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ABSTRACT 

MODELING BIOENERGY AGROECOSYSTEMS FOR CLIMATE CHANGE MITIGATION 
 

AND VULNERABILITY ASSESSMENT 
 
 
 

Agriculture is a major driver of anthropogenic climate change while also directly bearing its 

impacts.  In addition to emissions related to farm operations and inputs, substantial greenhouse 

gases are released from cropland soils.  These include carbon dioxide (CO2) fluxes due to long-

term changes in soil organic carbon pools, and nitrous oxide (N2O) produced by soil microbes 

primarily from excess nitrogen (N) fertilizer not assimilated by crops. 

Agricultural bioenergy systems are expected to produce liquid fuels with lower life-cycle 

emissions than gasoline.  Current US policy specifies several emissions reduction tiers for 

biomass-derived liquid fuels, ranging from 20% lower than gasoline for corn grain ethanol to 

60% lower for ethanol made from perennial grasses or agricultural residues.  While these tiers 

are based on detailed life-cycle assessments of “average” production conditions, they fail to 

convey the potentially large variability in emissions arising from farm management and 

biophysical factors.   

The first half of this dissertation uses a survey of management practices from suppliers of corn 

grain to a biorefinery in the US Midwest to explore the magnitude and sources of this variability.  

The first phase of that study finds that feedstock from most of the farms would achieve the 

statutory threshold of 20%, but that best-performing farms may be producing grain that would 
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lead to fuel with 50% lower life-cycle emissions than gasoline.  Key management practices 

identified are tillage intensity, efficient N fertilizer use and application of livestock manure.   

Crop residues, such as corn stover, can also be converted to ethanol.  The second part of this 

study explore the sustainability of corn stover collection for ethanol production by a hypothetical 

dual-feedstock biorefinery.  Stover collection presents a tradeoff: when used to produce ethanol, 

it displaces emissions from gasoline, but at the cost of less soil organic carbon (SOC) 

accumulation.  Still, soils on these farms could sustain relatively high stover collection rates 

without net SOC losses or erosion, especially in the context of manure application and reduced 

tillage intensity. 

Climate change entails two major phenomena – increasing atmospheric [CO2] and increasing 

extreme high temperatures – likely to have opposing impacts on agricultural productivity, and 

these impacts will tend to increase over the course of the 21st Century.  Chapter 4 of this work 

reviews the current understanding of crop responses to elevated atmospheric [CO2] and extreme 

heat as determined from agronomic studies and analyses of historical climate-yield data.  It 

summarizes consensus findings and presents emerging topics in need of further research, and 

compares the state of knowledge with the simulation approaches employed by several major crop 

models. 

The increasing atmospheric [CO2] that largely drives climate change supports increased rates of 

photosynthesis in C3 plants and improved water use efficiency in all plant types.  The magnitude 

of this fertilization effect is uncertain, however, and recent free atmospheric CO2 enrichment 

(FACE) experiments appear to show reduced gains relative to earlier enclosure experiments.  
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Chapter 5 tests the hypothesis that the algorithm designed to simulate the CO2 effect in the 

DayCent ecosystem model overestimates crop responses to elevated [CO2] as observed under 

FACE conditions. 
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CHAPTER 1. OVERVIEW 

Agriculture and Climate Change 

Earth’s climate is changing 

Anthropogenic climate change is underway.  Global mean air temperature has risen roughly 

0.85°C since the late 19th Century, with varying regional trends in extreme events such as heat 

waves and droughts (Hartmann et al., 2013).  Projections for the next several decades include a 

mean temperature between 1 and 1.5°C warmer than the late 19th Century average (Kirtman et 

al., 2013).  When extended to the end of the 21st Century, mean warming estimates range from 

1.6 to 4.3°C for the lowest- and highest-emission Representative Concentration Pathways 

(RCPs), respectively (Collins et al., 2013). 

These changes are driven by increases in solar forcing primarily mediated by increasing 

atmospheric concentrations of greenhouse gases (GHGs).  Carbon dioxide (CO2) is the most 

important of these, accounting for roughly 58% of anthropogenic radiative forcing (Collins et al., 

2013). 

Agriculture is a significant contributor 

Agricultural activities account for 10-12% of CO2-equivalent anthropogenic GHG emissions, 

with agricultural soil management amounting to almost half of that total (Smith et al., 2014).  

Notably, that figure assumes that agricultural soil carbon (C) stocks are net neutral in aggregate, 

while in reality newly-cultivated soils are major emitters of decomposed C as CO2, and C can be 

sequestered in depleted soils through improvements in productivity and management.  The other 

major GHGs emitted from agricultural activities are nitrous oxide (N2O) and methane (CH4), 
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with both gases emitted from manure handling and use and N2O is also emitted in large 

quantities from the use of synthetic nitrogen (N) fertilizer and N-fixing crops. 

Agriculture is directly dependent on climate 

While agriculture contributes to climate change, it is also directly vulnerable to climate change 

impacts.  Studies of yield and weather records indicate that historical climate change has already 

negatively affected yields of maize and wheat, with less impact on rice and soybean (Porter et 

al., 2014).  Projected future impacts vary widely based on region, crop, climate scenario and 

study methodology, but estimates become overwhelmingly negative by the closing decades of 

the 21st Century (Porter et al., 2014). 

Agricultural bioenergy magnifies these linkages 

Crop-based bioenergy systems are promoted as a means to mitigate climate change, premised on 

the production of liquid fuels with lower life-cycle emissions than energy-equivalent fossil fuels.  

As a set of agricultural systems explicitly oriented toward climate mitigation, bioenergy cropping 

rightly bears particular scrutiny in its GHG impacts.  The most prevalent US bioenergy pathway, 

corn grain ethanol, draws still greater attention due to its relatively modest mitigation benefits 

and direct competition with food and feed markets.  It is conceivable, and even plausible, that 

ethanol made from poorly-managed corn could represent an increase in emissions relative to 

gasoline while marginally increasing food prices: a lose-lose outcome.  By contrast, ethanol 

derived from corn stover may achieve large mitigation benefits with negligible impacts on food 

and feed markets.  In the context of bioenergy, anything that affects feedstock productivity – 

including management choices and climate change – affects overall mitigation benefits, which 

feed back on the climate system.  Figure 1.1 depicts some of the key causal pathways by which 
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bioenergy influences climate change, and climate change influences the productivity of 

bioenergy systems.  

 
Figure 1.1. Major linkages between bioenergy systems and climate change.  Processes on the left 
either mitigate (green box) or exacerbate (red box) climate change.  Processes on the right either 
improve (green box) or impair (red box) the yields and functioning of bioenergy agroecosystems. 

This dissertation examines the complex causal relationships between climate change and 

bioenergy cropping systems.  The first half (Chapters 2 and 3) explores the magnitude and 

variability of feedstock life-cycle emissions as they relate to differences in farm management 

practices.  The goal of these chapters is to understand how bioenergy production systems can be 

managed to maximize climate mitigation and minimize aggravating processes as depicted on the 

left side of Figure 1.1.  The second half (Chapters 4 and 5) examines our understanding of major 

crop responses to historically-unprecedented levels of atmospheric CO2 and increasing mean and 

extreme temperatures (right side of Figure 1.1).  These chapters highlight areas of consensus and 
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identify areas of controversy that merit further study, as a clear understanding of these 

phenomena is fundamental to forecasting agricultural production, whether for food or bioenergy. 

Chapter Synopses 

Chapter 2 estimates bioenergy emissions variability based on a survey of farm management 

practices 

Federal policy mandates increasing use of several distinct classes of biomass-derived liquid fuels 

(described in Table 1.1).  Corn grain ethanol is likely to remain the largest contributor to this 

mandate, despite its status as the lowest-grade Renewable Fuel, with nominal GHG emissions 

reductions of 20% relative to gasoline (Schnepf & Yacobucci, 2011).  Studies of corn grain 

ethanol emissions have found significant variability related to farm management (Adler et al., 

2004; Wang et al., 2012), indirect effects on land-use (Searchinger et al., 2008; Fargione et al., 

2010), and advances in conversion technologies and coproduct utilization (Liska et al., 2009).  

Chapter 2 advances understanding of this variability by estimating emissions budgets using 

actual farm management data from 35 feedstock producers in the US Midwest.  Management 

practices on this relatively homogeneous group of farms result in a large range of emissions, with 

best practices achieving reductions nominally equivalent to those from Advanced Biofuels or 

even (for one farm) Cellulosic Biofuels. 
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Table 1.1. Biofuel categories established by the Renewable Fuel Standard 2, their associated 
emissions reductions relative to gasoline and major qualifying pathways.  Note that the 
categories qualify in a nested manner, so that (for example) any Advanced Biofuel may 
alternatively qualify as a Renewable Fuel for the purposes of fulfilling volume mandates. 

Biofuel Category Assumed Emissions Reduction Qualifying pathway(s) 
Renewable Fuel 20% Corn grain ethanol 
Advanced Biofuel 50% Sugarcane ethanol 
Biomass-based Diesel 50% Soybean diesel 

Algae-derived diesel 
Diesel from waste oils 

Cellulosic Biofuel 60% Perennial-grass derived 
ethanol 
Residue- or waste-derived 
ethanol 

 
Chapter 3 explores tradeoffs between management, emissions and production costs 

As next-generation cellulosic biorefineries come into operation, crop residues such as corn stover 

comprise a large, readily-available feedstock.  Such “agricultural wastes” can be critical for 

controlling erosion and supporting soil fertility and C stocks, however (Sheehan et al., 2003; 

Graham et al., 2007; Turhollow et al., 2014).  These sustainability constraints may be partially 

alleviated through compensatory management practices such as reduced tillage intensity, cover 

crops and organic matter amendments (Wilhelm et al., 2004; Thelen et al., 2010).  Farm profits 

from stover harvest will also be a key factor in dictating the viability of these systems, with unit 

costs likely to fall with increasing collection rates (Graham et al., 2007).  Chapter 3 returns to the 

farms studied in Chapter 2, but replaces the present corn grain ethanol system with a hypothetical 

dual-feedstock (i.e., grain and stover) system and models a wide range of farm management 

scenarios to explore these emissions and profitability tradeoffs.  Scenario emissions range from 

10-100% of those from energy-equivalent gasoline, with reduced tillage intensity and moderate 

manure inputs supporting soil C stocks at high levels of residue removal.  Stover removal 
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marginally increases farmer profits per unit area under current market conditions, but provides a 

considerable premium under C pricing scenarios. 

Chapter 4 distills current understanding of crop responses to warming and [CO2] 

Climate change impacts on agriculture stem from two robustly-supported phenomena: CO2 

fertilization and increasing high temperature exposures.  While experimental studies of each of 

these factors have been conducted for decades, the increasing focus on understanding ecosystem-

scale effects has prompted a paradigm shift to sophisticated open-air designs (Hendrey et al., 

1993; Nijs & Kockelbergh, 1996; Kimball, 2005).  No experiment can integrate the full range of 

exposures to extreme heat that will occur at very large spatial and temporal scales, however, and 

so statistical analyses of historical yield and weather data provide a vital independent source of 

corroboration.   

Chapter 4 reviews the state of knowledge of crop responses to elevated atmospheric [CO2] 

(eCO2) and elevated temperatures and compares findings from experiments with related response 

signals identified using historical records.  Experiments clearly align with theoretical predictions 

of increased photosynthesis and yield for C3 crops (e.g., wheat, soybean, rice), and reduced 

stomatal conductance for both C3 and C4 crops (e.g., corn, sorghum; reviewed by Kimball, 

2016).  Several important interactions have been highlighted by recent work, however.  A 

growing body of work suggests that eCO2 reduces the ability of C3 crops to assimilate soil nitrate 

(Bloom et al., 2010), for instance, while a series of recent free-atmospheric CO2 enrichment 

(FACE) experiments with wheat under water-limitation have found yield enhancements as high 

as 70% under eCO2 Fitzgerald et al. (2016), greatly exceeding any previous agricultural FACE 

results. 
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Agronomic field studies have established that heat stress impacts on major crops are greatest 

during the late-season reproductive phases of flowering and grain-filling (Rezaei et al., 2014), 

and statistical studies of historical yields are beginning to detect this signal (Butler & Huybers, 

2015).  The confounding role of water limitation is another developing topic in studies of heat 

stress, and new empirical analyses are going beyond coarse temperature and precipitation data to 

include mechanistic variables such as vapor pressure deficit and soil water content (Roberts et 

al., 2012; Anderson et al., 2015). 

The interactions between eCO2, extreme heat and other factors are just beginning to be 

elucidated at the field scale.  Recent FACE studies of soybean using rain exclusion treatments 

found that the yield increase under eCO2 could be attenuated or nearly abolished through 

interactions between eCO2, leaf area development, canopy temperature, stress timing, and even 

altered leaf responses to stress signaling (Gray et al., 2016).  Complex interactions like these 

must be synthesized and rapidly incorporated into the dynamic crop models that form the basis 

of comprehensive climate change assessments, many of which were created for narrow, 

specialized applications and are updated only sporadically (Rötter et al., 2011). 

Chapter 5 tests a crop model’s ability to simulate crop responses to eCO2 

Increasing atmospheric [CO2] directly accelerates photosynthesis in C3 crops, and indirectly 

promotes yields by reducing stomatal conductance and associated water losses in C3 and C4 

crops (Leakey et al., 2009).  Several decades of experiments have exposed crops to eCO2 in 

greenhouses and other enclosures and observed yield increases on the order of 33% (Kimball, 

1983; Cure & Acock, 1986).  FACE systems were developed in the early 1990s to better 

replicate open-field growing conditions (Hendrey et al., 1993).  Some authors contend that 
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FACE results indicate lower crop yield responses than enclosure studies (Long et al., 2006; 

Ainsworth et al., 2008a), while others maintain no significant difference (Tubiello et al., 2007) 

or attribute differences to various methodological factors (Ziska & Bunce, 2007; Bunce, 2012).  

The crop CO2 response processes in many crop models were developed using results from 

enclosure experiments (Tubiello et al., 2007).   

Chapter 5 tests the ability of one such model, DayCent, to reproduce crop responses to CO2 

enrichment from several FACE experiments.  DayCent performed well at simulating yield and 

transpiration responses in C4 crops, but significantly overestimated yield responses in C3 crops.  

After adjustment of parameter values, DayCent was able to reproduce crop-specific FACE 

results, as well as some broader trends of CO2-by-stress interactions.  



9 
 

CHAPTER 2. MODELING REAL-WORLD VARIABILITY OF ON-FARM GREENHOUSE 

GAS EMISSIONS FOR BIOENERGY FEEDSTOCK PRODUCTION 

Introduction 

Policy background 

The US Renewable Fuel Standard 2 (RFS2) provides specific life-cycle greenhouse-gas (GHG) 

emissions reduction thresholds that must be met for different classes of biofuels to qualify as 

"renewable."  These renewable fuel categories are defined in terms of feedstock type and end 

product.  For instance, ethanol produced from corn grain would be credited with a 20% reduction 

in emissions relative to gasoline, regardless of farm management practices (Schnepf & 

Yacobucci, 2011).   However, a large portion of the emissions budgets of crop-derived biofuels 

can be traced to biological soil processes and other materials and energy directly related to farm 

management (Kim & Dale, 2005; Smith et al., 2008; Davis et al., 2013).  Major biogenic fluxes 

include soil emission of nitrous oxide (N2O), uptake of methane (CH4), and emissions (or 

removals) of CO2 associated with net changes in soil organic carbon (SOC).  Management also 

determines emissions from on-farm fuel use, chemicals and capital depreciation (Kendall & 

Chang, 2009).   

Several authors have studied the emissions implications of bioenergy farm management using 

hypothetical scenarios.  Adler et al. (2007) estimated emissions of fuels derived from corn-corn-

soybean cropping under conventional and no-till management.  They found that no-till 

management increased C sequestration by about 0.15 Mg C ha-1 yr-1, corresponding to an 

additional 12% reduction in life-cycle emissions relative to displaced fossil fuels.  Kim & Dale 

(2005) compared several corn-based bioenergy systems and found that continuous corn with 
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70% stover removal and a winter cover crop had the most favorable emissions profile.  The 

cover crop compensated for C losses incurred from residue removal while reducing levels of soil 

N available for emission as N2O.  Wang et al. (2012) performed a sensitivity analysis of corn 

grain ethanol emissions to a range of life-cycle parameters and found that the single most 

sensitive parameter was the rate of conversion of applied N to N2O, which in turn is influenced 

by a wide range of site and management factors (Robertson & Vitousek, 2009).  While each of 

these studies explores the potential importance of variable management in bioenergy emissions, 

none accounts for the actual practices of feedstock producers.  This work addresses that gap by 

assessing current emissions impacts and potential areas for improvement based on a detailed 

survey of management practices from a group of corn-soybean producers in the US Midwest.    

Nitrous oxide 

EPA estimates that N2O is the single greatest source of GHG forcing from the U.S. agricultural 

sector, accounting for 263.7 Tg CO2e in 2012 (EPA, 2015).  Nitrous oxide is produced by soil 

microbes as a byproduct of nitrification and denitrification, with levels influenced by available 

nitrogen (N) and soil texture and moisture, among other variables (Del Grosso et al., 2010).  In 

addition to on-site production and emission of N2O, cropping systems contribute to so-called 

indirect N2O emissions.  One instance of such indirect N2O emissions occurs when nitrate (NO3
-) 

is leached out of the soil profile into aquatic systems, where a portion may be denitrified and 

returned to the atmosphere as N2O.  A second mechanism for indirect N2O emissions involves 

volatilization of ammonia (NH3) and non-N2O nitrogen-oxide (NOx) species, off-site deposition, 

and subsequent emission as N2O as a result of soil microbial transformations (Del Grosso et al., 

2009).   
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A common approach to estimating N2O emissions from agricultural soils is via the emissions 

factor methodologies described by the IPCC Guidelines for National Greenhouse Gas 

Inventories (de Klein et al., 2006).  As part of their GREET-based LCA for corn-grain ethanol, 

for example, Wang et al. (2012) estimated N2O emissions from farm soils by assuming that 

1.53% of applied synthetic N is transformed to N2O.  While emissions factor methodologies 

based on N inputs are appropriate for estimating emissions in broad analyses and data-poor 

scenarios, dynamic process-based models such as DayCent allow for more detailed estimation of 

N2O emissions by tracking several important drivers such as soil texture, soil water status, plant 

N uptake, temperature, and tillage effects.  The DayCent model has been compared with 

emissions factor methodologies at global (Del Grosso et al., 2009), national (Del Grosso et al., 

2005; Ogle et al., 2010), and site (Del Grosso et al., 2008) scales, and is currently used as part of 

the U.S. Tier 3 methodology for estimating N2O emissions from agricultural soils for reporting to 

the United Nations Framework Convention on Climate Change (UNFCCC; Lokupitiya & 

Paustian, 2006). 

Methane 

Well-drained agricultural soils are typically net sinks for methane (CH4) due to the action of 

methanotrophic bacteria (Ogle et al., 2014).  Cultivation reduces soil CH4 oxidation capacity 

relative to non-agricultural (e.g. native grassland) soils (Mosier et al., 1991), and recent evidence 

suggests that long-term adoption of reduced tillage may gradually restore soil properties that 

support this capacity (Abdalla et al., 2013; Jacinthe et al., 2014; Zhao et al., 2016).  DayCent 

simulates CH4 oxidation as a function of land cover history and various soil properties according 

to relations developed by del Grosso et al. (2000).   
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SOC change 

Yearly changes in SOC reflect the difference between carbon (C) inputs (plant production, 

manure addition) and losses (decomposition to the atmosphere, harvested biomass) (Conant et 

al., 2011).  Most soils under natural vegetation lose substantial amounts of SOC in the decades 

following conversion to cultivated agriculture.  These historic losses have been estimated at more 

than 50 Pg C globally (Paustian et al., 1998; 1 Pg = 1015 g).  Various management practices, 

when tailored to local conditions, have been demonstrated to restore some of these losses (Lal, 

2004a).  While many agricultural soils have the potential to sequester C from the atmosphere, the 

total potential for sequestration is finite and depends on a variety of climatic and soil properties 

(Six et al., 2002; Stewart et al., 2009).   

Significant research has examined the role of reduced tillage practices in promoting SOC 

sequestration.  West and Post (2002) reviewed field data from 67 long-term agricultural 

experiments for a total of 276 paired treatments to determine rates of C sequestration and 

uncertainties for changes from CT to NT.  They found that soils sequestered 0.44+/-0.27, 0.25+/-

0.26, 0.61+/-0.46, and 0.90+/-0.59 Mg C ha-1 yr-1 under continuous corn, continuous wheat, 

continuous soybean, and corn-soybean, respectively.  Baker and colleagues (2007) have 

suggested that these apparent SOC increases may be an artifact of shallow soil sampling 

protocols, which detect SOC increases at shallow depths under no-till but neglect increases that 

may occur deeper in the profile under conventional tillage.  However, recent research examining 

SOC by depth in plots with varying levels of tillage intensity found increases in the surface soil 

increment (0-30 cm) under no-till, while SOC levels in the 30-60 cm increment were highly-

variable within tillage treatments but showed no consistent differences between treatments 

(Syswerda et al., 2011).  DayCent has been tested and validated for tracking SOC stock changes 
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in a variety of cultivated (Del Grosso et al., 2002; Chamberlain et al., 2011; Chang et al., 2013) 

and natural (Pepper et al., 2005; Li et al., 2006) ecosystems. 

Energy and materials 

The SimaPro™ life-cycle software and database package (Pre Consultants, 2012) was used to 

account for life-cycle flows associated with the supply chains for material inputs as well as 

energy consumed during farm operations.  These “supply chain emissions” included flows such 

as emissions embodied in N fertilizer and other farm chemicals, emissions due to liming of 

fields, on-farm fuel combustion, and emissions embodied in depreciation of farm equipment.  

According to Wang et al. (2012), emissions from the production and distribution of N fertilizer 

alone account for about 13% of the FTW emissions of corn grain ethanol. 

Study rationale 

The fuel classifications in the RFS2 ignore differences in farm site conditions and management 

practices that may have a large influence on the actual life-cycle GHG emissions of a biofuel.  

Even the California Low Carbon Fuel Standard, which allows for market credits for C savings, 

relies on generic farm level estimates of emissions (Sperling & Yeh, 2007).  The focus of this 

study was on understanding the variability in FTP emissions attributable to differences in farm 

management practices within a relatively small, homogeneous agricultural region.  Since 

biogenic emissions are highly sensitive to specific management practices and supply chain 

emissions are a direct consequence of management practices, we hypothesized that the FTP 

emissions of corn grain from farms using best management practices would be substantially 

lower than those of their peers. 
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Methods 

Survey description 

Farmers located near the site of a proposed corn-grain-to-butanol biorefinery near Luverne, 

Minnesota were surveyed on a range of management practices, including fertilization levels, 

tillage, and manure application, as well as annual crop yields.  Farmers submitted data for three 

years of operation (2008 through 2010). A total of 291 farmers were surveyed, and responses 

were received from 52.  Of the 52 responses received, 35 were found to include data sufficient to 

create the required DayCent model input files.  These 35 farms were located in 13 counties and 

three states in the vicinity of Luverne, MN (Table 2.1).  Table 2.2 summarizes the overall and 

annual synthetic N fertilizer use reported by the survey respondents. The type and amount of 

fertilizer used varied some from year to year. Average rates were calculated on an area-weighted 

basis.  

Greenhouse gas (GHG) emissions associated with processing and transport of manure use were 

ignored in our estimate of life-cycle fossil C emissions—with the implication that manure was 

available nearby, and was applied with little or no water removal. These assumptions were 

consistent with survey data indicating that the majority of manure was in liquid form (no drying) 

and came from regional swine and dairy operations. We did, however, estimate the C and N 

contributions made by the manure within the DayCent simulations.  Assumptions for N, 

phosphate and potassium content of the different manure types are shown in Table A2 and are 

based on data from the University of Minnesota Extension (Blanchet & Schmitt, 2007). 

Discussion of other farm inputs including fuel use, on-farm chemicals and lime application can 

be found in the Appendix. 
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Table 2.1. States and counties of respondents to the Gevo, Inc. feedstock supplier survey. 

State County Number of Responses 
Minnesota Rock 32 

Yellow Medicine 1 
Nobles 6 
Lincoln 1 
Pipestone 2 
Martin 1 
Jackson 1 

Iowa Lyon 2 
Sioux 1 
Emmet 1 

South Dakota Turner 1 
Minnehaha 2 
Moody 1 

Total 52 
 
DayCent inputs 

Daily weather data, including high and low temperatures and precipitation running from January 

1, 1979 through December 31, 2009 were obtained from the NCEP North American Regional 

Reanalysis database (Mesinger et al., 2006).  A single set of weather inputs was obtained for the 

county centroid of counties in which surveyed farms were located.  

DayCent soil input files were created using soil physical and chemical characteristics of specific 

soil series from the USDA Soil Data Mart database (NRCS, 2004).  Where soil series were not 

identified by name in survey responses, the field was assigned the soil series most frequently 

identified for surveyed farm fields in the same county. 

DayCent schedule files, which describe farm management, were created for every farm field 

(most farmers described multiple fields) reported by the 35 included farmers, resulting in 94 
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unique management schedules.  Since all farms were simulated with a corn-soybean crop 

rotation, we created alternate files for each management schedule, with one file for planting corn 

on even years and soybean on odd years, and the other vice-versa.  This alternate rotation 

phasing was done to avoid possible bias due to interactions between crop type and anomalous 

weather events.  Results from these alternately-phased rotations were averaged to produce 

reported values, unless otherwise noted.  Farm-specific management practices from survey 

responses used in DayCent schedule files included cultivation events (timing and intensity), 

synthetic N fertilizer (timing and amount), and manure application (timing, amount and type).  

Some survey respondents reported the use of manure additions on a portion of their acreages.  

Manure C:N ratios were estimated by manure source type (summarized in Table A2). 

DayCent historic land use 

Each DayCent model run was initialized using a 3000-year 'equilibrium' simulation designed to 

mimic pre-agricultural land cover and to allow the soil organic matter pools in the model to reach 

a steady state (Basso et al., 2011).  For all runs in this study, the sites were modeled as a mixed 

warm- and cool-season grassland with regular grazing and periodic fire.  From the pre-

cultivation conditions, the model was then run for a spinup period or ‘base history’ simulating 

changes following initial plowout (1861) and conversion to annual cropland, through to the 

simulated start of current management (i.e., farmer-reported management, here starting in 1979).  

Over this 119-year base history, 4 distinct management periods were simulated to reproduce 

major agronomic changes, in part based on historical NASS cropping data for the counties in the 

study.  Period 1 (1861-1908) included a complex rotation designed to support livestock and draft 

animals including grazing, hay production, and relatively low-productivity oats and corn with 

significant residue removals (75% of corn stover, 50% of oat straw).  Period 2 (1909-1954) 
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included grazing and hay in rotation with crops, but the oats and corn during this period were 

medium-productivity varieties with continuing residue removals (50% of corn stover, 50% of oat 

straw).  Period 3 (1955-1964) was designed to reflect the addition of significant synthetic N 

fertilizer and reduced reliance on forage (i.e., no hay cropping or residue removals) due to 

replacement of draft animals with tractors, and included high-productivity corn, oats, and 

soybeans.  Period 4 (1965-1978) included high-productivity corn, oats, and soybeans and higher 

levels of synthetic N application.  The current corn-soybean management (based on survey 

responses) was initiated in 1979 and continued for 31 years through 2010.  In order to avoid high 

short-term rates of change in state variables (e.g., soil C) due to this transition in management, 

results discussed below are based on the final 12 simulation years (1999-2010) unless otherwise 

noted. 

NASS-based C input estimates 

To provide a rough check on the simulated SOC changes, we developed independent estimates 

of historic C inputs using historical statewide Minnesota NASS yield data in conjunction with 

IPCC reference values (de Klein et al., 2006) for harvest-index and aboveground-belowground 

biomass ratio.  We first used the reference harvest index and the NASS yield to calculate total 

aboveground biomass for each crop (corn, soybean, oats, hay) and each year of the base history 

period (1866-1978).  The reference aboveground-belowground biomass ratios were then used to 

calculate total crop biomass.  To calculate the NASS-based estimated C input, we subtracted the 

NASS grain yield and the assumed fraction of aboveground residue removal (i.e. same fraction 

of removal simulated in DayCent schedule) from the total biomass. 
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DayCent was calibrated by adjusting the radiation use efficiency parameter for corn and soybean 

crops to reproduce the area-weighted average survey-reported yields across included farms for 

2008-2010, the years covered by the survey.  DayCent model runs simulated farmer-reported 

applications of N from synthetic fertilizer on the day of planting of corn years, and manure 

application 30 days after harvest on soybean years.  Since synthetic N was applied to corn but 

not soybean, the rotation-averaged N input rates given in the text (unless noted otherwise) are 

half of the amounts farmers used for their corn crops.  Survey responses detailing cultivation 

practices were translated into DayCent cultivation events that simulated both the timing and 

intensity of soil disturbance, based on the tillage equipment reported.  Scores were developed to 

reflect the increase in decomposition rate (Tillage Decomposition Effect score, TDE) based on 

these cultivation schedules as described in the Appendix.   

Field-level emissions calculations 

DayCent simulates processes that account only for soil-based GHG emissions and not emissions 

from the use of farm machinery and related embodied emissions for fuels and chemicals 

consumed.  The latter are estimated in the life-cycle inventories discussed below.  The biogenic 

emissions budget generated from DayCent outputs can be divided into four components: net 

change in SOC stocks, direct emissions of N2O from soil, indirect emissions of N2O from N 

transported off-site by leaching and ammonia volatilization from crop biomass, and oxidation of 

CH4 by methanotrophic soil bacteria.  Unless otherwise noted, each of these components was 

calculated as a 12-year average and converted to carbon-dioxide equivalents (CO2e) based on 

100-year global warming potential (de Klein et al., 2006). 
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Calculation of emissions due to indirect nitrous oxide emission used a formulation described by 

del Grosso et al. (2006), which assumes that 2.5% of leached N as NO3
- and 1% of N emitted as 

NH3 or nitric oxide (NO) are ultimately transformed to N2O and emitted. 

Life-cycle inventories for supply chain emissions 

Life-cycle inventories were obtained for each raw material consumed on the farm from the 

SimaPro™ life-cycle software and database package (Pré 2012). The inventory includes direct 

and embodied emissions associated with the use of all raw materials reported in the farmer 

survey or estimated post-survey for which data was available in SimaPro™. Post-survey 

estimates included detailed calculations of fuel consumed for reported planting and tillage 

practices, as well as application methods used for fertilizers, chemicals and manure. Direct 

emissions in the inventory consist of non-soil mediated emissions primarily from on-farm 

combustion of fossil fuels (CO2, SOx, NOx, volatile organics and particulate matter). Direct 

emissions also included stoichiometric calculations of the release of CO2 from lime and urea 

applied in the field.   

Embodied emissions include those associated with the extraction, processing and distribution of 

all raw materials used upstream (up to delivery at the plant gate) of each raw material. For 

example, N fertilizer production generally involves the use of natural gas. Its embodied 

emissions are included, as well as release of CO2 during conversion of natural gas to N fertilizer, 

fuel related emissions for process energy and the embodied emissions of any other raw material 

inputs. A significant effort was made in this study to estimate herbicide and pesticide embodied 

emissions. Because farmers reported many of these chemicals as commercial product names, it 

was necessary to obtain detailed formulation data, and link each chemical ingredient to its 
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specific life-cycle inventory in the SimaPro™ database. Table A1 lists all raw materials tracked 

in the life-cycle inventory for each farm.  

Results 

Summary of survey results 

The responding farms averaged 327 ha (807 acres) in size, which is almost twice the US average 

of 178 ha (441 acres).  Corn accounted for 55% of managed land area, with soy on 40%, 

Conservation Reserve Program on 3%, and 2% in other uses.  Corn yields on the surveyed farms 

averaged over 11.9 Mg ha-1 (190 bushels acre-1) in 2008-2010 growing seasons. 

An estimated 22% of all corn area received some amount of manure.  A small number of farmers 

appeared to apply manure to all of their corn acreage, while most farmers relied primarily on 

synthetic N fertilizer.  Table 2.2 summarizes the types and amounts of N fertilizer used by the 

surveyed farms on an area-weighted basis. More than half of all synthetic N applied was urea, 

and about one-third of the total was ammonia. 
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Table 2.2. Area-weighted average N fertilizer usage among survey respondents in kg N ha-1 (lb 
N acre-1). 

 Fertilizer 2008 2009 2010 Avg 

Ammonia, anhydrous 77.0  (68.6) 73.2  (65.2) 46.6  (41.5) 64.2  (57.2) 

Ammonium 
polyphosphate 

0.8  (0.7) 0.6  (0.5) 0.6  (0.6) 0.7  (0.6) 

Ammonium thiosulfate  0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

Diammonium 
phosphate  

16.6  (14.8) 14.6  (13.0) 14.5  (13.0) 15.2  (13.5) 

Monoammonium 
phosphate  

4.7  (4.2) 4.0  (3.5) 5.4  (4.8) 4.7  (4.2) 

Urea 88.3  (78.7) 87.2  (77.7) 114.4  (101.9) 98.0  (87.2) 

Ammonium sulfate 1.6  (1.4) 2.0  (1.8) 2.0  (1.8) 1.9  (1.7) 

Total synthetic N 189.0  (168.4) 181.5  (161.7) 183.7  (163.7) 184.5  (164.4) 

 
DayCent yield calibration 

DayCent was calibrated to match the average of the farmer-reported yields for the years included 

in the survey: 2008, 2009 and 2010.  Small adjustments in the crop radiation use efficiency 

parameters resulted in 3-year simulated, average yields of 10.7 Mg ha-1 for corn and 3.2 Mg ha-

1 for soybean compared with reported averages of 10.8 Mg ha-1 for corn and 3.3 Mg ha-1 for 

soybean.  Per-farm yields for 2008-2010 based on DayCent model results and survey data are 

shown in Figure 2.2 and Figure 2.3. 
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Figure 2.2. Per-farm corn yields for 2008-2010.  Center lines indicate average, hinges indicate 
1st and 3rd quartiles, whiskers encompass 95% confidence intervals, and remaining outliers 
appear as points.  
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Figure 2.3. Per-farm soybean yields for 2008-2010.  Center lines indicate average, hinges 
indicate 1st and 3rd quartiles, whiskers encompass 95% confidence intervals, and remaining 
outliers appear as points.  

Field-to-plant-gate emissions budgets 

Biogenic emissions calculations were made using averaged data from the last 12 years (1998-

2010) of the simulation period to smooth out effects of interannual variability of weather and 

changes in management practices (Figure 2.4). The results in Figure 2.4 show each emission 

source by farm, sorted horizontally based on average per-farm total net FTP emissions, indicated 

by large black dots.  All of the 35 farms surveyed showed average net increases in SOC over the 

final 12 simulation years (Figure 2.4).  The spread in FTP emissions between the lowest- and 

highest-emitting farms was 4.16 Mg CO2e ha-1 yr-1.  These results suggest that, while many 
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farmers already achieve C sequestration in the field, success in C sequestration varies 

substantially across farms as a result of both differences in soil conditions and, importantly, 

management practices adopted. 

 
Figure 2.4. Per-farm, 12-year average field-to-plant-gate emissions components based on 
DayCent and SimaPro modeling.  Total net emissions after accounting for CH4 uptake and SOC 
increases (negative emissions) are indicated by black dots.  
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Direct N2O emissions varied nearly fourfold, with a low of 0.47 Mg CO2e ha-1 yr-1and a high of 

1.81 Mg CO2e ha-1 yr-1.  Indirect N2O emissions from leaching and other off-site transport of N 

generally amounted to a small fraction of total emissions, with a mean value of 0.060 Mg CO2e 

ha-1 yr-1.  Simulated uptake of CH4 was minimally variable between farms and amounted to an 

average emission of -0.053 Mg CO2e ha-1 yr-1.  The total simulated biogenic emissions ranged 

from a low of -1.69 Mg CO2e ha-1 yr-1 to a high of 1.56 Mg CO2e ha-1 yr-1, with a median value of 

0.51 Mg CO2e ha-1 yr-1.   

Supply chain emissions (i.e. those not modeled by DayCent) ranged from 0.67 Mg CO2e ha-1 yr-1 

to 2.23 Mg CO2e ha-1 yr-1.  Finally, the total FTP emissions (black dots in Figure 2.4) ranged 

from -0.79 Mg CO2e ha-1 yr-1 to 3.38 Mg CO2e ha-1 yr-1.  

Soil C dynamics 

Closer inspection of the lowest-emitting, median-emitting, and highest-emitting farm simulations 

illustrated the behavior of the dominant emissions components over time.  SOC increased at an 

average annual rate of 0.61 Mg C ha-1 in the lowest-emitting farm, 0.16 and 0.12 Mg C ha-1 in 

the two median-emitting farms and 0.11 Mg C ha-1 in the highest-emitting farm. 

Manure application constituted a major input of organic C on many of the surveyed farms.  

These manure additions could increase SOC levels relative to a baseline of no addition, 

depending on the amount of manure C that was sequestered over the time interval of interest.  

The lowest-emitting farm in this study applied manure equivalent to 2.67 Mg C ha-1 in the fall 

after soybean harvest, or 1.33 Mg C ha-1 yr-1 on an annualized basis.  Twenty-one of the 35 farms 

simulated applied no manure, including the median-emitting and highest-emitting farms. 
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Tillage in the fall after corn harvest is likely to be a particularly important driver of immediate 

SOC loss, since it entails mechanical disturbance and mixing of large amounts of residue C with 

mineral soil horizons.  Among the surveyed farmers simulated for this study, 26 practiced some 

kind of fall tillage following corn harvest, while 10 did not.  The mean rate of SOC increase 

among those practicing tillage after corn harvest was 0.15 Mg C ha-1 yr-1, while among farmers 

who left corn residues undisturbed it was 0.21 Mg C ha-1 yr-1.  These two groups of farmers 

differed on other management practices as well, however, confounding the relationship between 

fall tillage and rates of SOC change.  In fact, tillage in the fall after corn turned out to be a simple 

criterion for dividing the surveyed farms between those practicing generally more-intensive 

management, versus those practicing less-intensive management.  On average, the farmers who 

reported tilling in the fall after corn (n=26, "Conventional") also applied more synthetic N 

fertilizer (184 vs. 120 kg N ha-1 on corn years) and less manure (340 vs 778 kg manure C ha-1 on 

corn years) than those who did not (n=9, "Low-impact").  Thus, fall tillage after corn provided a 

useful indicator variable for grouping the surveyed farms on a broader set of management 

practices. 

Since SOC dynamics are strongly linked to historic land use, we compared simulated historic C 

inputs with estimates derived from corresponding NASS crop yields (see Methods for details).  

The NASS-based estimated C inputs, DayCent simulated C inputs, and DayCent simulated SOC 

content are compared in Figure 2.5.  The rolling-average NASS-based C input estimates (Figure 

2.5c) begin to increase around 1954 from roughly 1 Mg C ha-1 to just over 4 Mg C ha-1 due to a 

combination of increasing biomass productivity and reduced reliance on crop residues for forage.  

While there is clearly large uncertainty surrounding these estimates, their general agreement with 
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the simulated C inputs (Figure 2.5b) corroborates the simulated “rebound” in SOC stocks (Figure 

2.5a) that undergirds the C stock increases (Figure 2.5a) simulated for these farms. 

Soil N dynamics 

Simulated direct emissions of N2O for the lowest-, median-, and highest-emitting farms were 

0.58, 1.07 and 1.81 Mg CO2e ha-1 yr-1, respectively.  Since N2O emissions are directly related to 

the amount and duration of mineral N in the soil profile, which in turn is heavily influenced by 

the difference between N fertilizer application and crop uptake, we calculated an indicator 

variable called N uptake ratio (NUR).  This was calculated by taking the ratio of N in 

aboveground crop biomass at harvest (based on reported yields and literature values for N 

content of crop components; see Appendix for details) to the total N applied from both manure 

and synthetic sources between soybean harvest and corn planting.  Since none of the simulated 

farms applied N from any source between corn harvest and soybean planting, we assessed NUR 

only for corn years.  Figure 2.6a shows NUR as a function of N application rate for all 35 farms.  

As might be expected, there was a discernible trend toward lower NUR among farms applying 

above-average amounts of total N, reflecting the limited capacity for additional crop uptake at 

high application rates.  Since large fractions of N were left in the soil at low NUR, these same 

farms also displayed the highest levels of simulated direct N2O emissions (Figure 2.6b). 
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Figure 2.5. Simulated SOC of farms in this study (a), as compared with annual C inputs to soil as 
simulated by DayCent (b) and estimated from historical NASS yield data (c).  Increases in crop 
yield and reductions in residue removal for forage since the mid-1900s have increased C inputs 
to intensively-managed cropland soils.  Simulated transitions in management practice are marked 
by vertical lines.  Lines for panels (b) and (c) reflect 20-year moving average C inputs.  Specific 
assumptions for each numerically-labeled historical management period are described in 
Methods. 
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Figure 2.6. N Uptake Ratio (6a) for the 35 simulated farms, estimated from survey-reported grain 
yields and fertilization schedules and literature-derived values for N content of biomass 
components, and corresponding DayCent-simulated direct N2O emissions (6b).  Note that both 
panels share the same x-axis units. 

We compared DayCent’s simulated N2O emissions values with those calculated using 

methodologies recommended by the USDA (Ogle et al. 2014) and IPCC Tier 1 (de Klein et al., 
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2006; additional details can be found in Appendix).  Figure 2.7 shows the distributions of per-

farm direct N2O emissions for corn and soybean years as estimated using these three methods.  

As can be seen in Figure 2.7, the IPCC method predicted the lowest average emissions under 

both corn and soybean cropping, while the USDA method predicted the highest average 

emissions under corn and DayCent predicted the highest average emissions under soybean. 

 
Figure 2.7. Direct N2O emissions calculated using USDA methodology (Ogle et al., 2014), IPCC 
Tier 1 guidelines (de Klein et al., 2006), and DayCent simulations.  Center lines indicate 
averages, hinges indicate 1st and 3rd quartiles, whiskers encompass 95% confidence intervals, 
and remaining outliers appear as points.  Note that emissions attributed to each crop from 
DayCent simulations reflect fluxes that occur between planting of that crop (May) and planting 
of the alternate crop (next May). 

Indirect N2O emissions averaged 0.060 Mg CO2e ha-1 yr-1, or about 6% of the magnitude of 

direct N2O emissions.  Indirect emissions represented a weighted sum of three N-transport 

processes that result in off-site N2O production: NO3- leaching, NO emission, and NH3 
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volatilization.  At the level of individual farms, leaching was highly variable and ranged from 0.6 

to 45.8 kg N ha-1yr-1, with an average of 6.4 kg N ha-1yr-1.  When compared with indirect N2O 

emissions estimated using the IPCC Tier 1 method with the default value of 0.3 (uncertainty 

range: 0.1-0.8) for fraction of applied N that is leached (de Klein et al., 2006), the DayCent 

outputs were noticeably low.  The DayCent-calculated amounts of N leached corresponded to a 

leaching fraction of 0.07.  If the higher IPCC leaching estimates were used in the emissions 

budgets of each farm, they would increase average emissions relative to DayCent by 0.16 Mg 

CO2e ha-1yr-1 in corn years and 0.010 Mg CO2e ha-1yr-1 in soybean years, or 0.085 Mg CO2e ha-

1yr-1 averaged across the full rotation. 

Field-to-wheels emissions budgets 

To get a better idea of the magnitude of variability observed here in FTP emissions relative to the 

full field-to-wheels (FTW) life-cycle emissions used in the provisions of the RFS2, we used a 

uniform literature value to estimate the full FTW emissions that might be expected from fuels 

derived from corn grain produced by the farms in this study.  This value, 31 g CO2e MJ-1, was 

derived from Figure 5 of Wang et al. (2012) and was a sum of emissions due to ethanol 

production, land-use change, transportation and distribution, combustion, and a coproduct credit 

for distillers’ grains and solubles (DGS).  The resulting FTW estimates were plotted in Figure 

2.8 as a fraction of the well-to-wheels emissions of gasoline, with specific emissions ranges 

shaded to correspond with the renewable fuel classifications defined by the RFS2.  Figure 2.8a-c 

each include one point for each farm in this study, but plot them against different management 

variables to convey their potential for reducing feedstock emissions.  In general, these FTW 

estimates suggest that ethanol derived from corn grain produced on these farms would fall within 
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the emissions range stipulated for Renewable Fuels under the RFS2 (i.e., no more than 80% of 

the emissions of gasoline).   

 
Figure 2.8.  Per-farm field-to-wheels emissions as a function of synthetic N fertilization rate (9a), 
manure C application rate (9b), and DayCent Tillage Decomposition Effect score (9c; described 
in the Appendix).  Plant-gate-to-wheels emissions sources were obtained from Wang et al. 
(2012) and combined with FTP budgets from this work to arrive at the FTW totals shown here.  
Background shading indicates the RFS2 emissions reduction tier achieved by the corresponding 
farms.  Trend lines were included when statistically significant at p<0.05. 

Discussion 

Emissions totals and variability 

We found that corn grain ethanol from all 35 farms modeled would meet the RFS2 requirement 

for “Renewable Fuels” of achieving a 20% reduction in FTW emissions relative to gasoline 

(Figure 2.8).  In addition, four of the farms achieved 50% or greater reductions, a level set aside 

for “Advanced Biofuels” that specifically excludes corn starch ethanol.  One unusual farm even 

exceeded the 60% reduction threshold set aside for next-generation “Cellulosic Biofuels”, 

although his emissions are sensitive to our decision to credit C sequestered from manure as a 
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negative farm emission (discussed further below).  The mean reduction across farms found in 

this study (39%) was similar to that found by Adler et al. (2007) for a corn-corn-soybean rotation 

(38%) under conventional tillage.  In a more general LCA study tabulating emissions from 

various biomass-based fuels for U.S. consumption, Wang et al. (2012) found a similar reduction 

for corn grain ethanol of 34%.  Since the PTW portion of their study (31 g CO2e MJ-1) was used 

as a generic estimate of PTW emissions for this work (see Results), we can directly compare the 

FTP values generated by our respective analyses.   

Nitrous oxide estimation methods 

Wang et al. (2012) employed a mean N2O emissions factor of 1.53% of applied N based on their 

review of the experimental literature, with 10th- and 90th-percentile values of 0.413 and 2.96%, 

respectively.  The combination of this broad uncertainty range and the large overall role of N2O 

in the emissions budgets of corn ethanol led to their finding that the N2O EF is the most sensitive 

parameter in the life-cycle emissions of corn ethanol.  The distribution of N2O per-farm EF 

values calculated from our DayCent modeling was significantly narrower, with 10th-, 50th, and 

90th-percentile values of 1.18, 1.42, and 1.57% of applied N, respectively.  This is likely due to 

the fact that the field and management conditions in our study were homogeneous relative to the 

range of agronomic conditions under which the experimental data reviewed by Wang et al. 

(2012) were collected. 

Soil C accounting issues 

To our knowledge, Wang et al. (2012) did not consider SOC changes in their analysis.  This is 

equivalent to assuming stable SOC stocks, which is a common and understandable simplification 
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with respect to US croplands as a whole, especially in view of the sensitivity of SOC changes to 

past and present management. 

Our SOC results were sensitive to the assumption that manure C could be considered a “free” 

input to the farm soils and sequestered manure C being credited as a negative emission.  This 

reflected a baseline scenario in which all manure C would otherwise be respired as CO2, which 

may not be accurate.  As noted in the Methods, consultation with a USDA manure management 

official in the area indicated a high concentration of confined animal feeding operations 

(CAFOs) in the study region (Doug Bos, personal communication), suggesting that transport 

emissions would be relatively low and alternative manure handling may lead to emission of more 

potent GHGs, including CH4 and N2O.  The EPA (2015) indicates, for instance, that liquid 

manure management is increasingly common on U.S. CAFOs, leading to greater anaerobic 

production of CH4.  At the same time, concerns over air and water pollution from over-

application to land have led to regulations restricting application rates, increasing on-site storage 

times (EPA, 2015).  By increasing the land supply, the decision of a given farmer to utilize 

manure that is locally in surplus could be assumed to reduce those storage times.  From the 

perspective of identifying emissions-reducing practices for corn-soybean cropping systems in 

this area, then, the treatment of manure C and N as “free” nutrients seems like a justifiable 

simplification, although a more detailed analysis would be valuable. 

The SOC sequestration rates simulated for the farms in this study reflect a postulated “rebound” 

in SOC stocks from lows reached under historic low-productivity cropping.  Typical historical 

agronomic practices and their impacts on SOC were described by Allmaras et al. (2000), who 

suggested that American tallgrass prairie soils lost as much as 60% of their initial SOC following 
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cultivation.  Blocks 3 and 4 in Figure 2.5a illustrate the start of this rebound, supported by 

increasing C inputs from more-productive cropping practices.  Block 5 (simulation years 1979-

2010) shows its continuation and divergence as a function of the differing management practices 

reported in our farm survey.  The area-weighted average of 0.16 Mg C ha-1 yr-1 was modest 

compared with the 25-year sequestration rate of 0.37 Mg C ha-1 yr-1 calculated by Clay et al. 

(2012) for corn croplands in South Dakota.  Similarly, long-term monitoring of the Sanborn 

Field in Missouri found that SOC stocks fell sharply until around 1950, but have aggraded at 

rates ranging from 0.50-1.50 Mg C ha-1 yr-1 since then as a function of reduced tillage and 

increased C inputs (Buyanovsky & Wagner, 1998).  

Conclusions 

The results of this study supported our hypothesis that the GHG emissions associated with corn 

grain ethanol can vary widely based on differences in farm management and site characteristics.  

These results were based on actual management practices as reported by surveyed farmers within 

a relatively uniform geographic region.  Specifically, we found a total range in FTW emissions 

of 21.2 to 72.8 g CO2e MJ-1, with a median value of 55.5 g CO2e MJ-1.  The lowest-emitting farm 

was distinguished by its low-intensity tillage regime (including no-till following corn harvest) 

and reliance on large quantities of manure to the exclusion of synthetic N fertilizer.  We also 

found that reported corn yields were not significantly correlated with synthetic N inputs in the 

survey data, suggesting that reduced N application may also be a feasible approach for reducing 

emissions from some farms.  Further work should explore the agronomic practicality (and limits) 

of broader adoption of these practices in both the Luverne region and other areas of the U.S. 

Corn Belt as a means of maximizing the climate-mitigating impacts of corn grain ethanol. 
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CHAPTER 3. DUAL-FEEDSTOCK BIOENERGY FROM CORN: CONNECTING 

AGRONOMY, EMISSIONS AND PRODUCTION COSTS 

Introduction 

Policy background 

The US Renewable Fuel Standard 2 (RFS2) mandates national use of an estimated 90.7 billion L 

of qualifying renewable fuels in 2017.  Of that total, 20.8 billion L are slated to come from 

cellulosic feedstocks, with that amount increasing annually to 60.5 billion L by 2022 (Schnepf & 

Yacobucci, 2011). 

Potential stover supply 

Crop residues represent a large potential source of biomass-based energy.  The 2011 update to 

the US Department of Energy’s “Billion Ton Study” (BTS2) estimated that US annual 

production of residues from major grain crops is greater than 318 million dry Mg, with 70% of 

this resource consisting of corn stover (Perlack et al., 2011).  Using a bounding assumption of 

100% collection and an estimated ethanol (EtOH) yield of 375 L Mg-1 dry matter (Wang et al., 

2012) gives a rough upper limit of 83.5 billion L EtOH available from corn stover, more than 

four times the 2017 cellulosic volume mandate.  Increases in corn productivity and/or planted 

acreage could significantly increase this limit.  Of course, leaving aside the enormous logistical 

and financial barriers to stover utilization on such a scale, there are a range of constraints on 

collection rates that are related to soil sustainability. 
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Sustainability constraints 

Under conventional management, corn stover is left on fields after grain harvest, where it serves 

a number of agronomic functions.  Stover serves to impede evaporation from the otherwise bare 

soil surface during fallow periods, and in some rainfed systems this water conservation is 

essential, precluding significant residue removal.  It plays a similarly crucial role in other 

systems by reducing soil loss to wind and water erosion (Mann et al., 2002).  Much of the C 

content of retained stover is lost as CO2 within a short time frame, but a fraction is incorporated 

into soil organic carbon (SOC) pools, where it improves water-holding capacity, cation exchange 

capacity and other soil fertility traits.  Finally, stover is a valuable reservoir of nitrogen (N), 

phosphorous and potassium, some of which become available to subsequent crops as 

decomposition proceeds (Blanco-Canqui & Lal, 2009).  This reduces the need for synthetic 

fertilizers to replace these nutrients. 

Management complementarities 

There are potentially important complementarities between stover removal and reduced- or no-

till management.  For instance, compared to conventional tillage, lower-intensity tillage increases 

rates of SOC and soil moisture retention, while reducing susceptibility to wind and water erosion 

(Mann et al., 2002; West & Post, 2002).  This is caused by the reduced mechanical degradation 

of stover structure and greater fraction of stover left on the soil surface, as opposed to being 

turned under the soil.  Conversely, no-till management can be problematic in certain 

circumstances, as large amounts of intact stover left on fields can foster crop pests and diseases, 

and in colder regions delays soil warming and thus planting (Wilhelm et al., 1986; Sims et al., 

1998).  In contexts where these are barriers to no-till adoption, removal of a portion of the stover 

may facilitate adoption by reducing residue buildup. 
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Even as stover collection may facilitate reduced tillage in some contexts, application of livestock 

manure has the potential for replacing some of the benefits lost with stover removal.  At the most 

basic level, manure represents an input of organic C to soils which tends to increase SOC stocks.  

Beyond providing organic C, most manures contain substantial amounts of N and P, both of 

which are lost during stover removal.  National scale estimates suggest that recoverable livestock 

manure contains as much as 15% of all N and 42% of all phosphorous purchased as commercial 

fertilizer for crops each year (Risse et al., 2006).  In addition, manure application has been 

shown to improve soil physical properties such as porosity and water holding capacity, and to 

reduce water erosion (Risse et al., 2006). 

Other management considerations 

The rate and timing of N application is a key determinant of both yield and N2O emissions, a 

major greenhouse gas, while production of synthetic N fertilizer itself produces substantial 

emissions.  Typically, crop yields display a saturating response to N application, with even small 

declines in yields at rates far above optimal.  Maximum economic return occurs at rates lower 

than the rates needed to support maximum grain yield.  Accounting for the increasing marginal 

damages from N production, leaching and biogenic emissions – which combined account for 

greater than a third of the field-to-wheels (FTW) emissions footprint of US corn EtOH 

production (Wang et al., 2012) – would likely lower the “preferred” N application rate further. 

Study rationale 

Davis et al. (2013) coined a useful phrase for thinking about bioenergy system sustainability.  

Their phrase, “management swing potential,” referred to the potential for farm management 

decisions to significantly improve or detract from the GHG savings achieved by a bioenergy 
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production pathway.  These pathways are often defined in terms of a particular crop species in 

conjunction with the final fuel product (eg., “corn grain EtOH”).  This is a convenient policy 

shorthand, but it masks variability stemming from farm management (“swing potential”) that 

may in some cases be greater than mean emissions differences between two pathways, as defined 

by species and fuel type.    

The primary objective of this work was to explore emissions impacts and management swing 

potential for the feedstock supply of a hypothetical integrated grain- and stover-bioenergy 

facility situated in Luverne, MN.  The analysis was particularly focused on exploring complex 

tradeoffs between grain and stover utilization, emissions intensity, and farm production costs.  

This was accomplished through a combination of DayCent biogeochemical modeling, SimaPro 

and literature-based life-cycle assessment, and basic farm budget analysis. 

Methods 

This work extended the biogeochemical and life-cycle modeling described in Chapter 2 by 

attempting to map the multi-dimensional emissions space resulting from discrete levels of 

various farm management practices.  The life-cycle emissions reported here were derived from a 

combination of DayCent dynamic modeling of farm biogenic emissions, and SimaPro (Pre 

Consultants, 2012) and literature-based estimates for supply chain emissions. 

Farm management scenarios 

The first step of this work was to determine a list of management practices and levels of each 

practice to be modeled.  This was done in consultation with area stakeholders representing farm 

and environmental organizations and ultimately identified six farm management practices of 
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interest and discrete levels of each practice to be modeled (Table 3.1).  These were combined in 

a full factorial analysis, leading to 1,920 unique management scenarios. 

Table 3.1. Farm management practices and levels modeled for this work.  All permutations of the 
various practice levels were modeled. 

Practice Description Levels Number of Levels 
Tillage Intensity of soil 

disturbance from 
cultivation 

Conventional till 
Reduced till 
No-till  

3 

N Application Rate Total N applied from 
synthetic fertilizer 
and/or manure (kg ha-1) 

5 
10 
15 
20 
25 

5 

N Fraction from 
Manure 

Fraction of N derived 
from manure 

0 
0.2 
0.4 
1.0 

4 

Stover Removal Fraction of corn residue 
removed 

0 
0.25 
0.5 
0.75 

4 

Crop Rotation & N 
Fert Timing 

Cropping and N 
application timing 

Cont corn/N at       
planting 
Cont corn/N in fall 
Cont corn/split N 
Corn-soy/N at 
planting 

4 

N Inhibitor Use of nitrification 
inhibitor 

Yes 
No 

2 

Total Management Scenarios: 1,920 
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DayCent simulations 

DayCent simulations were run using North American Regional Reanalysis (NARR) daily 

weather inputs (Mesinger et al., 2006), with scenario management practices running from 

simulation years 1979 through 2009.  Each of the 1,920 management scenarios was simulated for 

the same 65 fields included in a previous study (Kent et al., in submission), and results from 

these fields were aggregated to the level of 36 farms using area-weighted averaging.  Biogenic 

emissions, including methane uptake, direct and indirect N2O and average annual change in 

SOC, were calculated for the final 12 years of each simulation, in the same manner as in 

previous work (see Appendix for details).  The DayCent modeling for this analysis used the same 

weather, site, and soil inputs as the previous work (Kent et al., in submission), but replaced 

farmer-reported management practices with the hypothetical management scenarios outlined in 

Table 3.2. 

Supply chain emissions accounting 

For life-cycle emissions not included in DayCent simulations, such as those from farm chemical 

manufacture and distribution, farm equipment manufacture and fuel use, and biomass drying and 

transport, a variety of sources were used.  In order to preserve the survey-derived inter-farm 

variability developed for previous work (Kent et al., in submission), farm inputs not directly 

affected by management scenarios were reused from that analysis.  For instance, farm chemicals 

and non-N fertilizers were not specified by the scenarios in Table 3.2, and so the farm survey 

input rates were used.  In contrast, emissions due to manufacture and distribution of synthetic N 

fertilizer are directly linked to the N Application Rate used in a given scenario, and so the 

scenario-based input rate and corresponding emissions were used.  The sources and emissions 
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values (where appropriate) for major life-cycle inputs and related parameters are summarized in 

Table 3.2. 

Table 3.2. Major life-cycle emissions sources and related parameters not modeled by DayCent.  
Survey supply chain inputs are those not directly related to the management scenarios being 
investigated, and so per-area amounts are reused from the case study in Chapter 2.  See text for 
further details on assumptions and how specific inputs were integrated into emissions budgets. 

Input Value Unit Source(s) 
Crop Seeds 3.7 g CO2e m-2 SimaPro; Farm Surveys 
Phosphorous & potash 
fertilizers 

28.7 g CO2e m-2 SimaPro; Farm Surveys 

Pesticides & herbicides 2.3 g CO2e m-2 SimaPro; Farm Surveys 
Equipment depreciation 5.8 g CO2e m-2 SimaPro; Farm Surveys 
Tillage, corn: 
   Conventional 
   Reduced 
   No-till  
Tillage, soy: 
   Conventional 
   Reduced 
   No-till  

 
9.46 
5.50 
1.39 
 
4.22 
3.30 
1.39 

g CO2e m-2 (Lal, 2004b) 

Synthetic N, embodied 4.77 g CO2e g-1 N 
applied 

(Lal, 2004b) 

Synthetic N, application 2.79 g CO2e m-2, per 
application 

(Lal, 2004b) 

Manure, transport to field 845 g CO2e Mg-1 mi-1, 
wet manure 

(Lal, 2004b; Qin et al., 2015) 

Manure, broadcast 
application 

4.62 g CO2e m-2 (Lal, 2004b; Qin et al., 2015) 

Manure, phosphorous 
offset credit 

-450 g CO2e Mg-1 wet 
manure; max offset 
is 100% of P 
emissions  

(Lal, 2004b; Qin et al., 2015) 

Stover, cutting, baling and 
stacking at field edge 

0.0166 g CO2e g-1 dry 
stover removed 

(Qin et al., 2015) 

Stover, mass loss, 
uncovered at field edge 

0.148 g lost g-1 dry stover 
collected 

(Qin et al., 2015) 
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Grain Drying 0.0198 g CO2e g-1 dry 
grain 

(Camargo et al., 2013) 

Grain Transport 5899 g CO2e Mg-1 dry 
grain 

(Wang et al., 2013) 

Stover Transport 5665 g CO2e Mg-1 dry 
stover collected 

“” 

EtOH production: 
   Grain 
   Stover 

 
31 
10 

g CO2e MJ-1 EtOH (Wang et al., 2012) 

Land-use change: 
   Grain 
   Stover 

 
9 
-1 

g CO2e MJ-1 EtOH “” 

Distillers’ grains and 
solubles credit 

-14 g CO2e MJ-1 grain 
EtOH 

“” 

Surplus electricity credit -17 g CO2e MJ-1 stover 
EtOH 

“” 

EtOH distribution and 
combustion 
   Grain 
   Stover 

 
 
5 
4 

g CO2e MJ-1 EtOH “” 

EtOH yield 
   Grain 
   Stover 

 
425 
375 

L Mg-1 dry 
feedstock 

“” 

EtOH lower heating value 21.3 MJ L-1 “” 
 
Tillage is modeled in DayCent as a series of equipment passes representative of conventional, 

reduced, and no-till regimes.  The primary effect of simulated tillage is to increase 

decomposition rate of organic matter pools and the mixing of residues into the soil, with more 

intensive regimes causing greater degrees of residue incorporation and stimulation of 

decomposition.  The tillage emissions given in Table 3.2 account for fuel use and equipment 

manufacture for tillage operations.  They were calculated by summing the mean emissions 

factors developed by Lal (2004) for passes by the specific tillage implements simulated for each 

tillage intensity level. 
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The application of N to fields likewise results in emissions that occur within the field and are 

modeled by DayCent (direct and indirect N2O emissions) and substantial embodied emissions 

related to ‘upstream’ manufacture, distribution, and application, not simulated by DayCent, were 

estimated using the mean emissions factors given by Lal (2004). 

Manure supply-adjustment procedure 

Since manure application builds SOC stocks of cropland soils, a farm emissions analysis that 

credits farms with this sequestration leads to a trivial corner case where “best management” 

entails maximal manure utilization.  We avoided this unrealistic conclusion by scaling the 

emissions benefits of each management scenario in proportion to the actual supply-demand 

dynamics that prevail within the Rock County, MN feedlot-cropping landscape (see Appendix 

for a full description).  This approach assumed that all manure produced on feedlots within the 

county would be applied to cropland within the county.  Thus, the aggregate benefits of 

application of the entire supply should be evenly distributed across cropping area in the county, 

and that rate used for crediting the particular area supplying feedstock for bioenergy production.  

Using this “supply-adjustment” procedure, maximal rates of application are no longer necessarily 

optimal since they exhaust the available manure on a small fraction of acres, whereas lower rates 

may sequester more manure C in aggregate by building SOC stocks more gradually. 

The emissions from stover cutting, baling and stacking operations were estimated from values 

given by Wang et al. (2013).  We also assumed stover kept at the field edge would be uncovered 

and lose 14.8% of its dry mass before transport to the biorefinery (Emery, 2013), effectively 

increasing the emissions intensity of the delivered feedstock by a factor of 1.17. 
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Post-farm emissions accounting 

While the detailed modeling for this work concerned farm management variables, post-farm 

emissions components were included in the life-cycle budgets to facilitate comparison of farm 

management effects with other emissions drivers.  These components were taken from mean 

values presented in Wang et al. (2012).  The values for EtOH Production in Table 3.2 assumed 

that the lignin fraction of stover was used to supply heat and energy for the conversion process.  

Land use change accounted for the market-mediated impacts of each feedstock’s allocation to 

EtOH production on cultivation of new land area elsewhere.  The credits for distillers’ grains and 

solubles and surplus electricity reflect emissions displaced by by-products of the conversion 

processes for grain and stover, respectively.  The values for EtOH yield per Mg feedstock and 

lower heating value were used to convert emissions from an areal to energy basis (referred to 

here as emissions intensity), allowing direct comparison with life-cycle emissions from fossil 

energy sources such as gasoline. 

Marginal vs. mass feedstock allocation 

Since the RFS2 classifies biofuels in part by feedstock type, we explored the implications of 

alternative methods for allocating emissions between grain and stover produced on the same land 

area.  We developed two alternate approaches, referred to as marginal allocation and mass 

allocation, which are described and discussed in the Appendix. 

Net abatement vs. emissions intensity 

We calculated two primary metrics for comparing the full life-cycle impacts of varying 

management scenarios (Table 3.3).  The first, which we refer to as the scenario’s “emissions 

intensity,” was a measure of the FTW emissions generated per MJ of EtOH energy.  The other 
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metric, “net abatement”, was calculated as the total CO2-equivalent life-cycle emissions avoided 

– through displacement of gasoline – per unit cropland area. 

Table 3.3. Metrics used to compare life-cycle emissions impacts between scenarios.  Abatement 
was calculated relative to gasoline emissions of 94 g CO2e MJ-1, from Wang et al. (2012). 

Name Units Description 
Emissions intensity g CO2e MJ-1 FTW emissions per unit of fuel energy yield 
Net abatement g CO2e m-2 Avoided emissions per unit of cropland area 

through displacement of gasoline 
 
USD farm budgets 

We developed monetary farm budgets using a methodology similar to that used for farm 

emissions.  As with emissions, certain input costs were assessed based on survey information 

specific to each farm.  Many other inputs were assessed based on rates dictated by management 

scenarios (e.g., synthetic N).  Finally, some budget items were not clearly related to scenarios but 

could not be calculated from survey responses (eg., land rent), and these items were estimated 

using the default rates and costs from Iowa State University Extension cropping budgets 

(Plastina, 2015).  Further details of the monetary accounting methods can be found in the 

Appendix. 

Results 

Analytical emissions classes 

The life-cycle emissions budgets constructed for this work included three analytically-distinct 

classes of inputs: biogenic emissions (i.e., those modeled by DayCent), survey supply chain 

emissions (i.e., farm inputs based survey responses), and scenario supply chain emissions (i.e., 

farm inputs dictated by management scenarios).  The means and distributions of emissions from 
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these source categories are depicted for all scenarios (Figure A1-Figure A3) and summarized in 

the Appendix. 

Farm-gate emissions budgets 

The field-to-farm-gate (FFG) emissions budgets summarized in Figure 3.1 were calculated for 

each scenario by adding together the scenario supply chain and soil-derived emissions, and the 

average of the farm supply chain emissions.  Those budgets represent the emissions for all farm 

inputs and soil processes for feedstock harvested and ready for transport to the biorefinery.  The 

FFG emissions averaged 141 g carbon-dioxide equivalent m-2 (g CO2e m-2) and ranged from -

112 to 408 g CO2e m-2. 

Field-to-wheels emissions budgets 

Figure 3.2 displays the emissions intensities of EtOH from each management scenario, plotted 

against the net GHG abatement achieved by that management scenario.  Each of the four panels 

shows the same mapping of all 1824 scenarios along with Scenario IDs from several best- and 

worst-performing scenarios (further detailed in Table 3.4).  While emissions intensity and net 

abatement were generally negatively correlated (r = -0.69), these plots show that the correlation 

was far from perfect.  In other words, the scenarios with the lowest emissions per unit of EtOH 

energy were not necessarily the most space-efficient ways to displace a given volume of 

gasoline. 
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Figure 3.1. Means and distributions of the farm supply chain emissions, scenario supply chain 
emissions, scenario biogenic emissions, and total emissions (FFG, sum of other 3 categories).  
Center line indicates mean, box edges indicate 25th and 75th percentiles, whiskers extend to the 
5th and 95th percentiles, and remaining values are plotted as points. Note that the survey supply 
chain emissions box represents 35 farm emissions budgets that are uniform across scenarios, 
while the other boxes represent 1824 scenario budgets that incorporate the same set of survey 
supply chain budgets. 

 
The best-performing scenario for total emissions intensity was ID 565, with emissions of only 

8.0 g CO2e MJ-1 EtOH.  Its net abatement of 416 g CO2e m-2, however, only placed it in the 66th 

percentile of all scenarios.  Conversely, Scenario 640 had the highest net abatement at 639 g 

CO2e m-2 and a total emission intensity of 26 g CO2e MJ-1 EtOH (7th percentile; note that 

percentiles are ranked in ascending order, so that lower percentiles are “best” for emissions 

intensity while higher percentiles are “best” for net abatement).  Thus, Scenario 640 could 

achieve an abatement target on about one-third fewer hectares than Scenario 565, but at the cost 

of substantially higher total emissions.  To a large degree, this reflected the tradeoff between 
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collecting stover, which increased areal energy yield (Scenario 640), versus leaving it on the 

field where its organic C can be sequestered (Scenario 565) and operational emissions can be 

avoided.  The second important difference between these scenarios was their N application rates, 

which were 10 and 15 g N m-2 for scenarios 565 and 640, respectively.  While this was a 

relatively small difference in the context of the full range of N application rates, it corresponded 

to a general inflection point in terms of the simulated yield response curve.  The decreasing 

marginal yield response lead to N uptake ratios (NUR, calculated as N taken up by plant as a 

fraction of total N application) of 1.12 and 0.97 for scenarios 565 and 640, respectively, and N2O 

emissions of 38.3 and 72.4 g CO2e m-2.  

The color coding of panels A-D in Figure 3.2 illustrates several management trends.  The 

roughly linear clustering of points according to their residue removal level (panel A) shows a 

tradeoff between emissions intensity and net abatement.  To shift to a higher level of residue 

removal in Figure 3.2A tends to cause an increase in net abatement (y-axis), due to the greater 

EtOH yield achieved, but also increases the emissions per unit energy (x-axis). 

The high-level patterns in response to manure N fraction (panel B) are not as clear.  In part this 

arises from the fact that the manure adjustment procedure scales back C sequestration savings at 

high manure input rates to reflect the declining proportion of cropland area needed to absorb the 

manure supply.  For N application rates and manure N fractions that call for total manure inputs 

greater than about 5.7 g N m-2 (42% of all scenarios), the adjustment procedure reduced the 

DayCent-simulated C sequestration credit.  Therefore, for high manure input rates, the trends in 

Figure 3.2B deviate somewhat from the raw sequestration dose-response simulated by DayCent.   
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Figure 3.2. Total emissions intensity vs. net GHG abatement achieved for each management 
scenario, with color mapped to residue removal fraction (A), fraction of N from manure (B), 
tillage intensity (C), and total N application rate (D).  Emissions intensities and net abatement 
were calculated from the total emissions and combined EtOH energy yield (grain and stover) per 
unit area of cropland.  Scenario ID numbers from selected scenarios are displayed in their 
approximate position to facilitate comparison with other figures and Table 3.4 and Table 3.5.
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Table 3.4. Management levels for best- and worst-performing scenarios based on several emissions metrics.  Values in parentheses 
indicate the rank percentile (0 = lowest through 100 = highest) achieved by the scenario for the given metric.  Green shading indicates 
“best” quintile of scenarios for a given outcome, while red shading indicates “worst” quintile. 

Scenario 
ID 

N 
Inhibitor 

Rotation/
N Timing 

Total N 
(kg ha-1) 

N Manure 
Fraction 

Tillage Residue 
Removal 

Total Emissions 
Intensity 
(gCO2e MJ-1) 

Net GHG 
Abatement 
(gCO2e m-2) 

Profit 
($ m-2) 

Farm-Gate 
Emissions 
(g CO2e m-2) 

565 Yes CC/Plant 
N 

10 1 No-Till 0 8 (0)  416 (66) -0.044 
(21) 

-112 (0) 

640 Yes CC/Plant 
N 

15 0.4 No-Till 0.75 26 (7) 639 (100) -0.016 
(91) 

66 (24) 

1402 No CC/Split 
N 

5 0.4 No-Till 0.25 27 (9) 275 (26) -0.083 
(0) 

5 (9) 

277 Yes CC/Fall 
N 

20 1 No-Till 0 29 (11) 454 (76) 0.003 
(100) 

-19 (5) 

292 No CC/Fall 
N 

25 0 Conv. 
Till 

0.75 61 (90) 313 (36) -0.032 
(49) 

408 (100) 

289 No CC/Fall 
N 

25 0 Conv. 
Till 

0 91 (100) 20 (0) -0.043 
(23) 

375 (99) 
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Table 3.5. DayCent C dynamics from best- and worst-performing scenarios (same scenarios as in Table 3.4).  Values in parentheses 
indicate the rank percentile (0 = lowest through 100 = highest) achieved by the scenario for the given metric. 

Scenario 
ID 

N 
Inhibitor 

Rotation/N 
Timing 

Total N N Manure 
Fraction 

Tillage Residue 
Removal 

Grain 
Yield 
(gC m-2) 

Stover 
Harvested 
(gC m-2) 

Manure C 
Input 
(gC m-2) 

SOC Change 
Emissions 
(gCO2e m-2) 

565 Yes CC/Plant N 10 1 No-
Till 

0 535 (19) 0 (13) 102 (84) -226 (3) 

640 Yes CC/Plant N 15 0.4 No-
Till 

0.75 654 (44) 201 (90) 61 (71) -121 (18) 

1402 No CC/Split N 5 0.4 No-
Till 

0.25 379 (3) 39 (26) 20 (37) -88 (33) 

277 Yes CC/Fall N 20 1 No-
Till 

0 766 (99) 0 (13) 205 (97) -285 (0) 

292 No CC/Fall N 25 0 Conv. 
Till 

0.75 669 (64) 206 (99) 0 (16) 0 (96) 

289 No CC/Fall N 25 0 Conv. 
Till 

0 696 (87) 0 (13) 0 (16) -59 (51) 
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The role of tillage, as shown in Figure 3.2C, is unambiguous: all of the high-performing 

scenarios for emissions intensity and the very best-performing scenarios for net abatement 

utilized no-till management.  By comparison, the best emissions intensities for scenarios using 

reduced till and conventional till management were 29 and 32 g CO2e MJ-1 EtOH.   

Finally, Figure 3.2D shows that N application rate has a tradeoff dynamic similar to that 

observed for residue removal.  Increasing N application – particularly up to the 15 g N m-2 level 

– increases crop growth and EtOH yields.  This came at the cost of increasing marginal N2O 

emissions, however, driving greater emissions intensity. 

Best- and worst-performing scenarios 

Figure 3.3 shows the itemized emissions budgets for the best- and worst-performing scenarios 

detailed in Table 3.4 and Table 3.5, as well as six randomly-selected scenarios.  The scenarios 

here are sorted by their total emissions intensities (indicated by black dots), and range from a low 

intensity of 8 g CO2e MJ-1 EtOH to a high of 91 g CO2e MJ-1 EtOH.  Perhaps most notable from 

this perspective is the large emissions credit achieved by four of the five best-performing 

scenarios for net soil C sequestration.  The second major theme is that emissions due to N 

application, including direct N2O and embodied emissions, are relatively modest for best-

performing (left-most) scenarios but become major sources in the worst-performing (right-most) 

scenarios.  The FFG emissions intensity (brown dots) generally track with the FTW emissions 

intensity, with most exceptions stemming from decreased residue collection rates.  This shift 

improves farm-gate emissions intensity by sequestering more C, but entails a greater fraction of 

energy coming from grain, which has higher post-farm emissions intensity than stover largely 

due to land use change and differences in coproduct credits. 
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Figure 3.3. Full emissions budgets for the best- and worst-performing scenarios featured in Table 
3.4 and Table 3.5 and six randomly-chosen scenarios.  Since many budgets include negative 
emissions from soil C sequestration, FTW emissions intensities are given by black dots and FFG 
emissions intensities are given by brown dots.  A dashed red line indicates the gasoline-
equivalent emissions intensity.  Note that several small emissions sources were consolidated into 
the “Misc. Minor Sources” category to aid in interpretation. 

Biogenic emissions drivers 

Figure 3.4 shows several important relationships driving the wide range of DayCent-simulated 

biogenic emissions.  Panel A illustrates the dominant role of tillage intensity in determining the 
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rate of C sequestration for a given C input rate.  Using the regression equations, we can make 

rough estimates of the “break-even” C input rates (x-intercepts) and sequestration rates (slopes) 

achieved by differing tillage intensities.  The levels of C input required for SOC maintenance 

calculated from those models were 214, 180 and 130 g C m-2 for conventional, reduced and no-

till respectively.  The corresponding CO2-equivalent sequestration rates for inputs above those 

levels would be 0.33, 0.45 and 0.72 g CO2e m-2 g-1 additional C input for conventional, reduced 

and no-till respectively.  These admittedly very rough estimates nonetheless underscore the 

overwhelming importance of C inputs and tillage intensity for explaining the range of FFG 

biogenic emissions budgets presented in this work.  

Panels B and C of Figure 3.4 give closer looks at two management practices that largely 

determine – in conjunction with crop biomass productivity – the rates of C input to these soils.  

In Panel B, the y-axis shows the soil C change emissions for each scenario compared with a 

management-matched scenario with no stover removal.  This is analogous to how the impact of 

stover removal on soil C would be determined in a field experimental setting: by comparing soil 

C change between otherwise identically-managed plots.  The counter-intuitive result in Panel B 

is that stover removal from no-till fields constitutes a larger C loss relative to no removal, 

precisely because of the greater sequestration per unit of C input illustrated by Panel A.  Thus, 

the slopes for the stover opportunity cost regressions (Panel B) are very similar in magnitude, but 

opposite in sign, to the sequestration rate regressions (Panel A). 
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Figure 3.4.  DayCent-simulated biogenic emissions as influenced by relevant management practices. Panel A shows the dominant role 
of tillage intensity and net C inputs in determining rates of soil C sequestration. Panel B shows the difference in C sequestration rate 
between simulations with stover removal and management-matched controls, and how this “opportunity cost” is actually higher under 
less-intensive tillage. Panel C shows the difference between simulations with manure additions and management-matched controls and 
the ability of no-till management to maximize the C sequestration benefits of manure inputs.  Finally, panel D shows the increasing 
direct N2O emissions that occur as N application rates increase and N uptake ratios decrease.
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Panel C shows the DayCent-simulated emissions savings from manure-applied scenarios relative 

to management-matched no-manure scenarios.  As with Panel B, each value was calculated by 

simple differencing of soil C change between corresponding scenario simulation results.  The 

slopes give a rough approximation of the emissions dose-response to manure C input.  By 

comparing the y-values of scenarios in Panels B and C we can get a sense for the levels of 

manure C input required to offset losses from stover removal.  From the standpoint of an LCA, 

however, it should be noted that sequestration derived from manure C inputs does not necessarily 

represent a true emissions reduction.  For this work, that fact was addressed by down-scaling the 

raw simulated soil C emissions credits shown in Figure 3.4C for application rates that would 

exceed the manure supply in the primary study area county (see Methods for details).  This was 

based on the assumption that production scenarios should be credited for manure-derived 

sequestration only in proportion to the fraction of lands in the county that could actually receive 

manure at a given rate. 

Finally, Figure 3.4D shows the direct N2O emissions for each scenario as a function of its total N 

application rate (synthetic and manure N), with point color indicating the scenario’s N uptake 

ratio.  Direct N2O emissions show an increasing trend with considerable spread as N application 

increases, while the N uptake ratio decreases as crop uptake saturates.  Note that very high 

apparent N uptake ratios (>2) were achieved at low N application rates mostly by corn-soy 

scenarios.  The N application rate and N uptake used in these calculations were taken from corn 

years only, so the N fixed and returned as residue by the soy crop was accounted as “free.”  In 

general, scenarios with N uptake ratios significantly above unity are likely not sustainable over 

long periods of time.  Median direct N2O emissions for a given N application rate were 15-40% 
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lower under corn-soy management as compared to any of the continuous corn scenario levels, 

except at the lowest N rate for which corn-soy emissions were slightly higher. 

Dollar costs vs. emissions 

The influences of major scenario management practices on costs and FTW emissions intensity 

are depicted in Figure 3.5.  The relation of costs to stover removal (Panel A) is straightforward: 

as more stover is harvested, energy yield increases and thus costs per energy yield decrease.  

Additionally, stover collection costs themselves were modeled with economies of scale based on 

a cost curve presented by Graham et al. (2007), so unit costs decrease as collection rates 

increase.  Panel B shows that the cost savings due to manure displacement of synthetic N are 

relatively small.  In reality there may be significant savings related to improved soil quality 

impacts on crop production that may not be well-captured by the DayCent simulations.  The 

costs associated with tillage intensity were relatively modest, as reflected by the lack of obvious 

vertical trends in Panel C.  Conversely, the unambiguous emissions savings of no-till affirm 

tillage as a cost-effective measure for reducing emissions wherever agronomically appropriate.  

Total N application rate has a major role both in emissions and energy yield, and a more modest 

role in costs.  The yield effect dominates in Figure 3.5D, with the highest cost-intensity scenarios 

all resulting from clearly suboptimal N application rates.   
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Figure 3.5. Total emissions intensity vs. cost intensity for each scenario, with color mapped to 
residue removal fraction (A), fraction of N from manure (B), tillage intensity (C), and total N 
application rate (D).  Emissions and cost intensities were calculated from the total 
emissions/costs and combined EtOH energy yield (grain and stover) per unit area of cropland.  
Scenario ID numbers from selected scenarios are displayed in their approximate position to 
facilitate comparison with other figures and Table 3.4 and Table 3.5. 

Carbon price impacts 

We also calculated areal net profits for each scenario against a hypothetical EtOH price of $2.50 

gal-1 and several estimates for the social cost of carbon (SCC, underlying assumptions are 

detailed in Appendix).  Figure 3.6 shows areal profits plus abatement premiums for each scenario 

under SCCs of $0.00 (private profits only), $12.37, $43.20, and $65.16 Mg-1 CO2e for panels A-

D, respectively.  The non-zero SCCs given correspond to inflation-adjusted values given by 
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IAWG (2013) for discount rates of 5%, 3%, and 2.5% respectively.  The increased profits shown 

on panels B-D may be thought of as “total profits,” in the sense that they reflect the sum of 

private profits and dollar-valued social benefit (i.e., the abatement premium) derived from the 

EtOH yield produced under each scenario.  

 
Figure 3.6. Profits vs. net emissions abatement for each scenario after accounting for EtOH cost 
savings against gasoline as a function of varying Social Cost of Carbon (SCC) estimates.  The 
SCC estimates are inflation-adjusted values given by IAWG (2013) using discount rates of 5%, 
3% and 2.5% for panels B, C, and D respectively.  Scenario ID numbers from selected scenarios 
are displayed in their approximate position to facilitate comparison with other figures and Table 
3.4 and Table 3.5. 

In the case of a C tax or similar policy, the increased profits in panels B-D would be 

“internalized” and the abatement premium would represent a realized cost advantage between 
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each scenario and gasoline.  Implicit in this accounting is that the market price for EtOH would 

increase the same amount as for gasoline (on an energy basis), so that the lower tax costs faced 

by EtOH would be a pure profit increase.  In reality, the complex, economy-wide adjustments 

that would occur in response to a C price are well beyond the scope of this study.  Thus, the 

profits shown in Figure 3.6 are intended to highlight qualitative trends in management 

profitability rather than make quantitative projections.  

All panels in Figure 3.6 map color to the scenario residue removal rate to emphasize the 

disparate positive impact of increasing SCC on profitability for high levels of residue removal.  

Since the abatement premium is directly proportional to the net abatement achieved by a 

scenario, and high rates of stover removal tend to increase net abatement, these scenarios benefit 

most strongly from a high SCC.  For example, the median net abatement rates were 249, 319, 

397 and 471 g CO2e m-2 for 0, 0.25, 0.5 and 0.75 removal rates, respectively.  When these 

abatement rates were monetized using the highest SCC estimate of $65.16 Mg-1 CO2e, the 

resulting abatement premiums were 0.016, 0.021, 0.026, and 0.031 $ m-2, respectively.  As can 

be seen by comparing Panels A and D in Figure 3.6, the slight profitability advantage of high 

residue removal scenarios with no SCC transforms to a substantial advantage with an SCC of 

$65.16 Mg-1 CO2e.  Over that interval, the proportion of scenarios with residue removal rates of 

0.75 being net profitable goes from 0% to 66%.   

Discussion 

Best practice scenarios 

The results presented here support the contention that bioenergy life-cycle emissions are strongly 

influenced by farm management.  The FTW emissions intensity of scenarios varied more than 
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10-fold, from a low of 8.0 to a high of 91 g CO2e MJ-1 (see Table 3.4).  At the same time, 

defining a single “best management” scenario is complicated by important tradeoffs.  As shown 

by Figure 3.2 and Table 3.4, the lowest emissions intensity scenario (ID 565) used a low N 

application rate of 10 g N m-2, resulting in grain yields in the 19th percentile of all scenarios.  In 

contrast, the scenario that achieved the greatest net abatement vs. gasoline (ID 640) used 15 g N 

m-2 and removed 75% of corn residues, both of which served to increase EtOH energy yield.  

Perhaps the most practical drawback of scenarios such as ID 565 relates to the bottom line, 

however. As Figure 3.6 shows, scenario 565 is unprofitable even after accounting for the largest 

SCC estimate (panel D).  By contrast, scenario 640 is moderately unprofitable without a C price 

(panel A) but at the two highest C prices is substantially profitable and among the best-

performing scenarios.   

Study design choices 

Several important caveats pertain to the results presented here.  The accounting method used to 

scale manure-derived emissions involved a number of simplifying assumptions.  First, we 

assumed that feedlots would bear the burdens (costs and emissions) for transporting and applying 

manure to farm fields.  While there are promising alternatives to direct land application, such as 

anaerobic digestion or composting, Ribaudo et al. (2003) indicate that direct land application 

remains the primary disposal method.  We also assumed that farms would realize the benefits or 

costs from manure biogenic emissions following application.  At the same time, we considered 

the “alternative fate” for manure application on a given farm to be land application to a nearby 

operation, resulting in equivalent emissions.  This conceptual framework required a somewhat 

arbitrary boundary beyond which manure would not be transported.  We chose the county within 

which most of the surveyed farms were located: Rock County, MN.  Biogenic emissions from 
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manure were then scaled based on the fraction of Rock County cropping acres that would be 

manured at the scenario-specified rate to absorb the annual Rock County manure supply.   

Most of these conceptual choices followed from our interest in summarizing the emissions 

associated with feedstock supplied to the Gevo, Inc. biorefinery.  Scaling in this way reflects the 

aggregate impacts on those feedstock emissions that would occur if feedstock suppliers were a 

random sampling of Rock County producers.  It underestimates the incentives that may be faced 

by individual farmers to accept manure application to their land if a C price were applied to 

agricultural C sequestration.  It also fails to account for the marginal reduction in transport 

emissions achieved when a farmer accepts manure, against the alternative of the manure being 

transported to the next-most-distant farm.  While such emissions are a part of the interlocking 

feedlot and cropping landscape, the competition among feedlots for croplands described by 

Ribaudo et al. (2003) indicates that feedlots presently bear these costs as a part of their business 

model. 

The DayCent simulations used to model biogenic emissions and crop productivity did not 

explicitly replace N removed with stover.  As a result, scenarios with stover removal generally 

suffered small productivity declines (around 5% of aboveground biomass) vs. management-

matched no-removal simulations.  Compared with studies that assume full N replacement, this 

has a few implications.  First, the lower biomass yields reduce energy yield and thus increase 

emissions and cost intensity metrics.  At the same time, removal scenarios were not charged for 

emissions and costs associated with replacing removed N.  Also, since the management levels 

were simulated in a full factorial analysis up to a high N application level of 25 g N m-2, removal 

scenarios with higher N input rates should be functionally equivalent to what would be achieved 
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with a lower specified input rate plus N replacement.  For instance, the highest levels of N 

removal as residue were around 2.2 g N m-2.  Thus, as long as the equilibrium N input rate for a 

given scenario without removal was less than ~23 g N m-2, the top N input rate scenario would 

be sufficient to replace residue N removals. 

Crop rotation effects 

The effects of continuous corn vs. corn-soy rotations were difficult to compare.  With the sole 

exception of soil C change emissions, all emissions and costs for corn-soy rotations given here 

were from corn years only.  Soy years were considered entirely separate to avoid complicated 

assumptions relating to the value of the soy crop in terms of emissions displacement and market 

value.  While soybeans can be used as feedstock for biodiesel production, there was no 

indication that this was a significant pathway in the Luverne, MN supply area.  Soil C change 

emissions were averaged across the 12-year period before removing soy year data points, so that 

corn years and soy years shared this component equally.  This was done to avoid crediting corn 

with the very large, transitory increases in soil C that occur due to the much larger C input from 

corn residues vs. soy residues.  A similar procedure was not used for soil N emissions, since it 

would have pushed significant fractions of the emissions from corn fertilization onto the more N-

efficient soy crop. 

Soil C dynamics 

The soil C change dynamics were a major determinant of scenario performance in this work.  Of 

the 1824 management scenarios considered, only 72 showed net soil C losses.  All of those 72 

included at least 0.5 residue removal and none employed no-till or derived 100% of N from 

manure.  The only scenarios removing less than 75% of residues to lose soil C were fertilized at 
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the minimum rate of 5 g N m-2.  On the basis of the DayCent results, then, any reasonably 

productive management regime would be able to maintain or increase soil C stocks in these soils. 

There are a variety of agronomic considerations that are not fully represented by DayCent, 

however.  Wind and water erosion may be increased under residue removal.  A sampling of work 

from sites around the U.S. Midwest summarized by Wilhelm et al. (2007) found that continuous 

corn sites under moldboard plow and conservation tillage required biomass cover of 3.11 and 

0.65 Mg ha-1, respectively, to control water erosion.  Corresponding values for corn-soy cropping 

were 7.98 and 0.96 Mg ha-1, respectively.  All thresholds for wind erosion were lower than those 

for water erosion.  No scenarios in this work were below the relevant thresholds for conservation 

tillage (even applying it to no-till scenarios), but 138 and 96 conventional-till scenarios fell short 

of the moldboard-plow thresholds for corn-soy and continuous corn rotations, respectively.  

While these constraints are not explicitly simulated by DayCent, the soil C advantages of no-till 

illustrated by Figure 3.4 strongly favor reductions in tillage intensity that, if adopted, would 

comfortably avoid problematic thresholds. 

Changes in SOC for a given scenario would not continue indefinitely.  Indeed, the net gains in 

SOC achievable in annual temperate cropping systems are typically the reversal of decades or 

even centuries of SOC decline caused by cultivation.  Paustian et al. (1997) estimate that upland 

soils worldwide have lost approximately 43 billion Mg of SOC due to cultivation, and that 

roughly two-thirds of that amount could potentially be recovered through best management.  

Implicit in these estimates is the understanding that SOC stocks are the result of an equilibrium 

between C inputs (residues, exudates, organic amendments) and losses (harvest, decomposition, 

erosion).  So in contrast to the “permanent” emissions reductions realized by displacing gasoline 
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or avoiding N2O fluxes, the credits given for C sequestration are temporally limited and 

conditional on continued good management.  Paustian et al. (1997) give a broad SOC stock 

estimate for undisturbed temperate grassland soils of 155 Mg C ha-1.  The median SOC stocks 

from all scenario simulations for this work was 63 Mg C ha-1, implying historic losses on the 

order of 90 Mg C ha-1.  The median value for SOC change across scenarios was 0.18 Mg C ha-1 

yr-1.  If we take the low-end estimate of Paustian et al. (1997) that one-half of historic losses (45 

Mg C ha-1) are recoverable through improved management, the median rate of C sequestration 

given would take more than 250 years to reach its “best management” plateau.  At the highest 

simulated sequestration rate, 1.25 Mg C ha-1, the plateau would be reached in about 36 years.  

Since this process is likely to be non-linear, the greatest gains from a given management change 

will occur in the first several years, with diminishing sequestration over decades to centuries. 

Soil N dynamics 

The crop productivity response to N generally leveled off at 15 g N m-2, with small yield 

increases (~1-2%) between 15 and 20 g N m-2.  There was a notable exception among scenarios 

with high rates of manure N utilization and low tillage intensity.  Among many such scenarios, 

the yield increase between N input rates of 15 and 20 g N m-2 was as high as 10-15%.  

Examining related DayCent outputs, these scenarios also showed relatively high levels of net N 

mineralization and low levels of mineral N stocks. This makes sense, since significant fractions 

of manure N are in organic forms unavailable to crops until mineralized, and low tillage intensity 

may lower mineralization rates and reduce the amount mineralized in time for crop uptake.  

Whatever the mechanism, these results suggest that use of no-till and manure N increase optimal 

N input rates closer to 20 g N m-2, relative to more conventional management. 
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Direct N2O fluxes simulated by DayCent, expressed as a percent of total applied N (emissions 

factor, EF) ranged from 0.54% to 1.9% with a median of 1.2%.  These values generally agreed 

well with the IPCC Tier 1 estimate of 1% (de Klein et al., 2006).  In most contexts the lowest 

EFs were achieved at N application rates of 10 g N m-2, although the combination of no-till and 

high manure N fractions yielded minimum EFs at higher N input rates.  This may also be related 

to the gradual mineralization of manure N better matching mineral N supply with crop demand 

and reducing mineral N stocks available for N2O production. 

Cost budget considerations 

The cost budgets presented here were built primarily with unit costs from Iowa State University 

extension farm budgets (Plastina, 2015).  Many of these costs are highly variable in space and 

time, including some of the largest items such as land rent and capital costs.  The literature 

estimates for the cost of feedstock conversion to EtOH are likewise subject to large changes 

attributable to technological progress and economies of scale.  The effective market price for the 

final EtOH fuel is linked to the notoriously volatile market for transportation fuel and changing 

government subsidy policies.  Finally, the SCC estimates used represent a consensus of three 

well-established Integrated Assessment Models (IAMs) but remain extremely sensitive to the 

choice of discount rate used for weighting future damages (IAWG, 2013).  The cost and profit 

estimates given are therefore intended to qualitatively relate farm management with profitability, 

with an emphasis on relative trends within the management space. 

Conclusions 

Defining a clear best-practice management scenario for these farms is difficult, but this study 

makes clear several important trends.  Perhaps the most consistently beneficial practice 



68 
 

considered was no-till management.  No-till promoted soil C sequestration in virtually all 

scenarios, reduced embodied and fuel emissions, and has been shown elsewhere to reduce 

residue input requirements to control erosion (Wilhelm et al., 2007).  The potential 

complementarities between stover removal and manure inputs apparent in this modeling have 

been specifically corroborated by analogous field studies (Fronning et al., 2008; Thelen et al., 

2010).  In sum, these scenarios showed a large amount of swing potential, with plausible 

permutations of farm management driving FTW emissions intensities ranging from 10% to 100% 

those of gasoline (Figure 3.3).  To realize this potential, future bioenergy feedstock 

classifications must consider not only crop species and end-product but also major farm 

management practices. 
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CHAPTER 4. CROP RESPONSE TO WARMING AND [CO2]: WHAT DO WE KNOW AND 

HOW DO WE KNOW IT? 

Agronomy, Scale and Climate Change 

Projections of agricultural vulnerability to climate change rely heavily on process-based crop 

models (Parry et al., 2004; Porter et al., 2014; Elliott et al., 2015).  These models are calibrated 

to reproduce specific crop growth and yield formation processes in a dynamic way, making them 

capable of capturing impacts from conditions that exceed historical ranges.  Two prominent 

features of climate change – elevated atmospheric [CO2] (eCO2) and extreme heat exposure – are 

of particular interest, as they are likely to have temporally-increasing, opposing impacts on yield 

in many locations.  The responses of major crops to each of these factors have been well-studied 

in isolation and can be broadly reproduced by crop models.  Their combined impacts, and 

interactions with other climatic and agronomic factors, are only beginning to be widely studied 

and tested in models.  This paper summarizes current understanding of crop responses to eCO2 

and high temperatures and emphasizes areas of continuing uncertainty. 

Agronomic studies of crop responses to environmental conditions span a range of spatial and 

temporal scales, from experiments with single plants over part of the growing season to global 

analyses of decades of yield data.  Heat stress and [CO2] have long been studied at relatively 

small scales (e.g., growth chamber and greenhouse environments) that facilitate a high degree of 

experimental control and mechanistic insight into the processes involved.  Crop yield is strongly 

influenced by processes that are poorly represented at these scales, however, and so considerable 

effort has been devoted to developing systems for study of climate change factors in open fields 

(Hendrey et al., 1993; Nijs & Kockelbergh, 1996; Kimball, 2005).  However, even field 
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experiments may fail to account for yield variability arising from varying farm management, 

edaphic factors and low-frequency extreme weather events.  Statistical analyses of historical 

yield and weather records encompass these factors and provide an important means of 

independently constraining effect estimates extrapolated from experimental results.  Figure 4.1 

depicts the relative strengths and weaknesses of field experiments and statistical analyses at a 

variety of spatial and temporal scales. 

 
Figure 4.1. Complementary strengths (green, diagonal arrows) and weaknesses (red, diagonal 
arrows) of agronomic studies as a function of spatial and temporal scale.  At the smallest scales, 
single plants are studied for a season or less under highly-controlled conditions, allowing for 
precise causal insights.  Experiments with crops grown at plot-scale in open-air conditions are 
less controlled, but integrate important ecosystem processes.  Finally, statistical analyses of 
large-scale yield and weather data incorporate the highest orders of complexity but are 
susceptible to spurious associations. 

Crop models quantify and propagate agronomic understanding across scales.  Hence, they are 

vital tools for integrated assessment modeling (IAM) exercises, which project crop yields under 

future climate change scenarios.  Most of these models were formulated for specialized research 
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applications at a time before climate change impacts were commonly studied in open-field 

conditions and have been only sporadically updated to incorporate key findings (Rötter et al., 

2011). 

The objectives of this paper are to survey the recent empirical literature on yield responses of 

three major crops (maize, soybean, wheat) to eCO2 and elevated temperatures.  In particular, it 

seeks to compare major findings from “bottom-up” experimental research with those derived 

from “top-down” statistical analyses of historic yield and climate data.  The former are the 

foundation of the agronomic knowledge encapsulated in crop models, while the latter provide the 

only direct measures of yield response at the scales of interest to IAMs. 

Field Experiments with [CO2] 

CO2 enrichment methodologies 

A number of experimental studies of the effects of eCO2 on growth of agricultural crops were 

conducted in the 1960s and ‘70s, and were comprehensively reviewed by Kimball (1983).  Most 

of these experiments were conducted in greenhouses and growth chambers and included 437 

paired observations and 24 different species.  After adjusting for the differing enrichment 

concentrations employed, Kimball (1983) found a yield enhancement of 33% for a doubling of 

[CO2].  While he acknowledged the potential for differences in response between crops grown in 

growth chambers and those grown in open fields, he suggested for a variety of reasons that the 

greenhouse results included a “large conservative bias.”  Later reviews of the enclosure-based 

eCO2 literature by Allen et al. (1987) and Cure & Acock (1986) found mean yield responses of 

31% for soybean and 41% across 10 crop species, respectively. 
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The use of eCO2 results from enclosure studies to make projections at field and larger scales is 

subject to various criticisms including the distorting effects of enclosures on temperature, light, 

wind, vapor pressure deficit, and pests and disease (Kimball et al., 1997; Long et al., 2006).  The 

small scale of enclosure treatments also magnifies the influence of relatively small measurement 

errors and edge effects.   

These concerns can be partially addressed through the use of fumigation within open-top 

chambers (OTCs), which allow plants to grow in open fields with unrestricted rooting and 

minimally-altered lighting (Rogers et al., 1983).  The cylindrical chamber barrier inevitably 

impedes airflow, alters vapor pressure deficit, and raises interior temperatures, however 

(Hendrey & Kimball, 1994). 

In response to these and other limitations, free air CO2 enrichment (FACE) systems were 

developed, with the first published results appearing in the early 1990s (Hendrey et al., 1993).  

Thanks to their larger scale and lack of physical barriers, FACE systems better reproduce the 

aerodynamic coupling, light interception, rooting volumes, and exposure to biotic stressors 

experienced by field crops (Ainsworth & Long, 2005).  Large FACE experiments have their own 

limitations compared with enclosure methods, however, including greater temporal fluctuations 

in [CO2], and practical constraints which limit  the degree of [CO2] enrichment (Ziska & Bunce, 

2007). 

The results from FACE experiments align qualitatively with those from enclosure studies, 

although they debatably show responses of lower magnitude.  Long et al. (2006) compared crop 

yield responses adjusted to 550 ppm from enclosure and FACE studies.  They found an average 



73 
 

yield response of 13 and 0% for major C3 and C4 crops under FACE, respectively, vs. 31.5 and 

18% under enclosure enrichment.  Likewise, Long et al. (2005) found that model-based 

projections overestimated yield stimulation relative to FACE observations.   

Tubiello et al. (2007) challenged the preceding interpretations in a way that illustrates several 

important considerations.  They noted that many of the endpoints reported for FACE 

experiments are mechanistically linked (e.g., grain yield, aboveground biomass (AGB), 

photosynthesis), and so they should not be treated as independent observations in significance 

tests for a “true” difference in effect size between methods.  When adjusting for this dependence, 

Tubiello found that the odds of the data presented by (Long et al., 2006) occurring by chance in 

the absence of a “true” difference between methods were non-trivial (P = 0.16).  Tubiello et al. 

(2007) also took issue with the procedure used to scale differences in reference and enriched 

[CO2] between FACE and enclosure studies. Specifically, they found that by fitting a curve to 

disaggregated (rather than pooled, as used by Long et al., 2006) enclosure observations the 

scaled enclosure results were considerably closer to FACE results.  Other recent work has found 

statistical evidence of a publication bias in the primary FACE literature that may underlay a 20-

40% exaggeration of crop responses to eCO2 (Haworth et al., 2016).  These discrepancies 

underscore the sensitivity of inter-experiment comparisons to seemingly minor analytical 

choices, particularly in the relatively data-sparse and unsettled realm of FACE experiments. 

An additional source of confusion stems from the fact that observations often considered 

together as “enclosure” results are in fact derived from several experimental paradigms.  Ziska & 

Bunce (2007) sought to address this by analyzing non-FACE observations separately according 

to more specifically defined experimental approaches, including growth chambers, glasshouses, 
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soil-plant-atmosphere research (SPAR) units, temperature gradient tunnels (TGTs) and OTCs.  

After scaling results using a beta factor adjustment to reflect reference and enriched [CO2] of 370 

and 700 ppm, respectively, they found that results from all non-glasshouse enclosure types were 

not significantly different from FACE results for yields of rice, wheat or soybean. 

Further difficulties in comparing results between FACE and enclosure studies include 

differences in ambient and enriched [CO2] and the practice at some early FACE studies of 

fumigating only during daylight hours.  The best way to avoid these complications would be to 

directly compare OTC with FACE plots in the same experiment.  One such comparison studied 

cotton and wheat grown in OTC and FACE conditions in Maricopa, AZ.  It found no significant 

difference between OTC and FACE for cotton in terms of the eCO2 AGB response ratio (RR, 

quantity at eCO2/quantity at aCO2), but the absolute AGB was roughly 30% higher in the OTC 

versus the FACE plot.  In contrast, the wheat crop showed similar absolute AGB and relative 

AGB response to eCO2 across methods (Kimball et al., 1997).  The only other published side-by-

side comparison between FACE and OTC grew wheat and soybean for two years using both 

enrichment methods.  For soybean, the yield effect of eCO2 was 49% under OTC versus only 

27% under FACE.  For wheat, the effect was 15-30% under OTC versus a non-significant effect 

under FACE.  The reasons for the consistently higher eCO2 effect under OTC were not clear, but 

may have resulted in part from the larger variability in [CO2] within FACE plots (Bunce, 2016). 

The following sections present major findings from FACE experiments with maize, soybean, and 

wheat.  Since many of these findings have been well reviewed elsewhere (Leakey et al., 2009; 

Vanuytrecht et al., 2012; Bishop et al., 2014; Kimball, 2016), the focus will be on concisely 

highlighting areas of consensus and uncertainty for each crop. 
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Maize  

Theory predicts that photosynthesis of crops using the C4 pathway should be insensitive to the 

direct effects of rising [CO2], since rubisco activity in the bundle sheath cells is CO2-saturated 

and rates of photorespiration are minimal (Leakey, 2009).  Plant sensing of intercellular [CO2] 

(ci), however, has the potential to reduce stomatal conductance and thereby reduce soil water 

depletion and drought stress in response to eCO2.  This water-sparing effect has been observed 

using C4 crops in both enclosure (reviewed in Leakey, 2009) and FACE (Ottman et al., 2001; 

Leakey et al., 2006; Manderscheid et al., 2014) experiments.  In most cases, FACE experiments 

showed substantial (30-40%) reductions in stomatal conductance for eCO2-grown C4 crops and 

smaller reductions in season-long evapotranspiration (ET; Conley et al., 2001; Hussain et al., 

2013).  As a result, C4 crops (maize and sorghum) showed increases in photosynthesis, AGB, 

grain yield, and especially water-use efficiency (WUE) under eCO2 when subjected to significant 

drought stress (Ottman et al., 2001; Leakey et al., 2006; Markelz et al., 2011; Manderscheid et 

al., 2014).  Under well-watered conditions, stomatal conductance was still reduced but 

photosynthesis and grain yield were unaffected (Leakey et al., 2009).  Analysis of maize grain 

quality corroborated this trend, with drought stress quality impacts less severe for eCO2-grown 

plants (Erbs et al., 2015).  The only FACE study to test the interaction between N supply and 

eCO2 in maize found no significant N-by-[CO2] interaction effect on yields (Markelz et al., 

2011).  While FACE experiments with annual C4 crops to date have convincingly demonstrated 

the impacts of eCO2 on photosynthesis and water relations, impacts on other quantities such as 

belowground C allocation and whole plant N relations are unclear and should be investigated 

further under open-air conditions. 
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Soybean 

As a C3 crop, soybean yields would be expected to benefit directly from increased photosynthetic 

rates as well as indirectly from improved water relations.  A substantial body of FACE research 

substantiates these theoretical predictions (Morgan et al., 2005; Bernacchi et al., 2007; Lam et 

al., 2012a; Ruiz-Vera et al., 2013; Bishop et al., 2015; Bunce, 2016).  A detailed analysis of 

soybean energy fluxes across four seasons found that ET was reduced on average by 12% in 

response to an eCO2 of 550 ppm (Bernacchi et al., 2007).  ET reductions were somewhat smaller 

in percentage terms than reductions in gs owing to a negative feedback, whereby reduced latent 

heat flux increased canopy temperature and relatively increased water loss.  Soybean yield RRs 

based on 22 observation pairs and six publications at three FACE sites had an average of 1.14 

and a standard deviation of 0.13 (Table 4.1). 
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Table 4.1. Average changes in yield, AGB and season evapotranspiration (ET) observed under 
FACE treatments relative to ambient controls. 

Crop Effect % Change 
Under FACE 

Standard Error Paired FACE 
Observations 

Sources 

C4 Yield 4.1% 4.7% 9 (Conley et al., 2001; 
Ottman et al., 2001; 
Leakey et al., 2006; 
Hussain et al., 2013; 
Ruiz-Vera et al., 
2015) 

AGB 4.3% 2.3% 9 
Season ET -5.1% 2.4% 8 

Soybean Yield 14% 4.4% 10 (Morgan et al., 
2005; Bernacchi et 
al., 2007; Lam et al., 
2012a; Ruiz-Vera et 
al., 2013) 

AGB 20% 3.1% 7 
Season ET -12% 1.8% 4 

Wheat Yield 18% 2.5% 54 (Kimball et al., 
1995; Hunsaker et 
al., 2000; Jamieson 
et al., 2000; Weigel 
et al., 2005; Norton 
et al., 2008; Hoegy 
et al., 2009; Lam et 
al., 2012b, 2012c; 
Cai et al., 2015; 
Nuttall et al., 2015; 
Fitzgerald et al., 
2016; Houshmandfar 
et al., 2016) 

AGB 21% 2.2% 38 
Season ET -1.3% 1.2% 8 

 
Recent research is beginning to shed light on the sources of variability in soybean response to 

eCO2.  Bishop et al. (2015) tested 18 soybean cultivars for two years, and a subset of nine 

cultivars for four years, at the soybean FACE facility in Champaign, IL.  Across the full set of 

cultivars, RRs ranged from 1.00 to 1.20.  Within the subset of cultivars grown for four years, 

yield RRs for a given cultivar were relatively consistent across years.  This implies that some of 

the large variability in yield RRs across studies may be related to choice of cultivar.  It also 
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provides the first evidence that within-species responsiveness to eCO2 under FACE may be a 

heritable trait and thus subject to improvement through breeding.  Analysis of cultivar physical 

traits showed that yield response to eCO2 was negatively correlated with plant height (R2 = 0.66) 

and positively correlated with the AGB response to eCO2 (R2 = 0.69; Bishop et al., 2015). 

Soybeans symbiotically fix N from the atmosphere, and so typically do not receive added N.  

Two studies of soybeans grown under FACE have reported N uptake and root nodule fixation 

responses to eCO2.  In the first (Lam et al., 2012a), eCO2 significantly increased aboveground N 

uptake of two cultivars, but had no effect on C:N ratio.  Using isotope natural abundance, they 

found that N fixation by cultivar Zhonghuang 13 increased significantly under eCO2, whereas 

fixation by cultivar Zhonghuang 35 was unchanged.  Results from a second (Hao et al., 2016) 

study with cultivar Zhonghuang 35 were largely the same, with total N uptake increasing 

sufficiently to maintain C:N ratios.  That study also measured levels of ureides in expanding 

leaves, which are indicators of nodule N fixation.  Since ureide concentrations were unchanged 

under eCO2, the authors inferred that the additional N uptake required to maintain C:N ratios in 

these plants likely came from soil N stocks (Hao et al., 2016).  Thus, at least for certain cultivars, 

growth under higher future [CO2] may increase soybean reliance on soil sources of N. 

Wheat 

A large number of FACE experiments have examined the response of wheat yield to eCO2 

(Kimball et al., 1995; Jamieson et al., 2000; Högy et al., 2009; Lam et al., 2012c; Weigel & 

Manderscheid, 2012; Cai et al., 2015; Fitzgerald et al., 2016; Houshmandfar et al., 2016).  

Across these studies, the average yield RR was 1.18 based on 54 observational pairs (Table 4.1).   
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While most RRs from FACE studies fall under about 1.3, several observations from the 

Australian Grains FACE (AgFACE) facility suggest that relative yield responses can be much 

higher under certain circumstances (Fitzgerald et al., 2016).  That work imposed heat stress 

using a late sowing date, and also used two cultivars and irrigation levels.  Of the 28 RRs 

comparing treatment-matched yields under eCO2 to those under aCO2, ten were at least 1.40 and 

four of these reached at least 1.70.  These high-responding groups included both cultivars, 

normal and late times of sowing, and high- and low-irrigated plots, defying any obvious 

explanations.  The absolute levels of water input at these sites were notably lower than those at 

other FACE study sites, however, leaving open the possibility for complex effects of eCO2 under 

circumstances of more extreme drought stress.  Further study of wheat response to eCO2 under 

relatively severe stress regimes is needed to clarify these observations. 

Fewer data are available regarding wheat water relations under eCO2.  Four years of irrigated 

wheat grown under FACE in Maricopa, AZ generally found reductions in season ET around 5%, 

but with substantial measurement uncertainties (Kimball et al., 1999; Hunsaker et al., 2000).  

Effects on gs were greater, with reported reductions of 32% in Arizona (Wall et al., 2000) and 

18% for dryland wheat in Australia (Houshmandfar et al., 2016). 

Several authors have noted reductions in grain N concentrations for wheat grown under eCO2 

(Kimball et al., 2001; Högy et al., 2009; Myers et al., 2014).  Plausible explanations for this 

phenomenon include (1) simple dilution due to greater C productivity (Poorter et al., 1997), (2) 

reductions in mass flow uptake from soil due to reduced transpiration (McGrath & Lobell, 2013), 

(3) reduced demand due to greater photosynthetic N use efficiency (PNUE; Leakey et al., 2009), 

and (4) inhibition of plant nitrate assimilation due to reductions in photorespiration (Bloom et al., 
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2014).  While none of these explanations are mutually exclusive, a growing body of evidence 

from controlled experiments (Rachmilevitch et al., 2004; Bloom et al., 2010; Asensio et al., 

2015) and follow-up analyses of FACE observations (Cheng et al., 2012; Bloom et al., 2014; 

Myers et al., 2014; Feng et al., 2015) suggest that eCO2 significantly impairs nitrate assimilation 

by C3 crops (Figure 4.2).  This phenomenon has been demonstrated repeatedly in enclosure 

studies of Arabidopsis and wheat, but has also been replicated in a range of other C3 plants and 

contrasted with its absence in multiple C4 and CAM plants (Bloom et al., 2012).  The 

experimental evidence for this inhibition includes increased accumulation of free nitrate in 

leaves, increased rates of CO2 consumption relative to O2 evolution (termed assimilatory 

quotient, AQ), and reduced growth rates of C3 plants grown under NO3- nutrition with either 

eCO2
 or reduced O2 atmospheres.  These effects can be reversed by returning plants to NH4

+ 

nutrition or ambient atmospheric conditions (Rachmilevitch et al., 2004; Bloom et al., 2010).  

The mechanistic dependence of shoot nitrate reduction on photorespiration is unclear, but may 

involve photorespiration’s role in stimulating malate export from chloroplasts to cytoplasm, 

where it generates the NADH needed for the initial reduction of NO3
- to NO2

- (Bloom, 2015a).   
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Figure 4.2. Schematic representation of the connections between atmospheric [CO2], 
photorespiration, and nitrate assimilation in C3 plants as postulated by (Bloom et al., 2012).  
Elevated [CO2] is known to reduce photorespiration in C3 plants, and a body of experimental 
results (discussed in text) suggest that this impairs foliar NO3

- reduction capacity, though the 
precise mechanism is poorly understood.  Ci: leaf intercellular [CO2]. 

Recent syntheses support the importance of this phenomenon for growth of C3 crops under field 

conditions.  Feng et al. (2015) examined the relationship between aboveground net primary 

productivity (ANPP) and AGB N concentration for FACE experiments with annual crops, 

grasslands, and forest ecosystems.  They found that eCO2
 increased N uptake in absolute terms, 

but that many observations and the linear trend indicated a ~10% reduction in N uptake for 

plants showing little to no ANPP response.  This negative intercept was significant for each 

ecosystem type analyzed separately, but was notably absent from experiments involving C3 

legumes and C4 plants.  These findings conflict with the hypothesis that reduced plant N under 

eCO2 is primarily due to simple C dilution.  Cheng et al. (2012) performed a meta-analysis of 

studies reporting plant N utilization and found that eCO2 reduced plant nitrate use and increased 

reliance on ammonium.  They also found in microcosm and field experiments that a C3 grass 
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under eCO2 increased C allocation to arbuscular mycorrhizal fungi (AMF) when grown in soil 

with normal nitrate levels, but not when grown in soil supplemented with a nitrification inhibitor 

to maintain stocks of reduced N (Cheng et al., 2012).  Finally, Bloom et al. (2014) tested wheat 

samples from the 1996 and 1997 growing seasons at the FACE facility in Maricopa, AZ and 

found that eCO2-grown plants had higher proportions of total N as free nitrate and isotopic 15N 

signatures consistent with reduced shoot nitrate assimilation.   

As noted by two recent reviews (Bloom, 2015b; Walker et al., 2016), photorespiration is a costly 

process, reducing CO2 fixation by C3 plants by 20-35%.  The above findings provide a 

compelling case that its inhibition, whether by eCO2 or through deliberate breeding or 

biotechnological manipulations, may have unexpected side effects on plant N relations.  In real-

world growing conditions, plants rely on a combination of nitrate and reduced N forms, and so 

prospective FACE experiments are urgently needed to elucidate the relevance of this 

phenomenon for crops under varying N availability regimes. 

Statistical Measures of [CO2] Effect 

It would be valuable to constrain experiment-derived projections with empirical estimates of CO2 

response from historic farm yield data.  An initial effort to disentangle yield response to [CO2] 

from other time trends examined yield data for the top 20 national producers of wheat, rice and 

maize for the period 1958-2002 (Lobell & Field, 2008).  Mean results from that analysis aligned 

with experimental estimates, but included wide confidence intervals due to the relatively small 

role of yearly [CO2] increment in inter-annual yield variability.  A follow-up study used a 

different approach to estimate CO2 fertilization effects for maize and soybean each under well-

watered and water-stressed conditions (McGrath & Lobell, 2011).  They estimated that the ~73 
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ppm increase in [CO2] from 1960 to 2009 increased yields under water stress by 9% and 14% for 

maize and soybean, respectively, though estimates for individual states varied widely.  Thus, 

attempts at independently corroborating eCO2 experimental results using historic yield trends 

have had some success and, if refinements in methodology and data quality could further reduce 

background noise, this approach would provide much-needed quantification of yield responses 

integrated across large scales and varied stress regimes. 

Field Experiments with Crop Warming 

Compared with eCO2, the effects of extreme heat exposure on crop yield are both more familiar 

and more variable on short timescales.  Heat waves have afflicted crops throughout agricultural 

history, with impacts ranging from merely transitory growth reduction to outright failure.  The 

disparity in outcomes is related to several factors, including the severity, duration, and 

phenological timing of heat stress events and interactions with other stressors, particularly water 

stress (Lobell & Gourdji, 2012).  Controlled experiments offer mechanistic insights into these 

phenomena and can illustrate causal linkages.  The extrapolation of experimental heat stress 

impacts to large spatial and temporal scales, however, involves large uncertainties related to how 

stress impacts interact and how heat exposures themselves will vary.  Statistical analyses of 

historical yield data provide an independent approach to impact prediction that is complementary 

to experimental studies in many ways.  The following sections explore heat stress impacts on 

crop yield as understood from these “bottom-up” and “top-down” perspectives. 

Warming methodologies 

Experimental studies of heat stress have overwhelmingly relied on enclosures for imposition of 

temperature treatments.  In response to a set of concerns with enclosures similar to those that 
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prompted the development of FACE technology, including distorted micrometeorology, limited 

rooting volume, and edge effects, a growing number of experiments are using infrared heaters to 

raise canopy temperatures in open-air field environments in an analogous technique termed free-

air temperature increase (FATI; Nijs & Kockelbergh, 1996) or, alternatively, temperature free-air 

controlled enhancement (T-FACE; Kimball, 2005).   

Several micrometeorological details are important to the design and interpretation of open-air 

heating experiments.  As described by Kimball (2011), the technique of heating crop canopies to 

a constant level of temperature rise using infrared heaters increases temperatures of the canopy 

itself and the soil surface by roughly the amounts expected under climate change physics.  It 

does less to increase air temperatures above and within the canopy.  Increased foliage 

temperatures without a concomitant increase in water vapor pressure of surrounding air reduces 

relative humidity faced by IR-warmed plants, whereas most climate change projections indicate 

roughly unchanged relative humidity (Amthor et al., 2010).  While this difference can be 

mitigated somewhat in irrigated crop systems by supplying additional water to the heated plots 

(Kimball, 2005), the associated increase in soil water depletion may be a significant confounding 

factor for experiments in rainfed systems. 

It is also important to note that some experiments have used infrared heaters set to a constant 

heat flux rather than thermostatically controlled to achieve a constant temperature rise.  

Calculations by Kimball (2005) indicate that such a design will typically achieve much larger 

temperature increases at night than during daylight hours.  Constant flux designs may thus be 

adequate for circumstances in which reduced diurnal temperature range (DTR) is anticipated, but 

recent analyses find little support for reduced DTR in most regions (Amthor et al., 2010). 
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IR-driven constant temperature increases closely represent expected increases in mean growing 

season temperatures.  However, if the inherent variability in temperature changes under climate 

change, then heat stress exposure may be under- or over-estimated by experiments for any given 

mean temperature increase.  For instance, Orlowsky & Seneviratne (2012) analyzed global 

circulation model projections produced for the IPCC fourth assessment report.  They found that 

in some regions and seasons, including Southern Europe, the Mediterranean, and the Central US, 

daily maximum temperatures (Tmax) at the 90th percentile increased at twice the rate of those at 

the median (50th percentile).  Likewise, Teng et al. (2016) found that Great Plains summer daily 

temperature anomalies would have an increase in standard deviation of roughly 20% by end of 

century compared with recent historical variability.  This increase in extremes would cause 

significantly greater heat stress than that produced by constant temperature increase treatments 

against current weather conditions.  Increases in critical temperature exposure under hypothetical 

uniform warming vs. increased variability are illustrated in Figure 4.3 using historical data from 

Urbana, IL.  As can be seen from the expected exceedances given in each panel, changes in the 

distributional mean and standard deviation increase critical temperature exposures in a non-linear 

fashion, with variability playing a smaller but non-negligible role. 

While extreme levels of temperature increase may be achievable using fully open-air IR heating 

(Kimball, 2011 suggests up to 10°C), in practice these conditions are produced using permanent 

enclosures or open-air plots with temporary enclosures in place during heat treatments only.  

Thus, heat stress experiments to-date have produced either the uniform increase in growing 

temperatures or the isolated episodes of extreme heat expected under climate change, but not 

both together.  Attempts should be made to experimentally combine these distinct phenomena to 

determine whether their combined effects are more or less than simply additive. 
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Figure 4.3. Summer daily maximum temperatures for Urbana, IL, averaged over the period 
1990-2014 (top-left, bars), compared with a normal curve model of observed (top-left, line) and 
changing heat exposures under simple climate change scenarios.  Intra-seasonal variability 
increases left-to-right across panels, while uniform warming is depicted top-to-bottom.  Critical 
temperatures for corn (35°C; red) and soybean (39°C; green) are marked with vertical dashed 
lines, and expected summer days exceeding each threshold are given in the same color text.   

Maize 

Temperature thresholds at which heat stress begins vary depending on crop species, cultivar, 

growth phase, and other interacting stressors.  Nevertheless, so-called cardinal temperatures have 

been identified for major species that show reasonable agreement across experiments where 

temperature is the only significant stressor.  Hatfield et al. (2011) reviewed the agronomic 

literature and found that maize had optimal yield formation in the range 18-25°C, and 

experienced reproductive failure when subjected to temperatures in excess of 35°C.  In a similar 

analysis, Sánchez et al. (2014) estimated optimal temperatures of 28, 31, and 26°C for vegetative 

growth, anthesis, and grain filling phases, respectively.  They found corresponding maximum 
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temperatures (at which growth and/or yield formation effectively halt) of 39, 37, and 36 C, 

respectively.   

Those cardinal temperatures were empirically determined by observing the response of yield and 

other long-term crop outcomes to temperature.  A distinct approach was taken by Parent & 

Tardieu (2012), who performed a meta-analysis of measurements of underlying crop process 

rates and their responses to temperature.  For eight diverse lines of maize, they found a consistent 

synchronization of normalized rates of growth processes including leaf elongation, cell division, 

shoot elongation, and leaf appearance rate for a range of temperatures.  Rates of each process 

peaked at 30.8°C with little variation across maize lines and declined to reach half of their peak 

rates at 20.8 and 38.2°C.  The lack of genetic differences in growth process responses to 

temperature between lines from temperate and tropical regions suggests that breeding for yield 

under hotter growing seasons will have to rely on other, more genetically-variable traits 

including plant maturity length, tolerance to extreme high temperatures, and water use 

efficiency.   

Experimental work with maize delineates its vulnerabilities to late-season heat.  Hatfield (2016) 

grew three hybrid maize cultivars in chambers maintained at ambient outdoor (Ames, IA, USA) 

temperature or ambient +4°C.  Two of the three cultivars achieved greater vegetative AGB under 

the +4°C temperature regime, but grain yields were severely reduced, and two cultivar-years 

suffered complete yield failure.  The author indicated that was caused by the effect of increased 

nighttime temperatures on leaf senescence rates and overall length of the grain-filling period.  

This work underscores the critical importance of understanding sensitivities of maize 

reproductive processes to extreme, but not implausible future temperature regimes. 
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Rattalino Edreira & Otegui (2012) studied the role of heat stress at three different reproductive 

growth phases in temperate and tropical maize cultivars.  Maize was grown for two years in 

open-field conditions, with field-chamber heating treatments (33-40°C daytime temperature) 

applied for the 15 days preceding anthesis, 15 days starting at onset of silking, or the first 15 

days of active grain filling.  They found severe growth reductions during heating under all 

treatments, but only modest to moderate reductions in total AGB.  The two earliest heating 

treatments reduced yield primarily through reductions in kernel set, leading to sink limitation.  

The latest treatment reduced yield – particularly in the temperate genotype – by reducing the 

length of grain-filling and radiation-use efficiency during grain-fill (Rattalino Edreira et al., 

2011; Rattalino Edreira & Otegui, 2012). 

The interacting impacts of heating (2.7°C above ambient) and eCO2 on maize grown under open-

air conditions has only been reported once.  As expected, there were no significant effects of 

eCO2 on photosynthesis or yield when compared with aCO2 plots subjected to the same 

temperature (i.e., ambient temperature or heated).  Heating was found to reduce photosynthesis 

during the hotter, second half of the growing season, leading to reductions in grain yield but not 

total AGB (Ruiz-Vera et al., 2015).  This corroborates the findings of Hatfield (2016) and 

Rattalino Edreira & Otegui (2012) that heating seems to be primarily damaging to reproductive 

processes in maize. 

Soybean 

Hatfield et al. (2011) report soybean optimal temperature ranges of 25-37°C and 22-24°C for 

vegetative and reproductive growth, with yield failure at 39°C.  Relatively few studies have 

examined soybean heat response under open-air conditions.  Ruiz-Vera et al. (2013b) grew 
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soybeans for two seasons under factorial combinations of open-air heating (2.7°C above 

ambient) and eCO2.  Heating reduced photosynthesis relative to [CO2]-matched plots in both 

seasons, with the reduction being significantly more pronounced in 2011 (ambient Tavg: 18.2°C) 

than in 2009 (ambient Tavg: 16.7°C).  Seed yield showed a similar response, with no significant 

average change under heating in 2009 and a 33% reduction under heating in 2011.  Interestingly, 

the heating and eCO2 treatment had modestly lower yield than the heating-only treatment in 

2011, possibly reflecting the effects of reduced stomatal conductance and a consequent 1°C 

increase in mid-day canopy temperatures in the eCO2 plots (Ruiz-Vera et al., 2013).   

Another open-air experiment at the SoyFACE facility exposed soybeans to 3-day heat waves 

(6°C above ambient) at various reproductive phases during two seasons (Siebers et al., 2015).  

All heat waves produced transient oxidative damage and reductions in photosynthesis and gs, but 

yield reductions were only significant under heat waves timed during early pod development. 

Wheat 

Wheat has lower optimal temperature ranges than corn or soybean, estimated at 20-30°C for 

vegetative and 15°C for reproductive growth (Farooq et al., 2011; Hatfield et al., 2011).  Its 

response to current and future temperature regimes is additionally complicated by the fact that 

winter varieties are at risk of damage from extreme low temperatures, which may be alleviated 

by the same trends that aggravate late-season heat stresses (Barlow et al., 2015).  A substantial 

number of open-air warming experiments have begun to delineate wheat response to heat 

stresses of varying timing, duration, and severity under field conditions. 
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When constant heating treatments are imposed on a background of optimal or above-optimal 

ambient temperature, yield losses result.  Cai et al.(2015) grew wheat plants under FACE and 

infrared canopy temperature elevation (2°C above ambient, using infrared heaters) in Jiangsu, 

China.  The effect of heat on yield was negative in all cases, with losses ranging from 17-21%. 

Temperature elevation treatments also accelerate wheat phenological development, which may 

actually reduce exposure to damaging temperatures.  Tian et al. (2012) grew wheat under open-

air heating arrays for five seasons in Nanjing, China.  Heating shortened the time to anthesis by 

an average of 10 days and increased yield by 16.3%.  This gain was attributed to a combination 

of more favorable early spring temperatures for vegetative growth and reduced exposure to heat 

and drought stress due to the earlier timing of the reproductive phase. 

As mentioned previously, infrared heating of canopies will inevitably also raise VPD and plant 

water stress under conditions of water scarcity.  Fang et al. (2013) grew wheat in open-field 

conditions and applied several treatments, including infrared heating, heating and delayed 

sowing, or heating and increased irrigation.  Yield was reduced relative to control by both 

heating only (9.0%) and delayed sowing with heating (21.2%), but was not significantly different 

when heating was accompanied by 20% increased irrigation. 

Perhaps the most comprehensive implementation of constant temperature elevation combined 

uniform heating with 12 staggered sowing dates in Arizona, USA (Ottman et al., 2012).  They 

found that grain yield decreased by 7.1% per 1°C above the post-anthesis average temperature of 

21.9°C.  The effect of infrared heating varied widely depending on planting date, however, with 
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no effect on yield of winter plantings, positive effect on yield of late fall plantings, and negative 

effect on yield of late spring plantings. 

Constant temperature increase experiments provide vital information on crop responses to mean 

warming, but do not simulate the increasing incidence (due to larger variation around the mean) 

of extreme heat expected in some regions.  Several open-air experiments have been conducted to 

isolate the effects of such extremes. 

Liu et al. (2016) grew potted wheat plants in an open-air field except for specific time intervals 

of imposed heat stress within a phytotron.  Treatments included most combinations of two 

cultivars, four growing seasons, two stress timings (anthesis and 10 days after anthesis), two 

stress durations (three or six days) and four stress levels (Tmin/Tmax of 17/27, 21/31, 25/35, 

29/39°C).  They found that every thermal unit above 30°C reduced yields by 1.5% when applied 

at anthesis and 1.15% when applied at grain filling. 

Nuttall et al. (2015) grew two wheat cultivars under FACE conditions and used a mobile 

chamber to impose three-day heat stress (38°C daytime) either three days prior to anthesis or 15 

days after anthesis.  Heat applied before anthesis reduced yield by 0.22% per degree-hour above 

32°C for cv. Scout, but had no impact on yield of cv. Yitpi.  Stress applied after anthesis had no 

significant effect on yield in either cultivar. 

Talukder et al. (2014) grew several cultivars over two years in field conditions and used a mobile 

chamber to impose a single 3-h heat stress (35°C) near flowering or during early grain set.  Yield 

reductions across years, cultivars and stress timings ranged from 8% to 35%, with cv. Janz 
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showing the greatest yield losses.  Stress-induced losses were significantly greater in 2009 (24%) 

vs. 2010 (12%), possibly due to the hotter and drier baseline conditions in 2009 causing 

increased canopy temperatures and damage to pollen and ovaries.  Averaged across all cultivars, 

heat stress reduced post-heading duration by 11 days in 2009 and eight days in 2010, and post-

heading duration was a strong predictor of grain yield. 

Statistical Measures of Crop Warming Effect 

The complex patterns of heat stress faced by field crops across large spatial and temporal scales 

cannot be fully represented within an experimental context.  Fortunately, unlike [CO2], the 

inherent variability of heat events – particularly across space (Lobell & Burke, 2010) – provides  

a relatively strong signal for quantification by empirical analyses of historical weather and yield 

data.  These studies give an independent, and in many ways complementary, perspective on the 

role of heat in crop yield. 

Maize 

The role of high temperatures as a major driver of historic corn yield variability was highlighted 

by a 2009 study that used an unusual weather dataset to detect pronounced, nonlinear yield 

declines with exposure to high temperatures (Schlenker & Roberts, 2009).  That work predicted 

yield in part based on cumulative season exposures to each 1°C temperature interval, and found 

that corn yields declined steeply with increasing exposure to temperatures above 29°C.  A 

subsequent re-analysis, using an updated dataset, added VPD as a predictor and found it to be 

roughly as strong a negative predictor as the extreme temperature metric (Roberts et al., 2012).  

Associated work using a dynamic crop model corroborated the importance of high-VPD 
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exposure as a driver of corn yield loss.  Results suggested that a 2°C warming was roughly twice 

as damaging to yield as a 20% reduction in precipitation (Lobell et al., 2013).   

Other authors have noted strong yield impacts of coincident water scarcity and high 

temperatures.  Anderson et al. (2015) used a process-based crop model (EPIC) to simulate 

historic soil water content for rainfed maize in the US Midwest from 1980-2012 and used 

estimated soil water as a predictor for their statistical model.  Their analysis found that water 

status played a major role in determining heat stress impacts, with a 1°C temperature increase 

causing 6-10% yield losses under high water availability but 27-32.5% under low water 

availability.  This work in the temperate, high-yielding US Midwest aligns with a similar 

analysis using data from maize yield trials in sub-Saharan Africa, which estimated each degree-

day above 30°C caused 1% and 1.7% yield losses under well-watered and drought conditions, 

respectively (Lobell et al., 2011). 

The causal relationships between extreme heat, soil water depletion, and resulting yield loss in 

these types of studies are unclear.  As noted by Basso & Ritchie (2014), hot days tend to co-

occur with drought conditions due in part to a lack of evaporative cooling (Mueller & 

Seneviratne, 2012).  Thus, measures of extreme degree-days may actually be signals for time 

spent under water scarcity, and season rainfall omits important drivers of soil water (runoff, 

drainage, early-season stored water) and so may obscure the primacy of water status for yields. 

This problem was addressed by Urban et al. (2015), who included daily Tmax as well as 

precipitation (“supply”) and VPD (“demand”) during a 30-day period representing reproductive 

growth in models of 1995-2012 maize yield in Iowa and Illinois.  The interaction between supply 
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and demand was a significant, robust predictor of yields, with the effect of VPD becoming more 

pronounced in low-precipitation seasons. 

Most empirical studies have either ignored crop growth phase or used relatively coarse 

approximations such as 30-day periods.  Butler & Huybers (2015) included county-level USDA 

data on maize development along with various weather variables and found yield sensitivity to 

killing degree-days (KDD, degree-days above 29°C) was four times greater during early grain 

filling than during vegetative growth.  While this difference is well-established from 

experimental work, its magnitude indicates that omission of growth phase information from 

statistical models may substantially reduce their explanatory value. 

Existing adaptation of maize cultivars and management further complicates attempts to derive 

fixed heat-yield relationships.  Butler & Huybers (2013) found that the sensitivity of US maize to 

KDD was much higher in low-KDD northern regions versus high-KDD southern regions.  

Likewise, they and others found that counties employing irrigation showed significantly lower 

sensitivity than neighboring rainfed counties.   

A detailed analysis of irrigated maize contest yields by Carter (2015) found that VPD and 

precipitation were strongly inversely correlated, and that the highest yields were positively 

correlated with VPD and negatively correlated with precipitation.  This appears to conflict with 

the previously-discussed findings of VPD as a negative predictor of maize yield (Fisher et al., 

2012; Lobell et al., 2013), but it more likely reflects the altered correlation structure of 

intensively-managed, irrigated crop systems as compared to that of fields under “ordinary” 

management.  For instance, two other strong positive predictors of yield were cumulative 
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radiation and long-season cultivars (Carter, 2015), both of which may increase exposure to 

drought stress under rainfed conditions.  The broad mechanisms underlying relationships 

between VPD and water supply are depicted in Figure 4.4.  Since large-scale yield analyses tend 

to include area under varying management intensities, sound interpretation of their results can be 

difficult and must consider these kinds of correlation structures. 

 
Figure 4.4. Conceptual diagram summarizing the interactions between irrigation status, VPD and 
maize yield important to interpretation of statistical climate-yield analyses (e.g., Roberts et al., 
2012; Anderson et al., 2015; Carter, 2015).  High VPD typically co-occurs with sunny days, 
which induce water- and heat-stresses in rainfed plants (A) but support maximal C-fixation and 
transpirational cooling when water is not limiting (B).  Cloudy, low-VPD conditions cause light 
limited photosynthetic rates while also limiting transpirational cooling under rainfed (C) or 
irrigated (D) conditions.  Thermometers indicate canopy temperature relative to air temperature.  
Water droplets indicate soil water supply. 
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Soybean 

An early analysis of US corn-soy acreage found that Midwestern yields increased in cooler 

years, while Northern Plains yields increased in warmer years (Lobell & Asner, 2003), 

underscoring the importance of baseline climate for anticipating trends in crop temperature 

response.  A useful high-level perspective on global crop distributions was provided by Lobell & 

Gourdji (2012).  Their analysis combined major producing countries of six crops with their 

average growing season temperatures and presented them relative to the crop-specific optima 

estimated by Hatfield et al. (2011).  Maize production in the US was grown at an average 

temperature of 19.5°C, modestly above the optimum of 18°C.  Soybeans in the US, by contrast, 

were grown at a slightly higher season average temperature of 21°C, modestly below the 

optimum of 22°C.  A later study found that soybean had the lowest historical (1980-2011) 

exposure to critical high temperatures (above 39°C) among maize, soybean, wheat and rice 

(Gourdji et al., 2013).  This resulted primarily from the impressive heat tolerance of soybean, 

with a critical temperature of 39°C versus 35°C for maize (again based on Hatfield et al., 2011). 

These analyses indicate that soybean yields are under less immediate threat of losses to extreme 

heat than maize. 

Lobell & Field (2007) estimated the effect of historic climate change on soybean yield.  When 

considering the 1981-2002 time-frame, the effect of the warming trend on yields was non-

significantly positive.  However, when the effect was estimated separately for each decade from 

1961-2002, a pattern emerged from the second (1971-1980) through fourth (1991-2001) decades 

of increasingly negative climate effects.  A similar pattern was found for maize, but with more 

severe losses (~20%) in the latest decade as compared with soybean (~5%). 
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Similar effects have been discerned even in relatively cool growing regions.  Kucharik & Serbin 

(2008) studied county corn and soybean yields in Wisconsin, on the northern edge of the US 

Corn Belt.  They found that historic yields of both crops were maximized during cooler, wetter 

years, with warming likely reducing yield trends by 5-10% from 1976-2006.  Taken together, 

these results suggest that soybean may have fared better than maize under climate change to-

date, but that both crops are likely to sustain greater losses as warming accelerates. 

Wheat 

A key consideration for wheat response to climate warming concerns the opposing effects of 

reduced exposure to cold in the autumn and earlier spring development versus earlier and more 

severe summer heat waves.  Tack et al. (2015) studied the impact of temperature on yields of 

rainfed winter wheat as reported from the Kansas Performance Test trials.  They found a 

substantial beneficial effect of fall warming on yield due to the reduced incidence of frost 

damage and increased time for growth before onset of dormancy.  However, this benefit was 

outweighed by the negative effect of spring warming under most uniform seasonal warming 

scenarios.  In addition, they concluded that the longer grain-filling periods of recent, high-

yielding varieties were more vulnerable to heat-induced losses than older, lower-yielding 

varieties.  A later analysis of these data confirmed this tradeoff as a feature related to genetic 

clusters of wheat varieties (Tack et al., 2015b).  On the other hand, Rezaei et al. (2015) found 

strong trends of increasing spring and summer temperatures in Germany from 1951-2009 had 

shifted wheat heading dates forward by an average of 14 days and that this offset the potential 

increases in heat stress exposure around anthesis.  Lobell et al. (2012) studied the relations of 

ordinary and extreme (>34°C) thermal time to growing season length of Indian wheat using 

satellite observations.  Their calculations indicated that a 2°C temperature rise would accelerate 
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senescence by an average of nine days and reduce yields by 15-20%.  While adoption of 

cultivars with shorter phenological durations and/or use of earlier sowing dates may reduce 

wheat exposure to extreme heat in temperate climates, growing regions with weaker seasonality 

(i.e., tropical regions) will have even smaller scope for adaptation through these kinds of 

changes. 

Gourdji et al. (2012) examined a large set of climate and yield data from mostly-irrigated wheat 

yield trials at 349 locations worldwide.  They found that reproductive stage temperatures above 

12°C reduced yields, and yield responded negatively to increased temperature during the grain-

filling period, throughout the dataset, with particularly steep declines when accompanied by low 

VPD conditions.  This last point aligns with the previously-mentioned findings in maize (Butler 

& Huybers, 2015; Carter, 2015) that irrigation tends to mitigate yield loss at high temperatures 

and shifts VPD from a negative to a positive predictor of yield.  One likely mechanism for this 

shift involves the role of soil water in supporting transpirational cooling of crop canopies.  For 

example, (Siebert et al., 2014) compared air temperature and canopy temperatures for rainfed 

and irrigated rye in Germany.  They found canopy temperatures ranged from 6°C below to 8°C 

above air temperatures, with sandy rainfed fields usually above air temperature, and loamy 

irrigated fields usually below. 

CO2, Heat and Process Models 

Process-based models are the primary tools used in most large-scale projections of climate 

change impacts on crop yield, including the IPCC AR5 (Porter et al., 2014).  In principle, these 

models are able to capture complex interactions between eCO2 and heat, but the algorithms used 
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to simulate underlying phenomena vary widely (reviewed by Tubiello & Ewert, 2002; Eyshi 

Rezaei et al., 2014). 

CO2 and heat stress in current crop models 

As touched on previously, major crop models account for direct eCO2 effects on yield through 

one of two mechanisms.  The more mechanistic algorithms simulate photosynthetic biochemistry 

as given by Farquhar et al. (1980, 1982) and therefore include atmospheric [CO2] as an input to 

their systems of equations.  The more empirical algorithms employ an experimentally-derived 

CO2 fertilization multiplier on daily photosynthesis or growth (reviewed by Tubiello & Ewert, 

2002). 

A similar divide exists for the simulation of eCO2 effects on water use.  Mechanistic approaches 

calculate leaf energy balance on sub-daily time-steps and adjust stomatal conductance to 

optimize C fixation (Ball et al., 1987; Collatz et al., 1991).  Empirical approaches utilize an 

experiment-based multiplier on daily transpiration or transpiration efficiency (TE). 

Heat stress algorithms are more varied.  In part this results from the broader array of plant 

processes that are directly dependent on temperature as compared to [CO2].  Most crop models 

use the thermal time concept to scale phenological development based on temperature, for 

example.  By reducing the calendar duration of the grain-filling phase (under high temperatures) 

without a proportional increase in grain-filling rate, these systems can indirectly capture a major 

impact of heat on yield (e.g., CERES-maize: López-Cedrón et al., 2005; CERES-wheat: Boote et 

al., 2011).  Likewise, models that explicitly estimate maintenance respiration may capture heat-

induced yield reductions via temperature-dependent respiratory C losses (e.g., GAEZ model: 
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Leemans & Solomon, 1993; LPJ models: Bondeau et al., 2007).  For models that use radiation 

use efficiency (RUE) for simulating photosynthesis, a composite limitation factor commonly 

stands in for the temperature sensitivities of several underlying physiological processes including 

photosynthesis, photorespiration, maintenance respiration, and possibly also heat stress per se 

(EPIC models: Sharpley & Williams, 1990; DayCent: Parton et al., 1998). 

Several models use algorithms explicitly designed to account for heat stress effects, mostly 

focused on flowering and grain-filling dynamics.  One approach is to have cultivar-specific 

cardinal temperatures for specific yield formation processes and phases (CERES-Wheat: 

Alderman et al., 2013b).  Heat-induced reductions in grain number are difficult to simulate but 

could account for sink limitations to yield that may be missed by source-oriented algorithms 

(APSIM-maize: Jin et al., 2016).  A less explicit way of approximating reproductive heat 

damage is to reduce harvest index as a function of near-anthesis critical heat exposure (CropSyst: 

Stockle et al., 2003; PEGASUS: Deryng et al., 2014).  The methods for simulating extreme heat 

and CO2 fertilization in several major crop models are described in Table 4.2. 
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Table 4.2. Summary of simulation approaches accounting for effects of [CO2] and heat stress 
employed by models participating in the Global Gridded Crop Model Intercomparison (GGCMI; 
Rosenzweig et al., 2014) and selected others.  RUE: empirically derived multiplier on crop 
radiation use efficiency; TE: empirically derived multiplier to reduce crop transpiration; PS: 
[CO2] enters directly into equations describing photosynthetic biochemistry; gs: [CO2] enters 
directly into equations describing regulation of stomatal conductance; Respiration: C losses to 
respiration increase non-linearly with temperature. 

Model CO2: 
Production 

CO2: 
Transpiration 

Heat Stress Model 
Type 

Reference 

EPIC & 
GEPIC 

RUE TE Temp limits RUE-
based biomass gain 

Site-
based 

(Sharpley & 
Williams, 1990; 
Kiniry et al., 
1992; Liu et al., 
2007) 

IMAGE-
GAEZ 

RUE -- Respiration  Agro-
ecologic
al zone 

(Leemans & 
Solomon, 1993) 

LPJ-
GUESS & 
LPJmL 

PS gs Respiration DGVM (Smith et al., 
2001; Bondeau 
et al., 2007) 

DSSAT 
(CERES-
maize, 
CERES-
wheat, 
CropGro-
soybean 

RUE;  
soy: PS 

TE;  
soy: gs 

Differential temp 
response curves for 
reproductive 
processes and 
development rates; 
grain number 
reduction 

Site-
based 

(Jones et al., 
2003; López-
Cedrón et al., 
2005; Boote et 
al., 2011; 
Alderman et al., 
2013) 

PEGASUS RUE TE Near-anthesis heat 
exposure reduces 
yield 

DGVM (Deryng et al., 
2014) 

CropSyst RUE TE Heat during 
flowering reduces 
harvest index 

Site-
based 

(Stockle et al., 
2003) 

DayCent RUE TE Temp limits RUE-
based biomass gain 

Site-
based 

(Parton et al., 
1998) 

APSIM RUE TE Temp limits RUE-
based biomass gain, 
grain fill rate, and 
grain number 

Site-
based 

(Keating et al., 
2003; Jin et al., 
2016) 
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There is an increasing emphasis on testing and comparison of process models, with particular 

focus on their ability to capture crop responses to well-studied climate change factors (Asseng, 

2013; Bassu et al., 2014; O’Leary et al., 2015; Deryng et al., 2016; Jin et al., 2016).  Some of 

these studies include experiments expressly designed to generate the kinds of well-controlled, 

dose-response relationships that can readily inform specific model processes (Asseng et al., 

2014; Cai et al., 2015; Liu et al., 2016a, 2016b).  These efforts are vitally important for 

evaluating and improving the accuracy of process models and underlying algorithms for 

projection of climate change impacts. 

Emerging themes for crop model improvement 

As open-air experiments and empirical studies of climate change become increasingly 

sophisticated, their focus is shifting from quantifying first-order effects of single factors (e.g., 

growth stimulation by eCO2; yield impact of hot seasons) to elucidating complex interactions 

between these and other factors.  The results of these studies are beginning to identify important 

ways in which climate change factors interact with one another and with other agronomic 

factors.  Process-based crop model development should continue to explore ways of simulating 

these second-order climate change effects. 

The reduced transpiration under eCO2 reduces latent heat flux and increases canopy 

temperatures.  This effect caused an average warming of 0.7°C in FACE crop canopies versus 

controls in the experiments reviewed by Kimball (2016).  Significant efforts have already been 

made to develop and compare algorithms for estimating canopy temperature itself, including 

empirical versus energy-balance methods (Webber et al., 2015) as well as testing the utility of 

simulated canopy temperature versus air temperature for estimating heat stress and final yield 
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(Gabaldon-Leal et al., 2016; Webber et al., 2016).  Wheat canopy temperature goodness of fit 

was similar between empirical algorithms and energy balance methods with correction for 

atmospheric stability conditions, though use of canopy temperature to drive heat stress only 

modestly improved yield prediction (Webber et al., 2015).  Similar work with a single maize 

model using an energy balance approach found that canopy temperature substantially improved 

final yield prediction relative to air temperature, though similar improvement could be achieved 

using air temperature together with a higher stress threshold temperature (Gabaldon-Leal et al., 

2016).  While canopy temperature simulation is a substantial challenge, the increasing incidence 

of hot, dry conditions and reduced latent heat flux from eCO2 crops justify continued effort to 

account for this important variable (Boote et al., 2011; Siebert et al., 2014). 

The interactions of eCO2 and heat with crop N dynamics are unclear.  The phenomenon of 

photosynthetic acclimation has been frequently observed in diverse plants grown under eCO2 

(Ainsworth & Rogers, 2007).  One mechanism underlying acclimation may be sink limitation, in 

which excess non-structural carbohydrates accumulate due to accelerated C fixation and 

downregulate Rubisco levels.  Sink limitation has been found to worsen under conditions of low 

N supply (Ainsworth & Long, 2005).  For wheat and other non-leguminous C3 crops, the 

compromising effect of eCO2 on leaf nitrate reduction (Bloom et al., 2012) could conceivably 

exacerbate sink limitation by creating effective N shortages even where soil nitrate is ample.  

The relative contributions of these mechanisms must be clarified for accurate model processes to 

be developed.  At present, most models that make any adjustment of N relations under eCO2 

lower the amount of N required for growth.  This reflects a general interpretation of reduced 

foliar N concentrations as resulting from increased N use efficiency.  However, if plants under 

eCO2 have impaired NO3- assimilation ability, as discussed earlier, such processes will 
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overestimate yields of N-limited crops, particularly for situations where reduced N forms are 

scarce.  In that case, models would need to account for the chemical form of N fertilizer (as 

stressed by Bloom, 2015a) as well as soil N transformations.  Further research is urgently needed 

to determine whether acclimation of photosynthesis results from sink limitation, impaired nitrate 

assimilation, or some combination of these and other factors. 

The reduction in stomatal conductance and resulting increases in canopy temperatures under 

eCO2 are well-established in theory and experimental observation of well-watered crops.  Under 

conditions of drought, eCO2 crops would be expected to maintain adequate soil water and full 

transpiration longer than aCO2 crops and thus avoid some stress exposure.  In keeping with this 

understanding, most FACE studies (Kimball et al., 1995; Conley et al., 2001; Leakey et al., 

2006) and at least one meta-analysis (Bishop et al., 2014) have found that eCO2 effects on yield 

are equal or greater among water-limited treatments versus well-watered controls.   

Recent work with soybean in Illinois has complicated understanding of this water-sparing effect, 

however.  Using FACE in combination with rainfall exclusion structures over three years, Gray 

et al. (2016) found that eCO2 treatments did not have greater soil water than aCO2 treatments 

when subjected to reduced precipitation.  In general, eCO2 plants showed greater LAI 

development and reduced water use during vegetative growth, but then used as much or more 

water as aCO2 plants in the hotter, drier conditions prevalent during reproductive growth 

(summarized in Figure 4.5).  While much of this late-season water use was driven by the greater 

LAI of eCO2 plants, Gray et al. (2016) also found that eCO2 plants responded more strongly to 

drought-induced abscisic acid signaling, resulting in more gs reduction than aCO2 plants.  FACE-
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treated plants also had greater proportions of N-fixing root nodules in shallow, dry soil layers, 

apparently compromising N fixing activity. 

These results underscore the considerable challenges faced by modelers attempting to predict 

crop yield responses to climate change factors.  The findings of Gray et al. (2016) demonstrate 

that the near-universal positive effect of eCO2 on yield of C3 crops can vary dramatically (yield 

RR range: 0.95-1.32) based on complex interactions between vegetative development, timing of 

heat and precipitation, and root depth distribution.  Importantly, the trend they observed of 

declining eCO2 fertilization with increasing water limitation is contrary to conventional 

understanding and the results of several previous FACE studies (Kimball et al., 1995; Conley et 

al., 2001; Leakey et al., 2006). 

While existing modeling approaches, such as scalars on daily production and transpiration or 

RUE declines at high temperature, are reasonable for capturing broad average responses, future 

development should focus on explaining and replicating these temporally-sensitive, multi-

factorial interactions. 
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Figure 4.5. Conceptual diagram of interacting climate factors based on the results of Gray et al., 
(2016) for soybean grown under FACE using rain-exclusion treatments.  Elevated CO2-grown 
plants (A) have enhanced C-fixation and LAI development during vegetative growth, 
accompanied by modestly reduced water losses and increased canopy temperatures (relative to 
ambient [CO2], B).  Under well-watered conditions, elevated [CO2] continues to sustain greater 
C fixation and yields are enhanced (C relative to E).  Under drought conditions, the greater LAI 
of the eCO2-grown plants depletes soil water supplies and, combined with other factors (see 
text), reduces or abolishes any yield enhancement (D relative to F).  Thermometers indicate 
canopy temperature relative to air temperature.  Water droplets indicate soil water supply. 

Conclusions 

Crop breeding efforts and model-based climate impact assessments depend on reliable, empirical 

understanding of crop responses to heat and eCO2.  Whenever possible, these responses should 

be verified independently through both field experimentation and careful analysis of historical 

data.  Experiments are necessary to tease out subtle mechanistic details, but are unable to capture 

the full range of real-world management, climate and edaphic features that integrate across space 

and time to determine large-scale yields.  Statistical approaches face the complementary 

challenge, beginning with data that include these emergent trends but demanding thorough 
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understanding of mechanistic linkages to separate and correctly interpret signals.  The recent 

convergence of statistical and experimental findings on crop responses to concurrent heat and 

drought is encouraging in this regard.  Notwithstanding a few early efforts (Lobell & Field, 

2008; McGrath & Lobell, 2011), knowledge of eCO2 effects is mostly limited to experiments, 

but as atmospheric [CO2] continues to rise and statistical methods are further refined, this 

approach may eventually constrain experimental estimates of eCO2 effects in a similar way. 

Most widely-used crop models incorporate CO2 fertilization and heat stress-related processes 

that account for climate impacts in broad outline.  Two recent analyses found that yield 

projections from crop modeling studies and statistical studies of historical yields show 

substantial agreement (Liu et al., 2016c; Lobell & Asseng, 2017).  The greater complexity 

revealed by recent experimental work, however, provides a basis for development and testing of 

more granular algorithms.  These more mechanistic representations are of particular importance 

for temporal ranges (such as the late 21st century) and locations (such as the tropics) where 

regimes of interacting stressors may frequently exceed normal historical ranges.  Process models 

exist to apply knowledge gained from experimental research, and they are our best tools for 

quantifying the implications of these new results for agricultural productivity under the 

unprecedented conditions crops will face in coming decades. 
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CHAPTER 5. MODELING CROP RESPONSE TO INCREASING ATMOSPHERIC [CO2] 

Introduction 

Crops face unprecedented levels of atmospheric [CO2] 

Atmospheric carbon dioxide (CO2) concentrations have increased from approximately 278 ppm 

at the start of the Industrial Revolution to greater than 400 ppm at present (Meinshausen et al., 

2011).  According to the Representative Concentration Pathways (RCPs) used in the 

Intergovernmental Panel on Climate Change’s (IPCC) 5th Assessment report (AR5; Hartmann et 

al., 2013), atmospheric [CO2] is likely to range between 443 and 541 ppm by 2050, and between 

421 and 936 ppm by 2100 (Meinshausen et al., 2011).  Recent analysis of emissions trends 

suggests near-term [CO2] have tracked toward the upper end of the RCP ranges (Friedlingstein et 

al., 2014).  Thus, in the foreseeable future, the [CO2] encountered by terrestrial plants will be 

higher than at any time since the late Tertiary – more than two million years ago (Pearson & 

Palmer, 2000).  Since CO2 is an essential – and often rate-limiting – input to photosynthesis for 

all plants, this change has major implications for agricultural production in the 21st century. 

Early CO2 enrichment experiments 

It was widely realized in the 1960s that greenhouse plants could be made more productive by 

increasing the [CO2] within the greenhouse.  Thus, the earliest large review of plant responses to 

eCO2 (Kimball, 1983) included a wide range of specialty and commodity crops grown in small, 

tightly regulated enclosures.  It found an average yield enhancement of 33% for a doubling of 

[CO2].  Subsequent reviews found similar responses for soybean (31%; Allen et al., 1987) and 10 

major crop species (41%; Cure & Acock, 1986). 
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Crop model [CO2]-response processes 

The CO2 response algorithms in major crop models, including the EPIC (Stockle et al., 1992) 

and DSSAT (Peart et al., 1989) families of models, were originally calibrated using growth and 

yield responses derived from enclosure studies.  The reviews by Cure & Acock (1986) and 

Kimball (1983) were also cited by Metherell (1992) in his development of a CO2 response 

process for the monthly Century biogeochemical model.  Specifically, for a doubling of [CO2], 

his process used multiplicative scalars to increase both monthly biomass production and 

maximum carbon-to-nitrogen (C:N) ratio of new biomass by a factor of 1.3 for C3 crops, while 

reducing monthly transpiration by a factor of 0.77 for both C3 and C4 crops.  This process was 

maintained when Parton et al. (1998) created the daily time-step version of Century known as 

DayCent. 

Ainsworth et al. (2008) considered simulations by five dynamic crop models (mC-Wheat, 

Demeter, LINTUL, AFRC and Sirius) recreating the 1992-94 Maricopa wheat FACE 

experiments.  They found the average modeled vs. observed responses to be 1.18 vs. 1.08 under 

well-watered conditions and 1.28 vs. 1.18 under water-stressed conditions, respectively, leading 

them to conclude that models parameterized against enclosure results overestimate [CO2] 

responses observed under FACE.  Others have contested this view, however, pointing out 

various difficulties in comparing enclosures with FACE experiments (Tubiello et al., 2007).  For 

instance, the broad category of “enclosure” experiments conceals several experimental 

paradigms, including growth chambers, glasshouses, soil-plant-atmosphere research (SPAR) 

units, temperature gradient tunnels (TGTs) and open-top field chambers (OTCs; Ziska & Bunce, 

2007).  In addition, the level of “elevated” [CO2] employed by enclosure experiments (often 

double the ambient level, or about 700 ppm) has tended to be higher than that employed by 
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FACE experiments (often 550 ppm), necessitating a relatively arbitrary choice of mathematical 

scaling for effect size comparisons (Ainsworth et al., 2008a). 

Additional crop responses to eCO2 

After increases in aboveground biomass (AGB) and yield, the most widely-reported impact of 

eCO2 on crops is a decrease in stomatal conductance (gs) and, to a lesser extent, season 

evapotranspiration (ET) (Cure & Acock, 1986; Drake et al., 1997; Kimball & Bernacchi, 2006; 

Leakey et al., 2009).  The smaller relative decreases in ET result from negative feedbacks, 

whereby reductions in gs lead to reduced latent heat flux, raising canopy temperatures and thus 

marginally increasing the transpiration rate.  At the same time, to the extent that eCO2 

accelerates AGB growth, the increase in total leaf area may feed back to increase total 

transpiration.  Bernacchi et al. (2007) found that soybean grown under eCO2 over four years 

averaged 10% lower gs, 0.5°C higher midday canopy temperature, and 8.6% lower ET than the 

control.  Maize grown at the same facility displayed (3-year averages) 9% lower season ET and 

0.5°C increased canopy temperature when grown under eCO2.  The Maricopa wheat FACE 

experiment likewise reported a 0.6°C increase in canopy temperatures for the eCO2 vs. ambient 

treatment (Kimball et al., 1995).  Despite the potential for negative feedbacks, Vanuytrecht et al. 

(2012) found that water productivity of FACE crops showed significant increases of 23 and 27% 

with respect to AGB and yield, respectively.  

Several enclosure and FACE studies have reported an effect of eCO2 on crop nitrogen (N) 

concentration or acquisition.  In their review of the FACE literature, Kimball et al. (2002) found 

an average reduction of 16% in the nitrogen (N) concentration of AGB for C3 grain crops.  

However, when expressed as a total amount of N, the reduction was 0.4%, not significantly 
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different from 0. A large review of results from 75 enclosure studies found that tissue N 

concentrations for eCO2 treatments were reduced by 14% under eCO2 compared with ambient 

treatments (Cotrufo et al., 1998).  A recent analysis by Feng et al. (2015) analyzed N 

concentration and N acquisition responses to FACE for grassland, cropland, and forest 

ecosystems as a function of their aboveground net primary production (ANPP) response.  They 

found a mean reduction of 8% for N concentration in crop studies that persisted even among 

crops with little to no stimulation in ANPP. 

The largest review of eCO2 effects on belowground C allocation in crops found mixed results 

(Rogers et al., 1996).  Out of 264 observations from enclosure experiments, that work found a 

mean increase in root-to-shoot ratio (R:S ratio) of 11%.  However, this effect was highly 

variable, with 59.5% of observations showing an increase, 3% showing no change, and 37.5% 

showing a decrease in belowground allocation (Rogers et al., 1996).  A recent review of FACE 

experiments with several major crops divided experiments into ranges by enrichment level.  It 

found significant mean increases in root-to-shoot ratio of 14% and 35% for experiments with 

eCO2 of 541-580 and 581-620 ppm, respectively (Vanuytrecht et al., 2012). 

Study rationale 

This work investigated the hypothesis that the existing DayCent crop CO2 response process and 

parameter values are inconsistent with the 20 years of experimental results that have been 

produced since its initial parameterization by Metherell (1992).  The specific modeling 

undertaken toward this end was limited to results from five FACE sites because they provided 

the most straightforward test of model performance at replicating crop eCO2 responses in long-

running, open-air experimental conditions.    
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Methods 

Experimental sites 

Maricopa, AZ, USA:  Four of the seven years of wheat, and both seasons of sorghum, modeled 

for this site were grown at the University of Arizona Agricultural Centre, Maricopa, AZ (33°4’N, 

111°59’W, 358 m elevation).  FACE experiments (aCO2: 360 ppm, eCO2: 550-560 ppm) were 

conducted at this facility from 1989-1999 using cotton (Gossypium hirsutum L.; 1989-1991 

plantings), spring wheat (Triticum aestivum L. cv. Yecora Rojo; 1992, 1993, 1995 and 1996 

plantings), and grain sorghum (Sorghum bicolor L.; 1998 and 1999 plantings).  The soil at this 

site is described as a Trix clay loam [fine-loamy, mixed (calcareous) hyperthermic Typic 

Torrifluvents] (Soil Survey Staff, 2015).  The FACE apparatus consisted of 25-m diameter rings 

into which CO2-enriched air was blown day and night.  Further details of the FACE apparatus 

can be found in Kimball (2006). 

The first two wheat plantings were designed to test eCO2-by-water interactions using two levels 

of [CO2] and two levels of irrigation, with each treatment replicated four times.  The second set 

of wheat plantings tested eCO2-by-N supply interactions using two levels of [CO2] and two 

levels of N fertilization.  Table A7 and Table A8 present key agronomic and meteorological 

details from the four wheat and two sorghum seasons, respectively. 

Champaign, IL, USA:  Seven of the nine years of soybean and three years of corn modeled for 

this site were grown at the SoyFACE facility, which is part of the Experimental Research Station 

of the University of Illinois, Champaign, IL (40°02’ N, 88°14’W, 228 m elevation).  FACE 

experiments (aCO2: 370-402 ppm, eCO2: 550-590 ppm)  were conducted at this facility using 

corn (Zea mays L., Pioneer cv 34B43) in rotation with soybean (Glycine max L. Merr. cv Pana 
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for 2001; thereafter Pioneer cv 93B15).  The crops were rotated between opposite halves of a tile 

drained field that has been in continuous cultivation to arable crops for more than 100 years.  The 

soil at this facility is a deep (>1 m) Flanagan/Drummer series fine-silty, mixed, mesic Typic 

Endoaquoll (Soil Survey Staff, 2015).  The FACE apparatus was constructed in 20-m diameter 

octagonal plots with 4 replicates.  All crops were rainfed, and fertilization was typical of regional 

practice, with no N applied to soybean and 202 kg N ha-1 applied to maize, plus an estimated 

residual 45 kg N ha-1 from the previous soybean crop. 

This work modeled soybean FACE experiments from 2001, 2002, 2003, 2004, 2005, 2009 and 

2011, and maize from 2004, 2006, 2008 and 2010.  For soybean in 2009 and 2011, and maize in 

2010, an infrared heating apparatus was used to warm crop canopies in a factorial design with 

FACE treatment, resulting in four replicated observations for those crop-years (further details in 

Ruiz-Vera et al., 2013, 2015).  Agronomic and meteorological details from the soybean and 

maize seasons simulated are presented in Table A9 and Table A10, respectively (sources as 

noted). 

Horsham, Victoria, Australia:  Three years of wheat modeled for this site were grown at the 

Australian Grains FACE experiment (aCO2: 380-390 ppm, eCO2: 550 ppm) in Horsham, 

Victoria, Australia (36°45’S, 142°07’E, 128 m elevation).  The FACE apparatus consisted of 16, 

12-m diameter rings and is described in detail by Mollah et al. (2009).   Wheat (cv. Yitpi) was 

sown on six dates across three years: normal sowing (NS) and late sowing (LS) dates in 2007-

2009.  The late sowing dates were designed to expose crops to warmer, drier conditions and were 

combined in a factorial design with two levels of supplemental irrigation for each date 

(Fitzgerald et al., 2016).  The experimental site had been irrigated with sewage for more than 20 
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years prior to the experiment and so contained very high concentrations of mineral N.  Thus, 

while N application treatments were performed, they had no discernible impact on crop growth 

or yield and so published results were pooled across nitrogen treatments (O’Leary et al., 2015).  

Crop cultural information for these experiments is shown in Table A11.  

Shizukuishi, Iwate, Japan:  The seven years of rice (Oryza sativa L.) modeled for this site were 

grown in paddy fields in Shizukuishi township, Iwate prefecture on northern Honshu island, 

Japan (39°38’N, 140°57’E, 200 m elevation).  Rice cultivar Akitakomachi was grown at this 

facility in 1998, 1999, 2000, 2003 and 2004.  The 2007 and 2008 seasons compared cultivars 

Akitokomachi, Akita 63, Koshihikari and Takanari for their responses to eCO2 (aCO2: 365-379 

ppm, eCO2: 548-662 ppm).  The soils on these farms were Andosol paddy soils and were flooded 

throughout the rice growing seasons.  More site and FACE technical details can be found in 

Okada et al. (2001) and Kobayashi et al., (2006), and agronomic details are given in Table A12. 

Changping, Beijing, China:  Three years of wheat and two years of soybean modeled for this site 

were grown at the China Mini-FACE facility managed by the Chinese Academy of Agricultural 

Sciences in Changping, Beijing, China (40°10’N, 116°14’E).  Winter wheat (cv. Zhongmai 175) 

was grown in the 2007-2008, 2008-2009, and 2009-2010 growing seasons at two levels of N 

application and ambient (415 ppm) and enriched (550 ppm) [CO2].  Soybean cultivar 

Zhonghuang 35 was grown in 2009 and 2011 and cultivar Zhonghuang 13 was grown in 2009.  

These FACE experiments (aCO2: 415 ppm, eCO2: 550 ppm)  were conducted in the context of an 

ongoing winter wheat-soybean crop rotation in a semi-arid climate, in a clay loam soil with 

minimal irrigation.  Further description of the FACE apparatus, site properties and crop 



115 
 

management practices can be found in Hao et al. (2012).  Important crop cultural details for 

these experiments are given in Table A13. 

DayCent inputs 

The input data for these simulations were obtained from a variety of sources.  In all cases, site 

and weather information contained or referred to within published articles was used when 

available.  Data from weather stations located on or near experimental sites were available for 

the experiments in Maricopa, Arizona (Arizona Meteorological Network, Maricopa Station: 

http://ag.arizona.edu/azmet/), Champaign, Illinois (Midwestern Regional Climate Center, Urbana 

Station: http://mrcc.isws.illinois.edu/CLIMATE/) and Horsham, Australia (Australian 

Government Bureau of Meteorology, Polkemmet Road Station: 

http://www.bom.gov.au/climate/data/stations/).  Weather for the experiments in Shizukuishi, 

Japan and Changping, China was obtained from the gridded NASA Prediction of Worldwide 

Energy Resource (POWER) database, version 1.0.2 (Stackhouse et al., 2015). 

Soil properties were collected from publications, which generally supplied key properties such as 

texture, pH, and organic matter content.  Soil properties not given in publications were estimated 

from texture using the relationships derived by Saxton et al. (1986), and all soil inputs used in 

DayCent simulations are shown in Tables A14 through Table A18.  Crop management practices 

such as planting date, N application and irrigation rates, and crop rotations were described in the 

publications for each site (described in Tables A7 through A13). 
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DayCent [CO2]-response process 

The primary objective of this work was to assess the ability of the existing DayCent crop CO2 

response algorithms and parameter values to reproduce crop responses to CO2 enrichment under 

FACE conditions and, where needed, to adjust parameter values. The algorithm is summarized 

conceptually in Figure 5.1, using actual parameter names for clarity.   

 
Figure 5.1. Conceptual diagram of the DayCent crop [CO2] response algorithm.  C0 is the daily C 
production before N limitation.  CO2 effects are represented by the names of the actual crop-
specific parameters involved.  While the RUE effect (CO2IPR) acts directly in determining the 
potential daily C production (C0), the other three effects scale various quantities that then 
constrain productivity to varying degrees.  The C:N ratio effect (CO2ICE), for instance, reduces 
the amount of N required to sustain full C production (C0) under eCO2, and so will impact crops 
most in circumstances of N scarcity. 

The multiplier active at a given [CO2] is calculated from crop parameters that represent the 

response ratio (RR) expected for a doubling from the reference [CO2] of 350 ppm to 700 ppm 

according to the following equation: 

y = 1 + (Par – 1) / log10(2) * log10([CO2]/350) 
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Where y is the scaled daily process multiplier, Par is the relevant parameter value (in practice, 

the RR expected at 700 ppm relative to 350 ppm), and [CO2] is the current atmospheric CO2 in 

the simulation.  The default parameter values (black dots), process multipliers active at 550 ppm 

[CO2] (black triangles), and underlying logarithmic curves for C3 crops are illustrated in Figure 

5.2. 

 
Figure 5.2. Depiction of the logarithmic curves used by DayCent to calculate crop process 
multipliers as a function of atmospheric [CO2].  The algorithm assumes a reference ambient 
[CO2] of 350 ppm at which multipliers are at 1.0 (left vertical line).  At [CO2] above 350 ppm, 
multipliers increase toward parameter values (black dots) defined as the process multiplier active 
under a [CO2] doubling to 700 ppm (right vertical line).  The actual process multipliers active at 
550 ppm under default parameterization are shown as black triangles, with particular processes 
mapped to line color. 

Initial calibration 

A number of considerations informed the calibration process.  First, calibration of non-CO2 crop 

parameters was necessary to reproduce observed growth (yield, AGB, C:N ratio of AGB, R:S 

ratio) as well as possible under the least-limiting, ambient [CO2] (aCO2) treatments (eg., high N 
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application, high irrigation, etc.).  For crops with multiple sites, it was occasionally necessary to 

use different crop parameter values at different sites, reflecting the realities of substantially 

different cultivar traits, growing season lengths and water and temperature regimes.  The 

modeled vs. measured yields from this exercise are shown in Figure A6.  Note that the Maricopa 

sorghum crop was damaged by a hailstorm about a month prior to harvest in 1999 (Ottman et al., 

2001), which likely explains much of the yield loss not captured by DayCent in Figure A6D.     

CO2 response calibration 

Since the goal of this work was to arrive at a single set of best-estimate values for crop species 

responses to eCO2, CO2 response parameters were calibrated across sites.  After calibrating 

general growth parameters to relatively non-stressed, aCO2 conditions, the four CO2 response 

parameters were adjusted to match the percent responses to eCO2 observed in the corresponding 

treatment-years.  The final, calibrated set of crop parameters (including both CO2 response and 

general growth parameters) for each crop at each site are given in the Appendix. 

FACE training observations 

The training observations used to test and re-calibrate the DayCent CO2-response algorithm were 

gathered from a number of published articles.  Many values were given numerically in the article 

text or tables.  Where values were only given graphically, they were converted to numerical 

values using the Engauge Digitizer software v. 4.1 (Mitchell, 2002).  Because DayCent tracks 

primarily C rather than biomass per se, observations reported as AGB dry matter were compared 

to simulated C mass by assuming a dry matter C content of 40%.  Due to the scarcity of FACE 

studies using C4 crops, we analyzed the data from corn grown in Champaign and sorghum grown 

in Maricopa together as a single C4 crop class. 
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Broader literature comparisons 

The experiments simulated for this work represent a subset of the growing agricultural FACE 

literature, which itself is only a part of the large body of work examining the impacts of eCO2 on 

crops.  For crop-outcome combinations with few or ambiguous results among the testing 

observations, results from the broader FACE and enclosure literature were considered for re-

calibrating the relevant parameters.  Sources for these comparison values are described in Table 

5.1.  Note that a large review of the FACE literature by Kimball et al. (2002) was not included as 

an outside source for comparison because its source experiments were almost entirely included 

within the training data modeled explicitly in this work. 

Table 5.1. Summary of literature sources used to add context for DayCent performance 
evaluation and parameter recalibration. 

Citation Enrichment Methods 
Included 

Mean Reported eCO2 Secondary Treatment 
Handling 

(Bishop et al., 
2014) 

FACE, 
OTC, reported 
separately 

FACE: 560 ppm 
OTC: 691 ppm 

Non-stressed 
treatments only 

(Ziska & Bunce, 
2007) 

FACE, various non-
FACE methods 
reported separately 

All methods scaled to 700 
ppm using β factor 

Pooled across 

(Long et al., 
2006) 

FACE, enclosures All methods scaled to 550 
ppm using non-
rectangular hyperbola 

Pooled across 

(Cure & Acock, 
1986) 

Enclosures Linear/Quadratic best-fit 
models: scaled to 680 ppm 

Pooled across 

(Kimball, 1983) Enclosures Pooled: eCO2 500-1200 
ppm 

Pooled across 
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Results 

Default CO2 parameter values and performance 

A major goal of this work was to test whether the existing DayCent CO2 response algorithm, 

which was developed and calibrated by Metherell (1992) based on results from enclosure studies, 

could correctly predict crop CO2 responses observed under FACE conditions.  This algorithm 

includes daily multipliers of 1.3, 1.3 and 0.77 on daily growth, maximum C:N ratio of new 

biomass, and daily transpiration, respectively, for C3 crops and a doubling of [CO2].  For C4 

crops the only effect of CO2 is a multiplier of 0.77 on daily transpiration.  At lower eCO2 levels, 

these multipliers are interpolated using a logarithmic curve.  For the eCO2 level of 550 ppm 

frequently used in FACE studies, these multipliers scale to 1.2, 1.2 and 0.85 for growth, max 

C:N ratio, and transpiration, respectively.  The parameter values and corresponding scalars at 

550 ppm [CO2] are given in Table 5.2.   

Table 5.2. DayCent crop CO2 response parameter values based on the work of (Metherell, 1992).  
Each parameter represents a crop-specific multiplier on the corresponding daily process for a 
doubling of [CO2] from 350 to 700 ppm.  Values in parentheses are the actual daily process 
scalars active at 550 ppm, interpolated using the logarithmic curve employed by DayCent. 

Crop C4 Rice Soybean Wheat 
Growth 1.00 (1.00) 1.30 (1.20) 1.30 (1.20) 1.30 (1.20) 
Transpiration 0.77 (0.85) 0.77 (0.85) 0.77 (0.85) 0.77 (0.85) 
Max C:N 1.00 (1.00) 1.30 (1.20) 1.30 (1.20) 1.30 (1.20) 
Root Allocation 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 

 
The RRs for all four crops and five outcome variables assessed in this study are summarized in 

Figure 5.3.  Note that “C4” refers to pooled results from both corn and sorghum FACE 

experiments, since very few FACE experiments have been conducted with C4 crops.  It is 

important to reiterate that DayCent was calibrated to minimize bias relative to observed 



121 
 

outcomes (yield, AGB, C:N ratio, R:S ratio, season ET) for aCO2, un-stressed treatments only.  

All simulations of stressed and/or eCO2 treatments used crop parameter values from that 

calibration process, with no change of CO2 response parameters from the values developed by 

(Metherell, 1992). 

As shown in Figure 5.3, the existing CO2 response algorithm accurately predicted the average 

RRs of grain yield, AGB, and season ET for the pooled C4 crops.  There were too few data 

regarding C:N ratio and R:S ratio responses from the simulated C4 experiments to test these 

outcomes directly.  Under default parameters for C4 crops, only daily transpiration was affected 

by [CO2] (reduced by a factor of 0.85 in these simulations), so all impacts on outcomes other 

than season ET occurred indirectly.  The slight increases in C:N ratio for some simulations likely 

reflect simple “growth dilution” of available N.  The small reductions in R:S ratio under eCO2 

likely resulted from reduced water stress, which in DayCent can lead to reductions in 

belowground biomass allocation.  At the same time, part of the decrease in R:S ratio results 

arithmetically from the increase in AGB.  The complexity of these and other dynamic 

interactions underscores the importance of testing model CO2 response algorithms against 

experiments rather than assuming roughly linear, independent season-long responses to daily 

process multipliers.   
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Figure 5.3. Observed and un-calibrated DayCent crop responses to eCO2 for C4 (corn and 
sorghum), rice, soybean and wheat, expressed as RRs.  Black dots indicate the mean of all RRs 
for each crop-outcome-method combination, while error bars give the 95% confidence interval.  
Text below bars gives the mean value (top line), number of simulation-observation pairs (N), and 
p-values based on a Welch’s two-sample paired t-test (P).  N- and P- values are given for both 
bars within each panel for clarity, even though they are identical by definition.  Blank panels had 
too few observations for statistical analysis. 
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The major takeaway from Figure 5.3 for C3 crops is that DayCent’s default parameter values 

overestimate crop growth responses to eCO2, compared to a range of FACE experiments.  The 

simulated vs. observed RRs for grain yield and AGB showed highly significant (p < 0.01) 

differences for all C3 crops tested.  With the exception of soybean AGB (N = 9), each of these 

differences was based on at least 10 simulation-observation pairs.  Likewise, simulated C:N 

response exceeded the observed value for all three C3 crops (p < 0.05), although for soybean this 

difference rested on only two simulation-observation pairs.  Data for R:S ratio response to eCO2 

were relatively sparse and inconsistent.  No crops showed a significant effect of eCO2 on R:S 

ratio, or a significant difference between observed and simulated R:S ratio RRs.  Thus, the 

available data from these experiments do not support a significant impact of eCO2 on R:S ratio 

for rice, soybean or wheat.  Finally, there was a significant difference between simulated and 

observed season ET RR only for soybean.  Interestingly, the simulated season transpiration 

actually increased under eCO2 for soybean (mean increase of 0.8 cm, compensated by a 1.6 cm 

decrease in evaporation), despite the daily transpiration multiplier of 0.85.  This was due to the 

large increases in simulated canopy cover under eCO2, which increased absolute crop water use 

even as the daily scalar reduced use on a relative basis. 

Calibrated CO2 parameter values and performance 

Figure 5.4 summarizes RRs obtained after calibrating the CO2 response parameters to reproduce 

the observed RRs shown in Figure 5.3.  For C4 crops, the daily multiplier on crop transpiration 

was increased slightly (i.e., closer to unity).  The daily growth and maximum C:N ratio 

multipliers were reduced for each of the C3 crops.  The multiplier on belowground allocation was 

left at unity for all crops, as the observed RRs for R:S ratio were not significantly different from 

unity (no effect).  The newly calibrated DayCent CO2 response parameter values are given in 
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Table 5.3, along with the process scalars that would obtain for each given a simulation [CO2] of 

550 ppm.   

Table 5.3. DayCent crop CO2 response parameter values after calibration to match observed 
RRs.  Each parameter represents a crop-specific multiplier on the corresponding daily process for 
a doubling of [CO2] from 350 to 700 ppm.  Values following parameters are the change from 
default value (n.c.: no change), while those in parentheses are the actual daily scalars active at 
550 ppm, interpolated using the logarithmic curve employed by DayCent. 

Crop  C4 Rice Soybean Wheat 
Growth 1.00, n.c. 

(1.00) 
1.21, -0.09 
(1.14) 

1.12, -0.18 
(1.08) 

1.22, -0.08 
(1.14) 

Transpiration 0.82, +0.05 
(0.88) 

0.75, -0.02 
(0.84) 

0.58, -0.19 
(0.73) 

0.88, +0.11 
(0.92) 

Max C:N 1.00, n.c.  
(1.00) 

1.05, -0.25 
(1.03) 

1.00, -0.30 
(1.00) 

1.08, -0.22 
(1.05) 

Root Allocation 1.00, n.c. 
(1.00) 

1.00, n.c. 
(1.00) 

1.00, n.c. 
(1.00) 

1.00, n.c 
(1.00) 
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Figure 5.4. Observed and FACE-calibrated DayCent crop responses to eCO2 for C4 (corn and 
sorghum), rice, soybean and wheat, expressed as RRs.  Black dots indicate the mean of all RRs 
for each crop-outcome-method combination, while error bars give the 95% confidence interval.  
Text below bars gives the mean value (top line), number of simulation-observation confidence 
interval.  Text below bars gives the mean value (top line), number of simulation-observation 
pairs (N), and p-values based on a Welch’s two-sample paired t-test (P).  N- and P-values are 
given for both methods within each panel for clarity, even though they are identical by 
definition.  Blank panels had too few observations for statistical analysis. 
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Calibrated CO2 parameter stress performance 

A major complicating factor in projecting crop response to [CO2] concerns its interactions with 

abiotic and biotic stresses.  Several of the FACE experiments included treatments with stress 

covariates designed to explore these interactions.  In order to assess DayCent’s ability to predict 

the role of abiotic stressors in the CO2 responses, the data underlying Figure 5.3 and Figure 5.4 

were pooled across C3 crops (ie., rice, soybean and wheat) and grouped according to 

experimental stress treatments.  Specifically, FACE observations were categorized as 

Unstressed, Water Stress, N Stress, or Heat Stress according to the experimenter’s original 

designations.  Any treatments that explicitly involved multiple stressors were excluded from this 

analysis.   

The RRs obtained for simulated and observed outcomes grouped according to stress treatment 

are shown in Figure 5.5.  Note that the results in Figure 5.5 exclude C4 crops, which are typically 

analyzed separately due to their theoretical (and experimentally apparent) photosynthetic 

insensitivity to [CO2].   
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Figure 5.5. Observed and FACE-calibrated DayCent crop responses to eCO2 for Unstressed, 
Water Stressed, N Stressed and Heat Stressed C3 crops, expressed as RRs.  Black dots indicate 
the mean of all RRs for each stress-outcome-method combination, while error bars give the 95% 
confidence interval.  Text below bars gives the mean value (top line), number of simulation-
observation pairs (N), and p-values based on a Welch’s two-sample paired t-test (P).  N- and P-
values are given for both methods within each panel for clarity, even though they are identical by 
definition.  Blank panels had too few observations for statistical analysis. 
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It is difficult to draw firm conclusions from Figure 5.5 about modeled or measured interactions 

between crop [CO2] response and specific stressors because, even after pooling across C3 crops, 

the observational evidence is sparse.  The results in Figure 5.5 demonstrate DayCent’s ability to 

reproduce some broad expected and/or observed effects of stress on crop responses to [CO2].  

The simulated RRs for water stress treatments were significantly greater than those for 

unstressed treatments for yield and AGB.  This agrees directionally (though not statistically) with 

the corresponding observed RRs, as well as with some theory and evidence that growth 

responses to eCO2 will be greater in the context of water stress (see, for example, Ainsworth et 

al., 2008b).  In an extreme instance, Lam et al., (2012c) found a 60% increase in rainfed wheat 

yield and AGB in 2009, versus only 4% for the irrigated treatment.   

Interestingly, both observed and simulated water stressed treatments in Figure 5.5 showed higher 

(i.e., closer to unity) RRs for season ET than unstressed equivalents.  This is intuitively 

reasonable, as sufficiently water-stressed plants under eCO2 may be expected to use all available 

water (as will unstressed plants), whereas if water is sufficient for aCO2 plants then it will likely 

exceed the demand of eCO2 plants and reduce season ET (discussed by Kimball & Bernacchi, 

2006). 

Both modeled and measured results showed decreased yield and AGB responses to eCO2 for N 

stressed vs. unstressed treatments (both significant differences for modeled but nonsignificant for 

measured values).  This directional trend aligns with the finding of a recent meta-analysis of 

FACE results, which showed that crop response to [CO2] is significantly reduced in the context 

of N stress (Vanuytrecht et al., 2012).  N stress had a small but significant impact on simulated 
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but not measured C:N ratio response to [CO2].  None of the remaining outcome metrics showed 

significant modeled or measured differences due to N stress. 

Three experiments simulated for this work explicitly attempted to study the role of heat stress.  

Two of those experiments were conducted in Champaign, IL and used infrared heating elements 

to raise canopy temperatures of corn (1 season; Ruiz-Vera et al., 2015b) and soybean (2 seasons; 

Ruiz-Vera et al., 2013).  The third experiment was conducted with spring wheat in Horsham, 

Australia, and used a later-than-usual time of sowing combined with supplemental irrigation to 

reduce the confounding influence of differing rainfall totals (Norton et al., 2008; Lam et al., 

2012c; Fitzgerald et al., 2016).  The Heat Stress column of Figure 5.5 excludes results from C4 

crops, however, and so sample sizes are small.  Simulated RRs for yield and AGB were 

significantly increased under heat stress, however, measured results were highly variable.  In the 

infrared heating experiments with soybean, the observed yield response to eCO2 for heated 

treatments was 1.26 in 2009 and 0.84 in 2011.  Among a range of factors, the authors attributed a 

significant amount of this difference to the warmer temperatures during the 2011 growing season 

(Ruiz-Vera et al., 2013).  This underscores the fact that crop growth occurs relative to crop-, 

cultivar- and growth phase-specific optima (see, for example, Hatfield et al., 2011), and a 

systematic increase in temperature may move crops closer to this optimum or beyond it, 

depending on baseline conditions. 

Discussion 

DayCent CO2 process history 

As mentioned previously, the DayCent crop [CO2] response algorithms and default parameter 

values were originally developed for monthly Century by Metherell (1992) prior to the 
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availability of results from large-scale, replicated FACE experiments.  Those defaults 

implemented scalars of 1.3 on monthly growth and maximum C:N ratios for C3 crops, and a 

scalar of 0.77 on monthly transpiration for C3 and C4 crops, with logarithmic down-scaling from 

the benchmark eCO2 of 700 ppm.  The original Century algorithm was tested in a series of long-

term simulations of four Colorado sites under various climate change weather scenarios, and 

several rotations involving corn, sorghum, millet and wheat.  Yield RRs from growth at 700 ppm 

[CO2] averaged over 72 simulation years were 1.62, 1.08, 1.04, and 0.97 for wheat, corn, millet 

and sorghum, respectively.  The dramatic increase in yield for wheat was beyond the consensus 

estimates of any broad literature surveys, including the reviews of Kimball (1983) and Cure & 

Acock (1986) cited as major sources for the parameterization of Metherell (1992).  By contrast, 

the results from C4 crops corn, millet and sorghum align well with observations from enclosures 

and FACE experiments. 

When daily DayCent was developed from the Century code base, it inherited the foregoing 

algorithm and parameter values from Century.  The RRs presented in Figure 5.3 reflect the first 

test of this algorithm and parameter set against results from FACE experiments.  For each of the 

C3 crops considered, the simulated RRs for yield were significantly higher than measurements.  

For C4 crops (here pooling data from corn and sorghum), however, the default parameterization 

was remarkably accurate versus an admittedly small set of measurements for yield, AGB, and 

season ET.  This general overestimation of C3 crop responses hardly stands as a conclusive test 

for “true” methodological differences between enclosures and FACE experiments.  However, it 

does support the contention of Ainsworth et al. (2008b) that crop model [CO2] response 

algorithms parameterized using enclosure results overestimate RRs when compared with FACE 

results.  
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DayCent simulated responses vs. literature reviews 

The yield enhancement factors simulated by DayCent using its default parameter values and the 

new, FACE-calibrated values, were compared with several literature sources (Figure 5.6).  

Results from DayCent modeling using enclosure-calibrated CO2 response factors appear as green 

bars with black outlines.  Results obtained following calibration to the FACE training 

observations are shown as orange bars with black outlines.  Mean RRs reported by literature 

reviews of enclosure and FACE experiments are depicted by green and orange bars without 

outlines, respectively.  Note that literature estimates derived from experiments using high (>600 

ppm) enriched [CO2] were been down-scaled to 550 ppm using a logarithmic curve for 

interpolation. 

The goal of Figure 5.6 is to give broad context for DayCent’s CO2 response performance before 

and after calibration.  The literature sources overlapped considerably in terms of their underlying 

experimental data, and so these values cannot support quantitative inferences about differences 

between enclosure and FACE experimental methods.  DayCent performance at simulating C4 

crop response to CO2 was substantially below the early estimate of Cure & Acock (1986) and 

closely aligned with the training observations used in this study.  This is relatively unsurprising, 

since Metherell (1992) conservatively chose to align the C4 crop parameterization with theory by 

setting C4 the direct growth scalar to unity.  While the FACE literature on CO2 response of 

annual C4  crops remains limited, the results are consistently low, with most authors finding 

negligible yield enhancement except in times of water stress (Ottman et al., 2001; Wall et al., 

2001; Leakey et al., 2006; Hussain et al., 2013). 
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Figure 5.6. Yield enhancement factors simulated by DayCent (black outlines) using default 
[CO2] response parameter values and FACE-calibrated parameter values, compared with various 
literature sources (no outlines).  Green bars indicate observations from enclosure methodologies 
(and simulations of FACE experiments using enclosure-derived default parameter values), while 
orange bars indicate observations from FACE experiments (and FACE-calibrated simulations).  
Kimball (1983) and Cure & Acock (1986) were the primary sources for the DayCent Defaults 



133 
 

parameterization by Metherell (1992).  Where literature sources reported results corresponding to 
eCO2 levels above 600 ppm, enhancement factors were scaled to 550 ppm using a logarithmic 
curve for interpolation.  Results from Ziska & Bunce (2007) for “Non-FACE” methods represent 
an observation-weighted average across the specific enclosure categories given in their data 
tables.  Also note that the analysis of Bishop et al. (2014) included only observations from the 
least-stressed treatment in each study.  

DayCent un-calibrated performance with C3 crops was mixed, but yield responses were generally 

over-estimated relative to FACE results.  Perhaps most notable is that DayCent default parameter 

results equaled or exceeded the highest literature estimates for C3 crops regardless of 

experimental methodology.  For rice, the literature sources shown in Figure 5.6 show large 

variability within enclosure and FACE methodologies.  In particular, the analysis of (Bishop et 

al., 2014) found a mean rice yield enhancement under FACE (~20%) that was actually higher 

than the enhancement under open-top chambers (OTC) (~8%), after adjusting for the higher 

mean eCO2 level of OTC studies.  That FACE result differs from the mean enhancement of the 

FACE training observations used for calibration here (13%).  Part of this divergence may relate 

to the selection criterion of (Bishop et al., 2014) to exclude treatments with stress covariates.  

For example, the experiments at Shizukuishi used here for model training were also a part of the 

Bishop dataset, but several observations involved N limitation and so would have been excluded.  

At the same time, the Bishop analysis included two sites in China and one site in Japan that were 

not simulated for our analysis.  Such differences in underlying data, combined with analytical 

choices such as curve fitting for adjustment of differing aCO2/eCO2 levels, likely account for 

much of the inter-study variation visible in Figure 5.6. 

The literature results for soybean also show substantial variability.  In this case, (Ziska & Bunce, 

2007) reported FACE results that are greater than an observation-weighted average of non-FACE 

results (25% vs 21% after adjusting to 550 ppm eCO2).  As they noted, however, this FACE 
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estimate was based on only four observations, one of which reported an 85% yield enhancement 

from an eCO2 of 685 ppm using potted plants and a natural CO2 spring (Miglietta et al., 1993).  

While these are hardly disqualifying circumstances, the adjusted 54% result was much higher 

than the highest observed yield enhancement in the training observations used here (34%, from 

10 observations).   

The DayCent default results for soybean were much higher than any of the literature estimates, 

and nearly 3-fold greater than the training observations (39% vs 14% yield enhancement).  Note 

that each of the DayCent Defaults bars for C3 crops in Figure 5.6 resulted from the same set of 

CO2 response parameters (given in Table 5.2).  As part of investigating this phenomenon, we 

created a DayCent soybean crop lacking the ability to fix nitrogen and ran the exact same set of 

FACE simulations.  The resulting mean yield enhancement was 22%, indicating that DayCent-

simulated soybean responsiveness was facilitated by its ability to fix N.  A similar difference was 

observed by (Ainsworth et al., 2002), who found in a meta-analysis of the soybean eCO2 

literature that nodulated varieties showed 3-fold higher photosynthetic stimulation than non-

nodulated varieties.  This difference emerges in DayCent from a simplified representation of 

plant N limitation and photosynthesis, but is nonetheless an interesting correspondence with 

observed trends.  Ainsworth et al. (2002) also found a significant reduction in harvest index 

(~8%) for soybean crops under eCO2.  This was reflected in the training observations for this 

work, with mean enhancements of 20% and 14% for AGB and yield, respectively, translating to 

a 30% reduction in harvest index.  DayCent lacks a mechanism for modifying harvest index in 

response to [CO2] so parameter values were calibrated to split the difference between the 

observed AGB and yield stimulation rates.  If future experimental work corroborates a reduction 

in harvest index, addition of a parameter to replicate this finding may be warranted. 
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Among the wheat literature estimates in Figure 5.6, Bishop et al. (2014) again reported a FACE 

value that was higher than their [CO2]-adjusted result from OTCs.  Wheat also had the highest 

yield RR based on the training observations (1.20) out of all crops studied here.  A closer look at 

the underlying studies shows that the results presented by Fitzgerald et al. (2016) from Horsham, 

Australia had a major influence on this value.  That work tested two wheat cultivars over three 

years at two water levels and two sowing dates (used as a proxy for heat stress), giving a total of 

24 eCO2/aCO2 RRs.  Out of that, three RRs exceeded 1.70 (all from wet treatments), eight were 

at least 1.35, and two were less than 0.90, though all AGB RRs were greater than 1.0.  The 

reasons for these unusual RRs were not obvious, and several hypotheses were offered by 

Fitzgerald et al. (2016).  It is notable that the wheat crops at Horsham were subject to more 

severe water limitation and produced lower yields than wheat from the other two sites simulated 

for our analysis (Figure A6).  The large RRs observed at Horsham may represent a highly-

stressed CO2-response space not previously explored under FACE conditions. 

CO2-by-stress interactions 

DayCent showed a qualitative ability to reproduce the increased [CO2] fertilization effect that 

has been predicted and observed in crops subject to drought stress (eg., Kimball et al., 1995; 

Ottman et al., 2001; Leakey et al., 2006).  The meta-analysis of Bishop et al. (2014) found 

significantly decreasing yield (but not AGB) responses to eCO2 with increasing growing season 

water input.  On the other hand, recent rain-exclusion FACE experiments in Illinois indicate that 

moderate to severe drought stress reduces or eliminates eCO2 fertilization due to a combination 

of greater early-season LAI development, elevated canopy temperatures, and greater plant 

responsiveness to abscisic acid signaling among eCO2-grown plants (Gray et al., 2016). 
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The training observations showed a modest reduction in yield response for N-stress treatments 

(Figure 5.5) vs. unstressed treatments that is also apparent in the simulated responses.  The few 

yield and AGB observations from controlled heat stress treatments simulated for this work 

showed very large variability in their response to eCO2.  In contrast, the DayCent-simulated 

values showed greater responsiveness to eCO2 in the heated treatments.  This may reflect 

problems with the high-temperature region of DayCent’s temperature-response curve, or 

differential timing of high absolute temperatures (from which heat treatments were a constant 

amount of increase) relative to sensitive periods of crop growth.  Since DayCent uses a constant 

temperature-response curve throughout the season, it does not represent the disproportionate 

effects of heat stress at critical times such as flowering and grain filling. 

Other outcomes 

The data for outcomes other than yield and ABG among the training observations was limited 

but did permit some calibration of the transpiration, max C:N ratio, and belowground C 

allocation parameters.  Measurements of season ET from FACE experiments showed consistent 

reductions in water use among eCO2-grown crops (Hunsaker et al., 2000; Conley et al., 2001; 

Hussain et al., 2013; Bernacchi & VanLoocke, 2014), though various feedbacks complicate the 

relationship between season-long ET and daily canopy transpiration (the quantity modified by 

the relevant DayCent parameter).   

Observations of shoot or grain C:N concentration were more limited and highly variable.  The 

largest review of eCO2 literature focused on this outcome found mean increases in C:N ratio of 

13, 28, 6 and 19% for corn, rice, soybean and wheat (Cotrufo et al., 1998).  Most of the 

underlying experiments for that study were conducted at eCO2 levels well above the 550 ppm 
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used in many FACE sites, however, and only the effect for wheat was statistically significant 

(Cotrufo et al., 1998).  Theory would suggest that C4 crops would show less change in C:N ratio 

(because of their smaller AGB response) under eCO2, while soybean should be insulated by its 

ability to fix N from the atmosphere (at the cost of biomass C, cf. Leakey et al., 2009).  A recent 

review of N content of FACE-grown crops supported those predictions (Myers et al., 2014).  

Thus, the calibration adopted here left the max C:N effect parameters at unity for corn and soy, 

while setting values that achieved relatively modest 7% increases for rice and wheat (Figure 5.4).  

More data are needed to understand the effect of eCO2 on N content of major grain crops other 

than wheat, particularly corn and rice. 

The most variable outcome by far in the training observations was for the [CO2] effect on R:S 

ratio.  None of the crops had more than six RR values among the training observations used here, 

and none of the mean RRs were significantly different from unity (no effect).  In a large review 

of the eCO2 enclosure literature, Rogers et al. (1996) found that 59.5% of R:S ratios responses 

were positive and 37.5% were negative.  In a recent review of the FACE literature, Vanuytrecht 

et al. (2012) found a significant positive response of R:S ratio to eCO2.  The analysis pooled 

responses across several crops not considered for this work, however, including root crops 

(potato, sugar beet) and perennials (perennial ryegrass, white clover) that may be expected to 

respond differently from the annual crops considered here.  In view of the continued uncertainty 

among R:S ratio responses to eCO2 regardless of methodology, we opted to leave the DayCent 

belowground C allocation parameters at unity.  
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Conclusions 

This study tested the default DayCent CO2 response parameters against FACE experimental 

observations across four major crops and five crop processes.  In general, the default parameters 

overestimated yield and AGB responses for C3 crops, while closely matching the few available 

data points from C4 crops.  Parameter values were calibrated to reproduce the observed RRs from 

FACE experiments where a consistent effect was discernible, while parameters controlling 

effects with weak observational support were conservatively left at unity.  Now that FACE 

experiments have established a solid consensus on the effect ranges of yield, AGB and ET under 

open-air eCO2 conditions, work should be targeted at clarifying the effect sizes and mechanisms 

underlying changes in AGB N content and C allocation.  
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APPENDIX 

Chapter 2 Supporting Information 

Additional on-farm inputs 

Fuel consumption was calculated using reference values together with survey responses 

reporting equipment used for tillage and other field operations, total grain yield, and road 

distance to the biorefinery.  Table A1 summarizes herbicide and pesticide usage as reported by 

farms, on an area-weighted basis. 

Surveyed farms reported liming fields at an average rate of 95 lb per acre, which was just over 

half the USDA average rates for Minnesota.  Since fields are only limed at several-year intervals, 

our three-year survey period may have failed to capture a representative sample of these events.  

Therefore, we chose to use the Minnesota state average application rate of 169 lb lime acre-1 

year-1 in calculating liming-related emissions. 
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Table A1. Area-weighted average herbicide and pesticide usage 

Ag chemical Application rate (kg per hectare) 
Glyphosate kg per ha 0.7878 
Glufosinate ammonium kg per ha 0.0108 
Sulfonyl urea compounds kg per ha 0.0002 
Phenoxy 2 4 D kg per ha 0.0042 
Atrazine compounds kg per ha 0.1760 
Acetochlor kg per ha 0.5174 
Metolachlor kg per ha 0.0282 
Dicamba kg per ha 0.0004 
Clopyralid kg per ha 0.0088 
Pesticides unspecified kg per ha 0.0298 
Other herbicides kg per ha 0.0201 
Isoxaflutole kg per ha 0.0010 
Mesotrione kg per ha 0.0161 
Diflufenzopyr kg per ha 0.0001 
Flumetsulam kg per ha 0.0028 

 

Table A2. Adjusted rate of application and assumed nutrient content for manure as fertilizer 

Manure type Units per 
acre 

Adjusted 
rate of 
application 

Nitrogen (lb 
N per unit 
applied) 

Phosphate 
(lb P2O5 per 
unit applied) 

Potassium 
(lb K2O per 
unit applied) 

Beef tons/acre 1.58 7 4 7 
Chicken tons/acre 0.08 60 46 31 
Dairy (dry) tons/acre 0.02 10 3 6 
Dairy (liquid) gal/acre 84.26 0.031 0.015 0.019 
Swine (liquid) gal/acre 594.27 0.03 0.025 0.024 

 

Table A3. Equipment and energy requirements for various tilling, harvesting and planting 
activities 

Operation Implement Assumed Diesel 
(gal/ac) 

Min till Planting 16 Row-30 40 ft 0.53 
Harvesting Combine Corn Hd 8 Row-30 

20 ft 
1.88 

Grain Cart Grain Cart 30 ft 1.44 
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Lime, urea broadcast, urea dry, urea 
spreader, urea floater, other dry fert, 
DAP spinner 

Spreading dry fertilizer, bulk 
cart 

0.15 

Herbicide - liquid or dry, fungicide - 
headline 

Boom sprayer 50 ft 0.1 

Stalk shredding Stalk shredder 20 ft 0.17 
SEEDBED prep --- --- 
Ground roller used for soybean --- --- 
Anhy tilling, anhy incorporate, anhy 
knife,  

  

anhy bar Anhydrous ammonia (30-inch 
spacing) 

0.55 

Urea strip till --- --- 
Corn residue baled and removed. --- --- 
Rake corn stalks Hy Rake (Wheel, 2-16") 30 ft 0.07 
Bale corn stalks Round Baler 1500 lb, 20 ft 0.35 
Moving bales off field Hauling, field plus 1/2 mile = 

green forage 
0.3 

Field cultivator Field cultivator, 47' 0.32 
Disk Tandem Disk H.D. 30 ft fold 0.79 
In-line ripper V-Ripper 30" O.C. 17' 0.99 
Row cultivation 16 Row-30, 40 ft 0.44 
Soil finisher Field cultivator, 47' 0.32 
Strip-till machine V-Ripper 30" O.C. 17' 0.99 
Manure incorporated/broadcast Spreading dry fertilizer, bulk 

cart 
0.15 

Manure injected with sweeps or knives Chisel plow 15' 0.6 
No till drill No till drill 30ft 0.81 
Harvesting silage Corn Head for SP Harvstr Base 

8 Row, 20 Ft 
2.35 

Disc-chisel 16.3 foot and 21.3 foot "Chisel 
plow, front disk" 

0.97 

Disc-ripper Comb Disk & V-Ripper 22.5 
or 17.5Ft 

1.47 
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Table A4. Assumptions for grain transport energy requirements 

Transport type Fuel economy mpg Capacity (bushels per load) 
Semi 8 950 
Tractor + wagon 3 1300 
Grain truck 8 625 
Tractor+wagon/Grain 5.5 962.5 
Grain truck/Semi 8 625 

 
DayCent cultivation intensity scores 

Cultivation events in DayCent cause increased rates of decomposition and transfers of organic C 

between model SOC pools.  A set of four parameters for each type of cultivation event dictate 

the resulting decomposition rate increases for SOC pools.  These parameters tend to increase 

with increasing depth and breadth of soil disruption, causing small SOC losses after use of a 

planter and much larger losses after use of a moldboard plow, for example.  In order to assess the 

relative impacts of each farmer's cultivation practices on these soil processes and the resulting 

emissions, a numerical Tillage Decomposition Effect (TDE) was calculated by summing the four 

parameters that specify the magnitude of a cultivation event's impact on SOC decomposition 

rates for each event reported by the farmer.  The resulting per-event impacts were summed for 

each separate cultivation event across the 2-year crop rotation period, resulting in a single value 

for each farm. 

Details of alternate N2O estimation methods 

The USDA method for direct N2O estimation started with a base emissions rate determined by 

crop, soil texture, and USDA Land Resource Region that represents estimated emissions under 

typical management.  The base emissions rate was then adjusted based on various management 

practices including N fertilization rate, organic amendment amount and type, and binary tillage 

intensity (conventional or no-till).  The IPCC Tier 1 method assumed that 1% of N from all 
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inputs (i.e. synthetic fertilizer, manure, and crop residue) would be emitted to the atmosphere 

directly as N2O.  Broader management and site factors such as tillage, weather, and soil texture 

were not considered. 

Chapter 3 Supporting Information 

Supply-adjustment procedure for manure emissions 

In general, manure additions in DayCent have emissions reduction benefits when used to 

displace synthetic N because some fraction of the manure C is sequestered in soil C pools, thus 

providing an apparent negative emission.  Unlike most of the inputs evaluated in this study, the 

manure applied to fields was a waste product produced without regard to farmer demand.  Thus, 

it was important to consider the emissions that would have occurred under an alternative, 

“business-as-usual” handling of the manure.  If, for instance, the norm for manure disposal in the 

study area were anaerobic digestion for power production, followed by land application of 

digestate, then direct land application may represent a net increase in emissions by comparison.  

There was also a question relating to whether the feedlot (which produced the manure) or the 

farm (which utilized it) should bear the burdens or benefits of emissions that occur after land 

application. 

We chose a set of assumptions and estimates about the study area in order to address these 

issues.  First of all, we assumed on the basis of literature discussions of manure management 

practices (see Ribaudo et al., 2003) that the most likely alternative to application on the modeled 

farm would be application to similar cropland located nearby.  This was based on the recognition 

that feedlots have strong economic incentives to distribute manure on nearby land to minimize 

transport costs.  The major determinants of these transport costs are the willingness of nearby 
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farmers to accept manure on their lands, and the acceptable maximum application rates in 

accordance with EPA rules (Ribaudo et al., 2003).  We next assumed that feedlots would bear 

the emissions burdens of transporting manure to farm field and applying it, again because this 

aligns with the default economic arrangement (Ribaudo et al., 2003), but the farm would bear 

any emissions benefits or burdens from manure after application.  Our third assumption was that 

we could define a maximum radius that, for the purposes of our study, would circumscribe the 

area of interest (AOI) within which manure could be applied.  Since most (63%) of the Gevo 

survey respondent acreage was located in Rock County, MN, we chose to use it as our AOI for 

the purposes of estimating manure supply dynamics.  Specifically, we obtained estimates for the 

annual manure N load produced by feedlots in Rock County (3473 Mg N yr-1), cropland acreage 

available for application (60,730 ha in corn and/or soy), and the maximum acceptable application 

rates (15.7 and 20.2 g manure N m-2 for corn-soy and corn-corn acres, respectively) from the 

Assistant Director of the Soil & Water Conservation District (Douglas Bos, personal 

communication).  We eliminated the 96 management permutations that involved manure N 

inputs above the regulatory maximum rates mentioned.  We used the county manure and 

cropland figures to estimate the fraction of hectares within the AOI that would receive manure at 

each of the application rates described by the management scenarios. 
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Table A5. Sample biogenic emissions for varying levels of manure N input.  Emissions values 
are medians of management permutations with the specified N input rate derived 100% from 
manure.  Supply-adjusted emissions were linearly interpolated between simulated emissions 
from manured soils and non-manured management-matched soils based on the percent of 
cropland needed to absorb the manure supply at the given rate. 

Manure 
Input Rate 
(g N m-2) 

Percent of 
Manured 
Cropland 

Median Simulated 
Biogenic 
Emissions  
(g CO2e m-2) 

Median No-manure 
Biogenic Emissions 
(g CO2e m-2) 

Median Supply-
adjusted Biogenic 
Emissions  
(g CO2e m-2) 

5 100% -22.0 12.6 -22.0 
10 57.2% -59.2 17.9 -28.8 
15 38.1% -56.6 62.2 18.5 
20 28.6% -42.5 103.7 60.3 

 
We were then able to pair field emissions (SOC change, direct N2O, indirect N2O) for every 

management permutation with those from the management-matched no-manure simulation.  For 

each field emissions component, the difference between each simulation and its management-

matched no-manure control was considered the “manure effect” on emissions for that 

management permutation.  The actual emissions assigned to each management permutation were 

calculated by interpolating between the actual (with manure) emissions and the management-

matched no-manure control, based on the fraction of cropland hectares within the AOI that 

would be needed to absorb the manure supply produced within the AOI.  For example, if the 

manure supply was sufficient to supply half of the AOI acreage at a given application rate, the 

biogenic emissions assigned to permutations with that application rate would be half-way 

between the with-manure and no-manure amounts.  This approach scaled the manure effect on 

field emissions in proportion to the area within the AOI that would receive manure at the given 

rate, thus quantifying the average emissions impact of manure production across the AOI.  

Supply chain emissions embodied in synthetic N and P use were also scaled to reflect the 

fraction of synthetic nutrients that could be displaced by manure nutrients across the AOI 
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(manured and non-manured hectares), rather than the displacement implied by the manure use in 

the particular permutation. 

Monetary farm budget methodology 

Survey responses were used in conjunction with unit costs from Plastina (2015) to calculate per-

farm costs for corn seed and non-N fertilizers and liming.  Unit cost data for the wide range of 

specific herbicides and pesticides was not readily available and so the default cost per area from 

the Extension budgets was used for these inputs.  Finally, a number of items were taken at their 

default values from the Extension budgets and combined under the heading “Financial and Other 

Costs”.  These included land rent, crop insurance, interest on preharvest costs, farm labor, and 

miscellaneous operational costs such as chemical spraying and grain harvest. 

Management scenarios were used to calculate costs of related inputs.  Tillage was estimated 

based on the specific implements and passes simulated within DayCent for a given level of 

tillage intensity, using per-operation costs from Plastina (2015).  Costs for N fertilizer and 

application were calculated from scenario N application rates.  Costs for grain drying were based 

on DayCent-simulated yields. 

Costs for stover collection, baling, and stacking at the field edge were calculated using an 

exponential regression curve developed by (Graham et al., 2007).  The curve expresses the cost 

per Mg of stover collected as a declining function of the collection rate, including savings 

provided by changing collection equipment at increasing collection rates.  For this work, a new 

best-fit curve was derived by digitizing the data points given in Graham et al. (2007) Figure 4 
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and using non-linear least squares to solve for the best single curve of the form used by the 

authors (y = axb).  That best-fit curve was: 

Stover Cost, $ Mg-1 = 46.15 * (Collection Rate, Mg ha-1)-0.363 

The costs calculated using that curve were then adjusted from 2002 dollars to 2015 dollars using 

the online calculator provided by the Bureau of Labor Statistics (2015). 

FTW costs were then calculated using the estimated ethanol energy yields from each scenario 

and literature estimates of costs for feedstock conversion.  Conversion cost for grain to ethanol 

was based on Hettinga et al., (2009), who gave a figure of $0.13 l-1 grain ethanol in 2005 dollars, 

which amounted to $0.16 l-1 in 2015 dollars.  Conversion cost for cellulosic ethanol was based on 

Solomon et al., (2007), who gave a figure of $0.39 l-1 ethanol in 2006 dollars, which amounted to 

$0.46 l-1 in 2015 dollars.  As discussed in both of the source studies, the costs for grain or 

cellulosic conversion are sensitive to a number of factors, including technological change, 

economies of scale, energy prices, interest rates, etc.  Therefore, calculations based on these 

values should be regarded tentatively and is primarily valuable for identifying qualitative 

relationships between farm management and economic incentives. 

Estimates of profit per unit area are based on FTW cost estimates.  While it may seem awkward 

to compare farm management actions with profits that would be faced by the biorefinery selling 

ethanol, we felt that it was important to evaluate management economics in the context of the 

nearly 3-fold difference in downstream costs.  This allowed us to compare the relative value of 

each feedstock net of their downstream conversion costs and avoid adding an additional layer of 
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assumptions by picking separate feedstock prices.  Finally, profits were calculated against an 

ethanol price of $2.50 gal-1. 

Table A6. Major input costs calculated in building farm budgets.  Rates and unit costs of each 
input were derived from farm survey responses, scenario management input levels, Iowa State 
Extension farm budgets, and literature sources as detailed in text. 

Input Rate from: Unit Cost Unit cost source(s) 
Corn seed  Survey $12.75 kg-1 (Plastina, 2015) 
Phosphorous fertilizer Survey $1.06 kg-1  
Potash fertilizer Survey $0.90 kg-1  
Lime Extension $24.70 ha-1  
Pesticides & herbicides Extension $144.00 ha-1  
Harvest operations Extension $144.16 ha-1  
Operator labor Extension $91.51 ha-1  
Land rent Extension $674.31 ha -1  
Crop insurance Extension $33.59 ha-1  
Preharvest interest Extension $30.43 ha-1  
Tillage, corn: 
   Conventional 
   Reduced 
   No-till  
Tillage, soy: 
   Conventional 
   Reduced 
   No-till  

Scenario 
 

 
$70 ha-1 
$66 ha-1 
$40 ha-1 
 
$54 ha-1 
$51 ha-1 
$40 ha-1 

 

Synthetic N Scenario $1.04 kg-1  
Synth N application Scenario $26 ha-1  
Grain drying Scenario $9.43 Mg-1  
Stover collection & 
nutrient replacement 

Scenario Rate-dependent 
curve (see text) 

(Graham et al., 2007) 

Stover EtOH Conversion Scenario $0.39 l-1 (Solomon et al., 2007) 
Grain EtOH Conversion Scenario $0.16 l-1 (Hettinga et al., 2009) 
Ethanol Market Price Scenario $2.50 USD gal-1  
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Farm supply chain emissions 

Emissions from survey supply chain inputs averaged 57.7 g CO2e m-2, and ranged from 25.2 to 

121.7 g CO2e m-2.  The largest and most-variable farm supply chain emissions sources were 

phosphorous and potash fertilizers (mean: 27.9 g CO2e m-2) and non-field energy use (mean: 

18.0 g CO2e m-2).  Figure A1 shows the distribution of individual farms for 12-year total 

emissions related to survey supply chain management practices. 

 
Figure A1. Distributions of emissions from survey supply chain inputs.  These are the same farm 
inputs values given in previous work (Kent et al., in submission), but with scenario-related inputs 
removed.  Each histogram encompasses a total of 35 farms, and bins have a width of 1 g CO2e 
m-2yr-1. 

Scenario supply chain inputs 

For scenario-related management inputs not simulated by DayCent, emissions were assigned to 

scenarios based on their levels of different management variables.  So, for instance, the 

equipment simulated in DayCent for No-till management is a single pass with a seed drill, so all 
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scenarios with No-till management were assigned a value from Lal (2004b) for the C-equivalent 

emissions from fuel and embodied equipment for this operation.  A variety of sources were used 

to estimate the scenario-related supply chain emissions, and this process was described in the 

Methods.  The mean scenario supply chain emissions were 31.9 g CO2e m-2 and ranged from 3.7 

to 81.5 g CO2e m-2.  The distribution of scenario supply chain emissions is shown in Figure A2. 

 
Figure A2. Distributions of emissions from scenario supply chain inputs.  Each histogram 
encompasses a total of 1824 management scenarios, and bins have a width of 1 g CO2e m-2yr-1. 

DayCent biogenic emissions 

The management levels shown in Table 3.1 were simulated in DayCent for every permutation of 

the six variables.  The biogenic emissions from each scenario were unique results for that 

particular management permutation.  Averaged across scenarios, the scenario biogenic emissions 

simulated by DayCent amounted to only 17 g CO2e m-2, which is less than the mean values for 

either survey supply chain or scenario supply chain emissions (Figure A3).  However, the range 
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of biogenic emissions was very large, with a minimum of -212 g CO2e m-2 and a maximum of 

209 g CO2e m-2. 

 
Figure A3. Distributions of study-area average biogenic emissions for all scenarios.  Each 
histogram encompasses a total of 1824 management scenarios, vertical dashed lines indicate 
median values, and bins have a width of 10 g CO2e m-2yr-1. 

Mass vs. marginal allocation of emissions between grain and stover 

The FFG emissions summarized in Figure 3.1 encompass DayCent simulation modeling of 

biogenic emissions combined with supply chain emissions budgets developed to account for all 

significant emissions embodied in farm inputs and activities.  To facilitate comparison of these 

results with other work, which typically reports biofuel emissions on an energy basis and 

includes emissions related to biofuel conversion and distribution, we used EtOH yield and 

emissions values for post-farm activities given by Wang et al. (2012; see Table 4).  We then 
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partitioned the total areal emissions from each management scenario between grain EtOH and 

stover EtOH using two different methods.   

In the first, which we refer to as “marginal allocation”, stover was assessed the supply chain 

emissions from collection, baling and stacking, replacement fertilizers, stover transport and 

stover post-farm activities, while all other farm inputs, grain transport and post-farm grain 

activities and were allocated to grain.  In addition, stover was burdened with the difference in 

biogenic emissions between DayCent simulations that differed only in whether or not stover was 

removed.  This approach makes sense from a status-quo perspective, in which corn is cropped 

primarily for grain harvest and the harvest of stover is a management change under 

consideration. 

In the second allocation approach, dubbed “mass allocation”, all supply chain and post-farm 

emissions directly relating to stover production and conversion were assessed as stover 

emissions.  Likewise, grain was assessed for all grain-specific farm and post-farm activities such 

as grain harvest and drying, grain transport and grain post-farm emissions.  However, all 

biogenic emissions and those supply chain emissions not clearly related to either feedstock 

(tillage, N fertilization, etc.) were allocated to each feedstock in proportion to the mass of C 

removed with each feedstock.  This approach allots management burdens according to each 

feedstock’s share of C removals from the system, and so it makes the most sense from a 

perspective where both grain and stover are viewed as important products of the feedstock 

cropping system. 
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The results of the marginal and mass allocation procedures for each scenario are shown in Figure 

A4 and Figure A5.  Those figures also display dashed lines indicating the RFS2 emissions limits 

that apply to fuels derived from each feedstock.  They also show the Scenario ID numbers 

corresponding to several best- and worst-performing management scenarios for several outcome 

metrics.  The same set of ID numbers are detailed in Table 3.4 and appear on several plots in this 

study, allowing readers to compare the performance of specific scenarios across emissions 

metrics. 
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Figure A4. FTW emissions intensity for each management scenario, partitioned between grain 
and stover using marginal allocation (see Methods for details) and plotted against total emissions 
intensity.  Dashed lines indicate the emissions upper limits defined in the US RFS2 for 
qualifying Renewable Fuels (orange line, applies to grain EtOH) and Cellulosic Fuels (green 
line, applies to corn stover EtOH).  Scenario ID numbers from selected scenarios are displayed in 
their approximate positions to facilitate comparison with other figures and Table 3.4 and Table 
3.5. 

The marginal allocation method used to generate Figure A4 is useful for understanding the 

emissions attributable to stover EtOH relative to a baseline of identical management without 

residue collection.  By penalizing stover for all foregone C sequestration, however, it generates 

counter-intuitive results.  For instance, the management scenarios with the highest stover 
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emissions intensities are actually those with no-till management (for example, Scenario IDs 

1214, 640 and 280), because under no-till a greater fraction of the lost stover C would have been 

sequestered as compared to conventional tillage.  In other words, stover collection from no-till 

land represents a greater “opportunity cost” in terms of C sequestration.  Of course, this is 

primarily useful as a descriptive metric rather than a prescriptive metric, since no-till would be 

expected to sequester more C in absolute terms, whether or not stover is harvested. 

In contrast to the marginal allocation shown in Figure A4, the feedstock emissions intensities 

shown in Figure A5 were calculated by allocating most farm emissions based on the proportion 

of biomass C removed from the system with each feedstock.  This caused feedstock emissions to 

track linearly with total emissions, with small differences primarily attributable to the fraction of 

residue being collected.  As an illustration of the complexities involved when comparing partial 

and total emissions intensities, consider Scenario IDs 640 and 1214 in Figure A5.  Scenario 640 

had higher mass-allocated intensities than 1214 for both grain and stover, but had a lower total 

emissions intensity.  Close examination of the specific values given for these Scenarios in Table 

3.4 shows that this occurred because Scenario 640 collected a larger fraction of stover (0.75 vs. 

0.25).  This means that a larger fraction of its total EtOH energy came from the higher-intensity 

feedstock (grain), and this difference was more important than the small increases in individual 

feedstock intensities. 
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Figure A5.  FTW emissions intensity for each management scenario, partitioned between grain 
and stover using mass allocation (see Methods for details).  Dashed lines indicate the emissions 
upper limits defined in the US RFS2 for qualifying Renewable Fuels (orange line, applies to 
grain EtOH) and Cellulosic Fuels (green line, applies to corn stover EtOH).  Scenario ID 
numbers from selected scenarios are displayed in their approximate position to facilitate 
comparison with other figures and Table 3.4 and Table 3.5. 

Social cost of carbon methodology and assumptions 

The SCC is an economic concept that attempts to quantify the monetary cost of climate change 

damages attributable to a marginal unit of CO2-equivalent emissions.  As one might imagine, 

there is very large uncertainty in the determination of this value.  The estimates used in the 

present calculations correspond to multi-model averages reported for different assumed discount 
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rates as reported by the Interagency Working Group on the Social Cost of Carbon (IAWG, 

2013). 

Any actual price on emissions would raise costs for fossil fuels and biofuels.  Thus, rather than 

presenting the increased scenario EtOH prices that would be expected after adding the embedded 

C tax to existing costs, we chose to calculate the difference in C tax that would apply to EtOH 

derived from each scenario relative to energy-equivalent gasoline.  Scenarios were credited with 

dollar-valued reductions in costs as a function of the emissions (and thus C tax burden) they 

avoided relative to gasoline.  We refer to this difference as an “abatement premium”, and its 

value is specific to each scenario and hypothetical SCC.  The abatement premium ($ m-2) 

expresses the net cost advantage against gasoline conferred by a given SCC for each scenario, 

and is simply the product of net abatement (g CO2e m-2) times SCC ($ (g CO2e)-1). 

Of course, the use of $2.50 gal-1 as market price for EtOH was somewhat arbitrary.  Prices for 

transportation fuel are notoriously volatile, and prices faced by EtOH producers are additionally 

subject to changing federal and state subsidies as well as rapid technological change and 

economies of scale.  The first-order impact of changing EtOH prices is straightforward, with 

higher prices increasing profits for all scenarios on an absolute scale.  However, since scenarios 

vary significantly in their total energy yield (hence revenue) per cropping area, profits from high-

productivity scenarios were more sensitive to a given price change than those from low-

productivity scenarios.   
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Chapter 5 Supporting Information 

Crop cultural information from simulated FACE experiments 

Table A7. Key details for the four seasons of wheat cropping at Maricopa, AZ, USA. 

Experiment ID  MCWht92 MCWht93 MCWht95 MCWht96 
Planting Date 15-Dec-1992 08-Dec-1993 15-Dec-1995 15-Dec-1996 
Harvest Date 24-May-1993 01-Jun-1994 29-May-1996 28-May-1997 
FACE Start 01-Jan-1993 28-Dec-1993 01-Jan-1996 03-Jan-1997 
FACE End 16-May-1993 18-May-1994 15-May-1996 12-May-1997 
Irrigation + 
Rainfall (mm) 

Wet: 676 
Dry: 351 

Wet: 681 
Dry: 318 

High N: 731 
Low N: 670 

High N: 650 
Low N: 577 

N Fertilization 
(kg N ha-1) 

All: 271 All: 261 High N: 383 
Low N: 100 

High N: 383 
Low N: 45 

Ambient/Enriched 
[CO2] (ppm) 

360/550 360/550 360/560 360/560 

Source(s) (Kimball et al., 1995; Kimball, 
2006) 

(Kimball et al., 1999) 

 
Table A8. Key details for the two seasons of sorghum cropping at Maricopa, AZ, USA. 

Experiment ID  MCSor98 MCSor99 
Planting Date 16-Jul-1998 15-Jun-1999 
Harvest Date 21-Dec-1998 26-Oct-1999 
FACE Start 31-Jul-1998 01-Jul-1999 
FACE End 21-Dec-1998 26-Oct-1999 
Irrigation + Rainfall (mm) Wet: 1218 

Dry: 474 
Wet: 1047 
Dry: 491 

N Fertilization (kg N ha-1) 279 266 
Ambient/Enriched [CO2] 
(ppm) 

396/579 402/585 

Source(s) (Ottman et al., 2001; Kimball & Bernacchi, 2006) 
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Table A9. Key details for the seven seasons of soybean cropping at Champaign, IL, USA. 

Experiment ID  SFSoy01 SFSoy02 SFSoy03 SFSoy04 SFSoy05 SFSoy09 SFSoy11 
Planting Date 23-May-

2001 
01-Jun-
2002 

27-May-
2003 

    

Harvest Date 20-Oct-
2001 

16-Oct-
2002 

11-Oct-
2003 

    

Rainfall (mm)      643 610 
Ambient/Enriched 
[CO2] (ppm) 

370/550 370/550 370/550 375/550 375/550 385/585 390/590 

Source(s) (Morgan et al., 2005; Bernacchi et al., 2007) (Ruiz-Vera et al., 
2013) 

 
Table A10. Key details for the three seasons of corn cropping at Champaign, IL, USA. 

Experiment ID  SFCrn04 SFCrn06 SFCrn10 
Planting Date 29-Apr-2004 28-Apr-2006 28-Apr-2008 
Harvest Date 10-Sep-2004   
Rainfall (mm) 426 487 424 
Ambient/Enriched 
[CO2] (ppm) 

376/550 382/550 390/550 

Source(s) (Leakey et al., 2006; Hussain et al., 2013; Ruiz-Vera et al., 2015) 
 
Table A11. Key details for the five seasons of wheat cropping at Horsham, Victoria, AUS. 

Experiment ID 
 

AGWht07
NS 

AGWht07
LS 

AGWht08
NS 

AGWht08
LS 

AGWht09
NS 

AGWht09
LS 

Planting Date 18-Jun-
2007 

23-Aug-
2007 

04-Jun-
2008 

05-Aug-
2008 

23-Jun-
2009 

19-Aug-
2009 

Harvest Date 12-Dec-
2007 

24-Dec-
2007 

08-Dec-
2008 

15-Dec-
2008 

08-Dec-
2009 

15-Dec-
2009 

N Applied + 
In Soil (kg N 
ha-1) 

  200 210 211  

Irrigation + 
Rainfall (mm) 

Dry: 219 
Wet: 267 

Dry: 159 
Wet: 207 

Dry: 178 
Wet: 208 

Dry: 108 
Wet: 164 

Dry: 223 
Wet: 293 

Dry: 170 
Wet: 230 

Ambient/Enric
hed [CO2] 
(ppm) 

380/550 380/550 390/550 390/550 390/550 390/550 

Source(s) (Norton et al., 2008; Lam et al., 2012c; Fitzgerald et al., 2016) 
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Table A12. Key details for the seven seasons of rice cropping at Shizukuishi, Iwate, Japan. 

Experiment ID 
 

JFRice9
8 

JFRice9
9 

JFRice0
0 

JFRice0
3 

JFRice0
4 

JFRice0
7 

JFRice0
8 

Planting Date 07-May-
1998 

28-Apr-
1999 

29-Apr-
2000 

01-May-
2003 

01-May-
2004 

01-May-
2007 

01-May-
2008 

Harvest Date 29-Sep-
1998 

20-Sep-
1999 

19-Sep-
1999 

    

N Fertilization 
(kg N ha-1) 

Low: 40 
Med: 80 
High: 
120 

Low: 40 
Med: 90 
High: 
150 

Low: 40 
Med: 90 
High: 
150 

CRN: 
80 
Spl: 90 

CRN: 
80 
Spl: 90 

All: 90 All: 90 

Ambient/Enriche
d [CO2] (ppm) 

368/662 369/640 365/586 366/570 365/548 379/570 376/576 

Source(s) (Kim et al., 2003a, 2003b; 
Kobayashi et al., 2006) 

(Shimono et al., 
2008) 

(Hasegawa et al., 
2013) 

  
Table A13. Key details for the three seasons of wheat and two seasons of soy cropping at 
Changping, Beijing, China. 

Experiment ID  CHWht07 CHWht08 CHWht09 CHSoy09 CHSoy11 
Planting Date 07-Oct-2007 10-Oct-2008 10-Oct-2009 17-Jun-2009 24-Jun-2011 
Harvest Date 07-Jun-2008 13-Jun-2009 27-Jun-2010 06-Oct-2009 04-Oct-2011 
N Fertilization 
(kg N ha-1) 

Low: 100 
High: 170 

Low: 100 
High: 170 

Low: 100 
High: 170 

4.8 4.8 

Irrigation + 
Rainfall (mm) 

459 319 323 420 647 

Ambient/Enriched 
[CO2] (ppm) 

415/550 415/550 415/550 415/550 415/550 

Source(s) (Lam et al., 2012b; Han et al., 2015) (Lam et al., 2012a; Hao et 
al., 2014) 
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Soils input data from simulated FACE experiments 

Table A14. Soils input data used for simulations of FACE experiments at the Maricopa, AZ, USA site. 

Layer 
Upper 
Bound 
(cm) 

Layer 
Lower 
Bound 
(cm) 

Bulk 
Density 
(g/cm3) 

Field 
Capacity 
(v/v) 

Wilting 
Point 
(v/v) 

% 
Roots 
in layer 

% Sand % Clay % 
Organic 
matter 

Min soil 
water 
content 
(v/v) 

Saturated 
hydraulic 
conductivity 
(cm/s) 

pH 

0 2 1.31 0.3 0.215 1% 35% 34% 1% 0.14508 0.00064 8.5 
2 5 1.31 0.3 0.215 5% 35% 32% 1% 0.10881 0.00064 8.5 
5 10 1.31 0.3 0.215 28% 35% 32% 1% 0.07254 0.00064 8.5 
10 20 1.27 0.3 0.215 34% 35% 32% 1% 0.018135 0.00064 8.5 
20 30 1.27 0.3 0.215 11% 35% 32% 1% 0 0.00064 8.6 
30 45 1.3 0.29 0.205 6% 35% 30% 1% 0 0.00021 8.6 
45 60 1.47 0.29 0.205 5% 35% 30% 0% 0 0.00021 8.6 
60 75 1.57 0.23 0.205 3% 35% 30% 0% 0 0.00021 8.6 
75 90 1.57 0.23 0.164 2% 45% 30% 0% 0 0.00047 8.6 
90 105 1.57 0.23 0.164 1% 45% 30% 0% 0 0.00047 8.6 
105 120 1.57 0.23 0.164 1% 50% 30% 0% 0 0.00047 8.6 
120 150 1.57 0.23 0.164 1% 55% 30% 0% 0 0.00047 8.6 
150 180 1.57 0.23 0.164 1% 60% 30% 0% 0 0.00047 8.6 
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Table A15. Soil input data used for simulations of FACE experiments at the Champaign, IL, USA site. 

Layer 
Upper 
Bound 
(cm) 

Layer 
Lower 
Bound 
(cm) 

Bulk 
Density 
(g/cm3) 

Field 
Capacity 
(v/v) 

Wilting 
Point 
(v/v) 

% 
Roots 
in layer 

% Sand % Clay % 
Organic 
matter 

Min 
soil 
water 
content 

Saturated 
hydraulic 
conductivity 
(cm/s) 

pH 

0 2 1.34 0.30917 0.1221 0.01124 0.06 0.2 0.02 0.09768 0.00038 6.8 
2 5 1.34 0.30917 0.1221 0.04494 0.06 0.2 0.02 0.07326 0.00038 6.8 
5 10 1.34 0.30917 0.1221 0.2809 0.06 0.2 0.02 0.04884 0.00038 6.8 
10 20 1.34 0.30917 0.1221 0.33708 0.06 0.2 0.02 0.01221 0.00038 6.8 
20 30 1.34 0.30917 0.1221 0.11236 0.06 0.2 0.02 0 0.00038 6.8 
30 45 1.28 0.34333 0.16326 0.05618 0.06 0.3 0.02 0 0.00018 5.5 
45 60 1.25 0.38276 0.20767 0.04494 0.03 0.37 0 0 0.00012 6 
60 75 1.25 0.38276 0.20767 0.03371 0.03 0.37 0 0 0.00012 6 
75 90 1.25 0.38276 0.20767 0.02247 0.03 0.37 0 0 0.00012 6 
90 105 1.25 0.38276 0.20767 0.01124 0.03 0.37 0 0 0.00012 6 
105 120 1.25 0.38276 0.20767 0.01124 0.03 0.37 0 0 0.00012 6 
120 150 1.25 0.38276 0.20767 0.01124 0.03 0.37 0 0 0.00012 6 
150 180 1.28 0.33963 0.15736 0.01124 0.02 0.28 0 0 0.00021 6.3 
180 210 1.28 0.33963 0.15736 0.01124 0.02 0.28 0 0 0.00021 6.3 
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Table A16. Soil input data used for simulations of FACE experiments at the Horsham, Victoria, Australia site. 

Layer 
Upper 
Bound 
(cm) 

Layer 
Lower 
Bound 
(cm) 

Bulk 
Density 
(g/cm3) 

Field 
Capacity 
(v/v) 

Wilting 
Point 
(v/v) 

% 
Roots 
in layer 

% Sand % Clay % 
Organic 
matter 

Min 
soil 
water 
content 

Saturated 
hydraulic 
conductivity 
(cm/s) 

pH 

0 2 1.14 0.39 0.2 0.01 0.325 0.35 0.01248 0.08 0.00086 8.4 
2 5 1.14 0.39 0.2 0.04 0.325 0.35 0.01248 0.06 0.00086 8.4 
5 10 1.14 0.39 0.2 0.25 0.325 0.35 0.01248 0.04 0.00086 8.4 
10 20 1.14 0.39 0.2 0.3 0.3 0.4 0.01248 0.01 0.00086 8.4 
20 30 1.3 0.4 0.23 0.1 0.3 0.4 0.00708 0 0.00086 8.4 
30 45 1.3 0.4 0.23 0.05 0.275 0.45 0.00708 0 0.00086 8.4 
45 60 1.37 0.42 0.27 0.04 0.275 0.45 0.00354 0 0.00086 8.9 
60 75 1.4 0.43 0.3 0.03 0.25 0.5 0.00177 0 0.00086 9 
75 90 1.4 0.45 0.35 0.02 0.25 0.5 0.00044 0 0.00086 9 
90 105 1.4 0.45 0.35 0.01 0.225 0.55 0.00044 0 0.00086 9 
105 120 1.4 0.45 0.36 0 0.225 0.55 0.00022 0 0.00086 9 
120 150 1.4 0.45 0.37 0 0.2 0.6 0.00011 0 0.00086 9.1 
150 180 1.4 0.45 0.37 0 0.2 0.6 0.00011 0 0.00086 9.1 
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Table A17. Soil input data used for simulations of FACE experiments at the Shizukuishi, Iwate, Japan site. 

Layer 
Upper 
Bound 
(cm) 

Layer 
Lower 
Bound 
(cm) 

Bulk 
Density 
(g/cm3) 

Field 
Capacity 
(v/v) 

Wilting 
Point 
(v/v) 

% 
Roots 
in layer 

% Sand % Clay % 
Organic 
matter 

Min 
soil 
water 
content 

Saturated 
hydraulic 
conductivity 
(cm/s) 

pH 

0 2 0.73 0.32494 0.10263 0.01 0.43 0.26 0.0083 0.08 0.00086 5.6 
2 5 0.73 0.32494 0.10263 0.04 0.43 0.26 0.0083 0.06 0.00086 5.6 
5 10 0.73 0.32494 0.10263 0.25 0.43 0.26 0.0083 0.04 0.00086 5.6 
10 20 0.73 0.32494 0.10263 0.3 0.43 0.26 0.0083 0.01 0.00086 5.6 
20 30 0.73 0.32494 0.10263 0.1 0.43 0.26 0.0083 0 0.00086 5.6 
30 45 0.73 0.32494 0.10263 0.05 0.43 0.26 0.0083 0 0.00086 5.6 
45 60 0.73 0.32494 0.10263 0.04 0.43 0.26 0.0083 0 0.00086 5.6 
60 75 0.73 0.32494 0.10263 0.03 0.43 0.26 0.0083 0 0.00086 5.6 
75 90 0.73 0.32494 0.10263 0.02 0.43 0.26 0.0083 0 0.00086 5.6 
90 105 0.73 0.32494 0.10263 0.01 0.43 0.26 0.0083 0 0.00086 5.6 
105 120 0.73 0.32494 0.10263 0 0.43 0.26 0.0083 0 0.00086 5.6 
120 150 0.73 0.32494 0.10263 0 0.43 0.26 0.0083 0 0.00086 5.6 
150 180 0.73 0.32494 0.10263 0 0.43 0.26 0.0083 0 0.00086 5.6 
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Table A18. Soil input data used for simulations of FACE experiments at the Changping, Beijing, China site. 

Layer 
Upper 
Bound 
(cm) 

Layer 
Lower 
Bound 
(cm) 

Bulk 
Density 
(g/cm3) 

Field 
Capacity 
(v/v) 

Wilting 
Point 
(v/v) 

% 
Roots 
in layer 

% Sand % Clay % 
Organic 
matter 

Min 
soil 
water 
content 

Saturated 
hydraulic 
conductivity 
(cm/s) 

pH 

0 2 1.21 0.344 0.156 0.01 0.33 0.33 0.0106 0.08 0.000205 8.4 
2 5 1.21 0.344 0.156 0.04 0.33 0.33 0.0106 0.06 0.000205 8.4 
5 10 1.21 0.344 0.156 0.25 0.33 0.33 0.0106 0.04 0.000205 8.4 
10 20 1.21 0.344 0.156 0.3 0.33 0.33 0.0106 0.01 0.000205 8.4 
20 30 1.21 0.344 0.156 0.1 0.33 0.33 0.0106 0 0.000205 8.4 
30 45 1.21 0.344 0.156 0.05 0.33 0.33 0.0106 0 0.000205 8.4 
45 60 1.21 0.344 0.156 0.04 0.33 0.33 0.0106 0 0.000205 8.4 
60 75 1.21 0.344 0.156 0.03 0.33 0.33 0.0106 0 0.000205 8.4 
75 90 1.21 0.344 0.156 0.02 0.33 0.33 0.0106 0 0.000205 8.4 
90 105 1.21 0.344 0.156 0.01 0.33 0.33 0.0106 0 0.000205 8.4 
105 120 1.21 0.344 0.156 0 0.33 0.33 0.0106 0 0.000205 8.4 
120 150 1.21 0.344 0.156 0 0.33 0.33 0.0106 0 0.000205 8.4 
150 180 1.21 0.344 0.156 0 0.33 0.33 0.0106 0 0.000205 8.4 
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Initial DayCent calibration 

This work made use of a recently updated version of DayCent that includes improved simulation 

of crop LAI and water use and crop growth based on thermal time accumulation (ie., growing 

degree days rather than calendar days).  The rationale, testing and validation of these 

improvements is described in Zhang (2016).   

The goal of the initial calibration process was to minimize systematic bias within DayCent 

results compared to important observational variables.  In practice, the parameters controlling 

RUE and crop phenology were adjusted as little as possible from default values (which are not 

cultivar-specific) until the absolute value of relative bias was less than 10%.  Modest adjustments 

to the water use, N limitation, and root allocation parameters were made to improve agreement 

between observed and simulated season ET, C:N and R:S ratios, respectively. 

Crop thermal time parameters for each crop were adjusted to achieve agreement with observed 

crop anthesis and flowering dates.  The resulting parameter values were not necessarily the same 

as those reported in papers, since methods of thermal time calculation were not always consistent 

with the one used by DayCent, and temperatures in weather input files were not identical to those 

measured by on-site weather stations. 

In two cases this could not be achieved (Table A14): R:S ratio for wheat, and C:N ratio for rice.  

The discrepancy in R:S ratio for wheat was caused by a single DayCent simulation of irrigated 

wheat in Horsham, which was moderately water-stressed and thus increased belowground 

allocation and reached a R:S ratio of 0.094 versus an observed value of 0.054 (Lam et al., 

2012c).  The simulated water input was close to the reported amount (34 cm simulated vs 30 cm 
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reported by Lam et al., 2012c), but this was very low relative to the comparable totals reported 

for non-water stressed wheat treatments at Maricopa (greater than 60 cm from Kimball et al., 

1995 and Hunsaker et al., 2000). 

Table A19. DayCent modeled vs. measured performance statistics after calibration to 
observations from ambient, unstressed FACE treatments.  Note that crop-outcome combinations 
with fewer than three observations were excluded.   

Crop Outcome Intercept 
(SE) 

Slope 
(SE) 

R2 N P Bias RMSE 

Soy Yield  
(g C m-2) 

38.3 (37.3) 0.602 
(0.314) 

0.38 8 0.103 6.57 27.1 

C4 Yield 
(g C m-2) 

232 (153) 0.295 
(0.398) 

0.155 5 0.512 7.44 110 

C4 Season 
ET (mm) 

3.59 (20.3) 0.795 
(0.382) 

0.521 6 0.106 13.5
7 

11.5 

Wheat Yield 
(g C m-2) 

82.2 (26.5) 0.614 
(0.112) 

0.734 13 0.000185 -1.37 63.6 

Wheat Season 
ET (mm) 

58.8 (44.6) 0.0529 
(0.75) 

0.00248 4 0.95 -4.35 4.2 

Wheat C:N Ratio -36.6 
(48.1) 

2.26 
(1.77) 

0.291 6 0.269 8.37 4.94 

Wheat R:S Ratio -0.0202 
(0.00238) 

1.4 
(0.0409
) 

0.999 3 0.0186 -4.02 0.0067
2 

Rice Yield 
(g C m-2) 

12.7 (83.1) 0.897 
(0.326) 

0.407 13 0.019 5.32 37 

Rice C:N Ratio 179 (143) -3.93 
(4.22) 

0.178 6 0.404 -35.2 15.5 

 

The C:N ratio of several rice observations based on Shimono et al. (2008) was derived from 

reported N uptake and dry biomass figures, assuming a 40% C content of dry biomass.  While 

these treatments included N application comparable with the medium N treatments of (Kim et 
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al., 2003b), the observed values averaged a C:N ratio of 52.1, which was substantially higher 

than corresponding values from the low N treatments of (Kim et al., 2003b). 
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Figure A6. Observed vs. simulated grain yields for soybean, wheat, rice and C4 crops (corn & 
sorghum) from ambient, unstressed treatments only. Solid black lines depict 1:1 lines, while 
dotted gray lines show linear regression of observed on simulated values.  Simulated results 
shown here reflect DayCent performance after calibrating crop parameters unrelated to [CO2] 
response, including radiation use efficiency (RUE), phenology, biomass N requirements, and C 
partitioning. 

Calibrated DayCent crop.100 parameter files 

The following are the specific calibrated crop parameter sets (contained in an input file known as 

a crop.100 file) used for each crop at each site.  Note that parameter values for a given crop 

sometimes vary between different sites, but the CO2 response parameters were calibrated to be 

the same for a given crop across sites.  The actual files exist in a single column but have been 

converted to two-column format here for readability.
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Champaign, Illinois, USA 
 
Maize 
 
C6 corn built on: C603    corn-c6 P31 
0.185              'PRDX(1)'   6/15/10 SAW 1.2 
30.0              'PPDF(1)'    
45.0              'PPDF(2)'    
1.0               'PPDF(3)'    
2.5                'PPDF(4)'    
0.0               'BIOFLG'     
1800.0            'BIOK5'      
0.9               'PLTMRF'     
150.0             'FULCAN'     
5                 'FRTCINDX'   
0.4               'FRTC(1)' 6/3/10 SAW .5   
0.1               'FRTC(2)'    
90.0               'FRTC(3)' days   
0.1               'FRTC(4)'    
0.1               'FRTC(5)' 
0.3               'CFRTCN(1)' 
0.25              'CFRTCN(2)' 
0.5               'CFRTCW(1)' 
0.1               'CFRTCW(2)' 
700.0             'BIOMAX' 700   
20.0              'PRAMN(1,1)' 15 
150.0             'PRAMN(2,1)' 
190.0             'PRAMN(3,1)' 
62.5              'PRAMN(1,2)' 
150.0             'PRAMN(2,2)' 
150.0             'PRAMN(3,2)' 
40.0              'PRAMX(1,1)' 
230.0             'PRAMX(2,1)' 
230.0             'PRAMX(3,1)' 
125.0              'PRAMX(1,2)' 
230.0             'PRAMX(2,2)' 
230.0             'PRAMX(3,2)' 
45.0              'PRBMN(1,1)' 
390.0             'PRBMN(2,1)' 
340.0             'PRBMN(3,1)' 

0.0               'PRBMN(1,2)' 
0.0               'PRBMN(2,2)' 
0.0               'PRBMN(3,2)' 
60.0              'PRBMX(1,1)' 
420.0             'PRBMX(2,1)' 
420.0             'PRBMX(3,1)' 
0.0               'PRBMX(1,2)' 
0.0               'PRBMX(2,2)' 
0.0               'PRBMX(3,2)' 
0.12              'FLIGNI(1,1)' 
0.0               'FLIGNI(2,1)' 
0.06              'FLIGNI(1,2)' 
0.0               'FLIGNI(2,2)' 
0.06              'FLIGNI(1,3)' 
0.0               'FLIGNI(2,3)' 
0.58               'HIMAX'   6/15/10 SAW 0.60   
0.5               'HIWSF'      
1.0               'HIMON(1)'   
0.0               'HIMON(2)'   
0.75              'EFRGRN(1)'  
0.6               'EFRGRN(2)'  
0.6               'EFRGRN(3)'  
0.04              'VLOSSP'     
0.0               'FSDETH(1)'  
0.0               'FSDETH(2)'  
0.0               'FSDETH(3)'  
500.0             'FSDETH(4)'  
0.1               'FALLRT'     
0.05              'RDRJ'        
0.05              'RDRM'        
0.14              'RDSRFC'     
2.0               'RTDTMP'     
0.0               'CRPRTF(1)'  
0.0               'CRPRTF(2)'  
0.0               'CRPRTF(3)'  
0.05              'MRTFRAC'    
0.0               'SNFXMX(1)'  
-15.0             'DEL13C'     
1.0               'CO2IPR(1)'  
0.82              'CO2ITR(1)'  
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1.0               'CO2ICE(1,1,1)' 
1.0               'CO2ICE(1,1,2)' 
1.0               'CO2ICE(1,1,3)' 
1.0               'CO2ICE(1,2,1)' 
1.0               'CO2ICE(1,2,2)' 
1.0               'CO2ICE(1,2,3)' 
1.0               'CO2IRS(1)'  
0.10000           'CKMRSPMX(1)' 
0.15000           'CKMRSPMX(2)' 
0.05000           'CKMRSPMX(3)' 
0.00000           'CMRSPNPP(1)' 
0.00000           'CMRSPNPP(2)' 
1.25000           'CMRSPNPP(3)' 
1.00000           'CMRSPNPP(4)' 
4.00000           'CMRSPNPP(5)' 
1.50000           'CMRSPNPP(6)' 
0.23000           'CGRESP(1)'  
0.23000           'CGRESP(2)'  
0.23000           'CGRESP(3)'  
0.25000           'NO3PREF(1)' 
7.00000           'CLAYPG' 
0.50000           'CMIX'       
-13.000           'TMPGERM' 
730.00            'DDBASE' 
-3.5              'TMPKILL' 
10                'BASETEMP' 
30                'BASETEMP(2)' 
650               'MNDDHRV' 
650               'MXDDHRV' 
120.0             'CURGDYS' 
0.5               'CLSGRES' 
0.12              'CMXTURN' 
1.0               'NPP2CS(1)' 
2.0               'CAFUE' 
1.40              'EMAX' 
1.1               'KCET' 
0.6               'KLIGHT' 
0.02              'SLA' 
0.9               'LEAFCL' 
0.9               'LEAFEMERG' 

0.3              'LEAFMX' 
0.02              'LEAFPM' 
103                'DDEMERG' 
850               'DDLAIMX' 
 
Soybean 
 
SYBN soybeans built on: SY02  Soybeans 
Mead2 
0.07             'PRDX(1)' 6/15/10 SAW 0.65 
27.0              'PPDF(1)' 
40.0              'PPDF(2)' 40 8/20/10 SAW 
1.0               'PPDF(3)' 
2.5               'PPDF(4)' 
0.0               'BIOFLG' 
1800.0            'BIOK5' 
1.4               'PLTMRF' 
150.0             'FULCAN' 
5                 'FRTCIN' 
0.35               'FRTC(1)' 6/8/10 SAW 0.5 .4 
0.05              'FRTC(2)' 0.1 8/13/10 SAW 
60.0               'FRTC(3)' days   
0.1               'FRTC(4)' 6/8/10 SAW 0.2 
0.1               'FRTC(5)' 
0.4               'CFRTCN(1)' 
0.25              'CFRTCN(2)' 
0.5               'CFRTCW(1)' 
0.1               'CFRTCW(2)' 
200.0             'BIOMAX' 
5.0              'PRAMN(1,1)' 
150.0             'PRAMN(2,1)' 
100.0             'PRAMN(3,1)' 
15.0              'PRAMN(1,2)' 
150.0             'PRAMN(2,2)' 
100.0             'PRAMN(3,2)' 
15.0              'PRAMX(1,1)' 
230.0             'PRAMX(2,1)' 
100.0             'PRAMX(3,1)' 
30.0              'PRAMX(1,2)' 
230.0             'PRAMX(2,2)' 
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100.0             'PRAMX(3,2)' 
24.0              'PRBMN(1,1)' 
390.0             'PRBMN(2,1)' 
100.0             'PRBMN(3,1)' 
0.0               'PRBMN(1,2)' 
0.0               'PRBMN(2,2)' 
000.0             'PRBMN(3,2)' 
32.0              'PRBMX(1,1)' 
420.0             'PRBMX(2,1)' 
100.0             'PRBMX(3,1)' 
0.0               'PRBMX(1,2)' 
0.0               'PRBMX(2,2)' 
000.0             'PRBMX(3,2)' 
0.12              'FLIGNI(1,1)' 
0.0               'FLIGNI(2,1)' 
0.06              'FLIGNI(1,2)' 
0.0               'FLIGNI(2,2)' 
0.06              'FLIGNI(1,3)' 
0.0               'FLIGNI(2,3)' 
0.55               'HIMAX'  6/8/10 SAW 0.31 
0.5               'HIWSF' 0.25 8/13/10 SAW .5 
1.0               'HIMON(1)' 6/18/10 SAW 2 
0.0               'HIMON(2)' 6/18/10 SAW 1 
0.70              'EFRGRN(1)' 6/16/10 SAW 
0.57 .75 
0.6               'EFRGRN(2)' 
0.6               'EFRGRN(3)' 
0.04              'VLOSSP' 
0.0               'FSDETH(1)' 
0.0               'FSDETH(2)' 
0.0               'FSDETH(3)' 
500.0             'FSDETH(4)' 
0.1               'FALLRT' 
0.5              'RDRJ' 
0.15              'RDRM' 
0.14              'RDSRFC'     
2.0               'RTDTMP' 
0.0               'CRPRTF(1)' 
0.0               'CRPRTF(2)' 
0.0               'CRPRTF(3)' 

0.05              'MRTFRAC'    
0.0600            'SNFXMX(1)' 
-27.0             'DEL13C' 
1.12               'CO2IPR(1)' 
0.58              'CO2ITR(1)' 
1.0               'CO2ICE(1,1,1)' 
1.0               'CO2ICE(1,1,2)' 
1.0               'CO2ICE(1,1,3)' 
1.0               'CO2ICE(1,2,1)' 
1.0               'CO2ICE(1,2,2)' 
1.0               'CO2ICE(1,2,3)' 
1.0               'CO2IRS(1)' 
0.10000           'CKMRSPMX(1)' 
0.15000           'CKMRSPMX(2)' 
0.05000           'CKMRSPMX(3)' 
0.00000           'CMRSPNPP(1)' 
0.00000           'CMRSPNPP(2)' 
1.25000           'CMRSPNPP(3)' 
1.00000           'CMRSPNPP(4)' 
4.00000           'CMRSPNPP(5)' 
1.50000           'CMRSPNPP(6)' 
0.23000           'CGRESP(1)'  
0.23000           'CGRESP(2)'  
0.23000           'CGRESP(3)'  
0.50000           'NO3PREF(1)' 
6.00000           'CLAYPG' 
0.50000           'CMIX'       
-17.0000           'TMPGERM' 
500             'DDBASE' 
-2.0              'TMPKILL' 
10                'BASETEMP' 
30                'BASETEMP(2)' 
900              'MNDDHRV' 100 
900              'MXDDHRV' 400 
120.0             'CURGDYS' 
0.5               'CLSGRES' 
0.12              'CMXTURN'    
1.0               'NPP2CS(1)' 
2.0               'CAFUE' 
0.90              'EMAX' 
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1.1               'KCET' 
0.6               'KLIGHT' 
0.025              'SLA' 
0.7               'LEAFCL' 
0.85               'LEAFEMERG' 
0.30               'LEAFMX' 
0.00              'LEAFPM' 
103                'DDEMERG' 
1000               'DDLAIMX' 
 
Maricopa, Arizona, USA 
 
Sorghum 
 
SORG sorghum built from corn built on: 
C603    corn-c6 P31 
0.115              'PRDX(1)'   6/15/10 SAW 1.2 
30.0              'PPDF(1)'    
45.0              'PPDF(2)'    
1.0               'PPDF(3)'    
2.5                'PPDF(4)'    
0.0               'BIOFLG'     
1800.0            'BIOK5'      
0.9               'PLTMRF'     
150.0             'FULCAN'     
5                 'FRTCINDX'   
0.4               'FRTC(1)' 6/3/10 SAW .5   
0.1               'FRTC(2)'    
90.0               'FRTC(3)' days   
0.1               'FRTC(4)'    
0.1               'FRTC(5)' 
0.3               'CFRTCN(1)' 
0.25              'CFRTCN(2)' 
0.5               'CFRTCW(1)' 
0.1               'CFRTCW(2)' 
700.0             'BIOMAX' 700   
20.0              'PRAMN(1,1)' 15 
150.0             'PRAMN(2,1)' 
190.0             'PRAMN(3,1)' 
62.5              'PRAMN(1,2)' 

150.0             'PRAMN(2,2)' 
150.0             'PRAMN(3,2)' 
40.0              'PRAMX(1,1)' 
230.0             'PRAMX(2,1)' 
230.0             'PRAMX(3,1)' 
125.0              'PRAMX(1,2)' 
230.0             'PRAMX(2,2)' 
230.0             'PRAMX(3,2)' 
45.0              'PRBMN(1,1)' 
390.0             'PRBMN(2,1)' 
340.0             'PRBMN(3,1)' 
0.0               'PRBMN(1,2)' 
0.0               'PRBMN(2,2)' 
0.0               'PRBMN(3,2)' 
60.0              'PRBMX(1,1)' 
420.0             'PRBMX(2,1)' 
420.0             'PRBMX(3,1)' 
0.0               'PRBMX(1,2)' 
0.0               'PRBMX(2,2)' 
0.0               'PRBMX(3,2)' 
0.12              'FLIGNI(1,1)' 
0.0               'FLIGNI(2,1)' 
0.06              'FLIGNI(1,2)' 
0.0               'FLIGNI(2,2)' 
0.06              'FLIGNI(1,3)' 
0.0               'FLIGNI(2,3)' 
0.55               'HIMAX'   6/15/10 SAW 0.60   
0.5               'HIWSF'      
1.0               'HIMON(1)'   
0.0               'HIMON(2)'   
0.75              'EFRGRN(1)'  
0.6               'EFRGRN(2)'  
0.6               'EFRGRN(3)'  
0.04              'VLOSSP'     
0.0               'FSDETH(1)'  
0.0               'FSDETH(2)'  
0.0               'FSDETH(3)'  
500.0             'FSDETH(4)'  
0.1               'FALLRT'     
0.05              'RDRJ'        
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0.05              'RDRM'        
0.14              'RDSRFC'     
2.0               'RTDTMP'     
0.0               'CRPRTF(1)'  
0.0               'CRPRTF(2)'  
0.0               'CRPRTF(3)'  
0.05              'MRTFRAC'    
0.0               'SNFXMX(1)'  
-15.0             'DEL13C'     
1.0               'CO2IPR(1)'  
0.82              'CO2ITR(1)'  
1.0               'CO2ICE(1,1,1)' 
1.0               'CO2ICE(1,1,2)' 
1.0               'CO2ICE(1,1,3)' 
1.0               'CO2ICE(1,2,1)' 
1.0               'CO2ICE(1,2,2)' 
1.0               'CO2ICE(1,2,3)' 
1.0               'CO2IRS(1)'  
0.10000           'CKMRSPMX(1)' 
0.15000           'CKMRSPMX(2)' 
0.05000           'CKMRSPMX(3)' 
0.00000           'CMRSPNPP(1)' 
0.00000           'CMRSPNPP(2)' 
1.25000           'CMRSPNPP(3)' 
1.00000           'CMRSPNPP(4)' 
4.00000           'CMRSPNPP(5)' 
1.50000           'CMRSPNPP(6)' 
0.23000           'CGRESP(1)'  
0.23000           'CGRESP(2)'  
0.23000           'CGRESP(3)'  
0.25000           'NO3PREF(1)' 
7.00000           'CLAYPG' 
0.50000           'CMIX'       
-13.000           'TMPGERM' 
1000.00            'DDBASE' 
-3.5              'TMPKILL' 
10                'BASETEMP' 
30                'BASETEMP(2)' 
850               'MNDDHRV' 
850               'MXDDHRV' 

120.0             'CURGDYS' 
0.5               'CLSGRES' 
0.12              'CMXTURN' 
1.0               'NPP2CS(1)' 
2.0               'CAFUE' 
1.40              'EMAX' 
1.2               'KCET' 
0.6               'KLIGHT' 
0.02              'SLA' 
0.9               'LEAFCL' 
0.9               'LEAFEMERG' 
0.3              'LEAFMX' 
0.02              'LEAFPM' 
103                'DDEMERG' 
1000               'DDLAIMX' 
 
Wheat 
 
SW3 spring wheat build on: W3F5    Wheat, 
GDD, new LAI 
0.105           'PRDX(1)'    
0.105           'PRDX(1)'    
20.0              'PPDF(1)'    
40.0              'PPDF(2)'    
0.7               'PPDF(3)'    
5.0               'PPDF(4)'    
0.0               'BIOFLG'     
1800.0            'BIOK5'      
40               'PLTMRF'     
150.0             'FULCAN'     
5.00000           'FRTCINDX'   
0.4               'FRTC(1)'    
0.03               'FRTC(2)'    
60.0               'FRTC(3)' days   
0.1               'FRTC(4)'  
0.1               'FRTC(5)'  
0.4               'CFRTCN(1)' 
0.25              'CFRTCN(2)' 
0.6               'CFRTCW(1)' 
0.1               'CFRTCW(2)' 
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300.0             'BIOMAX'     
14.0              'PRAMN(1,1)' 
100.0             'PRAMN(2,1)' 
100.0             'PRAMN(3,1)' 
28.0              'PRAMN(1,2)' 
160.0             'PRAMN(2,2)' 
200.0             'PRAMN(3,2)' 
40.0              'PRAMX(1,1)' 
200.0             'PRAMX(2,1)' 
230.0             'PRAMX(3,1)' 
120.0             'PRAMX(1,2)' 
260.0             'PRAMX(2,2)' 
270.0             'PRAMX(3,2)' 
45.0              'PRBMN(1,1)' 
390.0             'PRBMN(2,1)' 
340.0             'PRBMN(3,1)' 
0.0               'PRBMN(1,2)' 
0.0               'PRBMN(2,2)' 
0.0               'PRBMN(3,2)' 
60.0              'PRBMX(1,1)' 
420.0             'PRBMX(2,1)' 
420.0             'PRBMX(3,1)' 
0.0               'PRBMX(1,2)' 
0.0               'PRBMX(2,2)' 
0.0               'PRBMX(3,2)' 
0.15              'FLIGNI(1,1)' 
0.0               'FLIGNI(2,1)' 
0.06              'FLIGNI(1,2)' 
0.0               'FLIGNI(2,2)' 
0.06              'FLIGNI(1,3)' 
0.0               'FLIGNI(2,3)' 
0.45              'HIMAX'      
0.5              'HIWSF'      
1.0               'HIMON(1)'   
0.0               'HIMON(2)'   
0.65              'EFRGRN(1)'  
0.6               'EFRGRN(2)'  
0.6               'EFRGRN(3)'  
0.04              'VLOSSP'     
0.0               'FSDETH(1)'  

0.0               'FSDETH(2)'  
0.0               'FSDETH(3)'  
200.0             'FSDETH(4)'  
0.12              'FALLRT'     
0.05              'RDRJ'        
0.05              'RDRM'        
0.14              'RDSRFC'     
2.0               'RTDTMP'     
0.0               'CRPRTF(1)'  
0.0               'CRPRTF(2)'  
0.0               'CRPRTF(3)'  
0.05              'MRTFRAC'    
0.0               'SNFXMX(1)'  
-27.0             'DEL13C'     
1.22               'CO2IPR(1)'  
0.88              'CO2ITR(1)'  
1.08               'CO2ICE(1,1,1)' 
1.0               'CO2ICE(1,1,2)' 
1.0               'CO2ICE(1,1,3)' 
1.08               'CO2ICE(1,2,1)' 
1.0               'CO2ICE(1,2,2)' 
1.0               'CO2ICE(1,2,3)' 
1.0               'CO2IRS(1)'  
0.10000           'CKMRSPMX(1)' 
0.15000           'CKMRSPMX(2)' 
0.05000           'CKMRSPMX(3)' 
0.00000           'CMRSPNPP(1)' 
0.00000           'CMRSPNPP(2)' 
1.25000           'CMRSPNPP(3)' 
1.00000           'CMRSPNPP(4)' 
4.00000           'CMRSPNPP(5)' 
1.50000           'CMRSPNPP(6)' 
0.23000           'CGRESP(1)'  
0.23000           'CGRESP(2)'  
0.23000           'CGRESP(3)'  
0.25000           'NO3PREF(1)' 
6.00000           'CLAYPG' 
0.50000           'CMIX'       
-10.0000           'TMPGERM' 
1000.00           'DDBASE' 
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-20.0              'TMPKILL' 
5                 'BASETEMP' 
26                'BASETEMP(2)' 
500               'MNDDHRV' 
500               'MXDDHRV' 
120.0             'CURGDYS' 
0.5               'CLSGRES' 
0.12              'CMXTURN'    
1.0               'NPP2CS(1)' 
2.0               'CAFUE' 
0.90              'EMAX' 
1.2               'KCET' 
0.85               'KLIGHT' 
0.03              'SLA' 
0.4               'LEAFCL' 
0.7               'LEAFEMERG' 
0.15              'LEAFMX' 
0.0              'LEAFPM' 
0.01                'DDEMERG' 
1000              'DDLAIMX' 
 
Horsham, Victoria, Australia 
 
Wheat 
 
SW3AU spring wheat build on: W3F5    
Wheat, GDD, new LAI 
0.16           'PRDX(1)'    
20.0              'PPDF(1)'    
40.0              'PPDF(2)'    
0.7               'PPDF(3)'    
5.0               'PPDF(4)'    
0.0               'BIOFLG'     
1800.0            'BIOK5'      
40               'PLTMRF'     
150.0             'FULCAN'     
5.00000           'FRTCINDX'   
0.4               'FRTC(1)'    
0.03               'FRTC(2)'    
60.0               'FRTC(3)' days   

0.05               'FRTC(4)'  
0.1               'FRTC(5)'  
0.4               'CFRTCN(1)' 
0.25              'CFRTCN(2)' 
0.6               'CFRTCW(1)' 
0.1               'CFRTCW(2)' 
300.0             'BIOMAX'     
14.0              'PRAMN(1,1)' 
100.0             'PRAMN(2,1)' 
100.0             'PRAMN(3,1)' 
28.0              'PRAMN(1,2)' 
160.0             'PRAMN(2,2)' 
200.0             'PRAMN(3,2)' 
40.0              'PRAMX(1,1)' 
200.0             'PRAMX(2,1)' 
230.0             'PRAMX(3,1)' 
120.0             'PRAMX(1,2)' 
260.0             'PRAMX(2,2)' 
270.0             'PRAMX(3,2)' 
45.0              'PRBMN(1,1)' 
390.0             'PRBMN(2,1)' 
340.0             'PRBMN(3,1)' 
0.0               'PRBMN(1,2)' 
0.0               'PRBMN(2,2)' 
0.0               'PRBMN(3,2)' 
60.0              'PRBMX(1,1)' 
420.0             'PRBMX(2,1)' 
420.0             'PRBMX(3,1)' 
0.0               'PRBMX(1,2)' 
0.0               'PRBMX(2,2)' 
0.0               'PRBMX(3,2)' 
0.15              'FLIGNI(1,1)' 
0.0               'FLIGNI(2,1)' 
0.06              'FLIGNI(1,2)' 
0.0               'FLIGNI(2,2)' 
0.06              'FLIGNI(1,3)' 
0.0               'FLIGNI(2,3)' 
0.52              'HIMAX'      
0.50              'HIWSF'      
1.0               'HIMON(1)'   
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0.0               'HIMON(2)'   
0.65              'EFRGRN(1)'  
0.6               'EFRGRN(2)'  
0.6               'EFRGRN(3)'  
0.04              'VLOSSP'     
0.0               'FSDETH(1)'  
0.0               'FSDETH(2)'  
0.0               'FSDETH(3)'  
200.0             'FSDETH(4)'  
0.12              'FALLRT'     
0.05              'RDRJ'        
0.05              'RDRM'        
0.14              'RDSRFC'     
2.0               'RTDTMP'     
0.0               'CRPRTF(1)'  
0.0               'CRPRTF(2)'  
0.0               'CRPRTF(3)'  
0.05              'MRTFRAC'    
0.0               'SNFXMX(1)'  
-27.0             'DEL13C'     
1.22               'CO2IPR(1)'  
0.88              'CO2ITR(1)'  
1.08               'CO2ICE(1,1,1)' 
1.0               'CO2ICE(1,1,2)' 
1.0               'CO2ICE(1,1,3)' 
1.08               'CO2ICE(1,2,1)' 
1.0               'CO2ICE(1,2,2)' 
1.0               'CO2ICE(1,2,3)' 
1.0               'CO2IRS(1)'  
0.10000           'CKMRSPMX(1)' 
0.15000           'CKMRSPMX(2)' 
0.05000           'CKMRSPMX(3)' 
0.00000           'CMRSPNPP(1)' 
0.00000           'CMRSPNPP(2)' 
1.25000           'CMRSPNPP(3)' 
1.00000           'CMRSPNPP(4)' 
4.00000           'CMRSPNPP(5)' 
1.50000           'CMRSPNPP(6)' 
0.23000           'CGRESP(1)'  
0.23000           'CGRESP(2)'  

0.23000           'CGRESP(3)'  
0.25000           'NO3PREF(1)' 
6.00000           'CLAYPG' 
0.50000           'CMIX'       
-10.0000           'TMPGERM' 
900.00           'DDBASE' 
-20.0              'TMPKILL' 
5                 'BASETEMP' 
26                'BASETEMP(2)' 
500               'MNDDHRV' 
500               'MXDDHRV' 
120.0             'CURGDYS' 
0.5               'CLSGRES' 
0.12              'CMXTURN'    
1.0               'NPP2CS(1)' 
2.0               'CAFUE' 
0.90              'EMAX' 
1.2               'KCET' 
0.85               'KLIGHT' 
0.03              'SLA' 
0.4               'LEAFCL' 
0.7               'LEAFEMERG' 
0.15              'LEAFMX' 
0.0              'LEAFPM' 
0.01                'DDEMERG' 
1000              'DDLAIMX' 
 
Shizukuishi, Iwate, Japan 
 
Rice 
 
RICL spring wheat build on: W3F5    
Wheat, GDD, new LAI 
0.145           'PRDX(1)'    
30.0              'PPDF(1)' 
45.0              'PPDF(2)' 
1.0               'PPDF(3)' 
2.50              'PPDF(4)' 
0.0               'BIOFLG' 
1800.0            'BIOK5' 
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40              'PLTMRF' 
150.0             'FULCAN' 
5.0               'FRTCINDX' 
0.4               'FRTC(1)'    
0.03               'FRTC(2)'    
60.0               'FRTC(3)' days   
0.0001               'FRTC(4)'  
0.0001              'FRTC(5)'  
0.4               'CFRTCN(1)' 
0.25              'CFRTCN(2)' 
0.6               'CFRTCW(1)' 
0.1               'CFRTCW(2)' 
700.0             'BIOMAX' 
20.0              'PRAMN(1,1)' 
100.0             'PRAMN(2,1)' 
100.0             'PRAMN(3,1)' 
40.0              'PRAMN(1,2)' 
160.0             'PRAMN(2,2)' 
200.0             'PRAMN(3,2)' 
40.0              'PRAMX(1,1)' 
200.0             'PRAMX(2,1)' 
230.0             'PRAMX(3,1)' 
120.0             'PRAMX(1,2)' 
260.0             'PRAMX(2,2)' 
270.0             'PRAMX(3,2)' 
45.0              'PRBMN(1,1)' 
390.0             'PRBMN(2,1)' 
340.0             'PRBMN(3,1)' 
0.0               'PRBMN(1,2)' 
0.0               'PRBMN(2,2)' 
0.0               'PRBMN(3,2)' 
60.0              'PRBMX(1,1)' 
240.0             'PRBMX(2,1)' 
240.0             'PRBMX(3,1)' 
0.0               'PRBMX(1,2)' 
0.0               'PRBMX(2,2)' 
0.0               'PRBMX(3,2)' 
0.15              'FLIGNI(1,1)' 
0.0               'FLIGNI(2,1)' 
0.06              'FLIGNI(1,2)' 

0.0               'FLIGNI(2,2)' 
0.06              'FLIGNI(1,3)' 
0.0               'FLIGNI(2,3)' 
0.45              'HIMAX' 
0.5               'HIWSF' 
1.0               'HIMON(1)'   
0.0               'HIMON(2)'   
0.65              'EFRGRN(1)'  
0.6               'EFRGRN(2)'  
0.6               'EFRGRN(3)'  
0.04              'VLOSSP'     
0.0               'FSDETH(1)'  
0.0               'FSDETH(2)'  
0.0               'FSDETH(3)'  
200.0             'FSDETH(4)'  
0.12              'FALLRT'     
0.05              'RDRJ'        
0.05              'RDRM'        
0.14              'RDSRFC'     
2.0               'RTDTMP'     
0.0               'CRPRTF(1)'  
0.0               'CRPRTF(2)'  
0.0               'CRPRTF(3)'  
0.05              'MRTFRAC'    
0.0               'SNFXMX(1)'  
-27.0             'DEL13C'     
1.21               'CO2IPR(1)'  
0.75              'CO2ITR(1)'  
1.05               'CO2ICE(1,1,1)' 
1.0               'CO2ICE(1,1,2)' 
1.0               'CO2ICE(1,1,3)' 
1.05               'CO2ICE(1,2,1)' 
1.0               'CO2ICE(1,2,2)' 
1.0               'CO2ICE(1,2,3)' 
1.0               'CO2IRS(1)'  
0.1               'CKMRSPMX(1)' 
0.150             'CKMRSPMX(2)' 
0.050             'CKMRSPMX(3)' 
0.0               'CMRSPNPP(1)' 
0.0               'CMRSPNPP(2)' 
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1.250             'CMRSPNPP(3)' 
1.0               'CMRSPNPP(4)' 
4.0               'CMRSPNPP(5)' 
1.5               'CMRSPNPP(6)' 
0.230             'CGRESP(1)' 
0.230             'CGRESP(2)' 
0.230             'CGRESP(3)' 
0.250             'NO3PREF(1)' 
6.0               'CLAYPG' 
0.5               'CMIX' 
-10.0000           'TMPGERM' 
1200.00           'DDBASE' 
-20.0              'TMPKILL' 
5                 'BASETEMP' 
26                'BASETEMP(2)' 
800               'MNDDHRV' 
800               'MXDDHRV' 
120.0             'CURGDYS' 
0.5               'CLSGRES' 
0.12              'CMXTURN' 
1.0               'NPP2CS(1)' 
2.0               'CAFUE' 
0.9               'EMAX' 
1.2               'KCET' 
0.85               'KLIGHT' 
0.03              'SLA' 
0.4               'LEAFCL' 
0.7               'LEAFEMERG' 
0.15              'LEAFMX' 
0.0              'LEAFPM' 
0.01                'DDEMERG' 
1200              'DDLAIMX' 
 
Changping, Beijing, China 
 
Soybean 
 
SYBNCH soybeans built on: SY02  
Soybeans Mead2 
0.11             'PRDX(1)' 6/15/10 SAW 0.65 

20.0              'PPDF(1)' 
35.0              'PPDF(2)' 40 8/20/10 SAW 
1.0               'PPDF(3)' 
2.5               'PPDF(4)' 
0.0               'BIOFLG' 
1800.0            'BIOK5' 
1.4               'PLTMRF' 
150.0             'FULCAN' 
5                 'FRTCIN' 
0.35               'FRTC(1)' 6/8/10 SAW 0.5 .4 
0.05              'FRTC(2)' 0.1 8/13/10 SAW 
60.0               'FRTC(3)' days   
0.1               'FRTC(4)' 6/8/10 SAW 0.2 
0.1               'FRTC(5)' 
0.4               'CFRTCN(1)' 
0.25              'CFRTCN(2)' 
0.5               'CFRTCW(1)' 
0.1               'CFRTCW(2)' 
200.0             'BIOMAX' 
5.0              'PRAMN(1,1)' 
150.0             'PRAMN(2,1)' 
100.0             'PRAMN(3,1)' 
15.0              'PRAMN(1,2)' 
150.0             'PRAMN(2,2)' 
100.0             'PRAMN(3,2)' 
15.0              'PRAMX(1,1)' 
230.0             'PRAMX(2,1)' 
100.0             'PRAMX(3,1)' 
30.0              'PRAMX(1,2)' 
230.0             'PRAMX(2,2)' 
100.0             'PRAMX(3,2)' 
24.0              'PRBMN(1,1)' 
390.0             'PRBMN(2,1)' 
100.0             'PRBMN(3,1)' 
0.0               'PRBMN(1,2)' 
0.0               'PRBMN(2,2)' 
000.0             'PRBMN(3,2)' 
32.0              'PRBMX(1,1)' 
420.0             'PRBMX(2,1)' 
100.0             'PRBMX(3,1)' 
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0.0               'PRBMX(1,2)' 
0.0               'PRBMX(2,2)' 
000.0             'PRBMX(3,2)' 
0.12              'FLIGNI(1,1)' 
0.0               'FLIGNI(2,1)' 
0.06              'FLIGNI(1,2)' 
0.0               'FLIGNI(2,2)' 
0.06              'FLIGNI(1,3)' 
0.0               'FLIGNI(2,3)' 
0.28               'HIMAX'  6/8/10 SAW 0.31 
0.5               'HIWSF' 0.25 8/13/10 SAW .5 
1.0               'HIMON(1)' 6/18/10 SAW 2 
0.0               'HIMON(2)' 6/18/10 SAW 1 
0.70              'EFRGRN(1)' 6/16/10 SAW 
0.57 .75 
0.6               'EFRGRN(2)' 
0.6               'EFRGRN(3)' 
0.04              'VLOSSP' 
0.0               'FSDETH(1)' 
0.0               'FSDETH(2)' 
0.0               'FSDETH(3)' 
500.0             'FSDETH(4)' 
0.1               'FALLRT' 
0.5              'RDRJ' 
0.15              'RDRM' 
0.14              'RDSRFC'     
2.0               'RTDTMP' 
0.0               'CRPRTF(1)' 
0.0               'CRPRTF(2)' 
0.0               'CRPRTF(3)' 
0.05              'MRTFRAC'    
0.0600            'SNFXMX(1)' 
-27.0             'DEL13C' 
1.12               'CO2IPR(1)' 
0.58              'CO2ITR(1)' 
1.0               'CO2ICE(1,1,1)' 
1.0               'CO2ICE(1,1,2)' 
1.0               'CO2ICE(1,1,3)' 
1.0               'CO2ICE(1,2,1)' 
1.0               'CO2ICE(1,2,2)' 

1.0               'CO2ICE(1,2,3)' 
1.0               'CO2IRS(1)' 
0.10000           'CKMRSPMX(1)' 
0.15000           'CKMRSPMX(2)' 
0.05000           'CKMRSPMX(3)' 
0.00000           'CMRSPNPP(1)' 
0.00000           'CMRSPNPP(2)' 
1.25000           'CMRSPNPP(3)' 
1.00000           'CMRSPNPP(4)' 
4.00000           'CMRSPNPP(5)' 
1.50000           'CMRSPNPP(6)' 
0.23000           'CGRESP(1)'  
0.23000           'CGRESP(2)'  
0.23000           'CGRESP(3)'  
0.50000           'NO3PREF(1)' 
6.00000           'CLAYPG' 
0.50000           'CMIX'       
-17.0000           'TMPGERM' 
500.0             'DDBASE' 
-2.0              'TMPKILL' 
10                'BASETEMP' 
30                'BASETEMP(2)' 
700              'MNDDHRV' 100 
700              'MXDDHRV' 400 
120.0             'CURGDYS' 
0.5               'CLSGRES' 
0.12              'CMXTURN'    
1.0               'NPP2CS(1)' 
2.0               'CAFUE' 
0.90              'EMAX' 
1.1               'KCET' 
0.6               'KLIGHT' 
0.025              'SLA' 
0.7               'LEAFCL' 
0.85               'LEAFEMERG' 
0.30               'LEAFMX' 
0.00              'LEAFPM' 
103                'DDEMERG' 
900               'DDLAIMX' 
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Wheat 
 
W3 winter wheat build on: W3F5    Wheat, 
GDD, new LAI 
0.23           'PRDX(1)'    
20.0              'PPDF(1)'    
40.0              'PPDF(2)'    
0.7               'PPDF(3)'    
5.0               'PPDF(4)'    
0.0               'BIOFLG'     
1800.0            'BIOK5'      
40               'PLTMRF'     
150.0             'FULCAN'     
6.00000           'FRTCINDX'   
0.4               'FRTC(1)'    
0.03               'FRTC(2)'    
60.0               'FRTC(3)' days   
0.1               'FRTC(4)'  
0.1               'FRTC(5)'  
0.4               'CFRTCN(1)' 
0.25              'CFRTCN(2)' 
0.6               'CFRTCW(1)' 
0.1               'CFRTCW(2)' 
300.0             'BIOMAX'     
14.0              'PRAMN(1,1)' 
100.0             'PRAMN(2,1)' 
100.0             'PRAMN(3,1)' 
28.0              'PRAMN(1,2)' 
160.0             'PRAMN(2,2)' 
200.0             'PRAMN(3,2)' 
40.0              'PRAMX(1,1)' 
200.0             'PRAMX(2,1)' 
230.0             'PRAMX(3,1)' 
120.0             'PRAMX(1,2)' 
260.0             'PRAMX(2,2)' 
270.0             'PRAMX(3,2)' 
45.0              'PRBMN(1,1)' 
390.0             'PRBMN(2,1)' 
340.0             'PRBMN(3,1)' 
0.0               'PRBMN(1,2)' 

0.0               'PRBMN(2,2)' 
0.0               'PRBMN(3,2)' 
60.0              'PRBMX(1,1)' 
420.0             'PRBMX(2,1)' 
420.0             'PRBMX(3,1)' 
0.0               'PRBMX(1,2)' 
0.0               'PRBMX(2,2)' 
0.0               'PRBMX(3,2)' 
0.15              'FLIGNI(1,1)' 
0.0               'FLIGNI(2,1)' 
0.06              'FLIGNI(1,2)' 
0.0               'FLIGNI(2,2)' 
0.06              'FLIGNI(1,3)' 
0.0               'FLIGNI(2,3)' 
0.5              'HIMAX'      
0.50              'HIWSF'      
1.0               'HIMON(1)'   
0.0               'HIMON(2)'   
0.65              'EFRGRN(1)'  
0.6               'EFRGRN(2)'  
0.6               'EFRGRN(3)'  
0.04              'VLOSSP'     
0.0               'FSDETH(1)'  
0.0               'FSDETH(2)'  
0.0               'FSDETH(3)'  
200.0             'FSDETH(4)'  
0.12              'FALLRT'     
0.05              'RDRJ'        
0.05              'RDRM'        
0.14              'RDSRFC'     
2.0               'RTDTMP'     
0.0               'CRPRTF(1)'  
0.0               'CRPRTF(2)'  
0.0               'CRPRTF(3)'  
0.05              'MRTFRAC'    
0.0               'SNFXMX(1)'  
-27.0             'DEL13C'     
1.22               'CO2IPR(1)'  
0.88              'CO2ITR(1)'  
1.08               'CO2ICE(1,1,1)' 
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1.0               'CO2ICE(1,1,2)' 
1.0               'CO2ICE(1,1,3)' 
1.08               'CO2ICE(1,2,1)' 
1.0               'CO2ICE(1,2,2)' 
1.0               'CO2ICE(1,2,3)' 
1.0               'CO2IRS(1)'  
0.10000           'CKMRSPMX(1)' 
0.15000           'CKMRSPMX(2)' 
0.05000           'CKMRSPMX(3)' 
0.00000           'CMRSPNPP(1)' 
0.00000           'CMRSPNPP(2)' 
1.25000           'CMRSPNPP(3)' 
1.00000           'CMRSPNPP(4)' 
4.00000           'CMRSPNPP(5)' 
1.50000           'CMRSPNPP(6)' 
0.23000           'CGRESP(1)'  
0.23000           'CGRESP(2)'  
0.23000           'CGRESP(3)'  
0.25000           'NO3PREF(1)' 
6.00000           'CLAYPG' 
0.50000           'CMIX'       
-10.0000           'TMPGERM' 

800.00           'DDBASE' 
-20.0              'TMPKILL' 
5                 'BASETEMP' 
26                'BASETEMP(2)' 
200               'MNDDHRV' 
200               'MXDDHRV' 
120.0             'CURGDYS' 
0.5               'CLSGRES' 
0.12              'CMXTURN'    
1.0               'NPP2CS(1)' 
2.0               'CAFUE' 
0.90              'EMAX' 
1.2               'KCET' 
0.85               'KLIGHT' 
0.06              'SLA' 
0.4               'LEAFCL' 
0.7               'LEAFEMERG' 
0.15              'LEAFMX' 
0.0              'LEAFPM' 
0.01                'DDEMERG' 
800              'DDLAIMX'

 


