting Bluetooth MAC 

addresses of passing devices (e.g. mobile phones, ear phones and in-vehicle hand free audio systems) and 

comparing the time of these addresses from one known location to another. Macroscopic data were collected 

for 15 days and the datasets were aggregated over 15-minute time intervals. According to the field 

observation, the truck ratio is about 5%.  

For the microscopic data collection, the video-photographic method is the most widely used technique. 

However, the method is not suitable in this study because many cameras are needed to cover long road 

sections and the accuracy is not guaranteed with fewer cameras. Therefore, a smartphone-based GPS 

method is used to collect the microscopic data of moving vehicles in this study. The instantaneous vehicle 

speed and trajectory were measured through a mobile app called GPS Speedometer installed on the drivers’ 

smartphone and the mobile app has an accuracy of 98%. Vehicles moved in tandem along the road in order 
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to consider the interaction between vehicles. The limitation of this method is that data collection is restricted 

by the available resources, such as drivers, vehicles and smartphones. In this study, during each round of 

data collection, two experienced test drivers were asked to drive through the whole road section from the 

beginning to the end, and the trajectory and speed data were collected with the mobile app. A total of 12 

rounds of data collection were conducted. 

4.3.2 Model calibration 

The proposed model is then calibrated with the collected data macroscopically and microscopically. 

Because microscopic data of trucks are not available, microscopic calibration is conducted for cars only.  

Parameters of trucks, such as vehicle length 𝑙 , acceleration rate 𝑎 , vehicle deceleration rate 𝑑 , and 

deceleration capability 𝑀 provided in Li et al. (2016) are used, as shown in Table 4.1. Moreover, it is 

observed that maximum velocities for cars and trucks outside the work zone area are about 18 m/s (40 mph) 

and 15.5 m/s (35 mph), respectively. The observed maximum velocity in the work zone area for both vehicle 

types is about 13.5 m/s (30 mph). Preliminary tests show that some model parameters have more significant 

influence on the vehicle trajectory and speed than the rest, while others have greater influence on the 

macroscopic dynamics of traffic flow. Therefore, calibrations are performed in two steps. Firstly, trajectory 

and speed data are used to calibrate parameters of cars including the vehicle acceleration rate 𝑎, vehicle 

deceleration rate 𝑑, and deceleration capability 𝑀. Secondly, aggregated average travel speed data are 

used to calibrate model parameters including the randomization probability 𝑅𝑠, the stopping probability-

related parameter 𝛼 and β, and the stochastic noise-related parameter 𝑣𝑠. Genetic Algorithm is used in 

the macroscopic and microscopic calibration, and the calibrated parameter values for the proposed model 

are found and displayed in Table 4.1.  
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Table 4.1 Calibrated parameters for the proposed model 

Parameters Car Truck 

Vehicle length 𝑙 (m) 6 12 

Acceleration 𝑎 (m/s2) 1 0.5 

Deceleration 𝑑 (m/s2) 1.5 1 

Deceleration capability 𝑀 (m/s2) 4 3 

Maximum velocity 𝑣𝑚𝑎𝑥 (m/s) 18 15.5 

Work zone speed limit 𝑣𝑟 (m/s) 13.5 

Stochastic noise related parameter 𝑣𝑠 (m/s) 5.5 

Randomization probability 𝑅𝑠 0.36 

Stopping probability related parameter 𝛼 0.17 

Stopping probability related parameter β (m) 55.5 

4.3.3 Model validation 

The validation of the proposed model is conducted at microscopic and macroscopic levels. In 

microscopic validation, we compared the trajectory and speed of individual vehicles generated from the 

proposed model with the measured field data. In macroscopic validation, the simulated average travel 

speeds were compared with the measured field data. 

4.3.3.1 Microscopic validation 

The simulated trajectories by the proposed model are compared with the measured microscopic filed 

data. In order to generate the same initial headway, observed vehicle arrival distribution and entry speed 

are used to generate vehicles in the simulation. Fig. 4.3 shows the comparison of the observed and simulated 

longitudinal trajectories and speeds for two cars. It can be seen from the figure that both cars decelerate 

from the maximum velocity before entering the work zone, accelerate after leaving the work zone, and 

finally stop in front of the red traffic light. There is good agreement between the simulated trajectory and 
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speed and the field data for both cars. However, relatively large speed deviations are found in the work zone 

area (Fig. 4.3b), especially for car 2, due to the stochastic characteristic of traffic dynamics. This indicates 

that microscopic traffic dynamic is not only affected by the vehicle performance, but also the driving 

behaviors of different drivers, especially in abnormal driving environments such as disrupted roadways. 

Moreover, some obvious trajectory deviations are found for car 2 when it approached the traffic light (Fig. 

4.3a), which was mainly resulted from the speed deviations in the work zone area. 

Error tests are used to quantitatively evaluate the performance of the proposed model. The overall error 

between the simulation results and field data are quantified by the root mean square percent error (RMSE) 

and mean percent error (MPE). The equation of RMSE and MPE can be expressed as follows. 

𝑅𝑀𝑆𝐸 = √1𝑁∑(𝑧̂𝑘 − 𝑧𝑘𝑧𝑘 )2𝑁
𝑘=1                                                      (4.25) 

𝑀𝑃𝐸 = 1𝑁∑(|𝑧̂𝑘 − 𝑧𝑘|𝑧𝑘 )𝑁
𝑘=1                                                            (4.26) 

where 𝑧̂𝑘 is the simulated value from the proposed model, 𝑧𝑘 is the corresponding observed value from 

the field data, and 𝑁 is the number of observations. Error tests are performed for the trajectories and speeds 

of each vehicle at each second. According to the error tests result, the RMSE and MPE of the vehicle 

trajectories are less than 7% and 4%, respectively. The RMSE and MPE of vehicle speeds are less than 7% 

and 6%, respectively. The deviations between the simulation and field data are relatively small and deemed 

acceptable. Therefore, we can conclude that the proposed model can capture the traffic dynamics of 

disrupted flow at the microscopic level with reasonable accuracy.  
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(a) Position 

 

(b) Speed 

Figure 4.3 Comparison between observation and CA simulation 

4.3.3.2 Macroscopic validation 

The model is then validated with average travel speed data from the rest 5 days of the 15 days. Firstly, 

the speed-volume relationship from the simulation results was compared with the field data. Fig. 4.4 shows 
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the comparison of speed-volume relationships from both field data and simulation. It can be seen from the 

figure that the simulated speed-volume relationship has a good agreement with the observed field data, 

although there is pretty large discrepancy against the field data under low-volume traffic conditions. 

Secondly, we compared the simulated time series of speed with field data in order to evaluate how well the 

proposed model performs in the time domain. Fig. 4.5 shows the comparison of time series of speed from 

field data and simulation. It can be seen that the simulated speeds match well with the field data for most 

time periods except for the late night and early morning when the traffic volume is very low, and the travel 

time becomes significantly random. RMSE and MPE are still used for the overall error of the aggregated 

speed between simulation results and field data, which are found to be 12% and 9%, respectively. These 

errors are within the acceptable limit as stated by Meng and Weng (2011) for the CA-based model in terms 

of travel speed. These results show that the proposed model can realistically reproduce the disrupted traffic 

flow at the macroscopic level. 

 

Figure 4.4 Comparison of speed-volume relationship from field data and simulation 
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Figure 4.5 Comparison of time series of speed from field data and simulation 

4.4 Development of travel time functions for PBR  

4.4.1 Simulation experiments 

Traffic volume, truck ratio and blockage ratio are identified as the three key factors that affect travel 

time in past studies. Blockage ratio is defined in this study as the ratio between the length of the blockage 

and the total length of the road. In order to evaluate quantitatively the influence of traffic volume, truck 

ratio and blockage ratio on travel time, microscopic simulation experiments are conducted with the 

validated model on the same disrupted road in the last section. A total of 525 combination scenarios for 15 

traffic volumes (50 to 750 veh/h/lane with a 50 veh/h/lane increment), 7 truck ratios (0% to 30% with a 5% 

increment) and 5 blockage ratios (10% to 50% with a 10% increment) are simulated.  

Fig. 4.6 shows the simulated travel time-volume data with different truck ratios when the blockage 

ratio 𝑅𝑏 equals 30%. Fig. 4.7 shows the simulated travel time-volume data with different blockage ratios 

when the truck ratio 𝑅𝑡 equals 20%. Several general observations can be made from the simulation results 

in Figs. 4.6 and 4.7. Firstly, the travel time increases as the traffic volume increases. Secondly, it is found 
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in Fig. 4.6 that the travel time increases as the truck ratio increases and the impact of the truck ratio becomes 

more significant when the traffic volume is higher. Thirdly, it can be found in Fig. 4.7 that the travel time 

increases with the increase of the blockage ratio. However, as the traffic volume increases, the influence of 

the blockage ratio becomes slightly less significant. 

 

Figure 4.6 Simulated travel time-volume data with different truck ratios 

 

Figure 4.7 Simulated travel time-volume data with different blockage ratios 

4.4.2 Regression analysis of travel time functions 

In order to consider the effect of trucks on the travel time-volume relationship, Yun et al. (2005) 
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proposed a revised BPR function, which has the following form. 

𝑡 = 𝑡0[1 + 𝛼(1 + 𝑅𝑡)𝛽(𝑓/𝐶)𝛾]                       (4.27) 

where 𝑡 is the travel time; 𝑡0 is the free-flow time; 𝑓 is the traffic flow volume; 𝐶 is the road capacity; 

𝛼, 𝛽 and 𝛾 are coefficients. The term (1 + 𝑅𝑡)𝛽 in Eq. (4.27) is used to reflect the impact of the truck 

ratio on the travel time in a reasonable way. Firstly, the value of this term becomes 1 when the truck ratio 

𝑅𝑡 = 0. This ensures that Eq. (4.27) is consistent with the BPR function. Secondly, the value of (1 + 𝑅𝑡)𝛽 

increases as the truck ratio 𝑅𝑡 increases when 𝛽 > 0.  

As discussed earlier, the blockage ratio 𝑅𝑏 has following effects on travel time: a significant increase 

in the free-flow time as 𝑅𝑏 increases, and a smaller influence when the traffic volume is higher. Therefore, 

two modifications of Eq. (4.27) need to be made to consider the effect of the blockage ratio. Firstly, a new 

term 𝑓(𝑅𝑏), which is a function of the blockage ratio 𝑅𝑏, is introduced to replace the constant free-flow 

time 𝑡0. This ensures that different blockage ratios correspond to different free-flow time. Several possible 

function forms (e.g. linear, quadratic, exponential functions) are tested, and it is found that a simple linear 

function can provide a very good fit of the observed data. Secondly, a power function in the form of 

(1 + 𝑅𝑏)𝛽 is introduced to consider the decreasing effect of the blockage ratio with the increase of traffic 

volume. When 𝛽 < 0, the value of (1 + 𝑅𝑏)𝛽 decreases as the blockage ratio 𝑅𝑏 increases. The other 

reason that we choose the power function is that it has a consistent form as the term about the truck ratio 

𝑅𝑡, which allows for easy calibration. Finally, the modified travel time function has the following form: 

𝑡 = (𝛼1 + 𝛼2𝑅𝑏)[1 + 𝛼3(1 + 𝑅𝑏)𝛼4(1 + 𝑅𝑡)𝛼5(𝑓/𝐶)𝛼6]                (4.28) 

where 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, and 𝛼6 are parameters.  

A nonlinear regression analysis is performed to estimate the parameters of the travel time function 
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shown in Eq. (4.28) with the simulated 525 data sets. The road capacity used in the analysis is determined 

based on the speed-volume relationship from the field data, which is around 600 vehicle/h/lane. The 

calibrated travel time functions are shown as follows. 

𝑡 = (115.8 + 30.4𝑅𝑏)[1 + 0.357(1 + 𝑅𝑏)−0.304(1 + 𝑅𝑡)1.36(𝑓/𝐶)2.387]       (4.29) 

To measure how well the regression model describes the simulated data, a number of goodness-of-fit 

statistics are evaluated. The high value of 𝑅2 (0.99) and low value of 𝑆𝐸𝐸 (3.11) clearly indicates that 

the calibrated travel time functions can capture the relationship between the travel time and the traffic 

volume, truck ratio and blockage ratio very well. The high value of 𝐹  (41815) also indicates overall 

significance of the regression model.  

The calibrated travel time functions are further validated by predicting travel time of random traffic 

scenarios and comparing them against the actual values. A randomly selected scenario (𝑅𝑏 = 0.33 and 𝑅𝑡 
= 0.18) that was not included in the previous simulation is used in the validation analysis. The validation 

results are shown in Fig. 4.8, from which it can be seen that all new simulation data of the selected scenario 

falls in the 95% prediction intervals of the regression travel time. Similar validation results are also obtained 

for other random scenarios and this indicates that the calibrated travel time functions are able to predict 

new observations with acceptable accuracy. 



107 
 

 

 

Figure 4.8 Validation results for a random selected scenario 

4.4.3 Discussion on the application of travel time function for PBR 

Accurate estimation of travel time on PBR is very important for the performance assessment of post-

hazard transportation networks. However, the standard BPR function was usually used in the past for travel 

time prediction on PBR in the post-hazard transportation demand modeling, due to unavailability of travel 

time functions derived specifically for PBR. In this section, we will compare the developed travel time 

functions with the standard BPR function to identify the difference between them. The comparison of the 

calibrated travel time functions of different traffic scenarios and the standard BPR function for PBR is 

shown in Fig. 4.9. There are 6 different combination scenarios in Fig. 4.9, including 3 blockage ratios and 

2 truck ratios. In line with previous practice, the free-flow time under normal condition (𝑡0 = 109 s) and 

the reduced traffic capacity (𝐶  = 600 Veh/h/lane) are substituted into the standard BPR function, 𝑡 =
𝑡0(1 + 0.15(𝑓/𝐶)4), to get the travel time function.  

Several limitations of the standard BPR function can be identified from Fig. 4.9. Firstly, since there is 

only one curve for the standard BPR function, it cannot consider the difference between different traffic 
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scenarios with different vehicle compositions and blockage sizes. Secondly, the curve of the standard BPR 

is considerably different from that of the calibrated functions. Although the values from both functions 

increase over volume-to-capacity ratio, the increment is much smaller under undersaturated condition for 

the standard BPR function, because the interaction between vehicles and the obstruction was not considered. 

Thirdly, the standard BPR function underestimates travel time under both undersaturated and oversaturated 

conditions as compared to the calibrated functions. For example, for the scenario where the blockage ratio 

𝑅𝑏 = 10% and truck ratio 𝑅𝑡 = 10%, the estimated travel time by the standard BPR function is 25% lower 

when the volume-to-capacity ratio is 1.0. Underestimation of travel time with the standard BPR function 

will lead to biased travel demand estimates. Apparently, the calibrated travel time functions can give more 

realistic travel time prediction over the standard BPR function, which in turn leads to realistic travel demand 

estimate in post-hazard transportation network analysis. 

 

Figure 4.9 Comparison of calibrated travel time functions and standard BPR function 
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4.5 Conclusions 

By overcoming the limitations of previous studies, this study proposed a methodology for developing 

travel time functions of PBR in urban areas based on microscopic traffic simulation. Firstly, an improved 

CA model was proposed for heterogeneous traffic flow on partially blocked arterial roads by extending the 

two-lane SD model. With the proposed model, two types of unrealistic deceleration behaviors in most 

existing CA models can be avoided. Meanwhile, driver’s behaviors during traffic signal change intervals 

were realistically replicated by determining the vehicle status based on the vehicle’s distance to the 

intersection, driving speed and stopping probability. Secondly, the proposed model was calibrated and 

validated with the collected field traffic data in both macroscopic and microscopic scales. The validation 

results show that the proposed model can simulate the disrupted traffic flow with acceptable accuracy. 

Finally, the traffic data under various scenarios with different traffic volumes, truck ratios and blockage 

ratio were generated through microscopic simulation experiments. The experiment results demonstrate that 

both blockage ratio and truck ratio have significant influence on the travel time. A continuous traffic time 

function was proposed for the disrupted traffic flow to capture the effect of the blockage ratio and truck 

ratio on the travel time. Its parameters were then estimated through a nonlinear regression analysis with the 

generated traffic data. Comparison results show that the developed travel time functions can provide more 

flexible and accurate predictions of travel time for PBR than the standard BPR function. 
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 CHAPTER 5 FRAMEWORK OF SIMULATION-BASED VEHICLE SAFETY PERFORMANCE 

ASSESSMENT OF HIGHWAY SYSTEM UNDER HAZARDOUS DRIVING CONDITIONS4 

 

5.1 Introduction 

Vehicles are extremely vulnerable to single-vehicle accidents under some hazardous driving conditions 

(i.e. strong wind, icy or snowy road surface). An integrated framework is proposed to assess single-vehicle 

traffic safety performance of stochastic traffic flow under hazardous driving conditions. Different from 

most existing studies focusing on a single vehicle moving at a constant speed, for the first time, the proposed 

work evaluates individual vehicle safety performance based on the time-dependent simulation results of 

stochastic traffic flow, including instantaneous speeds and positions of each vehicle as a part of simulated 

traffic flow. Simultaneously, complex geometric and other environmental conditions of the highway system 

are also considered realistically, not only during the safety assessment process, but also in quantifying the 

wind loads applied on the vehicles. Finally, with the safety information of each individual vehicle, an overall 

safety performance index of the whole traffic flow on the highway system is further introduced, which 

serves as a potential traffic safety performance measure and resilience indicator of transportation 

infrastructure systems under various hazardous conditions. This study has potential applications to not only 

regular vehicles, but also advanced traffic management and control algorithms for connected and 

autonomous vehicles in hazardous driving environments. 

5.2 Methodology Formulation 

 

                                                             

4 This chapter is adapted from a published paper by the author (Hou, Chen and Chen 2019) with permission from 

Elsevier. 
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As illustrated in Fig. 5.1, the proposed vehicle safety assessment framework consists of three main 

parts: first, stochastic traffic flow is simulated with an improved CA-based traffic flow simulation model; 

second, rollover or sideslip accidents of each individual vehicle in the simulated traffic flow under 

hazardous driving conditions are assessed with the single-vehicle accident (SVA) simulation model; finally, 

the overall traffic safety performance of the traffic flow is assessed in terms of accident vulnerability for a 

specific hazardous scenario. The sketch of the first two parts in the proposed framework is shown in Fig. 

5.2. The theoretical basis of these three parts is introduced in Section 5.2.1 to 5.2.3. In Section 5.2.1, an 

improved traffic flow simulation model is introduced. Section 5.2.2 presents a single-vehicle accident 

simulation model and describes in detail the external loads acting on vehicles. The vehicle safety assessment 

method of traffic flow is introduced in Section 5.2.3. 

 

Figure 5.1 Flowchart of the traffic safety assessment framework 
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Figure 5.2 Sketch of the traffic safety assessment framework 

5.2.1 Traffic flow simulation with improved CA model 

As a stochastic microscopic traffic flow simulation model, the cellular automaton (CA) model is able 

to simulate the traffic flow realistically in a microscopic scale. In this study, an improved CA model for 

hazardous driving conditions is applied to provide the time-variant information (i.e. vehicle position, 

vehicle velocity, and vehicle type) of individual vehicles of the traffic flow in a highway system (Hou et al. 

2017). At each time step, the velocity and position of each vehicle are updated through the single-lane 

forwarding rule (i.e. acceleration, deceleration, random brake, and movement) and the lane-changing rule. 

Based on the basic CA model, limited deceleration capabilities and realistic vehicle properties are 

incorporated into the proposed model in order to simulate more realistic traffic flow under hazardous 

conditions. A refined cell length (0.5 m) is used to represent multiple types of vehicles (i.e. car, van, and 

truck) with different dimensions in the mixed traffic flow. More details about the improved model can be 
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found in Refs (Hou et al. 2017; Chen and Wu 2011). 

5.2.2 Single-vehicle accident (SVA) simulation model for individual vehicles 

The simulation-based SVA model proposed by Chen and Chen (2010, 2011) is employed to simulate 

the accidents of vehicles in the traffic flow under hazardous driving conditions. In order to provide some 

essential background information, the simulation model is briefly introduced below (Chen and Chen 2010).  

5.2.2.1 Vehicle dynamics model 

A vehicle is modelled with three rigid bodies, one representing the sprung mass and the other two for 

the unsprung masses of the front and rear axles. The sprung mass rotates about the roll axis, in the manner 

representing the kinematic properties of the front and rear suspensions. The unsprung masses can also rotate 

to consider the effect of the vertical compliance of the tires. Five differential equations of motion are built 

to describe the balance of the lateral force and the yaw moment of the entire vehicle, and the roll motion of 

the sprung and unsprung masses. The detailed equations of motion and related parameters can be found in 

the study by Chen and Chen (2010). Dynamic equations will be solved by the Runge-Kutta method in time 

domain with a time step of 0.001 s. 

5.2.2.2 External loads acting on vehicles 

5.2.2.2.1 Wind loads 

Sudden crosswind gust is common in nature, especially in complex terrains where wind is significantly 

influenced by changes of surrounding environments. These include but are not limited to moving vehicles 

passing between open road segments and road segments with mountains, trees or bushes, passing bridge 

towers or other roadside structure that may temporarily shield the wind acting on the vehicles. In existing 

studies regarding single-vehicle safety, sudden crosswind has been identified as a critical scenario for 
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moving vehicles (Baker 1986; Guo and Xu 2006; Wang and Xu 2015). 

The wind forces and moments acting on a moving vehicle are determined by the quasi-static 

assumption (Baker 1987, 1994; Coleman and Baker 1994), which are defined in Eqs. (5.1) – (5.6). 

𝐹𝑥 = 12 𝜌𝐶𝐹𝑥𝑈𝑟𝑒2 𝐴                                  (5.1) 

𝐹𝑦 = 12 𝜌𝐶𝐹𝑦𝑈𝑟𝑒2 𝐴                                  (5.2) 

𝐹𝑧 = 12 𝜌𝐶𝐹𝑧𝑈𝑟𝑒2 𝐴                                  (5.3) 

𝑀𝑥 = 12 𝜌𝐶𝑀𝑥𝑈𝑟𝑒2 𝐴ℎ𝑟𝑒                              (5.4) 

𝑀𝑦 = 12 𝜌𝐶𝑀𝑦𝑈𝑟𝑒2 𝐴ℎ𝑟𝑒                              (5.5) 

𝑀𝑧 = 12 𝜌𝐶𝑀𝑧𝑈𝑟𝑒2 𝐴ℎ𝑟𝑒                              (5.6) 

where 𝐹𝑥 , 𝐹𝑦 , and 𝐹𝑧  denote the drag force, lift force, and side force, respectively; 𝑀𝑥 , 𝑀𝑦 , and 𝑀𝑧 

denote the rolling moment, yawing moment, and pitching moment, respectively; 𝐶𝐹𝑥 , 𝐶𝐹𝑦 , 𝐶𝐹𝑧 , 𝐶𝑀𝑥 , 

𝐶𝑀𝑦, and 𝐶𝑀𝑧 are the coefficients of drag force, lift force, side force, rolling moment, yawing moment, 

and the pitching moment, respectively; 𝜌  is the density of air; 𝐴  is the reference area; ℎ𝑟𝑒  is the 

reference arm; 𝑈𝑟𝑒 is the wind velocity relative to the vehicle (Fig. 5.3), which is defined in Eq. (5.7). 

𝑈𝑟𝑒 = √[𝑈 + 𝑢(𝑡)]2 + 𝑉2(𝑡) − 2𝑉(𝑡)[𝑈 + 𝑢(𝑡)]𝑐𝑜𝑠𝜑              (5.7) 

where 𝑈 is the mean wind velocity; 𝑢(𝑡) is the turbulent component of wind velocity in the alongwind 

direction; 𝑉(𝑡) is the driving speed of the vehicle; 𝜑 is the wind direction. 

 

Figure 5.3 Demonstration of the relative wind velocity 
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It is assumed that wind is perpendicular to the vehicle driving direction all the time on straight road 

segments, whereas the angle between wind and the vehicle driving direction will change with the 

instantaneous position of the vehicle on curved roads (Fig. 5.4). 

 

Figure 5.4 Sketch of a moving vehicle under crosswind condition 

5.2.2.2.2 Tire forces 

The lateral tire forces of the front and rear wheels acting at the wheel contact points with the ground 

are approximated to be proportional to their respective tire side slip angles, which are defined in Eqs. (5.8) 

and (5.9) (Gaspar et al. 2004; 2005). 𝐹𝑦,𝑓 = 𝜇𝑐𝑓𝛼𝑓                                  (5.8) 

𝐹𝑦,𝑟 = 𝜇𝑐𝑟𝛼𝑟                                  (5.9) 

where 𝐹𝑦,𝑓 and 𝐹𝑦,𝑟 denote the lateral tire forces of the front and rear tires, respectively; 𝜇 denotes the 

friction coefficient of the road surface; 𝑐𝑓 and 𝑐𝑟 are the tire cornering stiffness of the front and rear tires; 

𝛼𝑓 and 𝛼𝑟 are the tire side slip angles of the front and rear tires, respectively. 

The tire sideslip angle of the front and rear tires can be expressed by Eqs. (5.10) and (5.11) (Gaspar et 

al. 2004; 2005). 

𝛼𝑓 = −𝛽 + 𝛿 − 𝑎𝑓𝜓̇𝑉                            (5.10) 
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𝛼𝑟 = −𝛽 − 𝑎𝑟𝜓̇𝑉                              (5.11) 

where 𝛽 is the sideslip angle; 𝛿 is the steer angle; 𝜓̇ is the yaw rate; 𝑉 is the driving speed; 𝑎𝑓 and 

𝑎𝑟 are the longitudinal distances from the center of sprung mass to the front and the rear axles, respectively.  

5.2.2.2.3 Force due to superelevation 

Superelevation is designed to offset some of the centripetal force developed as a vehicle moves on a 

curved roadway. In this model, lateral force and roll moment on the vehicle due to superelevation are 

included in the dynamic equations to replicate the realistic situation when the vehicle is driven along a 

curved road. The recommended value of superelevation corresponding to the curvature radius in the Green 

book (AASHTO 2004) is adopted in this study.  

5.2.2.3 Accident assessment criteria for individual vehicles 

Based on the SVA model, the whole process of rollover/sideslip accidents can be simulated following 

the corresponding safety criteria (Chen and Chen 2010). A rollover accident is defined in two steps: first, 

the wheel lift-up phenomenon is identified by satisfying either Eq. (5.12) or Eq. (5.13); subsequently, after 

the wheel is lifted up, the vehicle will roll over ultimately when Eq. (5.14) is satisfied. 

𝑊𝑡𝑟𝑎𝑛𝑠 > 𝑚𝑔/2 − 𝐹𝑤,𝑧/2                             (5.12) 

𝜙𝑖 − 𝜙𝑡,𝑓𝑖 ≥ 𝜙𝑐𝑟𝑖  or  𝜙𝑖 − 𝜙𝑡,𝑟𝑖 ≥ 𝜙𝑐𝑟𝑖                        (5.13) 

𝜙 > 𝑎𝑟𝑐 𝑠𝑖𝑛 (𝑑/2√𝑑2/4 + ℎ𝑐𝑚2 ) + 𝜃                      (5.14) 

where 𝑊𝑡𝑟𝑎𝑛𝑠 is the weight-transfer ratio between the left and right wheels; 𝑚 is the total mass of the 

vehicle; 𝑔 is the acceleration of gravity;  𝐹𝑤,𝑧 is the vertical wind force;  𝜙 is the absolute roll angle of 

sprung mass; 𝜙𝑐𝑟𝑖 is the maximum allowable relative roll-over angle due to the mechanical restraints;  𝜙𝑡,𝑓𝑖  or 𝜙𝑡,𝑟𝑖  is the absolute roll angle of front or rear unsprung mass;  𝑑 is the wheel width of the vehicle; 
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ℎ𝑐𝑚 is the height of the mass center of the vehicle, measured upward from the ground; 𝜃 is the road 

superelevation. 

A sideslip accident is defined as the situation when the lateral forces of front tires or rear tires exceed 

the corresponding sideslip critical friction forces (Chen and Chen 2010). Therefore, the criterion of a 

sideslip accident is shown as follows. 𝐹𝑦,𝑓 > 𝐹𝑙𝑎,𝑓𝑚𝑎𝑥 = 𝜇𝐹𝑧,𝑓                             (5.15) 

or 𝐹𝑦,𝑟 > 𝐹𝑙𝑎,𝑟𝑚𝑎𝑥 = 𝜇𝐹𝑧,𝑟                             (5.16) 

where 𝐹𝑙𝑎,𝑓𝑚𝑎𝑥 and 𝐹𝑙𝑎,𝑟𝑚𝑎𝑥 are the sideslip critical friction forces of the front and rear wheels, respectively; 

𝐹𝑧,𝑓 and 𝐹𝑧,𝑟 are the vertical reaction forces on the front and rear axles, respectively. 

It is assumed the vehicles in the traffic flow may encounter a sudden crosswind gust, which could be 

one of the most dangerous scenarios in terms of single-vehicle accidents (Baker 1987; Guo and Xu 2006). 

In addition, depending on the specific hazard and weather conditions, other adverse driving conditions may 

also be present simultaneously, such as adverse road surface conditions or complex terrains. For example, 

vehicles moving on a curved road with an icy surface may also experience a sudden crosswind gust. 

Typically, a vehicle under these hazardous conditions may rollover or sideslip over a certain time period, 

which will be assessed against the “critical sustained time” (CST) (Chen and Chen 2010). CST is the 

minimum time period required to sustain the specific combination of the adverse environments and driving 

conditions to enable an accident to occur. In this study, an accident is defined as the situation when the CST 

of a vehicle is less than 0.66 s, which is the median reaction time as recommended in the Green book 

(AASHTO 2004). In other words, if the occurrence of a vehicle accident (either sideslip or rollover) is 
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within 0.66 s after it enters the road with an adverse environment, an accident is deemed to occur. If the 

CST is greater than 0.66 s, the vehicle is deemed remaining safe, assuming the driver has sufficient time to 

take appropriate actions to prevent the occurrence of an accident. In this study, secondary accidents of a 

vehicle caused by the accident occurrence of an adjacent vehicle is not considered due to very low 

probability (e.g. a rollover vehicle hit an adjacent vehicle). The accident simulation is performed for each 

vehicle in the traffic flow independently and simultaneously before the overall safety risk of the traffic flow 

is assessed in the following. 

5.2.3 Vehicle safety assessment of traffic flow 

With the time-variant information of any individual vehicle from the traffic flow simulation, accident 

simulation of that vehicle is peformed with the SVA model as discussed above. The hazardous conditions 

being investigated in this study include: sudden crosswind gust, various road surface conditions (i.e. dry, 

snowy, and icy), and complicated topographical conditions (i.e. bridges, straight/curved roadways). In the 

proposed framework, the accident condition of each vehicle in the simulated traffic flow will be checked at 

every minute to assess the overall vehicle safety performance. Vulnerable vehicle ratio at every minute is 

defined as the ratio of the number of vehicles that experience rollover or sideslip accidents to the total 

number of vehicles in the traffic flow. Since the simulated traffic flow is essentially stochastic the traffic 

safety performance of the traffic flow needs to be assessed statistically. The same experiments are repeated 

over time continuously by evaluating the passing vehicles through the same observation window. Based on 

the basic statistical analyses of the results from the repeated experiments, vehicle accident vulnerability of 

the traffic flow is characterized by an index, which is the median value of the vulnerable vehicle ratios 

throughout the entire simulation time, which can be expressed in Eq. (5.17).  
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𝑉𝑢 = 𝑀{𝑅1, 𝑅2, ⋯ , 𝑅𝑇}                             (5.17) 

where 𝑉𝑢 is the vehicle accident vulnerability index of the traffic flow; 𝑅𝑖 = 𝑛𝑖/𝑁𝑖, 𝑅𝑖 is the ratio of the 

vulnerable vehicles at the 𝑖𝑡ℎ minute, 𝑛𝑖 is the number of vehicles that experience rollover or sideslip 

accidents at the 𝑖𝑡ℎ minute, 𝑁𝑖 is the total number of vehicles in the traffic at the  𝑖𝑡ℎ minute; 𝑇 is the 

total number of repeated experiments; 𝑀 refers to median. 

5.3 Demonstrative study 

5.3.1 Prototype highway system and traffic flow simulation 

The prototype highway system (Fig. 5.5) in the present study consists of a long-span bridge, a straight 

roadway on the left side, and a curved roadway with a radius of 400 m on the right side. The lengths of the 

bridge and roadway on each side are 836.7 m and 300 m, respectively, making the total length 1,436.7 m 

for this “roadway–bridge–roadway’’ system.  

 

Figure 5.5 Prototype highway system 

In the CA model, the highway system is discretized as many identical cells with a length of 0.5 m for 

each. Therefore, there are a total of 2,880 cells in one lane, including 1,680 cells for the bridge and 600 

cells for each of the two approaching roadways. The vehicle driving speed limit is assumed to be 30 m/s 
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(108 km/h). The three types of vehicle groups that are considered to capture the main traffic classifications 

on highways are cars, vans, and trucks. Their proportions in the traffic flow are typically obtained from site-

specific traffic data collection and are assumed to be 50%, 25%, and 25% for demonstrative purposes, 

respectively. The lengths of cars, vans, and trucks in this model are defined as 5 m, 7.5 m, and 12 m, 

occupying 10 cells, 15 cells, and 24 cells, respectively. According to Wang et al. (2007), normal acceleration 

and deceleration rates usually range from 1 to 2 m/s2 and 1 to 3 m/s2, respectively. In this paper, the 

acceleration/deceleration rates of cars, vans and trucks are set as 2 m/s2, 1.5 m/s2, and 1 m/s2, respectively. 

The limited deceleration capability of 5 m/s2 have been used in (Li 2016; Larraga and Alvarez-Icaza 2010), 

which is considered an acceptable value for an emergency braking maneuver. Therefore, the maximum 

braking capacity of all three types of vehicles is set as 5 m/s2. Detailed parameters in dynamics models of 

three types of vehicles are listed in Table 5.1. Traffic flows with occupancy of 0.07, 0.18, and 0.25, 

correspond to level B (9 veh/km/lane), D (20 veh/km/lane), and F (34 veh/km/lane) defined in the Highway 

Capacity Manual (2000).  

Following the method used by Chen and Wu (2011), those three traffic scenarios are called free, 

moderate, and busy traffic flow, respectively, which are considered in this study for comparison purpose. 

The probability of randomization deceleration is assumed to be 0.5 ∗ √𝜌 , in which ρ is the traffic 

occupancy (Yamg et al. 2007). The lane-changing probability is set as 0.5 and the total simulation time 

duration is 18,000 s and the time step of the simulation is 1 s. To capture the steady traffic flow 

characteristics, the simulation results of the first 14,400 s are discarded and only those of the last 3,600 s 

will be used and presented in the following sections. Time-space diagrams of free, moderate and busy flow 

are shown in Fig. 5.6. Vehicles move with the maximum speed (speed limit) in the free flow (Fig. 5.6a), 
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while vehicles experience slow-down or braking due to the existence of traffic jam in the moderate and 

busy flow (Figs. 5.6b and 5.6c). The mean driving speed of free, moderate and busy flow are 29.7 m/s, 25.0 

m/s and 12.6 m/s, respectively. Because the time step of accident simulation is 0.001 s, the time interval of 

vehicle speed will be transformed to 0.001 s by linear interpolation before accident simulation is conducted. 

 

Table 5.1 Parameters in dynamics models of three types of vehicles 

Parameters 
Value 

Unit 
Car Van Truck 

Sprung mass 1515 6244 10443 kg 

Front unsprung mass 111 353 545 kg 

Rear unsprung mass 108 500 2088 kg 

Distances between front axle and sprung mass 1.19 2.56 4.51 m 

Distances between rear axle and sprung mass -1.71 -1.54 -1.59 m 

Height of the center of sprung mass 0.47 1.15 0.653 m 

Height of center of mass for whole vehicle 0.67 1.5 1.212 m 

Height of lateral wind load 0.9 1.3 1.663 m 

Height of rolling center 0.25 0.83 0.737 m 

Wheel width 1.6 1.86 1.829 m 

Active roll torque 0 0 0 kN-m 

Tire cornering stiffness of front tires 70 146 181 kN/rad 

Tire cornering stiffness of rear tires 130 196 648 kN/rad 

Roll stiffness of front suspension 102 380 156 kN-m/rad 

Roll stiffness of rear suspension 45 684 1590 kN-m/rad 

Roll damping rate of front suspension 100 100 100 kN/rad 

Roll damping rate of rear suspension 239 239 239 kN/rad 

Roll stiffness of front tires 1000 1648 2060 kN-m/rad 

Roll stiffness of rear tires 1500 2336 1776 kN-m/rad 

Height of center of front/rear unsprung mass 0.35 0.53 0.508 m 

Roll moment of inertia of sprung mass 689 8470 7466 kg-m2 

Yaw-roll product of inertia of sprung mass 31 1680 3590 kg-m2 

Yaw moment of inertia of sprung mass 3374 13967 52517 kg-m2 

Reference area 2.5 7 10 m2 

Vehicle length 5 7.5 12 m 
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 (a) Free flow             (b) Moderate flow           (c) busy flow 

Figure 5.6 Time-space diagrams 

5.3.2 Demonstration of accident safety assessment method 

A case study is conducted to demonstrate how the accident safety assessment method illustrated in 

Section 5.2.3 can be used to obtain the accident vulnerability. In the case study, the moderate traffic flow 

(occupancy = 0.18) through the highway system under an icy surface condition is investigated. The safety 

performance of vehicles in the traffic flow under sudden crosswinds is evaluated at every minute. The traffic 

flow simulation time is 60 minutes, so there will be a total of 60 vulnerable vehicle ratios for each crosswind 

case. The box plots of vulnerable vehicle ratios with varying wind velocities are shown in Fig. 5.7. For each 

box plot, the range between the first quartile and the third quartile is less than 0.05, and the range between 

the upper whisker (the upper adjacent value) and lower whisker (the lower adjacent value) is less than 0.15. 

Despite some extreme outliers, most of the data falls into a relatively narrow range. Therefore, it is 

reasonable to select the median of vulnerable vehicle ratios to represent the accident vulnerability of a traffic 

flow for a specific hazardous scenario in this study. 
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Figure 5.7 Vulnerable vehicle ratios with varying wind velocity 

5.3.3 Influence of different road surface conditions 

Accident vulnerabilities of vehicles in the moderate traffic flow (occupancy = 0.18) through the 

highway system under different road surface conditions are given in Fig. 5.8. The accident vulnerability is 

found to be very sensitive to the road surface conditions. Among the three different road surface conditions, 

the icy road surface poses the greatest threat to vehicle accidents, whereas the dry road surface does the 

least. Despite the significant difference, accident vulnerability of vehicles exhibits a similar trend for all 

three road surface conditions: it starts from 0 when the wind velocity is relatively low, and then increases 

as the wind velocity increases, and finally reaches 1.0 when the wind velocity is high enough. Rollover and 

sideslip accident vulnerability under different road surface conditions, characterized by the respective 

vulnerability indexes, are shown in Fig. 5.9 and Fig. 5.10, respectively.  

As can be seen in Fig. 5.9, rollover accident vulnerability under the three road surface conditions are 

very close, indicating that road surface conditions have limited influence on rollover accidents. By 

comparing Fig. 5.8 and Fig. 5.9, it can be found that the two curves related to the dry road surface condition 

are almost identical, which suggests that only rollover accidents occur under the dry surface condition. 
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Meanwhile, it is found in Fig. 5.10 that the sideslip accident vulnerability is always zero under the dry road 

surface condition. As shown in Fig. 5.10, as the wind velocity increases, sideslip accident vulnerability of 

vehicles on both icy and snowy roads increases first and then decreases to 0. Therefore, it is found that, on 

ice- or snow-covered roads, sideslip accidents are dominant when the wind velocity is relatively low, 

whereas rollover accidents are dominant when the wind velocity is high. Moreover, compared to the snowy 

surface condition, the icy surface condition poses much greater threats on vehicles in terms of sideslip 

accidents.  

 

Figure 5.8 Accident vulnerability index of vehicles under different road surface conditions 

 

Figure 5.9 Rollover accident vulnerability index of vehicles under different road surface conditions 
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Figure 5.10 Sideslip accident vulnerability index of vehicles under different road surface conditions 

5.3.4 Influence of different road geometry 

As a major component of road geometric design, curved road segments typically contribute to a much 

higher accident rate than their straight counterparts, especially under adverse driving conditions, such as 

windy weather and a snow/ice-covered road surface (Chen and Chen 2010; Xi et al. 2014). Compared to 

bridges with open surrounding environments, wind fields around roadways can be significantly influenced 

by nearby topography such as hills, trees, bushes and buildings due to the wind sheltering effect. Depending 

on the specific roadside environment, wind velocity near the roadways could be reduced to different extents 

(Li et al. 2007). In this regard, under crosswind conditions, vehicles moving on bridges may be more likely 

to experience accidents than those moving on roadways. In order to understand the influence of different 

road geometries on vehicle accidents, accident vulnerabilities of vehicles on straight roads, bridges and 

curved roads of the highway system are investigated. A reduction factor (RF) of wind velocity is used to 

approximately consider the wind sheltering effect on vehicle safety due to the roadside environments, which 

is defined in Eq. (5.18) (Li et al. 2007).  
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𝑅𝐹 = 𝑈𝑈∞                                  (5.18) 

where 𝑈 is the velocity of wind acting on the vehicles; 𝑈̅∞ is the incoming free stream velocity. 

In order to conduct a parametric study, RF is assumed to be 1.0 or 0.6 for vehicles on roadways 

subjected to different levels of shielding effects due to hills, bushes, trees or wind barriers. It is assumed 

there is no wind barrier installed on the bridge, so the RF is 1.0 for vehicles on the bridge. Without losing 

generality, the influence of dynamic interactions between the bridge and vehicles on vehicle accidents is 

not considered in this study because such effects can be very bridge-specific and hard to generalize. 

Accident vulnerability results from the traffic flow in the moderate traffic through different road segments 

are shown in Fig. 5.11. As shown in Fig. 5.11a, the accident vulnerabilities of vehicles on the straight road 

are very close to those of vehicles on the bridge under the dry surface condition when the wind sheltering 

effect is not considered.  

Compared to vehicles on the bridge and straight road, those on the curved road are more likely to 

experience accidents without considering the sheltering effect. The possible reason is that the effect of road 

superelevation on the vehicle instability is far greater than that of reduced wind forces due to road curvature. 

When the wind sheltering effect is considered, the accident vulnerability of vehicles on the straight road 

and the curved road decreases significantly because of the reduced wind forces. As expected, when the wind 

sheltering effect is not considered, accident vulnerability of vehicles on the bridge and the straight road 

under icy surface conditions are very close, as shown in Fig. 5.11b. However, vehicles on the straight road, 

in general, have a slightly smaller probability of accidents than those on the bridge and the curved road, 

likely due to the fact that sideslip accidents on the icy road are mainly influenced by reduced wind forces 

due to road curvature. When the wind sheltering effect is considered, the accident vulnerability of vehicles 
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on the straight and curved roads reduce considerably. Such results suggest that it may become possible to 

improve vehicle safety under strong crosswinds in some vulnerable areas through providing wind sheltering.  

 

(a) Dry road surface 

 

(b) Ice-covered road surface 

Figure 5.11 Accident vulnerability index of vehicles in traffic through different road segments 

5.3.5 Influence of vehicles with different types 

As discussed earlier, different types of vehicles have different safety performances even under the same 

hazardous condition. In order to further investigate the influence of vehicle types, accident vulnerabilities 

of cars, vans, and trucks in moderate traffic flow through the highway system are compared in this section. 
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Critical driving speed (CDS) of accidents is the highest driving speeds under which an accident will occur 

based on the accident criteria (Chen and Chen 2010). The CDS for three representative vehicles on a straight 

road with icy surface conditions are shown in Fig. 5.12. Fig. 5.13 gives the accident vulnerability of vehicles 

of different types under different road surface conditions. It can be seen in Fig. 5.13a that the accident 

vulnerability presents a very similar trend for all three types of vehicles under dry surface conditions. This 

is partly because rollover accidents are dominant on the dry road for all three types of vehicles. In general, 

trucks are slightly more vulnerable to an accident than vans. Compared to trucks and vans, cars have a much 

smaller probability to rollover, likely due to the fact that they have a lower center of gravity and smaller 

frontal area. Different from the case of dry surface conditions, cars have greater accident vulnerability than 

trucks and vans on snow-covered roads, as shown in Fig. 5.13b. This is because, under snowy surface 

conditions, sideslip accidents dominate when the wind velocity is relatively small, and cars are more likely 

to sideslip than trucks and vans.  

A very similar trend can be observed for trucks and vans, although vans have greater accident 

vulnerability than trucks when the wind velocity is between 18 m/s and 21 m/s. It is found from Fig. 5.13c 

that the accident vulnerability is very sensitive to the wind velocity for all three types of vehicles on the 

ice-covered road. For example, the accident vulnerability of cars increases from 0 to 0.9 as the wind velocity 

increases from 8 m/s to 9 m/s. As discussed earlier, sideslip accidents are dominant under the icy surface 

and relatively low wind speed condition. Meanwhile, as shown in Fig. 5.12, sideslip accidents on the icy 

road are not sensitive to the driving speeds of vehicles. This means that sideslip accidents on icy roads are 

mainly controlled by the wind velocity, instead of the varying driving speeds of vehicles in the traffic flow. 
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 (a) Car                   (b) Van                  (c) Truck 

Figure 5.12 CDS of accidents for three vehicles on a straight, icy road 

 

 

(a) Dry road surface 

 

(b) Snow-covered road surface 
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 (c) Ice-covered road surface 

Figure 5.13 Accident vulnerability index of vehicles with different types 

5.3.6 Influence of traffic flow with different occupancy 

Drivers in free flow tend to drive with their desired speeds and rarely brake, whereas they must drive 

with relatively low speeds and apply brakes frequently in busy flow. The vehicle driving speed has a great 

influence on the instability of a vehicle under crosswinds due to its contribution to the wind forces on the 

vehicle. Therefore, accident vulnerabilities of vehicles are likely to be influenced by traffic occupancy in 

terms of different driving speeds of vehicles in different traffic flow. To further assess the influence of traffic 

occupancy on accident vulnerability, accident simulations are performed for vehicles in free, moderate, and 

busy traffic flow. Accident vulnerabilities of vehicles in traffic flow with different occupancies are given in 

Fig. 5.14. It can be seen in Fig. 5.14a that, under the dry surface condition, the accident vulnerability of 

vehicles in free flow is the highest, while that of vehicles in busy flow is the lowest. This can be explained 

by the fact that vehicles in free flow generally have a higher driving speed than those in moderate or busy 

flow. Higher vehicle speeds lead to larger wind forces acting on the vehicles in general, which in turn 

contribute to higher accident vulnerability. It is also found in Fig. 5.14a that the accident vulnerability of 
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vehicles in busy flow is less than 1 under a crosswind speed of 30 m/s. This is possibly because some vans 

with driving speeds less than 5 m/s in busy flow will not experience an accident even under a crosswind 

with relatively high velocity.  

The accident vulnerability of vehicles on a snowy road exhibits a similar trend to vehicles on a dry 

road, as shown in Fig. 5.14b. It is shown the critical wind velocity of accidents on the snowy road is 13 m/s, 

which is 2 m/s less than that of accidents on the dry road. Moreover, compared to the dry surface condition, 

the differences between different occupancies become smaller under snowy surface conditions. This is 

partly because sideslip accidents, which are generally dominant on snowy roads, are not sensitive to driving 

speeds of vehicles.  

The accident vulnerability of vehicles in free, moderate and busy flow under icy conditions are rather 

close (Fig. 5.14c). Compared to dry and snowy surface conditions, the critical wind velocity is much smaller 

on an icy road surface (9 m/s) and sideslip accidents dominate. For sideslip accidents on an icy road, the 

CDS of vans and trucks generally increases with the increase of wind velocity (Fig. 5.12b and 5.12c). This 

explains why vehicles in busy flow have the highest accident vulnerability, while those in the free flow 

have the lowest, as shown in Fig. 5.14c. 
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(a) Dry road surface 

 

(b) Snow-covered road surface 

 

 (c) Ice-covered road surface 
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Figure 5.14 Accident vulnerability index of vehicles in traffic with different occupancy 

5.4 Conclusions 

An integrated framework was proposed to evaluate the overall safety performance of vehicles in 

realistic stochastic traffic passing through highway infrastructure systems. Vehicle accident vulnerability 

was introduced as an overall safety index for the whole traffic, which may be used as an important resilience 

indicator for future resilience studies involving traffic safety. The proposed framework was applied to a 

bridge-roadway system for demonstration purposes. It was found that the proposed framework could 

provide rational estimation of the safety performance of traffic flow with findings consistent with existing 

studies and common observations. It is noted that with the site-specific data of traffic, road and environment, 

the proposed framework can provide more specific and insightful observations that may help traffic 

management under hazardous conditions. The main conclusions from the demonstrative study are 

summarized as follows: 

(1) Among the three different road surface conditions, the icy road surface poses the greatest threat to 

vehicle accidents, whereas the dry road surface poses the least. Rollover accident vulnerability under 

the three road surface conditions are very close. On a dry road surface, only rollover accidents may 

occur. On icy or snow-covered roads, sideslip accidents are dominant when the wind velocity is 

relatively low, whereas rollover accidents are dominant when the wind velocity is high. 

(2) Compared to vehicles on the bridge and the straight road, those on the curved road are more likely to 

experience accidents without considering the sheltering effect. When the wind sheltering effect is 

considered, the accident vulnerability of vehicles on the straight road and the curved road decreases 

significantly because of the reduced wind loads acting on the vehicles.  
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(3) Trucks are slightly more likely to experience an accident than vans on dry roads. However, vans have 

greater accident vulnerability than trucks on snowy and icy roads in general. Among the three types of 

vehicles, cars have the smallest possibility to experience an accident under dry road surface conditions, 

whereas they have the largest possibility to experience an accident under snowy and icy surface 

conditions.  

(4) The accident vulnerability of vehicles is influenced by the traffic occupancies in terms of the driving 

speed of vehicles. Under dry and snowy road surface conditions, vehicles in free flow have the highest 

accident vulnerability, whereas those in busy flow have the lowest. However, under icy road surface 

conditions, in general, vehicles in busy flow have the highest accident vulnerability, whereas those in 

free flow have the lowest. 

(5) This study has many potential applications, such as improved traffic planning and emergency response 

prioritization considering not only typical travel time, but also traffic safety risks and associated 

possible delay in adverse conditions. Driving safety of connected and autonomous vehicles (CAV) in 

hazardous driving environments is one major challenge. Another potential application of this study is 

to contribute to the development of more advanced algorithms of CAVs in the future. 

(6) This study provides an innovative and promising simulation tool, but it also has some limitation for 

future improvement. The main limitation is the proposed traffic flow safety model needs better 

calibration and validation. Due to the rarity of traffic data in adverse driving conditions, this is expected 

to be conducted in the future when the data becomes available.  
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 CHAPTER 6 PROBABILISTIC MODELING OF DISRUPTED INFRASTRUCTURES DUE TO 

FALLEN TREES SUBJECTED TO EXTREME WINDS IN URBAN COMMUNITY5 

 

6.1 Introduction 

Tree failures due to strong winds in urban areas cause extensive direct and indirect economic and 

environmental loss, including disrupting adjacent infrastructures, such as buildings, underground pipelines, 

roads and overhead powerlines. To effectively improve the resilience of a community subjected to extreme 

wind events through prevention, response and recovery, it becomes critical to rationally assess the risks of 

wind-induced tree failures and the disruptions to different types of infrastructures due to fallen trees. An 

integrated probabilistic methodology to model the performance of disrupted infrastructures is developed 

for fallen urban trees subjected to extreme winds in a typical community. Firstly, the finite-element 

modeling of the trees subjected to wind loads is conducted and based on which, the windthrow fragility 

curves of several typical urban tree species are developed. Secondly, a probabilistic framework is developed 

based on the fragility results to characterize the disrupted scenarios and further predict the disruption 

probability of some critical infrastructures due to fallen trees. The matrix-based system reliability (MSR) 

method is introduced to assess the transportation network performance. The proposed framework and MSR 

method are demonstrated in detail on studying the overhead powerline and transportation network of a 

small urban community in the city of Fort Collins, Colorado. In the demonstrative example, the probabilities 

of powerline disruption, road closure, and origin-destination (OD) disconnection and travel time reliability 

under different wind conditions are predicted. Finally, mitigation efforts such as crown thinning of trees are 

                                                             

5 This chapter is submitted to a journal in a paper that is currently under review (Hou and Chen 2019b). 
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discussed to reduce possible risks of disrupting the infrastructures. 

6.2 Fragility model of urban trees subjected to extreme winds 

6.2.1 Description of urban trees 

Depending on their species and ages, different trees have different profiles. To characterize a specific 

tree, there are some commonly used parameters, such as age, tree height, diameter at breast height (DBH), 

crown height and crown diameter. Tree allometry is widely used in forest management to establish the 

quantitative relationship between these parameters, with which some hard-measured parameters can be 

predicted with an easily measured one. With allometric equations, DBH can be predicted with age and total 

height. Crown diameter and crown height can be predicted with DBH. In urban forestry, allometric 

equations can help urban forest managers in selecting species, developing tree removal and replacement 

plans, and estimating management costs and ecosystem services (Peper et al. 2014). Measured field data 

are important in the development of reliable allometric equations. U.S. Forest Service Pacific Southwest 

Research Station measured 14,487 urban street and park trees in 17 U.S. cities, constructed the Urban Tree 

Database (UTD), and developed 365 sets of allometric equations for 171 distinct tree species (McPherson 

et al. 2016).  

In this study, the measured tree data of the city of Fort Collins in Colorado from the UTD are used to 

develop allometric equations for three popular street tree species including American basswood, Green ash, 

and Ponderosa pine. Compared to other parameters, tree height is much easier to be measured, and is also 

a more intuitive input for a mechanistic tree model. In this study, we adopt tree height to estimate DBH, 

crown height, and crown diameter with the polynomial models developed by McPherson et al. (2016). A 

linear model is used to fit the data points of three tree species, which has the following form. 
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𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝜀𝑖√𝑤𝑖                              (6.1) 

where 𝑦𝑖 is the measurement of tree 𝑖, which refers to DBH, crown diameter and crown height; 𝑎 and 𝑏 

are constants to be estimated; 𝑥𝑖  is the height of tree 𝑖 ; 𝜀𝑖  is the random error for tree 𝑖  with 𝜀𝑖 ∼𝑁(0, 𝜎2); 𝜎2 is the variance of the random error; 𝑤𝑖 is the weight and 𝑤𝑖 = 1/𝑥𝑖2.  

Statistical analysis was conducted using MATLAB and the regression plots for American basswood 

are given in Fig. 6.1. Regression results for three tree species are listed in Table 6.1. It is seen that the 

adjusted 𝑅2  values are larger than 84% for DBH, crown diameter, and crown height, indicating good 

fitting results. With the developed allometric equations, a tree can be defined with tree height, facilitating 

the following development of fragility curves for different tree classes in terms of tree height. 

 

(a) DBH 
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(b) Crown diameter 

 

(c) Crown height 

Figure 6.1 Regression plot for American basswood 

 

Table 6.1 Regression results 

Tree species 
DBH Crown diameter Crown height 

a b Adj R2 a b Adj R2 a b Adj R2 

American basswood 3.292 -8.223 0.93 0.624 -0.438 0.87 0.931 -1.042 0.99 

Green ash 4.379 -10.41 0.89 0.892 -0.589 0.88 0.808 -0.383 0.97 

Ponderosa pine 3.74 -2.195 0.84 0.673 0.388 0.86 0.815 0.252 0.94 

6.2.2 Mechanistic tree model 
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A mechanistic tree model is built with direct stiffness method, which describes the behavior of a tree 

under winds, and computes the internal forces of the tree structure. With a sufficient number of elements, a 

tapered tree stem can be discretized into multiple beam elements with an approximate uniform cross section 

for each element as shown in Fig. 6.2. The properties of the uniform cross sections are defined based on 

those at the middle point of each element, following typical finite element modeling technique of tapered 

structures. Based on the applied external forces, element properties, and boundary conditions, the 

equilibrium equations of the discretized tree system are formulated into a matrix relationship. Then, free 

nodal displacements, support reactions and element forces are numerically solved with the tree finite 

element model (FEM). 

 

Figure 6.2 Finite element model of a tree 

6.2.2.1 Wind loads 

Although aerodynamic analysis of trees subjected to wind is supposed to generate more accurate results 

of tree response under winds, it requires tree-profile-specific wind coefficients typically obtained from wind 

tunnel tests, which are not yet available. In addition, the additional high computational cost of aerodynamic 
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analysis will also cause overwhelming computational burden for the following fragility analysis. Therefore, 

in this study, only aerostatic analyses of the trees are conducted. The 3-s gust wind speed is used to calculate 

the wind forces acting on the tree in this study and the 3-s gust wind profile can be defined in the power-

law form (Simiu and Miyata 2006) as expressed in Eq. (6.2): 

𝑉(𝑧) = 𝑉(10) ( 𝑧10)𝛼                              (6.2) 

where 𝑧 is height (m); 𝑉(𝑧) is the 3-s gust wind speed at height 𝑧 (m/s); 𝛼 is the ground roughness 

coefficient, which is taken as 0.143 for suburban terrain and town. 

The horizontal wind forces acting on both the stem and crown are considered, which are calculated 

based on the wind profile, the stem taper equation and the assumed crown shape. The uniformly distributed 

drag forces (Unit: N/m) acting on stem element 𝑖 can be expressed as follows: 

𝐹𝑊𝑆,𝑖 = 0.5𝜌𝑎𝑖𝑟𝐶𝑑𝑆𝐷𝑆,𝑖𝑉𝑖2                             (6.3) 

where 𝜌𝑎𝑖𝑟 is the air density (kg/m3);  𝐶𝑑𝑆 is the drag coefficient of the stem; 𝐷𝑆,𝑖 is the diameter at the 

mid-height of stem element 𝑖 (m), which is determined by the stem taper equation 𝐷𝑆(ℎ); ℎ is the tree 

height (m) and 𝑉𝑖 is the 3-s gust wind speed at the mid-height of element 𝑖 (m/s). 

Without specific tree profile data, the unstreamlined crown projection area against the wind is 

computed by assuming the tree crown has a triangular shape (Peltola et al. 1999). The canopy becomes 

streamlined as the wind speed increases, leading to a reduction of crown area, which is assumed to be 

controlled by a streamlining coefficient, 𝑆𝑡 (Peltola et al. 1999). The uniform distributed drag forces (Unit: 

N/m) acting on the crown element 𝑖 can be given by: 

𝐹𝑊𝐶,𝑖 = 0.5𝜌𝑎𝑖𝑟𝐶𝑑𝐶𝐷𝐶,𝑖𝑆𝑡𝑉𝑖2                       (6.4) 

where 𝐶𝑑𝐶  is the drag coefficient of the crown; 𝐷𝐶,𝑖 is the diameter at the mid-height of crown element 
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𝑖 (m). 

6.2.2.2 Self-weight 

Self-weight of a tree does not only contribute to the normal compressive stress in the stem, but also 

brings additional moment due to the P-Delta effects under wind loads, which further increases the axial 

compressive stress. The total weight of each element is the sum of the weights of the stem and crown. The 

weight of stem element 𝑖 is calculated as follows: 

𝐹𝐺𝑆,𝑖 = 0.25𝜌𝑆𝑔𝐿𝑖𝜋𝐷𝑆,𝑖2                               (6.5) 

where 𝜌𝑆 is the stem density (kg/m3); 𝑔 is the acceleration of gravity (m/s2). Similarly, the weight of 

crown element 𝑖 is calculated through Eq. (6.6): 

𝐹𝐺𝐶,𝑖 = 0.25𝜌𝐶𝑔𝐿𝑖𝜋𝐷𝐶,𝑖2                              (6.6) 

where 𝜌𝐶  is the crown density (kg/m3), which is estimated by assuming a constant ratio between the crown 

and stem weights. 

6.2.2.3 Application of direct stiffness method 

To consider the P-Delta effects due to gravity forces, 1st order analysis is performed to obtain the axial 

forces in each element, based on the computed stem and crown weights. Then, the geometric stiffness matrix 

𝑘𝐺  of each element is calculated based on the obtained axial forces. For a beam element, 𝑘𝐺  is only a 

function of the element’s length and the axial force in the element, which can be computed by Eq. (6.7).  

𝑘𝐺 = 𝑁30𝐿 [ 36 3𝐿3𝐿 4𝐿2     −36 3𝐿−3𝐿 −𝐿2−36 −3𝐿3𝐿 −𝐿2      36 −3𝐿−3𝐿 4𝐿2 ]                        (6.7) 

where 𝑁 is the axial force in a beam element; 𝐿 is the element length. 

By adding the geometric stiffness matrix 𝑘𝐺  to the elastic stiffness matrix 𝑘𝐸 as defined in Eq. (6.8), 
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we can obtain the total stiffness matrix 𝑘𝐸 + 𝑘𝐺 for each element, which will be assembled into the global 

stiffness matrix 𝐾𝐸 + 𝐾𝐺 . The wind forces acting on each element will be converted to equivalent nodal 

loads, and then assembled into the global nodal load vector 𝐹.  

𝑘𝐸 = 𝐸𝐼𝐿3 [ 12 6𝐿6𝐿 4𝐿2     −12 6𝐿−6𝐿 2𝐿2−12 −6𝐿6𝐿 2𝐿2      12 −6𝐿−6𝐿 4𝐿2 ]                         (6.8) 

where 𝐸 is the modulus of elasticity; 𝐼 is the moment of inertia. 

Finally, the equations of the global system can be derived as Eq. (6.9). 

(𝐾𝐸 + 𝐾𝐺)𝑈 = 𝐹                              (6.9) 

where 𝑈 is the global nodal displacement.  

By solving Eq. (6.9), the global nodal displacements can be obtained: 

U = (𝐾𝐸 + 𝐾𝐺)−1𝐹                           (6.10) 

With the global nodal displacements, the support reactions, and element forces can be calculated. 

Under the combined effect of bending moment and normal forces, the total compressive stress (Pa) in the 

outer fibers of stem element 𝑖 is given as 𝜎𝑖 = 𝑀𝑖𝐼𝑖 𝐷𝑆,𝑖2 + 𝑁𝑖𝐴𝑖                               (6.11) 

where 𝑀𝑖 is the moment in element 𝑖; 𝑁𝑖 is the axial force; 𝐼𝑖 is the moment of inertia; 𝐴𝑖 is the area. 

6.2.3 Limit state 

There are two failure modes for a tree under strong winds: stem breakage and uprooting. Stem breakage 

occurs when the maximum compressive stress σ𝑚𝑎𝑥 in the stem exceeds the stem modulus of rupture σ𝑅. 

The limit state defining the stem breakage of a tree can be expressed as 

𝑔𝑏 = 𝜎𝑅 − 𝜎𝑚𝑎𝑥                            (6.12) 
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It is possible that stem breakage only occurs at a small portion of the crown top, for example, the top 

tip of the crown, which may not necessarily cause potential infrastructure disruption (e.g. road blockage). 

Therefore, the stem breakage condition is assessed based on the elements below the mid-crown height to 

avoid overrepresentation of infrastructure disruption. Once the stem breakage occurs, the breakage ratio, 

which is defined as the ratio of the length of the broken stem to the total tree height, will be recorded 

according to the breakage location. 

Uprooting occurs when the critical turning moment 𝑀𝑜𝑐𝑟𝑖 provided by the root-soil plate anchorage is 

exceeded by the base turning moment 𝑀𝑚𝑎𝑥 produced by wind. The critical overturning moment 𝑀𝑜𝑐𝑟𝑖 
can be determined by tree pulling experiments and is strongly related to stem weight 𝑊𝑠 (Gardiner et al. 

2000). The relationship can be expressed as follows.  

𝑀𝑜𝑐𝑟𝑖 = 𝐶𝑟𝑒𝑔𝑊𝑠                             (6.13) 

where 𝐶𝑟𝑒𝑔  is the regression constant, which is dependent on species and soil conditions (NmKg-1). 

Therefore, the limit state of uprooting of a tree can be expressed as 

𝑔𝑢 = 𝑀𝑜𝑐𝑟𝑖 −𝑀𝑚𝑎𝑥 = 𝐶𝑟𝑒𝑔𝑊𝑠 −𝑀𝑚𝑎𝑥                   (6.14) 

6.2.4 Statistics of wind loads and mechanical properties of trees 

Uncertainties exist in wind loads and mechanical properties of the trees, which need to be modeled 

probabilistically in fragility analyses. The statistics of the wind load-related parameters for different tree 

species are summarized in Table 6.2. It should be noted that the crown characteristics of deciduous trees 

(e.g. American basswood and Green ash) change between seasons. For example, the drag coefficient and 

weight of the crowns of deciduous trees in summer are larger than those in winter, making them more 

susceptible to windthrow. The crown characteristics of trees in summer are used in this study to be 
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conservative. The drag coefficients of tree crown and stem, and the streamlining coefficient are assumed to 

follow normal distributions. For the three tree species studied here, the drag coefficient of the stems with 

cylinder cross sections is assumed to have a mean value of 1.0 and coefficient of variation (COV) of 0.1. 

According to Horacek (2003), the mean values of the drag coefficients of crowns for American basswood, 

Green ash and Ponderosa pine are 0.25, 0.25 and 0.3, respectively. The COVs for the three species are 

assumed to be 0.2. The mean values of the streamlining coefficients of three tree species are 0.4 following 

the study by Peltola et al. (1999), and the COV is assumed to be 0.2. Triangle has been proved to be an 

appropriate shape to model the reconfigured frontal crown shape under wind, which is used to calculate the 

wind loads acting on the crown. Deterministic stem taper equations for the three tree species developed by 

Westfall and Scott (2010) are used in this study.  

Table 6.2 Wind load statistics of different tree species 

Variables 
Mean 

COV CDF Source 
AB GA PP 

Drag coefficient of crown 0.25 0.25 0.30 0.2 Normal Horacek (2003) 
Drag coefficient of stem 1 0.1 Normal Anderson Jr (2010) 

Streamlining coefficient 0.4 0.2 Normal 
Peltola et al. (1999) 

Crown shape Triangle  Deterministic 

Stem taper equation / Deterministic Westfall and Scott (2010) 

(Note: AB, GA, and PP represent American basswood, Green ash, and Ponderosa pine, respectively.) 

Table 6.3 summarizes the statistics of the mechanical properties for different tree species. Mechanical 

properties of trees are species-dependent and are usually obtained from extensive sampling and analysis 

procedures. In this study, without more statistical information, all these parameters are assumed to follow 

normal distributions. The statistics of the stem density, modulus of rupture, and modulus of elasticity for 

green wood of three tree species can be found in the Wood handbook (Ross 2010). The mean value and 
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COV of the crown to stem weight ratio, which can determine the crown density, are taken from the previous 

study by Peltola et al. (1999). The regression constant of Ponderosa pine is obtained from the pulling 

experiments (Gardiner et al. 2000), but no such data has been found for American basswood and Green ash 

in previous studies. It was found by Dupuy et al. (2005) that the tap root is twice as resistant as plate-like 

root of hardwood trees, such as American basswood and Green ash. Therefore, the regression constants of 

American basswood and Green ash are assumed to be half of that of Ponderosa pine in this study. 

Table 6.3 Mechanical properties statistics of different tree species 

Variables 
Mean 

COV CDF Source 
AB GA PP 

Stem density (kg/m3) 320 530 380 0.1 Normal 

Ross (2010) Modulus of rupture (MPa) 34 66 35 0.16 Normal 

Modulus of elasticity (MPa) 7200 9700 6900 0.22 Normal 

Crown to stem weight ratio 0.4 0.3 0.4 0.25 Normal Peltola et al. (1999) 

Regression constant (NmKg-1) 67 67 134 0.2 Normal 
Gardiner et al. (2000) 
Dupuy et al. (2005) 

6.2.5 Development of fragility curves 

Fragility function represents the probability of exceeding a limit state under a given hazard intensity: 

𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦 = Φ(ln(𝑖𝑚/𝑚𝑅)𝜉𝑅 ) = 𝑃(𝐸𝐷𝑃 > 𝐿𝑆|𝐼𝑀 = 𝑖𝑚)           (6.15) 

where Φ(∙) is the standard normal distribution function; 𝑃(∙) is the probability function; 𝐼𝑀 is hazard 

intensity measure; 𝑖𝑚 is a particular value of 𝐼𝑀; 𝐸𝐷𝑃 is the engineering demand parameter; 𝐿𝑆 is the 

limit state value associated with the 𝐸𝐷𝑃  being considered; 𝑚𝑅  is the median capacity; 𝜉𝑅  is the 

logarithmic standard deviation. 

For the two limit states defined in Eqs. (6.12) and (6.14), 𝐸𝐷𝑃  and 𝐿𝑆  refer to the maximum 

compressive stresses of the stem 𝜎𝑚𝑎𝑥 and the stem modulus of rupture 𝜎𝑅 for the stem breakage limit 
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state and base bending moment 𝑀𝑚𝑎𝑥 and critical overturning moment 𝑀𝑜𝑐𝑟𝑖 for the uprooting limit state, 

respectively. 3-s gust wind speed at the height of 10 m is chosen as 𝐼𝑀. 

In order to avoid performing fragility analysis for every single tree, which will require cost-forbidden 

computational and modeling efforts, mean fragility is estimated for tree classes grouped according to tree 

heights. Trees with heights ranging from 7 m to 29 m are divided into 11 classes and each class covers a 

height range of 2 m. Tree heights within each class follow uniform distributions. Other tree profile 

parameters such as DBH, crown height, and crown diameter are determined with the developed allometric 

equations. For each tree class of a tree species, Monte Carlo simulation is used to generate 10,000 random 

samples including data related to mechanical properties, wind load, and tree profile according to their 

statistics in Table 6.2 and 6.3. Each sample builds a tree mechanistic model under a given wind condition, 

and then the simulation results are checked against the two limit state functions, respectively. With the 

simulation results from all generated samples, fragility curves for stem breakage and uprooting can be 

obtained. Fig. 6.3 shows the flowchart of developing the fragility curves of the trees subjected to winds. 

 

Figure 6.3 Flowchart of generating fragility curves of trees 

Fig. 6.4 illustrates the stem breakage fragility for three tree species. Five selected tree classes with 
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different tree heights, namely 9 - 11 m, 13 - 15 m, 17 - 19 m, 21 - 23 m, and 25 - 27 m, are considered. The 

calculated fragility results, which are represented by the black circles in Fig. 6.4, are compared with 

lognormal cumulative distributions obtained by best-fit analysis. It is seen that lognormal distribution can 

capture the general trend of fragilities obtained by the Monte Carlo simulation. As might be expected, the 

vulnerability of stem breakage increases with the increase of tree heights for all three tree species. Generally, 

Green ash is less vulnerable to stem breakage than the other two tree species, due to its higher modulus of 

rupture. 

 

(a) American basswood 

 

(b) Green ash 
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(c) Pondarosa pine 

Figure 6.4 Stem breakage fragility for three tree species 

Fig. 6.5 presents uprooting fragility curves for three tree species. Unlike American basswood and 

Ponderosa pine, uprooting fragility curves of Green ash show decreasing vulnerability with the increase of 

tree heights. According to the uprooting limit state defined in Eq. (6.14), stem weight contributes to both 

the demand and capacity. It is likely that the contribution to the capacity outweighs that to the demand when 

the tree height for Green ash increases. Ponderosa pine is less vulnerable than the other two tree species, 

due to its higher resistive moment. Meanwhile, when the tree height is larger than 17 m, the fragility curves 

of different classes are very close, indicating that the effect of tree height on the uprooting fragility is 

insignificant. 
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(a) American basswood 

 

(b) Green ash 

 

(c) Pondarosa pine 
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Figure 6.5 Uprooting fragility curves for three tree species 

Windthrow includes stem breakage and uprooting. If at least one of the two failure modes occur, 

windthrow is deemed to occur. The windthrow fragility of a tree can be derived by assembling fragility of 

two failure modes. Fig. 6.6 shows the windthrow fragility curves for the three tree species. It is found that 

windthrow of American basswood is dominated by uprooting failure, while windthrow of Ponderosa pine 

is mainly dominated by the stem breakage failure except for those trees with heights below 11 m. The 

windthrow probabilities of American basswood and Ponderosa pine increase with the increase of tree height. 

For Green ash, the fragility curves of different tree classes don’t exhibit a clear trend with tree heights. By 

comparing Fig. 6.6(b) with Figs. 6.4(b) and 6.5(b), it is found that uprooting dominates when tree height 

ranges from 9 to 19 m, whereas stem breakage dominates when tree height ranges from 21 to 27 m. 

Generally, the results show that American basswood is most vulnerable to wind, while Green ash is least 

vulnerable to wind among the three tree species. This is consistent with previous research findings regarding 

the wind resistance classification for different tree species by Duryea and Kampf (2007): American 

basswood and Ponderosa pine are considered to have the least and medium-low wind resistance, 

respectively, while Green ash have a medium-high wind resistance. 
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(a) American basswood 

 

(b) Green ash 

 

(c) Pondarosa pine 
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Figure 6.6 Windthrow fragility curves for three tree species 

6.3 Probabilistic methodology of modeling disrupted infrastructure due to fallen trees 

6.3.1 Probabilistic model of infrastructure disruption 

The tree fragility curves developed in the previous section can be used to study the disruption of various 

infrastructure systems (e.g. transportation system, electrical transmission system, water pipe systems and 

building system) in urban areas subjected to extreme winds. A probabilistic framework is proposed to 

estimate the probability of infrastructure disruption due to downed trees. The flowchart of the proposed 

framework is shown in Fig. 6.7. Under a certain wind condition, the probability of breakage/uprooting of a 

tree adjacent to an infrastructure can be developed based on the windthrow fragility curves of trees. It should 

be noted that the windthrow mode of a tree under a given wind speed is determined by the larger one 

between the probabilities of stem breakage and uprooting. If the probability of stem breakage is higher than 

that of uprooting, stem breakage will occur first; otherwise, uprooting will occur before breakage. Based 

on the damage mode of the tree, the infrastructure disruption status due to the fallen tree is determined 

accordingly based on some predefined criteria. After the probabilities of windthrow of all the trees along 

the infrastructure and the corresponding disruption scenarios of the infrastructure under a given wind 

condition are obtained, Monte Carlo simulations are used to generate a large number of possible disrupted 

scenarios of the infrastructure by considering possible windthrow risks of all the trees. Finally, the 

probability of the infrastructure disruption can be obtained according to the Monte Carlo simulation results. 
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Figure 6.7 Flowchart of the probabilistic framework to estimate probability of infrastructure disruption 

Road blockage and overhead powerline failure induced by fallen trees are demonstrated in detail with 

the proposed framework, and the corresponding schematic diagrams are shown in Figs. 6.8 and 6.9. As 

shown in Fig. 6.8, assuming 2.5 m is the minimum open width across the road to enable typical vehicles to 

pass, a road is deemed being fully blocked by an uprooted or broken tree as long as at least one of Eqs. 

(6.16) and (6.17) is satisfied: 

Road blockage by an uprooted tree: 𝐻𝑠𝑖𝑛(𝜃) > 𝐷 + 𝐿 − 2.5        (6.16) 

Road blockage by a broken tree: 𝐻𝑏𝑠𝑖𝑛(𝜃) > 𝐷 + 𝐿 − 2.5          (6.17) 

where 𝐻 is the tree height (m); 𝐻𝑏 is the length of the broken part of the tree (m), which can be obtained 

from the mechanical model; 𝜃 is the angle between the wind direction and the road direction (°); 𝐷 is the 

distance between the tree and the road (m); 𝐿 is the road width (m).   
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 (a) Uprooting                      (b) Breakage 

Figure 6.8 Schematic diagrams of road blockage induced by fallen trees 

As shown in Fig. 6.9, if Eq. (6.18) or Eq. (6.19) is satisfied, a powerline failure will occur due to the 

disruption caused by an uprooted or broken tree. 

Powerline failure by an uprooted tree: 𝐻 > 𝐻′ = √ℎ2 + 𝑑′              (6.18) 

Powerline failure by a broken tree: 𝐻𝑏 > 𝐻′ = √ℎ′2 + 𝑑′               (6.19) 

where ℎ is the height of the powerline (m); 𝑑′ = 𝑑/𝑠𝑖𝑛(𝜃), 𝑑 is the distance between the tree and the 

powerline (m); ℎ′ = ℎ − (𝐻 − 𝐻𝑏). 

  

 (a) Uprooting                       (b) Breakage 

Figure 6.9 Schematic diagrams of powerline disruption induced by fallen trees 
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6.3.2 Transportation network analysis in emergency response stage 

During and after an extreme wind event, first responders, rescue teams and emergency vehicles often 

need to be dispatched to the impacted area through accessible (unblocked) routes as soon as possible. People 

are interested in knowing not only whether a specific origin-destination (OD) pair is connected, but also 

whether emergency vehicles can arrive at the destination within expected time frame. Therefore, it is crucial 

to predict both the connectivity and travel time reliability of potentially disrupted transportation systems 

due to fallen trees during and following a major wind storm. Such information, which is very different from 

that in normal conditions and provided by popular map navigation services, will be very helpful for 

emergency responders as well as general passengers to identify the optimal travel routes and predicting 

actual travel time following an extreme wind event. The matrix-based system reliability (MSR) method 

proposed by Kang et al. (2008) is found to be a convenient and efficient tool to compute the connectivity 

reliability and other quantitative performance measures (e.g. network flow capacity) of a complex system, 

which will be adopted in the following study. 

6.3.2.1 Connectivity analysis 

For the MSR method, the sample space of component events with 𝑑𝑖  distinct states, 𝑖 = 1,… , 𝑛, is 

divided into 𝑚 = ∏ 𝑑𝑖𝑛𝑖=1  mutually exclusive and collectively exhaustive (MECE) events. The probability 

of a general system event can be obtained with the following formulation:  

𝑃(𝐸𝑠𝑦𝑠) = 𝑃𝑠𝑦𝑠 = 𝐜𝐓𝐏                             (6.20) 

where 𝐸𝑠𝑦𝑠 is a general system event; 𝑃𝑠𝑦𝑠 is the probability of the system event; 𝐜 is the event vector 

whose element is 1 if its corresponding MECE event is included in 𝐸𝑠𝑦𝑠 , and 0 otherwise; 𝐏  is the 

probability vector that contains the probabilities of all the MECE events. In this study each component in 
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the infrastructure system (e.g. powerline, road link) has two states due to fallen trees: disrupted and 

undisrupted, so there will be a total of 2𝑛  MECE events. Since the disruption probability of each 

component of the infrastructure system can be calculated with the probabilistic framework in Section 6.3.1, 

the probability vector 𝐏 can be easily constructed with simple matrix operations. Then the event vector 𝐜 

can also be identified separately. Finally, the disconnection probability between two areas can be computed 

by Eq. (6.20) with the identified 𝐜  and 𝐏  vectors. Full details of MSR methods can be found in the 

reference (Kang et al. 2008). 

6.3.2.2 Travel time reliability analysis 

For a specific wind scenario, we perform shortest path analysis for each of the 𝑚 disruption cases 

and find the shortest time for an OD pair. For each of the distinct values obtained from the shortest path 

analysis, 𝑡, the probability mass function (PMF) and cumulative distribution function (CDF) of the shortest 

time 𝑇 for an OD pair can be expressed by Eqs. (6.21) and (6.22), respectively. 

𝑃𝑇(𝑡) = 𝑃(𝑇 = 𝑡) = ∑ 𝑝𝑖𝑚
𝑖:𝑡𝑖=𝑡                                                          (6.21) 

𝐹𝑇(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∑ 𝑝𝑖𝑚
𝑖:𝑡𝑖≤𝑡                                                          (6.22) 

where 𝑡𝑖 is the shortest OD time for the 𝑖th disruption case, 𝑝𝑖 is the 𝑖th element in the probability 

vector 𝐏. Since it is now focused on emergency response stage shortly following a windstorm when the 

traffic demands on the roads are very low, free flow travel time for each passable link is used in the shortest 

path analysis. For the convenience of presenting the results, a large travel time value, which is 10 times of 

the free flow time on the link, is assigned to a blocked link in the shortest path analysis. Thus, a large OD 

time instead of an infinite value will be obtained for a disconnected case. Once the CDF is determined, the 
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travel time reliability, 𝑅, which is the probability that the OD time does not exceed an acceptable threshold 

level 𝑡𝑡, can be obtained as 

𝑅(𝑇 ≤ 𝑡𝑡) = 𝐹𝑇(𝑡𝑡)                             (6.23) 

6.3.3 Demonstrative study  

Downslope windstorms usually occur several times each year along Colorado's Front Range. Winds of 

30 to 50 m/s are commonly observed. One severe downslope windstorm event occurred on July 3rd, 1993 

in Fort Collins, Colorado, during which wind gusts reached 40 m/s, causing extensive tree and roof damage 

(Cotton et al. 1995). Given the potential risk due to windthrow on the infrastructures and the availability of 

data, city of Fort Collins in Colorado is selected as the demonstrative area in this study. The proposed 

probabilistic framework which considers the developed fragility curves of urban trees is demonstrated 

through an application to a portion of the transportation network and powerline system in Fort Collins (Fig. 

6.10). The transportation network consists of 9 nodes (solid circles) and 24 links (solid lines). A residential 

area (dashed circle with a letter “R”) is located close to node 7, and there is a hospital (dashed circle with a 

letter “H”) near node 3. The residential area and the hospital are connected with nearby nodes by subjunctive 

links (dashed lines), which are assumed to be not affected by fallen trees due to the lack of large roadside 

trees along these secondary roads. In addition, there is an overhead powerline system between node 4 and 

node 6, which consists of two parts: P1 and P2. P1 is located along link 5, and P2 is located along link 8. 
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Figure 6.10 An abstracted transportation network and powerline system in City of Fort Collins 

 

Three popular tree species in the city of Fort Collins are considered in this demonstration. Information 

of these trees along the links of the transportation network are collected based on Google Earth, mainly 

including tree heights and tree positions. There are totally 418 trees in this network selected from the city 

of Fort Collins, with the heights ranging from 8 m to 28 m and the height of the powerline is found to be 

12m.  

6.3.3.1 Powerline disruption 

The disruptions (failures) of the overhead powerline system under different wind conditions are 

investigated. For the overhead powerline system with 2 parts (P1 and P2) as shown in Fig. 6.10, disruptions 

will occur if at least one part is hit by at least one fallen tree. Following the proposed framework in Section 

6.3.1, the failure probability of the powerline system under different wind conditions are obtained and 

plotted in Fig. 6.11. Three unfavorable wind directions, 𝛼  = 180°, 240° and 360°, are investigated 
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considering that the powerline system is along the EW direction. As expected, the failure probability 

increases with the increase of wind speed. It is also found that south winds (𝛼  = 180°) are the most 

unfavorable events to the powerline system while north winds (𝛼 = 360°) are the least. Therefore, south 

winds control the powerline performance and this is because the trees along powerline P2 are more 

vulnerable to winds than those along powerline P1. To reduce the failure risk of the powerline system during 

an extreme event in a community, it is advised that the city should pay more attention to vulnerable trees 

along powerline P2. 

 

Figure 6.11 Probability of failure of powerline under different wind conditions 

6.3.3.2 Road closure  

Compared to the powerline system, the transportation system is more complicated given a much higher 

number of roads and different road orientations. Following the proposed framework in Section 6.3.1, the 

road closure probability of some selected links is obtained and plotted in Fig. 6.12. Firstly, the road closure 

probability of 4 links under winds with different speeds but at the same direction (𝛼 = 45°) is shown in Fig. 

6.12(a). As shown in Fig. 6.12(a), the road closure probability increases with the increase of wind speeds 
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for those links. Depending on the species, size and distribution of adjacent trees, some links are more 

vulnerable to winds than others, while some links have very low probability of being blocked. For example, 

it is found in Fig. 6.12(a) that Link 7 and 20 have higher closure probability than Link 9 and 22 under same 

wind direction and speed. Then, road closure probability of the four links under winds with different 

directions but the same speed (𝑈 = 20 m/s) is shown in Fig. 6.12(b), from which it is found that the closure 

probability of links is sensitive to wind direction.  

As shown in Fig. 6.12(b), for a specific link, closure probability varies with different wind directions. 

We further find that the road closure probability is influenced by the angle between the wind direction and 

the link orientation. When the wind direction is perpendicular/parallel to the link orientation, the road 

closure probability is high/low respectively, because a fallen tree will cover a large/small road width in this 

situation. For example, as shown in Fig. 6.12(b), closure probability of Link 6 and 8 in the EW direction is 

zero under west winds (𝛼  = 270°) but is the highest under south winds (𝛼  = 180°) among the four 

directions. Similarly, the closure probabilities of Link 13 and 21 in the NS direction under south winds (𝛼 

= 180°) are zero, but become the highest under west winds (𝛼 = 270°) among all four directions. Therefore, 

it is recommended that the city should pay more attention to the vulnerable trees along links that are nearly 

perpendicular to the prevailing wind directions in windy seasons, including applying some preventive 

measures. 
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(a) Different wind speeds 

 

(b) Different wind directions 

Figure 6.12 Probability of road closure under different wind conditions 

6.3.3.3 Transportation network performance 

It is of interest for the decision-makers to know the disconnection probability and travel time reliability 

between the studied residential area and some specific critical infrastructures in the transportation network, 

such as the hospital, during a forthcoming wind event. The MSR method introduced in Section 6.3.2.1 is 
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employed to conduct the connectivity analysis of the prototype traffic network for demonstration. After the 

event vector and probability vector of disconnection between the studied residential area and the hospital 

are all identified, the disconnection probability of the specific OD pair can be obtained through Eq. (6.20). 

The probabilities of disconnections between the residential area and the hospital under different wind 

conditions are plotted in Fig. 6.13.  

According to the simulation results, disconnections occur between the OD pair (i.e. the residential area 

and hospital) under wind directions ranging from -60° (300°) to 45°, mainly around the north direction (Fig. 

6.13). Additionally, it is found in Fig. 6.13 that north winds cause higher disconnection probability than 

other winds. This indicates that the trees along the links that are easier to be impacted by north winds (𝛼 = 

360°), such as Link 1, 3, 5, 7, 9 and 11, may pose higher risks of blocking these links and disconnecting the 

residential area and the hospital than the rest trees. With this information, the decision-makers may apply 

some preventive measures before wind hazards, such as identifying the critical and vulnerable trees, which 

can be strengthened or trimmed, to reduce the windthrow risk and in turn disconnection probability of the 

traffic network following the particular wind event. In the meantime, they may plan out some optimal routes 

by avoiding those vulnerable links for post-event emergency response, such as police, fire, medical service 

and emergency repair etc.  
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Figure 6.13 Probability of disconnection of the OD pair 

Compared to connectivity, travel time reliability, i.e. the probability that a trip between a given OD 

pair can be successfully made within a specified interval of time, can provide more useful information for 

the travelers. We then conduct the travel time reliability analysis for the OD pair between the residential 

area and the hospital with the MSR method introduced in Section 6.3.2.2.  

Firstly, the PMF of the OD travel time under winds with direction 𝛼 = 30° and speed 𝑈 = 20 m/s is 

obtained with Eq. (6.21) and shown in Fig. 6.14. It is found that the minimum travel time is equal to the 

shortest OD travel time under normal conditions 𝑡𝑡0 = 6.03 min, and the corresponding PMF value is 

0.435. This indicates that there is a 43.5% chance that the shortest OD path between the residential area and 

the hospital will not be disrupted in this wind event. It needs to be noted that very large values of travel 

time (𝑡 ≥ 19.53 min) in Fig. 6.14 indicates that the all paths between the residential area and the hospital 

are blocked, since we assume a large instead of infinity value of travel time for blocked links. When the 

OD travel time is between 6.03 and 19.53 min, a detour has been taken because one or more links on the 

shortest path are blocked.  
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Figure 6.14 The probability mass function of OD travel time 

Secondly, the CDFs of the OD travel time under winds with direction 𝛼 = 30° and speed 𝑈 = 18, 20 

and 22 m/s are obtained with Eq. (6.22) and shown in Fig. 6.15. It can be seen from the figure that the CDF, 

i.e. the probability that the OD travel time does not exceed a given threshold value and decreases 

significantly as the wind speed increases. For instance, for the three wind speeds 𝑈 = 18, 20 and 22 m/s, 

the probabilities that the OD travel time does not exceed 10 min (vertical line), are 0.955, 0.699, and 0.324, 

respectively. Meanwhile, the optimal path during a specific wind event, on which the total travel time does 

not exceed a given time, can be identified by finding the path with short OD travel time and high probability 

of OD travel time (PMF) based on the derived travel time distribution. It is found that the optimal path 

under a given time of 10 mins for the three wind scenarios (i.e. 𝛼 = 30° and 𝑈 = 18, 20 and 22 m/s) are 

the same: Link 9 → Link 11 → Link 21 → Link 23, which is also the optimal path under normal conditions. 

It should be noted that the optimal path is sensitive to wind directions and varies with different wind 

conditions.  
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Figure 6.15 The cumulative distribution function of OD travel time 

Finally, based on the CDF of OD travel time obtained previously, travel time reliability between the 

residential area and the hospital for two given wind directions 𝛼 = 30° and 330° are obtained with Eq. 

(6.23) and the results are given in Fig. 6.16. Here two acceptable threshold levels are defined: 𝑡𝑡 = 𝑡𝑡0 in 

level 1and 𝑡𝑡 = 2𝑡𝑡0 in level 2. From the figure, it is found that travel time reliability decreases greatly 

with the increase of wind speed. In addition, travel time reliability at level 2 is much higher than that at 

level 1. This means if a traveler wants to arrive at the hospital from the residential area on time with a higher 

probability after a strong wind event needs to plan more time for travel. It is also found that travel time 

reliability under winds direction 𝛼 = 30° is higher than that under wind direction 𝛼 = 330°, which is 

consistent with the connectivity results in Fig. 6.13. Moreover, by comparing Fig. 6.16 with Fig. 6.13, it is 

found that under same wind conditions, the OD travel time reliability is smaller than the OD connection 

probability. For example, for a given wind scenario 𝛼 = 30° and 𝑈 = 20 m/s, the connection probability 

is 0.723, while the travel time reliability is 0.435 at level 1 and 0.699 at level 2. This indicates that the travel 

time reliability will be equal to the connection probability when the acceptable travel time is very large. 
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Figure 6.16 Travel time reliability 

6.3.3.4 Measures for improving infrastructure performance 

Removal of all vulnerable trees threatening infrastructures is neither desirable nor feasible. Crown 

thinning (CT) is a common measure to reduce the windthrow likelihood by reducing crown weight and 

wind loads acting on the crown. Usually the extent of thinning in a year does not exceed 25% of the crown 

of a tree. In this study, the measure of crown thinning is investigated in terms of its effect on the 

infrastructure performance, where 25% of crown is removed for identified dangerous roadside trees in the 

transportation network of Fort Collins. We assume the crown density and effective crown area will be 

reduced by 25% and other tree parameters will keep the same after crown thinning. As a result, there will 

be a 25% reduction in both crown weight and wind loads acting on the crown. Furthermore, the windthrow 

fragility of trees will be affected by the reduced crown weight and wind loads.  

Fig. 6.17 gives the breakage and uprooting fragility curves for American basswood with a height of 

15-17 m before and after crown thinning. It is found that both the breakage and uprooting fragility can be 

improved significantly after crown thinning. Moreover, the effects of crown thinning on the infrastructure 
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performance, such as powerline disruption, road closure, OD connectivity and OD travel time reliability, 

are investigated.  

Fig. 6.18 shows the disruption probability of powerline and road closure probability of link 8 under 

north winds (𝛼 = 360°). Fig. 6.19 shows the disconnection probability and travel time reliability at level 2 

between the hospital and the residential area under wind direction 𝛼  = 300° before and after crown 

thinning. It is observed from Figs. 6.18 and 6.19 that the network performance is greatly improved after 

crown thinning, as reflected by the reduced powerline disruption probability, decreased road closure 

probability, reduced OD disconnection probability and increased OD travel time reliability. 

 

Figure 6.17 Windthrow fragility curves for basswood before and after crown thinning 
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Figure 6.18 Powerline disruption probability and road closure probability before and after crown thinning 

 

Figure 6.19 Disconnection probability and travel time reliability before and after crown thinning 

6.4 Conclusions 

This study proposed a probabilistic methodology to model the disrupted infrastructures due to fallen 

trees during wind events. Firstly, windthrow fragility analyses of typical urban trees under extreme winds 

were developed with considerations of the uncertainties of the wind loads and mechanical properties of 

trees. FEM-based mechanistic tree model was developed to compute the tree response subjected to wind 
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loads, based on which both uprooting and stem breakage fragility curves of three tree species with different 

height classes were generated through Monte Carlo simulations. Secondly, the probabilistic impact on a 

powerline system and a transportation network is derived with the proposed framework and the MSR 

method by adopting the developed fragility curves. The proposed methodology was numerically 

demonstrated in a prototype community in the city of Fort Collins with following findings: 

(1) Windthrow fragility of trees is species-dependent, which is strongly related to the wind characteristics 

and mechanical properties of particular tree species. Generally, higher stem modulus of rupture leads 

to lower stem breakage vulnerability, while higher critical overturning moment leads to lower uprooting 

vulnerability. 

(2) Because species, sizes and distributions of trees vary considerably at different locations, the powerline 

disruption probability, road closure probability, OD disconnection probability and travel time reliability 

under strong winds were found to be sensitive to wind directions. To reduce the wind risk, the city 

should pay attention to the vulnerable trees along powerlines and links that are nearly perpendicular to 

prevailing wind directions. 

(3) Crown thinning of trees was found to be an effective measure to improve infrastructure performance 

by reducing the probability of powerline disruption, road closure and OD disconnection, and increasing 

the OD travel time reliability. 
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 CHAPTER 7 SUMMARY OF THE DISSERTATION AND FUTURE STUDIES 

 

7.1 Summary and conclusions  

The contributions and findings of this dissertation are summarized in the following, which correspond 

to Chapter 2 to 6: 

(1) A new CA-based traffic flow simulation framework for hazardous driving environments is proposed, 

which considers more reasonable vehicle properties, anticipation effect, and different driving behaviors 

among drivers. This framework can provide traffic flow simulation under both normal traffic and 

hazardous (panic) traffic conditions. Compared to the proposed model, the mean flow rate is 

overestimated if limited deceleration is not incorporated, while underestimated if anticipation effect is 

not incorporated. Compared to the traffic under normal driving conditions, hazardous driving 

conditions can increase the mean traffic velocity when the occupancy is low. The standard deviation 

of the vehicle velocity is larger in the panic flow than the corresponding value in the normal flow. 

There are more congestion clusters distributed on the bridge under panic driving conditions than those 

under normal driving conditions, leading increased local concentrations of live loads on the bridge 

under high-occupancy traffic. Panic driving behavior is found to lead to larger extreme values and 

fluctuation of vehicle driving speeds and may significantly influence the extreme dynamic response of 

vehicles. 

(2) A new methodology was proposed to study the traffic performance of degraded road links being 

partially blocked following extreme events. In the numerical demonstrative study, the fundamental 

diagrams, time-space diagrams and lane-changing frequency were developed to investigate the traffic 
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flow characteristics and traffic dynamics under various scenarios. The impact of truck proportion, 

blockage configuration and traffic control were also studied. Four regions are found in the fundamental 

diagrams of disrupted traffic with single extended partial blockage (scenario A), namely, unsaturated 

traffic, transition traffic, saturated traffic, and oversaturated traffic. For scenario A, the truck proportion 

has a negative effect on the flow and velocity; traffic control of buses and trucks can improve the traffic 

safety in terms of lower speed variation, although the traffic flow efficiency is reduced. There are three 

regions in the fundamental diagrams, namely, unsaturated traffic, saturated traffic, and oversaturated 

traffic for the scenario with scattered multiple small partial blockages (scenario B). For scenario B, as 

the distance between two partial blockages increases, the traffic flow is improved by more evenly 

distributed lane change; traffic control in the accident area could improve traffic safety but reduce the 

flow, and an appropriate speed limit in the accident scene is deemed necessary. 

(3) By overcoming the limitations of previous studies, this study proposed a methodology for developing 

travel time functions of PBR in urban areas based on microscopic traffic simulation. Firstly, an 

improved CA model was proposed for heterogeneous traffic flow on partially blocked arterial roads 

by extending the two-lane SD model. With the proposed model, two types of unrealistic deceleration 

behaviors in most existing CA models can be avoided. Meanwhile, driver’s behaviors during traffic 

signal change intervals were realistically replicated by determining the vehicle status based on the 

vehicle’s distance to the intersection, driving speed and stopping probability. Secondly, the proposed 

model was calibrated and validated with the collected field traffic data in both macroscopic and 

microscopic scales. The validation results show that the proposed model can simulate the disrupted 

traffic flow with acceptable accuracy. Finally, the traffic data under various scenarios with different 
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traffic volumes, truck ratios and blockage ratio were generated through microscopic simulation 

experiments. The experiment results demonstrate that both blockage ratio and truck ratio have 

significant influence on the travel time. A continuous traffic time function was proposed for the 

disrupted traffic flow to capture the effect of the blockage ratio and truck ratio on the travel time. Its 

parameters were then estimated through a nonlinear regression analysis with the generated traffic data. 

Comparison results show that the developed travel time functions can provide more flexible and 

accurate predictions of travel time for PBR than the standard BPR function. 

(4) An integrated framework was proposed to evaluate the overall safety performance of vehicles in 

realistic stochastic traffic passing through highway infrastructure systems. Vehicle accident 

vulnerability was introduced as an overall safety index for the whole traffic, which may be used as an 

important resilience indicator for future resilience studies involving traffic safety. The proposed 

framework was applied to a bridge-roadway system for demonstration purposes. It was found that the 

proposed framework could provide rational estimation of the safety performance of traffic flow with 

findings consistent with existing studies and common observations. The main conclusions from the 

demonstrative study are summarized as follows. Among the three different road surface conditions, 

the icy road surface poses the greatest threat to vehicle accidents, whereas the dry road surface poses 

the least. Compared to vehicles on the bridge and the straight road, those on the curved road are more 

likely to experience accidents without considering the sheltering effect. Trucks are slightly more likely 

to experience an accident than vans on dry roads. However, vans have greater accident vulnerability 

than trucks on snowy and icy roads in general. Among the three types of vehicles, cars have the smallest 

possibility to experience an accident under dry road surface conditions, whereas they have the largest 
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possibility to experience an accident under snowy and icy surface conditions. The accident 

vulnerability of vehicles is influenced by the traffic occupancies in terms of the driving speed of 

vehicles.  

(5) This study proposed a probabilistic methodology to model the disrupted infrastructures due to fallen 

trees during wind events. Firstly, windthrow fragility analyses of typical urban trees under extreme 

winds were developed with considerations of the uncertainties of the wind loads and mechanical 

properties of trees. FEM-based mechanistic tree model was developed to compute the tree response 

subjected to wind loads, based on which both uprooting and stem breakage fragility curves of three 

tree species with different height classes were generated through Monte Carlo simulations. Secondly, 

the probabilistic impact on a powerline system and a transportation network is derived with the 

proposed framework and the MSR method by adopting the developed fragility curves. The proposed 

methodology was numerically demonstrated in a prototype community in the city of Fort Collins with 

following findings. Windthrow fragility of trees is species-dependent, which is strongly related to the 

wind characteristics and mechanical properties of particular tree species. Generally, higher stem 

modulus of rupture leads to lower stem breakage vulnerability, while higher critical overturning 

moment leads to lower uprooting vulnerability. Because species, sizes and distributions of trees vary 

considerably at different locations, the powerline disruption probability, road closure probability, OD 

disconnection probability and travel time reliability under strong winds were found to be sensitive to 

wind directions. To reduce the wind risk, the city should pay attention to the vulnerable trees along 

powerlines and links that are nearly perpendicular to prevailing wind directions. Crown thinning of 

trees was found to be an effective measure to improve infrastructure performance by reducing the 
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probability of powerline disruption, road closure and OD disconnection, and increasing the OD travel 

time reliability. 

7.2 Directions for future research 

Some possible improvements and extensions in future based on the current research are discussed in 

the following.  

a) Post-earthquake performance of urban transportation systems  

Earthquakes may cause significant damage to buildings and bridges. Debris from damaged buildings 

and collapsed bridges will cause full or partial road disruption and deteriorate the performance of 

transportation systems. A framework of earthquake-specific road disruption and its application on the 

network performance assessment and traffic management can be developed following this study, in which 

road disruption due to bridge failure and fallen building debris can be considered. Travel time functions of 

partially blocked roads links are necessary for traffic demand modeling, which can be developed based on 

the framework proposed in Chapter 4. The accessibility, travel time and planning will be conducted for a 

prototype community. 

b) Impact of tree damage on other infrastructures  

Although demonstrated only on overhead powerline and transportation systems in detail, the proposed 

methodology in Chapter 6 can be extended to the performance assessment of other disrupted infrastructures 

related to windthrow of trees in wind events, such as underground pipeline systems and buildings, once 

their potential vulnerability posed by fallen trees being appropriately characterized. In this demonstrative 

study, three typical urban tree species were studied in terms of fragility curves and the same procedure of 

conducting tree fragility analysis and disruption modeling can be easily applied to other tree species and 
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communities by considering site-specific tree, wind and network conditions. 

c) Microscopic traffic flow simulation of urban transportation networks 

Microscopic traffic simulation models in the dissertation are focused on the link level. A microscopic 

traffic simulation model for urban transportation networks will be developed in future considering its 

potential application in post-hazard network performance assessment. Macroscopic traffic simulation 

models (e.g. user equilibrium and system optimal models) are suitable for transportation networks 

under normal conditions, but not practical for those under hazardous conditions. Firstly, lots of 

important information are missing in the macroscopic models, such as traffic signals, differences 

between different vehicles, drivers and pedestrians. This is feasible when simulating traffic under 

normal conditions, because normal traffic in a network is nearly deterministic and can be modeled in 

an aggregated way. However, those information may change significantly during and after hazards and 

cannot be easily incorporated in the macroscopic model. For example, traffic lights may be damaged 

in an earthquake or a hurricane and lose their function; drivers may change their normal driving 

behaviors and normal routes. Secondly, macroscopic models can not consider damaged roads (e.g. 

partially blocked roads (PBR)) directly. The performance of a PBR can be modeled with a travel time 

function in macroscopic models. However, travel time functions of PBR are not readily available and 

are very hard to develop due to rare real traffic data and complexity of different disruption scenarios. 

The above-mentioned shortcomings of macroscopic models can be avoided in the microscopic models, 

because of their ability of directly simulating traffic signals, individual vehicles and intact or partially 

blocked roads. Potential application of microscopic network traffic simulation model may include: 1) 

resilience analysis of transportation networks; (2) identification of critical roads; (3) optimization of 
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evacuation plan after hazards. 
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