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ABSTRACT OF THESIS

COMPARISON OF REGIONALIZATION METHODS FOR A PROCESS BASED 

HYDROLOGIC MODEL IN MAJOR RIVER BASINS OF COLORADO

Distributed watershed models are increasingly used for management of scarce water 

resources around the world. However, the utility of these models in ungaged or poorly 

gaged basins is a major issue in the field of hydrological sciences. Performance of 

watershed models cannot be evaluated for regions with paucity or unavailability of 

observed streamflow records; thus, a challenge is posed for the effective management of 

water resources in a region. Regionalization methods that relate watershed characteristics 

to model parameters are considered as a potential approach to overcome this challenge. 

The aim of this research is to analyze different regionalization methods and categorize 

the ones performing efficiently for the regionalization of the Soil and water assessment 

tool (SWAT) in five major river basins of Colorado. These River basins include: the 

Arkansas River basin at Canon City, the Cache la Poudre River basin at mouth of canyon, 

the Gunnison River basin above Blue Mesa dam, the San Juan River basin near 

Archuleta, and the Yampa River basin near Maybell. SWAT models were prepared for 

the study watersheds and their performance was evaluated corresponding to naturalized 

monthly streamflow available for these watersheds.

Initially, these prepared models were reconciled with a global sensitivity analysis 

method known as Fourier Amplitude Sensitivity Test (FAST) to identify sensitive model



parameters and the corresponding hydrologic processes they represent. Sensitivity 

analysis was performed for the two objective functions; mean monthly streamflow and 

the corresponding root mean square error (RMSE). Results of the sensitivity analysis 

showed that the majority of sensitive parameters were similar between the watersheds, 

resulting in a common parameter set selection for Colorado watersheds. Interestingly, 

sensitivity of parameters was observed to be varying depending upon the objective 

function. Through this part of the study, the significance of association between 

snowmelt and sub-surface hydrologic processes for generation of streamflow in 

mountainous watersheds was realized.

Secondly, regionalization methods based on different approaches were used to 

compute the values of parameters identified as sensitive in the previous step. Later, 

performances of SWAT models developed for the study watersheds were evaluated by 

using the parameter values obtained from diverse regionalization methods. These 

methods included: arithmetic mean approach, approaches based on similarity indices (SI) 

related to watershed attributes, spatial proximity, Bayesian statistical analysis, and multi-

site calibration. In order to perform regionalization, a watershed was considered as 

ungaged and the parameter values for the watershed were obtained by using 

regionalization methods. Performances of these methods were evaluated by using the 

jack-knife cross validation technique and computing a performance measure ‘E’. The 

method based on the weighted arithmetic mean approach using SI and the multi-site 

calibration approach were observed as the most favorable regionalization methods for
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Colorado watersheds. Likewise, regionalization methods with average and rather poor 

performances were also identified.

This research analyze the applicability of SWAT in mountainous regions and shows 

that the distributed hydrologic models like SWAT are capable of flow simulations and 

hydrologic modeling in mountainous regions like Colorado. Observed interactions 

between the SWAT parameters related to sub-surface processes and snow related 

processes helps in understanding the role of these hydrologic processes in magnitude and 

timing of streamflow generation in mountainous watersheds. This study shows that a 

great extent of similarity in terms of critical hydrologic processes exists between the 

major river basins of Colorado and thus helps in selecting a common SWAT parameter 

set for snow dominated mountainous regions. Performance of regionalization methods as 

analyzed in this study shows the importance of methods based on weighted arithmetic 

mean approach and the multi-site calibration approach for performing regionalization of 

SWAT in snow dominated mountainous regions.

Pranay Sanadhya 
Civil and Environmental Engineering Department

Colorado State University 
Fort Collins, CO 80523 

Spring 2010
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C h a p t e r  1: In t r o d u c t i o n

Management of water resources in the Western United States has become an increasingly 

important issue due to drastic climatic events, like the Dust Bowl years (1930s), and the 

severe draught periods, which have occurred over various scales of space and time (Ray 

et al., 2008). A clear understanding of the hydrologic processes critical to the generation 

of streamflow, in terms of magnitude and timing, is of the utmost importance for 

effective management of water resources in these areas. River basins in Colorado (South 

Platte, Arkansas, Rio Grande, Gunnison, Colorado, Yampa, and San Juan) are one of the 

major sources of water supply to many western states (Arizona, California, Colorado, 

Kansas, Nebraska, Nevada, New Mexico, Utah, and Wyoming) and also to states like 

Oklahoma, Arkansas, and Texas. These river basins receive the majority of precipitation 

in the form of snow and thus, snowmelt dominated hydrographs are observed in these 

areas (NRDC, 2008). In Colorado, around 85% of runoff and groundwater recharge is 

obtained from snowmelt (Snow, 2005). Identifying the interactions between snowmelt, 

groundwater, and streamflow is considered vital for the successful management of water 

resources in snow-dominated mountainous regions (Flerchinger et al., 1992).

Comprehensive hydrologic models, which can assist in identifying critical 

hydrologic processes along with their interactions in the hydrologic cycle, are important 

for efficient management of water resources in mountainous regions. Hydrologic
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modeling in such regions has historically been challenging due to scarcity of climatic 

data, especially in higher elevations or alpine locations (Smith and Berg, 1982). Extreme 

elevation gradients which lead to poor data resolution (Marks et ah, 1992) and orographic 

effects that provide tremendous variation in amount of precipitation produced (Hartman 

et ah, 1999), further complicates the modeling approach in mountainous regions. Thus, 

the traditional modeling approach as shown in Figure 1.1 becomes less important for 

mountainous watersheds. Hydrologic models have been increasingly used by hydrologists 

and water resource managers to address a variety of hydrological problems. However, the 

applicability of such models for ungaged watersheds, where the streamflow record is not 

available, is still questionable (Sivapalan et ah, 2003). This questionability increases in 

mountainous regions like Colorado, because of the extent of the spatial and temporal 

variability present in the terrain. Realistic estimates of the hydrologic response of 

ungaged basins in mountainous region of Colorado is of foremost importance, as it will 

assist in efficient planning and management of the water resources that ultimately supply 

a majority of the Western United States.



Figure 1.1. Schematic of traditional modeling approach

For this study, five major river basins in Colorado were analyzed, including the 

Arkansas River at Canon City, the Cache la Poudre River at the mouth of the canyon, the 

Gunnison River above Blue Mesa Dam, the San Juan River near Archuleta, and the 

Yampa River near Maybell. The Cache la Poudre and Arkansas River basins are located 

on the eastern side of the Continental Divide and therefore are tributaries of the 

Mississippi River. The remaining three watersheds are on the Western side of the 

Continental Divide and drain into the Colorado River, which later flows into the Gulf of 

California. These watersheds mainly receive precipitation in the form of snow, and thus, 

the observed streamflow in these watersheds displays seasonal variation dominated by 

spring and summer snowmelt (NRDC, 2008). Water flowing in these river basins is 

diversely used for irrigation, municipal, industrial, and recreational purposes. The flow 

regimes in many river basins in Colorado are considerably affected by man-made 

influences, such as dams and reservoirs, diversion of water, and irrigation return flows, in 

order to meet regional demands. The importance of hydrologic processes and interactions



thereof affecting generation and timing of streamflows in these river basins are not fully 

realized (Ben, 2005), which could potentially lead to poor management of water 

resources in mountainous region of Colorado.

The overall goal of this study is to evaluate the efficiency/applicability of the Soil 

and Water Assessment Tool (SWAT) for representing hydrological processes in 

mountainous watersheds of Colorado. Thus, the SWAT model parameters will be used as 

surrogates for hydrologic processes they represent. Specifically the following objectives 

are defined:

1. Characterize the main and interaction effects of the SWAT model parameters and 

associated hydrologic processes in magnitude and timing of streamflow 

generation in five major river basins of Colorado.

2. Examine the extent of similarity/dissimilarity of critical hydrologic processes in 

five major river basins in Colorado.

3. Test the performance of the SWAT model for prediction of monthly streamflows 

in five major river basins of Colorado.

4. Evaluate the performance of regionalization methods and identify those 

performing efficiently for snow-dominated mountainous watersheds of Colorado.

Part of this thesis as shown in chapter 2 provides a computational framework for 

identifying the critical hydrologic processes and the corresponding SWAT parameters in 

major river basins of Colorado with respect to volume as well as timing of monthly flow 

generation. Later, the extent of similarity between these study watersheds based on 

critical hydrologic processes is also examined and a common SWAT parameter set is



selected for snow dominated mountainous watersheds of Colorado. Chapter 3 evaluates 

the performance of SWAT as a hydrologic model for flow simulations in mountainous 

watersheds by performing a single-site calibration of study watersheds. This approach 

however becomes inefficient when there is scarcity or unavailability of observed data 

record and therefore is not applicable for hydrologic predictions and assessments in case 

of ungaged watersheds. Later part of chapter 3 addresses a variety of regionalization 

methods in order to analyze the usefulness of hydrologic models like SWAT for flow 

simulations in ungaged watersheds. Finally, performances of these diverse 

regionalization methods are evaluated and the best methods are identified. A schematic or 

framework showing major aims of this study is shown in Figure 1.2. The concluding 

chapter discusses the results and findings from this research.



Figure 1.2. Schematic showing major aims of this study



R eferen ces

Ben, H., 2005. SSD Redux? Comparison of a historic drought under modem management 
to the current draught. Southwest Hydrology. 24-38.

Duan, Q., Sorooshian, S., Gupta, V., 1992. Effective and Efficient Global Optimization 
for Conceptual Rainfall-Runoff Models. Water Resources Research, 28 (4), 1015-
1031.

Flerchinger, G.N., Cooley, K.R., Ralston, D.R., 1992. Groundwater response to snowmelt 
in a mountainous watershed. Journal of Hydrology. 133, 293-311.

Hartman, M.D., Baron, J.S., Lammers, R.B., Cline, D.W., Band, L.E., Liston, G.E., 
Tague, C., 1999. Simulations of snow distribution and hydrology in a mountain 
basin. Water Resources Research 35 (5), 1587-1603.

Marks, D., Dozier, J., Davis, R.E., 1992. Climate and energy exchange at the snow 
surface in the alpine region of the Sierra Nevada. 1. Meteorological measurements 
and monitoring. Water Resources Research. 4(1), 19-37.

NRDC, 2008. Hotter and Drier, The West’s Changed Climate. Natural Resources 
Defense Council (NRDC), http://www.nrdc.org/globalWarming/west/west.pdf

Ray, A.J., Barsugli, J.J., Averyt, K.B., Wolter, K., Hoerling, M., Doesken, N., Udall, B., 
Webb, R.S., 2008. Climate change in Colorado. A report for the Colorado water 
conservation board.

Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., McDonnell J.J., Mendiondo, 
E.M., O’Connell, P.E., Oki, T., Pomeroy, J.W., Schertzer, D., Uhlenbrook, S., Zehe, 
E., 2003. lAHS decade on predictions in ungauged basins (PUB), 2003-2012: 
Shaping an exciting future for hydrological sciences. Hydrologic Science Journal. 
48, 6. 867-880.

Smith, J.L., Berg, N., 1982. The Sierra ecology project, U.S. Department of the interior, 
Washington, D.C. 3.

Snow, L.A., 2005. Colorado River Basin Climate. Special publication for association of 
California water agencies and Colorado River water users association conferences. 
38.

http://www.nrdc.org/globalWarming/west/west.pdf


Ch a p t e r  2: G l o b a l  Se n s i t i v i t y  A n a l y s i s  o f  H y d r o l o g i c  Pr o c e s s e s

IN M a j o r  R i v e r  Ba s i n s  i n  C o l o r a d o

Abstract

Watershed models are often used to predict flow regimes under varying land use and 

climatic conditions. The credibility of such predictions, however, depends on adequate 

representation of important watershed processes in the system. In particular, the dynamic 

relationship between snow and flow processes in snow-dominated mountainous 

watersheds can alter the timing and distribution of streamflows. The present work 

investigates the importance of various watershed processes and interactions thereof in 

five snow-dominated mountainous river basins in Colorado, ranging between 2,735-8,943 

square kilometers in size. The Soil and Water Assessment Tool (SWAT) was used to 

simulate hydrologic processes in the study watersheds, SWAT was reconciled with a 

global sensitivity analysis, namely the Fourier Amplitude Sensitivity Test (FAST), in 

order to identify its important parameters and critical watershed processes that they 

represent. Two different objective functions were used to evaluate the importance of 

model parameters: average monthly streamflow and the corresponding root mean square 

error (RMSE) over a 20-year period from January 1979 through December 1998. While 

the objective function formulation based on the average monthly streamflows aimed to 

capture the impact of parameters on the volume of flow, the sensitivity of RMSE of



monthly streamflow predictions to various parameters revealed the influence of 

parameters on both volume and timing of flows.

Results indicated that streamflow volume in the study watersheds was mostly 

influenced by groundwater processes. However, the Interactions between groundwater 

and snow processes were key in the timing of the monthly flow hydrographs. Finally, 

similarities in the results of sensitivity analysis in the study watersheds were exposed. 

The majority of important parameters were common amongst all study watersheds, 

underlining the possibility of regionalization of the SWAT model for Colorado’s snow- 

dominated watersheds.

Keywords: watershed, mountainous, snow-dominated, modeling, SWAT, sensitivity 

analysis, FAST



2.1 Introduction

Sound management of water resources in the Western United States and other 

mountainous regions around the world requires a clear understanding of critical processes 

that control the magnitude and timing of streamflow. Snowmelt contributes to nearly 

70% of the annual flow in river basins in this area where availability of water mainly 

depends on the snowfall and melt pattern (Mote, 2007; NRDC, 2008). Varying land use 

and climatic conditions can alter the accumulation and melting pattern of snow thereby 

affecting water yield and runoff generation (Bosch and Hewlett, 1982; Hamlet et al., 

2005). This poses a challenge for effective management of water resources in high 

elevation watersheds. A key source of streamflow generation in mountainous and 

forested watersheds is recharge from snowmelt to groundwater systems (Dincer et al., 

1970; Martinec, 1975; Rodhe, 1981; Flerchinger et al., 1994). Recognizing the 

interactions between snow accumulation, snowmelt, groundwater and streamflow is 

therefore vital for effective management of water resources in snow-dominated 

mountainous regions (Flerchinger et al., 1992).

Identification of critical natural processes and their dynamic interactions that are key 

in the generation and distribution of water in large river basins often involves the use of 

comprehensive watershed models (Perkins et al., 1999; Yongqin., 2004; Lay et al., 2008). 

Hydrologic modeling in mountainous regions has historically been challenging due to 

scarcity of climatic data, extreme elevation gradients, and orographic effects (Marks et 

al., 1992). The complex hydrologic processes of snowfall and snowmelt, dominant in 

mountainous watersheds, further complicate the modeling approach in these areas (Luce 

etal., 1999).
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Adequate representation of snow cover and snowmelt at various scales in 

mountainous areas has inspired the development of various simulation models 

(Anderson, 1968; Rango and Martinec, 1979; Jordan, 1991). These models range in 

complexity from simple lumped to physically-based energy balance approaches. The list 

of commonly used snowmelt models includes: the snow accumulation and ablation model 

(SNOW-17) (Anderson, 1973), the snowmelt runoff model (SRM), the precipitation- 

runoff modeling system (PRMS), and the streamflow synthesis and reservoir regulation 

model (SSARR) (USAGE, 1998).

The SNOW-17 model is a component of the national weather service river forecast 

system (NWSRFS). It is a conceptual model that only accounts for snow accumulation 

and ablation. SRM is one of the most popular and widely used single event models and 

was developed with the capacity to use remotely-sensed snow cover information when 

simulating snowmelt runoff However, SRM does not account for soil moisture and 

frozen grounds. The continuous model PRMS is mainly used for watershed analysis with 

respect to streamflow generation from snowmelt. It is a comprehensive watershed model 

that is well suited only for short term forecasts of 3-5 days. Likewise, the SSARR model 

has a continuous simulation capacity and is suitable for streamflow and runoff forecasting 

along with river-reservoir system studies but is not efficient for permafrost conditions and 

uses a lumped snowmelt relationship. Snowmelt models typically do not account for the 

surface and sub-surface water balance in the analysis and therefore have limited 

reliability in applications for management of water resources, flood hazard assessment, 

and impacts of climate change.
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The soil and water assessment tool (SWAT) developed by the USDA Agricultural 

Research Service (Arnold et ah, 1998) is a comprehensive watershed model that can 

simulate various components of the hydrologic cycle at the field to watershed scales. It is 

a process-based, continuous model that operates on a daily time step. Simulation of 

hydrologic cycle by SWAT is always based on water balance (Neitsch et al., 2005).

The ability of SWAT to simulate the hydrology of mountainous watersheds under 

the effects of elevation and variable snowmelt conditions was supported by Fontaine et 

al. (2002) with their study on the Wind River basin in Wyoming. Later, this capability of 

SWAT was assessed by Wang and Melesse (2005), who performed their study on a 

Minnesota watershed that had very low topographic relief Performance of SWAT in high 

elevation and mostly forested watersheds was evaluated by Ahl et al. (2008) with their 

study on a Rocky Mountain region watershed in Montana. However, SWAT has not been 

fully evaluated on a regional basis for a mountainous region comprising multiple 

watersheds.

Sensitivity analysis provides a means of identifying important model parameters and 

corresponding hydrologic processes that dominate the hydrology of an area. Various 

sensitivity analysis methods can be used to rank model parameters according to their 

influence on the model outputs in watersheds around the world. Researchers and 

scientists have used different sensitivity analysis methods with SWAT for various 

reasons, examples of which are presented below.

Arnold et al. (2000) performed a local sensitivity analysis of SWAT parameters in 

order to analyze the sensitivity of different hydrological processes to SWAT parameters
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for three different watersheds in the upper Mississippi River basin. Local sensitivity 

analysis was performed by Spruill et al. (2000) in order to recognize sensitive SWAT 

parameters for effective streamflow modeling in a karst-influenced Kentucky watershed. 

The Latin Hypercube One-factor-At-a-Time (LH-OAT) sensitivity analysis was 

performed by Holvoet et al. (2005) in order to spot dominant hydrological parameters and 

their influence on pesticide modeling in the Nil Basin in central Belgium. The LH-OAT 

method is based on random sampling technique similar to Monte-Carlo sampling and 

provides a robust analysis without too many model runs. Griensven et al. (2006) used the 

LH-OAT method for identifying sensitive SWAT parameters affecting flow, sediments, 

and nutrient modeling in the Bosque River catchment in Texas and the Sandusky River 

catchment in Ohio. Migliaccio and Chaubey (2008) performed a local sensitivity analysis 

in order to predict the influence of SWAT parameters on annual flow volume and 

sediment yield in the Illinois River watershed in Northwest Arkansas. The impact of 

management practices on water quality and quantity was examined by Ullrich and Volk

(2009) in the Parthe watershed in central Germany by performing a local sensitivity 

analysis of SWAT parameters related to tillage and management operations. Coffey et al.

(2010) performed an LH-OAT based sensitivity analysis in order to identify sensitive 

SWAT pathogen parameters and their influence on simulating transport of bacteria- like 

E. coli in Irish catchments.

Most of the studies presented above, dealt with identifying the sensitivity of SWAT 

parameters on streamflow, sediments, nutrients or pesticides in different study watersheds 

around the world. Sensitivity analysis performed in each of these studies was either based 

on a local method or a sampling-based method that only accounts for the individual
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importance of input parameters to an output variable. These methods, unlike the global 

sensitivity analysis methods, do not consider the association between different groups of 

input parameters and thus cannot address the impact of an input parameter as an 

interaction term on the output variable.

To date, only one study. Francos et al. (2003), has used a global sensitivity analysis 

method, Fourier Amplitude Sensitivity Test (FAST), with SWAT. They identified the 

sensitivity of SWAT parameters with respect to the flow and water quality in a Northern 

England watershed. This analysis involved a two-step sensitivity analysis procedure 

using the Morris screening method and FAST. Flowever, in this study some key input 

parameters with respect to output variables were not included during the analysis because 

of a lack of computational efficiency. Including a sufficient number of input parameters 

in a global sensitivity analysis method requires high computational efficiency as well as a 

stability test in order to identify the ideal number of model evaluations required for stable 

sensitivity analysis results.

Previous studies related to sensitivity analysis of SWAT flow parameters mainly 

dealt with identifying parameters with respect to volume and/or peak flows (White and 

Chaubey 2005; Ndomba et al 2008; Setegn et al., 2009). None of the studies have 

addressed the sensitivity of parameters relating to the timing and pattern of flow 

hydrograph in a watershed. This sort of sensitivity analysis is especially important in the 

case of snow-dominated mountainous watersheds, where the interactions between 

different hydrologic processes play an important role in generation of streamflow. Few 

studies have performed sensitivity analysis of SWAT parameters in mountainous

14



watersheds. These studies used either a local sensitivity analysis or a screening method 

for the analysis (Wang et al., 2005; Lemonds et al., 2007; Ahl et al., 2008). Global 

sensitivity analysis techniques such as FAST and method of Sobol’ that can identify 

sensitivities with respect to interactions between different groups of input parameters 

have not been used in the studies on mountainous watersheds. These methods are 

considered indispensable in snow-dominated mountainous regions, where the interactions 

between sub-surface hydrology and snow processes are key to generation of streamflow 

(Dincer et al., 1970).

The overall goal of this study is to identify key SWAT parameters and their 

corresponding hydrologic processes that control the magnitude and timing of streamflow 

in major Colorado watersheds. To this end, the following objectives are defined: (1) 

examine the computational requirements for stability of FAST sensitivity analysis results,

(2) characterize the main and interaction effects of SWAT model parameters and 

associated hydrologic processes in magnitude and timing of streamflow generation, and

(3) examine the similarity/dissimilarity of critical hydrologic processes in the snow- 

dominated watersheds of Colorado.

2.2. Methods and Material

The computational framework in this study consisted of the SWAT hydrologic model and 

the FAST global sensitivity analysis. The framework was applied in the following five 

major river basins in Colorado: the Arkansas River at Canon City, the Cache la Poudre 

River at mouth of canyon, the Gunnison River above Blue Mesa Dam, the San Juan River 

near Archuleta, and the Yampa River near Maybell. Multiple watersheds were selected in
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order to reinforce the findings for snow-dominated and mountainous watersheds. 

Inclusion of multiple watersheds in the analysis accounted for the diversity in land use, 

soil, and elevation along with varying climatic conditions. The study watersheds are 

located on both sides of the Continental Divide.

All SWAT simulations were performed over a 20-year period from January 1979 

through December 1998. A 3-year warm up period was used to adjust the initial 

conditions for hydrologic simulations. Streamfiow in most of Colorado River basins are 

considerably affected by man-made influences such as dams and reservoirs, diversion of 

water to nearby streams, and irrigation return flows. Therefore, naturalized flows were 

used for comparison of observed and simulated streamfiow. Naturalized flows are only 

available on a monthly basis for the study watersheds, and thus, the objective functions 

used for the sensitivity analysis were evaluated on a monthly time step.

Two separate objective functions were used in the study to capture the influence of 

SWAT parameters and their corresponding processes on the magnitude as well as the 

timing of monthly streamflows. Prior to application of the integrated SWAT/FAST 

analysis in all study watersheds, the computational requirements in terms of minimum 

number of model evaluations for obtaining stable (i.e., consistent) results was 

investigated in the Cache la Poudre River basin.

2.2.1. Study Area

The present study encompasses five major river basins located primarily in Colorado. 

The Cache la Poudre and San Juan River basins include small areas in the neighboring 

states of Wyoming and New Mexico, respectively. Figure 2.1 shows the location of the
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watersheds. The Cache la Poudre and Arkansas River basins are located on the eastern 

side of the Continental Divide and therefore drain into the Mississippi River. The 

remaining three watersheds are on the Western side of the Continental Divide and drain 

into the Colorado River, which later flows into the Gulf of California. All the watersheds 

have a typical characteristic of high relief, with an elevation range of 1,500 meters to 

4,400 meters as shown in Figures 2.2-2.6.

Diversity in elevation leads to significant variability in the amount and form of 

precipitation within these watersheds. Average precipitation in the Rocky Mountains at 

an elevation of 3230 meters is almost six times more than the western slope, which has an 

elevation of 1,520 meters (Hjermstad, 1970). Climate of Colorado is greatly influenced 

by topography. For example, average annual precipitation recorded at Wolf Creek Pass 

(elevation 3,307 m) located in the San Juan Mountains is 10 times more then Manassa 

(elevation 2,344 m) situated at a short distance to east of Wolf Creek Pass (Doesken et 

al., 2003). Similarly, a variation of 19 (°C) is observed between the mean annual 

temperature of Pikes Peak and Las Animas located within a distance of 145 km. These 

watersheds mainly receive precipitation in the form of snow, and thus, the observed 

streamflow in these watersheds displays seasonal variation dominated by spring and 

summer snowmelt (NRDC, 2008). Snow cover in these areas can start as early as mid- 

October and persist well into mid-June (NRCS, 2007). Around May, the snowpack 

begins releasing meltwater to surface and sub-surface hydrologic systems. Runoff 

generated from snow acts much differently than runoff generated from rainfall since 

snowmelt is a slow and gradual process and therefore takes time to become a part of the 

water balance.
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Figure 2.1. Location of study watersheds and corresponding USGS streamflow gauging

stations.
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Table 2.1. Land use, soil, and topographic attributes of study watersheds

Watershed Land use*’ Hydrologic
Soils*^

Description % Group %

Elevation
Range

(meters)

Arkansas River 
8,073 (km^)

Forest-Evergreen 
Range-Brush 
Range-Grasses 
Southwestern range land

48.7
9.16
37.1
5.05

A
B
C
D

8.45 
40 5^ 1632-4396 

42.0

Cache la Poudre 
River
2,735 (km^)

F orest-Evergreen 
Range-Brush 
Range-Grasses 
Water

64
18.4
15.3
2.36

A
B
C
D

0.0

1593-413141.6
47.4

Gunnison River 
8,943 (W )

Forest-Evergreen 44
Forest-Deciduous 9.52
Range-Brush 25.9
Range-Grasses 17.8
Southwestern range land 2.88

A
B
C
D

10.3
32.5
50.0
7.19

2183-4351

Forest-Evergreen 50.1 A 0.0
San Juan River Forest-Deciduous 9.76 B 20.2
8,443 (km^) Range-Brush 29.6 C - ,  „ 1724-4279 36.7

Range-Grasses 7.58 D 43.1
Hay 2.98

Yampa River 
8,832 (km^)

F orest-Deciduous 
F orest-Evergreen

32.7
17.8

A
B

4.9
69.1 1804-3763

Range-Brush 47.0 C 17.2
Range-Grasses 2.56 D 8.82

* Land use classification was obtained using National Land Cover Dataset, 2001 

*^Hydrologic soil group classification was obtained from State Soil Geographic 

(STATSGO) database. Group A and D refer to soil having high and very low infiltration 

rate respectively, while Group B and C refer to soil with moderate and slow infiltration 

rate.

Land use in the state of Colorado is mainly comprised of evergreen and deciduous 

forests at high elevation, while lowlands are mostly covered by shrubs and grasslands. 

Soils in the area have very low to moderate infiltration rates. Details related to land use, 

soils, and other information are provided in Table 2.1.
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Figure 2.2. Elevation diversity in Arkansas River basin along with the location of climatic stations

used in the analysis.
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Cache la Poudre River basin
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Figure 2.3. Elevation diversity in Cache la Poudre River basin along with the location of climatic

stations used in the analysis.
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Figure 2.4. Elevation diversity in Gunnison River basin along with the location of climatic stations

used in the analysis.
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Figure 2.5. Elevation diversity in San Juan River basin along with the location of climatic stations

used in the analysis.

23



Maybel 
X

u ses let 9251000

25

Yampa River basin

25 50
5 Kilometers

N

A

+
Lynx Pass

Legend
©  Watershed Outlet 

X COOP Stations 

+  SNOTEL Sites 

□  Basin

High : 3764m

Low : 1804m

Figure 2.6. Elevation diversity in Yampa River basin along with the location of climatic stations

used in the analysis.
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Lapse Rates

Watersheds in Colorado have diversity in elevation; therefore, lapse rates for temperature 

and precipitation are provided for the true representation of these influential variables 

across different elevations within the watersheds. Lapse rates were determined by 

regression analysis of the input climatic data for individual watersheds. Table 2.2 shows 

the lapse rates for each of the watersheds used in this study. A non-linear relationship is 

observed between elevation and climatic variables (precipitation, temperature) for 

Colorado watersheds. However, in this study we assume a simple linear relationship and 

compute the lapse rates for study watersheds.

Temperature lapse rate

The temperature lapse rates were separately computed for all the watersheds using 

available data from the snowpack telemetry (SNOTEL) and the National Climatic Data 

Center (NCDC) for the stations that are within and close to the area of study. A 

relationship was developed between average annual temperature and station elevation. 

For an accurate representation of temperature in a topographically diverse watershed, the 

lapse rate should be assign to elevation bands (Rango and Martinec, 1979, 1994). Sub-

basin temperatures are adjusted within each elevation band by comparing mean elevation 

of elevation band (Z^g) with the station elevation (Z). Calculated temperature lapse rates 

were comparable to the lapse rates obtained by Fontaine et al. (2002), whose research 

was performed for the Upper Wind River basin in Wyoming. Adjusted temperature for an 

elevation band is computed as:

Tgg = r  + (Zgg -  Z) dT/dz (2 .1)
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where is the mean temperature of the elevation band, T is the temperature at the 

elevation where the station is located, and dT/dz  is the temperature lapse rate. Mean 

annual temperature values computed for meteorological stations in and around the Cache 

la Poudre River basin were plotted against station elevation to obtain the temperature 

lapse rate as shown in Figure 2.7. Plots used for computing temperature lapse rates for 

the remaining four watersheds are shown in Appendix A1 (Figure A 1.1-Figure A 1.4)

Precipitation lapse rate

The lapse rate for precipitation was computed by plotting annual precipitation with 

weather station elevation. The study watersheds are large and have varying precipitation 

regimes because of elevation diversity. Therefore, the difference between the elevation of 

the sub-basin weather station and the elevation band was used to adjust the precipitation 

for all the sub-basins. Adjusted precipitation for an elevation band is computed as:

Peb = P + {Zeb -  Z)dP/dz  (2 .2 )

where Peb is the precipitation for elevation band, P is the precipitation where the station 

is located, and dP/ dz is the precipitation lapse rate used for the calculation. Precipitation 

data from meteorological stations located in and around the Cache la Poudre River basin 

were plotted against the station elevation (Figure 2.7) to obtain the precipitation lapse 

rate. Plots used for computing the precipitation lapse rates for the remaining four 

watersheds are shown in Appendix A1 (Figure A 1.1-Figure A 1.4). In order to examine 

the variation in lapse rate the analysis period (1979-1998) was divided into 4 equal 

intervals and separate lapse rates were computed. Less amount of variation in 

precipitation lapse rate was observed from this analysis. Precipitation lapse rates for the
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study watersheds as computed for different periods are shown in Appendix A1 (Table 

A l.l), while the plots constructed for obtaining these values are shown in Appendix A1 

(Figure A 1.5-Figure A 1.9).

This analysis was not performed for temperature datasets due to the lack of data 

availability for the SNOTEL stations especially during the calibration period (1979-

1988).

Figure 2.7. Variability of mean annual temperatiu-e and precipitation in Poudre River basin with

elevation
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Table 2.2. Lapse rates for the watersheds

Site name u s e s  site ID Precipitation 
lapse rate 
(mm / km)

Temperature 
lapse rate 
(° C / km)

Cache la Poudre River at mouth of canyon 6752000 634 -4.9
Arkansas River at Canon City 7096000 252 -6.8
Gunnison River below Blue Mesa Dam 9124700 700 -6.5
San Juan River near Archuleta 9355500 482 -5.3
Yampa River near Maybell 9251000 567 -4.0

2.2.2. Hydrologic Model

The SWAT model was used to analyze hydrologic processes in study watersheds. SWAT 

was originally developed to determine the impact of land management practices on water, 

sediment, and agricultural contaminant chemical yields at a watershed scale. Since its 

development in the early 1990s, SWAT has undergone major revisions in order to 

enhance its capabilities (Arnold and Fohrer, 2005; Neitsch et al., 2005). Examples of 

revisions include the addition of hydrologic response units, the incorporation of a CO2 

component to the crop growth model, improved snowmelt routines for better simulation 

of hydrologic processes in mountainous watersheds, and improvement in bacterial 

transport and nutrient cycling routines. SWAT is currently used worldwide for many 

hydrologic/water quality studies, including: sediment and nutrient modeling for total 

maximum daily load (TMDL) development and implementation (Borah et al., 2006; 

Benham et al., 2006; Shirmohammadi et al., 2006; Vellidis et al., 2006), selection and 

implementation of best management practices (BMPs) (Arabi et al., 2006; Gitau et al., 

2006), and evaluation of the impacts of climate change on various hydrologic processes 

(Stone et al., 2001; Rosenberg et al., 2003; Takle et al., 2005; Gosain et al., 2006; Jha et 

al., 2006). A comprehensive review of the development of SWAT model along with its
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use in various hydrologic applications over the past couple of decades can be found in 

Gassman et al. (2007).

SWAT uses readily available input datasets (e.g., precipitation, temperature, land 

use, soils, elevation, etc.) and can simulate processes such as runoff, return flow, 

percolation, evapotranspiration, groundwater flow, transmission losses, nutrient and 

pesticide loads, and reservoir storage. For modeling purposes, a watershed is divided into 

sub-watersheds, which are further divided into parcels possessing unique land uses, soil 

attributes, and slope characteristics referred to as hydrologic response units (HRUs). 

Input data requirements for the SWAT model are shown in Table 2.3. Daily precipitation 

and maximum/minimum temperature data were collected for cooperative observer 

program (COOP) and SNOTEL stations located in and around the study watersheds. A 

schematic of SWAT project set up along with the number of sub-basins and HRU’s 

created for the study watersheds is shown in Figure 2.8.
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Figure 2.8. Schematic of SWAT project set up

s w a t ’s hydrologic routing phase consists of main channel routing and reservoir 

routing. Main channel routing includes four components: water, sediment, nutrients, and 

organic chemicals. In this study, the soil conservation service (SCS) curve number 

procedure was used on the basis of the soil moisture condition to calculate the runoff, the 

Penman Monteith method was used to calculate the potential evapotranspiration (PET), 

and the variable storage method was used for channel routing.
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Table 2.3. Data inputs for SWAT model

Title Source Data Type

National Elevation 
Dataset (NED) U.S. Geological Survey (USGS) 

website - httn://seamless.us2S.20v/

30-m Digital 
Elevation 
Model (DEM)

State Soil 
Geographic 
(STATSGO) 
Database

USDA/NRCS-National 
Cartography&Geospatial center 
website - httn://data2atewav.nrcs.usda.20v/

Soil types
1:250,000-scale map

Weather Dataset 
(SNOTEL Stations) USDA/NRCS SNOTEL data and products 

website - httr)://www.wcc.nrcs.usda.2ov/snow/

Daily precipitation 
and
temperature datasets

Weather Dataset 
(COOP Stations)

National Climatic Data Center 
website -

Daily precipitation 
and

httn://www.ncdc.noaa.20v/oa/ncdc.html temperature datasets
National Land 
Cover Dataset 
(NLCD) 2001

U.S. Geological Survey (USGS) 
website - httD://seamless.us2s.20v/ 30-m Land use

SWAT accounts for sub-surface hydrology by using a kinematic storage model. The 

model uses the continuity equation based on mass for simulating sub-surface flows. It 

also accounts for lag in lateral flow in case of large sub-basins with a higher value for 

time of concentration. Groundwater processes are represented at the sub-basin level, 

while each sub-basin includes a shallow and a deep aquifer. A shallow aquifer is 

considered an unconfmed aquifer that contributes to reach within the sub-basin, while the 

contribution of a deep aquifer to streamflow is considered outside the watershed and is 

considered lost from the system (Arnold et al., 1993). Water entering the unconfined 

aquifer or shallow aquifer after passing through different layers of soil profile is 

considered recharge to the sub-surface. SWAT partitions this recharge between the
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shallow aquifer and deep aquifer depending on the aquifer percolation constant 

represented by parameter RCHRG_DP. Baseflow contribution to reach in the sub-basin 

only occurs thorough shallow aquifers; it depends on the amount of water stored in the 

shallow aquifer, as denoted by parameter GWQMN and the baseflow recession constant 

denoted by ALPHA BF. Upward movement of water from the shallow aquifer to the 

overlying unsaturated zone occurs when the overlying layer is dry. This process is 

defined as REVAP in SWAT and depends on parameters REVAPMN and GW_REVAP.

Elevation Bands

Elevation bands are generally used to handle spatial and temporal variability present in a 

watershed due to the elevation diversity (Rango and Martinec, 1979, 1994). Each sub-

basin can represent up to 1 0  elevation bands in order to account for orographic effects on 

both temperature and precipitation. Average elevation of each band and the percentage of 

sub-watershed area within that band are provided as model inputs on a sub-basin basis. 

Elevation bands at an interval of 350m were used for this study. Precipitation and 

maximum/minimum temperatures were calculated for elevation bands as a function of 

lapse rates and the difference between the station elevation and the mean elevation of the 

band. An elevation band increment of 350m compares favorably with the increments that 

Fontaine et al. (2002) and Lemonds et al. (2007) have used for the Wind River basin in 

Wyoming and the Dillon Reservoir watershed in Colorado, respectively.
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Representation o f  Snow Process in SWAT

Snow cover

SWAT represents snow hydrology at the HRU level. The type of precipitation in an HRU 

depends on the average temperature of air and snowfall. When the average air 

temperature on a daily basis is less than the snowfall temperature (SFTMP), an HRU 

receives precipitation in the form of snowfall. Snow exists as snowpack on the ground 

surface, and the snow water equivalent represents the amount of water in the snowpack. 

The snowpack increases with an increase in snowfall and decreases with the release of 

snowmelt, or sublimation. The mass balance for snowpack is shown in Equation (2.3): 

SNO[ = SNOi _  1  + Rday ~ ^sub ~  (2-3)

where S/VOj and SNOi _ i  are the water content of snowpack on day i and i — 1 

respectively, R^ay the amount of precipitation on a given day and is only added to the 

mass balance of snowpack if the mean daily air temperature is less than or equal to the 

snowfall temperature (SFTMP), is the amount of sublimation on a given day, and 

SNO-mit refers to the amount of snowmelt on a given day.

The snowpack in a sub-basin may not be uniformly distributed because of variables 

such as drifting and shading. This leads to a portion of the sub-basin area that is not 

covered with snow. SWAT quantifies this fraction in order to calculate snowmelt at the 

sub-basin level in a more realistic way. Areal coverage of snow is linked with the amount 

of snow present in a sub-basin using an areal depletion curve (Anderson, 1973). The
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curve explains the growth and slump of a snowpack on a seasonal basis. Equation (2.4) 

describes an areal depletion curve:

SN Ornn —
SNO

(c
SNO

SNOCOVMX "SNOCOVMX
-  + exp( covi — C0 V2 .

SNO
SNOCOVMX)) -1 (2.4)

where SNÔ -ov is the fraction of HRU covered by snow. Water content of snowpack on a 

particular day is denoted by SNO. The user-defined parameter SNOCOVMX refers to 

minimum snow water content corresponding to 100% snow cover. The coefficients covi 

and COV2 are computed from Equation (2.4) using 95% coverage at 95% of 

SNOCOVMX and 50% coverage at a user-defined fraction of SNOCOVMX. The 

fraction of SNOCOVMX corresponding to 50% snow cover is known as SNO50COV. 

The fraction of snow water content relative to 100% snow coverage is denoted as

SNOCOVMX' shape of an areal depletion curve is defined by three sets of points: (0, 0) 

(0.95, 0.95), and (0.5, SNO50COV). Figure 2.9 shows an areal depletion curve with the 

value of the input parameter SNO50COV adjusted to 0.75. The parameter SNO50COV 

varies between 0 - 1  and adjusts the shape of an areal depletion curve depending on the 

pattern of snow cover in a watershed. An area with uniform snow cover observes a value 

of SNO50COV approaching 0, while a SNO50COV value close to 1 is observed for the 

areas with non uniform cover.
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cov

Figure 2.9. Areal depletion curve for COV50 = 0.75

Snowmelt

Snowmelt in SWAT is controlled by the mean air temperature, the temperature of the 

snowpack and the melting rate. SWAT computes the snowpack temperature as shown in 

Equation (2.5), where: the snow temperature lag factor (TIMP) controls the influence of 

the previous day’s snowpack temperature (°C) on the current day’s snowpack

temperature (°C).

T'SNi = (1 -  T I MP )  + T b * T I MP  (2.5)

Variable TIMP depends on the depth of snowpack and varies between 0-0.5 for deep 

snowpacks and varies from 0.5-1.0 for shallow snowpacks. Equation (2.5) shows that for 

deep snowpacks  ̂ will have a greater influence on (°C) while in the case of
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shallow snowpacks the mean air temperature (7g) (°C) will be dominating. Snowmelt in 

SWAT depends on the threshold temperature for snowmelt to occur, the maximum 

temperature of air, and the maximum snowpack temperature for the current day, as 

shown in Equation (2.6):

\TsNi + Tmax
SNOmit = SNOcov * bmit -  SMTMP (2 .6)

where SNOj^u is the amount of snowmelt on a given day (mm H2O), SNÔ ov is the 

fraction of a HRU covered by snow as computed in Equation (2.4), refers to the melt 

factor for the day (mm H2 0 /day °C), is the snowpack temperature for the current day 

(°C), Tjnax is the maximum air temperature on a given day (°C), and SMTMP is the 

threshold temperature for snowmelt to occur (°C).

The melt factor is computed using the seasonal variation with respect to maximum 

and minimum values occurring during the summer and winter solstices, respectively. The 

melt coefficient is predicted by a sine function (Anderson, 1973) as shown in Equation 

(2.7):

(SMFMX + SMFMN) (SMFMX -  SMFMN) ( 2n 
bmit = ---------------------------------------------------------- * sin ( —  (d„ -  81) (2.7)

where SMFMX is the melt factor for the June 21 (mm H2 0 /day °C), SMFMN is the melt 

factor for December 21 (mm H2 0 /day °C), and d„ is the day number of the year.
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M odel Parameters

In order to understand the major hydrological processes represented by SWAT for the 

snow-dominated areas, a set of model parameters was used for sensitivity analysis. 

Parameters are classified depending on the process (snow cover, snowmelt, runoff, 

groundwater, soil percolation, channel flow, erosion, and evaporation) in which they are 

involved. Table 2.4 provides the acceptable range, along with the definition, of the 

parameters involved in the analysis. These ranges were selected based on SWAT manual 

(Neitsch et al., 2005). Certain empirical parameters, such as curve number (CN_F) vary 

with varying combinations of land use and soil. Therefore, these parameters tend to have 

multiple values in the watersheds comprising of several HRUs. Thus, in order to maintain 

the parameters’ spatial variability, these parameters were changed as a fraction of their 

default values.
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Table 2.4. List of SWAT parameters included in the analysis

No Input parameter Min Max Definition Process
X, ALPHABF 0 1 basefiow recession constant (days) groundwater
X2 CANMX 0 10 maximum canopy storage runoff
X} CHKI 0 300 effective hydraulic conductivity of 

channel (mm/hr)
channel

X4 CHjcn -0.01 500 effective hydraulic conductivity of 
channel (mm/hr)

channel

X5 CH NI 0.008 0.3 manning's n for tributary channel channel
X6 CH_NU 0.01 0.3 manning's n for main channel charmel
X7 CHSII* -0.05 0.05 Fraction change in average channel 

slope along charmel length
channel

Xs CN_F* -0.15 0.15 Fraction change in curve number runoff
X9 DEPIMP_BSN 0 6000 Depth to impervious layer (mm) groundwater
XJO EPCO 0.01 1 Plant evaporation compensation factor evaporation
Xll ESCO 0.01 1 soil evaporation compensation factor evaporation
X/2 GW_DELAY 0 500 groundwater delay (days) groundwater
Xl3 GWREVAP 0.02 0.2 groundwater Revap coefficient groundwater
Xl4 GWSPYLD* -0.5 1 Fraction change in specific yield of the 

shallow aquifer
groundwater

Xl5 GWHT 0 25 initial groundwater height groundwater
X16 GWQMN 0 5000 threshold water level in shallow aquifer 

for basefiow to occur (mm)
groundwater

X,7 OV_N 0.01 0.3 manning's n for overland flow runoff
X18 RCHRGDP 0 1 groundwater recharge to deep aquifer 

(fi-action)
groundwater

X]9 REVEPMN 0 500 threshold water level in the shallow 
aquifer for Revap to occur (mm)

groundwater

X20 SFTMP -5 5 snowfall temperature (°C) snow cover
XJI SLOPE* -0.1 0.1 Fraction change in slope of HRU geomorphology
2̂2 SMFMN 0 10 melt factor on June 21 (mm /°C/day) snowmelt
2̂3 SMFMX 0 10 melt factor on Dec 21(mm/°C/day) snowmelt

X24 SMTMP -5 5 threshold temperture for snowmelt (°C) snowmelt
2̂5 SNO50COV 0 1 fraction of snow volume represented by 

SNOCOVMX that corresponds to 
50% snow cover

snow cover

X26 SNOCOVMX 0 650 minimum snow water content that 
corresponds to 100% snow cover (mm)

snow cover

X27 SOLAWC* -0.1 2 Fraction change in available water 
capacity of the soil layer

soil

X2S SOLK* -0.5 5 Fraction change in soil conductivity soil
X29 SURLAG 1 24 surface runoff lag coefficient Runoff
X30 TIMP 0.01 1 Snow temperature lag factor snowmelt
* These parameters were varied as a percentage of their default values to maintain their relative spatial 
variability
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2.2.3. Sensitivity Analysis

Sensitivity analysis is considered a prerequisite for model building irrespective of the 

field of study. It helps in assessing the quality of a model for environmental practices and 

provides guidelines for developing decision support systems that are used in creating and 

modifying environmental policies (Saltelli et al., 2000; Tarantola et al., 2002). It is 

considered a key technique in providing assistance to risk assessments (Baker et al., 

1999). Sensitivity analysis assists in analyzing the measures that can mitigate the risk of 

climate change (Jones, 2000). This study uses a global sensitivity analysis method, 

FAST, to identify the individual and interaction effects of SWAT parameters on the 

generation of streamflow with respect to magnitude as well as timing in snow-dominated 

mountainous watersheds. Sensitivity analysis methods can be categorized into three 

general classes: local sensitivity analysis methods, screening methods and global 

sensitivity analysis methods (Saltelli et al., 2000).

Local sensitivity analysis methods consider only the local impact of input parameters 

on the model and the results obtained are related to a particular point in the entire 

parameter space. These methods require the relative uncertainty of each parameter to be 

weighed when comparing the effects of various input parameters on the output and 

therefore are considered less efficient methods. The majority of the previous studies 

related to sensitivity analysis of SWAT parameters have used local methods. These 

studies were mainly based on identifying sensitive SWAT parameters related to flow, 

sediments or nutrients in different study watersheds (Wang et al., 2005; Plus et al., 2006; 

Muleta et al., 2007; Rouhani et al., 2007; Shen et al., 2009).
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Screening methods are considered simple and economieal in terms of time and 

computational cost. Such methods rank the input parameters in order of their importance, 

but quantitative measurements, that is, how much a parameter is more important than 

another parameter, are beyond the scope of this method. Screening methods do not 

provide any information about the interactions between different input parameters and 

thus have very limited use in the study of mountainous watersheds where 

interdependency between different parameters governs the hydrology. Most of the 

studies incorporating screening methods with SWAT have either used the LH-OAT 

method or the Morris-OAT method (Holvoet et al., 2005; Arabi et al., 2007; Mulungu et 

al., 2007; Ahl et al., 2008; Arabi et al., 2008; Coffey et al., 2010).

Global sensitivity analysis apportions the output uncertainty to the uncertainty in the 

input parameters (Saltelli, 2000), and ean be used to carry out a number of tasks. Global 

sensitivity analysis is used to provide guidelines for the implementation of model-based 

system assessments, and to assess the robustness of decisions in the presence of 

uncertainty (Tarantola et al., 2002). It provides improvement in the reliability and 

credibility of deeisional processes by clarifying the range of uncertainty assoeiated with 

policies for environmental assessments. To the best of our knowledge, only Francos et al. 

(2003) have used the global sensitivity analysis method with SWAT in order to identify 

sensitive parameters related to flow, sediments and nutrients in the Oust watershed 

situated in England.

40



Global Sensitivity Analysis

Various model approximation techniques such as regression analysis, correlation 

measures, and rank transformation are grouped together as global sensitivity analysis 

methods (Kiparissides et ah, 2008). However, variance-based methods have increasingly 

gained popularity because they not only provide a quantitative measure of the importance 

of model parameters individually, but also explicitly reveal the importance of interactions 

between model parameters. First order sensitivity indices (S )̂ and total order sensitivity 

indices (TS() are computed as shown below in Equation (2.8) and Equation (2.9), 

respectively (Saltelli et ah, 2000) :

5; j { E { Y \ x d ) /
/V{Y) (2.8)

TSi = {v ( ,Y ) -V{E (Y \x^ i) ) ) /V iY ) (2.9)

where V(E(Y\x i )) represents the variance of the expected value of the output (Y) with 

respect to input parameter (Xj), V(Y) is the total variance in the output (E) and, 

^(^(Elx^i)) represents the variance of the expected value of the output (E) with respect 

to input parameters other than x̂ . Computation of expected value and variance terms in 

these equations varies and depends on the method used for the analysis.

Fourier Amplitude Sensitivity Test (FAST)

FAST is one of the most popular techniques developed for global sensitivity and 

uncertainty analysis (Cukier et ah, 1973; Schaibly and Shuler, 1973; Cukier et ah, 1975,
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1978; Saltelli et al., 1998; Lu et al., 2001; Xu et al., 2008). FAST estimates the expected 

value (E(Y)) and variance (V(Y)) of the output variable Y and the contribution of each 

input parameter to this variance (Saltelli et al., 2000). The FAST methodology is based 

on transformation the /^-dimensional parameter space to a one-dimensional space using a 

Fourier transformation function. Implementation of FAST in conjunction with SWAT 

follows these steps:

Step 1: A distributed hydrologic model (SWAT) with a multi-objective function (Y) and 

p different input parameters is selected as shown in Equation (2.10). Ranges of the input 

parameters are shown in Table 2.5.

Y = / ( x i ,X2, ...........Xp) (2.10)

Step 2: A  transformation function (Equation (2.11)) is introduced for each input 

parameter in order to convert a multi-dimensional integral in X (Equation (2.10)) into a 

one-dimensional integral in S (Equation (2.12)). A number of transformation functions

have been proposed by Cukier et al. (1973), Koda et al. (1979) and Saltelli et al. (1999). 

This study uses the transformation function proposed by Saltelli et al. (1999).

Xj = 1 /2  +  I / tt arcsin(smo)js) (2.11)

/ ( ^ )  = /  {T x (s inax^s),............ , Tp (sincops)^ (2. 12)

where s is a scalar variable ranging from - n to n and oj; is a set of angular frequencies 

consisting of only integers. The transformation function allows the parameter to oscillate
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periodically at the corresponding ojj, thus changing the model output to a periodic function 

ofs. If the o)j's are positive integers, the corresponding function will have a period 2n. 

Thus, Fourier expansion can be used for expanding the model output as shown in 

Equation (2.13):

/ (s )  = i4o + cos(hs) + Bfi sin (hs)} (2.13)
h=l

where Aq is a constant computed as shown in Equation (2.15), while Af  ̂and 5^ are the 

Fourier coefficients.

Step 3: The Fourier coefficients in Equation (2.13) are computed by using discrete 

samples, denoted as: s^, 5 2 , 5 3  etc. The transformation function is applied to each sample 

element of S shown in Equation (2.14) to obtain the sampled values of each parameter. 

Model runs are performed on these obtained sample values, and the Fourier coefficients 

are computed using elements of S as shown in Equation (2.16) and Equation (2.17):

S ^2/ ••• ■ 5^,....... (2.14)

( N - l ) /2

^ 0 = i /w  2

lc=l

(2.15)

( N - l ) /2

=  2 / N  ^  /(Sfc)cos (5feh)
k=l
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(W - l) /2

Bh = 2 /N  /(s;,)sin (Sfe/i)
k=l

(2.17)

5? /̂) 4: The obtained Fourier coefficients from Equation (2.16) and Equation (2.17) are 

used to compute the variance of the output Y by Equation (2.18):

(A /- l) /2

(2.18)
/l = l

Step 5: In order to compute the partial variance (Ĝ y.) of each parameter on the model 

output, different values of oij and the number of samples (N) are required. The minimum 

sample size requirement for computing is shown in Equation (2.19):

N -  2Mmrnax+l (2.19)

where is the maximum frequency from the set of o)\, M refers to the maximum harmonic 

which is usually 4 or 6 , and N is a user-defined number for the FAST samples. After values 

for N and M, nimax can be computed in order to determine values for other frequencies. A 

high value is assigned to o»j, and complementary frequencies (m._j) receive lower values. The 

maximum value of complimentary frequencies is determined using Equation (2.20):

Wi
Max (w^i) = ^  

2M (2 .20)
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Later, frequencies (w^j) for complementary set [1, Max (iv^j)] are assigned depending on the 

number of input parameters. The basic rule for assigning these frequencies is that the difference 

between two consecutive frequencies should be as large as possible.

Step 6: In this step the partial variance in the model output with respect to the uncertainty 

of each input parameter Xj is computed as shown in Equation (2.21):

( /V - l ) / 2

Gw,=^  Z  + (2 .21)

U = 1

Step 7: Total variance of Y computed from step 4, and variance in model output with 

respect to each input parameter computed from step 6 , are now used to obtain the 

individual contribution of each input parameter to the total variance of Y. This is also 

known as the first order sensitivity indices and is computed as shown in Equation (2.22), 

which is equivalent to Equation (2.8).

^̂•FAST ^G(Oi
E(T) (2 .22)

Step 8: Finally, FAST total order indices are computed in order to understand the 

interactions between the input parameters. To determine the total order indice for an input 

parameter Xi, an angular frequency coi is assigned to it, while all the other input 

parameters are allotted the angular frequencies of and its higher harmonics 

where ~i refers to all but i. A partial variance , that measures the effect of all the 

input parameters (except Xj ) on the model output is computed by using Equation (2.23).
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Later, the result from Equation (2.23) is used to obtain the total order indice {TS(i)) or the 

total effect of input parameter Xj from Equation (2.24), which is equivalent to Equation

(1.9).

( /V - l ) / 2

(2.23)
u = l

TS(i) = 1 E(y) (2.24)

Stability Analysis

Previous studies have shown that the accuracy and consistency of results from FAST 

analysis could be influenced by the number of model evaluations (Lu et al, 2001). 

Francos et al. (2003) obtained three subsets of SWAT parameters, each composed of 14 

parameters as a result of sensitivity analysis based on the Morris screening method. These 

subsets were used for the FAST analysis of 19 output variables related to flow, 

sediments, and nutrients. Computational limitations in this study allowed for only three 

different subsets of 14 input parameters to be included in the FAST analysis; this led to 

exclusion of some important SWAT parameters that were related to a particular output 

variable from the analysis. Stability analysis was not addressed in this study, and was 

most likely due to a lower number of SWAT parameters included in the FAST analysis. 

The number of simulations required for obtaining consistent results from FAST depends 

on the number of input parameters used in the analysis. FAST has a limitation to its
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applicability when the number of inputs is large, as the algorithm can only be applied to 

50 or fewer inputs (Mokhtari et al., 2006).

In order to determine the adequate number of model evaluations required to obtain 

consistent sensitivity analysis results, a stability analysis was performed for the Cache la 

Poudre River basin. The number of model evaluations required for a stable FAST 

analysis depends on the number of input parameters selected for the sensitivity analysis. 

Since the FAST analysis for all the watersheds in this study was based on 30 SWAT 

parameters, the stability analysis was performed for one watershed, that is, the Cache la 

Poudre watershed, and model evaluations corresponding to stable results were used for 

all other watersheds.

Three replications of FAST runs were performed for the Cache la Poudre River basin 

with the number of samples varying between 2,000 and 15,000. Three different values of 

sensitivity indices were obtained for each parameter as a result of three identical runs and 

were used to compute the absolute difference between these values for each parameter, 

separately. An average value (Vj)  was computed for each of the three identical sets by

taking the mean of the absolute difference computed for each parameter, as shown in 

Equation (2.25). The obtained values were then used to calculate a mean and a standard 

deviation for each number of FAST samples used in this analysis by using Equation 

(2.26) and (2.27):

,,  _ ^in\
E’;  — -------- — -------- -,171,11 = 1,2,3, m  ^  n.

and j  = {2000,3000,4000,5000,10,000,15,000}

(2.25)
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Vi
V i  + V i  + V i  _ Jl J2 J3

’ mean (2.26)

V j
 ̂s tdev

N

(l7. - V j7 /  1 V Jk  JmeanJ2 L ^fc=i
(2.27)

Mean and standard deviation values of less than 5% and 1%, respectively, were obtained 

from the FAST analysis with 15,000 model evaluations. Thus, FAST analysis for all 

watersheds in the study was performed with 15,000 model evaluations.

2.3. Results and Discussion

The results of the integrated SWAT/FAST analysis exhibit a strong agreement on the 

important parameters for all study watersheds. However, sensitivity indices varied 

depending on the objective function utilized in the analysis. The stability analysis in the 

Poudre River watershed indicated that a minimum of 15,000 model evaluations were 

required to obtain consistent results. Thus, sensitivity analysis for all study watersheds 

was performed using 15,000 model evaluations. Figure 2.10 shows the importance of 

selecting an appropriate number of samples from the parameter space while performing a 

sensitivity analysis using FAST. Error plots for the two objective functions as displayed 

in Figure 2.10 clearly show that as the number of model evaluations increased, the 

disparity between sensitivity indices from three replicates diminished. Mean and standard 

deviation values corresponding to 15,000 model evaluations indicated stability in the 

sensitivity analysis results from FAST analysis, as shown in Figure 2.10. It should be
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noted that these findings are specific to this study where 30 SWAT parameters were 

altered.
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Figure 2.10. Illustration of the importance of number of model evaluations on the result of FAST
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Sensitivity analysis of 30 SWAT input parameters eorresponding to the two objective 

functions mean monthly streamflow and the corresponding root mean square error, 

assisted in identifying the SWAT parameters that play an important role in hydrologic 

modeling of mountainous watersheds. Multiple objective functions were selected in order 

to identify the parameters and the hydrologic processes that play a vital role in the 

generation of streamflow in terms of both volume and timing in snow-dominated 

mountainous watersheds. Major findings of this analysis are discussed below.

Case 1. Objective Function: Mean Monthly Streamflows

Main Effects: First Order Indices

The first order indices obtained as a FAST output help in determining whether the 

objective function is dominated by the interaction effect or the individual effect of the 

parameters. Figure 2.11 shows that the individual effect of the parameters dominated 

when monthly streamflow was used as the objective function. Hydraulic conductivity of 

the soil, represented by the parameter SOL K, and effective hydraulic conductivity of 

channel alluvium, represented by the parameter CH Kl, were observed to be the most 

important parameters for the majority of watersheds. Other important parameters 

obtained from the analysis of FAST first order indices of mean monthly streamflow were 

mainly related to groundwater processes and are shown in Table 2.5. Figure 2.11 only 

shows the parameters with sensitivity indices greater than 0.1. However, a detailed list of 

important parameters can be seen in Table 2.5.
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Figure 2.11. FAST first order sensitivity indices for the objective function mean monthly 

streamflow. where, SOL_K: hydraulic conductivity of soil and CH_K1: effective hydraulic

conductivity of channel alluvium

Interaction Effects: Total Order Indices

The interaction effect was not observed to be dominant in most of the watersheds when 

mean monthly streamflow was used as the objective function. This shows that the 

interaction between different hydrologic processes does not play a major role when the 

analysis is corresponding to volume of flow. Interactions were mainly observed for some 

groundwater parameters. Few snow parameters were also observed to have an interaction 

effect especially in case of the Gunnison River basin. Figure 2.12 shows the parameters 

corresponding to the interaction portion of the pie charts in Figure 2.11. The importance 

of sub-surface hydrologic processes for the generation of streamflow in mountainous 

watersheds was realized from this analysis.

51



Figure 2.12. Parameters contributing to a higher interaction effect in the case of MSF as the

objective function.

Case 2. Objective Function: RMSE o f  Mean Monthly Streamflows 

Main Effects: First Order Indices

The first order indices obtained as a FAST output from the analysis of the RMSE of 

monthly streamflow show the dominance of interactions between different hydrologic 

processes in the generation of streamflow with respect to magnitude, as well as timing.
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Figure 2.13 shows that the baseflow parameter, ALPFIA BF, was observed to be the 

most sensitive for all the watersheds. This shows that the contribution of sub-surface or 

groundwater flow to streamflow is a dominant process for generation of streamflow in 

snow-dominated mountainous watersheds. Only important parameters with FAST first 

order indices greater than 0.1 are shown in Figure 2.13. However, the complete list of 

important parameters can be seen in Table 2.5.
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Figure 2.13. FAST first order sensitivity indices for the objective function RMSE of mean monthly 

streamflow. where, ALPHA BF: Baseflow recession constant and CFI KI: effective hydraulic

conductivity of channel alluvium
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Interaction Effects: Total Order Indices

In order to identify the parameters that are contributing to the interaction portions in 

Figure 2.13, total order indices from the FAST output were analyzed. Figure 2.14 shows 

the parameters contributing most to the interaction division of the pie charts for all five 

watersheds. These parameters were mainly related to snow cover, snowmelt, baseflow 

and lateral flow; which support the finding of Dincer et al. (1970), Martinec (1975), 

Rodhe (1981), and Flerchinger (1992) for mountainous watersheds. Generation of 

streamflow in snow-dominated mountainous regions depends on the snowmelt and the 

snowmelt recharge pattern to groundwater systems (Flerchinger et al., 1992), which helps 

in understanding the higher interaction effect obtained for these parameters from the 

FAST analysis of the RMSE of monthly streamflows.
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Figure 2.14. Parameters contributing to higher interaction effect in case of RMSE of the mean 

monthly streamflow as the objective function

Sensitivity indices of parameters were obtained for both the mean monthly 

streamflow and the corresponding RMSE, separately. Table 2.5 shows the rank of the 

parameters for the two objective functions, starting with the mean monthly streamflow 

(Q) and followed by the RMSE of monthly streamflow (e), for all five watersheds. The 

last column for each watershed shows the global (G) or the overall rank of parameters, 

which was decided by selecting the higher of the assigned ranks from the two objective
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functions. It can be seen from Table 2.5 that the majority of important parameters are 

similar irrespective of the watershed. Parameters corresponding to hydrological processes 

such as snow cover, snowmelt, soil, groundwater, etc., were observed to be important for 

all the watersheds. However, few parameters were observed to be important only for 

particular watersheds.
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Table 2.5. Rank of SWAT parameters for average monthly streamflow (Q), RMSE of 

monthly streamflow (e) along with their global rank (G) in the study watersheds.

Parameters Arkansas Cache la Poudre Gunnison San Juan Yampa

Q e G Q e G Q e G 0 e G Q e G
ALPHABF 28 1 1 23 1 1 11 1 1 16 1 1 23 1 1
CANMX 2 8 2 16 13 13 12 9 9 11 22 11 17 21 17
CH K1 4 3 3 2 5 2 2 2 2 2 8 2 2 11 2
CHKll 17 9 9 24 4 4 15 8 8 20 11 11 10 4 4
CH_N1 8 24 8 29 12 12 23 26 23 26 24 24 9 15 9
CHNll 6 23 6 25 15 15 20 18 18 27 13 13 16 25 16
CH Sll 3 22 3 26 18 18 9 24 9 17 26 17 24 26 24
CN_F 19 15 15 30 25 25 26 14 14 21 6 6 7 22 7
DEPIMPBSN 26 19 19 8 27 8 27 29 27 9 30 9 25 24 24
EPCO 30 13 13 19 29 19 14 30 14 15 25 15 27 29 27
ESCO 14 17 14 15 22 15 19 11 11 8 18 8 13 12 12
GWDELAY 22 5 5 18 17 17 28 27 27 25 15 15 14 28 14
GWREVAP 18 30 18 9 14 9 25 22 22 19 20 19 28 23 23
GWSPYLD 27 18 18 27 19 19 24 23 23 30 23 23 21 17 17
GWHT 21 25 21 12 23 12 21 21 21 28 27 27 30 19 19
GWQMN 12 26 12 4 9 4 5 20 5 4 10 4 3 18 3
OV_N 5 10 5 17 21 17 17 17 17 18 29 18 26 30 26
RCHRG DP 20 29 20 20 11 11 3 6 3 10 14 10 5 20 5
REVEPMN 13 14 13 22 24 22 22 16 16 14 21 14 8 13 8
SFTMP 15 16 15 3 8 3 7 4 4 5 3 3 19 6 6
SLOPE 7 28 7 10 26 10 29 15 15 12 19 12 29 16 16
SMFMN 25 12 12 14 16 14 18 10 10 22 16 16 20 10 10
SMFMX 9 11 9 28 2 2 10 5 5 13 4 4 12 2 2
SMTMP 24 20 20 13 10 10 16 28 16 24 5 5 11 8 8
SNO50COV 10 6 6 5 3 3 4 12 4 7 2 2 4 3 3
SNOCOVMX 11 7 7 11 7 7 8 7 7 6 7 6 18 7 7
SOLAWC 16 4 4 7 20 7 6 13 6 3 12 3 15 14 14
SOLK 1 2 1 1 6 1 1 3 1 1 9 1 1 5 1
SURLAG 29 27 27 6 28 6 30 25 25 23 17 17 6 27 6
TIMP 23 21 21 21 30 21 13 19 13 29 28 28 22 9 9

Highlighted numbers in the table correspond to the top 5 parameters obtained from the 
multi-objective sensitivity analysis of the SWAT parameters for the study watersheds.
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2.3.1 Important Parameters

The hydraulic conductivity of soil, SOL K, and the baseflow parameter, ALPHA_BF, 

were observed to be the most important parameters for the two objective functions (mean 

monthly streamflow and RMSE of monthly streamflow) used for the sensitivity analysis 

of SWAT parameters in Colorado watersheds. Higher sensitivity indices for these 

parameters show that the movement or flow of water through soil and the contribution of 

baseflow to streamflow generation both play an important role in the hydrology of snow- 

dominated mountainous watersheds of Colorado.

Other generally important parameters include the snow cover and snowmelt 

parameters: SNO50COV, SNOCOVMX, SMFMX, SMTMP, SMFMN, and SFTMP. The 

effective hydraulic conductivity in channel alluvium, CH_K1, soil water capacity, 

SOL AWC, and groundwater parameter GWQMN, were also observed to be sensitive in 

most of the study watersheds. Sensitivity of these parameters explains the importance of 

snow-related processes, sub-surface hydrology and, in-channel transmission losses in the 

hydrology of snow-dominated mountainous watersheds.

Results show variation in parameter sensitivity depending on the objective function 

selected for the analysis. Higher sensitivity indices for parameters SOL_K, SOL_AWC, 

GWQMN, and CH_K1 were observed when analysis was performed with mean monthly 

streamflow as the objective function. On the contrary, the groundwater parameter 

ALPHA BF and the snow parameters SNOCOVMX, SNO50COV, SMFMX, SMFMN, 

and SMTMP emerged with higher sensitivity indices when RMSE of monthly streamflow 

was evaluated as the objeetive function.
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2.4 Conclusion

A stability analysis of FAST, performed on the Cache la Poudre River basin, clearly 

showed the importance of the number of model evaluations required for obtaining stable 

sensitivity analysis results. The result of this analysis suggests that at least 15,000 model 

evaluations should be used when sensitivity analysis is performed for 30 input parameters 

in the distributed hydrologic model SWAT. This analysis will help researchers in 

understanding the relation between the number of input parameters and the corresponding 

number of FAST evaluations required for stable sensitivity analysis.

The importance and applicability of the variance-based global sensitivity analysis 

method FAST were demonstrated in five major river basins of Colorado. The results 

indicated the significance of objective function while performing sensitivity analysis; it 

became evident that the sensitivity of parameters varied depending on the objective 

function selected in the FAST analysis. Sensitivity analysis performed with the mean 

monthly streamflow used as the objective function showed that the streamflow volume in 

Colorado watersheds was mostly influenced by groundwater processes. On the other 

hand, sensitivity analysis performed with the RMSE of monthly streamflow suggested the 

importance of interactions between snow-related and sub-surface hydrologic processes 

for generation of streamflow with respect to timing and flow pattern in monthly flow 

hydrographs. This result should motivate researchers to use variance-based global 

sensitivity analysis methods like FAST that not only include multiple objective functions 

for the analysis, but also address the importance of parameters in terms of both their 

individual and interaction effects on the objective function. This genre of sensitivity 

analysis is especially important in the case of mountainous watersheds, where
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interactions between different parameters and corresponding hydrologic processes are 

observed to play an important role in streamflow generation.

The analysis performed with FAST for flow-related parameters of SWAT using 

mean monthly streamflow and corresponding RMSE as the objective functions showed 

that similar hydrologic processes are critical in the major river basins of Colorado. This 

suggests that a common parameter set can be selected for the snow-dominated and 

mountainous watersheds of Colorado. The obtained important parameters can be used for 

the flow calibration in some other Colorado watersheds in order to examine the reliability 

of the results obtained from this study. Future studies may now use these findings in 

ungaged watersheds located in Colorado, where use of hydrologic model is difficult. This 

should help to effectively manage water resources in areas where there is scarcity or no 

availability of flow data.
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Ch a p t e r  3: R e g i o n a l i z a t i o n  A p p r o a c h  Fo r  C o l o r a d o  R i v e r

Ba s i n s

Abstract

Over the past eouple decades, hydrologic models have been increasingly used to aid in 

the management of water resources around the world. However, their application to 

ungaged basins where data availability is limited present a challenge. Especially, the 

utility of highly parameterized, process based, and distributed models in mountainous 

watersheds is still questionable. In this study, we examine various regionalization 

approaches that can be used for estimating model parameters in watersheds with an 

unreliable or nonexistent record of streamflow data. The present work uses a distributed 

hydrologic model known as the Soil and Water Assessment Tool (SWAT) for hydrologic 

modeling of streamflow in five major river basins of Colorado. Thirty flow related 

parameters of the SWAT model were calibrated and corroborated over a 20 year period 

starting in January of 1979. The focus of this paper is to: first, evaluate the suitability of 

SWAT model for flow simulations in mountainous and snow dominated watersheds of 

Colorado, and second, analyze the performance of various regionalization methods for 

flow simulations in ungaged watersheds. These methods range from vicinity, similarity 

approach in terms of physiographic attributes (land use, soil etc), and multi-site 

calibration of a watershed model to gaged sites in a region. The jack-knife cross
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validation technique was later used in order to analyze the accuracy of these 

regionalization approaches.

Results indicated the suitability of SWAT model for flow simulations in 

mountainous watersheds. Regionalization of distributed hydrologic models like SWAT in 

snow dominated mountainous regions was observed to be possible and the importance of 

two methods used for regionalization was realized. The first method is based on a 

similarity approach that involves computation of parameter values for an ungaged 

watershed based on similarity index (SI) with respect to physiographic attributes. The 

second method is multi-site calibration of gaged watersheds with the goal to minimize 

RMSE between the observed and simulated streamflows and apply the best obtained 

parameter set for flow predictions in ungaged watershed. This study performed 

regionalization of SWAT based on only five watersheds and therefore suggests inclusion 

of more watersheds in the analysis in order to have better representation of watershed 

characteristics of a region. Additional regionalization approaches based on kriging, 

artificial neural network (ANNs), etc. may be examine in future studies in order to 

reinforce applicability of SWAT for flow predictions in ungaged watersheds.

Keynvords: mountainous regions; hydrologic modeling; SWAT; similarity indices; 

physiographic attributes; Ungaged- watershed; regionalization
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3.1 Introduction

Predicting the hydrologic response of an ungaged or poorly gaged basin is complex and is 

considered a key field of research in hydrologic sciences (Sivapalan et al., 2003). These 

predictions are even more difficult for mountainous regions like Colorado because of the 

extent of spatial and temporal variability present in the terrain. Reasonable estimates of 

hydrologic response in ungaged watersheds are vital to effective planning and 

management of water resources, especially in assisting quantifications of water storage 

and yield from such watersheds (Bledsoe et al., 2006). These estimates are usually 

obtained by transferring parameters of a hydrologic model from a gaged watershed to an 

ungaged watershed located in the same geographical region in an approach known as 

regionalization (Bloschl and Sivapalan, 1995). General approach for regionalization is 

based on a two-step procedure: First, estimation of model parameters for each gaged 

catchment in a region, followed by implementation of a regionalization technique to 

relate model parameters to watershed characteristics (Fernandez et al., 2000).

Researchers have used different methods such as bi-multivariate regression, 

clustering, kriging and neural networks for regionalization, but with limited success 

(Jarboe and Haan, 1974, Magette et al., 1976, Tall and Olds, 1987, Hughes, 1989, Gupta 

et al., 1999, Nijssen et al., 2001, Heuvelmans et al., 2006). Hydrologic response was 

observed to be non-homogenous for geographically close watersheds of Great Britain in 

the study performed by Shu and Bum (2003), which exposed the use of proximity as a 

criterion for regionalization. However, proximity is one of the commonly used methods 

for modeling ungaged watersheds around the world (Egbuniwe et al., 1976, Vandewiele 

et al., 1991, Merz and Bloschl, 2004, Oudin et al., 2008). Bum and Boorman (1992)
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suggested a “similarity index” approach with respect to watershed attributes in order to 

transfer a complete parameter set from a gaged to an ungaged watershed. This study was 

performed on a set of watersheds located in the UK. Later, Parajka et al. (2005) used this 

approach for regionalization of a semi-distributed hydrologic model in Austrian 

catchments. They employed watershed attributes such as land use, soil, mean annual 

precipitation and temperature, to reflect the similarity between watersheds. This study 

showed the importance of a similarity approach and a kriging approach for 

regionalization of a semi-distributed hydrologic model.

Fernandez et al. (2000) used a regional calibration procedure for their study in a 

region of the southeastern U.S comprising of 33 sites. It involved calibration of all the 

sites in the study area in a concurrent manner, with the dual goal of obtaining ideal 

relationship between model parameters and basin characteristics, and predicting model 

parameters in order to simulate streamflows close to observed values. The performance 

of this approach was evaluated by comparing the simulated and observed flows for three 

sites that were not used for developing regional relationships. The study showed adequate 

relationships between model parameters and catchment attributes, but the predicted 

streamflows for ungaged watersheds were not satisfactory.

Beven and Binley (1992) pointed out the limitation of distributed hydrologic models 

due to their excessive number of input parameters, and suggested uncertainty estimation 

as a possible remedy. Regionalization of parameters reduces the uncertainty associated 

with overparameterization and therefore, provides an efficient solution to this problem 

common to distributed hydrologic models (Beven, K.J., 2001, Gotzinger and Bardossy, 

2006). Engeland et al. (2001) used a Bayesian methodology for regionalizing the
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ECOMAG model for nine catchments located in the NOPEX region of Sweden. They 

computed likelihood estimates of parameters using the observed and simulated 

streamflow values and applied Baye’s theorem for obtaining probabilistic distribution of 

parameters. Two sampling methods: regular and Metropolis-Hastings were used in this 

study. This study suggested the usefulness of Bayesian method in regionalizing model 

parameters.

Regionalization of a hydrologic model in an alpine climate is considered difficult 

due to scarcity of data, as well as the spatial and temporal variability present in these 

areas. Merz and Bloschl (2004) regionalized the parameters of a hydrologic model in a 

snow-dominated Austrian region comprising of 308 gaged watersheds. The analysis 

revealed the importance of spatial proximity method for performing regionalization. 

However, the model used in this study was a lumped hydrologic model, which may not 

be suitable for Austrian catchments because of the elevation diversity present in the 

region. Later, Parajka et al. (2005) used a semi-distributed hydrologic model and 

included elevation zones in the analysis for more accurate predictions in ungaged 

catchments with diverse elevations. Different regionalization methods were analyzed in 

this study, but the method based on the use of similarity indices to compute parameter 

values for an ungaged watershed was not evaluated.

Comprehensive watershed models, such as SWAT, have been rarely used by 

researchers and scientists for performing regionalization. Heuvelmans et al. (2006) is the 

only study, to our knowledge, that performed regionalization of SWAT parameters for 25 

watersheds located in the Flemish region of Belgium. Their study showed the importance 

of land use in the regionalization of SWAT model parameters and also highlighted the
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superiority of artificial neural nets over the linear regression methods. However, 

regionalization of comprehensive hydrologic models like SWAT in snow-dominated 

mountainous regions has yet to be addressed, which is the scope of this study.

The overall goal of this study is to evaluate the performance of various 

regionalization methods for estimating SWAT parameters in major watersheds located in 

snowmelt-dominated, mountainous region of Colorado. To this end, the following 

objectives are defined: (1) evaluate the suitability of SWAT for hydrologic simulations in 

major river basins in Colorado, (2) apply range of regionalization methods for estimating 

SWAT model parameters that are important in study watersheds, and (3) evaluate the 

performance of these regionalization methods and identify the ones performing 

efficiently for snow-dominated mountainous watersheds of Colorado.

3.2 Methods and Materials

Shuffle Complex Evolution (SCE-UA) algorithm was used to investigate the adequacy of 

SWAT model for flow simulation in snow dominated and mountainous regions by 

performing single site calibration of SWAT models prepared for study watersheds. Later, 

six different approaches were evaluated for the regionalization of SWAT parameters in 

snow-dominated and mountainous watersheds of Colorado. These include an arithmetic 

mean approach, two different approaches based on similarity index (SI) related to 

watershed attributes, spatial proximity approach, a Bayesian statistical analysis and a 

multi-site calibration approach. Each of these approaches was evaluated in the following 

five major river basins of Colorado, which include: the Arkansas River at Canon City, the 

Cache la Poudre River at mouth of canyon, the Gunnison River above Blue Mesa Dam, 

the San Juan River near Archuleta, and the Yampa River near Maybell.
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Performances of single site calibration along with diverse approaches applied for 

regionalization of SWAT were evaluated on a monthly basis over a simulation period of 

20 years starting from January 1979 to December 1998. A 3-year warm up period was 

used to adjust the initial conditions for hydrologic simulations. Performances of 

regionalization methods were examined by jack-knife cross validation technique. In this 

technique a watershed is considered as ungaged and flow predictions are obtained by 

utilizing the estimated parameter values from different regionalization approaches. This 

technique was used in order to examine the decrease in SWAT model performance as it is 

applied from gaged to an ungaged watershed. Streamflow in Colorado River basins is 

considerably affected by man-made influences such as dams and reservoirs, diversion of 

water to nearby streams, evaporation and return flows etc. Therefore, naturalized flows 

that were only available on a monthly basis were used for valid comparison of observed 

and simulated streamflows.

3.2.1. Study Area

The present study encompasses five major river basins located primarily in Colorado. 

The Cache la Poudre and San Juan River basins include small areas in the neighboring 

states of Wyoming and New Mexico, respectively. Figure 3.1 shows the location of the 

watersheds. The Cache la Poudre and Arkansas River basins are located on the eastern 

side of the Continental Divide and therefore drain into the Mississippi River. The 

remaining three watersheds are on the Western side of the Continental Divide and drain 

into the Colorado River, which later flows into the Gulf of California. All the watersheds 

have a typical characteristic of high relief, with an elevation range of 1,500 meters to 

4,400 meters as shown in Figures 2.2-2.6.
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Diversity in elevation leads to significant variability in the amount and form of 

precipitation within these watersheds. Average precipitation in the Rocky Mountains at 

an elevation of 3230 meters is almost six times more than the western slope, which has an 

elevation of 1,520 meters (Hjermstad, 1970). The climate of these basins is greatly 

influenced by topography. Average annual precipitation recorded at weather stations in 

and around these watersheds varies from 268 mm/year to 1,480 mm/year, with an 

average annual temperature variation of -2.65° C to 13° C. These watersheds mainly 

receive precipitation in the form of snow, and thus, the observed streamflow in these 

watersheds displays seasonal variation dominated by spring and summer snowmelt 

(NRDC, 2008). Snow cover in these areas can start as early as mid-October and persist 

well into mid-June (NRCS, 2007). Around May, the snowpack begins releasing 

meltwater to surface and sub-surface hydrologic systems. Studies show that the runoff 

generated from snow acts much differently than runoff generated from rainfall since 

snowmelt is a slow and gradual process and therefore takes time to become a part of the 

water balance.
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Figure 3.1. Location of study watersheds and corresponding USGS streamflow gaging stations.
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Table 3.1. Land use, soil, and topographic attributes of study watersheds

Watershed

Arkansas River 
8,073 (km̂ )

Land use*' Hydrologic Elevation
--------------------------------------------Soils*_____ Range
Description________ %______ Group % (meters)

1632-4396

Forest-Evergreen 48.7 A 8.45
Range-Brush 9.16 B 40.5
Range-Grasses 37.1 C 9.15
Southwestern range land 5.05 D 42.0

Cache la Poudre 
River
2,735 (km̂ )

F orest-E vergreen 
Range-Brush 
Range-Grasses 
Water

64
18.4
15.3
2.36

A
B
C
D

0.0
11.0
41.6
47.4

1593-4131

F orest-E vergreen 44
Gunnison River F orest-Deci duous 9.52 A

B
10.i

8,943 (km̂ ) Range-Brush 25.9 c n 2183-4351
Range-Grasses 17.8
Southwestern range land 2.88 D 7.19

Forest-Evergreen 50.1 A 0.0
San Juan River F orest-Deci duous 9.76 B 20.2
8,443 (km̂ ) Range-Brush 29.6 C 36.7 1724-4279

Range-Grasses 7.58 D 43.1
Hay 2.98

Yampa River F orest-Deciduous 32.7 A 4.9
8,832 (km̂ ) F orest-E vergreen 17.8 B 69.1 1804-3763

Range-Brush 47.0 C 17.2
Range-Grasses 2.56 D 8.82

* Land use classification was obtained using National Land Cover Dataset, 2001

*^Hydrologic soil group classification was obtained from State Soil Geographic

(STATSGO) database. Group A and D refer to soil having high and very low infiltration

rate respectively, while Group B and C refer to soil with moderate and slow infiltration 

rate.

Land use in the state of Colorado is mainly comprised of evergreen and deciduous 

forests at high elevation, while lowlands are mostly covered by shrubs and grasslands. 

Soils in the area have very low to moderate infiltration rates. Details related to land use, 

soils, and other information is provided in Table 3.1.
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Lapse Rates

Watersheds in Colorado have diversity in elevation; therefore, lapse rates for temperature 

and precipitation are provided for the true representation of these influential variables 

across different elevations within the watersheds. Lapse rates were determined by 

regression analysis of the input climatic data for individual watersheds. Table 3.2 shows 

the lapse rates for each of the watersheds examined in this study. A non-linear 

relationship is observed between elevation and climatic variables (precipitation, 

temperature) for Colorado watersheds. However, in this study we assume a simple linear 

relationship and compute the lapse rates for study watersheds.

Temperature lapse rate

The temperature lapse rates were separately computed for all the watersheds using 

available data from the snowpack telemetry (SNOTEL) and the national climatic data 

center (NCDC) websites for the stations that are within and close to the area of study. A 

relationship was developed between average annual temperature and station elevation. 

For an accurate representation of temperature in a topographically diverse watershed, the 

lapse rate should be added to elevation bands (Rango and Martinec, 1979, 1994). Sub-

basin temperatures are adjusted within each elevation band by comparing mean elevation 

of elevation band with the station elevation (Z). Calculated temperature lapse rates 

were comparable to the lapse rates obtained by Fontaine et al. (2002), whose research 

was performed for the Upper Wind River basin in Wyoming. Adjusted temperature for an 

elevation band is computed as:

TEB =  T +  { Z E B - Z ) d T / d z  (3. 1)
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where T^b is the mean temperature of the elevation band, T is the temperature at the 

elevation where the station is located, and dT/ dz is the temperature lapse rate. Mean 

annual temperature values computed for meteorological stations in and around the Cache 

la Poudre River basin were plotted against station elevation to obtain the temperature 

lapse rate, as shown in Figure 3.2. Plots used for computing temperature lapse rates for 

the remaining four watersheds are shown in Appendix A1 (Figure A 1.1-Figure A 1.4)

Precipitation lapse rate

The lapse rate for precipitation was computed by plotting annual precipitation with 

weather station elevation. The study watersheds are large and have varying precipitation 

regimes because of elevation diversity. Therefore the difference between the elevation of 

the sub-basin weather station and the elevation band was used to adjust the precipitation 

for all the sub-basins. Adjusted precipitation for an elevation band is computed as:

Peb = P + (Zeb -  Z)dP/dz  (3.2)

where Peb is the precipitation for the elevation band, P is the precipitation where the 

station is located, and dP/dz  is the precipitation lapse rate used for the calculation. 

Precipitation data from meteorological stations located in and around the Cache la Poudre 

River basin were plotted against the station elevation (Figure 3.2) to obtain the 

precipitation lapse rate. Plots used for computing the precipitation lapse rates for the 

remaining four watersheds are shown in Appendix A1 (Figure AT 1-Figure A 1.4)
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Figure 3.2. Variability of mean annual temperature and precipitation in Poudre River basin with

elevation

Table 3.2. Lapse rates for the watersheds

Site name u s e s  site ID Precipitation 
lapse rate 

(mm / km)

Temperature 
lapse rate 
(° C / km)

Cache la Poudre River at mouth of canyon 6752000 634 -4.9
Arkansas River at Canon City 7096000 252 -6.8
Gunnison River below Blue Mesa Dam 9124700 700 -6.5
San Juan River near Archuleta 9355500 482 -5.3
Yampa River near Maybell 9251000 567 -4.0
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3.2.2. Hydrologic Model

The SWAT model was used to analyze hydrologic processes in study watersheds. SWAT 

was originally developed to determine the impact of land management practices on water, 

sediment, and agricultural contaminant chemical yields at a watershed scale. Since its 

development in the early 1990s, SWAT has undergone major revisions in order to 

enhance its capabilities (Arnold and Fohrer, 2005; Neitsch et al., 2005). Examples of the 

revisions include the addition of hydrologic response units, the incorporation of a CO2 

component to the crop growth model, improved snowmelt routines for better simulation 

of hydrologic processes in mountainous watersheds, and improvement in bacterial 

transport and nutrient cycling routines. SWAT is currently used worldwide for many 

hydrologic/water quality studies, including: sediment and nutrient modeling for total 

maximum daily load (TMDL) development and implementation (Borah et al., 2006; 

Benham et al., 2006; Shirmohammadi et al., 2006; Vellidis et al., 2006), selection and 

implementation of best management practices (BMPs) (Arabi et al., 2006; Gitau et al., 

2006), and evaluation of the impacts of climate change on various hydrologic processes 

(Stone et al., 2001; Rosenberg et al., 2003; Takle et al., 2005; Gosain et al., 2006; Jha et 

al., 2006). A comprehensive review of the development of the SWAT model, along with 

its use in various hydrologic applications over the past couple of decades, can be found in 

Gassman et al. (2007).

SWAT uses readily available input data and can simulate processes such as runoff, 

return flow, percolation, evapotranspiration, groundwater flow, transmission losses, 

nutrient and pesticide loads, and reservoir storage. For modeling purposes, a watershed is 

divided into sub-watersheds, which are further divided into parcels possessing unique
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land uses, soil attributes, and slope characteristics referred to as hydrologic response units 

(HRUs). Input data requirements for the SWAT model are shown in Table 3.3. Daily 

precipitation and maximum/minimum temperature values were collected for cooperative 

observer program (COOP) and SNOTEL stations located in and around the study 

watersheds.

SWAT’s hydrologic routing phase consists of main channel routing and reservoir 

routing. Main channel routing includes four components: water, sediment, nutrients, and 

organic chemicals. In this study, the soil conservation service (SCS) curve number 

procedure was used on the basis of the soil moisture condition to calculate the runoff, the 

Penman Monteith method was used to calculate the potential evapotranspiration (PET), 

and the variable storage method was used for channel routing.

Table 3.3. Data inputs for SWAT model

Title Source

National Elevation 
Dataset (NED)

State Soil 
Geographic 
(STATSGO) 
Database

U.S. Geological Survey (USGS) 
website - http://seamless.usgs.gov/

USDA/NRCS-National
Cartography&Geospatial center
website - http://datagateway.nrcs.usda.gov/

Data Type

30-m Digital 
Elevation 
Model (DEM)

Soil types
1:250,000-scale map

Weather Dataset 
(SNOTEL Stations)

Weather Dataset 
(COOP Stations)

National Land 
Cover Dataset 
(NLCD) 2001

USDA/NRCS SNOTEL data and products 
website - http://www.wcc.nrcs.usda.gov/snow/

National Climatic Data Center 
website -
http://www.ncdc.noaa.gov/oa/ncdc.html

U.S. Geological Survey (USGS) 
website - http://seamless.usgs.gov/

Daily precipitation 
and
temperature datasets

Daily precipitation 
and
temperature datasets 

30-m Land use
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SWAT accounts for sub-surface hydrology by using a kinematic storage model. The 

model uses the continuity equation based on mass for simulating sub-surface flows. It 

also accounts for lag in lateral flow in case of large sub-basins with a higher value for 

time of concentration. Groundwater processes are represented at the sub-basin level, 

while each sub-basin includes a shallow and a deep aquifer. A shallow aquifer is 

considered an unconfmed aquifer that contributes to reach within the sub-basin, while the 

contribution of a deep aquifer to streamflow is considered outside the watershed and is 

considered lost from the system (Arnold et al., 1993). Water entering the unconfined 

aquifer or shallow aquifer after passing through different layers of soil profile is 

considered recharge to the sub-surface. SWAT partitions this recharge between the 

shallow aquifer and deep aquifer depending on the aquifer percolation constant 

represented by parameter RCHRG_DP. Baseflow contribution to reach in the sub-basin 

only occurs thorough shallow aquifers; it depends on the amount of water stored in the 

shallow aquifer, as denoted by parameter GWQMN and the baseflow recession constant 

denoted by ALPHA BF. Upward movement of water from the shallow aquifer to the 

overlying unsaturated zone occurs when the overlying layer is dry. This process is 

defined as REVAP in SWAT and depends on parameters REVAPMN and GW REVAP.
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Elevation Bands

Elevation bands are generally used to handle spatial and temporal variability present in a 

watershed due to the elevation diversity (Rango and Martinec, 1979, 1994). Each sub-

basin can represent up to 10 elevation bands in order to account for orographic effects on 

both temperature and precipitation. The average elevation of each band and the 

percentage of sub-watershed area within that band are provided as model inputs on a sub-

basin basis. Elevation bands at an interval of 350m were used for this study. Precipitation 

and maximum/minimum temperatures were calculated for elevation bands as a function 

of lapse rates and the difference between the station elevation and the mean elevation of 

the band. An elevation band increment of 350m compares favorably with the increments 

that Fontaine et al. (2002) and Lemonds et al. (2007) have used for the Wind River basin 

in Wyoming and the Dillon Reservoir watershed in Colorado, respectively.

3.2.3. Model Calibration Procedure

Shuffle Complex Evolution (SCE-UA) is one of the most popular and widely used single 

objective, global optimization techniques (Duan et al., 1994; Muttil and Jayawardena, 

2008). The SCE-UA procedure starts with the sampling of a number of points selected 

randomly from a feasible parameter space. These sampled points are sorted depending 

upon the increasing criterion value and are partitioned into complexes containing fix 

number of points. Later, each complex is evolved separately by the number of evolution 

steps, and the complex shuffling is performed. Convergence is checked depending upon 

either the maximum number of trials before optimization is terminated or improvement in 

the criterion value by a certain percentage within definite shuffling loops. Finally, by 

examining complex numbers and removing complexes with lowest ranked points, global
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optimum is obtained. Details about the algorithm and methodology of the SCE-UA are 

explained by Duan.et.al (1992, 1993, and 1994).

The SCE-UA algorithm has been used for the calibration of hydrologic models such as 

SWAT. For example, Eckhardt and Arnold (2001) performed automatic calibration of 

SWAT model using SCE-UA method for a mesoscale catchment in central Germany. The 

SCE-UA method was used for calibration and validation of SWAT model for the baseline 

period and later used to analyze the impact of climate change on the hydrologic response 

of the Luohe River basin (Hao et al, 2001). Breuer et al. (2005) used the SCE-UA 

algorithm for automatic calibration of discharge and nitrate load in the Dill catchment 

located in mid-Hesse, Germany. A comprehensive list of studies that have used SWAT 

and SCE-UA algorithm for various hydrologic applications over the past couple of 

decades can be found in Gassman et al. (2007).

3.2.4. Model Performance Criteria

Performance criteria in the field of hydrology can be defined as the rules or 

characteristics or the statistical measures that evaluate the performance and behavior of a 

hydrologic model through comparison between observed and simulated variables (Krause 

et al., 2005; Moriasi et al., 2007) The performance criteria examined in this study are: 

Relative error (RE), bias in a model (BIAS), coefficient of correlation (R^), Nash- 

Sutcliffe efficiency coefficient (NS), and root mean square error (RMSE).
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Relative error (RE)

The relative error (RE) is considered as a statistical measure for goodness of fit (Du et al., 

2009). It is based on agreement between observed and simulated values and is computed

as;

RE = i Q i - Q i )

Qi
(3.3)

where Qi and Qi refer to observed and modeled discharges.

Bias (BIAS)

The bias is the difference between the observed and the predicted values. It provides an 

evaluation of the tendency of the measured values to be larger or smaller than the 

observed record (Gupta et al., 1999). Overestimation of measured values by a model 

leads to a negative bias, while underestimation of measured values by a model leads to a 

positive bias. Bias in a model can be defined as shown in Equation (3.4):

BIAS =  -  V  (D: -
n / —k

i - l
( Qi  -  QQ (3.4)

where Qj and Qj refer to observed and modeled discharge, and n denotes the number of 

time steps included in the calibration.

Coefficient o f  correlation (R )̂

The coefficient of correlation explains the correlation between the simulated and 

observed streamflows and is computed as shown in Equation (3.5). It ranges between 0-1. 

The higher value for indicates better agreement between the observed and simulated
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values. It is one of the widely used statistieal measures for model evaluation but is 

observed to be more sensitive to outliers as compared to observations near the mean 

(Legates and McCabe, 1999).

^ 2  _  ^ t = l ( Q t  QmeaTi)^ ^?=1 ( Qi Qmean)^
(n - Q̂Q

(3.5)

where Qmean r^fsr to the mean of the modeled discharge while, Sq and sq  refers to 

standard deviation of observed and simulated discharge respectively. All other variables 

in the equation are same as described for Equation (3.3) and Equation (3.4).

Nash-Sutcliffe efficiency coefficient (Ej^s)

The Nash-Sutcliffe efficiency coefficient is one of the most common statistical measures 

used in hydrologic modeling for assessing goodness of fit (Knight et al, 2006) and is 

shown in Equation (3.6).

^NS — 1 ~
Y.UiQ i-Qjy

l U i Q i - Q m e a n Y
(3.6)

where and Qi refer to observed and modeled discharge, Qmean is the mean of 

observed discharge for the time step, and n denotes the number of time steps included in 

the calibration. The value of NS ranges from -oo to 1. The higher the value of NS the 

better the model.

87



Root mean square error (RMSE)

Root mean square error (RMSE) is one of the most commonly used statistical measures 

(Singh et al., 2004; Vazquez-Amabile and Engel, 2005). It computes the error between 

the observed and simulated values as shown in Equation (3.7). Comparison of RMSE 

values between the observed and simulated streamflow values denotes a time scale 

analysis and provides a comparison with respect to both magnitude and timing of 

streamflows.

RMSE=
i = l

(3.7)

J.2.S. Single-site model calibration and testing

Model calibration can be defined as the fine tuning of model parameters within 

acceptable ranges in order to obtain the best agreement between observed and simulated 

results. Testing refers to model testing and is often considered as an evidence for the 

performance of a calibrated model. Single-site calibration and testing of the SWAT 

model was performed on the basis of monthly streamflow data by using the SCE-UA 

method with RMSE as the objective function. A 3-year warm-up period was used to 

adjust the initial conditions prior to simulations over the study period. The time period for 

the calibration was January 1979 to December 1988 while the testing or validation was 

performed for the period January 1989 to December 1998.
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3.2.6. Regionalization methods

Diverse regionalization methods were examined in this study. These regionalization 

methods estimate value of SWAT parameters that were identified as sensitive for five 

major river basins of Colorado. Regionalized parameter sets obtained from different 

methods were then examined on the SWAT model setups for study watersheds and their 

performance was evaluated. Regionalization methods used in this study are discussed 

below.

Method 1: Arithmetic mean approach

In this method each parameter for an ungaged watershed is computed as the arithmetic 

mean of calibrated values of the parameter in gaged watersheds. This method assumes 

that the watersheds located in the same geographical region will display similar 

hydrological behavior. Equation (3.8) represents a method for computing parameter 

values for an ungaged watershed using the arithmetic mean approach. It is one of the 

most common methods, and has been utilized in previous regionalization studies 

(Kokkonen et al., 2003, Parajka et al., 2005, Kim and Kaluarachchi, 2008):

^ 9

X i U = - /  XiG 
1=1

(3.8)

where, Xjy refers to the value of a parameter for an ungaged watershed, x q̂ is value of 

the same parameter in gaged watersheds, and g refers to number of gaged watersheds 

used in the analysis.
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Method 2: Similarity index (SI) approach

This method is based on computation of SI with respect to different physiographic 

attributes of the watersheds located in same geographical region, and identifying the 

extent of similarity between them. The main thought behind this method is to select a 

donor watershed that is most similar in terms of physiographic attributes to an ungaged 

watershed. First, an ungaged watershed is selected and SI (0y) between this watershed 

and other watersheds located in a study area are computed separately by using Equation

(3.9). Watershed having smallest SI (0^) with the ungaged watershed is selected as a 

donor and its complete parameter set is transferred to the ungaged watershed. Merz and 

Bloschl (2004) and Parajka et al. (2005) have used this method in their regionalization 

studies on Austrian catchments. Following watershed attributes were examined in this 

method: mean elevation of watershed, land use, soil, long term average annual 

precipitation, and long term average annual temperature. The similarity indices (SI) 

examined in this method were computed as shown in Equation (3.9).

a

0y =  -  P?)M Py (3.9)
Y = i

where 0y refers to the SI between the watersheds with respect to physiographic attributes, 

d refer to number of physiographic attributes selected for the analysis, and refer to 

the attribute value for the gaged and ungaged watersheds, respectively, and Ap^ refers to

the range of each attribute. The following combinations of ungaged and donor catchment 

were selected from this analysis: Arkansas: Cache la Poudre, Cache la Poudre: San Juan,
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Gunnison: San Juan, San Juan: Cache la Poudre and, Yampa: San Juan. Similarity indices 

between the watersheds are shown in Appendix A2 (Table A2.1).

Method 3: Weighted arithmetic mean using S I

The third method is based on computing the parameter value by using the SI obtained in 

Method 2. Parameter values are computed with respect to each watershed attribute 

separately, after which the obtained parameter set may be used for the regionalization 

study. The SI between the attributes of each of the four watersheds, considered as gaged, 

and the remaining watershed, considered as ungaged, were used to compute parameter 

values for the ungaged watershed using Equation (3.10). The obtained parameter set was 

later used for calibration and testing of the ungaged watershed.

y 5 - l  Xj I
^ j= l /0 ,

=i yd  1 1 /
^ j = l  / 0 j

) j  ^  i (3.10)

where refers to the value of a parameter for a watershed considered as ungaged, which 

is computed using the value of that same parameter in gaged watersheds denoted by Xj, 

along with their similarity index SI (0j) with ungaged watershed, g refers to number of 

gaged watersheds, i varies from 1 to p depending upon the number of parameters. The 

following watershed attributes were used for computing SI: mean elevation of watershed, 

land use, soil, long term average annual precipitation, and long term average annual 

temperature. Later, arithmetic mean (AM) and geometric mean (G) of these SI (0y) 

related to different watershed attributes were also computed using Equation (3.11) and 

Equation (3.12), respectively, and the performance was analyzed.
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AM (01,02 ... 0 j  = -  (01+02 + -  +0y)

G(0 i ,02 ...0 )̂ = W0102..... 0

(3.11)

(3.12)

Method 4: Spatial proximity

The fourth method is based on spatial proximity between the watersheds. Spatial 

proximity was measured by Euclidean distance between centroids of the watersheds. The 

gaged watershed closest to the ungaged watershed was selected as a donor, and the 

ungaged watershed was calibrated using the set of parameters from donor watershed. 

This method is considered one of the most commonly used regionalization techniques, 

and has been applied all over the world (Egbuniwe et al., 1976, Vandewiele et al., 1991, 

Vandewiele and Elias, 1995, Merz and Bloschl, 2004, Oudin et al., 2008). The following 

pairs were used as ungaged-gaged watersheds: Arkansas-Gunnison, Cache la Poudre- 

Yampa, Gunnison-Arkansas, San Juan-Gunnison, and Yampa-Poudre. Table 3.4 shows 

the Euclidean distance between the centroids of these watersheds.
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Table 3.4. Proximity Analysis.

Watershed
Distance (km)

Arkansas Cache la Poudre Gunnison San Juan Yampa
Arkansas - 244 89 197 239
Cache la Poudre 244 - 282 426 153
Gunnison 89 282 - 148 222
San Juan 197 426 148 - 365
Yampa 239 153 222 365 -

Method 5: Bayesian statistical analysis

The fifth method includes computation of likelihood estimates for the most important 

parameters, in order to understand their posterior distribution in study watersheds. 

Important parameters were obtained as a result of sensitivity analysis performed using the 

Fourier amplitude sensitivity test (FAST).

Bayes’ theorem explains the posterior distribution of the parameter vector (0) based 

on observations as shown in Equation (3.13):

f{0\Q) = k * f { e \ e ) * f { 9 )  (3.13)

where /(0 |Q ) denotes the posterior density function (pdf) of 9 with respect to the 

observed streamflow data Q, /c is a constant used for normalization, f{e\9)  refers to the 

likelihood function of model error (Q -  Q) denoted by e, Q refers to predicted value of 

streamflow, and /(0 )  denotes the prior distribution of 9.

Christensen (2004) and Stedinger et al. (2008) assumed the model error (e) to be 

normally distributed with zero mean and standard deviation of o. Therefore, the pdf for 

error e, depending upon 9, was represented by Equation (3.14).
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f(e\9) =
ypZn a

exp (Q -  Qy
2a^ (3.14)

Equation (3.13) can be modified to Equation (3.15) by substituting / (e |0 )  from Equation 

(3.14).

f i e \Q)  = k.
^f2n i

exp ( < ?  -  Q ) ‘

2a^ f i d ) (3.15)

In order to compute the posterior pdf of model parameters from Equation (3.15), one 

needs to calculate cr^, which in turn requires the maximum likelihood estimates of model 

parameters, as explained in Stedinger et al. (2008). In this study, maximum likelihood 

estimates of parameters were not available, and therefore, the parameter values obtained 

from shuffled complex evolution (SCE-UA), with root mean square error (RMSE) as the 

objective function, were used for the analysis. We used Equation (3.16), developed by 

Griensven et al. (2008), and Equation (3.17) to compute the likelihood values of input 

parameters.

2500

l9
RMSEr,

n = l
RMSEr, (3.16)

where 71 refers to number of simulations, RMSE^^ is the root mean square error for the 

simulation, and RMSÊ j^^if  ̂ is the minimum RMSE value from all simulations. 

Likelihood estimate (/) of 9 was computed by using Equation (3.17):

1(9) = e x p (-f  * t9) (3.17)
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where variable ^  refers to the sensitivity coefficients that were computed for each 

parameter, separately. These values were computed from the first order and total order 

sensitivity indices obtained from the FAST analysis performed with mean monthly 

streamflow and RMSE of monthly streamflow as the objective functions. Sensitivity 

coefficients were added in above equation in order to consider the impact of parameter 

sensitivity in the analysis. ^  was computed by selecting the highest sensitivity indice 

value from the FAST output for 30 SWAT parameters and later, dividing sensitivity 

indices of all the parameters by that value. ^  was 1 for the most important parameter

while it varied between 0 and 1 for other parameters, depending upon the value of 

sensitivity indices. Separate likelihoods were computed with respect to important

parameters by using the first order and total order . Later, cumulative likelihood 

values were computed and normalized by dividing by the sum of the likelihood values. 

Cumulative distribution functions (CDF) were developed for the sensitive parameters in 

order to understand their posterior distribution in study watersheds. Finally, parameter 

values corresponding to 50* percentile were obtained from these plots for each gaged 

watershed and the mean of these values was used for calibration of the ungaged 

watershed.

Method 6: Multi-site calibration

The sixth method was based on the multi-site calibration of all gaged watersheds with the 

goal to minimize RMSE between the observed and simulated monthly streamflows 

(Equation (3.18)). The best obtained parameter set as a result of multi-site calibration was
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used for flow predictions in ungaged watersheds. The SCE-UA, one of the most popular, 

single objective, global optimization techniques was used for the analysis.

5-1
OFi = m\n(^(RMSEj)y, j ^  i (3.18)

;=i

Performance measure

The performance of these regionalization approaches was examined using the jack-knife 

cross validation technique. This technique uses the parameter set computed from 

regionalization approaches to simulate the monthly streamflow for a watershed 

considered as ungaged. Finally, a performance measure {E) was obtained using Equation

(3.19) in order to evaluate the performance of regionalization approaches. The closer the 

E value is to one, the better it is. Equation (3.19) was used in order to account for 

structural uncertainties associated with SWAT; e.g.. Performance measures obtained 

from single site calibration of SWAT were not perfect which shows that the model has 

some limitations and does not account for all the hydrologic processes. Also, the 

performance of regionalization approaches should be evaluated when compared to 

default.

E = ^NS ^NS
PB _  p D  ^NS ^NS

(3.19)

where E^^'^n s ’ E^s refer to the regionalized, default, and best Nash Sutcliffe 

coefficients (Ef^^) obtained for each watershed. Value for E^^ varies depending upon the 

regionalization approach and the selected watershed attribute used for the analysis, while
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^Ns ^Ns constant and computed with the default and calibrated set of parameters, 

respectively and are shown in Table 3.6 & 3.7.

In addition to the previously discussed regionalization methods, results from the 

single-site calibration performed using the SCE-UA method were also examined for all 

study watersheds. Plots were constructed for the most important parameters in order to 

understand their behavior in mountainous and snow-dominated watersheds of Colorado. 

These plots show values of an input parameter corresponding to selected number of 

function evaluations of SCE-UA. Plots demonstrate the converging pattern of a parameter 

in terms of its optimal values in a watershed. These plots were also developed for the 

results from multi-site calibration analysis and are shown in Appendix A2 (Figure A2.6- 

A2.15) along with the parameter plots from the single-site calibration results. All the 

analyzes based on single-site and multi-site calibration were performed for 2500 number 

of function evaluations.

3.3 Results and discussion

Flow calibration and testing

Table 3.5 shows the best value for different performance measures obtained for each of 

the study watersheds based on the single-site flow calibration and testing or validation of 

the SWAT model. Simulated and observed monthly streamflow hydrographs compared 

better for the validation period, as shown in Figure 3.3-3.7. The probable reason for this 

outcome was the availability of more reliable precipitation and temperature records from 

the weather stations for the validation period, and lack of such climatic data record during
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the calibration period. Especially, for the SNOTEL stations which had temperature data 

points available only from late 1980’s. Total number of precipitation and temperature 

data points available during the calibration and validation period for all the study 

watersheds are shown in Appendix A2 (Table A2.2, Table A2.3). Scatter plots 

corresponding to the observed and simulated streamflows showed under-prediction of 

streamflow by SWAT for the high peaks observed during the calibration period, while 

these plots indicated over-estimation of streamflow during the validation period as shown 

in Appendix A2 (Figure A2.1-A2.5). Table 3.5 reveal the best and the default values for 

different performance measures examined in this study and shows the improvement in 

values of these measures as a result of calibration and validation of the SWAT model for 

study watersheds.
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Table 3.5. Performance measures for the study watersheds based on the single-site calibration.

Performance Measures

Watersheds
Adjusted

(RE) Default (RE)
Adjusted
(BIAS) Default (BIAS)

Adjusted
(R') Default (R̂ )

Adjusted
(E n s ) Default (Emq)

Cal* Val* Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val
Arkansas 18.2 -12 -26.3 -62.6 4.6 -2.6 -6.6 -13.5 0.79 0.88 0.18 0.24 0.58 0.74 -0.68 -2.21
Cache la Poudre 15.5 -11 -36.0 -87.3 2.2 -1.2 -5.0 -9.4 0.93 0.93 0.35 0.36 0.83 0.82 -0.19 -1.22
Gunnison 14.2 -17 -113 -202 6.6 -6.8 -52.5 -82.1 0.82 0.92 0.14 0.36 0.65 0.83 -2.71 -6.05
San Juan 35.9 -13 -24.7 -113 18.3 -5.2 -12.6 -44.3 0.80 0.91 0.20 0.59 0.52 0.75 -0.45 -1.19
Yampa 26.0 -17 -7.40 -77.7 14.6 -8.43 -4.1 -37.9 0.88 0.96 0.33 0.54 0.70 0.87 -0.06 -0.55

*Calibration and validation was performed for the period 1979-1988 & 1989-1998 respectively for all the watersheds.
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Figure 3.3. Measured and simulated total monthly streamflow for calibration and validation period 

from the single-site calibration of SWAT model for Arkansas River basin.
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Figure 3.4. Measured and simulated total monthly streamflow for calibration and validation period 

from the single-site calibration of SWAT model for Cache la Poudre River basin
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Figure 3.5. Measured and simulated total monthly streamflow for calibration and validation 

period from the single-site calibration of SWAT model for Gunnison River basin.
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Figure 3.6. Measured and simulated total monthly streamflow for calibration and validation 

period from the single site calibration of SWAT model for San Juan River basin.
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period from the single-site calibration of SWAT model for Yampa River basin.
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Performance o f regionalization methods

The performance of regionalization methods is presented in terms of E value computed 

from Equation (3.18). For a favorable performance of regionalization method the E value 

should be close to 1. Tables 3.6 and 3.7 show the results of these regionalization methods 

for calibration and validation period respectively. A graphical representation of the 

performance of different regionalization methods for the study watersheds is shown in 

Figure 3.10. Methods based on the weighted arithmetic mean, and the multi-site 

calibration of gaged watersheds performed relatively well as compare to other methods 

for most of the watersheds. Major findings with respect to performance of different 

regionalization methods are discussed below.

Method 1: Arithmetic mean approach

The first method, based on the arithmetic mean of calibrated parameters, was observed to 

perform well when compared to other methods as shown in Figure 3.10. However, the 

performance of this approach varied depending upon the extent of similarity between the 

watersheds selected for the analysis. For example, there may be variation amongst the 

watersheds with respect to snow cover and snowmelt pattern. Hence, the SWAT 

parameters associated to snow related processes will exhibit different values in such 

watersheds. Therefore, the arithmetic mean approach may not be the best method for 

predicting parameter values of an ungaged watershed in such cases. This approach should 

only be used when watersheds located in a region have great extent of similarity between 

them.
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Method 2: Similarity indices approach

The second approach, based on calibration of an ungaged watershed by using the 

parameter set from a gaged watershed, gave competent results. This shows that the direct 

transfer of parameters from a gaged to an ungaged watershed having smallest similarity 

indices can be used for regionalization of a comprehensive hydrologic model like SWAT 

in mountainous watersheds. The performance of this method is consistent with the 

findings of Kokkonen et al. (2003), and Parajka et al. (2005) who performed their study 

on the catchments of North Carolina and Austria, respectively.

Method 3: Weighted arithmetic mean using S I

The third method, based on computation of parameter values using a weighted approach, 

was observed to perform better for the majority of the watersheds as compared to most of 

the other methods used in this study. However, the best results from the third method did 

not correspond to a particular watershed attribute, which shows the intricacy involved in 

performing regionalization with respect to a particular watershed attribute. Computation 

of parameter values of an ungaged watershed by this method depends upon the extent of 

similarity between the gaged-ungaged watersheds in terms of physiographic attributes. 

Therefore, this method provides a more realistic approach for regionalization of a 

distributed hydrologic model.

Method 4: Spatial proximity

The fourth method, based on spatial proximity, was observed with an average 

performance. This method assumes that the watersheds in a similar geographical region 

have identical response of hydrological behavior. However, this is not the case in the real 

world as shown by Shu and Bum (2003) in their study in Great Britain. Contradictory to
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this finding, Merz and Bloschl suggested the importance of this method for 

regionalization of a watershed model with their study on Austrian watersheds. Therefore, 

whether the method should be used for regionalization or not depends on geographical 

location and requires a careful analysis of watersheds characteristics located in proximity. 

The method was observed to be performing fairly well for Arkansas, Cache la Poudre and 

Gunnison River basins, while the performance was rather poor for San Juan and Yampa 

river basins. Therefore, predicting the applicability of this approach as a regionalization 

method is ambiguous and varies from region to region, as well as from watershed to 

watershed.

Method 5: Bayesian statistical analysis

Performance of The Bayesian statistical analysis as a regionalization method was 

observed to be poor for most of the watersheds. However, this method highlights the 

importance of Bayesian analysis as a way to determine the posterior distribution of 

important parameters by using their likelihood estimates. Greater variation in CDF’s was 

observed for the parameters identified as sensitive from FAST analysis. This is due to the 

fact that the parameters with higher sensitivity indices tend to have f  close to one and 

therefore more variation is observed in their likelihood estimates as compare to 

parameters with ^  close to zero. Figure 3.8-3.9 shows the results of this analysis for the 

parameters related to hydraulic conductivity of soil SOL K and baseflow ALPHA_BF 

respectively. Plots for the CDF’s of other parameters are shown in Appendix A2 (Figure 

A2.16-A2.18). This method requires further research and analysis in order to enhance its 

applicability as a regionalization method.
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first order indices for MSF and corresponding RMSE
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Figure 3.9. CDF’s of the most important parameters ALPHA BF and SOL K using the FAST 

total order indices for MSF and corresponding RMSE

Method 6: Multi-site calibration

The sixth method was observed to perform efficiently for most of the watersheds, which 

supports the use of this method for regionalization of comprehensive hydrologic models 

such as SWAT. The method was observed to be computationally intensive since it 

requires multi-site calibration of several gaged watersheds located in a region. However, 

with advancements in computational techniques and availability of high performance 

processors, this method can be extremely efficient in regionalization studies of distributed
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watershed models. A great extent of similarity was observed between the parameter plots 

from the results based on multi-site and single-site calibration for the majority of 

important parameters (Figure A2.6-A2.15). This supports the employment of multi-site 

calibration approach as a regionalization method for distributed hydrologic models like 

SWAT.

After analyzing the plots prepared for the important parameters by using the single-

site calibration results as shown in Appendix A2 (Figure A2.6-A2.15); it was observed 

that the parameter values were converging to a similar range for most of the watersheds 

examined in this study. The observed similarity between these converging patterns will 

help in reducing the range (lower-upper bound) of SWAT input parameters in snow- 

dominated region of Colorado. This in turn will assist in improving the efficiency of 

various hydrologic modeling tools like automatic calibration, sensitivity analysis, 

uncertainty analysis etc. For example: the actual range of the SWAT input parameter 

related to melt factor ‘SMFMN’ is between 0-10, however after analyzing Figure A2.10 

(Appendix A2) one can easily change this range to 0-3 for the study area. However, this 

is not true for all the parameters and therefore, a proper analysis should be done before 

modifying the parameter range.
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Table 3.6. Results from different regionalization methods used for the analysis during the calibration period.

METHODS Watersheds
Arkansas Cache la Poudre Gunnison San Juan Yampa

Method I (Arithmetic mean) 0.71 0.62 0.82 0.69 0.77
Method II (Similarity indices) 0.84 0.67 0.55 0.67 0.56

Mean Elevation 0.83 0.37 0.86 0.90 0.79
Land use 0.79 0.64 0.74 0.89 0.80

Method III Soils 0.64 0.42 0.80 0.85 0.74
(Weighted arithmetic mean approach) Precipitation 0.75 0.62 0.65 0.96 0.87

Temperature 0.60 0.73 0.88 0.84 0.74
AM of SI 0.72 0.56 0.80 0.88 0.78
GM of SI 0.72 0.54 0.78 0.89 0.78

Method rV (Proximity) 0.74 0.74 0.60 0.60 0.50
Method V (Bayesian statistical analysis) MSP 0.37 0.42 0.84 0.55 0.40

RMSE 0.40 0.45 0.86 0.55 0.37
Method VI ( Multi-site calibration) 0.79 0.94 0.79 0.22 0.66

Numbers in the table correspond to E value, closer the E value to one better is the performance of regionalization method.
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Table 3.7. Results from different regionalization methods used for the analysis during the testing or validation Period.

METHODS Watersheds
Arkansas Cache la Poudre Gunnison San Juan Yampa

Method I (Arithmetic mean) 0.76 0.49 0.90 0.94 0.60
Method II (Similarity indices) 0.93 0.36 0.76 0.85 0.90

Mean Elevation 0.83 0.20 0.93 0.88 0.73
Land use 0.83 0.35 0.89 0.98 0.71

Method III Soils 0.75 0.24 0.90 0.97 0.74
(Weighted arithmetic mean approach) Precipitation 0.79 0.33 0.83 0.94 0.71

Temperature 0.73 0.35 0.94 0.95 0.71
AM of SI 0.79 0.30 0.91 0.95 0.71
GM of SI 0.79 0.27 0.90 0.94 0.71

Method rV (Proximity) 0.82 0.62 0.72 0.78 0.78
Method V (Bayesian statistical analysis) MSF 0.58 0.33 0.92 0.85 0.33

RMSE 0.58 0.34 0.92 0.84 0.31
Method VI ( Multi-site calibration) 0.92 0.88 0.88 0.74 0.80

Numbers in the table correspond to E value, closer the E value to one better is the performance of regionalization method. 
Highlighted value corresponds to the best result obtained for each of the study watersheds during the validation period.

112



Calibration Validation

0 .9

0 .8

0 .7

0 .6

0.6

0 .4

0 .3

0 .2

0 .1

0  -  
1

0 .9  

0 .8  

0 .7  

0.6 

0 .5  

0 .4  

0 .3  

0 .2  

0 .1  

O -
^  1— 0.9 
§ 0 . 8

^  0.6 
0 .5  

c  0.4^
I  0 .3  o 0.2 ■£ 0.1 0

Gunnison River Basin
>*X
' —  /■'

San Juan Ftiver '

Yampa River Basin

■§ J5 o

9)(A
•oc

O
CO

o
£
<o

Q.
Eo

i n

o
s

CO
*5
s

I’S
CO
s
U)to

<n
E
£ E CO

E <
CO*

o
CO £ E

E O
S

.f
0>
S

E E
J Z 1 liS

S

9o
E

Figure 3.10. Graphical representation of the performance of different regionalization methods for

the calibration and the validation period.
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3.4 Conclusions

Different regionalization methods, as analyzed in this work, clearly show the importance 

between physiographic attributes and model parameters of watersheds located in similar 

geographical regions. Comparison between the results from different regionalization 

approaches indicate the importance of the methods based on the use of SI related to 

watershed attributes for performing the analysis in mountainous watersheds. The 

performance of these methods depends upon the number of physiographic attributes 

included in the analysis. Therefore, the maximum number of attributes representing 

different watershed characteristics should be examined for better comparison between 

watersheds. Performance of regionalization methods, as evaluated in this study, will 

certainly assist watershed modelers and SWAT users in efficient hydrologic modeling of 

ungaged watersheds located in snow-dominated mountainous regions.

This study also introduces a new approach for regionalization of distributed 

hydrologic models like SWAT. The approach, termed multi-site calibration, calibrates the 

hydrologic model at gaged sites in a concurrent manner and minimizes the RMSE 

between the observed and simulated flows. The best obtained parameter set from the 

previous step is then used for the flow calibration in an ungauged watershed. This 

approach proved to be an efficient method that can be used for regionalization of 

distributed hydrologic models.

Further research for regionalization of a distributed hydrologic model in 

mountainous watersheds can be performed by using additional watersheds located in 

Colorado; which would provide a better feel of watershed characteristics in the region. 

Additional physiographic attributes such as FARE index, topographic index, snow
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similarity measure and areal proportion of porous aquifers could possibly used for 

computing SI in the future. Finally, additional methods such as kriging and artificial 

neural network (ANNs), should be researched for applicability to regionalization of 

SWAT in Colorado watersheds.
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Ch a p t e r  4: C o n c l u s i o n s

In this study, hydrologic modeling of five major river basins in Colorado, including 

Arkansas River at Canon City, Cache la Poudre River at Mouth of Canyon, Gunnison 

River above Blue Mesa Dam, San Juan River near Archuleta and, Yampa River near 

Maybell, was performed using the Soil and Water Assessment Tool (SWAT). The main 

goals that led to this study were to: (1) identify the critical hydrological processes that 

govern the magnitude and timing of streamflow generation in mountainous and snow- 

dominated watersheds of Colorado, (2) recognize the similarities between the watersheds 

with respect to dominant hydrological processes identified as a result of sensitivity 

analysis performed using Fourier Amplitude Sensitivity Test (FAST), and (3) analyze 

different regionalization methods based on diverse criteria and identify the methods 

performing efficiently in major river basins of Colorado.

Performance measures obtained from the calibration and testing of the SWAT 

models for the period 1979-1998, indicates applicability of SWAT in non-agricultural 

and snow-dominated mountainous watersheds. The capability of SWAT in handling 

complex hydrologic processes like snow cover, snowmelt, and sub-surface hydrologic 

processes was realized. The SWAT model was observed to be competent in incorporating 

lapse rates and elevation bands in order to account for the spatial and temporal variability 

attributable to orographic effects in mountainous watersheds. Efficient performance of
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SWAT in major river basins of Colorado suggest the importance of hydrologic models 

that can incorporate snow processes with simulation of various components of the water 

balance.

The significance of variance based global sensitivity analysis methods that can 

incorporate multiple objective functions during analysis was realized. Sensitivity analysis 

performed with mean monthly streamflow as the objective function suggested the 

influence of sub-surface hydrologic processes on streamflow volume in Colorado 

watersheds. In addition, the impact of interactions between the snow related and sub-

surface hydrologic processes on the timing and flow pattern in monthly flow hydrographs 

of Colorado watersheds was realized from the sensitivity analysis based on RMSE of 

monthly streamflow. This Study suggests the inclusion of SWAT input parameters 

related to these hydrologic processes while performing hydrologic modeling in 

mountainous regions. Moreover, a higher extent of similarity between the sensitivity 

analysis results for the study watersheds suggests a common set of SWAT parameters 

that is capable of achieving an appropriate fit for the SWAT model representing 

mountainous watersheds in Colorado.

Predictions in an ungaged watershed are one of the biggest concerns in the field of 

hydrologic sciences and engineering. Identifying the extent of resemblance between the 

watersheds in terms of SI related to various watershed attributes was observed to be 

significantly important for the regionalization of SWAT for mountainous watersheds. 

The method based on use of these SI to compute parameter values and the multi-site 

calibration approach were observed to be the most efficient methods for performing 

regionalization of SWAT in snow-dominated and mountainous regions.

122



Although researchers and scientists around the globe have addressed the problems 

related to ungaged basins and have provided necessary recommendations, there is still a 

need of extensive research in order to achieve considerable progress in this key research 

area of hydrologic sciences. This research introduces some new regionalization methods 

along with addressing the ones previously used in ungaged basins. The analysis provides 

a broader picture of complexity present in mountainous watersheds and suggests some 

regionalization techniques that may be suitable for predictions in ungaged mountainous 

basins. This study shows only a preliminary analysis of these regionalization methods 

with respect to five major river basins of Colorado, and thus, calls for further detailed 

analysis in order to reinforce their applicability in mountainous regions.
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Ap p e n d i x  A1

Table A l.l Precipitation lapse rates for the study watersheds during different analysis periods.

Site name u s e s  site ID Precipitation lapse rate (mm/km)
1979-1983 1984-1988 1989-1993 1994-1998

Cache la Poudre River at mouth of canyon 
Arkansas River at Canon City 
Gunnison River below Blue Mesa Dam 
San Juan River near Archuleta 
Yampa River near Maybell

6752000 760 654 633 639
7096000 298 233 238 234
9124700 665 757 698 737
9355500 500 392 433 484
9251000 Limited Data 515 553 670
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Figure A 1.1. Variability of mean annual temperature and precipitation in Arkansas River basin

with elevation
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Figure A 1.2. Variability of mean annual temperature and precipitation in Gunnison River basin

with elevation
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Figure A1.3. Variability of mean annual temperature and precipitation in San Juan River basin

with elevation.
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Figure A 1.3. Variability of mean annual temperature and precipitation in Yampa River basin with

elevation.
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analysis period.
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Figure A 1.6. Variability of mean precipitation in Cache la Poudre River basin with elevation for

different analysis period.
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Analysis Period 11979-19831 Analysis Period (1984-1988)

Figure A 1.7. Variability of mean precipitation in Gunnison River basin with elevation for different

analysis period.
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analysis period.

131



A p p e n d ix  A2
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Table A2.1 Similarity indices between the watersheds with respect to different physiographic attributes.

Ungaged
Watershed

Gaged
Watershed Mean Elevation Land use Soil Precipitation Temperature Arithmetic

Mean
Geometric
Mean

Arkansas Cache la Poudre 0.103 0.128 0.224 ■^0.15^^ 0.117 0.145 0.139
Gunnison 0 060 0.107 0.279 0.276 0.137 0.172 0.147
San Juan 0.134 0.141 ' 0.163. 0.264 0.064; 0.153 0.139 ,
Yampa 0.178 0.271 0.233 0.263 0.101 0.209 0.197

Cache la Poudre Arkansas 0.103 0.122 0.224 0.152 0.117 0.144 0.138
Gunnison 0.166 1. 0.080: 0.234 0.140 0.049 0.134 0.116
San Juan 0 030 0.087 0.061' 0.141 0.172 0.098 0.082
Yampa 0.080 0.225 0.403 0.160 0.027 0.179 0.126

Gunnison Arkansas 0.061 0.105 0.279 0.276 0.137 0.171 0.146
Cache la Poudre 0.166 0.084 0.234 0.049 0.134 0.117
San Juan 0.204 r 0.046 0.205 .....- '. . .io jS 0.169 0.128 0.087 1
Yampa 0.259 0.177 0.237 0.046 0.068 0.157 0.128

San Juan Arkansas 0.134 0.128 0.163 0.264 Ui 0.064 0.151 0.136
Cache la Poudre !>: . 0.030 1 0.091 0.061 0.141 0.172 0.099 0.0831
Gumiison 0.204 L 0.046 i 0.205 ..msi 0.169 0.128 0.087
Yampa 0.048 0.161 0.342 0.032 0.178 0.152 0.109

Yampa Arkansas 0.178 0.340 0.126 0.263 0.101 0.202 0.183
Cache la Poudre 0.072 0.301 0.279 0.160 0 027 0.168 0.121
Gunnison 0.238 0.214 0.232 0.046 0.068 0.160 0.130
San Juan 0.048 0.194 0.232 0.032 0.178 • 0.137 0.104

Highlighted value represents smallest similarity index between the ungaged and gaged watersheds with respect to different 
physiographic attributes
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Table A2.2 Precipitation and temperature data points available during the calibration and 

validation period for study watersheds from COOP climatic stations.

Watershed
Total number of data points

Precipitation Temperature
Calibration Validation Calibration Validation

Arkansas 10551 10327 4573 7165
Cache la Poudre 6775 4109 6631 4002
Gunnison 3101 3154 3160 3278
San Juan 18100 14767 17991 14818
Yampa 12557 13596 12716 13761

Table A2.3 Precipitation and temperature data points available dur

validation period for study watersheds from SNOTEL climatic stati

Total number of data points
Watershed Precipitation Temperature

Calibration Validation Calibration Validation
Arkansas 9627 10926 5155 10375
Cache la Poudre 7240 7284 92 7000
Gunnison 15405 18210 5767 17725
San Juan 9107 18210 3877 17834
Yampa 8408 18210 4192 17907
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Figure A2.1. Scatter plot between the observed and simulated flows during the calibration and

validation period for Arkansas River basin

Figure A2.2. Scatter plot between the observed and simulated flows during the calibration and 

validation period for Cache la Poudre River basin
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Figure A2.3. Scatter plot between the observed and simulated flows during the calibration and 

validation period for Gunnison River basin

Figure A2.4. Scatter plot between the observed and simulated flows during the calibration and

validation period for San Juan River basin
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Figure A2.14. Convergence of parameter value for SOLAWC from single-site and multi-site calibration of SWAT model for the study

watersheds.
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Figure A2.17. CDF’s of parameters SMFMN, SMFMX, and SMTMP using the FAST total 

order indices for mean monthly str^^flow and Corresponding RMSE
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