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ABSTRACT 
 
 
 

EFFECT OF TREATMENT WITH A NRF2 ACTIVATOR ON IN VIVO PROTEOSTASIS 

IN MICE 

 

Aging is characterized by progressive declines in cellular function, often resulting from 

oxidative stress. Redox homeostasis is perturbed when the production of reactive 

oxygen species (ROS) exceeds the capacity of antioxidant defenses to eliminate ROS. 

Chronic imbalances in ROS production and clearance can lead to disruptions in 

proteostasis by causing unrepairable damage to proteins. Nuclear factor erythroid-

derived 2-like 2 (Nrf2) exerts transcriptional regulation over endogenous antioxidant 

defenses by regulating the transcription of antioxidant enzymes and a myriad of 

cytoprotective proteins. Nrf2 activation has received attention as a therapeutic 

intervention to preserve cellular function. Our lab has characterized the treatment 

effects of Protandim and PB125, phytochemical compounds known to activate Nrf2. The 

collective findings from our group using both in vitro and in vivo experiments suggest 

that both compounds are effective for improving proteostasis; however, compared to 

Protandim, PB125 is more efficacious for sustained Nrf2 activation due to its ability to 

inhibit mechanisms of the Nrf2 shutdown pathway. We speculate that PB125 may have 

additional benefits on mechanism of proteostasis in vivo; thus, the purpose of the 

present study was to examine the effects of two doses of PB125 supplementation on 

proteostasis. We randomly assigned 51 male C57BL6/J mice aged 15-16 months to 

diets with 0 ppm (CON), 100 ppm (LOW), or 300 ppm (HIGH) doses of PB125 
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n=18/group during a 5-week feeding study. Mice were isotopically labeled with 8% 

deuterium oxide (D2O) administered in the drinking water to simultaneously measure 

protein and DNA synthesis rates in mitochondrial (mito), cytosolic (cyto), and mixed 

(mixed) subcellular fractions of heart, liver, and skeletal muscle tissues. We 

hypothesized that mice treated with PB125 would have enhanced proteostasis 

outcomes; however, our results indicate that PB125 supplementation did not affect 

mechanisms of proteostasis. No significant differences were found in protein or DNA 

synthesis rates between treatment groups, and our secondary measures further support 

that PB125 did not affect the proteostatic network, as there were no significant 

differences observed in Nrf2-regulated protein expression or protein aggregation. From 

our data we were able to confirm that oral administration of PB125 is safe; however, 

further in vivo investigations are warranted in order to confirm the role of PB125 in 

modulating mechanisms of proteostasis.  
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CHAPTER I: INTRODUCTION 

I. Aging 

 

Aging is the progressive decline in physiological function across the lifespan of an 

organism, which, at least in part, is attributable to accumulation of damage to proteins, 

lipids, and DNA (Richardson and Schadt 2014). Damage sustained to cellular structures 

over time is a consequence of chronic inflammation and excessive production of ROS 

(Murali and Panneerselvam 2007). ROS are inevitable by-products of life-sustaining 

metabolic processes (Richter-Dennerlein, Oeljeklaus et al. 2016). However, 

endogenous production of ROS becomes elevated with aging, effectively overwhelming 

the capacity of antioxidant defenses to maintain redox homeostasis (Seals, Jablonski et 

al. 2011). Accordingly, the aging phenotype is associated with high exposures to 

oxidative stress with consequent disruptions in proteostasis, or the maintenance of 

protein homeostasis (Klaips, Jayaraj et al. 2018). Moreover, a diminished capacity to 

maintain proteostasis induced by oxidative stress is central to the etiology of several 

age-related pathologies, including cardiovascular disease (McLendon and Robbins 

2015), liver cirrhosis (Dasarathy and Hatzoglou 2018), and sarcopenia (Meng and Yu 

2010). 

 

Activation of the transcription factor Nrf2 induces the transcription of an array of genes 

encoding cytoprotective proteins that provide resistance to oxidative stress and 

inflammation, and promote maintenance of protein turnover (Nguyen, Nioi et al. 2009). 

Therefore, Nrf2 drives transcriptional regulation of redox-balance, inflammatory 
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processes, and mechanisms of proteostasis. While it has been reported that basal 

expression of Nrf2 is conserved in older animals, converging evidence suggests that 

Nrf2 activation and Nrf2-regulated protein expression is diminished during aging (Zhou, 

Zhang et al. 2018). Moreover, restoring the activity of Nrf2 through phytochemical 

activation is a promising therapeutic strategy, and Nrf2 activators are currently being 

investigated in clinical trials for their prospective beneficial effects on cellular function 

throughout lifespan.  

 

II. Nrf2 Activators as Therapeutics  

 

Protandim (LifeVantage, Corp.) and PB125 (Pathways Bioscience), commercially 

available plant derived phytochemical compounds known to activate Nrf2, have recently 

been pursued as a strategy for improving cellular function across the lifespan. Recent 

data from The National Institute on Aging Interventions Testing Program (ITP), a multi-

institutional study designed to identify treatments with potential to extend lifespan and 

delay disease/dysfunction in mice, demonstrated that treatment with Protandim 

increased median lifespan of male HET3 mice (Strong, Miller et al. 2016). Additionally, 

our group has shown Protandim protects against oxidative stress induced cell death 

(Donovan, McCord et al. 2012, Reuland, Khademi et al. 2013). Although preliminary 

investigations with Protandim resulted in positive outcomes, the phytochemical cocktail 

PB125, a Nrf2 activator that results in more sustained activation of Nrf2 driven gene 

transcription, bears greater potential for lifespan extension compared to Protandim 

(unpublished data). Importantly, the active ingredients comprising PB125, carnosol, 
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luteolin, and withaferin A, have an extensive history of human consumption, and safety 

of these ingredients has been validated with both human and animal studies (AnadÓN, 

MartÍNez-LarraÑAga et al. 2008, Johnson 2011, Chandrasekhar, Kapoor et al. 2012). 

PB125 is currently being tested in the ITP, however, it is not yet clear if PB125 activates 

mechanisms responsible for protein homeostasis. Therefore, the purpose of the present 

study is to evaluate the effects of treatment with a potent Nrf2 activator, PB125, on rates 

of protein and DNA synthesis in male C57BL6/J mice. 

 

III. Statement of the problem 

The purpose of the present study is to examine the effects of treatment with PB125, a 

potent phytochemical Nrf2 activator, on rates of protein and DNA synthesis in heart, 

liver, and skeletal muscle in C57BL6/J mice aged 15-16 months over the course of a 5-

week feeding study.  

 

IV. Hypotheses 

We hypothesize that mechanisms of proteostasis will be enhanced in subcellular 

fractions of heart, liver, and skeletal muscle of mice treated with PB125 compared to 

control. 
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CHAPTER II: LITERATURE REVIEW 

 

I.   Oxidative Stress  

 

ROS are constantly formed during cellular metabolism, with endogenous sources of 

ROS being derived from electron leak during enzymatic reactions within the 

mitochondrial electron transport system. Briefly, complex I (NADH-CoQ reductase) and 

complex III (cytochrome C oxidase) are the primary production sites of the free radical 

superoxide anion (O2•‾) (Wong, Dighe et al. 2017). Superoxide anions have the 

potential to directly produce a more reactive radical, the hydroxyl radical (•OH) (O2•- + 

2e- → •OH). • OH is also produced indirectly through the dismutation of superoxide 

anion into hydrogen peroxide (H2O2) by the mitochondrial and cytosolic isoforms of the 

enzyme superoxide dismutase (SOD1/2) in conjunction with its metal co-factor Fe2+ 

(McCord and Fridovich 1968). Additional sources of ROS stem from peroxisomes 

(peroxidases, catalase, xanthine oxidase), lysosomes, and enzymes of the lipid bilayer 

(cyclooxygenases, lipoxygenases, and NADPH oxidases), producing a variety of ROS 

(Giustarini, Dalle-Donne et al. 2009).  

 

Oxidative stress is characterized by a chronic imbalance in ROS production and a 

diminished capacity of antioxidant defenses to eliminate harmful reactive species, and it 

is theorized that oxidative stress-induced damage to macromolecular structures 

contribute to age-associated declines in cellular function (Beckman and Ames 1998). 

With advancing aging, endogenous antioxidant defenses become compromised and 
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lead to the accumulation of ROS (Okoduwa, Umar et al. 2015, Freitas, Boncompagni et 

al. 2016). The data currently available suggest that ROS-induced lipid and protein 

modifications such as peroxidation, carbonylation, nitrosylation and glycation are linked 

to the progression of age-related diseases like cardiovascular disease, liver cirrhosis, 

and sarcopenia. For example, older individuals afflicted by vascular endothelial 

dysfunction possess elevated levels of nitrotyrosine, whereas liver cirrhosis patients 

have increased oxidatively modified lipids (ie. lipid peroxidation) that are associated with 

ROS accumulation (Donato, Eskurza et al. 2007, Reynaert, Gopal et al. 2016). The 

plasma of sarcopenic individuals compared to their non-sarcopenic counterparts have 

higher levels of 4-hydroxynonenal (4-HNE), a modified protein end-product resulting 

from ROS exposure (Bellanti, Romano et al. 2018). It has become apparent that high 

exposure to ROS contributes to the etiology of age-related diseases and causes 

disruptions in redox signaling, likely due to a decreased capacity to eliminate harmful 

ROS (Bakala, Delaval et al. 2003). However, low exposure to oxidants is essential for 

healthy redox signaling and, further, to promote adaptive cellular responses that are 

coordinated by the Nrf2-Keap1-ARE axis (Tebay, Robertson et al. 2015, Egea, 

Fabregat et al. 2017) .  

 

II.  Nrf2-Keap1-ARE Axis  

 

Under normal physiological conditions Nrf2 resides in the cytosol bound to Kelch-like 

ECH-associated protein 1 (Keap1), a cytoskeleton-associated adaptor protein that 

negatively regulates Nrf2 activity (Zhang, Lo et al. 2004). Keap1 serves as a redox 



 

 

sensor of the cellular environment, responding to the presence of Nrf2 activators such 

as oxidants, electrophiles, xenobiotics, and phytochemicals (Wu, McDonald et al. 2014). 

Nrf2 activators interact with key cysteine thiol residues of Keap1, enabling Nrf2 to be 

released from Keap1 and translocate to the nucleus. Once inside the nucleus, Nrf2 is 

able to interact with the Antioxidant/Electrophilic Response Element (ARE), a 

transcriptional element responsible for regulation of gene targets involved in redox 

regulation, phase I-III drug metabolism, iron and heme metabolism, autophagy, and 

proteasome assembly (Dodson, de la Vega et al. 2019). 

 

Nrf2 activity is repressed by Keap1, which is comprised of several domains that 

collectively regulate Nrf2. The double-glycine repeat region (DGR) of dimerized Keap1 

binds the Neh2 domain of Nrf2, driving the formation of Nrf2-Keap1 complex in a “hinge-

and-latch” mechanism. As a result, Nrf2 is kept sequestered in the cytosol by Keap1, 

preventing its nuclear translocation (Itoh, Wakabayashi et al. 1999). It is important to 

note that in non-stressful conditions, Keap1 promotes the degradation of Nrf2 by the 

ubiquitin proteasomal system (UPS). The process of Nrf2 degradation occurs at the 

intervening region (IVR) of Keap1, which recruits RING-box-protein 1 (Rbx1) and binds 

Cullin-3 (Cul3), an E3-ubiquitin ligase that is necessary for Nrf2 ubiquitination and 

subsequent degradation by the 26s proteasome (Zhang, Lo et al. 2004). This 

degradatory mechanism serves as a primary regulator of Nrf2 activity. The IVR is a 

cysteine-rich domain that is sensitive to oxidative modification, primarily by RONS or 

electrophilic stress (Canning, Sorrell et al. 2015). Moreover, molecular interactions 
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between Nrf2 and Keap1 allows for the rapid detection of changes to redox 

homeostasis in the cytosol and drives gene transcription through the Nrf2-ARE axis.   

 

III.  Nrf2 Activation and Gene Targets of the ARE 

 

Under conditions of oxidative stress, cysteine residues within Keap1 are oxidized 

causing a conformational change in the Nrf2-Keap1 complex that effectively stabilizes 

Nrf2. Lysine residues on Nrf2 become hidden and can no longer be ubiquitinated, 

preventing Nrf2’s degradation and increasing its half-life from roughly 15 to 180 minutes 

(Lewis, Mele et al. 2010). Subsequently, Nrf2 can translocate to the nucleus. Nuclear 

accumulation of Nrf2 results in the formation of heterodimers with small 

masculoaponeurotic fibrosarcoma (MAF) proteins and facilitates binding of Nrf2 to the 

cis promoter region of the ARE. The Nrf2-ARE interaction induces expression of a 

myriad of cytoprotective genes that maintain redox homeostasis. (MacLeod, McMahon 

et al. 2009).  

 

Activation of Nrf2 has been identified as a novel therapeutic strategy primarily because 

of its ability to induce the expression of antioxidant transcriptional programs. An 

important function of Nrf2-related antioxidants is to maintain redox homeostasis via 

adequate regulation of proteins involved in glutathione metabolism (Chen, Liu et al. 

2010). Accordingly, GSH levels are regulated by Nrf2 gene targets GCLM and GCLC, 

which encode for glutamate cysteine ligase, the protein responsible for de novo 

biosynthesis of GSH (Wild, Moinova et al. 1999) Also requisite for GSH synthesis is the 
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cysteine importer xCT, encoded by the Nrf2 gene target SLC7A11. Nrf2 activation was 

shown to induce expression of xCT mRNA that preceded any increase in GSH protein 

levels (Nishimoto, Koike et al. 2017). With regard to GSH and Nrf2, GPX2 and GPX4 

are gene targets of Nrf2 encoding glutathione peroxidases, which reduce peroxides by 

using GSH as a substrate (Friedmann Angeli, Schneider et al. 2014). Another important 

antioxidant protein downstream of Nrf2 is glutathione reductase (GR), which catalyzes 

the reduction of oxidized glutathione (GSSG) back to GSH. Serving as a crucial redox 

buffer, GSH is present in high concentrations in the cytosol, nucleus, and mitochondria 

(Valko, Leibfritz et al. 2007). The ratio of reduced to oxidized glutathione (GSH:GSSG) 

is an indicator of cellular redox status, and is both directly and indirectly affected by Nrf2 

driven expression of antioxidants. In summary, Nrf2 maintains cellular redox 

homeostasis by inducing gene expression of antioxidant proteins via the ARE.  

 

The transcription factor Nrf2 is also implicated in drug and xenobiotic metabolism. The 

most extensively studied proteins are involved in phase I and II metabolism, which 

reduce toxins and drugs into harmless metabolites. Nrf2 drives expression of aldo-keto 

reductases, aldehyde reductases, and NAD(P)H:quinone oxidoreductase 1 (NQO1), 

another enzyme key to antioxidant defenses (Itoh, Chiba et al. 1997). NQO1 effectively 

combats oxidative stress by detoxifying quinones and preventing redox cycling, a series 

of reactions that propagate free radical production (Gaikwad, Long et al. 2001). Lastly, 

Nrf2 has also been reported to enhance the transcription of a class of membrane 

transporters of the ATP-binding cassette family, functioning to excrete xenobiotics/drugs 

from the cell (Wu, Cui et al. 2012). Nrf2 knockout mice are highly sensitive to 

7 



 

 

acetaminophen-induced hepatotoxicity, and this was associated with reduced 

expression of Nrf2-regulated drug metabolizing enzymes and antioxidants (Enomoto 

2001). To recapitulate, Nrf2 transcriptionally regulates the expression of a functionally 

diverse set cytoprotective proteins.  

 

IV.  Nrf2 & Proteostasis 

 

Activation of Nrf2-ARE driven gene transcription has been identified as a modulator of 

proteostasis, as Nrf2 coordinates gene transcription of cytoprotective proteins that 

provide resistance to oxidative stress and assuage disruptions in proteostasis. 

Maintaining the proteostatic network requires a functional equilibrium between protein 

synthesis, folding, localization and degradation processes (Diaz-Villanueva, Diaz-Molina 

et al. 2015). Protein turnover, the balance between protein synthesis and degradation 

processes, is essential for protein homeostasis. Sustaining adequate rates of protein 

turnover reduces the potential for damage to macromolecular structures. This is 

important because the enzymatic capacity to repair damaged proteins is limited and 

declines further with age, requiring damaged and/or dysfunctional proteins to be 

degraded to their amino acid constituents (Ryazanov and Nefsky 2002). In concordance 

with this idea, loss of proteostasis has emerged as a hallmark of the aging process, with 

the current body of literature suggesting that the capacity to maintain proteostasis 

declines over lifespan (Basisty, Meyer et al. 2018). While insufficient protein turnover is 

one manifestation, loss of proteostasis is also characterized by altered post-translational 

modifications, protein aggregation, oxidative damage, and misfolding events at the 
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cellular level. Furthermore, new protein synthesis contributes to establishing a 

functionally stable proteome in the cell and is a cornerstone of maintaining cellular 

function. 

 

Nrf2 signaling may serve as a promoter of protein turnover due to its role in regulating 

the proteasome and autophagy, two critical mechanisms facilitating protein degradation. 

Briefly, the proteasome works in conjunction with the ubiquitin system to degrade short-

lived regulatory proteins and misfolded proteins (Diaz-Villanueva, Diaz-Molina et al. 

2015), and proteasomal assembly requires the expression of proteasome subunit 1 

(PSMA1), proteasome subunit 5 (PSMB5), and proteasome maturation protein 

(POMP), which all contain ARE sequences and are transactivated by Nrf2 (Kwak, 

Wakabayashi et al. 2003, Jang, Wang et al. 2014). Distinct from proteasomal 

degradation is autophagy, a process that eliminates protein aggregates, as well as 

organelles such as the mitochondria and endoplasmic reticulum (Noda and Inagaki 

2015). At the juxtaposition of autophagy and Nrf2 signaling is p62/sequestosome1 

(p62), an adaptor protein that binds ubiquitinated proteins and delivers cargo to the 

autophagosome during autophagic clearance (Lim, Lachenmayer et al. 2015, Liu, Ye et 

al. 2016). p62 links autophagy to the Nrf2-Keap1-ARE axis through its interaction with 

Keap1, as p62 contains a binding motif similar in structure to Nrf2, allowing it to interact 

directly with Keap1 and initiate its degradation (Liu, Ye et al. 2016). Phosphorylation of 

p62 at serine351 increases its binding affinity for Keap1, causing Nrf2’s dissociation and 

subsequent nuclear accumulation (Komatsu, Kurokawa et al. 2010). Interestingly, p62 

expression is upregulated in response to Nrf2 activation, creating a positive feedback 
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loop that promotes Nrf2 activity through the autophagic clearance of Keap1 (Jain, 

Lamark et al. 2010). Investigations using p62 KO mice have revealed that p62 is 

necessary for the expression of NQO1 in oxidative skeletal muscle, indicating that p62 

cooperates with Nrf2 to induce antioxidant expression (Yamada, Iwata et al. 2019). 

Pertaining to Nrf2’s role in activating transcriptional programs of autophagic machinery, 

autophagy related proteins 5 and 7 (ATG) and unc-51-like autophagy activating kinase 

1 and 2 (ULK1/2), are encoded by autophagy genes containing an ARE sequence 

(Pajares, Jiménez-Moreno et al. 2016). Intuitively, these genes are inducible by Nrf2 

activation, placing Nrf2 in a governing role over mechanisms of protein degradation.  

 

Nrf2 functions to coordinate an adaptive response to stressors, contributing to the 

maintenance of protein homeostasis. Importantly, Nrf2 preserves endoplasmic reticulum 

(ER) function by participating in the unfolded protein response (UPR) in concert with 

protein kinase R-like endoplasmic reticulum kinase (PERK) (Cullinan and Diehl 2006, 

Xie, Pariollaud et al. 2015). The ER is considered a key component of the proteostasis 

network, as the ER is the main site of ribosomal translation and post-translational 

folding of proteins. Localized to the ER membrane, PERK is a transdomain kinase that 

mediates signal transduction from the ER lumen to the cytosol and nucleus (Harding, 

Zhang et al. 1999). The ER possesses sensors, like that of PERK, that detect the 

accumulation of unfolded/misfolded proteins and stimulate various effectors to prevent 

proteotoxicity and cell death. Specifically, unfolded proteins unveil  hydrophobic 

residues that are recognized by BIP, a chaperone that is released from PERK’s lumenal 

domain upon activation by proteotoxic stress (Kohno, Normington et al. 1993). 
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Simultaneously, PERK activation results in the direct phosphorylation of serine residues 

on eukaryotic initiation factor-alpha (eIF2) and Nrf2, exerting regulation over protein 

synthesis and progression through the cell cycle in response to stress (Ron and Walter 

2007, Chevet, Hetz et al. 2015).  

 

UPR-activated PERK signaling functions to repress global protein translation at the 

onset of ER stress (Cullinan and Diehl 2004). Initiation of the UPR stimulates PERK to 

phosphorylate the translation initiation factor eIF2, causing the inhibition of translation 

initiation (Harding, Zhang et al. 2000). Perturbations in ER homeostasis additionally 

provoke PERK-dependent phosphorylation of Nrf2, causing Nrf2 to be released from 

Keap1 and translocate to the nucleus (Cullinan, Zhang et al. 2003). In agreement with 

this idea, the early stages of oxidative stress promote the PERK-Nrf2 signaling pathway 

to arrest cell cycle via modification of cyclin activity and concentration. Cell cycle 

progression is intricately regulated by a complex network of cyclin dependent kinases 

and their respective cyclin substrates (Malumbres 2014), and are further influenced by 

PERK signaling. At the initial stage of mild oxidative stress, Nrf2 prompts cell cycle 

arrest in G2 by binding to the genetic promoters of p15, p17, and p21, the putative 

stochiometric inhibitors of cyclin D1 activity (Márton, Tihanyi et al. 2018). In contrast, 

prolonged exposure to oxidative stress initiates the degradation of Cyclin D1 in a PERK-

dependent manner, resulting in decreased cyclin D1 protein concentration (Márton, 

Tihanyi et al. 2018). To summarize, the PERK-Nrf2 signaling pathway is an adaptive 

response to oxidative stress that serves to block cell cycle progression by controlling 

cyclin D1 activity and concentration (Harding, Novoa et al. 2000).  
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In parallel with the aforementioned responses to oxidative stress, cells possess 

additional control mechanisms that modulate cell cycle to promote cell survival. p53, a 

transcription factor that ensures genome integrity by organizing responses to DNA 

damage, is central to the counteraction of oxidative stress (Hiemstra, Niemeijer et al. 

2017). Conditions of prolonged exposure to high concentrations of ROS causes 

oxidation of redox-sensitive cysteines within p53, leading to the expression of gene 

targets that collectively prompt DNA repair, cell cycle arrest, and apoptosis (Fischer, 

Prodeus et al. 2016). Activation of p53 has been identified as a regulator of Nrf2 activity, 

eliciting a diphasic response that is dependent on the degree of oxidative stress (Chen, 

Jiang et al. 2012). On one hand, mild conditions of oxidative stress are associated with 

low levels of p53 and transcriptional activation of p21, a cyclin dependent kinase 

inhibitor that arrests cell cycle at G1 (Cao, Li et al. 2013). The p53-dependent block in 

cell cycle progression allows for the immediate upregulation of Nrf2-dependent 

antioxidant gene transcription, restoration of redox-balance, and subsequent cell cycle 

re-entry. However, when cells are subjected to conditions that invoke cellular damage, 

p53 becomes elevated and the Nrf2 response is suppressed (Chen, Jiang et al. 2012). 

Simultaneous to the suppression of Nrf2-dependent antioxidant response, p53 initiates 

apoptosis, a cell death process that preserves the genome (Luo, Liang et al. 2017). In 

review, p53 regulates Nrf2 to counteract the consequences of ROS accumulation in a 

spatiotemporal manner, as mild concentrations of ROS activates p53 and bolsters the 

strength of Nrf2-dependent antioxidant scavenging, while unrepairable cellular damage 
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induced by excessive ROS causes p53 to block cell cycle progression and induce 

apoptotic cell death (Faraonio, Vergara et al. 2006).  

The diversity of Nrf2’s interactions with the proteostatic network lends significance to the 

central role of Nrf2 in mediating cellular function. Nrf2 is vital for not only the immediate 

restoration of redox-balance, but also the regulation of protein synthesis and 

degradation, the UPR, and several aspects of the cell cycle. With the convoluted nature 

of Nrf2 signaling, investigating the role of Nrf2 in the context of proteostasis requires 

consideration of both protein and DNA synthesis. Accordingly, the present study 

assessed the contribution of new protein synthesis and cellular proliferation to 

proteostasis by measuring rates of protein and DNA synthesis.  
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CHAPTER III: METHODS 

 

I.  Animal Care 

51 male C57BL/6J mice aged 15-16 months were purchased from Jackson 

Laboratories. All animals were housed at the Painter Center, home of Colorado State 

University’s (CSU) Laboratory Animal Resources facilities. All procedures were 

approved by the CSU Animal Care and Use Committee, and met or exceeded animal 

housing standards as described in the Animal Welfare Act regulations, the Guide for the 

Care and Use of Laboratory Animals, and the Guide for Care and Use of Agricultural 

Animals in Agricultural Research and Teaching.  

 

II.  Diet Composition – PB125 (Pathways Bioscience) 

Diets were supplemented with PB125, consisting of a combination of three plant-derived 

phytochemicals [Carnosol (Rosemary extract), Withaferin A (Ashwaganda), and 

Luteolin) at two doses in pellet form (Dyets Inc, Bethlehem, PA). The dietary 

composition for each dose is listed as follows: The low dose (100 ppm) dietary 

supplement consisted of Rosemary extract (6.82 x 10-6 mg/g diet), Withaferin A (2.27 x 

10-5 mg/g diet), Luteolin (9.09 x 10-6 mg/g diet). The high dose (300 ppm) consisted of 

Rosemary extract (2.05 x 10-4 mg/g diet), Ashwaganda extract (1% withaferin A)(6.82 x 

10-5 mg/g diet), Luteolin (2.73 x 10-5 mg/g diet).  

 

 

 

14 



 

 

III.  Experimental Design  

Mice were randomly assigned to one of three diet groups (n=18/group), consuming 

either CON, LOW, or HIGH doses of PB125 (Figure 1). PB125 was provided ad-libitum 

for the 5-week duration of the study. Mouse body weights and food intake were 

recorded at baseline, then recorded every other day until the completion of the 5-week 

feeding period. Collected data were averaged to obtain mean body weight (Luo, Liang 

et al.) and mean daily food intake (Luo, Liang et al.). 

 

IV.  Deuterium Labeling 

Following a 7-day lead-in on the diet, mice were isotopically labeled with deuterium 

oxide (D2O) to measure protein and DNA synthesis (Figure 1). Mice received a bolus 

intraperitoneal (i.p) injection of 99% D2O (Sigma-Aldrich, St. Louis, MO, USA) in 0.9% 

NaCl relative to 60% of body weight as previously described (Drake, Bruns et al. 2014) 

and 8% D2O was added to the drinking water for the duration of the feeding period to 

maintain D2O enrichment. D2O incorporates into non-labile sites on alanine and 

deoxyribose, providing a strategy to determine fractional synthesis rates (FSR) of 

protein and DNA.   

 

V.  Animal Sacrifice & Tissue Harvest 

12 hours prior to sacrifice, all food was removed from each cage to illicit an overnight 

fast. All animals were anesthetized via i.p. injection with 0.5-1.0 mL of ketamine 

(80mg/kg)/xylazine (20mg/kg) solution. Takedowns were performed at 1, 4, 8, 14, and 

34 days of deuterium labeling (n=3-4 mice/group/day) and tissues were harvested to 
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capture protein and DNA synthesis for the full duration of the labeling period (Figure 1). 

Blood was obtained by cardiac venipuncture (approx. 1.0mL), immediately followed by 

excision of heart, liver, and gastrocnemius, and bone marrow was extracted from the 

tibia and femur. All tissues were rinsed in phosphate buffered solution (PBS), dissected 

of connective tissue and weighed on an analytical balance (Denver Instruments) 

accurate within ± 0.1g. Tissues were then flash frozen in liquid nitrogen and stored at -

80°C for future analysis.  

 

VI. Tissue and Analyte Preparation 

 

a. Body Water Derivation and Analysis 

Body water deuterium enrichment was determined from plasma as previously described 

by our lab (Miller, Robinson et al. 2012). Plasma was obtained by centrifugation of 1.0 

ml blood samples at the time of sacrifice. 125 uL of plasma was pipetted into the inner 

well of an o-ring screw cap, and tubes were inverted and incubated on a heat block 

overnight at 80°C. Following overnight incubation, samples were cooled to room 

temperature and 2 uL of 10M NaOH and 20 mL of acetone were added to each sample 

and 0%-20% D2O standards. Samples were then briefly vortexed and allowed to 

incubate overnight at room temperature. The following day, all samples and standards 

were prepared for acetone derivation and subsequent extraction by adding 200 uL of 

hexanes. The organic layer was transferred to gas-chromatography vials with 200 uL 

pipette tips containing Na2SO4. Samples were analyzed via gas-chromatography/mass-

spectrometry on EI Mode with a DB-17MS column. The mass-to-charge ratios of 58 and 
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60 were monitored for the acetone derivative and quantified using ChemStation 

software (Agilent Technologies, Santa Clara, CA, USA).  

b. Tissue Fractionation by Differential Centrifugation  

Approximately 40-50 mg of whole skeletal muscle, heart, and liver tissue samples were 

pulverized under liquid nitrogen and used for differential centrifugation to isolate 

mitochondrial enriched (mito), cytosolic (cyto), and mixed (mixed) subcellular protein 

fractions according to our previously published procedures (Miller, Robinson et al. 2013, 

Drake, Bruns et al. 2014). Pulverized tissues were bead homogenized in 1:10 isolation 

buffer (100 mM KCl, 40 mM Tris HCl, 10 mM Tris Base, 5 mM MgCl2, 1 mM EDTA, 1 

mM ATP, pH 7.5) with addition of phosphatase and protease inhibitors (HALT, Thermo 

Scientific, Rockford IL). The initial tissue homogenate was centrifuged at 800g for 10 

min at 4°C. The resulting supernatant was removed and added to a new tube, and the 

pellet was saved as mixed. The supernatant from the previous spin was centrifuged at 

10,000g for 30 min at 4°C, and the resulting pellet was saved as mito. From the 

supernatant, 400 uL was removed and an equal volume (400 uL) of 14% SSA was 

added. The tube incubated on ice for 1hr and labeled as cyto. The remaining volume of 

supernatant from the mito spin was saved for protein quantification. The mito pellet was 

washed with 200 uL buffer #2 (100 mM KCl, 10 mM Tris-HCl, 10 mM Tris Base, 1 mM 

MgSO4, 0.1 mM EDTA, 0.02 mM ATP, and 1.5% BSA, pH 7.4) and centrifuged at 

8000g for 10 min at 4°C. The supernatant was removed, and the pellet was washed a 

second time with 100uL buffer #2 and centrifuged at 6000g for 10 min at 4°C. Following 

the 6000g spin a final wash step with 1ml ddH2O was performed. After the 1 hr 
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incubation, the cyto tube was centrifuged at 16,000g for 10 min at 4°C to yield the Cyto 

protein pellet. The cyto and mixed pellet were washed with 500 uL 100% ethanol, 

centrifuged at 1000g for 4 min at 4°C, and washed with 500 uL ddH2O and centrifuged 

again at 1000g for 4min at 4°C. cyto and Mix wash steps were repeated once. mito, 

cyto, and mixed pellets were solubilized in 250 uL 1M NaOH for 15 min at 50°C and 

hydrolyzed in 6M HCl for 24 hours at 120°C.  

c. Alanine Derivation and Analysis 

Protein was hydrolyzed overnight in 6M HCl at 120°C.  Protein hydrolysates were cation 

exchanged and dried under vacuum according to our previous published procedures 

(Miller, Robinson et al. 2012) Dried hydrolysates were resuspended in 1 mL of 

molecular biology grade water, and approximately 500 uL of sample was used for 

derivation. 500 uL acetonitrile, 50 uL1M K2HPO4, and 20 uL of pentafluorobenzyl 

bromide were added to all samples and standards. Tubes were vortexed and incubated 

on a heating block at 100°C for 1 hour.  Samples were removed from the heating block 

and cooled to room temperature.  Once cooled, 600 uL of ethyl acetate was added to 

each sample and vortexed vigorously to allow for phase separation. Using a Pasteur 

pipette, the organic layer was transferred to GC vials and dried down under N2. After 

drying, samples were reconstituted in 700 uL ethyl acetate, vortexed, and tightly capped 

for analysis on GC/MS. Samples were analyzed by negative chemical ionization in 

selective ion monitoring mode. A DB225 gas chromatograph column was used to 

separate amino acid derivatives. Starting temperature was 100°C and increased to 

220°C at a rate of 10°C per minute with helium as the carrier gas and methane as the 

reagent. The mass-to-charge ratios of 448, 449, and 450 were monitored for the 
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pentafluorobenzyl-N,N-di(pentafluorobenzyl)alaninate derivative, and quantified using 

ChemStation software (Agilent Technologies, Santa Clara, CA, USA). The mass-to-

charge ratios represented the primary daughter ions that included all of the original 

hydrocarbon bonds from the given amino acid. 2H enrichment was calculated as the 

M+1 mass isotopomer divided by the sum of the M+1 and M+0 mass isotopomers 

(Hellerstein & Neese, 1999). The newly synthesized fraction of proteins was calculated 

by dividing the deuterium enrichment of alanine from protein by the precursor 

enrichment from body water (plasma). The precursor enrichment was determined from 

the enrichment of deuterium in body water and adjusted using mass isotopomer 

distribution analysis (MIDA) to determine alanine enrichment (Hellerstein & Neese, 

1999).  Protein synthetic rates were calculated by dividing fraction new by time and 

expressed as fractional synthesis rates (%FSR/day). 

 

d. DNA Extraction and Derivation 

 

DNA was isolated from whole tissue and bone marrow (QIAamp DNA mini kit, Qiagen, 

Valencia, CA, USA) and hydrolyzed overnight at 37°C with nuclease S1 and potato acid 

phosphatase.  Next, 80uL of glacial acetic acid and 100 uL pentafluorobenzyl 

hydroxylamine solution were added to sample hydrolysates and standards (1-30 ug/ml 

range deoxyribose) and incubated on a heating block for 30 min at 100°C.  Following 

incubation, samples were cooled to room temperature and then reacted with 1ml acetic 

anhydride and 100 uL n-methylimidazole for 15-20 minutes. After the reaction reached 

completion, 2ml molecular biology grade water and 750uL methylene chloride were 
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added to each tube and vortexed to induce phase separation. The bottom organic layer 

was extracted and expelled into a new tube containing granular anhydrous Na2SO4. An 

additional 750uL methylene chloride was added to samples, and extraction steps were 

repeated. Extraction was then transferred from tubes containing Na2SO4 to GC vials. 

GC vials were vacuum dried for one hour and reconstituted in 70uL ethyl acetate. Ethyl 

acetate was transferred to tapered GC vial insert and placed back into GC vials, which 

were tightly capped for GC/MS analysis. Samples were then analyzed by GC/MS with a 

DB-17MS column using negative chemical ionization with helium as the carrier gas and 

methane as the reagent. The pentafluorobenzyl triacetyl derivative of purine dR was 

monitored for the fractional molar isotope abundances at m/z 435 and 436, and 

quantified using ChemStation software (Agilent Technologies, Santa Clara, CA, USA).  

DNA fraction new was calculated in comparison to bone marrow, which represents a 

fully turned over population of cells (Miller et al., 2012). DNA synthesis rates were 

calculated by dividing DNA fraction new by time and expressed as fractional synthesis 

rates (FSR%/day). The protein FSR was then expressed relative to the DNA FSR to 

obtain the PRO:DNA synthesis ratio.  

 

VII. Immunoblotting & Band Detection  

Heart, liver, and skeletal muscle were homogenized using lysis buffer composed of 50 

mM HEPES, 12 mM Na4P207, 100 mM NaF, 10 mM EDTA, 400μL of Protease and 

Phosphatase Inhibitors, and 5 mL of 10%Triton. Protein (30 μg) was loaded onto a 8-

16% SDS-PAGE gel, run at 200V for one hour and transferred to PVDF membranes.   

Membranes were then probed with the primary antibodies glutathione-S-transferase 
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(Abcam-ab180650), thioredoxin reductase 1 (Novus-6925S), and glutathione reductase 

(Abcam-16801) diluted to 1g/mL and placed on a plate shaker overnight at 4C. After 

washing with TBST, the membranes were incubated with horse-radish peroxidase-

conjugated anti-rabbit secondary antibodies (Cell Signaling-7074P2) and TBST washing 

was repeated. Protein bands were imaged on a FluorChem E chemiluminescence 

imager (Protein Simple) and quantified using AlphaView SA software.  

VIII. Protein Aggregation   

Skeletal muscle and liver protein aggregation were determined using the Proteostat 

protein aggregation assay, fluorescence-based assay kit (Enzo Life Sciences). Protein 

was added to 1X diluted Proteostat assay buffer. Once in solution, 98 μL of protein 

(10μg/mL) was loaded onto a 96-well plate with 2 μL of 1X diluted Proteostat detection 

reagent, then incubated in the dark at room temperature for 15 minutes. The microplate 

was then read with a fluorescence microplate reader at an excitation setting of 550 nm 

and an emission filter of 600 nm. The resulting signal was compared against a standard 

curve of aggregated IgG generated from Proteostat standards and normalized to total 

protein.  

IX. Statistics and Data Analyses 

Statistical analyses were performed using Prism Graphpad Version 8 (La Jolla, CA). All 

values are presented as means  SEM. Changes in protein turnover over time were 

determined by a two-way ANOVA as treatment by time, while individual time points 

(protein synthesis, western blots, and protein aggregation) were analyzed using a one-

way ANOVA. Statistical significance was set a priori at P < 0.05.  
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CHAPTER IV: RESULTS 
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DIET 
CON, LOW, or HIGH 
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8% D2O Drinking 
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Tissue Harvest 

Heart, Liver, Skeletal Muscle 
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Begin 
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Figure 1. Timeline of experimental design. Mice received a bolus interperitoneal 
injection of 99% D2O following a week lead in on either CON, LOW, or HIGH 
PB125 supplemented diets. 8% D2O was supplied to the mice ad-libitum for the 
duration of the feeding period to maintain the enrichment of D2O in the body 
water. Mice were sacrificed and tissues were harvested after 1, 4, 8, 14, and 34 
days of deuterium labeling (n=3-4 mice/treatment group/time point) 
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Figure 2. Average body weight (g) (A). Average daily food intake (g)/day (B) for 
mice treated with CON, LOW, or HIGH doses of PB125. * denotes significant 
difference from pre (P < .0001) 
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Figure 3. Protein fractional synthesis rates (FSR) in mito, cyto, and mixed 
subcellular fractions during 5 weeks of CON, LOW, or HIGH doses of PB125 
supplementation in skeletal muscle (A), heart (B), and liver (C). Data are 
reported on 1, 4, 8, 14, and 34 days of deuterium labeling.  
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Figure 4. DNA fractional synthesis rates (FSR %/day) in skeletal muscle (A), 
heart (B), and liver (C) tissue after 14 and 34 days of deuterium labeling.  
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Figure 5. Synthetic ratios of PRO:DNA (FSR %/day) mito, cyto, and mixed 
subcellular fractions of skeletal muscle (A), heart (B), and liver (C) at two doses 
of PB125. Figures represent ratios at time point 34 days of deuterium labeling.  
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Figure 6. Content of antioxidant proteins Glutathione-S-Transferase (GST), 

Thioredoxin Reductase 1 (Trxr1), and Glutathione Reductase (GR) in skeletal muscle 

(A), heart (B), and liver (C).  Reported data are from time point 34 (days) of deuterium 

labeling. 
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I. Body Weight and Food Intake  
 

There were no significant differences in body weight between treatment groups, 

however, all groups displayed a decrease in body weight pre to post 5-week feeding 

trial (Figure 2A). However, the weekly average body weight showed no statistical 

difference between each group over time. There were also no significant differences in 

average daily food intake between treatment groups (Figure 2B). Subjectively speaking, 

the mice tolerated both doses of PB125 supplemented diet, with no signs of 

gastrointestinal distress or abnormal behavior.  

 

II. Protein and DNA Synthesis 

 

Figure 3 demonstrates protein FSR (1/day) in skeletal muscle, heart, and liver tissue. 

There were no significant differences between treatment groups in protein FSR of mito, 

cyto, or mixed subcellular fractions of any tissue. To determine the influence of PB125 

supplementation on mechanisms of proteostasis, protein:DNA (PRO:DNA) synthetic 

ratios (FSR %/day) were calculated for skeletal muscle, heart, and liver tissues at time 
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Figure 7. Quantification of protein aggregation in liver and skeletal muscle after 
34 days of deuterium labeling. 
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point 34 (days), which are displayed in Figure 5. Although there were no significant 

differences in PRO:DNA ratios, all tissues displayed similar trends between treatment 

groups in mito, cyto, and mixed fractions (Figure 5). Despite the lack of statistical 

significance, skeletal muscle (Figure 5A) had the highest PRO:DNA in the HIGH dose 

group, which may be partially explained by the insignificant trend toward reduced 

skeletal muscle DNA synthesis (Figure 4A). PRO:DNA ratios were not statistically 

different in heart and liver (Figure 5B-C). No significant differences were found in DNA 

FSR in any tissues (Figure 4A-C). 

 

III. Protein Content and Aggregation  

 

There were no significant differences in antioxidant protein content between PB125 

treated groups in skeletal muscle, heart, or liver tissue at 34 days (Figure 6). To further 

investigate if PB125 improved mechanisms of proteostasis, we measured protein 

aggregation in skeletal muscle and liver tissue (Figure 7). There were no significant 

group differences.    
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CHAPTER V: DISCUSSION 

I. Principal Outcomes 

In the present study, protein and DNA synthesis rates were measured for the purpose of 

interrogating mechanisms of proteostatic maintenance in mitochondrial, cytosolic, and 

mixed subcellular fractions of skeletal muscle, heart, and liver tissue of 15-16 month old 

mice that were consuming a diet containing CON, LOW, or HIGH doses of the 

phytochemical Nrf2 activator PB125. We hypothesized that treatment with a PB125-

supplemented diet (LOW and HIGH doses) would improve protein homeostasis, as 

indicated by an increased PRO:DNA synthesis ratio. Additionally, we hypothesized that 

mice consuming PB125 in their diet would have increased expression of antioxidant 

proteins and reduced levels of protein aggregation relative to the control group. Our 

findings show that protein and DNA synthesis rates in heart, liver, and skeletal muscle 

were unaffected by supplementation with PB125; and Nrf2-regulated protein expression 

of glutathione-S-transferase, thioredoxin reductase 1, and glutathione reductase were 

not significantly different between treatment groups in any tissues. Protein aggregation 

was measured in skeletal muscle and liver, with our results suggesting that PB125 

supplementation did not affect protein aggregation. Collectively, we anticipated 

enhanced proteostasis outcomes in mice treated with either LOW or HIGH doses of 

PB125 compared to the control group. The principal outcome from this study is that 

protein homeostasis in PB125 treated mice is not statistically different than CON in 

subcellular fractions of skeletal muscle, heart or liver tissue.  
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II. Proteostasis 

A key mechanism of protein homeostasis is the synthesis of new protein. As such, the 

primary goal of this study was to determine if treatment with the phytochemical-based 

Nrf2 activator, PB125, could improve proteostatic maintenance in vivo. To assess the 

role of PB125 in modulating proteostasis, the ratio of newly synthesized protein to DNA 

(PRO:DNA) was measured in skeletal muscle, heart, and liver tissue. Measuring rates 

of protein and DNA synthesis simultaneously facilitates evaluation of the contribution of 

cell proliferation to the measured rates of protein synthesis. Providing further context, a 

greater PRO:DNA ratio indicates that more of the protein synthetic resources are being 

allocated to repair and maintenance of existing cells (somatic maintenance) at the 

expense of cellular growth (proliferation). In agreement with this, our lab has previously 

demonstrated that targeting Nrf2 activation improves proteostasis during exposure to 

oxidative stress in vitro. Myoblasts co-cultured with the Nrf2 activator Protandim and 

H2O2  had improved mechanisms of proteostatic maintenance when faced with an 

oxidative challenge, as indicated by an increased PRO:DNA synthetic ratio (Bruns, 

Ehrlicher et al. 2018). Additionally, this study reports in vivo skeletal muscle data from 

rats treated with Protandim (600ppm) and allowed to run on exercise wheel for 6 weeks. 

Protandim was demonstrated to enhance mitochondrial proteostasis in the plantaris 

muscle, reflected by an increased PRO:DNA synthetic ratio only in the Protandim 

treated rats. However, in the present in vivo study using PB125, there were no 

significant differences in protein synthesis or in the accumulation of aggregated 

proteins, indicating that treatment with the Nrf2 activator had no apparent effect on in 

vivo proteostatic maintenance. Notably, the experimental design herein does not 

31 



 

 

support the detection of differences in PRO:DNA ratios at individual time points due to 

small sample sizes (n=3-4/group/timepoint). Rather, the experimental design was 

selected to determine long-term differences in synthesis rates of proteins with slow vs. 

rapid turnover, providing an advantageous approach to identify statistical differences in 

protein and DNA synthesis rates (k=1/day) over time. This data is generated by 

performing a one-phase non-linear curve fit using all time points throughout the five-

week labeling period (Pettit, Jonsson et al. 2017). While we are not able to confirm the 

hypothesis that treatment with LOW and HIGH doses of PB125 results in increased 

PRO:DNA ratios relative to CON, a number of factors likely influenced our outcomes 

and require consideration upon interpreting our data; and as such, will be the focus of 

the forthcoming discussion.  

 

Two primary factors may have limited our ability to detect differences in proteostatic 

maintenance and are, therefore, worthy of discussion. First, although the mice used 

were approaching old age, they were not otherwise “stressed.” Given that Nrf2 

activation is indispensable for coordinating adaptive responses to oxidative and other 

stresses (Leung, Kwong et al. 2003), selecting a model subjected to stress might have 

revealed the true potential of PB125 to modulate proteostasis. Interrupting Nrf2 activity 

through genetic knockout offers a convenient model for understanding the biological 

consequences of dysfunctional Nrf2 signaling. Indeed, Nrf2 knockout severely affects 

the balance between ROS and antioxidants, causing increased incidence of pathology 

and cellular damage (Lee, Chan et al. 2004), and lethality during embryogenesis.  

 

32 



 

 

In the context of aging and disrupted Nrf2 activity, 24-month old mice were used in a 

study by Ahn and colleagues to investigate the role of Nrf2 deficiency on skeletal 

muscle quality and function. They found that Nrf2 deficient old mice have significantly 

decreased muscle mass and contractile dysfunction compared to their age-matched 

wild type counterparts (Ahn, Pharaoh et al. 2018). Another key parameter from this 

study is the measurement of mitochondrial function in permeabilized red gastrocnemius 

fibers of the old Nrf2 deficient mice, with results showing elevated ROS production, 

reduced complex I respiration, and an associated increase in the ratio of NAD+ /NADH 

(Ahn, Pharaoh et al. 2018). In an independent study utilizing an aged Nrf2 knockout 

model, investigators revealed that the skeletal muscle of old mice lacking Nrf2 are 

deplete of antioxidants and GSH, which is associated with ROS accumulation and 

apoptosis. However, Nrf2 knockout in young animals did not affect antioxidant protein 

expression or ROS production, suggesting that the loss of Nrf2 in the absence of a 

stressed setting causes minimal disruptions to redox status (Miller, Gounder et al. 

2012).  

 

The necessity of Nrf2 activation was assessed in the presence and absence of stress 

by Li and colleagues by knocking out Nrf2 and evaluating cardiac function in response 

to hemodynamic stress. Nrf2 knockout did not result in any structural or functional 

changes to cardiac tissues in the absence of stress; however, when hemodynamic 

stress was induced by transverse aortic constriction there was significant myocardial 

fibrosis and apoptosis and increased levels of 4-HNE, a marker of oxidative damage (Li, 

Ichikawa et al. 2009). In contrast to Nrf2 knockout, several gain of function studies using 
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either phytochemical Nrf2 activation or Nrf2 overexpression have revealed that targeting 

Nrf2 activation confers stress resistance and cytoprotection (He, Kan et al. 2009, Liang, 

Li et al. 2017, Chen, Fan et al. 2019). Our group has confirmed this notion in vitro with 

human coronary artery endothelial cells. Specifically, these cells were treated with 

Protandim prior to an oxidative challenge and resulted in increased resistance to H2O2  

compared to vehicle treated cells, and this resistance was indicated by significantly 

decreased nuclear apoptosis (Donovan, McCord et al. 2012). In a model using an 

adeno-associated virus to overexpress Nrf2, ROS levels were reduced in vitro, and in 

vivo mouse data with Nrf2 overexpression demonstrated a protective effect against 

acetaminophen-induced hepatotoxicity (Liang, Woodard et al. 2017). Furthermore, the 

available literature suggests that Nrf2 activation is indispensable for cellular function 

during aging and conditions of oxidative stress. 

 

The second consideration that should be taken when interpreting our findings is the 

bioavailability of the active ingredients comprising PB125: carnosol, luteolin, and 

withaferin A. Briefly, these phytochemicals are metabolized in the intestines and liver 

into various metabolites. In this context, clarifying the concentration of metabolites as 

well as their distribution across tissues and organs is important for interpreting their 

biological effects in vivo. As such, a study conducted by Vaquero et al. employed oral 

administration of rosemary extract, the source of carnosol, to Zucker rats to assess 

metabolites and their respective concentrations in the small and large intestines, the 

liver, and plasma via LC-MS/MS analyses. Carnosol was rapidly detected in the 

intestines, liver, and plasma (Romo Vaquero, García Villalba et al. 2013). In a separate 
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study focused on characterizing the pharmokinetics of luteolin, Chen and colleagues 

used HPLC-MS to identify the concentration of luteolin in the plasma of rats and found 

that the plasma concentration of luteolin peaked 1 hour after oral administration, and 

was detectable for a total of 10 hours in the plasma (Chen, Liu et al. 2010). A recent 

study examining the bioavailability of luteolin determined that luteolin is efficiently 

absorbed in the intestine and then metabolized by the liver. However, luteolin is rapidly 

metabolized by enterocytes and hepatocytes into circulating metabolites, with luteolin-

3’-O-ß-D-glucuronide being the most abundant metabolite across tissues. Thus, the 

resulting metabolites from oral luteolin administration contribute to its overall 

bioavailability (Deng, Gao et al. 2017). Lastly, it has been shown that withaferin A is 

detectable in the plasma of mice shortly after oral administration (Patil, Gautam et al. 

2013). Though these investigations used higher doses of carnosol, luteolin, and 

withaferin A than the dosages in PB125, they provide useful insight to the absorption, 

distribution, metabolism, and excretion (ADME) of PB125’s active ingredients. When 

taken collectively, the ADME data from these investigations indicate that carnosol, 

luteolin and withaferin A and their metabolic derivatives reach biologically relevant 

concentrations in the plasma and tissues when orally administered. However, the 

pharmokinetics of these compounds were not measured in the present study. Moreover, 

understanding the parameters surrounding the safety and bioavailability of PB125 

allows for increased precision when developing phytochemical compounds and testing 

their applicability as therapeutic interventions.  

 

III. Conclusions and Future Directions 
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To summarize, the present study is the first to characterize mechanisms of proteostatic 

maintenance following o treatment with PB125, a potent phytochemical Nrf2 activator, in 

15-16-month-old C57BL6/J mice. The mice appeared to tolerate the PB125-

supplemented diets well, providing further confirmation of PB125’s safety when 

administered orally. The protein and DNA synthesis data do not confirm our group’s 

previous studies showing that treatment with phytochemical Nrf2 activators cause 

marked improvements in proteostasis during an oxidative challenge. However, the use 

of an “unstressed” animal model in the present study may have limited our ability to 

detect significant differences in proteostasis outcomes. Future investigations are 

therefore necessary to discern whether treatment with PB125 can improve proteostasis 

in vivo. Preferably, future research would use experimental conditions that create robust 

impairments in protein homeostasis, such as in aged mice or an inducible model of 

stress in a specific tissue of interest. Additionally, future experiments should include 

both male and female animals, as data from the ITP suggest that the beneficial effects 

of phytochemical Nrf2 activation are sex specific, and this interaction is yet to be 

completely understood. For this reason, our group is currently examining the effects of 

long-term daily dosing with PB125 in both male and female Dunkin Hartley guinea pigs, 

an animal model utilized to study the progression of knee osteoarthritis and sarcopenia. 

Therefore, with careful consideration of our current findings and potential limitations 

discussed, future investigations will continue to focus on the potential of phytochemical 

Nrf2 activation as a promising therapeutic strategy for improving cellular function and 

extending healthspan.  

 
 

36 36 



 

 

REFERENCES 
 

 
Ahn, B., G. Pharaoh, P. Premkumar, K. Huseman, R. Ranjit, M. Kinter, L. Szweda, T. 
Kiss, G. Fulop, S. Tarantini, A. Csiszar, Z. Ungvari and H. Van Remmen (2018). "Nrf2 
deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle 
mass." Redox biology 17: 47-58. 
 
AnadÓN, A., M. R. MartÍNez-LarraÑAga, M. A. MartÍNez, I. Ares, M. R. GarcÍA-Risco, 
F. J. SeÑOrÁNs and G. Reglero (2008). "Acute Oral Safety Study of Rosemary Extracts 
in Rats." Journal of Food Protection 71(4): 790-795. 
 
Bakala, H., E. Delaval, M. Hamelin, J. Bismuth, C. Borot-Laloi, B. Corman and B. 
Friguet (2003). "Changes in rat liver mitochondria with aging."  270(10): 2295-2302. 
 
Basisty, N., J. G. Meyer and B. Schilling (2018). "Protein Turnover in Aging and 
Longevity." PROTEOMICS 18(5-6): 1700108. 
 
Beckman, K. B. and B. N. Ames (1998). "The Free Radical Theory of Aging Matures." 
Physiological Reviews 78(2): 547-581. 
 
Bellanti, F., A. D. Romano, A. Lo Buglio, V. Castriotta, G. Guglielmi, A. Greco, G. 
Serviddio and G. Vendemiale (2018). "Oxidative stress is increased in sarcopenia and 
associated with cardiovascular disease risk in sarcopenic obesity." Maturitas 109: 6-12. 
 
Bruns, D. R., S. E. Ehrlicher, S. Khademi, L. M. Biela, F. F. P. III, B. F. Miller and K. L. 
Hamilton (2018). "Differential effects of vitamin C or protandim on skeletal muscle 
adaptation to exercise."  125(2): 661-671. 
 
Cao, J., L. Li, C. Chen, C. Lv, F. Meng, L. Zeng, Z. Li, Q. Wu, K. Zhao, B. Pan, H. 
Cheng, W. Chen and K. Xu (2013). "RNA interference-mediated silencing of NANOG 
leads to reduced proliferation and self-renewal, cell cycle arrest and apoptosis in T-cell 
acute lymphoblastic leukemia cells via the p53 signaling pathway."  37(9): 1170-1177. 
 
Chandrasekhar, K., J. Kapoor and S. Anishetty (2012). "A prospective, randomized 
double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-
spectrum extract of ashwagandha root in reducing stress and anxiety in adults." Indian 
journal of psychological medicine 34(3): 255-262. 
 
Chen, R.-R., X.-H. Fan, G. Chen, G.-W. Zeng, Y.-G. Xue, X.-T. Liu and C.-Y. Wang 
(2019). "Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated 
inhibition of ROS/ TGFβ1/Smad2/3 signaling axis." Chemico-Biological Interactions 302: 
11-21. 
Chen, W., T. Jiang, H. Wang, S. Tao, A. Lau, D. Fang and D. D. Zhang (2012). "Does 
Nrf2 contribute to p53-mediated control of cell survival and death?" Antioxidants & redox 
signaling 17(12): 1670-1675. 

37 



 

 

 
Chen, X., L. Liu, Z. Sun, Y. Liu, J. Xu, S. Liu, B. Huang, L. Ma, Z. Yu and K. Bi (2010). 
"Pharmacokinetics of luteolin and tetra-acetyl-luteolin assayed by HPLC in rats after oral 
administration." Biomedical Chromatography 24(8): 826-832. 
 
Chevet, E., C. Hetz and A. Samali (2015). "Endoplasmic Reticulum Stress–Activated 
Cell Reprogramming in Oncogenesis." Cancer Discovery 5(6): 586. 
 
Cullinan, S. B. and J. A. Diehl (2004). "PERK-dependent Activation of Nrf2 Contributes 
to Redox Homeostasis and Cell Survival following Endoplasmic Reticulum Stress."  
279(19): 20108-20117. 
 
Cullinan, S. B. and J. A. Diehl (2006). "Coordination of ER and oxidative stress 
signaling: The PERK/Nrf2 signaling pathway."  38(3): 317-332. 
 
Cullinan, S. B., D. Zhang, M. Hannink, E. Arvisais, R. J. Kaufman and J. A. Diehl 
(2003). "Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell 
Survival."  23(20): 7198-7209. 
 
Dasarathy, S. and M. Hatzoglou (2018). "Hyperammonemia and proteostasis in 
cirrhosis." Current opinion in clinical nutrition and metabolic care 21(1): 30-36. 
 
Deng, C., C. Gao, X. Tian, B. Chao, F. Wang, Y. Zhang, J. Zou and D. Liu (2017). 
"Pharmacokinetics, tissue distribution and excretion of luteolin and its major metabolites 
in rats: Metabolites predominate in blood, tissues and are mainly excreted via bile." 
Journal of Functional Foods 35: 332-340. 
 
Diaz-Villanueva, J. F., R. Diaz-Molina and V. Garcia-Gonzalez (2015). "Protein Folding 
and Mechanisms of Proteostasis." Int J Mol Sci 16(8): 17193-17230. 
 
Dodson, M., M. R. de la Vega, A. B. Cholanians, C. J. Schmidlin, E. Chapman and D. D. 
Zhang (2019). "Modulating NRF2 in Disease: Timing Is Everything." Annual Review of 
Pharmacology and Toxicology 59(1): 555-575. 
 
Donato, A. J., I. Eskurza, A. E. Silver, A. S. Levy, G. L. Pierce, P. E. Gates and D. R. 
Seals (2007). "Direct Evidence of Endothelial Oxidative Stress With Aging in Humans: 
Relation to Impaired Endothelium-Dependent Dilation and Upregulation of Nuclear 
Factor- B."  100(11): 1659-1666. 
 
Donovan, E. L., J. M. McCord, D. J. Reuland, B. F. Miller and K. L. Hamilton (2012). 
"Phytochemical Activation of Nrf2 Protects Human Coronary Artery Endothelial Cells 
against an Oxidative Challenge."  2012: 1-9. 
 
Drake, J. C., D. R. Bruns, F. F. Peelor, 3rd, L. M. Biela, R. A. Miller, K. L. Hamilton and 
B. F. Miller (2014). "Long-lived crowded-litter mice have an age-dependent increase in 



 

 

protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation." 
American journal of physiology. Endocrinology and metabolism 307(9): E813-E821. 
 
Egea, J., I. Fabregat, Y. M. Frapart, P. Ghezzi, A. Gorlach, T. Kietzmann, K. Kubaichuk, 
U. G. Knaus, M. G. Lopez, G. Olaso-Gonzalez, A. Petry, R. Schulz, J. Vina, P. Winyard, 
K. Abbas, O. S. Ademowo, C. B. Afonso, I. Andreadou, H. Antelmann, F. Antunes, M. 
Aslan, M. M. Bachschmid, R. M. Barbosa, V. Belousov, C. Berndt, D. Bernlohr, E. 
Bertran, A. Bindoli, S. P. Bottari, P. M. Brito, G. Carrara, A. I. Casas, A. Chatzi, N. 
Chondrogianni, M. Conrad, M. S. Cooke, J. G. Costa, A. Cuadrado, P. My-Chan Dang, 
B. De Smet, B. Debelec-Butuner, I. H. K. Dias, J. D. Dunn, A. J. Edson, M. El Assar, J. 
El-Benna, P. Ferdinandy, A. S. Fernandes, K. E. Fladmark, U. Forstermann, R. 
Giniatullin, Z. Giricz, A. Gorbe, H. Griffiths, V. Hampl, A. Hanf, J. Herget, P. 
Hernansanz-Agustin, M. Hillion, J. Huang, S. Ilikay, P. Jansen-Durr, V. Jaquet, J. A. 
Joles, B. Kalyanaraman, D. Kaminskyy, M. Karbaschi, M. Kleanthous, L. O. Klotz, B. 
Korac, K. S. Korkmaz, R. Koziel, D. Kracun, K. H. Krause, V. Kren, T. Krieg, J. 
Laranjinha, A. Lazou, H. Li, A. Martinez-Ruiz, R. Matsui, G. J. McBean, S. P. Meredith, 
J. Messens, V. Miguel, Y. Mikhed, I. Milisav, L. Milkovic, A. Miranda-Vizuete, M. 
Mojovic, M. Monsalve, P. A. Mouthuy, J. Mulvey, T. Munzel, V. Muzykantov, I. T. N. 
Nguyen, M. Oelze, N. G. Oliveira, C. M. Palmeira, N. Papaevgeniou, A. Pavicevic, B. 
Pedre, F. Peyrot, M. Phylactides, G. G. Pircalabioru, A. R. Pitt, H. E. Poulsen, I. Prieto, 
M. P. Rigobello, N. Robledinos-Anton, L. Rodriguez-Manas, A. P. Rolo, F. Rousset, T. 
Ruskovska, N. Saraiva, S. Sasson, K. Schroder, K. Semen, T. Seredenina, A. 
Shakirzyanova, G. L. Smith, T. Soldati, B. C. Sousa, C. M. Spickett, A. Stancic, M. J. 
Stasia, H. Steinbrenner, V. Stepanic, S. Steven, K. Tokatlidis, E. Tuncay, B. Turan, F. 
Ursini, J. Vacek, O. Vajnerova, K. Valentova, F. Van Breusegem, L. Varisli, E. A. Veal, 
A. S. Yalcin, O. Yelisyeyeva, N. Zarkovic, M. Zatloukalova, J. Zielonka, R. M. Touyz, A. 
Papapetropoulos, T. Grune, S. Lamas, H. Schmidt, F. Di Lisa and A. Daiber (2017). 
"European contribution to the study of ROS: A summary of the findings and prospects 
for the future from the COST action BM1203 (EU-ROS)." Redox Biol 13: 94-162. 
Enomoto, A. (2001). "High Sensitivity of Nrf2 Knockout Mice to Acetaminophen 
Hepatotoxicity Associated with Decreased Expression of ARE-Regulated Drug 
Metabolizing Enzymes and Antioxidant Genes." Toxicological Sciences 59(1): 169-177. 
 
Faraonio, R., P. Vergara, D. Di Marzo, M. G. Pierantoni, M. Napolitano, T. Russo and F. 
Cimino (2006). "p53 Suppresses the Nrf2-dependent Transcription of Antioxidant 
Response Genes."  281(52): 39776-39784. 
 
Fischer, N. W., A. Prodeus, D. Malkin and J. Gariépy (2016). "p53 oligomerization 
status modulates cell fate decisions between growth, arrest and apoptosis." Cell Cycle 
15(23): 3210-3219. 
 
Freitas, I., E. Boncompagni, E. Tarantola, C. Gruppi, V. Bertone, A. Ferrigno, G. 
Milanesi, R. Vaccarone, M. E. Tira and M. Vairetti (2016). "In SituEvaluation of 
Oxidative Stress in Rat Fatty Liver Induced by a Methionine- and Choline-Deficient 
Diet."  2016: 1-14. 

38 



 

 

Friedmann Angeli, J. P., M. Schneider, B. Proneth, Y. Y. Tyurina, V. A. Tyurin, V. J. 
Hammond, N. Herbach, M. Aichler, A. Walch, E. Eggenhofer, D. Basavarajappa, O. 
Rådmark, S. Kobayashi, T. Seibt, H. Beck, F. Neff, I. Esposito, R. Wanke, H. Förster, O. 
Yefremova, M. Heinrichmeyer, G. W. Bornkamm, E. K. Geissler, S. B. Thomas, B. R. 
Stockwell, V. B. O’Donnell, V. E. Kagan, J. A. Schick and M. Conrad (2014). 
"Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice." 
Nature Cell Biology 16(12): 1180-1191. 
 
Gaikwad, A., D. J. Long, J. L. Stringer and A. K. Jaiswal (2001). "In Vivo Role of 
NAD(P)H:Quinone Oxidoreductase 1 (NQO1) in the Regulation of Intracellular Redox 
State and Accumulation of Abdominal Adipose Tissue."  276(25): 22559-22564. 
Giustarini, D., I. Dalle-Donne, D. Tsikas and R. Rossi (2009). "Oxidative stress and 
human diseases: Origin, link, measurement, mechanisms, and biomarkers." Crit Rev 
Clin Lab Sci 46(5-6): 241-281. 
 
Harding, H. P., I. Novoa, Y. Zhang, H. Zeng, R. Wek, M. Schapira and D. Ron (2000). 
"Regulated Translation Initiation Controls Stress-Induced Gene Expression in 
Mammalian Cells." Molecular Cell 6(5): 1099-1108. 
 
Harding, H. P., Y. Zhang, A. Bertolotti, H. Zeng and D. Ron (2000). "Perk Is Essential 
for Translational Regulation and Cell Survival during the Unfolded Protein Response."  
5(5): 897-904. 
 
Harding, H. P., Y. Zhang and D. Ron (1999). "Protein translation and folding are 
coupled by an endoplasmic-reticulum-resident kinase." Nature 397(6716): 271-274. 
He, X., H. Kan, L. Cai and Q. Ma (2009). "Nrf2 is critical in defense against high 
glucose-induced oxidative damage in cardiomyocytes." Journal of Molecular and 
Cellular Cardiology 46(1): 47-58. 
 
Hiemstra, S., M. Niemeijer, E. Koedoot, S. Wink, J. E. Klip, M. Vlasveld, E. de Zeeuw, 
B. van Os, A. White and B. v. d. Water (2017). "Comprehensive Landscape of Nrf2 and 
p53 Pathway Activation Dynamics by Oxidative Stress and DNA Damage." Chemical 
Research in Toxicology 30(4): 923-933. 
 
Itoh, K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. 
Satoh, I. Hatayama, M. Yamamoto and Y.-I. Nabeshima (1997). "An Nrf2/Small Maf 
Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through 
Antioxidant Response Elements." Biochemical and Biophysical Research 
Communications 236(2): 313-322. 
 
Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J. D. Engel and M. Yamamoto 
(1999). "Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 
through binding to the amino-terminal Neh2 domain." Genes & development 13(1): 76-
86. 
 

39 40 



 

 

Jain, A., T. Lamark, E. Sjottem, K. Bowitz Larsen, J. Atesoh Awuh, A. Overvatn, M. 
McMahon, J. D. Hayes and T. Johansen (2010). "p62/SQSTM1 Is a Target Gene for 
Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing 
Antioxidant Response Element-driven Gene Transcription."  285(29): 22576-22591. 
 
Jang, J., Y. Wang, H.-S. Kim, M. A. Lalli and K. S. Kosik (2014). "Nrf2, a regulator of the 
proteasome, controls self-renewal and pluripotency in human embryonic stem cells." 
Stem cells (Dayton, Ohio) 32(10): 2616-2625. 
 
Johnson, J. J. (2011). "Carnosol: a promising anti-cancer and anti-inflammatory agent." 
Cancer letters 305(1): 1-7. 
 
Klaips, C. L., G. G. Jayaraj and F. U. Hartl (2018). "Pathways of cellular proteostasis in 
aging and disease." J Cell Biol 217(1): 51-63. 
 
Kohno, K., K. Normington, J. Sambrook, M. J. Gething and K. Mori (1993). "The 
promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that 
responds to the presence of unfolded proteins in the endoplasmic reticulum." Molecular 
and cellular biology 13(2): 877-890. 
 
Komatsu, M., H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.-S. 
Sou, I. Ueno, A. Sakamoto, K. I. Tong, M. Kim, Y. Nishito, S.-I. Iemura, T. Natsume, T. 
Ueno, E. Kominami, H. Motohashi, K. Tanaka and M. Yamamoto (2010). "The selective 
autophagy substrate p62 activates the stress responsive transcription factor Nrf2 
through inactivation of Keap1." Nature Cell Biology 12(3): 213-223. 
 
Kwak, M.-K., N. Wakabayashi, J. L. Greenlaw, M. Yamamoto and T. W. Kensler (2003). 
"Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 
signaling pathway." Molecular and cellular biology 23(23): 8786-8794. 
 
Lee, J. M., K. Chan, Y. W. Kan and J. A. Johnson (2004). "Targeted disruption of Nrf2 
causes regenerative immune-mediated hemolytic anemia."  101(26): 9751-9756. 
 
Leung, L., M. Kwong, S. Hou, C. Lee and J. Y. Chan (2003). "Deficiency of the Nrf1 and 
Nrf2 Transcription Factors Results in Early Embryonic Lethality and Severe Oxidative 
Stress."  278(48): 48021-48029. 
 
Lewis, K. N., J. Mele, J. D. Hayes and R. Buffenstein (2010). "Nrf2, a Guardian of 
Healthspan and Gatekeeper of Species Longevity."  50(5): 829-843. 
 
Li, J., T. Ichikawa, L. Villacorta, J. S. Janicki, G. L. Brower, M. Yamamoto and T. Cui 
(2009). "Nrf2 Protects Against Maladaptive Cardiac Responses to Hemodynamic 
Stress."  29(11): 1843-1850. 
 



 

 

Liang, J., L. Li, Y. Sun, W. He, X. Wang and Q. Su (2017). "The protective effect of 
activating Nrf2 / HO-1 signaling pathway on cardiomyocyte apoptosis after coronary 
microembolization in rats." BMC Cardiovascular Disorders 17(1): 272. 
 
Liang, K. J., K. T. Woodard, M. A. Weaver, J. P. Gaylor, E. R. Weiss and R. J. Samulski 
(2017). "AAV- Nrf2 Promotes Protection and Recovery in Animal Models of Oxidative 
Stress."  25(3): 765-779. 
 
Lim, J., M. L. Lachenmayer, S. Wu, W. Liu, M. Kundu, R. Wang, M. Komatsu, Y. J. Oh, 
Y. Zhao and Z. Yue (2015). "Proteotoxic stress induces phosphorylation of 
p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein 
aggregates." PLoS genetics 11(2): e1004987-e1004987. 
 
Liu, W. J., L. Ye, W. F. Huang, L. J. Guo, Z. G. Xu, H. L. Wu, C. Yang and H. F. Liu 
(2016). "p62 links the autophagy pathway and the ubiqutin-proteasome system upon 
ubiquitinated protein degradation." Cellular & molecular biology letters 21: 29-29. 
 
Luo, H., H. Liang, J. Chen, Y. Xu, Y. Chen, L. Xu, L. Yun, J. Liu, H. Yang, L. Liu, J. 
Peng, Z. Liu, L. Tang, W. Chen and H. Tang (2017). "Hydroquinone induces TK6 cell 
growth arrest and apoptosis through PARP-1/p53 regulatory pathway." Environmental 
Toxicology. 
 
MacLeod, A. K., M. McMahon, S. M. Plummer, L. G. Higgins, T. M. Penning, K. Igarashi 
and J. D. Hayes (2009). "Characterization of the cancer chemopreventive NRF2-
dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 
pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against 
electrophiles as well as redox-cycling compounds." Carcinogenesis 30(9): 1571-1580. 
 
Malumbres, M. (2014). "Cyclin-dependent kinases."  15(6): 122. 
 
Márton, M., N. Tihanyi, P. Gyulavári, G. Bánhegyi and O. Kapuy (2018). "NRF2-
regulated cell cycle arrest at early stage of oxidative stress response mechanism." PloS 
one 13(11): e0207949-e0207949. 
 
McCord, J. M. and I. Fridovich (1968). "The Reduction of Cytochrome c by Milk 
Xanthine Oxidase." Journal of Biological Chemistry 243(21): 5753-5760. 
 
McLendon, P. M. and J. Robbins (2015). "Proteotoxicity and cardiac dysfunction." Circ 
Res 116(11): 1863-1882. 
 
Meng, S.-J. and L.-J. Yu (2010). "Oxidative stress, molecular inflammation and 
sarcopenia." International journal of molecular sciences 11(4): 1509-1526. 
 
Miller, B. F., M. M. Robinson, M. D. Bruss, M. Hellerstein and K. L. Hamilton (2012). "A 
comprehensive assessment of mitochondrial protein synthesis and cellular proliferation 
with age and caloric restriction." Aging Cell 11(1): 150-161. 

41 



 

 

Miller, B. F., M. M. Robinson, D. J. Reuland, J. C. Drake, F. F. Peelor, 3rd, M. D. Bruss, 
M. K. Hellerstein and K. L. Hamilton (2013). "Calorie restriction does not increase short-
term or long-term protein synthesis." J Gerontol A Biol Sci Med Sci 68(5): 530-538. 
 
Miller, C. J., S. S. Gounder, S. Kannan, K. Goutam, V. R. Muthusamy, M. A. Firpo, J. D. 
Symons, R. Paine, J. R. Hoidal and N. S. Rajasekaran (2012). "Disruption of Nrf2/ARE 
signaling impairs antioxidant mechanisms and promotes cell degradation pathways in 
aged skeletal muscle."  1822(6): 1038-1050. 
 
Murali, G. and C. Panneerselvam (2007). Age-Associated Oxidative Macromolecular 
Damages in Rat Brain Regions: Role of Glutathione Monoester. 
 
Nguyen, T., P. Nioi and C. B. Pickett (2009). "The Nrf2-antioxidant response element 
signaling pathway and its activation by oxidative stress." The Journal of biological 
chemistry 284(20): 13291-13295. 
 
Nishimoto, S., S. Koike, N. Inoue, T. Suzuki and Y. Ogasawara (2017). "Activation of 
Nrf2 attenuates carbonyl stress induced by methylglyoxal in human neuroblastoma 
cells: Increase in GSH levels is a critical event for the detoxification mechanism." 
Noda, N. N. and F. Inagaki (2015). "Mechanisms of Autophagy."  44(1): 101-122. 
 
Okoduwa, S. I., I. A. Umar, S. Ibrahim, F. Bello and N. Habila (2015). "Age-dependent 
alteration of antioxidant defense system in hypertensive and type-2 diabetes patients." 
Journal of diabetes and metabolic disorders 14: 32-32. 
 
Pajares, M., N. Jiménez-Moreno, Á. J. García-Yagüe, M. Escoll, M. L. De Ceballos, F. 
Van Leuven, A. Rábano, M. Yamamoto, A. I. Rojo and A. Cuadrado (2016). 
"Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes."  12(10): 
1902-1916. 
 
Patil, D., M. Gautam, S. Mishra, S. Karupothula, S. Gairola, S. Jadhav, S. Pawar and B. 
Patwardhan (2013). "Determination of withaferin A and withanolide A in mice plasma 
using high-performance liquid chromatography-tandem mass spectrometry: Application 
to pharmacokinetics after oral administration of Withania somnifera aqueous extract."  
80: 203-212. 
 
Pettit, A. P., W. O. Jonsson, A. R. Bargoud, E. T. Mirek, F. F. Peelor, 3rd, Y. Wang, T. 
W. Gettys, S. R. Kimball, B. F. Miller, K. L. Hamilton, R. C. Wek and T. G. Anthony 
(2017). "Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene 
Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice." 
The Journal of nutrition 147(6): 1031-1040. 
 
Reuland, D. J., S. Khademi, C. J. Castle, D. C. Irwin, J. M. McCord, B. F. Miller and K. 
L. Hamilton (2013). "Upregulation of phase II enzymes through phytochemical activation 
of Nrf2 protects cardiomyocytes against oxidant stress." Free Radic Biol Med 56: 102-
111. 



 

 

Reynaert, N. L., P. Gopal, E. P. A. Rutten, E. F. M. Wouters and C. G. Schalkwijk 
(2016). "Advanced glycation end products and their receptor in age-related, non-
communicable chronic inflammatory diseases; Overview of clinical evidence and 
potential contributions to disease." 
 
Richardson, A. G. and E. E. Schadt (2014). "The Role of Macromolecular Damage in 
Aging and Age-related Disease." The Journals of Gerontology: Series A 69(Suppl_1): 
S28-S32. 
 
Richter-Dennerlein, R., S. Oeljeklaus, I. Lorenzi, C. Ronsor, B. Bareth, A. B. 
Schendzielorz, C. Wang, B. Warscheid, P. Rehling and S. Dennerlein (2016). 
"Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein." Cell 
167(2): 471-483 e410. 
 
Romo Vaquero, M., R. García Villalba, M. Larrosa, M. J. Yáñez-Gascón, E. Fromentin, 
J. Flanagan, M. Roller, F. A. Tomás-Barberán, J. C. Espín and M.-T. García-Conesa 
(2013). "Bioavailability of the major bioactive diterpenoids in a rosemary extract: 
Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats." Molecular 
Nutrition & Food Research 57(10): 1834-1846. 
 
Ron, D. and P. Walter (2007). "Signal integration in the endoplasmic reticulum unfolded 
protein response." Nature Reviews Molecular Cell Biology 8(7): 519-529. 
 
Ryazanov, A. G. and B. S. Nefsky (2002). "Protein turnover plays a key role in aging."  
123(2-3): 207-213. 
 
Seals, D. R., K. L. Jablonski and A. J. Donato (2011). "Aging and vascular endothelial 
function in humans." Clin Sci (Lond) 120(9): 357-375. 
 
Strong, R., R. A. Miller, A. Antebi, C. M. Astle, M. Bogue, M. S. Denzel, E. Fernandez, 
K. Flurkey, K. L. Hamilton, D. W. Lamming, M. A. Javors, J. P. de Magalhaes, P. A. 
Martinez, J. M. McCord, B. F. Miller, M. Muller, J. F. Nelson, J. Ndukum, G. E. Rainger, 
A. Richardson, D. M. Sabatini, A. B. Salmon, J. W. Simpkins, W. T. Steegenga, N. L. 
Nadon and D. E. Harrison (2016). "Longer lifespan in male mice treated with a weakly 
estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer." 
Aging Cell 15(5): 872-884. 
 
Tebay, L. E., H. Robertson, S. T. Durant, S. R. Vitale, T. M. Penning, A. T. Dinkova-
Kostova and J. D. Hayes (2015). "Mechanisms of activation of the transcription factor 
Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through 
which it attenuates degenerative disease."  88: 108-146. 
 
Valko, M., D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur and J. Telser (2007). "Free 
radicals and antioxidants in normal physiological functions and human disease." The 
International Journal of Biochemistry & Cell Biology 39(1): 44-84. 

42 



 

 

Wild, A. C., H. R. Moinova and R. T. Mulcahy (1999). "Regulation of  -Glutamylcysteine 
Synthetase Subunit Gene Expression by the Transcription Factor Nrf2."  274(47): 
33627-33636. 
 
Wong, H. S., P. A. Dighe, V. Mezera, P. A. Monternier and M. D. Brand (2017). 
"Production of superoxide and hydrogen peroxide from specific mitochondrial sites 
under different bioenergetic conditions." J Biol Chem 292(41): 16804-16809. 
 
Wu, K. C., J. Y. Cui and C. D. Klaassen (2012). "Effect of Graded Nrf2 Activation on 
Phase-I and -II Drug Metabolizing Enzymes and Transporters in Mouse Liver."  7(7): 
e39006. 
 
Wu, K. C., P. R. McDonald, J. Liu and C. D. Klaassen (2014). "Screening of natural 
compounds as activators of the keap1-nrf2 pathway." Planta Med 80(1): 97-104. 
 
Xie, W., M. Pariollaud, W. E. Wixted, N. Chitnis, J. Fornwald, M. Truong, C. Pao, Y. Liu, 
R. S. Ames, J. Callahan, R. Solari, Y. Sanchez, A. Diehl and H. Li (2015). "Identification 
and Characterization of PERK Activators by Phenotypic Screening and Their Effects on 
NRF2 Activation."  10(3): e0119738. 
 
Yamada, M., M. Iwata, E. Warabi, H. Oishi, V. A. Lira and M. Okutsu (2019). 
"p62/SQSTM1 and Nrf2 are essential for exercise-mediated enhancement of antioxidant 
protein expression in oxidative muscle." The FASEB Journal: fj.201900133R. 
 
Zhang, D. D., S. C. Lo, J. V. Cross, D. J. Templeton and M. Hannink (2004). "Keap1 is a 
redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase 
complex." Mol Cell Biol 24(24): 10941-10953. 
 
Zhou, L., H. Zhang, K. J. A. Davies and H. J. Forman (2018). "Aging-related decline in 
the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells." 
Redox Biology 14: 35-40. 
 

43 


	TABLE OF CONTENTS
	ABSTRACT ii
	CHAPTER I: INTRODUCTION 1
	I. Aging 1
	II. Nrf2 Activators as Therapeutics 2
	Statement of Problem 3
	Hypotheses 3
	CHAPTER II: LITERATURE REVIEW 4
	I. Oxidative Stress 4
	II. Nrf2-Keap1-ARE Axis  5
	III. Nrf2 Activation and Gene Targets of the ARE 7
	IV. Nrf2 and Proteostasis 8
	CHAPTER III: METHODS 14
	I. Animal Care 14
	II. Diet Composition – PB125 (Pathways Bioscience)  14
	III. Experimental Design 15
	IV. Deuterium Labeling 15
	V. Animal Sacrifice and Tissue Harvest 15
	VI. Tissue and Analyte Preparation 16
	a. Body Water Derivation and Analysis 16
	b. Tissue Fractionation by Differential Centrifugation 17
	c. Alanine Derivation and Analysis 18
	d. DNA Extraction and Derivation 19
	VII. Immunoblotting and Band Detection 20
	VIII. Protein Aggregation 21
	IX. Statistics and Data Analyses 21
	CHAPTER IV: RESULTS 22
	Figure 1: Timeline of Experimental Design 22
	Figure 2: Body Weight and Food Intake 23
	Figure 3: Protein Fractional Synthesis Rates 24
	Figure 4: DNA Fractional Synthesis Rates 25
	Figure 5: Protein Synthetic Ratios 26
	Figure 6: Antioxidant Protein Expression 27
	Figure 7: Protein Aggregation 28
	I. Body Weight and Food Intake 28
	II. Protein and DNA Synthesis 28
	III. Protein Content and Aggregation 29
	CHAPTER V: DISCUSSION 30
	I. Principal Outcomes 30
	II. Proteostasis 31
	III. Conclusions and Future Directions 35
	REFERENCES 37
	Protein was hydrolyzed overnight in 6M HCl at 120 C.  Protein hydrolysates were cation exchanged and dried under vacuum according to our previous published procedures (Miller, Robinson et al. 2012) Dried hydrolysates were resuspended in 1 mL of molecu...
	d. DNA Extraction and Derivation
	DNA was isolated from whole tissue and bone marrow (QIAamp DNA mini kit, Qiagen, Valencia, CA, USA) and hydrolyzed overnight at 37 C with nuclease S1 and potato acid phosphatase.  Next, 80uL of glacial acetic acid and 100 uL pentafluorobenzyl hydroxyl...

