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ABSTRACT

MODELING BIOENERGY AGROECOSYSTEMS FOR CLIMATE CHANGE MITIGATION

AND VULNERABILITY ASSESSMENT

Agriculture is a major driver of anthropogenic climate change while also directly bearing its
impacts. In addition to emissions related to farm operations and inputs, substantial greenhouse
gases are released from cropland soils. These include carbon dioxiél(&€> due to long-

term changes in soil organic carbon pools, and nitrous oxig®) (produced by soil microbes

primarily from excess nitrogen (N) fertilizer not assimilated by crops.

Agricultural bioenergy systems are expected to produce liquid fuels with lower life-cycle
emissions than gasoline. Current US policy specifies several emissions reduction tiers for
biomass-derived liquid fuels, ranging from 20% lower than gasoline for corn grain ethanol to
60% lower for ethanol made from perennial grasses or agricultural residues. While these tiers
are based on detailed litgle assessments of “average” production conditions, they fail to

convey the potentially large variability in emissions arising from farm management and

biophysical factors.

The first half of this dissertation uses a survey of management practices from suppliers of corn
grain to a biorefinery in the US Midwest to explore the magnitude and sources of this variability.
The first phase of that study finds that feedstock from most of the farms would achieve the

statutory threshold of 20%, but that best-performing farms may be producing grain that would



lead to fuel with 50% lower life-cycle emissions than gasoline. Key management practices

identified are tillage intensity, efficient N fertilizer use and application of livestock manure.

Crop residues, such as corn stover, can also be converted to ethanol. The second part of this
study explore the sustainability of corn stover collection for ethanol production by a hypothetical
dual-feedstock biorefinery. Stover collection presents a tradeoff: when used to produce ethanol,
it displaces emissions from gasoline, but at the cost of less soil organic carbon (SOC)
accumulation. Still, soils on these farms could sustain relatively high stover collection rates
without net SOC losses or erosion, especially in the context of manure application and reduced

tillage intensity.

Climate change entails two major phenomemacreasing atmospheric [GPand increasing

extreme high temperaturedikely to have opposing impacts on agricultural productivity, and

these impacts will tend to increase over the course of fh€@itury. Chapter 4 of this work

reviews the current understanding of crop responses to elevated atmospOgramd extreme

heat as determined from agronomic studies and analyses of historical climate-yield data. It
summarizes consensus findings and presents emerging topics in need of further research, and
compares the state of knowledge with the simulation approaches employed by several major crop

models.

The increasing atmospheric [g]@hat largely drives climate change supports increased rates of
photosynthesis in £plants and improved water use efficiency in all plant types. The magnitude
of this fertilization effect is uncertain, however, and recent free atmosphesier€@chment

(FACE) experiments appear to show reduced gains relative to earlier enclosure experiments.



Chapter 5 tests the hypothesis that the algorithm designed to simulatextb&#ecOn the
DayCent ecosystem model overestimates crop responses to el€@ikdd observed under

FACE conditions.
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CHAPTER 1. OVERVIEW

Agriculture and Climate Change
Earth’s climate is changing
Anthropogenic climate change is underway. Global mean air temperature has risen roughly
0.85°C since the late T'3Century, with varying regional trends in extreme events such as heat
waves and droughts (Hartmaeiral., 2013). Projections for the next several decades include a
mean temperature between 1 and 1.5°C warmer than the fa@eb®ury average (Kirtmaet
al., 2013). When extended to the end of th& Qéntury, mean warming estimates range from
1.6 to 4.3°C for the lowest- and highest-emission Representative Concentration Pathways

(RCPs), respectively (Colliret al., 2013).

These changes are driven by increases in solar forcing primarily mediated by increasing
atmospheric concentrations of greenhouse gases (GHGs). Carbon dioxijles (@® most
important of these, accounting for roughly 58% of anthropogenic radiative forcing (@bBins

2013).

Agricultureis a significant contributor

Agricultural activities account for 10-12% of G@quivalent anthropogenic GHG emissions,

with agricultural soil management amounting to almost half of that total (Strath 2014).

Notably, that figure assumes that agricultural soil carbon (C) stocks are net neutral in aggregate,
while in reality newly-cultivated soils are major emitters of decomposed C gsa6®C can be
sequestered in depleted soils through improvements in productivity and management. The other
major GHGs emitted from agricultural activities are nitrous oxid®{[jNind methane (CHi

1



with both gases emitted from manure handling and use gDdds\also emitted in large

guantities from the use of synthetic nitrogen (N) fertilizer and N-fixing crops.

Agricultureis directly dependent on climate

While agriculture contributes to climate change, it is also directly vulnerable to climate change
impacts. Studies of yield and weather records indicate that historical climate change has already
negatively affected yields of maize and wheat, with less impact on rice and soybearns{Porter

al., 2014). Projected future impacts vary widely based on region, crop, climate scenario and
study methodology, but estimates become overwhelmingly negative by the closing decades of

the 22! Century (Porteet al., 2014).

Agricultural bioenergy magnifies these linkages

Crop-based bioenergy systems are promoted as a means to mitigate climate change, premised on
the production of liquid fuels with lower life-cycle emissions than energy-equivalent fossil fuels.
As a set of agricultural systems explicitly oriented toward climate mitigation, bioenergy cropping
rightly bears particular scrutiny in its GHG impacts. The most prevalent US bioenergy pathway,
corn grain ethanol, draws still greater attention due to its relatively modest mitigation benefits
and direct competition with food and feed markets. It is conceivable, and even plausible, that
ethanol made from poorly-managed corn could represent an increase in emissions relative to
gasoline while marginally increasing food prices: a lose-lose outcome. By contrast, ethanol
derived from corn stover may achieve large mitigation benefits with negligible impacts on food
and feed markets. In the context of bioenergy, anything that affects feedstock productivity
including management choices and climate charaféects overall mitigation benefits, which

feed back on the climate system. Figure 1.1 depicts some of the key causal pathways by which

2



bioenergy influences climate change, and climate change influences the productivity of

bioenergy systems.

i

Climate Change

Mitigation Impacts

Ds'giia;e_‘* e Elevated [CO;]
EHUESERON Warmer spring/fall

Heat st
Drought

Bioenergy
Agroecosystem

Figure 1.1. Major linkages between bioenergy systems and climate change. Processes on the left
either mitigate (green box) or exacerbate (red box) climate change. Processes on the right either
improve (green box) or impair (red box) the yields and functioning of bioenergy agroecosystems.

This dissertation examines the complex causal relationships between climate change and
bioenergy cropping systems. The first half (Chapters 2 and 3) explores the magnitude and
variability of feedstock life-cycle emissions as they relate to differences in farm management
practices. The goal of these chapters is to understand how bioenergy production systems can be
managed to maximize climate mitigation and minimize aggravating processes as depicted on the
left side of Figure 1.1. The second half (Chapters 4 and 5) examines our understanding of major
crop responses to historically-unprecedented levels of atmospher@n@@ncreasing mean and

extreme temperatures (right side of Figure 1.1). These chapters highlight areas of consensus and



identify areas of controversy that merit further study, as a clear understanding of these

phenomena is fundamental to forecasting agricultural production, whether for food or bioenergy.

Chapter Synopses
Chapter 2 estimates bioenergy emissions variability based on a survey of farm management
practices
Federal policy mandates increasing use of several distinct classes of biomass-derived liquid fuels
(described in Table 1.1). Corn grain ethanol is likely to remain the largest contributor to this
mandate, despite its status as the lowest-grade Renewable Fuel, with nominal GHG emissions
reductions of 20% relative to gasoline (Schnepf & Yacobucci, 2011). Studies of corn grain
ethanol emissions have found significant variability related to farm managementealler
2004; Wangt al., 2012), indirect effects on land-use (Searchirgal., 2008; Fargionet al.,
2010), and advances in conversion technologies and coproduct utilizationeflask@009).
Chapter 2 advances understanding of this variability by estimating emissions budgets using
actual farm management data from 35 feedstock producers in the US Midwest. Management
practices on this relatively homogeneous group of farms result in a large range of emissions, with
best practices achieving reductions nominally equivalent to those from Advanced Biofuels or

even (for one farm) Cellulosic Biofuels.



Table 1.1. Biofuel categories established by the Renewable Fuel Standard 2, their associated
emissions reductions relative to gasoline and major qualifying pathways. Note that the
categories qualify in a nested manner, so that (for example) any Advanced Biofuel may
alternatively qualify as a Renewable Fuel for the purposes of fulfilling volume mandates.

Biofuel Category Assumed Emissions Reductig Qualifying pathway(s)
Renewable Fuel 20% Corn grain ethanol
Advanced Biofuel 50% Sugarcane ethanol
Biomass-based Diesel 50% Soybean diesel

Algae-derived diesel
Diesel from waste oils
Cellulosic Biofuel 60% Perennial-grass derived
ethanol

Residue- or waste-derived
ethanol

Chapter 3 explores tradeoffs between management, emissions and production costs

As next-generation cellulosic biorefineries come into operation, crop residues such as corn stover
comprise a large, readibyailable feedstock. Such “agricultural wastes” can be critical for

controlling erosion and supporting soil fertility and C stocks, however (Sheealan2003;

Grahamet al., 2007; Turhollowet al., 2014). These sustainability constraints may be patrtially
alleviated through compensatory management practices such as reduced tillage intensity, cover
crops and organic matter amendments (Wilhetlad., 2004; Theleret al., 2010). Farm profits

from stover harvest will also be a key factor in dictating the viability of these systems, with unit
costs likely to fall with increasing collection rates (Grate., 2007). Chapter 3 returns to the
farms studied in Chapter 2, but replaces the present corn grain ethanol system with a hypothetical
dual-feedstock (i.e., grain and stover) system and models a wide range of farm management
scenarios to explore these emissions and profitability tradeoffs. Scenario emissions range from
10-100% of those from energy-equivalent gasoline, with reduced tillage intensity and moderate

manure inputs supporting soil C stocks at high levels of residue removal. Stover removal



marginally increases farmer profits per unit area under current market conditions, but provides a

considerable premium under C pricing scenarios.

Chapter 4 distills current understanding of crop responses to warming and [ CO2]

Climate change impacts on agriculture stem from two robustly-supported phenomena: CO
fertilization and increasing higlemperature exposures. While experimental studies of each of

these factors have been conducted for decades, the increasing focus on understanding ecosystem-
scale effects has prompted a paradigm shift to sophisticated open-air designs (Eeaddrey

1993; Nijs & Kockelbergh, 1996; Kimball, 2005). No experiment can integrate the full range of
exposures to extreme heat that will occur at very large spatial and temporal scales, however, and
so statistical analyses of historical yield and weather data provide a vital independent source of

corroboration.

Chapter 4 reviews the state of knowledge of crop responses to elevated atmo§@heric |

(eCQ) and elevated temperatures and compares findings from experiments with related response
signals identified using historical records. Experiments clearly align with theoretical predictions

of increased photosynthesis and yield farc®ps (e.g., wheat, soybean, rice), and reduced

stomatal conductance for both &d G crops (e.g., corn, sorghum; reviewed by Kimball,

2016). Several important interactions have been highlighted by recent work, however. A
growing body of work suggests that eQ®@duces the ability of £rops to assimilate soil nitrate
(Bloomet al., 2010), for instance, while a series of recent free-atmosphese@@hment

(FACE) experiments with wheat under water-limitation have found yield enhancements as high
as 70% under eCGOritzgeraldet al. (2016), greatly exceeding any previous agricultural FACE

results.



Agronomic field studies have established that heat stress impacts on major crops are greatest
during the late-season reproductive phases of flowering and grain-filling (ReaheP014),

and statistical studies of historical yields are beginning to detect this signal (Butler & Huybers,
2015). The confounding role of water limitation is another developing topic in studies of heat
stress, and new empirical analyses are going beyond coarse temperature and precipitation data to
include mechanistic variables such as vapor pressure deficit and soil water content @Roberts

al., 2012; Andersost al., 2015).

The interactions between eg@xtreme heat and other factors are just beginning to be
elucidated at the field scale. Recent FACE studies of soybean using rain exclusion treatments
found that the yield increase under e@0uld be attenuated or nearly abolished through
interactions between eGQeaf area development, canopy temperature, stress timing, and even
altered leaf responses to stress signaling (@raly, 2016). Complex interactions like these

must be synthesized and rapidly incorporated into the dynamic crop models that form the basis
of comprehensive climate change assessments, many of which were created for narrow,

specialized applications and are updated only sporadically (Rt#er2011).

Chapter 5 tests a crop model’s ability to simulate crop responses to eCO2

Increasing atmospheric [G{Xdirectly accelerates photosynthesis gd@ps, and indirectly
promotes yields by reducing stomatal conductance and associated water logsesdiGiC

crops (Leakeyt al., 2009). Several decades of experiments have exposed crops:;tmeCO
greenhouses and other enclosures and observed yield increases on the order of 33% (Kimball,
1983; Cure & Acock, 1986). FACE systems were developed in the early 1990s to better
replicate open-field growing conditions (Hendetwl., 1993). Some authors contend that

7



FACE results indicate lower crop yield responses than enclosure studies(labng006;
Ainsworthet al., 2008a), while others maintain no significant difference (Tubetl&., 2007)

or attribute differences to various methodological factors (Ziska & Bunce, 2007; Bunce, 2012).
The crop CQresponse processes in many crop models were developed using results from

enclosure experiments (Tubieblbal., 2007).

Chapter 5 tests the ability of one such model, DayCent, to reproduce crop responses to CO
enrichment from several FACE experiments. DayCent performed well at simulating yield and
transpiration responses in €ops, but significantly overestimated yield responses icr@ps.

After adjustment of parameter values, DayCent was able to reproduce crop-specific FACE

results, as well as some broader trends of-Qstress interactions.



CHAPTER 2. MODELING REAL-WORLD VARIABILITY OF ON-FARM GREENHOUSE

GAS EMISSIONS FOR BIOENERGY FEEDSTOCK PRODUCTION

Introduction
Policy background
The US Renewable Fuel Standard 2 (RFS2) provides specific life-cycle greenhouse-gas (GHG)
emissions reduction thresholds that must be met for different classes of biofuels to qualify as
"renewable.” These renewable fuel categories are defined in terms of feedstock type and end
product. For instance, ethanol produced from corn grain would be credited with a 20% reduction
in emissions relative to gasoline, regardless of farm management practices (Schnepf &
Yacobucci, 2011). However, a large portion of the emissions budgets of crop-derived biofuels
can be traced to biological soil processes and other materials and energy directly related to farm
management (Kim & Dale, 2005; Smighal., 2008; Davist al., 2013). Major biogenic fluxes
include soil emission of nitrous oxide {®), uptake of methane (GH and emissions (or
removals) of CQassociated with net changes in soil organic carbon (SOC). Management also
determines emissions from on-farm fuel use, chemicals and capital depreciation (Kendall &

Chang, 2009).

Several authors have studied the emissions implications of bioenergy farm management using
hypothetical scenarios. Adleral. (2007) estimated emissions of fuels derived from corn-corn-
soybean cropping under conventional and no-till management. They found thiat no-
management increased C sequestration by about 0.15 M¢ ¥ haorresponding to an

additional 12% reduction in life-cycle emissions relative to displaced fossil fuels. Kim & Dale

(2005) compared several corn-based bioenergy systems and found that continuous corn with
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70% stover removal and a winter cover crop had the most favorable emissions profile. The
cover crop compensated for C losses incurred from residue removal while reducing levels of soll
N available for emission as;f. Wanget al. (2012) performed a sensitivity analysis of corn

grain ethanol emissions to a range of life-cycle parameters and found that the single most
sensitive parameter was the rate of conversion of applied MNapwhich in turn is influenced

by a wide range of site and management factors (Robertson & Vitousek, 2009). While each of
these studies explores the potential importance of variable management in bioenergy emissions,
none accounts for the actual practices of feedstock producers. This work addresses that gap by
assessing current emissions impacts and potential areas for improvement based on a detailed

survey of management practices from a group of corn-soybean producers in the US Midwest.

Nitrous oxide

EPA estimates thatd® is the single greatest source of GHG forcing from the U.S. agricultural
sector, accounting for 263.7 Tg @0n 2012 (EPA, 2015). Nitrous oxide is produced by soil
microbes as a byproduct of nitrification and denitrification, with levels influenced by available
nitrogen (N) and soil texture and moisture, among other variables (Del Gt@s®010). In
addition to on-site production and emission eONcropping systems contribute to so-called
indirect NO emissions. One instance of such indiregd dmissions occurs when nitrate (NO

is leached out of the soil profile into aquatic systems, where a portion may be denitrified and
returned to the atmosphere agON A second mechanism for indireciOlemissions involves
volatilization of ammonia (Nk) and non-NO nitrogen-oxide (N&) species, off-site deposition,
and subsequent emission agONas a result of soil microbial transformations (Del Gresso.,

2009).
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A common approach to estimating@lemissions from agricultural soils is via the emissions

factor methodologies described by the IPCC Guidelines for National Greenhouse Gas
Inventories (de Kleiret al., 2006). As part of their GREET-based LCA for corn-grain ethanol,

for example, Wangt al. (2012) estimated XD emissions from farm soils by assuming that

1.53% of applied synthetic N is transformed N While emissions factor methodologies

based on N inputs are appropriate for estimating emissions in broad analyses and data-poor
scenarios, dynamic process-based models such as DayCent allow for more detailed estimation of
N20 emissions by tracking several important drivers such as soil texture, soil water status, plant
N uptake, temperature, and tillage effects. The DayCent model has been compared with
emissions factor methodologies at global (Del Grassb, 2009), national (Del Grossbal.,

2005; Ogleet al., 2010), and site (Del Grossbal., 2008) scales, and is currently used as part of
the U.S. Tier 3 methodology for estimatingONemissions from agricultural soils for reporting to
the United Nations Framework Convention on Climate Change (UNFCCC; Lokupitiya &

Paustian, 2006).

Methane

Well-drained agricultural soils are typically net sinks for methane)Gtie to the action of
methanotrophic bacteria (Ogteal., 2014). Cultivation reduces soil Glxidation capacity

relative to non-agricultural (e.g. native grassland) soils (Mesir, 1991), and recent evidence
suggests that long-term adoption of reduced tillage may gradually restore soil properties that
support this capacity (Abdalk al., 2013; Jacinthet al., 2014; Zhacet al., 2016). DayCent
simulates CH oxidation as a function of land cover history and various soil properties according

to relations developed by del Grostal. (2000).
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SOC change

Yearly changes in SOC reflect the difference between carbon (C) inputs (plant production,
manure addition) and losses (decomposition to the atmosphere, harvested biomassg{Conant

al., 2011). Most soils under natural vegetation lose substantial amounts of SOC in the decades
following conversion to cultivated agriculture. These historic losses have been estimated at more
than 50 Pg C globally (Paustianal., 1998; 1 Pg = 19 g). Various management practices,

when tailored to local conditions, have been demonstrated to restore some of these losses (Lal,
2004a). While many agricultural soils have the potential to sequester C from the atmosphere, the
total potential for sequestration is finite and depends on a variety of climatic and soil properties

(Sixetal., 2002; Stewarét al., 2009).

Significant research has examined the role of reduced tillage practices in promoting SOC
sequestration. West and Post (2002) reviewed field data from 67 long-term agricultural
experiments for a total of 276 paired treatments to determine rates of C sequestration and
uncertainties for changes from CT to NT. They found that soils sequestered 0.44+/-0.27, 0.25+/-
0.26, 0.61+/-0.46, and 0.90+/-0.59 Mg Char! under continuous corn, continuous wheat,
continuous soybean, and corn-soybean, respectively. Baker and colleagues (2007) have
suggested that these apparent SOC increases may be an artifact of shallow soil sampling
protocols, which detect SOC increases at shallow depths under no-till but neglect increases that
may occur deeper in the profile under conventional tillage. However, recent research examining
SOC by depth in plots with varying levels of tillage intensity found increases in the surface soll
increment (0-30 cm) under no-till, while SOC levels in the 30-60 cm increment were highly-
variablewithin tillage treatments but showed no consistent differebetegeen treatments

(Syswerdeet al., 2011). DayCent has been tested and validated for tracking SOC stock changes
12



in a variety of cultivated (Del Grossbal., 2002; Chamberlaigt al., 2011; Changt al., 2013)

and natural (Peppet al., 2005; Liet al., 2006) ecosystems.

Energy and materials

The SimaPro™ life-cycle software and database package (Pre Consultants, 2012) was used to
account for life-cycle flows associated with the supply chains for material inputs as well as
energy consumed durirfgrm operations. These “supply chain emissions” included flows such
asemissions embodied in N fertilizer and other farm chemicals, emissions due to liming of
fields, on-farm fuel combustion, and emissions embodied in depreciation of farm equipment.
According to Wang et al. (2012), emissions from the production and distribution of N fertilizer

alone account for about 13% of the FTW emissions of corn grain ethanol.

Sudy rationale

The fuel classifications in the RFS2 ignore differences in farm site conditions and management
practices that may have a large influence on the actual life-cycle GHG emissions of a biofuel.
Even the California Low Carbon Fuel Standard, which allows for market credits for C savings,
relies on generic farm level estimates of emissions (Sperling & Yeh, 2007). The focus of this
study was on understanding the variability in FTP emissions attributable to differences in farm
management practices within a relatively small, homogeneous agricultural region. Since
biogenic emissions are highly sensitive to specific management practices and supply chain
emissions are a direct consequence of management practices, we hypothesized that the FTP
emissions of corn grain from farms using best management practices would be substantially

lower than those of their peers.
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Methods
Survey description
Farmers located near the site of a proposed corn-grain-to-butanol biorefinery near Luverne,
Minnesota were surveyed on a range of management practices, including fertilization levels,
tillage, and manure application, as well as annual crop yields. Farmers submitted data for three
years of operation (2008 through 2010). A total of 291 farmers were surveyed, and responses
were received from 52. Of the 52 responses received, 35 were found to include data sufficient to
create the required DayCent model input files. These 35 farms were located in 13 counties and
three states in the vicinity of Luverne, MN (Table 2.1). Table 2.2 summarizes the overall and
annual synthetic N fertilizer use reported by the survey respondents. The type and amount of
fertilizer used varied some from year to year. Average rates were calculated on an area-weighted

basis.

Greenhouse gas (GHG) emissions associated with processing and transport of manure use were
ignored in our estimate of life-cycle fossil C emissiengith the implication that manure was
available nearby, and was applied with little or no water removal. These assumptions were
consistent with survey data indicating that the majority of manure was in liquid form (no drying)
and came from regional swine and dairy operations. We did, however, estimate the C and N
contributions made by the manure within the DayCent simulations. Assumptions for N,
phosphate and potassium content of the different manure types are shown in Table A2 and are

based on data from the University of Minnesota Extension (Blanchet & Schmitt, 2007).

Discussion of other farm inputs including fuel use, on-farm chemicals and lime application can
be found in the Appendix.
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Table 2.1. States and counties of respondents to the Gevo, Inc. feedstock supplier survey.

State County Number of Responseg
Minnesota Rock 32

Yellow Medicine
Nobles

Lincoln
Pipestone
Martin

Jackson

lowa Lyon

Sioux

Emmet

South Dakota Turner
Minnehaha
Moody

RN R R RN R RN R o| -

Total

a1
N

DayCent inputs

Daily weather data, including high and low temperatures and precipitation running from January
1, 1979 through December 31, 2009 were obtained from the NCEP North American Regional
Reanalysis database (Mesingeal., 2006). A single set of weather inputs was obtained for the

county centroid of counties in which surveyed farms were located.

DayCent soil input files were created using soil physical and chemical characteristics of specific
soil series from the USDA Soil Data Mart database (NRCS, 2004). Where soil series were not
identified by name in survey responses, the field was assigned the soil series most frequently

identified for surveyed farm fields in the same county.

DayCent schedule files, which describe farm management, were created for every farm field

(most farmers described multiple fields) reported by the 35 included farmers, resulting in 94

15



unique management schedules. Since all farms were simulated with a corn-soybean crop
rotation, we created alternate files for each management schedule, with one file for planting corn
on even years and soybean on odd years, and the other vice-versa. This alternate rotation
phasing was done to avoid possible bias due to interactions between crop type and anomalous
weather events. Results from these alternately-phased rotations were averaged to produce
reported values, unless otherwise noted. Farm-specific management practices from survey
responses used in DayCent schedule files included cultivation events (timing and intensity),
synthetic N fertilizer (timing and amount), and manure application (timing, amount and type).
Some survey respondents reported the use of manure additions on a portion of their acreages.

Manure C:N ratios were estimated by manure source type (summarized in Table A2

DayCent historic land use

Each DayCent model run was initialized using a 3000-year 'equilibrium’ simulation designed to
mimic pre-agricultural land cover and to allow the soil organic matter pools in the model to reach
a steady state (Bassbal., 2011). For all runs in this study, the sites were modeled as a mixed
warm- and cool-season grassland with regular grazing and periodic fire. From the pre-
cultivation conditions, the model was then run for a spinup period or ‘base history’ simulating

changes following initial plowout (1861) and conversion to annual cropland, through to the
simulated start of current management (i.e., farmer-reported management, here starting in 1979).
Over this 119-year base history, 4 distinct management periods were simulated to reproduce
major agronomic changes, in part based on historical NASS cropping data for the counties in the
study. Period 1 (1861-1908) included a complex rotation designed to support livestock and draft
animals including grazing, hay production, and relatively low-productivity oats and corn with

significant residue removals (75% of corn stover, 50% of oat straw). Period 2 (1909-1954)
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included grazing and hay in rotation with crops, but the oats and corn during this period were
medium-productivity varieties with continuing residue removals (50% of corn stover, 50% of oat
straw). Period 3 (1955-1964) was designed to reflect the addition of significant synthetic N
fertilizer and reduced reliance on forage (i.e., no hay cropping or residue removals) due to
replacement of draft animals with tractors, and included high-productivity corn, oats, and
soybeans. Period 4 (1965-1978) included high-productivity corn, oats, and soybeans and higher
levels of synthetic N application. The current corn-soybean management (based on survey
responses) was initiated in 1979 and continued for 31 years through 2010. In order to avoid high
short-term rates of change in state variables (e.g., soil C) due to this transition in management,
results discussed below are based on the final 12 simulation years (1999-2010) unless otherwise

noted.

NASS-based C input estimates

To provide a rough check on the simulated SOC changes, we developed independent estimates
of historic C inputs using historical statewide Minnesota NASS yield data in conjunction with
IPCC reference values (de Kleshal., 2006) for harvest-index and aboveground-belowground
biomass ratio. We first used the reference harvest index and the NASS yield to calculate total
aboveground biomass for each crop (corn, soybean, oats, hay) and each year of the base history
period (1866-1978). The reference aboveground-belowground biomass ratios were then used to
calculate total crop biomass. To calculate the NASS-based estimated C input, we subtracted the
NASS grain yield and the assumed fraction of aboveground residue removal (i.e. same fraction

of removal simulated in DayCent schedule) from the total biomass.
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DayCent was calibrated by adjusting the radiation use efficiency parameter for corn and soybean
crops to reproduce the area-weighted average survey-reported yields across included farms for
2008-2010, the years covered by the survey. DayCent model runs simulated farmer-reported
applications of N from synthetic fertilizer on the day of planting of corn years, and manure
application 30 days after harvest on soybean years. Since synthetic N was applied to corn but
not soybean, the rotation-averaged N input rates given in the text (unless noted otherwise) are
half of the amounts farmers used for their corn crops. Survey responses detailing cultivation
practices were translated into DayCent cultivation events that simulated both the timing and
intensity of soil disturbance, based on the tillage equipment reported. Scores were developed to
reflect the increase in decomposition rate (Tillage Decomposition Effect score, TDE) based on

these cultivation schedules as described in the Appendix.

Field-level emissions calculations

DayCent simulates processes that account only for soil-based GHG emissions and not emissions
from the use of farm machinery and related embodied emissions for fuels and chemicals
consumed. The latter are estimated in the life-cycle inventories discussed below. The biogenic
emissions budget generated from DayCent outputs can be divided into four components: net
change in SOC stocks, direct emissions g from soil, indirect emissions of2® from N

transported off-site by leaching and ammonia volatilization from crop biomass, and oxidation of
CHa by methanotrophic soil bacteria. Unless otherwise noted, each of these components was
calculated as a 12-year average and converted to carbon-dioxide equivales)sb@@d on

100-year global warming potential (de Kleirnal., 2006).
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Calculation of emissions due to indirect nitrous oxide emission used a formulation described by
del Grosso et al. (2006), which assumes that 2.5% of leached Nzaadi(1% of N emitted as

NHs or nitric oxide (NO) are ultimately transformed teQNand emitted.

Life-cycle inventories for supply chain emissions

Life-cycle inventories were obtained for each raw material consumed on the farm from the
SimaPro™ life-cycle software and database package (Pré 2012). The inventory includes direct
and embodied emissions associated with the use of all raw materials reported in the farmer
survey or estimated post-survey fdtivh data was available in SimaPro™. Post-survey

estimates included detailed calculations of fuel consumed for reported planting and tillage
practices, as well as application methods used for fertilizers, chemicals and manure. Direct
emissions in the inventory consist of non-soil mediated emissions primarily from on-farm
combustion of fossil fuels (COSQ,, NO, volatile organics and particulate matter). Direct
emissions also included stoichiometric calculations of the releasedr@®lime and urea

applied in the field.

Embodied emissions include those associated with the extraction, processing and distribution of
all raw materials used upstream (up to delivery at the plant gate) of each raw material. For
example, N fertilizer production generally involves the use of natural gas. Its embodied
emissions are included, as well as release efdi@ng conversion of natural gas to N fertilizer,

fuel related emissions for process energy and the embodied emissions of any other raw material
inputs. A significant effort was made in this study to estimate herbicide and pesticide embodied
emissions. Because farmers reported many of these chemicals as commercial product names, it
was necessary to obtain detailed formulation data, and link each chemical ingredient to its
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specific life-cycleinventory in the SimaPro™ database. Table Al lists all raw materials tracked

in the life-cycle inventory for each farm.

Results
Summary of survey results
The responding farms averaged 327 ha (807 acres) in size, which is almost twice the US average
of 178 ha (441 acres). Corn accounted for 55% of managed land area, with soy on 40%,
Conservation Reserve Program on 3%, and 2% in other uses. Corn yields on the surveyed farms

averaged over 11.9 Mg H&190 bushels acrg in 2008-2010 growing seasons.

An estimated 22% of all corn area received some amount of manure. A small number of farmers
appeared to apply manure to all of their corn acreage, while most farmers relied primarily on
synthetic N fertilizer. Table 2.2 summarizes the types and amounts of N fertilizer used by the
surveyed farms on an aresighted basis. More than half of all synthetic N applied was urea,

and about one-third of the total was ammonia.

20



Table 2.2. Area-weighted average N fertilizer usage among survey respondentsha kb
N acre?).

Fertilizer 2008 2009 2010 Avg
Ammonia, anhydrous 77.0 (68.6) 73.2 (65.2) 46.6 (41.5) 64.2 (57.2)
Ammonium 0.8 (0.7) 0.6 (0.5) 0.6 (0.6) 0.7 (0.6)
polyphosphate

Ammonium thiosulfate 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Diammonium 16.6 (14.8) 14.6 (13.0) 14.5 (13.0) 15.2 (13.5)
phosphate

Monoammonium 4.7 (4.2) 4.0 (3.5) 5.4 (4.8) 4.7 (4.2)
phosphate

Urea 88.3 (78.7) 87.2 (7v7.7) 114.4 (101.9) 98.0 (87.2)
Ammonium sulfate 1.6 (1.4) 2.0 (1.8) 2.0 (1.8) 1.9 (1.7)
Total synthetic N 189.0 (168.4) 181.5 (161.7) 183.7 (163.7) 184.5 (164.4)

DayCent yield calibration

DayCent was calibrated to match the average of the farmer-reported yields for the years included
in the survey: 2008, 2009 and 2010. Small adjustments in the crop radiation use efficiency
parameters resulted in 3-year simulated, average yields of 10hnaMépr corn and 3.2 Mg ha-

1 for soybean compared with reported averages of 10.8 Mg ha-1 for corn and 3.3 Mg ha-1 for
soybean. Per-farm yields for 2008-2010 based on DayCent model results and survey data are

shown in Figure 2.2 and Figure 2.3.
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Figure 2.2. Per-farm corn yields for 2008-2010. Center lines indicate average, hinges indicate

1st and 3rd quartiles, whiskers encompass 95% confidence intervals, and remaining outliers
appear as points.
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Figure 2.3. Per-farm soybean yields for 2008-2010. Center lines indicate average, hinges
indicate 1st and 3rd quartiles, whiskers encompass 95% confidence intervals, and remaining
outliers appear as points.

Field-to-plant-gate emissions budgets

Biogenic emissions calculations were made using averaged data from the last 12 years (1998-
2010) of the simulation period to smooth out effects of interannual variability of weather and
changes in management practices (Figure 2.4). The results in Figure 2.4 show each emission
source by farm, sorted horizontally based on averagéapm total net FTP emissions, indicated

by large black dots. All of the 35 farms surveyed showed average net increases in SOC over the
final 12 simulation years (Figure 2.4). The spread in FTP emissions between the lowest- and

highest-emitting farms was 4.Mg COe hal yrl. These results suggest that, while many
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farmers already achieve C sequestration in the field, success in C sequestration varies

substantially across farms as a result of both differences in soil conditions and, importantly,

management practices adopted.
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Other Farm Inputs
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Farm Energy Use
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Soil C Change
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Figure 2.4. Per-farm, 12-year average figdgslant-gate emissions components based on

DayCent and SimaPro modeling. Total net emissions after accounting famp@ike and SOC
increases (negative emissions) are indicated by black dots.
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Direct N2O emissions varied nearly fourfold, with a low of 0M@ COze ha'yrland a high of
1.81Mg COze halyr?. Indirect NO emissions from leaching and other off-site transport of N
generally amounted to a small fraction of total emissions, with a mean value oMBGB0e
halyr!. Simulated uptake of CHvas minimally variable between farms and amounted to an
average emission of -0.058g CO.e ha'yrl. The total simulated biogenic emissions ranged
from a low of -1.69Mig COze hatyrto a high of 1.58Mg COze halyr?, with a median value of

0.51Mg COze hatyrt,

Supply chain emissions (i.e. those not modeled by DayCent) ranged froM@ 6De ha' yr?
to 2.23Mg COehalyr?. Finally, the total FTP emissions (black dots in Figure 2.4) ranged

from -0.79Mg COze hatyr? to 3.38Mg COe halyr?.

Soil C dynamics

Closer inspection of the lowest-emitting, median-emitting, and highest-emitting farm simulations
illustrated the behavior of the dominant emissions components over time. SOC increased at an
average annual rate of 0.61 Mg C'ha the lowest-emitting farm, 0.16 and 0.12 Mg C a

the two median-emitting farms and 0.11 Mg C'lrathe highest-emitting farm.

Manure application constituted a major input of organic C on many of the surveyed farms.
These manure additions could increase SOC levels relative to a baseline of no addition,
depending on the amount of manure C that was sequestered over the time interval of interest.
The lowest-emitting farm in this study applied manure equivalent to 2.67 Mg i@ tiee fall

after soybean harvest, or 1.33 Mg Cliga! on an annualized basis. Twenty-one of the 35 farms

simulated applied no manure, including the median-emitting and highest-emitting farms.
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Tillage in the fall after corn harvest is likely to be a particularly important driver of immediate
SOC loss, since it entails mechanical disturbance and mixing of large amounts of residue C with
mineral soil horizons. Among the surveyed farmers simulated for this study, 26 practiced some
kind of fall tillage following corn harvest, while 10 did not. The mean rate of SOC increase
among those practicing tillage after corn harvest was 0.15 Mg'@rawhile among farmers

who left corn residues undisturbed it was 0.21 Mg €yrd. These two groups of farmers

differed on other management practices as well, however, confounding the relationship between
fall tillage and rates of SOC change. In fact, tillage in the fall after corn turned out to be a simple
criterion for dividing the surveyed farms between those practicing generally more-intensive
management, versus those practicing less-intensive management. On average, the farmers who
reported tilling in the fall after corn (n=26, "Conventional") also applied more synthetic N

fertilizer (184 vs. 120 kg N haon corn years) and less manure (340 vs 778 kg manuré @nha

corn years) than those who did not (n=9, "Low-impact"). Thus, fall tillage after corn provided a
useful indicator variable for grouping the surveyed farms on a broader set of management

practices.

Since SOC dynamics are strongly linked to historic land use, we compared simulated historic C
inputs with estimates derived from corresponding NASS crop yields (see Methods for details).
The NASS-based estimated C inputs, DayCent simulated C inputs, and DayCent simulated SOC
content are compared in Figure 2.5. The rolling-average NASS-based C input estimates (Figure
2.5¢) begin to increase around 1954 from roughly 1 Mg tthgust over 4 Mg C hadue to a
combination of increasing biomass productivity and reduced reliance on crop residues for forage.

While there is clearly large uncertainty surrounding these estimates, their general agreement with
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the simulated C inputs (Figure B)xorroborates the simulated “rebound” in SOC stocks (Figure

2.5a) that undergirds the C stock increases (Figure 2.5a) simulated for these farms.

Soil N dynamics

Simulated direct emissions ot® for the lowest-, median-, and highest-emitting farms were

0.58, 1.07 and 1.8Wg COze halyr?, respectively. Since D emissions are directly related to

the amount and duration of mineral N in the soil profile, which in turn is heavily influenced by
the difference between N fertilizer application and crop uptake, we calculated an indicator
variable called N uptake ratio (NUR). This was calculated by taking the ratio of N in
aboveground crop biomass at harvest (based on reported yields and literature values for N
content of crop components; see Appendix for details) to the total N applied from both manure
and synthetic sources between soybean harvest and corn planting. Since none of the simulated
farms applied N from any source between corn harvest and soybean planting, we assessed NUR
only for corn years. Figure 2.6a shows NUR as a function of N application rate for all 35 farms.
As might be expected, there was a discernible trend toward lower NUR among farms applying
above-average amounts of total N, reflecting the limited capacity for additional crop uptake at
high application rates. Since large fractions of N were left in the soil at low NUR, these same

farms also displayed the highest levels of simulated dirgotéynissions (Figure 2.6b).
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Figure 2.5. Simulated SOC of farms in this study (a), as compared with annual C inputs to soil as
simulated by DayCent (b) and estimated from historical NASS vyield data (c). Increases in crop
yield and reductions in residue removal for forage since the mid-1900s have increased C inputs
to intensively-managed cropland soils. Simulated transitions in management practice are marked
by vertical lines. Lines for panels (b) and (c) reflect 20-year moving average C inputs. Specific
assumptions for each numerically-labeled historical management period are described in
Methods.
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Figure 2.6. N Uptake Ratio (6a) for the 35 simulated farms, estimated from survey-reported grain
yields and fertilization schedules and literature-derived values for N content of biomass
components, and corresponding DayCent-simulated dir€zteihissions (6b). Note that both

panels share the same x-axis units.

We compared DayCent’s simulated N2O emissions values with those calculated using
methodologies recommended by the USDA (Ogle et al. 2014) and IPCC Tier 1 (detldlein
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2006; additional details can be found in Appendix). Figure 2.7 shows the distributions of per-
farm direct NO emissions for corn and soybean years as estimated using these three methods.
As can be seen in Figure 2.7, the IPCC method predicted the lowest average emissions under
both corn and soybean cropping, while the USDA method predicted the highest average

emissions under corn and DayCent predicted the highest average emissions under soybean.
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Figure 2.7. Direct BO emissions calculated using USDA methodology (Ogle et al., 2014), IPCC
Tier 1 guidelines (de Klein et al., 2006), and DayCent simulations. Center lines indicate
averages, hinges indicate 1st and 3rd quartiles, whiskers encompass 95% confidence intervals,
and remaining outliers appear as points. Note that emissions attributed to each crop from
DayCent simulations reflect fluxes that occur between planting of that crop (May) and planting
of the alternate crop (next May).

Indirect NO emissions averaged 0.060 Mg £®a' yr?, or about 6% of the magnitude of
direct NO emissions. Indirect emissions represented a weighted sum of three N-transport

processes that result in off-site@Iproduction: N@ leaching, NO emission, and NH
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volatilization. At the level of individual farms, leaching was highly variable and ranged from 0.6
to 45.8 kg N hayr?, with an average of 6.4 kg Nfa™t. When compared with indirect8
emissions estimated using the IPCC Tier 1 method with the default value of 0.3 (uncertainty
range: 0.1-0.8) for fraction of applied N that is leached (de Keah, 2006), the DayCent

outputs were noticeably low. The DayCent-calculated amounts of N leached corresponded to a
leaching fraction of 0.07. If the higher IPCC leaching estimates were used in the emissions
budgets of each farm, they would increase average emissions relative to DayCent by 0.16 Mg
COe halyrtin corn years and 0.010 Mg G®halyrtin soybean years, or 0.085 Mg @&Cha

lyrtaveraged across the full rotation.

Field-to-wheels emissions budgets

To get a better idea of the magnitude of variability observed here in FTP emissions relative to the
full field-to-wheels (FTW) life-cycle emissions used in the provisions of the RFS2, we used a
uniform literature value to estimate the full FTW emissions that might be expected from fuels
derived from corn grain produced by the farms in this study. This value, 33eg\NCI, was

derived from Figure 5 of Wang et al. (2012) and was a sum of emissions due to ethanol
production, land-use change, transportation and distribution, combustion, and a coproduct credit
for distillers grains and solubles (DGS). The resulting FTW estimates were plotted in Figure

2.8 as a fraction of the weib-wheels emissions of gasoline, with specific emissions ranges
shaded to correspond with the renewable fuel classifications defined by the RFS2. Figare 2.8a-
each include one point for each farm in this study, but plot them against different management
variables to convey their potential for reducing feedstock emissions. In general, these FTW

estimates suggest that ethanol derived from corn grain produced on these farms would fall within
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the emissions range stipulated for Renewable Fuels under the RFS2 (i.e., no more than 80% of

the emissions of gasoline).
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Figure 2.8. Per-farm fielthb-wheels emissions as a function of synthetic N fertilization rate (9a),
manure C application rate (9b), and DayCent Tillage Decomposition Effect score (9c; described
in the Appendix). Plant-gate-wheels emissions sources were obtained from Wang et al.
(2012) and combined with FTP budgets from this work to arrive at the FTW totals shown here.
Background shading indicates the RFS2 emissions reduction tier achieved by the corresponding
farms. Trend lines were included when statistically significant at p<0.05.

Discussion
Emissions totals and variability
We found that corn grain ethanol from all 35 farms modeled would meet the RFS2 requirement
for “Renewable Fuels” of achieving a 20% reduction in FTW emissions relative to gasoline
(Figure 2.8). In addition, four of the farms achieved 50% or greater reductions, a level set aside
for “Advanced Biofuels” that specifically excludes corn starch ethanol. One unusual farm even
exceeded the 60% reduction threshold set aside forgeaxtation “Cellulosic Biofuels”,

although his emissions are sensitive to our decision to credit C sequestered from manure as a
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negative farm emission (discussed further below). The mean reduction across farms found in
this study (39%) was similar to that found by Addeal. (2007) for a corn-corn-soybean rotation
(38%) under conventional tillage. In a more general LCA study tabulating emissions from
various biomass-based fuels for U.S. consumption, Veaalg (2012) found a similar reduction

for corn grain ethanol of 34%. Since the PTW portion of their study (31.g ®0") was used

as a generic estimate of PTW emissions for this work (see Results), we can directly compare the

FTP values generated by our respective analyses.

Nitrous oxide estimation methods

Wanget al. (2012) employed a mearp® emissions factor of 1.53% of applied N based on their
review of the experimental literature, with"Gnd 96-percentile values of 0.413 and 2.96%,
respectively. The combination of this broad uncertainty range and the large overall rgl of N

in the emissions budgets of corn ethanol led to their finding thatADeER is the most sensitive
parameter in the life-cycle emissions of corn ethanol. The distributiop®pir-farm EF

values calculated from our DayCent modeling was significantly narrower, with 3@, and
90"-percentile values of 1.18, 1.42, and 1.57% of applied N, respectively. This is likely due to
the fact that the field and management conditions in our study were homogeneous relative to the
range of agronomic conditions under which the experimental data reviewed by Wang et al.

(2012) were collected.

Soil C accounting issues
To our knowledge, Wang et al. (2012) did not consider SOC changes in their analysis. This is

equivalent to assuming stable SOC stocks, which is a common and understandable simplification
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with respect to US croplands as a whole, especially in view of the sensitivity of SOC changes to

past and present management.

Our SOC results were sensitive to the assumption that manure C could be consifles&d a

input to the farm soils and sequestered manure C being credited as a negative emission. This
reflected a baseline scenario in which all manure C would otherwise be respiregl athic

may not be accurate. As noted in the Methods, consultation with a USDA manure management
official in the area indicated a high concentration of confined animal feeding operations

(CAFOs) in the study region (Doug Bos, personal communication), suggesting that transport
emissions would be relatively low and alternative manure handling may lead to emission of more
potent GHGs, including CHand NO. The EPA (2015) indicates, for instance, that liquid

manure management is increasingly common on U.S. CAFOs, leading to greater anaerobic
production of CH. At the same time, concerns over air and water pollution from over-

application to land have led to regulations restricting application rates, increasing on-site storage
times (EPA, 2015). By increasing the land supply, the decision of a given farmer to utilize
manure that is locally in surplus could be assumed to reduce those storage times. From the
perspective of identifying emissions-reducing practices for corn-soybean cropping systems in
this area, then, the treatment of manure C and‘Nr&s’ nutrients seems like a justifiable

simplification, although a more detailed analysis would be valuable.

The SOC sequestration rates simulated for the farms in this study reflect a postulated “rebound”

in SOC stocks from lows reached under historic low-productivity cropping. Typical historical
agronomic practices and their impacts on SOC were described by Allehata@000), who
suggested that American tallgrass prairie soils lost as much as 60% of their initial SOC following
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cultivation. Blocks 3 and 4 in Figure 2.5a illustrate the start of this rebound, supported by
increasing C inputs from more-productive cropping practices. Block 5 (simulation years 1979-
2010) shows its continuation and divergence as a function of the differing management practices
reported in our farm survey. The area-weighted average of 0.16 Mg @ hwas modest

compared with the 25-year sequestration rate of 0.37 Mg'@recalculated by Clagt al.

(2012) for corn croplands in South Dakota. Similarly, long-term monitoring of the Sanborn

Field in Missouri found that SOC stocks fell sharply until around 1950, but have aggraded at
rates ranging from 0.50-1.50 Mg Chwr since then as a function of reduced tillage and

increased C inputs (Buyanovsky & Wagner, 1998).

Conclusions

The results of this study supported our hypothesis that the GHG emissions associated with corn
grain ethanol can vary widely based on differences in farm management and site characteristics.
These results were based on actual management practices as reported by surveyed farmers within
a relatively uniform geographic region. Specifically, we found a total range in FTW emissions

of 21.2 to 72.8 g C& MJ?, with a median value of 55.5 g @®MJ’. The lowest-emitting farm

was distinguished by its low-intensity tillage regime (including no-till following corn harvest)

and reliance on large quantities of manure to the exclusion of synthetic N fertilizer. We also
found that reported corn yields were not significantly correlated with synthetic N inputs in the
survey data, suggesting that reduced N application may also be a feasible approach for reducing
emissions from some farms. Further work should explore the agronomic practicality (and limits)
of broader adoption of these practices in both the Luverne region and other areas of the U.S.

Corn Belt as a means of maximizing the climate-mitigating impacts of corn grain ethanol.
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CHAPTER 3. DUAL-FEEDSTOCK BIOENERGY FROM CORN: CONNECTING

AGRONOMY, EMISSIONS AND PRODUCTION COSTS

Introduction
Policy background
The US Renewable Fuel Standard 2 (RFS2) mandates national use of an estimated 90.7 billion L
of qualifying renewable fuels in 2017. Of that total, 20.8 billion L are slated to come from
cellulosic feedstocks, with that amount increasing annually to 60.5 billion L by 2022 (Schnepf &

Yacobucci, 2011).

Potential stover supply

Crop residues represent a large potential source of biomass-based energy. The 2011 update to
the US Department of Energy’s “Billion Ton Study” (BTS2) estimated that US annual

production of residues from major grain crops is greater than 318 million dry Mg, with 70% of
this resource consisting of corn stoyeerlacket al., 2011). Using a bounding assumption of

100% collection and an estimated ethanol (EtOH) yield of 375 it titg matter (Wangt al .,

2012) gives a rough upper limit of 83.5 billion L EtOH available from corn stover, more than

four times the 2017 cellulosic volume mandate. Increases in corn productivity and/or planted
acreage could significantly increase this limit. Of course, leaving aside the enormous logistical
and financial barriers to stover utilization on such a scale, there are a range of constraints on

collection rates that are related to soil sustainability.
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Sustainability constraints

Under conventional management, corn stover is left on fields after grain harvest, where it serves
a number of agronomic functions. Stover serves to impede evaporation from the otherwise bare
soil surface during fallow periods, and in some rainfed systems this water conservation is
essential, precluding significant residue removal. It plays a similarly crucial role in other
systems by reducing soil loss to wind and water erosion (Maain 2002). Much of the C

content of retained stover is lost as G@thin a short time frame, but a fraction is incorporated

into soil organic carbon (SOC) pools, where it improves water-holding capacity, cation exchange
capacity and other soil fertility traits. Finally, stover is a valuable reservoir of nitrogen (N),
phosphorous and potassium, some of which become available to subsequent crops as
decomposition proceeds (Blanco-Canqui & Lal, 2009). This reduces the need for synthetic

fertilizers to replace these nutrients.

Management complementarities

There are potentially important complementarities between stover removal and reduced- or no-
till management. For instance, compared to conventional tillage, lower-intensity tillage increases
rates of SOC and soil moisture retention, while reducing susceptibility to wind and water erosion
(Mannet al., 2002; West & Post, 2002). This is caused by the reduced mechanical degradation
of stover structure and greater fraction of stover left on the soil surface, as opposed to being
turned under the soil. Conversely, no-till management can be problematic in certain
circumstances, as large amounts of intact stover left on fields can foster crop pests and diseases,
and in colder regions delays soil warming and thus planting (Wilbe#n, 1986; Simst al.,

1998). In contexts where these are barriers to no-till adoption, removal of a portion of the stover

may facilitate adoption by reducing residue buildup.
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Even as stover collection may facilitate reduced tillage in some contexts, application of livestock
manure has the potential for replacing some of the benefits lost with stover removal. At the most
basic level, manure represents an input of organic C to soils which tends to increase SOC stocks.
Beyond providing organic C, most manures contain substantial amounts of N and P, both of
which are lost during stover removal. National scale estimates suggest that recoverable livestock
manure contains as much as 15% of all N and 42% of all phosphorous purchased as commercial
fertilizer for crops each year (Risaeal., 2006). In addition, manure application has been

shown to improve soil physical properties such as porosity and water holding capacity, and to

reduce water erosion (Risseal., 2006).

Other management considerations

The rate and timing of N application is a key determinant of both yield a@dhissions, a

major greenhouse gas, while production of synthetic N fertilizer itself produces substantial
emissions. Typically, crop yields display a saturating response to N application, with even small
declines in yields at rates far above optimal. Maximum economic return occurs at rates lower
than the rates needed to support maximum grain yield. Accounting for the increasing marginal
damages from N production, leaching and biogenic emissiarisch combined account for

greater than a third of the fietd-wheels (FTW) emissions footprint of US corn EtOH

production (Wangt al., 2012)- would likely lower the “preferred” N application rate further.

Sudy rationale

Daviset al. (2013) coined a useful phrase for thinking about bioenergy system sustainability.
Their phrase, “management swing potential,” referred to the potential for farm management
decisions to significantly improve or detract from the GHG savings achieved by a bioenergy
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production pathway. These pathways are often defined in terms of a particular crop species in
conjunction with the final fuel product (eg., “corn grain EtOH”). This is a convenient policy

shorthand, but it masks variability stemming from farm management (“swing potential”) that

may in some cases be greater than mean emissions diffebetweesh two pathways, as defined

by species and fuel type.

The primary objective of this work was to explore emissions impacts and management swing
potential for the feedstock supply of a hypothetical integrated grain- and stover-bioenergy
facility situated in Luverne, MN. The analysis was particularly focused on exploring complex
tradeoffs between grain and stover utilization, emissions intensity, and farm production costs.
This was accomplished through a combination of DayCent biogeochemical modeling, SimaPro

and literature-based life-cycle assessment, and basic farm budget analysis.

Methods
This work extended the biogeochemical and life-cycle modeling described in Chapter 2 by
attempting to map the multi-dimensional emissions space resulting from discrete levels of
various farm management practices. The life-cycle emissions reported here were derived from a
combination of DayCent dynamic modeling of farm biogenic emissions, and SimaPro (Pre

Consultants, 2012) and literature-based estimates for supply chain emissions.

Farm management scenarios
The first step of this work was to determine a list of management practices and levels of each
practice to be modeled. This was done in consultation with area stakeholders representing farm

and environmental organizations and ultimately identified six farm management practices of
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interest and discrete levels of each practice to be modeled (Table 3.1). These were combined in

a full factorial analysis, leading to 1,920 unique management scenarios.

Table 3.1. Farm management practices and levels modeled for this work. All permutations of the
various practice levels were modeled.

Practice Description Levels Number of Levels
Tillage Intensity of soil Conventional till 3
disturbance from Reduced till
cultivation No-till
N Application Rate | Total N applied from |5 5
synthetic fertilizer 10
and/or manure (kg hf | 15
20
25
N Fraction from Fraction of N derived | O 4
Manure from manure 0.2
0.4
1.0
Stover Removal Fraction of corn residu{ O 4
removed 0.25
0.5
0.75
Crop Rotation & N | Cropping and N Cont corn/N at 4
Fert Timing application timing planting
Cont corn/N in fall
Cont corn/split N
Corn-soy/N at
planting
N Inhibitor Use of nitrification Yes 2
inhibitor No
Total Management Scenarios: 1,920
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DayCent simulations

DayCent simulations were run using North American Regional Reanalysis (NARR) daily

weather inputs (Mesinget al., 2006), with scenario management practices running from
simulation years 1979 through 2009. Each of the 1,920 management scenarios was simulated for
the same 65 fields included in a previous study (Kent et al., in submission), and results from
these fields were aggregated to the level of 36 farms using area-weighted averaging. Biogenic
emissions, including methane uptake, direct and indirgbtand average annual change in

SOC, were calculated for the final 12 years of each simulation, in the same manner as in
previous work (see Appendix for details). The DayCent modeling for this analysis used the same
weather, site, and soil inputs as the previous work (Kent et al., in submission), but replaced
farmer-reported management practices with the hypothetical management scenarios outlined in

Table 3.2.

Supply chain emissions accounting

For life-cycle emissions not included in DayCent simulations, such as those from farm chemical
manufacture and distribution, farm equipment manufacture and fuel use, and biomass drying and
transport, a variety of sources were used. In order to preserve the survey-derived inter-farm
variability developed for previous work (Kent et al., in submission), farm inputs not directly
affected by management scenarios were reused from that analysis. For instance, farm chemicals
and non-N fertilizers were not specified by the scenarios in Table 3.2, and so the farm survey
input rates were used. In contrast, emissions due to manufacture and distribution of synthetic N
fertilizer are directly linked to the N Application Rate used in a given scenario, and so the

scenario-based input rate and corresponding emissions were used. The sources and emissions
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values (where appropriate) for major life-cycle inputs and related parameters are summarized in

Table 3.2.

Table 3.2. Major life-cycle emissions sources and related parameters not modeled by DayCent.
Survey supply chain inputs are those not directly related to the management scenarios being
investigated, and so per-area amounts are reused from the case study in Chapter 2. See text for
further details on assumptions and how specific inputs were integrated into emissions budgets.

Input Value Unit Source(s)
Crop Seeds 3.7 g COe m? SimaPro; Farm Surveys
Phosphorous & potash | 28.7 g COe m? SimaPro; Farm Surveys
fertilizers
Pesticides & herbicides | 2.3 g COe m? SimaPro; Farm Surveys
Equipment depreciation | 5.8 g COe nt? SimaPro; Farm Surveys
Tillage, corn: g COe m? (Lal, 2004b)
Conventional 9.46
Reduced 5.50
No-till 1.39
Tillage, soy:
Conventional 4.22
Reduced 3.30
No-till 1.39
Synthetic N, embodied | 4.77 gCQOeg'N (Lal, 2004b)
applied
Synthetic N, application | 2.79 g CQe mi?, per (Lal, 2004b)
application
Manure, transport to field 845 g COe Mgt mit, (Lal, 2004b; Qiret al., 2015)
wet manure
Manure, broadcast 4.62 g COe m? (Lal, 2004b; Qiret al., 2015)
application
Manure, phosphorous -450 g COe Mgt wet (Lal, 2004b; Qiret al., 2015)
offset credit manure; max offset
is 100% of P
emissions
Stover, cutting, baling an{ 0.0166 g COe gt dry (Qinetal., 2015)
stacking at field edge stover removed
Stover, mass loss, 0.148 g lost g dry stover | (Qinet al., 2015)
uncovered at field edge collected
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Grain Drying 0.0198 g CQe g dry (Camargaet al., 2013)
grain
Grain Transport 5899 g COe Mgt dry (Wanget al., 2013)
grain
Stover Transport 5665 g COe Mgt dry
stover collected
EtOH production: g COe MJ*EtOH | (Wanget al., 2012)
Grain 31
Stover 10
Land-use change: g COe MJ*EtOH |«
Grain 9
Stover -1
Distillers’ grains and -14 g COe MJtgrain |«
solubles credit EtOH
Surplus electricity credit | -17 g COe MJtstover | «”
EtOH
EtOH distribution and g COe MJ*EtOH |
combustion
Grain 5
Stover 4
EtOH yield L Mg?dry
Grain 425 feedstock
Stover 375
EtOH lower heating valug 21.3 MJ Lt

Tillage is modeled in DayCent as a series of equipment passes representative of conventional,
reduced, and no-till regimes. The primary effect of simulated tillage is to increase
decomposition rate of organic matter pools and the mixing of residues into the soil, with more
intensive regimes causing greater degrees of residue incorporation and stimulation of
decomposition. The tillage emissions given in Table 3.2 account for fuel use and equipment
manufacture for tillage operations. They were calculated by summing the mean emissions
factors developed by Lal (2004) for passes by the specific tillage implements simulated for each

tillage intensity level.
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The application of N to fields likewise results in emissions that occur within the field and are
modeled by DayCent (direct and indirecXNemissions) and substantial embodied emissions
related to “upstream’ manufacture, distribution, and application, not simulated by DayCent, were

estimated using the mean emissions factors given by Lal (2004).

Manure supply-adjustment procedure

Since manure application builds SOC stocks of cropland soils, a farm emissions analysis that
credits farms with this sequestration leads to a trivial corner case where “best management”

entails maximal manure utilization. We avoided this unrealistic conclusion by scaling the
emissions benefits of each management scenario in proportion to the actual supply-demand
dynamics that prevail within the Rock County, MN feedlot-cropping landscape (see Appendix
for a full description). This approach assumed that all manure produced on feedlots within the
county would be applied to cropland within the county. Thus, the aggregate benefits of
application of the entire supply should be evenly distributed across cropping area in the county,
and that rate used for crediting the particular area supplying feedstock for bioenergy production.
Using this “supply-adjusinent” procedure, maximal rates of application are no longer necessarily
optimal since they exhaust the available manure on a small fraction of acres, whereas lower rates

may sequester more manure C in aggregate by building SOC stocks more gradually.

The emissions from stover cutting, baling and stacking operations were estimated from values
given by Wanget al. (2013). We also assumed stover kept at the field edge would be uncovered
and lose 14.8% of its dry mass before transport to the biorefinery (Emery, 2013), effectively

increasing the emissions intensity of the delivered feedstock by a factor of 1.17.
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Post-farm emissions accounting

While the detailed modeling for this work concerned farm management variables, post-farm
emissions components were included in the life-cycle budgets to facilitate comparison of farm
management effects with other emissions drivers. These components were taken from mean
values presented in Wamgal. (2012). The values for EtOH Production in Table 3.2 assumed
that the lignin fraction of stover was used to supply heat and energy for the conversion process.
Land use change accounted for the mank@&tiated impacts of each feedstock’s allocation to

EtOH production on cultivation of new land area elsewhere. The credistitiers” grains and
solubles and surplus electricity reflect emissions displaced by by-products of the conversion
processes for grain and stover, respectively. The values for EtOH yield per Mg feedstock and
lower heating value were used to convert emissions from an areal to energy basis (referred to
here as emissions intensity), allowing direct comparison with life-cycle emissions from fossil

energy sources such as gasoline.

Marginal vs. mass feedstock allocation

Since the RFS2 classifies biofuels in part by feedstock type, we explored the implications of
alternative methods for allocating emissions between grain and stover produced on the same land
area. We developed two alternate approaches, referred to as marginal allocation and mass

allocation, which are described and discussed in the Appendix.

Net abatement vs. emissions intensity

We calculated two primary metrics for comparing the full life-cycle impacts of varying
management scenarios (Table)3.Bhe first, which we refer to as the scenario’s “emissions
intensity,” was a measure of the FTW emissions generated per MJ of EtOH energy. The other
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metric, “net abatement”, was calculated as the total CO2-equivalent life-cycle emissions avoided

— through displacement of gasoling@er unit cropland area.

Table 3.3. Metrics used to compare life-cycle emissions impacts between scenarios. Abatement
was calculated relative to gasoline emissions of 94 ge@®@*, from Wang et al. (2012).

Name Units Description

Emissions intensity g COe MJ* FTW emissions per unit of fuel energy yig

Net abatement g COe n1? Avoided emissions per unit of cropland ar
through displacement of gasoline

USD farm budgets

We developed monetary farm budgets using a methodology similar to that used for farm
emissions. As with emissions, certain input costs were assessed based on survey information
specific to each farm. Many other inputs were assessed based on rates dictated by management
scenarios (e.g., synthetic N). Finally, some budget items were not clearly related to scenarios but
could not be calculated from survey responses (eg., land rent), and these items were estimated
using the default rates and costs from lowa State University Extension cropping budgets
(Plastina, 2015). Further details of the monetary accounting methods can be found in the

Appendix.

Results
Analytical emissions classes
The life-cycle emissions budgets constructed for this work included three analytically-distinct
classes of inputs: biogenic emissions (i.e., those modeled by DayCent), survey supply chain
emissions (i.e., farm inputs based survey responses), and scenario supply chain emissions (i.e.,

farm inputs dictated by management scenarios). The means and distributions of emissions from
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these source categories are depicted for all scenarios (Figure Al-Figure A3) and summarized in

the Appendix.

Farm-gate emissions budgets

The fieldto-farm-gate (FFG) emissions budgets summarized in Figure 3.1 were calculated for
each scenario by adding together the scenario supply chain and soil-derived emissions, and the
average of the farm supply chain emissions. Those budgets represent the emissions for all farm
inputs and soil processes for feedstock harvested and ready for transport to the biorefinery. The
FFG emissions averaged 141 g carbon-dioxide equivaiérfyr@Qe ni?) and ranged from -

112 to 408 g Cee 2.

Field-to-wheels emissions budgets

Figure 3.2displays the emissions intensities of EtOH from each management scenario, plotted
against the net GHG abatement achieved by that management scenario. Each of the four panels
shows the same mapping of all 1824 scenarios along with Scenario IDs from several best- and
worst-performing scenarios (further detailed in Table 3.4). While emissions intensity and net
abatement were generally negatively correlated (r = -0.69), these plots show that the correlation
was far from perfect. In other words, the scenarios with the lowest emissions per unit of EtOH
energy were not necessarily the most space-efficient ways to displace a given volume of

gasoline.
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Figure 3.1. Means and distributions of the farm supply chain emissions, scenario supply chain
emissions, scenario biogenic emissions, and total emissions (FFG, sum of other 3 categories).
Center line indicates mean, box edges indicate 25th and 75th percentiles, whiskers extend to the
5th and 95th percentiles, and remaining values are plotted as points. Note that the survey supply
chain emissions box represents 35 farm emissions budgets that are uniform across scenarios,
while the other boxes represent 1824 scenario budgets that incorporate the same set of survey
supply chain budgets.

The best-performing scenario for total emissions intensity was ID 565, with emissions of only

8.0 g CQe MJ! EtOH. lIts net abatement of 416 g £0n?, however, only placed it in the 86
percentile of all scenarios. Conversely, Scenario 640 had the highest net abatement at 639 g
COze m? and a total emission intensity of 26 g £MJ* EtOH (7" percentile; note that

percentiles are ranked in ascending order, so that lower percentiles are “best” for emissions

intensity while higher percentiles are “best” for net abatement). Thus, Scenario 640 could

achieve an abatement target on about one-third fewer hectares than Scenario 565, but at the cost

of substantially higher total emissions. To a large degree, this reflected the tradeoff between
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collecting stover, which increased areal energy yield (Scenario 640), versus leaving it on the

field where its organic C can be sequestered (Scenario 565) and operational emissions can be
avoided. The second important difference between these scenarios was their N application rates,
which were 10 and 15 g Nfifor scenarios 565 and 640, respectively. While this was a

relatively small difference in the context of the full range of N application rates, it corresponded

to a general inflection point in terms of the simulated yield response curve. The decreasing
marginal yield response lead to N uptake ratios (NUR, calculated as N taken up by plant as a
fraction of total N application) of 1.12 and 0.97 for scenarios 565 and 640, respectivelyCand N

emissions of 38.3 and 72.4 g @02,

The color coding of panels A-D in Figure 3.2 illustrates several management trends. The
roughly linear clustering of points according to their residue removal level (panel A) shows a
tradeoff between emissions intensity and net abatement. To shift to a higher level of residue
removal in Figure 3.2A tends to cause an increase in net abatement (y-axis), due to the greater

EtOH yield achieved, but also increases the emissions per unit energy (x-axis).

The high-level patterns in response to manure N fraction (panel B) are not as clear. In part this
arises from the fact that the manure adjustment procedure scales back C sequestration savings at
high manure input rates to reflect the declining proportion of cropland area needed to absorb the
manure supply. For N application rates and manure N fractions that call for total manure inputs
greater than about 5.7 g N’n42% of all scenarios), the adjustment procedure reduced the
DayCent-simulated C sequestration credit. Therefore, for high manure input rates, the trends in

Figure 3.2B deviate somewhat from the raw sequestration dose-response simulated by DayCent.
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Figure 3.2. Total emissions intensity vs. net GHG abatement achieved for each management
scenario, with color mapped to residue removal fraction (A), fraction of N from manure (B),
tillage intensity (C), and total N application rate (D). Emissions intensities and net abatement
were calculated from the total emissions and combined EtOH energy yield (grain and stover) per
unit area of cropland. Scenario ID numbers from selected scenarios are displayed in their
approximate position to facilitate comparison with other figures and Table 3.4 and Table 3.5.
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Table 3.4. Management levels for best- and worst-performing scenarios based on several emissions metrics. Values in parentheses
indicate the rank percentile (0 = lowest through 100 = highest) achieved by the scenario for the given metric. Green shading indicates
“best” quintile of scenarios for a given outcome, while red shading indicates “worst” quintile.

Scenario | N Rotation/ | Total N | N Manure | Tillage | Residue | Total Emissions | Net GHG Profit | Farm-Gate
ID Inhibitor | N Timing | (kg ha) | Fraction Removal| Intensity Abatement ($ m?) | Emissions
(gCOe MJY) (gCQOe m?) (g COe m?)
565 Yes CC/Plant | 10 1 No-Till | O 416 (66) -0.044
N (21)
640 Yes CC/Plant | 15 0.4 No-Till | 0.75 66 (24)
N
1402 No CC/Split |5 0.4 No-Till | 0.25 275 (26)
N
277 Yes CC/Fall | 20 1 No-Till |0 454 (76)
N
292 No CC/Fall |25 0 Conv. 0.75 313 (36)
N Till
289 No CC/Fall |25 0 Conv. 0
N Till
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Table 3.5. DayCent C dynamics from best- and worst-performing scenarios (same scenarios as in Table 3.4). Values in parentheses

indicate the rank percentile (O = lowest through 100 = highest) achieved by the scenario for the given metric.

Scenario | N Rotation/N | Total N | N Manure | Tillage | Residue Grain Stover Manure C | SOC Change
ID Inhibitor | Timing Fraction Removal Yield Harvested | Input Emissions
(gCm?) | (gCm?) (@Cm? | (gCOse 1)

565 Yes CC/Plant N | 10 1 No- 0 535 (19)| 0 (13) 102 (84) -226 (3)
Till

640 Yes CC/PlantN| 15 0.4 No- 0.75 654 (44)| 201 (90) 61 (71) -121 (18)
Till

1402 No CC/SplitN | 5 0.4 No- 0.25 379 (3) | 39 (26) 20 (37) -88 (33)
Till

277 Yes CC/FallN | 20 1 No- 0 766 (99)| 0 (13) 205 (97) -285 (0)
Till

292 No CC/FallN | 25 0 Conv. | 0.75 669 (64)| 206 (99) 0 (16) 0 (96)
Till

289 No CC/FallN | 25 0 Conv. |0 696 (87)| 0 (13) 0 (16) -59 (51)
Till
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The role of tillage, as shown in Figure 3.2C, is unambiguous: all of the high-performing
scenarios for emissions intensity and the very best-performing scenarios for net abatement
utilized no-till management. By comparison, the best emissions intensities for scenarios using

reduced till and conventional till management were 29 and 32.g ®I@" EtOH.

Finally, Figure 3.2D shows that N application rate has a tradeoff dynamic similar to that
observed for residue removal. Increasing N applicatiparticularly up to the 15 g N flevel
— increases crop growth and EtOH yields. This came at the cost of increasing mag@inal N

emissions, however, driving greater emissions intensity.

Best- and wor st-performing scenarios

Figure 3.3 shows the itemized emissions budgets for the best- and worst-performing scenarios
detailed in Table 3.4 and Table 3.5, as well as six randomly-selected scenarios. The scenarios
here are sorted by their total emissions intensities (indicated by black dots), and range from a low
intensity of 8 g C@ MJ! EtOH to a high of 91 g C MJ! EtOH. Perhaps most notable from

this perspective is the large emissions credit achieved by four of the five best-performing
scenarios for net soil C sequestration. The second major theme is that emissions due to N
application, including direct 20 and embodied emissions, are relatively modest for best-
performing (left-most) scenarios but become major sources in the worst-performing (right-most)
scenarios. The FFG emissions intensity (brown dots) generally track with the FTW emissions
intensity, with most exceptions stemming from decreased residue collection rates. This shift
improves farm-gate emissions intensity by sequestering more C, but entails a greater fraction of
energy coming from grain, which has higher post-farm emissions intensity than stover largely
due to land use change and differences in coproduct credits.
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Figure 3.3. Full emissions budgets for the best- and worst-performing scenarios featured in Table
3.4 and Table 3.5 and six randomly-chosen scenarios. Since many budgets include negative
emissions from soil C sequestration, FTW emissions intensities are given by black dots and FFG
emissions intensities are given by brown dots. A dashed red line indicates the gasoline-
equivalent emissions intensity. Note that several small emissions sources were consolidated into
the “Misc.Minor Sources” category to aid in interpretation.

Biogenic emissions drivers
Figure 3.4 shows several important relationships driving the wide range of DayCent-simulated

biogenic emissions. Panel A illustrates the dominant role of tillage intensity in determining the
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rate of C sequestration for a given C input rate. Using the regression equations, we can make
rough estimates of the “break-even” C input rates (x-intercepts) and sequestration rates (slopes)
achieved by differing tillage intensities. The levels of C input required for SOC maintenance
calculated from those models were 214, 180 and 130 g @ntonventional, reduced and no-

till respectively. The corresponding @@quivalent sequestration rates for inputs above those
levels would be 0.33, 0.45 and 0.72 g£&@? gtadditional C input for conventional, reduced
and no-till respectively. These admittedly very rough estimates nonetheless underscore the
overwhelming importance of C inputs and tillage intensity for explaining the range of FFG

biogenic emissions budgets presented in this work.

Panels B and C of Figure 3.4 give closer looks at two management practices that largel
determine- in conjunction with crop biomass productivitythe rates of C input to these soils.

In Panel B, the y-axis shows the soil C change emissions for each scenario compared with a
management-matched scenario with no stover removal. This is analogous to how the impact of
stover removal on soil C would be determined in a field experimental setting: by comparing soll

C change between otherwise identically-managed plots. The counter-intuitive result in Panel B
is that stover removal from no-till fields constitutes a larger C loss relative to no removal,
precisely because of the greater sequestration per unit of C input illustrated by Panel A. Thus,
the slopes for the stover opportunity cost regressions (Panel B) are very similar in magnitude, but

opposite in sign, to the sequestration rate regressions (Panel A).
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Figure 3.4. DayCent-simulated biogenic emissions as influenced by relevant management practices. Panel A shows the dominant role
of tillage intensity and net C inputs in determining rates of soil C sequestration. Panel B shows the difference in C sequestration rate
between simulations with stover removal and managemetatied controls, and how this “opportunity cost” is actually higher under
less-intensive tillage. Panel C shows the difference between simulations with manure additions and management-matched controls and
the ability of no-till management to maximize the C sequestration benefits of manure inputs. Finally, panel D shows the increasing
direct NO emissions that occur as N application rates increase and N uptake ratios decrease.
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Panel C shows the DayCent-simulated emissions savings fronrexapplied scenarios relative

to management-matched no-manure scenarios. As with Panel B, each value was calculated by
simple differencing of soil C change between corresponding scenario simulation results. The
slopes give a rough approximation of the emissions dose-response to manure C input. By
comparing the y-values of scenarios in Panels B and C we can get a sense for the levels of
manure C input required to offset losses from stover removal. From the standpoint of an LCA,
however, it should be noted that sequestration derived from manure C inputs does not necessarily
represent a true emissions reduction. For this work, that fact was addressed by down-scaling the
raw simulated soil C emissions credits shown in Figure 3.4C for application rates that would
exceed the manure supply in the primary study area county (see Methods for details). This was
based on the assumption that production scenarios should be credited for manure-derived
sequestration only in proportion to the fraction of lands in the county that could actually receive

manure at a given rate.

Finally, Figure 3.4D shows the direct® emissions for each scenario as a function of its total N
application rate (synthetic and manure N), with point color indicating the scenario’s N uptake

ratio. Direct NO emissions show an increasing trend with considerable spread as N application
increases, while the N uptake ratio decreases as crop uptake saturates. Note that very high
apparent N uptake ratios (>2) were achieved at low N application rates mostly by corn-soy
scenarios. The N application rate and N uptake used in these calculations were taken from corn
years only, so the N fixed and returned as residue by the soy crop was accounted as “free.” In

general, scenarios with N uptake ratios significantly above unity are likely not sustainable over

long periods of time. Median direct® emissions for a given N application rate were 15-40%
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lower under corn-soy management as compared to any of the continuous corn scenario levels,

except at the lowest N rate for which corn-soy emissions were slightly higher.

Dollar costs vs. emissions

The influences of major scenario management practices on costs and FTW emissions intensity
are depicted in Figure 3.5. The relation of costs to stover removal (Panel A) is straightforward:
as more stover is harvested, energy yield increases and thus costs per energy yield decrease.
Additionally, stover collection costs themselves were modeled with economies of scale based on
a cost curve presented by Grahetral. (2007), so unit costs decrease as collection rates

increase. Panel B shows that the cost savings due to manure displacement of synthetic N are
relatively small. In reality there may be significant savings related to improved soilyqualit
impacts on crop production that may not be well-captured by the DayCent simulations. The
costs associated with tillage intensity were relatively modest, as reflected by the lack of obvious
vertical trends in Panel C. Conversely, the unambiguous emissions savings of no-till affirm
tillage as a cost-effective measure for reducing emissions wherever agronomically appropriate.
Total N application rate has a major role both in emissions and energy yield, and a more modest
role in costs. The yield effect dominates in Figure 3.5D, with the highest cost-intensity scenarios

all resulting from clearly suboptimal N application rates.
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Figure 3.5. Total emissions intensity vs. cost intensity for each scenario, with color mapped to
residue removal fraction (A), fraction of N from manure (B), tillage intensity (C), and total N
application rate (D). Emissions and cost intensities were calculated from the total
emissions/costs and combined EtOH energy yield (grain and stover) per unit area of cropland.
Scenario ID numbers from selected scenarios are displayed in their approximate position to
facilitate comparison with other figures and Table 3.4 and Table 3.5.

Carbon price impacts

We also calculated areal net profits for each scenario against a hypothetical EtOH price of $2.50
gaf! and several estimates for the social cost of carbon (SCC, underlying assumptions are
detailed in Appendix). Figure 3.6 shows areal profits plus abatement premiums for each scenario
under SCCs of $0.00 (private profits only), $12.37, $43.20, and $65.16@ge for panels A-

D, respectively. The non-zero SCCs given correspond to inflation-adjusted values given by
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IAWG (2013) for discount rates of 5%, 3%, and 2.5% respectively. The increased profits shown
on panels BD may be thought of as “total profits,” in the sense that they reflect the sum of
private profits and dollar-valued social benefit (i.e., the abatement premium) derived from the

EtOH vyield produced under each scenario.
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Figure 3.6. Profits vs. net emissions abatement for each scenario after accounting for EtOH cost
savings against gasoline as a function of varying Social Cost of Carbon (SCC) estimates. The
SCC estimates are inflation-adjusted values given by IAWG (2013) using discount rates of 5%,
3% and 2.5% for panels B, C, and D respectively. Scenario ID numbers from selected scenarios
are displayed in their approximate position to facilitate comparison with other figures and Table
3.4 and Table 3.5.

In the case of a C tax or similar policy, the increased profits in panels B-D would be

“internalized” and the abatement premium would represent a realized cost advantage between
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each scenario and gasoline. Implicit in this accounting is that the market price for EtOH would
increase the same amount as for gasoline (on an energy basis), so that the lower tax costs faced
by EtOH would be a pure profit increase. In reality, the complex, economy-wide adjustments
that would occur in response to a C price are well beyond the scope of this study. Thus, the
profits shown in Figure 3.6 are intended to highlight qualitative trends in management

profitability rather than make quantitative projections.

All panels in Figure 3.6 map color to the scenario residue removal rate to emphasize the
disparate positive impact of increasing SCC on profitability for high levels of residue removal.
Since the abatement premium is directly proportional to the net abatement achieved by a
scenario, and high rates of stover removal tend to increase net abatement, these scenarios benefit
most strongly from a high SCC. For example, the median net abatement rates were 249, 319,
397 and 471 g C& m? for 0, 0.25, 0.5 and 0.75 removal rates, respectively. When these
abatement rates were monetized using the highest SCC estimate of $65.C®Mgthe

resulting abatement premiums were 0.016, 0.021, 0.026, and 0.031r&spectively. As can

be seen by comparing Panels A and D in Figure 3.6, the slight profitability advantage of high
residue removal scenarios with no SCC transforms to a substantial advantage with & SCC o
$65.16 Mgt COze. Over that interval, the proportion of scenarios with residue removal rates of

0.75 being net profitable goes from 0% to 66%.

Discussion
Best practice scenarios
The results presented here support the contention that bioenergy life-cycle emissions are strongly
influenced by farm management. The FTW emissions intensity of scenarios varied more than
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10-fold, from a low of 8.0 to a high of 91 g @MJ* (see Table 3.4). At the same time,

defining a single “best management” scenario is complicated by important tradeoffs. As shown

by Figure 3.2 and Table 3.4, the lowest emissions intensity scenario (ID 565) used a low N
application rate of 10 g N % resulting in grain yields in the $9ercentile of all scenarios. In
contrast, the scenario that achieved the greatest net abatement vs. gasoline (ID 640) used 15g N
m2 and removed 75% of corn residues, both of which served to increase EtOH energy yield.
Perhaps the most practical drawback of scenarios such as ID 565 relates to the bottom line,
however. As Figure 3.6 shows, scenario 565 is unprofitable even after accounting for the largest
SCC estimate (panel D). By contrast, scenario 640 is moderately unprofitable without a C price
(panel A) but at the two highest C prices is substantially profitable and among the best-

performing scenarios.

Study design choices

Several important caveats pertain to the results presented here. The accounting method used to
scale manure-derived emissions involved a number of simplifying assumptions. First, we
assumed that feedlots would bear the burdens (costs and emissions) for transporting and applying
manure to farm fields. While there are promising alternatives to direct land application, such as
anaerobic digestion or composting, Ribaetal. (2003) indicate that direct land application

remains the primary disposal method. We also assumed that farms would realize the benefits or
costs from manure biogenic emissidoowing application. At the same time, we considered

the “alternative fate” for manure application on a given farm to be land application to a nearby

operation, resulting in equivalent emissions. This conceptual framework required a somewhat
arbitrary boundary beyond which manure would not be transported. We chose the county within

which most of the surveyed farms were located: Rock County, MN. Biogenic emissions from
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manure were then scaled based on the fraction of Rock County cropping acres that would be

manured at the scenario-specified rate to absorb the annual Rock County manure supply.

Most of these conceptual choices followed from our interest in summarizing the emissions
associated with feedstock supplied to the Gevo, Inc. biorefinery. Scaling in this way reflects the
aggregate impacts on those feedstock emissions that would occur if feedstock suppliers were a
random sampling of Rock County producers. It underestimates the incentives that may be faced
by individual farmers to accept manure application to their land if a C price were applied to
agricultural C sequestration. It also fails to account for the marginal reduction in transport
emissions achieved when a farmer accepts manure, against the alternative of the manure being
transported to the next-most-distant farm. While such emissions are a part of the interlocking
feedlot and cropping landscape, the competition among feedlots for croplands described by
Ribaudoet al. (2003) indicates that feedlots presently bear these costs as a part of their business

model.

The DayCent simulations used to model biogenic emissions and crop productivity did not
explicitly replace N removed with stover. As a result, scenarios with stover removal generally
suffered small productivity declines (around 5% of aboveground biomass) vs. management-
matched no-removal simulations. Compared with studies that assume full N replacement, this
has a few implications. First, the lower biomass yields reduce energy yield and thus increase
emissions and cost intensity metrics. At the same time, removal scenarios were not charged for
emissions and costs associated with replacing removed N. Also, since the management levels
were simulated in a full factorial analysis up to a high N application level of 25 g, Xemoval

seenarios with higher N input rates should be functionally equivalent to what would be achieved
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with a lower specified input rate plus N replacement. For instance, the highest levels of N
removal as residue were around 2.2 g R rifhus, as long as the equilibrium N input rate for a
given scenario without removal was less than ~23 ga\the top N input rate scenario would

be sufficient to replace residue N removals.

Crop rotation effects

The effects of continuous corn vs. corn-soy rotations were difficult to compare. With the sole
exception of soil C change emissions, all emissions and costs for corn-soy rotations given here
were from corn years only. Soy years were considered entirely separate to avoid complicated
assumptions relating to the value of the soy crop in terms of emissions displacement and market
value. While soybeans can be used as feedstock for biodiesel production, there was no
indication that this was a significant pathway in the Luverne, MN supply area. Soil C change
emissions were averaged across the 12-year period before removing soy year data points, so that
corn years and soy years shared this component equally. This was done to avoid crediting corn
with the very large, transitory increases in soil C that occur due to the much larger C input from
corn residues vs. soy residues. A similar procedure was not used for soil N emissions, since it
would have pushed significant fractions of the emissions from corn fertilization onto the more N-

efficient soy crop.

Soil C dynamics

The soil C change dynamics were a major determinant of scenario performance in this work. Of
the 1824 management scenarios considered, only 72 showed net soil C losses. All of those 72
included at least 0.5 residue removal and none employed no-till or derived 100% of N from

manure. The only scenarios removing less than 75% of residues to lose soil C were fertilized at
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the minimum rate of 5 g N ¥ On the basis of the DayCent results, then, any reasonably

productive management regime would be able to maintain or increase soil C stocks in these soils.

There are a variety of agronomic considerations that are not fully represented by DayCent,
however. Wind and water erosion may be increased under residue removal. A sampling of work
from sites around the U.S. Midwest summarized by Wilhetlah. (2007) found that continuous

corn sites under moldboard plow and conservation tillage required biomass cover of 3.11 and
0.65 Mg hd., respectively, to control water erosion. Corresponding values for corn-soy cropping
were 7.98 and 0.96 Mg Harespectively. All thresholds for wind erosion were lower than those
for water erosion. No scenarios in this work were below the relevant thresholds for conservation
tillage (even applying it to no-till scenarios), but 138 and 96 conventional-till scenarios fell short
of the moldboard-plow thresholds for corn-soy and continuous corn rotations, respectively.
While these constraints are not explicitly simulated by DayCent, the soil C advantagdslof no-
illustrated by Figure 3.4 strongly favor reductions in tillage intensity that, if adopted, would

comfortably avoid problematic thresholds.

Changes in SOC for a given scenario would not continue indefinitely. Indeed, the net gains in
SOC achievable in annual temperate cropping systems are typically the reversal of decades or
even centuries of SOC decline caused by cultivation. Pawsthn(1997) estimate that upland

soils worldwide have lost approximately 43 billion Mg of SOC due to cultivation, and that

roughly two-thirds of that amount could potentially be recovered through best management.
Implicit in these estimates is the understanding that SOC stocks are the result of an equilibrium
between C inputs (residues, exudates, organic amendments) and losses (harvest, decomposition,
erosion). So in contrast to the “permanent” emissions reductions realized by displacing gasoline
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or avoiding NO fluxes, the credits given for C sequestration are temporally limited and
conditional on continued good management. Paustian(1997) give a broad SOC stock

estimate for undisturbed temperate grassland soils of 155 Mg.CTiee median SOC stocks

from all scenario simulations for this work was 63 Mg G limplying historic losses on the

order of 90 Mg C & The median value for SOC change across scenarios was 0.18 Mg C ha
yrl. If we take the low-end estimate of Paustgal. (1997) that one-half of historic losses (45

Mg C hal) are recoverable through improved management, the median rate of C sequestration
given would take more than 250 years to reach its “best management” plateau. At the highest

simulated sequestration rate, 1.25 Mg ¢,he plateau would be reached in about 36 years.

Since this process is likely to be non-linear, the greatest gains from a given management change

will occur in the first several years, with diminishing sequestration over decades to centuries.

Soil N dynamics

The crop productivity response to N generally leveled off at 15 g?Nwith small yield

increases (~1-2%) between 15 and 20 g mMhere was a notable exception among scenarios

with high rates of manure N utilization and low tillage intensity. Among many such scenarios,

the yield increase between N input rates of 15 and 20 ¢ Was as high as 10-15%.

Examining related DayCent outputs, these scenarios also showed relatively high levels of net N
mineralization and low levels of mineral N stocks. This makes sense, since significant fractions

of manure N are in organic forms unavailable to crops until mineralized, and low tillage intensity
may lower mineralization rates and reduce the amount mineralized in time for crop uptake.
Whatever the mechanism, these results suggest that use of no-till and manure N increase optimal

N input rates closer to 20 g N'anrelative to more conventional management.
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Direct NoO fluxes simulated by DayCent, expressed as a percent of total applied N (emissions
factor, EF) ranged from 0.54% to 1.9% with a median of 1.2%. These values generally agreed
well with the IPCC Tier 1 estimate of 1% (de Kletral., 2006). In most contexts the lowest

EFs were achieved at N application rates of 10 g¥\atthough the combination of no-till and

high manure N fractions yielded minimum EFs at higher N input rates. This may also be related
to the gradual mineralization of manure N better matching mineral N supply with crop demand

and reducing mineral N stocks available feONoroduction.

Cost budget considerations

The cost budgets presented here were built primarily with unit costs from lowa State University
extension farm budgets (Plastina, 2015). Many of these costs are highly variable in space and
time, including some of the largest items such as land rent and capital costs. The literature
estimates for the cost of feedstock conversion to EtOH are likewise subject to large changes
attributable to technological progress and economies of scale. The effective market price for the
final EtOH fuel is linked to the notoriously volatile market for transportation fuel and changing
government subsidy policies. Finally, the SCC estimates used represent a consensus of three
well-established Integrated Assessment Models (IAMs) but remain extremely sensitive to the
choice of discount rate used for weighting future damages (IAWG, 2013). The cost and profit
estimates given are therefore intended to qualitatively relate farm management with profitability,

with an emphasis orelative trends within the management space.

Conclusions
Defining a clear best-practice management scenario for these farms is difficult, but this study
makes clear several important trends. Perhaps the most consistently beneficial practice
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considered was no-till management. No-till promoted soil C sequestration in virtually all
scenarios, reduced embodied and fuel emissions, and has been shown elsewhere to reduce
residue input requirements to control erosion (Wilhel@., 2007). The potential
complementarities between stover removal and manure inputs apparent in this modeling have
been specifically corroborated by analogous field studies (Froehaig 2008; Theleret al.,

2010). In sum, these scenarios showed a large amount of swing potential, with plausible
permutations of farm management driving FTW emissions intensities ranging from 10% to 100%
those of gasoline (Figure 3.3). To realize this potential, future bioenergy feedstock
classifications must consider not only crop species and end-product but also major farm

management practices.
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CHAPTER 4. CROP RESPONSE TO WARMING ANDB®,]: WHAT DO WE KNOW AND

HOW DO WE KNOW IT?

Agronomy, Scale and Climate Change
Projections of agricultural vulnerability to climate change rely heavily on process-based crop
models (Parrgt al., 2004; Porteet al., 2014; Elliottet al., 2015). These models are calibrated
to reproduce specific crop growth and yield formation processes in a dynamic way, making them
capable of capturing impacts from conditions that exceed historical ranges. Two prominent
features of climate changeelevated atmospheric [GXeC(Q) and extreme heat exposurare
of particular interest, as they are likely to have temporally-increasing, opposing impacts on yield
in many locations. The responses of major crops to each of these factors have been well-studied
in isolation and can be broadly reproduced by crop models. Their combined impacts, and
interactions with other climatic and agronomic factors, are only beginning to be widely studied
and tested in models. This paper summarizes current understanding of crop responsgs to eCO

and high temperatures and emphasizes areas of continuing uncertainty.

Agronomic studies of crop responses to environmental conditions span a range of spatial and
temporal scales, from experiments with single plants over part of the growing season to global
analyses of decades of yield data. Heat stress ang [@@e long been studied at relatively

small scales (e.g., growth chamber and greenhouse environments) that facilitate a high degree of
experimental control and mechanistic insight into the processes involved. Crop yield is strongly
influenced by processes that are poorly represented at these scales, however, and so considerable
effort has been devoted to developing systems for study of climate change factors in open fields

(Hendreyet al., 1993; Nijs & Kockelbergh, 1996; Kimball, 2005). However, even field
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experiments may fail to account for yield variability arising from varying farm management,
edaphic factors and low-frequency extreme weather events. Statistical analyses of historical
yield and weather records encompass these factors and provide an important means of
independently constraining effect estimates extrapolated from experimental results. Figure 4.1
depicts the relative strengths and weaknesses of field experiments and statistical analyses at a

variety of spatial and temporal scales.
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Figure 4.1. Complementary strengths (green, diagonal arrows) and weaknesses (red, diagonal
arrows) of agronomic studies as a function of spatial and temporal scale. At the smallest scales,
single plants are studied for a season or less under highly-controlled conditions, allowing for
precise causal insights. Experiments with crops grown at plot-scale in open-air conditions are
less controlled, but integrate important ecosystem processes. Finally, statistical analyses of
large-scale yield and weather data incorporate the highest orders of complexity but are
susceptible to spurious associations.

Crop models quantify and propagate agronomic understanding across scales. Hence, they are
vital tools for integrated assessment modeling (IAM) exercises, which project crop yields under

future climate change scenarios. Most of these models were formulated for specialized research
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applications at a time before climate change impacts were commonly studied in open-field
conditions and have been only sporadically updated to incorporate key findings éRditter

2011).

The objectives of this paper are to survey the recent empirical literature on yield responses of
three major crops (maize, soybean, wheat{X0xxand elevated temperatures. In particular, it

seeks to compare major findings from “bottom-up” experimental research with those derived

from “top-down” statistical analyses of historic yield and climate data. The former are the

foundation of the agronomic knowledge encapsulated in crop models, while the latter provide the

only direct measures of yield response at the scales of interest to IAMSs.

Field Experimentswith [COz]
CO. enrichment methodol ogies
A number of experimental studies of the effects@®gon growth of agricultural crops were
conducted in the 1960s and ‘70s, and were comprehensively reviewed by Kimball (1983). Most
of these experiments were conducted in greenhouses and growth chambers and included 437
paired observations and 24 different species. After adjusting for the differing enrichment
concentrations employed, Kimball (1983) found a yield enhancement of 33% for a doubling of
[CO;]. While he acknowledged the potential for differences in response between crops grown in
growth chambers and those grown in open fields, he suggested for a variety of reasons that the
greenhouse results included a “large conservative bias.” Later reviews of the enclosure-based
eCQ; literature by Alleret al. (1987) and Cure & Acock (1986) found mean yield responses of

31% for soybean and 41% across 10 crop species, respectively.
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The use of EO; results from enclosure studies to make projections at field and larger scales is
subject to various criticisms including the distorting effects of enclosures on temperature, light,
wind, vapor pressure deficit, and pests and disease (Kistlahl) 1997; Longet al., 2006). The

small scale of enclosure treatments also magnifies the influence of relatively small measurement

errors and edge effects.

These concerns can be partially addressed through the use of fumigation within open-top
chambers (OTCs), which allow plants to grow in open fields with unrestricted rooting and
minimally-altered lighting (Rogerst al., 1983). The cylindrical chamber barrier inevitably
impedes airflow, alters vapor pressure deficit, and raises interior temperatures, however

(Hendrey & Kimball, 1994).

In response to these and other limitations, fre€@&y enrichment (FACE) systems were
developed, with the first published results appearing in the early 1990s (Heharey993).

Thanks to their larger scale and lack of physical barriers, FACE systems better reproduce the
aerodynamic coupling, light interception, rooting volumes, and exposure to biotic stressors
experienced by field crops (Ainsworth & Long, 2005). Large FACE experiments have their own
limitations compared with enclosure methods, however, including greater temporal fluctuations
in [COy], and practical constraints whitimit the degree of§O;] enrichment (Ziska & Bunce,

2007).

The results from FACE experiments align qualitatively with those from enclosure studies,
although they debatably show responses of lower magnitude. eeahd2006) compared crop

yield responses adjusted to 550 ppm from enclosure and FACE studies. They found an average
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yield response of 13 and 0% for majardd G crops under FACE, respectively, vs. 31.5 and
18% under enclosure enrichment. Likewise, Lethg. (2005) found that model-based

projections overestimated yield stimulation relative to FACE observations.

Tubielloet al. (2007) challenged the preceding interpretations in a way that illustrates several
important considerations. They noted that many of the endpoints reported for FACE
experiments are mechanistically linked (e.g., grain yield, aboveground biomass (AGB),
photosynthesis), and so they should not be treated as independent observations in significance
tests for a “true” difference in effect size between methods. When adjusting for this dependence,
Tubiello found that the odds of the data presented by (ebalg 2006) occurring by chance in

the absence of a “true” difference between methods were non-trivial (P=0.16). Tubielloet al.

(2007) also took issue with the procedure used to scale differences in reference and enriched
[CO;] between FACE and enclosure studies. Specifically, they found that by fitting a curve to
disaggregated (rather than pooled, as used by &oslg 2006) enclosure observations the

scaled enclosure results were considerably closer to FACE results. Other recent work has found
statistical evidence of a publication bias in the primary FACE literature that may underlay a 20-
40% exaggeration of crop responses to gE@worthet al., 2016). These discrepancies
underscore the sensitivity of inter-experiment comparisons to seemingly minor analytical

choices, particularly in the relatively data-sparse and unsettled realm of FACE experiments.

An additional source of confusion stems from the fact that observations often considered
together as “enclosure’ results are in fact derived from several experimental paradigms. Ziska &
Bunce (2007) sought to address this by analyzing non-FACE observations separately according
to more specifically defined experimental approaches, including growth chambers, glasshouses,
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soil-plant-atmosphere research (SPAR) units, temperature gradient tunnels (TGTs) and OTCs.
After scaling results using a beta factor adjustment to reflect reference and erCiChjeof [370
and 700 ppm, respectively, they found that results from all non-glasshouse enclosure types were

not significantly different from FACE results for yields of rice, wheat or soybean.

Further difficulties in comparing results between FACE and enclosure studies include
differencedn ambient and enriche®€,] and the practice at some early FACE studies of
fumigating only during daylight hours. The best way to avoid these complications would be to
directly compare OTC with FACE plots in the same experiment. One such comparison studied
cotton and wheat grown in OTC and FACE conditions in Maricopa, AZ. It found no significant
difference between OTC and FACE for cotton in terms of @@e\GB response ratio (RR,
guantity at €Oy/quantity at £0), but the absolute AGB was roughly 30% higher in the OTC
versus the FACE plot. In contrast, the wheat crop showed similar aba@Bt@and relative

AGB response to@0;, across methods (Kimbadt al., 1997). The only other published siog-

side comparison between FACE and OTC grew wheat and soybean for two years using both
enrichment methods. For soybean, the yield effecC@ravas 49% under OTC versus only

27% under FACE. For wheat, the effect was 15-30% under OTC versus a non-significant effect
under FACE. The reasons for the consistently higBé€rheffect under OTC were not clear, but

may have resulted in part from the larger variabilityG®}] within FACE plots (Bunce, 2016).

The following sections present major findings from FACE experiments with maize, soybean, and
wheat. Since many of these findings have been well reviewed elsewhere (eealke3009;
Vanuytrechtet al., 2012; Bishopet al., 2014; Kimball, 2016), the focus will be on concisely
highlighting areas of consensus and uncertainty for each crop.
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Maize

Theory predicts that photosynthesis of crops using itheatway should be insensitive to the
direct effects of risingQ O], since rubisco activity in the bundle sheath cellS@-saturated

and rates of photorespiration are minimal (Leakey, 2009). Plant sensing of interc€ar [

(ci), however, has the potential to reduce stomatal conductance and thereby reduce soil water
depletion and drought stress in responseCto.e This water-sparing effect has been observed
using G crops in both enclosure (reviewed in Leakey, 2009) and FACE (O#inaan2001;
Leakeyet al., 2006; Manderscheie al., 2014) experiments. In most cases, FACE experiments
showed substantial (30-40%) reductions in stomatal conductanc&@geown G crops and
smaller reductions in season-long evapotranspiration (ET; Cendby 2001; Hussaiet al .,

2013). As aresult, £rrops (maize and sorghum) showed increases in photosynthesis, AGB,
grain yield, and especially water-use efficiency (WUE) un@@e~vhen subjected to significant
drought stress (Ottmaet al., 2001; Leakeyt al., 2006; Markelzt al., 2011; Manderscheiet

al., 2014). Under well-watered conditions, stomatal conductance was still reduced but
photosynthesis and grain yield were unaffected (Leakaly, 2009). Analysis of maize grain
quality corroborated this trend, with drought stress quality impacts less seve@@®egrewn

plants (Erbst al., 2015). The only FACE study to test the interaction between N supply and
eCQO; in maize found no significant Ry-[CO;] interaction effect on yields (Markeé&t al.,

2011). While FACE experiments with annualcops to date have convincingly demonstrated
the impacts of €0, on photosynthesis and water relations, impacts on other quantities such as
belowground C allocation and whole plant N relations are unclear and should be investigated

further under open-air conditions.
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Soybean

As a G crop, soybean yields would be expected to benefit directly from increased photosynthetic
rates as well as indirectly from improved water relations. A substantial body of FACE research
substantiates these theoretical predictions (Moegah, 2005; Bernacchet al., 2007; Lamet

al., 2012a; Ruiz-Verat al., 2013; Bishoget al., 2015; Bunce, 2016). A detailed analysis of
soybean energy fluxes across four seasons found that ET was reduced on average by 12% in
response to anG®, of 550 ppm (Bernacclat al., 2007). ET reductions were somewhat smaller

in percentage terms than reductiongdowing to a negative feedback, whereby reduced latent
heat flux increased canopy temperature and relatively increased water loss. Soybean yield RRs
based on 22 observation pairs and six publications at three FACE sites had an average of 1.14

and a standard deviation of 0.13 (Table 4.1
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Table 4.1. Average changes in yield, AGB and season evapotranspiration (ET) observed under
FACE treatments relative to ambient controls.

Crop Effect % Change | Standard Error| Paired FACE| Sources

Under FACE Observations
C4 Yield 4.1% 4.7% 9 (Conleyet al., 2001;
AGB 4.3% 2.3% 9 Ottmanet al., 2001;
Season E1 -5.1% 2.4% 8 Leakeyet al., 2006;

Hussainet al., 2013;
Ruiz-Veraet al .,

2015)
Soybean Yield 14% 4.4% 10 (Morganet al.,
AGB 20% 3.1% 7 2005; Bernacchet
Season ET -12% 1.8% 4 al., 2007; Lamet al.,
2012a; Ruiz-Verat
al., 2013)
Wheat | Yield 18% 2.5% 54 (Kimball et al.,
AGB 21% 2.2% 38 1995; Hunsakeet
Season ET -1.3% 1.2% 8 al., 2000; Jamieson

et al., 2000; Weigel
et al., 2005; Norton
et al., 2008; Hoegy
et al., 2009; Lamet
al., 2012b, 2012c;
Caietal., 2015;
Nuttall et al., 2015;
Fitzgeraldet al .,
2016; Houshmandfg
etal., 2016)

Recent research is beginning to shed light on the sources of variability in soybean response to
eCQO,. Bishop et al. (2015) tested 18 soybean cultivars for two years, and a subset of nine
cultivars for four years, at the soybean FACE facility in Champaign, IL. Across the full set of
cultivars, RRs ranged from 1.00 to 1.20. Within the subset of cultivars grown for four years,
yield RRs for a given cultivar were relatively consistent across years. This implies that some of

the large variability in yield RRs across studies may be related to choice of cultivar. It also
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provides the first evidence that within-species responsivene€Cwoumder FACE may be a
heritable trait and thus subject to improvement through breeding. Analysis of cultivar physical
traits showed that yield response @ was negatively correlated with plant height €R0.66)

and positively correlated with theGB response to@0; (R? = 0.69; Bishoet al., 2015).

Soybeans symbiotically fix N from the atmosphere, and so typically do not receive added N.
Two studies of soybeans grown under FACE have reported N uptake and root nodule fixation
responses to@&,. In the first (Lamet al., 2012a), €O, significantly increased aboveground N
uptake of two cultivars, but had no effect on C:N ratio. Using isotope natural abundance, they
found that N fixation by cultivar Zhonghuang 13 increased significantly uriZes, evhereas
fixation by cultivar Zhonghuang 35 was unchanged. Results from a seconet @la@016)

study with cultivar Zhonghuang 35 were largely the same, with total N uptake increasing
sufficiently to maintain C:N ratios. That study also measured levels of ureides in expanding
leaves, which are indicators of nodule N fixation. Since ureide concentrations were unchanged
under €0, the authors inferred that the additional N uptake required to maintain C:N ratios in
these plants likely came from soil N stocks (Htal., 2016). Thus, at least for certain cultivars,

growth under higher futureCjO;] may increase soybean reliance on soil sources of N.

Wheat

A large number of FACE experiments have examined the response of wheat y@@to e
(Kimball et al., 1995; Jamiesod al., 2000; Hogyet al., 2009; Lamet al., 2012c; Weigel &
Manderscheid, 2012; Cadi al., 2015; Fitzgeraldt al., 2016; Houshmandfa al., 2016).

Across these studies, the average yield RR was 1.18 based on 54 observational pairs (Table 4.1).
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While most RRs from FACE studies fall under about 1.3, several observations from the
Australian Grains FACE (AgFACE) facility suggest that relative yield responses can be much
higher under certain circumstances (Fitzgeetl., 2016). That work imposed heat stress

using a late sowing date, and also used two cultivars and irrigation levels. Of the 28 RRs
comparing treatment-matched yields under e@Qhose under aCGOten were at least 1.40 and

four of these reached at least 1.70. These high-responding groups included both cultivars,
normal and late times of sowing, and high- and low-irrigated plots, defying any obvious
explanations. The absolute levels of water input at these sites were notably lower than those at
other FACE study sites, however, leaving open the possibility for complex effe€@©ptiader
circumstances of more extreme drought stress. Further study of wheat resp&@Geunder

relatively severe stress regimes is needed to clarify these observations.

Fewer data are available regarding wheat water relations u@@er &our years of irrigated

wheat grown under FACE in Maricopa, AZ generally found reductions in season ET around 5%,
but with substantial measurement uncertainties (Kindball., 1999; Hunsakest al., 2000).

Effects ongs were greater, with reported reductions of 32% in Arizona (\&all., 2000) and

18% for dryland wheat in Australia (Houshmandfaal., 2016).

Several authors have noted reductions in grain N concentrations for wheat grownG@gder e
(Kimball et al., 2001; HOgyet al., 2009; Myerst al., 2014). Plausible explanations for this
phenomenon include (1) simple dilution due to greater C productivity (Pebaer1997), (2)
reductions in mass flow uptake from soil due to reduced transpiration (McGrath & Lobell, 2013),
(3) reduced demand due to greater photosynthetic N use efficiency (PNUE; eeake009),

and (4) inhibition of plant nitrate assimilation due to reductions in photorespiration (Bt@m
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2014). While none of these explanations are mutually exclusive, a growing body of evidence
from controlled experiments (Rachmilevitetal., 2004; Bloomet al., 2010; Asensiet al.,

2015) and follow-up analyses of FACE observations (Cleeag, 2012; Bloomet al., 2014;
Myerset al., 2014; Fengt al., 2015) suggest thaC&; significantly impairs nitrate assimilation
by Gs crops (Figure 4.2). This phenomenon has been demonstrated repeatedly in enclosure
studies ofArabidopsis and wheat, but has also been replicated in a range of afipéar@s and
contrasted with its absence in multiplead CAM plants (Bloonet al., 2012). The

experimental evidence for this inhibition includes increased accumulation of free nitrate in
leaves, increased rates@D, consumption relative toL{evolution (termed assimilatory

guotient, AQ), and reduced growth rates efplants grown under NOnutrition with either

eCOy or reduced @atmospheres. These effects can be reversed by returning plants'to NH
nutrition or ambient atmospheric conditions (Rachmilevétcid., 2004; Bloomet al., 2010).

The mechanistic dependence of shoot nitrate reduction on photorespiration is unclear, but may
involve photorespiration’s role in stimulating malate export from chloroplasts to cytoplasm,

where it generates the NADH needed for the initial reduction of tddONG,” (Bloom, 2015a).
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Figure 4.2. Schematic representation of the connections between atmosphggic [CO
photorespiration, and nitrate assimilation iplants as postulated by (Bloagnal., 2012).
Elevated [CQ] is known to reduce photorespiration ig @ants, and a body of experimental
results (discussed in text) suggest that this impairs foliaf @Quction capacity, though the
precise mechanism is poorly understood. l&af intercellular [CJ.

Recent syntheses support the importance of this phenomenon for growtbropS€under field
conditions. Fengt al. (2015) examined the relationship between aboveground net primary
productivity (ANPP) andAGB N concentration for FACE experiments with annual crops,
grasslands, and forest ecosystems. They found@@tiecreased N uptake in absolute terms,
but that many observations and the linear trend indicated a ~10% reduction in Nfaptake
plants showing little to no ANPP response. This negative intercept was significant for each
ecosystem type analyzed separately, but was notably absent from experiments invplving C
legumes and £plants. These findings conflict with the hypothesis that reduced plant N under
eCQ is primarily due to simple C dilution. Cheasgal. (2012) performed a meta-analysis of
studies reporting plant N utilization and found th@Oe reduced plant nitrate use and increased

reliance on ammonium. They also found in microcosm and field experiments thgtas€
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under €0, increased C allocation to arbuscular mycorrhizal fungi (AMF) when grown in soil
with normal nitrate levels, but not when grown in soil supplemented with a nitrification inhibitor
to maintain stocks of reduced N (Cheat@l., 2012). Finally, Bloonet al. (2014) tested wheat
samples from the 1996 and 1997 growing seasons at the FACE facility in Maricopa, AZ and
found that €0,-grown plants had higher proportions of total N as free nitrate and isétbipic

signatures consistent with reduced shoot nitrate assimilation.

As noted by two recent reviews (Bloom, 2015b; Watked., 2016), photorespiration is a costly
process, reducinGO; fixation by G plants by 20-35%. The above findings provide a

compelling case that its inhibition, whether §@ or through deliberate breeding or
biotechnological manipulations, may have unexpected side effects on plant N relations. In real-
world growing conditions, plants rely on a combination of nitrate and reduced N forms, and so
prospective FACE experiments are urgently needed to elucidate the relevance of this

phenomenon for crops under varying N availability regimes.

Statistical Measures of [CO2] Effect
It would be valuable to constrain experiment-derived projections with empirical estim@@s of
response from historic farm yield data. An initial effort to disentangle yield resporGe4o [
from other time trends examined yield data for the top 20 national producers of wheat, rice and
maize for the period 1958-2002 (Lobell & Field, 2008). Mean results from that analysis aligned
with experimental estimates, but included wide confidence intervals due to the relatively small
role of yearly CO] increment in inter-annual yield variability. A follow-up study used a
different approach to estima@©; fertilization effects for maize and soybean each under well-
watered and water-stressed conditions (McGrath & Lobell, 2011). They estimated that the ~73
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ppm increase inGO;] from 1960 to 2009 increased yields under water stress by 9% and 14% for
maize and soybean, respectively, though estimates for individual states varied widely. Thus,
attempts at independently corroboratif@@e experimental results using historic yield trends

have had some success and, if refinements in methodology and data quality could further reduce
background noise, this approach would provide much-needed quantification of yield responses

integrated across large scales and varied stress regimes.

Field Experimentswith Crop Warming
Compared with €O, the effects of extreme heat exposure on crop yield are both more familiar
and more variable on short timescales. Heat waves have afflicted crops throughout agricultural
history, with impacts ranging from merely transitory growth reduction to outright failure. The
disparity in outcomes is related to several factors, including the severity, duration, and
phenological timing of heat stress events and interactions with other stressors, particularly water
stress (Lobell & Gourdji, 2012). Controlled experiments offer mechanistic insights into these
phenomena and can illustrate causal linkages. The extrapolation of experimental heat stress
impacts to large spatial and temporal scales, however, involves large uncertainties related to how
stress impacts interact and how heat exposures themselves will vary. Statistical analyses of
historical yield data provide an independent approach to impact prediction that is complkementar
to experimental studies in many ways. The following sections explore heat stress impacts on

crop yield as understood from these “bottom-up” and “top-down” perspectives.

Warming methodologies
Experimental studies of heat stress have overwhelmingly relied on enclosures for imposition of
temperature treatments. In response to a set of concerns with enclosures similar to those that
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prompted the development of FACE technology, including distorted micrometeorology, limited
rooting volume, and edge effects, a growing number of experiments are using infrared heaters to
raise canopy temperatures in open-air field environments in an analogous technique termed free-
air temperature increase (FATI; Nijs & Kockelbergh, 1996) or, alternatively, temperature free-air

controlled enhancement (T-FACE; Kimball, 2005).

Several micrometeorological details are important to the design and interpretation of open-air
heating experiments. As described by Kimball (2011), the technique of heating crop canopies to
a constant level of temperature rise using infrared heaters increases temperatures of the canopy
itself and the soil surface by roughly the amounts expected under climate change physics. It
does less to increase air temperatures above and within the canopy. Increased foliage
temperatures without a concomitant increase in water vapor pressure of surrounding air reduces
relative humidity faced by IR-warmed plants, whereas most climate change projections indicate
roughly unchanged relative humidity (Amthatral., 2010). While this difference can be

mitigated somewhat in irrigated crop systems by supplying additional water to the heated plots
(Kimball, 2005), the associated increase in soil water depletion may be a significant confounding

factor for experiments in rainfed systems.

It is also important to note that some experiments have used infrared heaters set to a constant
heat flux rather than thermostatically controlled to achieve a constant temperature rise.
Calculations by Kimball (2005) indicate that such a design will typically achieve much larger
temperature increases at night than during daylight hours. Constant flux designs may thus be
adequate for circumstances in which reduced diurnal temperature range (DTR) is anticipated, but
recent analyses find little support for reduced DTR in most regions (Argtthboy 2010).
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IR-driven constant temperature increases closely represent expected increases in mean growing
season temperatures. However, if the inherent variability in temperature changes under climate
change, then heat stress exposure may be under- or over-estimated by experiments for any given
mean temperature increase. For instance, Orlowsky & Seneviratne §28ly2ed global

circulation model projections produced for the IPCC fourth assessment report. They found that

in some regions and seasons, including Southern Europe, the Mediterranean, and the Central US,
daily maximum temperatures£Z) at the 9 percentile increased at twice the rate of those at

the median (50 percentile). Likewise, Teng al. (2016) found that Great Plains summer daily
temperature anomalies would have an increase in standard deviation of roughly 20% by end of
century compared with recent historical variability. This increase in extremes would cause
significantly greater heat stress than that produced by constant temperature increase treatments
against current weather conditions. Increases in critical temperature exposure under hypothetical
uniform warming vs. increased variability are illustrated in Figure 4.3 using historical data from
Urbana, IL. As can be seen from the expected exceedances given in each panel, changes in the
distributional mean and standard deviation increase critical temperature exposures in a non-linear

fashion, with variability playing a smaller but non-negligible role.

While extreme levels of temperature increase may be achievable using fully open-air IR heating
(Kimball, 2011 suggests up to 10°C), in practice these conditions are produced using permanent
enclosures or open-air plots with temporary enclosures in place during heat treatments only.
Thus, heat stress experiments to-date have proditbedthe uniform increase in growing
temperaturesr the isolated episodes of extreme heat expected under climate change, but not
both together. Attempts should be made to experimentally combine these distinct phenomena to

determine whether their combined effects are more or less than simply additive.
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Figure 4.3. Summer daily maximum temperatures for Urbana, IL, averaged over the period
1990-2014 (top-left, bars), compared with a normal curve model of observed (top-left, line) and
changing heat exposures under simple climate change scenarios. Intra-seasonal variability
increases lefte-right across panels, while uniform warming is depictedttepettom. Critical
temperatures for corn (35°C; red) and soybean (39°C; green) are marked with vertical dashed
lines, and expected summer days exceeding each threshold are given in the same color text.

Maize

Temperature thresholds at which heat stress begins vary depending on crop species, cultivar,
growth phase, and other interacting stressors. Nevertheless, so-called cardinal temperatures have
been identified for major species that show reasonable agreement across experiments where
temperature is the only significant stressor. Hatféehll. (2011) reviewed the agronomic
literature and found that maize had optimal yield formation in the range 18-25°C, and
experienced reproductive failure when subjected to temperatures in excess of 35°C. In a similar

analysis, Sanchet al. (2014) estimated optimal temperatures of 28, 31, and 26°C for vegetative

growth, anthesis, and grain filling phases, respectively. They found corresponding maximum
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temperatures (at which growth and/or yield formation effectively halt) of 39, 37, and 36 C,

respectively.

Those cardinal temperatures were empirically determined by observing the response of yield and
other long-term crop outcomes to temperature. A distinct approach was taken by Parent &
Tardieu (2012), who performed a meta-analysis of measurements of underlying crop process
rates and their responses to temperature. For eight diverse lines of maize, they found a consistent
synchronization of normalized rates of growth processes including leaf elongation, cell division,
shoot elongation, and leaf appearance rate for a range of temperatures. Rates of each process
peaked at 30.8°C with little variation across maize lines and declined to reach half of their peak
rates at 20.8 and 38.2°C. The lack of genetic differences in growth process responses to
temperature between lines from temperate and tropical regions suggests that breeding for yield
under hotter growing seasons will have to rely on other, more genetically-variable traits

including plant maturity length, tolerance to extreme high temperatures, and water use

efficiency.

Experimental work with maize delineates its vulnerabilities to late-season heat. Hatfield (2016)
grew three hybrid maize cultivars in chambers maintained at ambient outdoor (Ames, A, USA
temperature or ambient +4°C. Two of the three cultivars achieved greater vegetative AGB under
the +4°C temperature regime, but grain yields were severely reduced, and two cultivar-years
suffered complete yield failure. The author indicated that was caused by the effect of increased
nighttime temperatures on leaf senescence rates and overall length of the grain-filling period.
This work underscores the critical importance of understanding sensitivities of maize
reproductive processes to extreme, but not implausible future temperature regimes.
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Rattalino Edreira & Otegui (2012) studied the role of heat stress at three different reproductive
growth phases in temperate and tropical maize cultivars. Maize was grown for two years in
open-field conditions, with field-chamber heating treatments (33-40°C daytime temperature)
applied for the 15 days preceding anthesis, 15 days starting at onset of silking, or the first 15
days of active grain filling. They found severe growth reductions during heating under all
treatments, but only modest to moderate reductions inAGBl The two earliest heating
treatments reduced yield primarily through reductions in kernel set, leading to sink limitation.
The latest treatment reduced yielgarticularly in the temperate genotypéy reducing the

length of grain-filling and radiation-use efficiency during grain-fill (Rattalino Edwetigd.,

2011; Rattalino Edreira & Otegui, 2012).

The interacting impacts of heating (2.7°C above ambient) @ en maize grown under open-

air conditions has only been reported once. As expected, there were no significant effects of
eCQO, on photosynthesis or yield when compared with aplGts subjected to the same

temperature (i.e., ambient temperature or heated). Heating was found to reduce photosynthesis
during the hotter, second half of the growing season, leading to reductions in grain yield but not
total AGB (Ruiz-Veraet al., 2015). This corroborates the findings of Hatfield (2016) and

Rattalino Edreira & Otegui (2012) that heating seems to be primarily damaging to reproductive

processes in maize.

Soybean

Hatfield et al. (2011) report soybean optimal temperature ranges of 25-37°C and 22-24°C for
vegetative and reproductive growth, with yield failure at 39°C. Relatively few studies have
examined soybean heat response under open-air conditions. Rui-8le(2013b) grew
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soybeans for two seasons under factorial combinations of open-air heating (2.7°C above
ambient) and @0,. Heating reduced photosynthesis relatived@]-matched plots in both

seasons, with the reduction being significantly more pronounced in 2011 (amhiet82°C)

than in 2009 (ambientalg 16.7°C). Seed yield showed a similar response, with no significant
average change under heating in 2009 and a 33% reduction under heating in 2011. Interestingly,
the heating and@O; treatment had modestly lower yield than the heating-only treatment in

2011, possibly reflecting the effects of reduced stomatal conductance and a consequent 1°C

increase in mid-day canopy temperatures in ©@elots (Ruiz-Veraet al., 2013).

Another open-air experiment at the SoyFACE facility exposed soybeans to 3-day heat waves
(6°C above ambient) at various reproductive phases during two seasons &iabe2615).
All heat waves produced transient oxidative damage and reductions in photosynthgsidand

yield reductions were only significant under heat waves timed during early pod development.

Wheat

Wheat has lower optimal temperature ranges than corn or soybean, estimated at 20-30°C for
vegetative and 15°C for reproductive growth (Faretog., 2011; Hatfieldet al., 2011). Its

response to current and future temperature regimes is additionally complicated by the fact that
winter varieties are at risk of damage from extreme low temperatures, which may be alleviated
by the same trends that aggravate late-season heat stresses €Balrla®015). A substantial
number of open-air warming experiments have begun to delineate wheat response to heat

stresses of varying timing, duration, and severity under field conditions.
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When constant heating treatments are imposed on a background of optimal or above-optimal
ambient temperature, yield losses result. éCal.(2015) grew wheat plants under FACE and
infrared canopy temperature elevation (2°C above ambient, using infrared heaters) in Jiangsu,

China. The effect of heat on yield was negative in all cases, with losses ranging from 17-21%.

Temperature elevation treatments also accelerate wheat phenological development, which may

actually reduce exposure to damaging temperatures. effa&n(2012) grew wheat under open-

air heating arrays for five seasons in Nanjing, China. Heating shortened the time to anthesis by

an average of 10 days and increased yield by 16.3%. This gain was attributed to a combination

of more favorable early spring temperatures for vegetative growth and reduced exposure to heat

and drought stress due to the earlier timing of the reproductive phase.

As mentioned previously, infrared heating of canopies will inevitably also raise VPD and plant
water stress under conditions of water scarcity. feaag (2013) grew wheat in open-field
conditions and applied several treatments, including infrared heating, heating and delayed
sowing, or heating and increased irrigation. Yield was reduced relative to control by both
heating only (9.0%) and delayed sowing with heating (21.2%), but was not significantly different

when heating was accompanied by 20% increased irrigation.

Perhaps the most comprehensive implementation of constant temperature elevation combined
uniform heating with 12 staggered sowing dates in Arizoi@A (Dttman et al., 2012). They
found that grain yield decreased by 7.1% per 1°C above the post-anthesis average temperature of

21.9°C. The effect of infrared heating varied widely depending on planting date, however, with
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no effect on yield of winter plantings, positive effect on yield of late fall plantings, and negative

effect on yield of late spring plantings.

Constant temperature increase experiments provide vital information on crop responses to mean
warming, but do not simulate the increasing incidence (due to larger variation around the mean)
of extreme heat expected in some regions. Several open-air experiments have been conducted to

isolate the effects of such extremes.

Liu et al. (2016) grew potted wheat plants in an open-air field except for specific time intervals
of imposed heat stress within a phytotron. Treatments included most combinations of two
cultivars, four growing seasons, two stress timings (anthesis and 10 days after anthesis), two
stress durations (three or six days) and four stress lewehsTlax Of 17/27, 21/31, 25/35,

29/39°C). They found that every thermal unit above 30°C reduced yields by 1.5% when applied

at anthesis and 1.15% when applied at grain filling.

Nuttall et al. (2015) grew two wheat cultivars under FACE conditions and used a mobile

chamber to impose three-day heat stress (38°C daytime) either three days prior to anthesis or 15
days after anthesis. Heat applied before anthesis reduced yield by 0.22% per degree-hour above
32°C for cv. Scout, but had no impact on yield of cv. Yitpi. Stress applied after anthesis had no

significant effect on yield in either cultivar.

Talukder et al. (2014) grew several cultivars over two years in field conditions and used a mobile
chamber to impose a single 3-h heat stress (35°C) near flowering or during early grain set. Yield

reductions across years, cultivars and stress timings ranged from 8% to 35%, with cv. Janz
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showing the greatest yield losses. Stress-induced losses were significantly greater in 2009 (24%)
vs. 2010 (12%), possibly due to the hotter and drier baseline conditions in 2009 causing
increased canopy temperatures and damage to pollen and ovaries. Averaged across all cultivars,
heat stress reduced post-heading duration by 11 days in 2009 and eight days in 2010, and post-

heading duration was a strong predictor of grain yield.

Statistical Measures of Crop Warming Effect
The complex patterns of heat stress faced by field crops across large spatial and temporal scales
cannot be fully represented within an experimental context. Fortunately, ublikg fhe
inherent variability of heat eventsparticularly across space (Lobell & Burke, 202@rovides
a relatively strong signal for quantification by empirical analyses of historical weather and yield
data. These studies give an independent, and in many ways complementary, perspective on the

role of heat in crop yield.

Maize

The role of high temperatures as a major driver of historic corn yield variability was highlighted
by a 2009 study that used an unusual weather dataset to detect pronounced, nonlinear yield
declines with exposure to high temperatures (Schlenker & Roberts, 2009). That work predicted
yield in part based on cumulative season exposures to each 1°C temperature interval, and found
that corn yields declined steeply with increasing exposure to temperatures above 29°C. A
subsequent re-analysis, using an updated dataset, added VPD as a predictor and found it to be
roughly as strong a negative predictor as the extreme temperature metric (Baibgr2912).

Associated work using a dynamic crop model corroborated the importance of high-VPD
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exposure as a driver of corn yield loss. Results suggested that a 2°C warming was roughly twice

as damaging to yield as a 20% reduction in precipitation (Leball, 2013).

Other authors have noted strong yield impacts of coincident water scarcity and high
temperatures. Andersenal. (2015) used a process-based crop model (EPIC) to simulate
historic soil water content for rainfed maize in the US Midwest from 1980-2012 and used
estimated soil water as a predictor for their statistical model. Their analysis found that water
status played a major role in determining heat stress impacts, with a 1°C temperature increase
causing 6-10% vyield losses under high water availability but 27-32.5% under low water
availability. This work in the temperate, high-yielding US Midwest aligns with a similar

analysis using data from maize yield trials in sub-Saharan Africa, which estimated each degree-
day above 30°C caused 1% and 1.7% yield losses under well-watered and drought conditions,

respectively (Lobelét al., 2011).

The causal relationships between extreme heat, soil water depletion, and resulting yield loss in
these types of studies are unclear. As noted by Basso & Ritchie (2014), hot days tend to co-
occur with drought conditions due in part to a lack of evaporative cooling (Mueller &
Seneviratne, 2012). Thus, measures of extreme degree-days may actually be signals for time
spent under water scarcity, and season rainfall omits important drivers of soil water (runoff,

drainage, early-season stored water) and so may obscure the primacy of water status for yields.

This problem was addressed by Urleaal. (2015), who included dailysax as well as
precipitation (“supply”’) and VPD (“demand”) during a 30-day period representing reproductive

growth in models of 1995-2012 maize yield in lowa and lllinois. The interaction between supply
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and demand was a significant, robust predictor of yields, with the effect of VPD becoming more

pronounced in low-precipitation seasons.

Most empirical studies have either ignored crop growth phase or used relatively coarse
approximations such as 30-day periods. Butler & Huybers (2015) included county-level USDA
data on maize development along with various weather variables and found yield sensitivity to
killing degree-days (KDD, degree-days above 29°C) was four times greater during early grain
filling than during vegetative growth. While this difference is well-established from
experimental work, its magnitude indicates that omission of growth phase information from

statistical models may substantially reduce their explanatory value.

Existing adaptation of maize cultivars and management further complicates attempts to derive
fixed heat-yield relationships. Butler & Huybers (2013) found that the sensitivity of US maize to
KDD was much higher in low-KDD northern regions versus high-KDD southern regions.
Likewise, they and others found that counties employing irrigation showed significantly lower

sensitivity than neighboring rainfed counties.

A detailed analysis of irrigated maize contest yields by Carter (2015) found that VPD and
precipitation were strongly inversely correlated, and that the highest yieldpoggredy
correlated with VPD andegatively correlated with precipitation. This appears to conflict with
the previously-discussed findings of VPD as a negative predictor of maize yield @iaher
2012; Lobellet al., 2013), but it more likely reflects the altered correlation structure of
intensively-managed, irrigated crop systems as compared to that of fidtds‘erdinary”

management. For instance, two other strong positive predictors of yield were cumulative
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radiation and long-season cultivars (Carter, 2015), both of which may increase exposure to
drought stress under rainfed conditions. The broad mechanisms underlying relationships
between VPD and water supply are depicted in [eigut. Since large-scale yield analyses tend

to include area under varying management intensities, sound interpretation of their results can be

difficult and must consider these kinds of correlation structures.

Rainfed | Irrigated

Low VPD

1
© 5866

Figure 4.4. Conceptual diagram summarizing the interactions between irrigation status, VPD and
maize yield important to interpretation of statistical climate-yield analyses (e.g., Reilarts

2012; Andersomt al., 2015; Carter, 2015). High VPD typically co-occurs with sunny days,

which induce water- and heat-stresses in rainfed plants (A) but support maximal C-fixation and
transpirational cooling when water is not limiting (B). Cloudy, low-VPD conditions cause light
limited photosynthetic rates while also limiting transpirational cooling under rainfed (C) or
irrigated (D) conditions. Thermometers indicate canopy temperature relative to air temperature.
Water droplets indicate soil water supply.
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Soybean

An early analysis of US corn-soy acreage found that Midwestern yields increased in cooler
years, while Northern Plains yields increased in warmer years (Lobell & Asner, 2003),
underscoring the importance of baseline climate for anticipating trends in crop temperature
response. A useful high-level perspective on global crop distributions was provided by Lobell &
Gourdji (2012). Their analysis combined major producing countries of six crops with their
average growing season temperatures and presented them relative to the crop-specific optima
estimated by Hatfielet al. (2011). Maize production in the US was grown at an average
temperature of 19.5°C, modestly above the optimum of 18°C. Soybeans in the US, by contrast,
were grown at a slightly higher season average temperature of 21°C, modestly below the
optimum of 22°C. A later study found that soybean had the lowest historical (1980-2011)
exposure to critical high temperatures (above 39°C) among maize, soybean, wheat and rice
(Gourdjiet al., 2013). This resulted primarily from the impressive heat tolerance of soybean,
with a critical temperature of 39°C versus 35°C for maize (again based on Heitfie)®2011).

These analyses indicate that soybean yields are under less immediate threat of losses to extreme

heat than maize.

Lobell & Field (2007) estimated the effect of historic climate change on soybean yield. When
considering the 1981-2002 time-frame, the effect of the warming trend on yields was non-
significantly positive. However, when the effect was estimated separately for each decade from
1961-2002, a pattern emerged from the second (1971-1980) through fourth (1991-2001) decades
of increasingly negative climate effects. A similar pattern was found for maize, but with more

severe losses (~20%) in the latest decade as compared with soybean (~5%).
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Similar effects have been discerned even in relatively cool growing regions. Kucharik & Serbin
(2008) studied county corn and soybean yields in Wisconsin, on the northern edge of the US
Corn Belt. They found that historic yields of both crops were maximized during cooler, wetter
years, with warming likely reducing yield trends by 5-10% from 1976-2006. Taken together,
these results suggest that soybean may have fared better than maize under climate change to-

date, but that both crops are likely to sustain greater losses as warming accelerates.

Wheat

A key consideration for wheat response to climate warming concerns the opposing effects of
reduced exposure to cold in the autumn and earlier spring development versus earlier and more
severe summer heat waves. Tetc#l. (2015) studied the impact of temperature on yields of
rainfed winter wheat as reported from the Kansas Performance Test trials. They found a
substantial beneficial effect of fall warming on yield due to the reduced incidence of frost
damage and increased time for growth before onset of dormancy. However, this benefit was
outweighed by the negative effect of spring warming under most uniform seasonal warming
scenarios. In addition, they concluded that the longer grain-filling periods of recent, high-
yielding varieties were more vulnerable to heat-induced losses than older, lower-yielding
varieties. A later analysis of these data confirmed this tradeoff as a feature related to genetic
clusters of wheat varieties (Taekal., 2015b). On the other hand, Rezael. (2015) found

strong trends of increasing spring and summer temperatures in Germany from 1951-2009 had
shifted wheat heading dates forward by an average of 14 days and that this offset the potential
increases in heat stress exposure around anthesis. éade(2012) studied the relations of
ordinary and extreme (>34°C) thermal time to growing season length of Indian wheat using

satellite observations. Their calculations indicated that a 2°C temperature rise would accelerate
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senescence by an average of nine days and reduce yields by 15-20%. While adoption of
cultivars with shorter phenological durations and/or use of earlier sowing dates may reduce
wheat exposure to extreme heat in temperate climates, growing regions with weaker seasonality
(i.e., tropical regions) will have even smaller scope for adaptation through these kinds of

changes.

Gourdji et al. (2012) examined a large set of climate and yield data from mostly-irrigated wheat
yield trials at 349 locations worldwide. They found that reproductive stage temperatures abov
12°C reduced yields, and yield responded negatively to increased temperature during the grain-
filling period, throughout the dataset, with particularly steep declines when accompanied by low
VPD conditions. This last point aligns with the previously-mentioned findings in maize (Butler
& Huybers, 2015; Carter, 2015) that irrigation tends to mitigate yield loss at high temperatures
and shifts VPD from a negative to a positive predictor of yield. One likely mechanism for this
shift involves the role of soil water in supporting transpirational cooling of crop canopies. For
example, (Siebest al., 2014) compared air temperature and canopy temperatures for rainfed
and irrigated rye in Germany. They found canopy temperatures ranged from 6°C below to 8°C
above air temperatures, with sandy rainfed fields usually above air temperature, and loamy

irrigated fields usually below.

COg, Heat and Process Models
Process-based models are the primary tools used in most large-scale projections of climate
change impacts on crop yield, including the IPCC AR5 (Pettar, 2014). In principle, these

models are able to capture complex interactions betweep &@@iheat, but the algorithms used

98



to simulate underlying phenomena vary widely (reviewed by Tubiello & Ewert, 2002; Eyshi

Rezaekt al., 2014).

CO:2 and heat stressin current crop models

As touched on previously, major crop models account for direct e@€xts on yield through

one of two mechanisms. The more mechanistic algorithms simulate photosynthetic biochemistry
as given by Farquhat al. (1980, 1982) and therefore include atmospheric;J@® an input to

their systems of equations. The more empirical algorithms employ an experimentally-derived
COefertilization multiplier on daily photosynthesis or growth (reviewgdrhbiello & Ewert,

2002).

A similar divide exists for the simulation of eg€ffects on water use. Mechanistic approaches
calculate leaf energy balance on sub-daily time-steps and adjust stomatal conductance to
optimize C fixation (Balkt al., 1987; Collatzt al., 1991). Empirical approaches utilize an

experiment-based multiplier on daily transpiration or transpiration efficiency (TE).

Heat stress algorithms are more varied. In part this results from the broader array of plant
processes that are directly dependent on temperature as compareg| taJJGS2 crop models

use the thermal time concept to scale phenological development based on temperature, for
example. By reducing the calendar duration of the grain-filling phase (under high temperatures)
without a proportional increase in grain-filling rate, these systems can indirectly capture a major
impact of heat on yield (e.g., CERES-maize: Lopez-Cedréh, 2005; CERES-wheat: Boog

al., 2011). Likewise, models that explicitly estimate maintenance respiration may capture heat-

induced yield reductions via temperature-dependent respiratory C losses (e.g., GAEZ model:
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Leemans & Solomon, 1993; LPJ models: Bondaaal., 2007). For models that use radiation

use efficiency (RUE) for simulating photosynthesis, a composite limitation factor commonly
stands in for the temperature sensitivities of several underlying physiological processes including
photosynthesis, photorespiration, maintenance respiration, and possibly also heat stress per se

(EPIC models: Sharpley & Williams, 1990; DayCent: Pasiosl., 1998).

Several models use algorithms explicitly designed to account for heat stress effects, mostly
focused on flowering and grain-filling dynamics. One approach is to have cultivar-specific
cardinal temperatures for specific yield formation processes and phases (CERES-Wheat:
Aldermanet al., 2013b). Heat-induced reductions in grain number are difficult to simulate but
could account for sink limitations to yield that may be missed by source-oriented algorithms
(APSIM-maize: Jiret al., 2016). A less explicit way of approximating reproductive heat

damage is to reduce harvest index as a function of near-anthesis critical heat exposure (CropSyst:
Stockleet al., 2003; PEGASUS: Deryng al., 2014). The methods for simulating extreme heat

and CQ fertilization in several major crop models are described in Table 4.2.
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Table 4.2. Summary of simulation approaches accounting for effects off @@heat stress
employed by models participating in the Global Gridded Crop Model Intercomparison (GGCMI,
Rosenzweigt al., 2014) and selected others. RUE: empirically derived multiplier on crop
radiation use efficiency; TE: empirically derived multiplier to reduce crop transpiration; PS:
[CO7] enters directly into equations describing photosynthetic biochemisti{; O-] enters

directly into equations describing regulation of stomatal conductance; Respiration: C losses to
respiration increase non-linearly with temperature.

Model CO: COu: Heat Stress Model Reference
Production | Transpiration Type
EPIC& RUE TE Temp limits RUE- | Site- (Sharpley &
GEPIC based biomass gain| based | Williams, 1990;
Kiniry et al.,
1992; Liuet al.,
2007)
IMAGE- RUE - Respiration Agro- (Leemans &
GAEZ ecologic | Solomon, 1993
al zone
LPJ- PS Os Respiration DGVM | (Smithet al.,
GUESS& 2001; Bondeau
LPImL etal., 2007)
DSSAT RUE; TE; Differential temp Site- (Jonest al.,
(CERES- | soy: PS SOY: Qs response curves for| based | 2003; Lopez-
maize, reproductive Cedroénet al.,
CERES- processes and 2005; Bootest
wheat, development rates; al., 2011;
CropGro- grain number Aldermanet al .,
soybean reduction 2013)
PEGASUS | RUE TE Near-anthesis heat | DGVM | (Derynget al.,
exposure reduces 2014)
yield
CropSyst | RUE TE Heat during Site- (Stockleet al.,
flowering reduces | based | 2003)
harvest index
DayCent | RUE TE Temp limits RUE- | Site- (Partonet al.,
based biomass gain| based 1998)
APSIM RUE TE Temp limits RUE- | Site- (Keatinget al.,
based biomass gain| based 2003; Jinet al.,
grain fill rate, and 2016)
grain number
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There is an increasing emphasis on testing and comparison of process models, with particular
focus on their ability to capture crop responses to well-studied climate change factors (Asseng,
2013; Bassut al., 2014; O’Leary et al., 2015; Derynget al., 2016; Jiret al., 2016). Some of

these studies include experiments expressly designed to generate the kinds of well-controlled,
dose-response relationships that can readily inform specific model processes gAakeng

2014; Caiet al., 2015; Liuet al., 2016a, 2016b). These efforts are vitally important for
evaluating and improving the accuracy of process models and underlying algorithms for

projection of climate change impacts.

Emerging themes for crop model improvement

As open-air experiments and empirical studies of climate change become increasingly
sophisticated, their focus is shifting from quantifying first-order effects of single factors (e.qg.,
growth stimulation by €0,; yield impact of hot seasons) to elucidating complex interactions
between these and other factors. The results of these studies are beginning to identify important
ways in which climate change factors interact with one another and with other agronomic
factors. Process-based crop model development should continue to explore ways of simulating

these second-order climate change effects.

The reduced transpiration und€@ reduces latent heat flux and increases canopy
temperatures. This effect caused an average warming of 0.7°C in FACE crop canopies versus
controls in the experiments reviewed by Kimball (2016). Significant efforts have already been
made to develop and compare algorithms for estimating canopy temperature itself, including
empirical versus energy-balance methods (We#tar, 2015) as well as testing the utility of
simulated canopy temperature versus air temperature for estimating heat stress and final yield
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(Gabaldon-Leaét al., 2016; Webbeet al., 2016). Wheat canopy temperature goodness of fit

was similar between empirical algorithms and energy balance methods with correction for
atmospheric stability conditions, though use of canopy temperature to drive heat stress only
modestly improved yield prediction (Webhkeal., 2015). Similar work with a single maize

model using an energy balance approach found that canopy temperature substantially improved
final yield prediction relative to air temperature, though similar improvement could be achieved
using air temperature together with a higher stress threshold temperature (GabaldbatL eal
2016). While canopy temperature simulation is a substantial challenge, the increasing incidence
of hot, dry conditions and reduced latent heat flux from £€@ps justify continued effort to

account for this important variable (Boateal., 2011; Sieber¢t al., 2014).

The interactions of @O, and heat with crop N dynamics are unclear. The phenomenon of
photosynthetic acclimation has been frequently observed in diverse plants grownG@ger e
(Ainsworth & Rogers, 2007). One mechanism underlying acclimation may be sink limitation, in
which excess non-structural carbohydrates accumulate due to accelerated C fixation and
downregulate Rubisco levels. Sink limitation has been found to worsen under conditions of low
N supply (Ainsworth & Long, 2005). For wheat and other non-legumingusdps, the
compromising effect of @O, on leaf nitrate reduction (Blooet al., 2012) could conceivably
exacerbate sink limitation by creating effective N shortages even where soil nitrate is ample.
The relative contributions of these mechanisms must be clarified for accurate model processes to
be developed. At present, most models that make any adjustment of N relations under eCO
lower the amount of N required for growth. This reflects a general interpretation of reduced
foliar N concentrations as resulting from increased N use efficiency. However, if plants under

eCQ have impaired N® assimilation ability, as discussed earlier, such processes will
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overestimate yields of N-limited crops, particularly for situations where reduced N forms are
scarce. In that case, models would need to account for the chemical form of N fertilizer (as
stressed by Bloom, 2015a) as well as soil N transformations. Further research is urgently needed
to determine whether acclimation of photosynthesis results from sink limitation, impaired nitrate

assimilation, or some combination of these and other factors.

The reduction in stomatal conductance and resulting increases in canopy temperatures under
eCQO, are well-established in theory and experimental observation of well-watered crops. Under
conditions of drought,@O;, crops would be expected to maintain adequate soil water and full
transpiration longer tharC®, crops and thus avoid some stress exposure. In keeping with this
understanding, most FACE studies (Kimlstldl., 1995; Conlet al., 2001; Leakeyt al .,

2006) and at least one meta-analysis (Bisia@b., 2014) have found that eG®ffects on yield

are equal or greater among water-limited treatments versus well-watered controls.

Recent work with soybean in lllinois has complicated understanding of this water-sparing effect,
however. Using FACE in combination with rainfall exclusion structures over three years, Gray
et al. (2016) found that eC{reatments did not have greater soil water than.a@a@ments

when subjected to reduced precipitation. In general@{&0ts showed greater LAI

development and reduced water use during vegetative growth, but then used as much or more
water as aC@plants in the hotter, drier conditions prevalent during reproductive growth
(summarized in Figure 4.5). While much of this late-season water use was driven by the greater
LAI of eCO; plants, Grawt al. (2016) also found that eG@lants responded more strongly to

drought-induced abscisic acid signaling, resulting in ngereduction than aC{plants. FACE-
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treated plants also had greater proportions of N-fixing root nodules in shallow, dry soil layers,

apparently compromising N fixing activity.

These results underscore the considerable challenges faced by modelers attempting to predict
crop yield responses to climate change factors. The findings ofeGahy2016) demonstrate

that the near-universal positive effect of e yield of G crops can vary dramatically (yield

RR range: 0.95-1.32) based on complex interactions between vegetative development, timing of
heat and precipitation, and root depth distribution. Importantly, the trend they observed of
declining eCQ fertilization with increasing water limitation is contrary to conventional
understanding and the results of several previous FACE studies (Keh@lall1995; Conleet

al., 2001; Leakewt al., 2006).

While existing modeling approaches, such as scalars on daily production and transpiration or
RUE declines at high temperature, are reasonable for capturing broad average responses, future
development should focus on explaining and replicating these temporally-sensitive, multi-

factorial interactions.
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Figure 4.5. Conceptual diagram of interacting climate factors based on the results efakray
(2016) for soybean grown under FACE using rain-exclusion treatments. Elevatepd®

plants (A) have enhanced C-fixation and LAl development during vegetative growth,
accompanied by modestly reduced water losses and increased canopy temperatures (relative to
ambient [CQ], B). Under well-watered conditions, elevated fCEbntinues to sustain greater

C fixation and yields are enhanced (C relative to E). Under drought conditions, the greater LAI
of the eCG-grown plants depletes soil water supplies and, combined with other factors (see
text), reduces or abolishes any yield enhancement (D relative ThEymometers indicate

canopy temperature relative to air temperature. Water droplets indicate soil water supply.

Conclusions
Crop breeding efforts and model-based climate impact assessments depend on reliable, empirical
understanding of crop responses to heat &@@b.e Whenever possible, these responses should
be verified independently through both field experimentation and careful analysis of historical
data. Experiments are necessary to tease out subtle mechanistic details, but are unable to capture
the full range of real-world management, climate and edaphic features that integrate across space
and time to determine large-scale yields. Statistical approaches face the complementary

challenge, beginning with data that include these emergent trends but demanding thorough
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understanding of mechanistic linkages to separate and correctly interpret signals. The recent
convergence of statistical and experimental findings on crop responses to concurrent heat and
drought is encouraging in this regard. Notwithstanding a few early efforts (Lobell & Field,
2008; McGrath & Lobell, 2011), knowledge daZ € effects is mostly limited to experiments,

but as atmospheri€O,] continues to rise and statistical methods are further refined, this

approach may eventually constrain experimental estimaté&S@f effects in a similar way.

Most widely-used crop models incorporate 3€rtilization and heat stress-related processes

that account for climate impacts in broad outline. Two recent analyses found that yield
projections from crop modeling studies and statistical studies of historical yields show

substantial agreement (Letial., 2016c; Lobell & Asseng, 2017). The greater complexity

revealed by recent experimental work, however, provides a basis for development and testing of
more granular algorithms. These more mechanistic representations are of particular importance
for temporal ranges (such as the lat& @dntury) and locations (such as the tropics) where

regimes of interacting stressors may frequently exceed normal historical ranges. Process models
exist to apply knowledge gained from experimental research, and they are our best tools for
guantifying the implications of these new results for agricultural productivity under the

unprecedented conditions crops will face in coming decades.
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CHAPTER 5. MODELING CROP RESPONSE TO INCREASING ATMOSPHERIC {CO

Introduction
Crops face unprecedented levels of atmospheric [ CO2]
Atmospheric carbon dioxide (GDconcentrations have increased from approximately 278 ppm
at the start of the Industrial Revolution to greater than 400 ppm at present (Meinghalisen
2011). According to the Representative Concentration Pathways (RCPs) used in the
Intergovernmental Panel on Climate Change’s (IPCC) 5" Assessment report (AR5; Hartmagin
al., 2013), atmospheric [CDis likely to range between 443 and 541 ppm by 2050, and between
421 and 936 ppm by 2100 (Meinshausea., 2011). Recent analysis of emissions trends
suggests near-term [G[have tracked toward the upper end of the RCP ranges (Friedlingstein
al., 2014). Thus, in the foreseeable future, thej@acountered by terrestrial plants will be
higher than at any time since the late Tertiargore than two million years ago (Pearson &
Palmer, 2000). Since G@ an essential and often rate-limiting input to photosynthesis for

all plants, this change has major implications for agricultural production in thee2tury.

Early CO2 enrichment experiments

It was widely realized in the 1960s that greenhouse plants could be made more productive by
increasing the [Cg) within the greenhouse. Thus, the earliest large review of plant responses to
eCQ (Kimball, 1983) included a wide range of specialty and commodity crops grown in small,
tightly regulated enclosures. It found an average yield enhancement of 33% for a doubling of
[CO,]. Subsequent reviews found similar responses for soybean (31%ellen1987) and 10

major crop species (41%; Cure & Acock, 1986).
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Crop model [ CO] -response processes

The CQ response algorithms in major crop models, including the EPIC (Steickle 1992)

and DSSAT (Pea#t al., 1989) families of models, were originally calibrated using growth and
yield responses derived from enclosure studies. The reviews by Cure & Acock (1986) and
Kimball (1983) were also cited by Metherell (1992) in his development of-a€3ponse

process for the monthly Century biogeochemical model. Specifically, for a doubling gf [CO
his process used multiplicative scalars to increase both monthly biomass production and
maximum carborte-nitrogen (C:N) ratio of new biomass by a factor of 1.3 fec®ps, while
reducing monthly transpiration by a factor of 0.77 for bola@ G crops. This process was
maintained when Partaat al. (1998) created the daily time-step version of Century known as

DayCent.

Ainsworthet al. (2008) considered simulations by five dynamic crop models (mC-Wheat,
Demeter, LINTUL, AFRC and Sirius) recreating the 1992-94 Maricopa wheat FACE
experiments. They found the average modeled vs. observed responses to be 1.18 vs. 1.08 under
well-watered conditions and 1.28 vs. 1.18 under water-stressed conditions, respectively, leading
them to conclude that models parameterized against enclosure results overestinjate [CO
responses observed under FACE. Others have contested this view, however, pointing out
various difficulties in comparing enclosures with FACE experiments (Tulsedlo, 2007). For
instance, the broad category of “enclosure” experiments conceals several experimental

paradigms, including growth chambers, glasshouses, soil-plant-atmosphere research (SPAR)
units, temperature gradient tunnels (TGTs) and open-top field chambers (OTCs; Ziska & Bunce,
2007) In addition, the level of “elevated” [CO2] employed by enclosure experiments (often

double the ambient level, or about 700 ppm) has tended to be higher than that employed by
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FACE experiments (often 550 ppm), necessitating a relatively arbitrary choice of mathematical

scaling for effect size comparisons (Ainswoetlal., 2008a).

Additional crop responsesto eCO>

After increases in aboveground biomass (AGB) and yield, the most widely-reported impact of
eCQ on crops is a decrease in stomatal conductagcar(d, to a lesser extent, season
evapotranspiration (ET) (Cure & Acock, 1986; Drakel., 1997; Kimball & Bernacchi, 2006;
Leakeyet al., 2009). The smaller relative decreases in ET result from negative fesgback
whereby reductions igs lead to reduced latent heat flux, raising canopy temperatures and thus
marginally increasing the transpiration rate. At the same time, to the extent that eCO
accelerates AGB growth, the increase in total leaf area may feed back to increase total
transpiration. Bernacclat al. (2007) found that soybean grown under e©@er four years

averaged 10% lowegs, 0.5°C higher midday canopy temperature, and 8.6% lower ET than the
control. Maize grown at the same facility displayed (3-year averages) 9% lower season ET and
0.5°C increased canopy temperature when grown under. e Maricopa wheat FACE
experiment likewise reported a 0.6°C increase in canopy temperatures for these@@bient
treatment (Kimbalkt al., 1995). Despite the potential for negative feedbacks, Vanuytealht
(2012) found that water productivity of FACE crops showed significant increases of 23 and 27%

with respect to AGB and yield, respectively.

Several enclosure and FACE studies have reported an effect eb@@@bp nitrogen (N)
concentration or acquisition. In their review of the FACE literature, Kingball (2002) found
an average reduction of 16% in the nitrogen (N) concentration of AGBsfgraih crops.
However, when expressed as a total amount of N, the reduction was 0.4%, not significantly
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different from 0. A large review of results from 75 enclosure studies found that tissue N
concentrations for eCQreatments were reduced by 14% under g€fnpared with ambient
treatments (Cotrufet al., 1998). A recent analysiyIlFenget al. (2015) analyzed N

concentration and N acquisition responses to FACE for grassland, cropland, and forest
ecosystems as a function of their aboveground net primary production (ANPP) response. They
found a mean reduction of 8% for N concentration in crop studies that persisted even among

crops with little to no stimulation in ANPP.

The largest review of eCG ffects on belowground C allocation in crops found mixed results
(Rogerset al., 1996). Out of 264 observations from enclosure experiments, that work found a
mean increase in rotd-shoot ratio (R:S ratio) of 11%. However, this effect was highly
variable, with 59.5% of observations showing an increase, 3% showing no change, and 37.5%
showing a decrease in belowground allocation (Rogeais, 1996). A recent review of FACE
experiments with several major crops divided experiments into ranges by enrichment level. It
found significant mean increases in romshoot ratio of 14% and 35% for experiments with

eCQ of 541-580 and 581-620 ppm, respectively (Vanuytrecalt, 2012).

Sudy rationale

This work investigated the hypothesis that the existing DayCent crepeS@onse process and
parameter values are inconsistent with the 20 years of experimental results that have been
produced since its initial parameterization by Metherell (1992). The specific modeling
undertaken toward this end was limited to results from five FACE sites because they provided
the most straightforward test of model performance at replicating cropre§apnses in long-
running, open-air experimental conditions.
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Methods
Experimental sites
Maricopa, AZ, USA: Four of the seven years of wheat, and both seasons of sorghum, modeled
for this sitewere grown at the University of Arizona Agricultural Centre, Maricopa, AZ (33°4°N,
111°59°W, 358 m elevation). FACE experiments (aCQ: 360 ppm, eC@ 550-560 ppm) were
conducted at this facility from 1989-1999 using cott@ossypium hirsutum L.; 1989-1991
plantings), spring wheaf (iticum aestivum L. cv. Yecora Rojo; 1992, 1993, 1995 and 1996
plantings), and grain sorghurSotghumbicolor L.; 1998 and 1999 plantings). The soll at this
site is described as a Trix clay loam [fine-loamy, mixed (calcareous) hyperthermic Typic
Torrifluvents] (Soil Survey Staff, 2015). The FACE apparatus consisted of 25-m diameter rings
into which CQ-enriched air was blown day and night. Further details of the FACE apparatus

can be found in Kimball (2006).

The first two wheat plantings were designed to testgiyQvater interactions using two levels

of [CO,] and two levels of irrigation, with each treatment replicated four times. The second set
of wheat plantings tested e@8y-N supply interactions using two levels of [gJ@nd two

levels of N fertilization. Table A7 and Table A8 present key agronomic and meteorological

details from the four wheat and two sorghum seasons, respectively.

Champaign, IL, USA: Seven of the nine years of soybean and three years of corn modeled for
this site were grown at the SoyFACE facility, which is part of the Experimental Research Station
of the University of Illinois, Champaign, IL (40°02° N, 88°14’W, 228 m elevation). FACE
experiments (aC® 370-402 ppm, eC£©550-590 ppm) were conducted at this facility using

corn Zeamays L., Pioneer cv 34B43) in rotation with soybe&tycine max L. Merr. cv Pana
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for 2001, thereafter Pioneer cv 93B15). The crops were rotated between opposite halves of a tile
drained field that has been in continuous cultivation to arable crops for more than 100 years. The
soil at this facility is a deep (>1 m) Flanagan/Drummer series fine-silty, mixed, mesic Typic
Endoaquoll (Soil Survey Staff, 2015). The FACE apparatus was constructed in 20-m diameter
octagonal plots with 4 replicates. All crops were rainfed, and fertilization was typical of regional
practice, with no N applied to soybean and 202 kg Napplied to maize, plus an estimated

residual 45 kg N hafrom the previous soybean crop.

This work modeled soybean FACE experiments from 2001, 2002, 2003, 2004, 2005, 2009 and
2011, and maize from 2004, 2006, 2008 and 2010. For soybean in 2009 and 2011, and maize in
2010, an infrared heating apparatus was used to warm crop canopies in a factorial design with
FACE treatment, resulting in four replicated observations for those crop-years (further details in
Ruiz-Veraet al., 2013, 2015). Agronomic and meteorological details from the soybean and

maize seasons simulated are presented in Table A9 and Table A10, respectively (sources as

noted).

Horsham, Victoria, Australia: Three years of wheat modeled for this site were grown at the
Australian Grains FACE experiment (a€@G80-390 ppm, eC£€550 ppm) in Horsham,

Victoria, Australia (36°45°S, 142°07°E, 128 m elevation). The FACE apparatus consisted of 16,

12-m diameter rings and is described in detail by Madtadd. (2009). Wheat (cv. Yitpi) was

sown on six dates across three years: normal sowing (NS) and late sowing (LS) dates in 2007-
2009. The late sowing dates were designed to expose crops to warmer, drier conditions and were
combined in a factorial design with two levels of supplemental irrigation for each date

(Fitzgeraldet al., 2016). The experimental site had been irrigated with sewage for more than 20
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years prior to the experiment and so contained very high concentrations of mineral N. Thus,
while N application treatments were performed, they had no discernible impact on crop growth
or yield and so published results were pooled across nitrogen treaf@dnisry et al., 2015).

Crop cultural information for these experiments is shown in Table A11.

Shizukuishi, lwate, Japan: The seven years of Gcgza sativa L.) modeled for this site were

grown in paddy fields in Shizukuishi township, Iwate prefecture on northern Honshu island,
Japan (39°38’N, 140°57°E, 200 m elevation). Rice cultivar Akitakomachi was grown at this

facility in 1998, 1999, 2000, 2003 and 2004. The 2007 and 2008 seasons compared cultivars
Akitokomachi, Akita 63, Koshihikari and Takanari for their responses to é800%: 365-379

ppm, eCQ: 548-662 ppm). The soils on these farms were Andosol paddy soils and were flooded
throughout the rice growing seasons. More site and FACE technical details can be found in

Okadaet al. (2001) and Kobayaslet al., (2006), and agronomic details are given in Table A12.

Changping, Beijing, China: Three years of wheat and two years of soybean modeled for this site
were grown at the China Mini-FACE facility managed by the Chinese Academy of Agricultural
Sciences in Changping, Beijing, China (40°10°N, 116°14’E). Winter wheat (cv. Zhongmai 175)

was grown in the 2007-2008, 2008-2009, and 2009-2010 growing seasons at two levels of N
application and ambient (415 ppm) and enriched (550 ppmy][C&dybean cultivar

Zhonghuang 35 was grown in 2009 and 2011 and cultivar Zhonghuang 13 was grown in 2009.
These FACE experiments (a@@15 ppm, eC@ 550 ppm) were conducted in the context of an
ongoing winter wheat-soybean crop rotation in a semi-arid climate, in a clay loam soil with

minimal irrigation. Further description of the FACE apparatus, site properties and crop
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management practices can be found in Eta. (2012). Important crop cultural details for

these experiments are given in Table A13.

DayCent inputs

The input data for these simulations were obtained from a variety of sources. In all cases, site
and weather information contained or referred to within published articles was used when
available. Data from weather stations located on or near experimental sites were available for
the experiments in Maricopa, Arizona (Arizona Meteorological Network, Maricopa Station:
http://ag.arizona.edu/azmet/), Champaign, lllinois (Midwestern Regional Climate Center, Urbana
Station: http://mrcc.isws.illinois.edu/CLIMATE/) and Horsham, Australia (Australian

Government Bureau of Meteorology, Polkemmet Road Station:
http://www.bom.gov.au/climate/data/stations/). Weather for the experiments in Shizukuishi,
Japan and Changping, China was obtained from the gridded NASA Prediction of Worldwide

Energy Resource (POWER) database, version 1.0.2 (Stackdi@is®015).

Soil properties were collected from publications, which generally supplied key properties such as
texture, pH, and organic matter content. Soil properties not given in publications were estimated
from texture using the relationships derived by Saet@h. (1986), and all soil inputs used in

DayCent simulations are shown in Tables A14 through Table A18. Crop management practices
such as planting date, N application and irrigation rates, and crop rotations were described in the

publications for each site (described in Tables A7 through A13).
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DayCent [ CO2] -response process

The primary objective of this work was to assess the ability of the existing DayCent crop CO
response algorithms and parameter values to reproduce crop responsgsmoichent under
FACE conditions and, where needed, to adjust parameter values. The algorithm is summarized

conceptually in Figure 5.1, using actual parameter names for clarity.

CO,IPR: RUE Effect
CO,IRS: Root C Allocation
CO,ITR: Transpiration Effect

CO,ICE: Max C:N Ratio Effect| €O2/TR

C, = RUE * Light * Temp * Water * LAl * CO,IPR

CO,IRS

cActuaI

Figure 5.1. Conceptual diagram of the DayCent crop]@&3ponse algorithm. ¢3s the daily C
production before N limitation. CCeffects are represented by the names of the actual crop-
specific parameters involved. While the RUE effect {lP®) acts directly in determining the
potential daily C production @} the other three effects scale various quantities that then
constrain productivity to varying degrees. The C:N ratio effecb(CE), for instance, reduces
the amount of N required to sustain full C productiog) (hder €0,, and so will impact crops
most in circumstances of N scarcity.

The multiplier active at a given [GDis calculated from crop parameters that represent the
response ratio (RR) expected for a doubling from the referencg €350 ppm to 700 ppm

according to the following equation:

y =1+ (Par- 1) / logio(2) * logio([CO2]/350)
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Where y is the scaled daily process multiplier, Par is the relevant parameter value (in practice,
the RR expected at 700 ppm relative to 350 ppm), and][S@he current atmospheric G
the simulation. The default parameter values (black dots), process multipliers active at 550 ppm

[CO,] (black triangles), and underlying logarithmic curves fercps are illustrated in Figure

5.2.
.
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Figure 5.2. Depiction of the logarithmic curves used by DayCent to calculate crop process
multipliers as a function of atmospher€(,]. The algorithm assumes a reference ambient

[CO;] of 350 ppm at which multipliers are at 1.0 (left vertical line). @©f] above 350 ppm,
multipliers increase toward parameter values (black dots) defined as the process multiplier active
under a CO;] doubling to 700 ppm (right vertical line). The actual process multipliers active at
550 ppm under default parameterization are shown as black triangles, with particular processes
mapped to line color.

Initial calibration
A number of considerations informed the calibration process. First, calibration &f@wacrop
parameters was necessary to reproduce observed growth (yield, AGB, C:N ratio of AGB, R:S

ratio) as well as possible under the least-limiting, ambient[ (T Q,) treatments (eg., high N
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application, high irrigation, etc.). For crops with multiple sites, it was occasionally necessary to
use different crop parameter values at different sites, reflecting the realities of substantially
different cultivar traits, growing season lengths and water and temperature regimes. The
modeled vs. measured yields from this exercise are shown in Figure A6. Note that the Maricopa
sorghum crop was damaged by a hailstorm about a month prior to harvest in 1999 (Ottman et al.,

2001), which likely explains much of the yield loss not captured by DayCent in Figure A6D.

CO:z response calibration

Since the goal of this work was to arrive at a single set of best-estimate values for crop species
responses to eGOCO, response parameters were calibrated across sites. After calibrating
general growth parameters to relatively non-stressed; a@itions, the four C&response
parameters were adjusted to match the percent responsesstole@@ed in the corresponding
treatment-years. The final, calibrated set of crop parameters (including botespOnse and

general growth parameters) for each crop at each site are given in the Appendix.

FACE training observations

The training observations used to test and re-calibrate the DayCemesonse algorithm were
gathered from a number of published articles. Many values were given numerically in the article
text or tables. Where values were only given graphically, they were converted to numerical
values using the Engauge Digitizer software v. 4.1 (Mitchell, 2002). Because DayCent tracks
primarily C rather than biomass per se, observations reported as AGB dry matter were compared
to simulated C mass by assuming a dry matter C content of 40%. Due to the scarcity of FACE
studies using &£crops, we analyzed the data from corn grown in Champaign and sorghum grown
in Maricopa together as a single €op class.
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Broader literature comparisons

The experiments simulated for this work represent a subset of the growing agricultural FACE

literature, which itself is only a part of the large body of work examining the impacts efaeCO

crops. For crop-outcome combinations with few or ambiguous results among the testing

observations, results from the broader FACE and enclosure literature were considered for re-
calibrating the relevant parameters. Sources for these comparison values are described in Table
5.1. Note that a large review of the FACE literature by Kiméial. (2002)was not included as

an outside source for comparison because its source experiments were almost entirely included

within the training data modeled explicitly in this work.

Table 5.1. Summary of literature sources used to add context for DayCent performance
evaluation and parameter recalibration.

Citation Enrichment Methodg Mean Reported eCO Secondary Treatmen
Included Handling

(Bishopet al., FACE, FACE: 560 ppm Non-stressed

2014) OTC, reported OTC: 691 ppm treatments only
separately

(Ziska & Bunce,
2007)

FACE, various non-
FACE methods
reported separately

All methods scaled to 70(
ppm using3 factor

Pooled across

(Longet al.,
2006)

FACE, enclosures

All methods scaled to 55(
ppm using non-
rectangular hyperbola

Pooled across

ppm

(Cure & Acock, | Enclosures Linear/Quadratic best-fit | Pooled across
1986) models: scaled to 680 pp
(Kimball, 1983) | Enclosures Pooled: eC@500-1200 | Pooled across
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Results
Default CO> parameter values and performance
A major goal of this work was to test whether the existing DayCentr€ponse algorithm,
which was developed and calibrated by Metherell (1992) based on results from enclosure studies,
could correctly predict crop G@esponses observed under FACE conditions. This algorithm
includes daily multipliers of 1.3, 1.3 and 0.77 on daily growth, maximum C:N ratio of new
biomass, and daily transpiration, respectively, foc®@ps and a doubling of [GD For G
crops the only effect of CQOs a multiplier of 0.77 on daily transpiration. At lower e(évels,
these multipliers are interpolated using a logarithmic curve. For the le@€ of 550 ppm
frequently used in FACE studies, these multipliers scale to 1.2, 1.2 and 0.85 for growth, max
C:N ratio, and transpiration, respectively. The parameter values and corresponding scalars at

550 ppm [CQ] are given in Table 5.2.

Table 5.2. DayCent crop G@esponse parameter values based on the work of (Metherell, 1992).
Each parameter represents a crop-specific multiplier on the corresponding daily process for a
doubling of [CO,] from 350 to 700 ppm. Values in parentheses are the actual daily process
scalars active at 550 ppm, interpolated using the logarithmic curve employed by DayCent.

Crop Cs4 Rice Soybean | Wheat

Growth 1.00 (1.00) 1.30 (2.20)( 1.30 (1.20)| 1.30 (1.20)
Transpiration | 0.77 (0.85) 0.77 (0.85)| 0.77 (0.85)| 0.77 (0.85)
Max C:N 1.00 (1.00) 1.30 (1.20) 1.30 (1.20) 1.30 (1.20)
Root Allocation| 1.00 (1.00)| 1.00 (1.00)| 1.00 (1.00)| 1.00 (1.00)

The RRs for all four crops and five outcome variables assessed in this study are summarized in
Figure 5.3 Note that “C4” refers to pooled results from both corn and sorghum FACE
experiments, since very few FACE experiments have been conductedsweithp8. It is

important to reiterate that DayCent was calibrated to minimize bias relative to observed
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outcomes (yield, AGB, C:N ratio, R:S ratio, season ET) @Dg un-stressed treatments only.
All simulations of stressed and/aC@&y treatments used crop parameter values from that
calibration process, with no changeCGi®., response parameters from the values developed by

(Metherell, 1992).

As shown in Figure 5.3, the existi@, response algorithm accurately predicted the average
RRs of grain yield, AGB, and season ET for the pooledrGps. There were too few data
regarding C:N ratio and R:S ratio responses from the simulategp@riments to test these
outcomes directly. Under default parameters fpci@ps, only daily transpiration was affected

by [CO;] (reduced by a factor of 0.85 in these simulations), so all impacts on outcomes other
than season ET occurred indirectly. The slight increases in C:N ratio for some simulations likely
reflect simple “growth dilution” of available N. The small reductions in R:S ratio under eCO;

likely resulted from reduced water stress, which in DayCent can lead to reductions in
belowground biomass allocation. At the same time, part of the decrease in R:S ratio results
arithmetically from the increase in AGB. The complexity of these and other dynamic
interactions underscores the importance of testing n@Oglesponse algorithms against
experiments rather than assuming roughly linear, independent season-long responses to daily

process multipliers.
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Response Ratio (eCO,/aCO5)

sorghum), rice, soybean and wheat, expressed as RRs. Black dots indicate the mean of all RRs
for each crop-outcome-method combination, while error bars give the 95% confidence interval.
Text below bars gives the mean value (top line), number of simulation-observation pairs (N), and
p-values based on a Welch’s two-sample paired t-test (P). N- and P- values are given for both

bars within each panel for clarity, even though they are identical by definition. Blank panels had
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Figure 5.3. Observed and un-calibrated DayCent crop response®ifoe Cs (corn and

too few observations for statistical analysis.
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The major takeaway from Figure 5.3 fof €ops is that DayCent’s default parameter values
overestimate crop growth responses@®g compared to a range of FACE experiments. The
simulated vs. observed RRs for grain yield and AGB showed highly significant (p < 0.01)
differences for all @crops tested. With the exception of soybean AGB (N = 9), each of these
differences was based on at least 10 simulation-observation pairs. Likewise, simulated C:N
response exceeded the observed value for all thyesofs (p < 0.05), although for soybean this
difference rested on only two simulation-observation pairs. Data for R:S ratio respo@§® to e
were relatively sparse and inconsistent. No crops showed a significant eff€&afreR:S

ratio, or a significant difference between observed and simulated R:S ratio RRs. Thus, the
available data from these experiments do not support a significant imp&®Dpbe R:S ratio

for rice, soybean or wheat. Finally, there was a significant difference between simulated and
observed season ET RR only for soybean. Interestingly, the simulated season transpiration
actually increased unde€e€», for soybean (mean increase of 0.8 cm, compensated by a 1.6 cm
decrease in evaporation), despite the daily transpiration multiplier of 0.85. This was due to the
large increases in simulated canopy cover un@€rewhich increased absolute crop water use

even as the daily scalar reduced use on a relative basis.

Calibrated CO> parameter values and performance

Figure 5.4 summarizes RRs obtained after calibratin@Meresponse parameters to reproduce
the observed RRs shown in Figure 5.3. Foci©@ps, the daily multiplier on crop transpiration
was increased slightly (i.e., closer to unity). The daily growth and maximum C:N ratio
multipliers were reduced for each of thed@ops. The multiplier on belowground allocation was
left at unity for all crops, as the observed RRs for R:S ratio were not significantly different from

unity (no effect). The newly calibrated DayC€&®, response parameter values are given in
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Table 5.3, along with the process scalars that would obtain for each given a sim@@étpaof[

550 ppm.

Table 5.3. DayCent cropO; response parameter values after calibration to match observed

RRs. Each parameter represents a crop-specific multiplier on the corresponding daily process for
a doubling of CO;] from 350 to 700 ppm. Values following parameters are the change fro

default value (n.c.: no change), while those in parentheses are the actual daily scalars active at
550 ppm, interpolated using the logarithmic curve employed by DayCent.

Crop~> Cs4 Rice Soybean | Wheat

Growth 1.00, n.c. |1.21,-0.09 1.12,-0.18 1.22,-0.08
(1.00) (1.14) (1.08) (2.14)

Transpiration | 0.82, +0.05 0.75, -0.02 0.58, -0.19 0.88, +0.11]
(0.88) (0.84) (0.73) (0.92)

Max C:N 1.00, n.c. | 1.05,-0.25 1.00, -0.30 1.08, -0.22
(1.00) (1.03) (1.00) (1.05)

Root Allocation| 1.00, n.c. | 1.00, n.c. | 1.00, n.c. | 1.00, n.c
(1.00) (1.00) (1.00) (1.00)
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Response Ratio (eCO,/aCQOy)

sorghum), rice, soybean and wheat, expressed as RRs. Black dots indicate the mean of all RRs
for each crop-outcome-method combination, while error bars give the 95% confidence interval.
Text below bars gives the mean value (top line), number of simulation-observation confidence
interval. Text below bars gives the mean value (top line), number of simulation-observation
pairs (N), and pralues based on a Welch’s two-sample paired t-test (P). N- and P-values are
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Figure 5.4. Observed and FACE-calibrated DayCent crop responge®©idoe C4 (corn and
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Calibrated CO, parameter stress performance

A major complicating factor in projecting crop response@j concerns its interactions with
abiotic and biotic stresses. Several of the FACE experiments included treatments with stress
covariates designed to explore these interactions. In order to assess DayCent’s ability to predict

the role of abiotic stressors in tB€), responses, the data underlying Figure 5.3 and Figure 5.4
were pooled acrosss€rops (ie., rice, soybean and wheat) and grouped according to
experimental stress treatments. Specifically, FACE observations were categorized as
Unstressed, Water Stress, N Stress, or Heat Stress accortiagxperimenter’s original
designations. Any treatments that explicitly involved multiple stressors were excluded from this

analysis.

The RRs obtained for simulated and observed outcomes grouped according to stress treatment
are shown in Figure 5.5. Note that the results in Figure 5.5 exclud®|is, which are typically
analyzed separately due to their theoretical (and experimentally apparent) photosynthetic

insensitivity to COy)].
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Figure 5.5. Observed and FACE-calibrated DayCent crop responge®©idoe Unstressed,

Water Stressed, N Stressed and Heat Stressexb@s, expressed as RRs. Black dots indicate

the mean of all RRs for each stress-outcome-method combination, while error bars give the 95%
confidence interval. Text below bars gives the mean value (top line), number of simulation-
observation pairs (N), andyalues based on a Welch’s two-sample paired t-test (P). N- and P-
values are given for both methods within each panel for clarity, even though they are identical by
definition. Blank panels had too few observations for statistical analysis.
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It is difficult to draw firm conclusions from Figure 5.5 about modeled or measured interactions
between cropJO;] response and specific stressors because, even after pooling actosssC

the observational evidence is sparse. The results in Figuderbobstrate DayCent’s ability to
reproduce some broad expected and/or observed effects of stress on crop respGsESs to [

The simulated RRs for water stress treatments were significantly greater than those for
unstressed treatments for yield and AGB. This agrees directionally (though not statistically) with
the corresponding observed RRs, as well as with some theory and evidence that growth
responses to@D, will be greater in the context of water stress (see, for example, Ainsstorth

al., 2008b). In an extreme instance, Lamal., (2012c) found a 60% increase in rainfed wheat

yield and AGB in 2009, versus only 4% for the irrigated treatment.

Interestingly, both observed and simulated water stressed treatments in Figure 5.5 showed higher
(i.e., closer to unity) RRs for season ET than unstressed equivalents. This is intuitively
reasonable, as sufficiently water-stressed plants ui@i@r may be expected to use all available

water (as will unstressed plants), whereas if water is sufficienCios plants then it will likely

exceed the demand o£ €, plants and reduce season ET (discussed by Kimball & Bernacchi,

2006).

Both modeled and measured results showed decreased yield and AGB respad€eddpié

stressed vs. unstressed treatments (both significant differences for modeled but nonsignificant for
measured values). This directional trend aligns with the finding of a recent meta-analysis of
FACE results, which showed that crop respons€@] is significantly reduced in the context

of N stress (Vanuytreclat al., 2012). N stress had a small but significant impact on simulated
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but not measured C:N ratio response@®{]. None of the remaining outcome metrics showed

significant modeled or measured differences due to N stress.

Three experiments simulated for this work explicitly attempted to study the role of heat stress.
Two of those experiments were conducted in Champaign, IL and used infrared heating elements
to raise canopy temperatures of corn (1 season; Ruizé/aka2015b) and soybean (2 seasons;
Ruiz-Veraet al., 2013). The third experiment was conducted with spring wheat in Horsham,
Australia, and used a later-than-usual time of sowing combined with supplemental irrigation to
reduce the confounding influence of differing rainfall totals (Nosdtoad., 2008; Lanet al.,

2012c; Fitzgeralet al., 2016). The Heat Stress column of Figure 5.5 excludes results from C
crops, however, and so sample sizes are small. Simulated RRs for yidlGBndere

significantly increased under heat stress, however, measured results were highly variable. In the
infrared heating experiments with soybean, the observed yield respoid@;ttoeheated

treatments was 1.26 in 2009 and 0.84 in 2011. Among a range of factors, the authors attributed a
significant amount of this difference to the warmer temperatures during the 2011 growing season
(Ruiz-Veraet al., 2013). This underscores the fact that crop growth occurs relative to crop-,
cultivar- and growth phase-specific optima (see, for example, Hatfiald 2011), and a

systematic increase in temperature may move crops closer to this optimum or beyond it,

depending on baseline conditions.

Discussion
DayCent CO> process history
As mentioned previously, the DayCent cr@i}] response algorithms and default parameter
values were originally developed for monthly Century by Metherell (1992) prior to the
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availability of results from large-scale, replicated FACE experiments. Those defaults
implemented scalars of 1.3 on monthly growth and maximum C:N ratios foog@s, and a

scalar of 0.77 on monthly transpiration fay &d G crops, with logarithmic down-scaling from

the benchmark@O, of 700 ppm. The original Century algorithm was tested in a series of long-
term simulations of four Colorado sites under various climate change weather scenarios, and
several rotations involving corn, sorghum, millet and wheat. Yield RRs from growth at 700 ppm
[CO;] averaged over 72 simulation years were 1.62, 1.08, 1.04, and 0.97 for wheat, corn, millet
and sorghum, respectively. The dramatic increase in yield for wheat was beyond the consensus
estimates of any broad literature surveys, including the reviews of Kimball (1983) and Cure &
Acock (1986) cited as major sources for the parameterization of Metherell (1992). By contrast,
the results from €crops corn, millet and sorghum align well with observations from enclosures

and FACE experiments.

When daily DayCent was developed from the Century code base, it inherited the foregoing
algorithm and parameter values from Century. The RRs presented in Figure 5.3 reflect the first
test of this algorithm and parameter set against results from FACE experiments. For each of the
Cs crops considered, the simulated RRs for yield were significantly higher than measurements.
For G crops (here pooling data from corn and sorghum), however, the default parameterization
was remarkably accurate versus an admittedly small set of measurements for yield, AGB, and
season ET. This general overestimation 9€0p responses hardly stands as a conclusive test

for “true” methodological differences between enclosures and FACE experiments. However, it

does support the contention of Ainswoetlal. (2008b) that crop modeC[O;] response

algorithms parameterized using enclosure results overestimate RRs when compared with FACE

results.
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DayCent simulated responses vs. literature reviews

The yield enhancement factors simulated by DayCent using its default parameter values and the
new, FACE-calibrated values, were compared with several literature sources (Figure 5.6).
Results from DayCent modeling using enclosure-calibr@@gdresponse factors appear as green
bars with black outlines. Results obtained following calibration to the FACE training
observations are shown as orange bars with black outlines. Mean RRs reported by literature
reviews of enclosure and FACE experiments are depicted by green and orange bars without
outlines, respectively. Note that literature estimates derived from experiments using high (>600
ppm) enriched€@O,] were been down-scaled to 550 ppm using a logarithmic curve for

interpolation.

The goal of Figure 5.8 to give broad context for DayCent’s CO, response performance before

and after calibration. The literature sources overlapped considerably in terms of their underlying
experimental data, and so these values cannot support quantitative inferences about differences
between enclosure and FACE experimental methods. DayCent performance at simulating C
crop response t80O, was substantially below the early estimate of Cure & Acock (1986) and
closely aligned with the training observations used in this study. This is relatively unsurprising,
sine Metherell (1992) conservatively chose to align thex®p parameterization with theory by
setting G the direct growth scalar to unity. While the FACE literatur€€@a response of

annual G crops remains limited, the results are consistently low, with most authors finding
negligible yield enhancement except in times of water stress (O&rahn2001; Wallet al .,

2001; Leakg et al., 2006; Hussaiet al., 2013).
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Corn & Sorghum (Cy4) Rice (C3)

Soybean (C3) Wheat (C3)

Source
Figure 5.6. Yield enhancement factors simulated by DayCent (black outlines) using default
[COy] response parameter values and FACE-calibrated parameter values, compared with various
literature sources (no outlines). Green bars indicate observations from enclosure methodologies
(and simulations of FACE experiments using enclosure-derived default parameter values), while
orange bars indicate observations from FACE experiments (and FACE-calibrated simulations).
Kimball (1983) and Cure & Acock (1986) were the primary sources for the DayCent Defaults
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parameterization by Metherell (1992). Where literature sources reported results corresponding to
eCQO; levels above 600 ppm, enhancement factors were scaled to 550 ppm using a logarithmic
curve for interpolation. Results from Ziska & Bunce (2007) for “Non-FACE” methods represent

an observation-weighted average across the specific enclosure categories given in their data
tables. Also note that the analysis of Bishop et al. (2014) included only observations from the
least-stressed treatment in each study.

DayCent un-calibrated performance withcCops was mixed, but yield responses were generally
over-estimated relative to FACE results. Perhaps most notable is that DayCent default parameter
results equaled or exceeded the highest literature estimatesdi@psS regardless of

experimental methodology. For rice, the literature sources shown in Figure 5.6 show large
variability within enclosure and FACE methodologies. In particular, the analysis of (Rishop

al., 2014) found a mean rice yield enhancement under FACE (~20%) that was dttjinetly

than the enhancement under open-top chambers (OTC) (~8%), after adjusting for the higher
mean €0, level of OTC studies. That FACE result differs from the mean enhancement of the
FACE training observations used for calibration here (13%). Part of this divergence may relate
to the selection criterion of (Bishapal., 2014) to exclude treatments with stress covariates.

For example, the experiments at Shizukuishi used here for model training were also a part of the
Bishop dataset, but several observations involved N limitation and so would have been excluded.
At the same time, the Bishop analysis included two sites in China and one site in Japan that were
not simulated for our analysis. Such differences in underlying data, combined with analytical
choices such as curve fitting for adjustment of differi@@aeCO; levels, likely account for

much of the inter-study variation visible in Figure 5.6.

The literature results for soybean also show substantial variability. In this case, (Ziska & Bunce,
2007) reported FACE results that are greater than an observation-weighted average of non-FACE
results (25% vs 21% after adjusting to 550 p@@g. As they noted, however, this FACE
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estimate was based on only four observations, one of which reported an 85% yield enhancement
from an €0, of 685 ppm using potted plants and a natG@4 spring (Migliettaet al., 1993).

While these are hardly disqualifying circumstances, the adjusted 54% result was much higher
than the highest observed yield enhancement in the training observations used here (34%, from

10 observations).

The DayCent default results for soybean were much higher than any of the literature estimates,
and nearly 3-fold greater than the training observations (39% vs 14% yield enhancement). Note
that each of the DayCent Defaults bars fercfops in Figure 5.6 resulted from the same set of

CO, response parameters (given in Table 5.2). As part of investigating this phenomenon, we
created a DayCent soybean crop lacking the ability to fix nitrogen and ran the exact same set of
FACE simulations. The resulting mean yield enhancement was 22%, indicating that DayCent-
simulated soybean responsiveness was facilitated by its ability to fix N. A similar difference was
observed by (Ainswortht al., 2002), who found in a meta-analysis of the soyb&ive

literature that nodulated varieties showed 3-fold higher photosynthetic stimulation than non-
nodulated varieties. This difference emerges in DayCent from a simplified representation of
plant N limitation and photosynthesis, but is nonetheless an interesting correspondence with
observed trends. Ainswordbal. (2002) also found a significant reduction in harvest index

(~8%) for soybean crops unde€Z®;. This was reflected in the training observations for this

work, with mean enhancements of 20% and 14% for AGB and yield, respectively, translating to
a 30% reduction in harvest index. DayCent lacks a mechanism for modifying harvest index in
response to§O,] so parameter values were calibrated to split the difference between the
observed AGB and yield stimulation rates. If future experimental work corroborates a reduction

in harvest index, addition of a parameter to replicate this finding may be warranted.
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Among the wheat literature estimates in Figure 5.6, Bighab (2014) again reported a FACE

value that was higher than the@Q»]-adjusted result from OTCs. Wheat also had the highest
yield RR based on the training observations (1.20) out of all crops studied here. A closer look at
the underlying studies shows that the results presented by Fitzgeahl(2016) from Horsham,
Australia had a major influence on this value. That work tested two wheat cultivars over three
years at two water levels and two sowing dates (used as a proxy for heat stress), giving a total of
24 6CO/aCOz RRs. Out of that, three RRs exceeded 1.70 (all from wet treatments), eight were
at least 1.35, and two were less than 0.90, thoughGH RRs were greater than 1.0. The

reasons for these unusual RRs were not obvious, and several hypotheses were offered by
Fitzgeraldet al. (2016). It is notable that the wheat crops at Horsham were subject to more
severe water limitation and produced lower yields than wheat from the other two sites simulated
for our analysis (Figure A6). The large RRs observed at Horsham may represent a highly-

stresseO,-response space not previously explored under FACE conditions.

COz-by-stress interactions

DayCent showed a qualitative ability to reproduce the incre&3@g] fertilization effect that

has been predicted and observed in crops subject to drought stress (eg., &iahbdl995;

Ottmanet al., 2001; Leakeyt al., 2006). The meta-analysis of Bishel. (2014) found
significantly decreasing yield (but not AGB) responsesd@»ewith increasing growing season
water input. On the other hand, recent rain-exclusion FACE experiments in lllinois indicate that
moderate to severe drought strestices or eliminates eCQ fertilization due to a combination

of greater early-season LAI development, elevated canopy temperatures, and greater plant

responsiveness to abscisic acid signaling among-g@iwn plants (Grag al., 2016).
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The training observations showed a modest reduction in yield response for N-stress treatments
(Figure 5.5) vs. unstressed treatments that is also apparent in the simulated responses. The few
yield and AGB observations from controlled heat stress treatments simulated for this work
showed very large variability in their response@De In contrast, the DayCent-simulated

values showed greater responsivenes€eén the heated treatments. This may reflect

problems with the higliemperature region of DayCent’s temperature-response curve, or

differential timing of high absolute temperatures (from which heat treatments were a constant
amount of increase) relative to sensitive periods of crop growth. Since DayCent uses a constant
temperature-response curve throughout the season, it does not represent the disproportionate

effects of heat stress at critical times such as flowering and grain filling.

Other outcomes

The data for outcomes other than yield and ABG among the training observations was limited
but did permit some calibration of the transpiration, max C:N ratio, and belowground C

allocation parameters. Measurements of season ET from FACE experiments showed consistent
reductions in water use among@@-grown crops (Hunsaket al., 2000; Conleyet al., 2001;

Hussainet al., 2013; Bernacchi & VanLoocke, 2014), though various feedbacks complicate the
relationship between season-long ET and daily canopy transpiration (the quantity modified by

the relevant DayCent parameter).

Observations of shoot or grain C:N concentration were more limited and highly variable. The
largest review of €0, literature focused on this outcome found mean increases in C:N ratio of
13, 28, 6 and 19% for corn, rice, soybean and wheat (Cadrafqg 1998). Most of the

underlying experiments for that study were conducte€ @b devels well above the 550 ppm
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used in many FACE sites, however, and only the effect for wheat was statistically significant
(Cotrufoet al., 1998). Theory would suggest that €€ops would show less change in C:N ratio
(because of their small&GB response) undelC£,, while soybean should be insulated by its

ability to fix N from the atmosphere (at the cost of biomass C, cf. Lestlady 2009). A recent

review of N content of FACE-grown crops supported those predictions (Myalrs2014).

Thus, the calibration adopted here left the max C:N effect parameters at unity for corn and soy,
while setting values that achieved relatively modest 7% increases for rice and wheat (Figure 5.4).
More data are needed to understand the effec@ en N content of major grain crops other

than wheat, particularly corn and rice.

The most variable outcome by far in the training observations was faC@¢¢ffect on R:S

ratio. None of the crops had more than six RR values among the training observations used here,
and none of the mean RRs were significantly different from unity (no effect). In a large review

of the €O, enclosure literature, Rogessal. (1996) found that 59.5% of R:S ratios responses

were positive and 37.5% were negative. In a recent review of the FACE literature, Vanuytrecht

et al. (2012) found a significant positive response of R:S rati€©,e The analysis pooled

responses across several crops not considered for this work, however, including root crops
(potato, sugar beet) and perennials (perennial ryegrass, white clover) that may be expected to
respond differently from the annual crops considered here. In view of the continued uncertainty
among R:S ratio responses ©@ regardless of methodology, we opted to leave the DayCent

belowground C allocation parameters at unity.
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Conclusions

This study tested the default DayCé&id, response parameters against FACE experimental
observations across four major crops and five crop processes. In general, the default parameters
overestimated yield anliGB responses for £rops, while closely matching the few available

data points from £crops. Parameter values were calibrated to reproduce the observed RRs from
FACE experiments where a consistent effect was discernible, while parameters controlling

effects with weak observational support were conservatively left at unity. Now that FACE
experiments have established a solid consensus on the effect ranges 8iGBlhd ET under
open-air €0, conditions, work should be targeted at clarifying the effect sizes and mechanisms

underlying changes in AGB N content and C allocation.
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APPENDIX

Chapter 2 Supporting Information
Additional on-farminputs
Fuel consumption was calculated using reference values together with survey responses
reporting equipment used for tillage and other field operations, total grain yield, and road
distance to the biorefinery. Table A1 summarizes herbicide and pesticide usage as reported by

farms, on an area-weighted basis.

Surveyed farms reported liming fields at an average rate of 95 Ib per acre, which was just over
half the USDA average rates for Minnesota. Since fields are only limed at several-year intervals,
our three-year survey period may have failed to capture a representative sample of these events.
Therefore, we chose to use the Minnesota state average application rate of 169 Ib #fme acre

year! in calculating liming-related emissions.
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Table Al. Area-weighted average herbicide and pesticide usage

Ag chemical Application rate (kg per hectare)
Glyphosate kg per ha 0.7878
Glufosinate ammonium kg per ha 0.0108
Sulfonyl urea compounds kg per he 0.0002

Phenoxy 2 4 D kg per ha 0.0042
Atrazine compounds kg per ha 0.1760
Acetochlor kg per ha 0.5174
Metolachlor kg per ha 0.0282
Dicamba kg per ha 0.0004
Clopyralid kg per ha 0.0088
Pesticides unspecified kg per ha  0.0298
Other herbicides kg per ha 0.0201
Isoxaflutole kg per ha 0.0010
Mesotrione kg per ha 0.0161
Diflufenzopyr kg per ha 0.0001
Flumetsulam kg per ha 0.0028

Table A2. Adjusted rate of application and assumed nutrient content for manure as fertilizer

Manure type  Units per Adjusted Nitrogen (Ib Phosphate Potassium

acre rate of N per unit (Ib P.Os per (b K20 per
application applied) unit applied) unit applied)
Beef tons/acre 1.58 7 4 7
Chicken tons/acre 0.08 60 46 31
Dairy (dry) tons/acre 0.02 10 3 6
Dairy (liquid)  gallacre  84.26 0.031 0.015 0.019
Swine (liquid) gal/acre 594.27 0.03 0.025 0.024

Table A3. Equipment and energy requirements for various tilling, harvesting and planting
activities

Operation Implement Assumed Diesel
(gal/ac)
Min till Planting 16 Row-30 40 ft 0.53
Harvesting Combine Corn Hd 8 Row-30 1.88
20 ft
Grain Cart Grain Cart 30 ft 1.44
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Lime, urea broadcast, urea dry, urea
spreader, urea floater, other dry fert,
DAP spinner

Herbicide - liquid or dry, fungicide -
headline

Stalk shredding

SEEDBED prep

Ground roller used for soybean
Anhy tilling, anhy incorporate, anhy
knife,

anhy bar

Urea strip till

Corn residue baled and removed.
Rake corn stalks

Bale corn stalks

Moving bales off field

Field cultivator

Disk

In-line ripper

Row cultivation

Soil finisher

Strip-till machine

Manure incorporated/broadcast

Manure injected with sweeps or knive:
No till drill
Harvesting silage

Disc-chisel

Disc-ripper

Spreading dry fertilizer, bulk
cart

Boom sprayer 50 ft

Stalk shredder 20 ft

Anhydrous ammonia (30-inch
spacing)

Hy Rake (Wheel, 2-16") 30 ft
Round Baler 1500 Ib, 20 ft
Hauling, field plus 1/2 mile =
green forage

Field cultivator, 47

Tandem Disk H.D. 30 ft fold
V-Ripper 30" O.C. 17"

16 Row-30, 40 ft

Field cultivator, 47"

V-Ripper 30" O.C. 17"
Spreading dry fertilizer, bulk
cart

Chisel plow 15'

No till drill 30ft

Corn Head for SP Harvstr Ba:
8 Row, 20 Ft

16.3 foot and 21.3 foot "Chise
plow, front disk”

Comb Disk & V-Ripper 22.5
or 17.5Ft

0.15

0.55

0.07
0.35
0.3

0.32
0.79
0.99
0.44
0.32
0.99
0.15

0.6

0.81
2.35
0.97

1.47
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Table A4. Assumptions for grain transport energy requirements

Transport type Fuel economy mpg Capacity (bushels per load)
Semi 8 950

Tractor + wagon 3 1300

Grain truck 8 625

Tractor+wagon/Grair 5.5 962.5

Grain truck/Semi 8 625

DayCent cultivation intensity scores

Cultivation events in DayCent cause increased rates of decomposition and transfers of organic C
between model SOC pools. A set of four parameters for each type of cultivation event dictate
the resulting decomposition rate increases for SOC pools. These parameters tend to increase
with increasing depth and breadth of soil disruption, causing small SOC losses after use of a
planter and much larger losses after use of a moldboard plow, for example. In order to assess the
relative impacts of each farmer's cultivation practices on these soil processes and the resulting
emissions, a numerical Tillage Decomposition Effect (TDE) was calculated by summing the four
parameters that specify the magnitude of a cultivation event's impact on SOC decomposition
rates for each event reported by the farmer. The resulting per-event impacts were summed for
each separate cultivation event across the 2-year crop rotation period, resulting in a single value

for each farm.

Details of alternate N>O estimation methods

The USDA method for directJD estimation started with a base emissions rate determined by
crop, soil texture, and USDA Land Resource Region that represents estimated emissions under
typical management. The base emissions rate was then adjusted based on various management
practices including N fertilization rate, organic amendment amount and type, and binary tillage

intensity (conventional or no-till). The IPCC Tier 1 method assumed that 1% of N from all
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inputs (i.e. synthetic fertilizer, manure, and crop residue) would be emitted to the atmosphere
directly as NO. Broader management and site factors such as tillage, weather, and soil texture

were not considered.

Chapter 3 Supporting Information
Supply-adjustment procedure for manure emissions
In general, manure additions in DayCent have emissions reduction benefits when used to
displace synthetic N because some fraction of the manure C is sequestered in soil C pools, thus
providing an apparent negative emission. Unlike most of the inputs evaluated in this study, the
manure applied to fields was a waste product produced without regard to farmer demand. Thus,
it was important to consider the emissions that would have occurred under an alternative,
“business-asusual” handling of the manure. If, for instance, the norm for manure disposal in the
study area were anaerobic digestion for power production, followed by land application of
digestate, then direct land application may represent a net increase in emissions by comparison.
There was also a question relating to whether the feedlot (which produced the manure) or the
farm (which utilized it) should bear the burdens or benefits of emissions that occur after land

application.

We chose a set of assumptions and estimates about the study area in order to address these
issues. First of all, we assumed on the basis of literature discussions of manure management
practices (see Ribaudo et al., 2003) that the most likely alternative to application on the modeled
farm would be application to similar cropland located nearby. This was based on the recognition
that feedlots have strong economic incentives to distribute manure on nearby land to minimize
transport costs. The major determinants of these transport costs are the willingness of nearby
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farmers to accept manure on their lands, and the acceptable maximum application rates in
accordance with EPA rules (Ribaudo et al., 2003). We next assumed that feedlots would bear
the emissions burdens of transporting manure to farm field and applying it, again because this
aligns with the default economic arrangement (Ribaudo et al., 2003), but the farm would bear
any emissions benefits or burdens from manure after application. Our third assumption was that
we could define a maximum radius that, for the purposes of our study, would circumscribe the
area of interest (AOI) within which manure could be applied. Since most (63%) of the Gevo
survey respondent acreage was located in Rock County, MN, we chose to use it as our AOI for
the purposes of estimating manure supply dynamics. Specifically, we obtained estimates for the
annual manure N load produced by feedlots in Rock County (3473 Mg)Ncyopland acreage
available for application (60,730 ha in corn and/or soy), and the maximum acceptable application
rates (15.7 and 20.2 g manure N for corn-soy and corn-corn acres, respectively) from the
Assistant Director of the Soil & Water Conservation District (Douglas Bos, personal
communication). We eliminated the 96 management permutations that involved manure N
inputs above the regulatory maximum rates mentioned. We used the county manure and
cropland figures to estimate the fraction of hectares within the AOI that would receive manure at

each of the application rates described by the management scenarios.
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Table A5. Sample biogenic emissions for varying levels of manure N input. Emissions values
are medians of management permutations with the specified N input rate derived 100% from

manure. Supply-adjusted emissions were linearly interpolated between simulated emissions

from manured soils and non-manured management-matched soils based on the percent of

cropland needed to absorb the manure supply at the given rate.

Manure Percent of | Median Simulated| Median No-manure | Median Supply-
Input Rate | Manured Biogenic Biogenic Emissions | adjusted Biogenic
(g N ni?) Cropland Emissions (g COze m?) Emissions
(g COe m?) (g COze m?)
5 100% -22.0 12.6 -22.0
10 57.2% -59.2 17.9 -28.8
15 38.1% -56.6 62.2 18.5
20 28.6% -42.5 103.7 60.3

We were then able to pair field emissions (SOC change, dis€xtiNdirect NO) for every
management permutation with those from the management-matched no-manure simulation. For
each field emissions component, the difference between each simulation and its management-
matched nananure control was considered the “manure effect” on emissions for that

management permutation. The actual emissions assigned to each management permutation were
calculated by interpolating between the actual (with manure) emissions and the management-
matched no-manure control, based on the fraction of cropland hectares within the AOI that
would be needed to absorb the manure supply produced within the AOI. For example, if the
manure supply was sufficient to supply half of the AOI acreage at a given application rate, the
biogenic emissions assigned to permutations with that application rate would be half-way
between the with-manure and no-manure amounts. This approach scaled the manure effect on
field emissions in proportion to the area within the AOI that would receive manure at the given
rate, thus quantifying the average emissions impact of manure production across the AOI.
Supply chain emissions embodied in synthetic N and P use were also scaled to reflect the

fraction of synthetic nutrients that could be displaced by manure nutrients across the AOI
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(manured and non-manured hectares), rather than the displacement implied by the manure use in

the particular permutation.

Monetary farm budget methodol ogy

Survey responses were used in conjunction with unit costs from Plastina (2015) to calculate per-
farm costs for corn seed and non-N fertilizers and liming. Unit cost data for the wide range of
specific herbicides and pesticides was not readily available and so the default cost per area from
the Extension budgets was used for these inputs. Finally, a number of items were taken at their
default values from the Extension budgets and combined under the hi@&dmgial and Other

Costs”. These included land rent, crop insurance, interest on preharvest costs, farm labor, and

miscellaneous operational costs such as chemical spraying and grain harvest.

Management scenarios were used to calculate costs of related inputs. Tillage was estimated
based on the specific implements and passes simulated within DayCent for a given level of
tillage intensity, using per-operation costs from Plastina (2015). Costs for N fertilizer and
application were calculated from scenario N application rates. Costs for grain drying were based

on DayCent-simulated yields.

Costs for stover collection, baling, and stacking at the field edge were calculated using an
exponential regression curve developed by (Graham et al., 2007). The curve expresses the cost
per Mg of stover collected as a declining function of the collection rate, including savings
provided by changing collection equipment at increasing collection rates. For this work, a new

best-fit curve was derived by digitizing the data points given in Graham et al. (2007) Figure 4
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and using non-linear least squares to solve for the best single curve of the form used by the

authors (y = a%. That best-fit curve was:

Stover Cost, $ Mg = 46.15 * (Collection Rate, Mg H®-363

The costs calculated using that curve were then adjusted from 2002 dollars to 2015 dollars using

the online calculator provided by the Bureau of Labor Statistics (2015).

FTW costs were then calculated using the estimated ethanol energy yields from each scenario
and literature estimates of costs for feedstock conversion. Conversion cost for grain to ethanol
was based on Hettinga et al., (2009), who gave a figure of $bdraih ethanol in 2005 dollars,
which amounted to $0.16 in 2015 dollars. Conversion cost for cellulosic ethanol was based on
Solomon et al., (2007), who gave a figure of $0:38thanol in 2006 dollars, which amounted to
$0.46 11 in 2015 dollars. As discussed in both of the source studies, the costs for grain or
cellulosic conversion are sensitive to a number of factors, including technological change,
economies of scale, energy prices, interest rates, etc. Therefore, calculations based on these
values should be regarded tentatively and is primarily valuable for identifying qualitative

relationships between farm management and economic incentives.

Estimates of profit per unit area are based on FTW cost estimates. While it may seem awkward
to compare farm management actions with profits that would be faced by the biorefinery selling
ethanol, we felt that it was important to evaluate management economics in the context of the
nearly 3-fold difference in downstream costs. This allowed us to compare the relative value of

each feedstock net of their downstream conversion costs and avoid adding an additional layer of
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assumptions by picking separate feedstock prices. Finally, profits were calculated against an

ethanol price of $2.50 gal

Table A6. Major input costs calculated in building farm budgets. Rates and unit costs of each
input were derived from farm survey responses, scenario management input levels, lowa State
Extension farm budgets, and literature sources as detailed in text.

Input Rate from: Unit Cost Unit cost source(s)
Corn seed Survey $12.75 kgt (Plastina, 2015)
Phosphorous fertilizer Survey $1.06 kgt
Potash fertilizer Survey $0.90 kgt
Lime Extension | $24.70 ha
Pesticides & herbicides | Extension $144.00 h
Harvest operations Extension $144.16 ha
Operator labor Extension $91.51 hd
Land rent Extension | $674.31 ha'
Crop insurance Extension $33.59 hd
Preharvest interest Extension | $30.43 ha
Tillage, corn: Scenario
Conventional $70 hat
Reduced $66 hat
No-till $40 hat
Tillage, soy:
Conventional $54 hat
Reduced $51 hat
No-till $40 hat
Synthetic N Scenario $1.04 kg*
Synth N application Scenario $26 hat
Grain drying Scenario $9.43 Mg!
Stover collection & Scenario Rate-dependent | (Graham et al., 2007)
nutrient replacement curve (see text)
Stover EtOH Conversion| Scenario $0.39 1 (Solomon et al., 2007)
Grain EtOH Conversion | Scenario $0.16 1 (Hettinga et al., 2009)
Ethanol Market Price Scenario $2.50 USD gat
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Farm supply chain emissions

Emissions from survey supply chain inputs averaged 5C@,g m?, and ranged from 25.2 to
121.7 gCOe m2. The largest and most-variable farm supply chain emissions sources were
phosphorous and potash fertilizers (mean: 27C®ge m?) and non-field energy use (mean:
18.0 gCOe m?). Figure Al shows the distribution of individual farms for 12-year total

emissions related to survey supply chain management practices.
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Figure Al. Distributions of emissions from survey supply chain inputs. These are the same farm
inputs values given in previous work (Kent et al., in submission), but with scenario-related inputs
removed. Each histogram encompasses a total of 35 farms, and bins have a wid@lOgé 1 g
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Scenario supply chain inputs
For scenario-related management inputs not simulated by DayCent, emissions were assigned to
scenarios based on their levels of different management variables. So, for instance, the

equipment simulated in DayCent for No-till management is a single pass with a seed drill, so all

178



scenarios with No-till management were assigned a valuelfabi2004b) for the C-equivalent
emissions from fuel and embodied equipment for this operation. A variety of sources were used
to estimate the scenario-related supply chain emissions, and this process was described in the
Methods. The mean scenario supply chain emissions were 8D9gn? and ranged from 3.7

to 81.5 gCOe m?. The distribution of scenario supply chain emissions is shown in Figure A2.
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Figure A2. Distributions of emissions from scenario supply chain inputs. Each histogram
encompasses a total of 1824 management scenarios, and bins have a wid@Oaé higyr™.

DayCent biogenic emissions

The management levels shown in Table 3.1 were simulated in DayCent for every permutation of
the six variables. The biogenic emissions from each scenario were unique results for that
particular management permutation. Averaged across scenarios, the scenario biogenic emissions
simulated by DayCent amounted to only 1€@e m?, which is less than the mean values for

either survey supply chain or scenario supply chain emissions (Figure A3). However, the range
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of biogenic emissions was very large, with a minimum of -2CDge m? and a maximum of

209 gCOe M2,
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Figure A3. Distributions of study-area average biogenic emissions for all scenarios. Each
histogram encompasses a total of 1824 management scenarios, vertical dashed lines indicate
median values, and bins have a width of 1D@e m?yr?.

Mass vs. marginal allocation of emissions between grain and stover

The FFG emissions summarized in Figure 3.1 encompass DayCent simulation modeling of
biogenic emissions combined with supply chain emissions budgets developed to account for all
significant emissions embodied in farm inputs and activities. To facilitate comparison of these
results with other work, which typically reports biofuel emissions on an energy basis and
includes emissions related to biofuel conversion and distribution, we used EtOH yield and

emissions values for post-farm activities given by Wang et al. (2012; see Table 4). We then
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partitioned the total areal emissions from each management scenario between grain EtOH and

stover EtOH using two different methods.

In the first, whichwe refer to as “marginal allocation”, stover was assessed the supply chain

emissions from collection, baling and stacking, replacement fertilizers, stover transport and
stover post-farm activities, while all other farm inputs, grain transport and post-farm grain
activities and were allocated to grain. In addition, stover was burdened with the difference in
biogenic emissions between DayCent simulations that differed only in whether or not stover was
removed. This approach makes sense from a status-quo perspective, in which corn is cropped
primarily for grain harvest and the harvest of stover is a management change under

consideration.

In the second allocation approach, dubbed “mass allocation”, all supply chain and post-farm
emissions directly relating to stover production and conversion were assessed as stover
emissions. Likewise, grain was assessed for all grain-specific farm and post-farm activities such
as grain harvest and drying, grain transport and grain post-farm emissions. However, all
biogenic emissions and those supply chain emissions not clearly related to either feedstock
(tilage, N fertilization, etc.) were allocated to each feedstock in proportion to the mass of C
removed with each feedstock. This approach allots management burdens according to each
feedstock’s share of C removals from the system, and so it makes the most sense from a

perspective where both grain and stover are viewed as important products of the feedstock

cropping system.
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The results of the marginal and mass allocation procedures for each scenario are shown in Figure
A4 and Figure A5. Those figures also display dashed lines indicating the RFS2 emissions limits
that apply to fuels derived from each feedstock. They also show the Scenario ID numbers
corresponding to several best- and worst-performing management scenarios for several outcome
metrics. The same set of ID numbers are detailed in Table 3.4 and appear on several plots in this
study, allowing readers to compare the performance of specific scenarios across emissions

metrics.
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Figure A4. FTW emissions intensity for each management scenario, partitioned between grain
and stover using marginal allocation (see Methods for details) and plotted against total emissions
intensity. Dashed lines indicate the emissions upper limits defined in thé&S5fét

qualifying Renewable Fuels (orange line, applies to grain EtOH) and Cellulosic Fuels (green

line, applies to corn stover EtQHScenario ID numbers from selected scenarios are displayed in
their approximate positions to facilitate comparison with other figures and Table 3.4 and Table
3.5.

The marginal allocation method used to generate Figuiis @geful for understanding the
emissions attributable to stover EtOH relative to a baseline of identical management without
residue collection. By penalizing stover for all foregone C sequestration, however, it generates

counter-intuitive results. For instance, the management scenarios with the highest stover
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emissions intensities are actually those with no-till management (for example, Scenario IDs
1214, 640 and 280), because under no-till a greater fraction of the lost stover C would have been
sequestered as compared to conventional tillage. In other words, stover collection fibm no-

land represents a greater “opportunity cost” in terms of C sequestration. Of course, this is

primarily useful as a descriptive metric rather than a prescriptive metric, since no-till would be

expected to sequester more C in absolute terms, whether or not stover is harvested.

In contrast to the marginal allocation shomrFigure A4, the feedstock emissions intensities

shown in Figure A5 were calculated by allocating most farm emissions based on the proportion
of biomass C removed from the system with each feedstock. This caused feedstock emissions to
track linearly with total emissions, with small differences primarily attributable to the fraction of
residue being collected. As an illustration of the complexities involved when comparing partial
and total emissions intensities, consider Scenario IDs 640 and 1214 in Figure A5. Scenario 640
had higher mass-allocated intensities than 1214 for both grain and stover, but had a lower total
emissions intensity. Close examination of the specific values given for these Scenarios in Table
3.4 shows that this occurred because Scenario 640 collected a larger fraction of stover (0.75 vs.
0.25). This means that a larger fraction of its total EtOH energy came from the higher-intensity
feedstock (grain), and this difference was more important than the small increases in individual

feedstock intensities.
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Figure A5. FTW emissions intensity for each management scenario, partitioned between grain
and stover using mass allocation (see Methods for details). Dashed lines indicate the emissions
upper limits defined in the US RFS2 for qualifying Renewable Fuels (orange line, applies to
grain EtOH) and Cellulosic Fuels (green line, applies to corn stover)EtS¢¢nario ID

numbers from selected scenarios are displayed in their approximate position to facilitate
comparison with other figures and Table 3.4 and Table 3.5.

Social cost of carbon methodology and assumptions

The SCC is an economic concept that attempts to quantify the monetary cost of climate change
damages attributable to a marginal uniC@»-equivalent emissions. As one might imagine,

there is very large uncertainty in the determination of this value. The estimates used in the

present calculations correspond to multi-model averages reported for different assumed discount
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rates as reported by the Interagency Working Group on the Social Cost of Carbon (IAWG,

2013).

Any actual price on emissions would raise costs for fossil fuels and biofuels. Thus, rather than
presenting the increased scenario EtOH prices that would be expected after adding the embedded
C tax to existing costs, we chose to calculate the difference in C tax that would apply to EtOH
derived from each scenario relative to energy-equivalent gasoline. Scenarios were credited with
dollar-valued reductions in costs as a function of the emissions (and thus C tax burden) they
avoided relative to gasoline. We refer to this difference as an “abatement premium”, and its

value is specific to each scenario and hypothetical SCC. The abatement premiém ($ m
expresses the net cost advantage against gasoline conferred by a given SCC for each scenario,

and is simply the product of net abatemenE@e m?) times SCC ($ (€Oe)?).

Of course, the use of $2.50 gals market price for EtOH was somewhat arbitrary. Prices for
transportation fuel are notoriously volatile, and prices faced by EtOH producers are additionally
subject to changing federal and state subsidies as well as rapid technological change and
economies of scale. The first-order impact of changing EtOH prices is straightforward, with
higher prices increasing profits for all scenarios on an absolute scale. However, since scenarios
vary significantly in their total energy yield (hence revenue) per cropping area, profits from high-
productivity scenarios were more sensitive to a given price change than those from low-

productivity scenarios.
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Chapter 5 Supporting Information

Crop cultural information from simulated FACE experiments

Table A7. Key details for the four seasons of wheat cropping at Maricopa, AZ, USA.

Experiment ID> | MCWht92 MCWht93 MCWht95 MCWht96
Planting Date 15-Dec-1992 | 08-Dec-1993 15-Dec-1995 15-Dec-1996
Harvest Date 24-May-1993 | 01-Jun-1994 29-May-1996 28-May-1997
FACE Start 01-Jan-1993 | 28-Dec-1993 01-Jan-1996 03-Jan-1997
FACE End 16-May-1993 | 18-May-1994 15-May-1996 12-May-1997
Irrigation + Wet: 676 Wet: 681 High N: 731 High N: 650
Rainfall (mm) Dry: 351 Dry: 318 Low N: 670 Low N: 577
N Fertilization All: 271 All: 261 High N: 383 High N: 383
(kg N hat) Low N: 100 Low N: 45
Ambient/Enriched 360/550 360/550 360/560 360/560
[CO] (ppm)
Source(s) (Kimball et al., 1995; Kimball, (Kimball et al., 1999)

2006)

Table A8. Key details for the two seasons of sorghum cropping at Maricopa, AZ, USA.

Experiment ID> MCSor98 MCSor99
Planting Date 16-Jul-1998 15-Jun-1999
Harvest Date 21-Dec-1998 26-Oct-1999
FACE Start 31-Jul-1998 01-Jul-1999
FACE End 21-Dec-1998 26-0ct-1999
Irrigation + Rainfall (mm) Wet: 1218 Wet: 1047
Dry: 474 Dry: 491
N Fertilization (kg N ha#) 279 266
Ambient/Enriched CO;] 396/579 402/585
(PPm)
Source(s) (Ottmanet al., 2001; Kimball & Bernacchi, 2006)
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Table A9. Key details for the seven seasons of soybean cropping at Champaign, IL, USA.

Experiment ID> | SFSoy0l| SFSoy02| SFSoy03 SFSoy04, SFSoy05 SFSoy09 SFSoyll
Planting Date 23-May- | 01-Jun- | 27-May-

2001 2002 2003
Harvest Date 20-Oct- | 16-Oct- | 11-Oct-

2001 2002 2003
Rainfall (mm) 643 610
Ambient/Enriched 370/550 | 370/550 | 370/550 | 375/550 | 375/550 | 385/585 | 390/590
[CC] (ppm)
Source(s) (Morganet al., 2005; Bernacchat al., 2007) (Ruiz-Veraet al .,

2013)

Table A10. Key details for the three seasons of corn cropping at Champaign, IL, USA.

Experiment ID-> | SFCrn04 SFCrn06 SFCrnl10
Planting Date 29-Apr-2004 28-Apr-2006 28-Apr-2008
Harvest Date 10-Sep-2004

Rainfall (mm) 426 487 424
Ambient/Enriched 376/550 382/550 390/550
[CO] (ppm)

Source(s) (Leakeyet al., 2006; Hussaiet al., 2013; Ruiz-Verat al., 2015)

Table All. Key details for the five seasons of wheat cropping at Horsham, Victoria, AUS.

Experiment ID| AGWht07 | AGWht07 | AGWht08 | AGWht08 | AGWht09 | AGWht09

> NS LS NS LS NS LS

Planting Date | 18-Jun- 23-Aug- | 04-Jun- 05-Aug- | 23-Jun- 19-Aug-
2007 2007 2008 2008 2009 2009

Harvest Date | 12-Dec- 24-Dec- | 08-Dec- 15-Dec- | 08-Dec- 15-Dec-
2007 2007 2008 2008 2009 2009

N Applied + 200 210 211

In Soil (kg N

hat)

Irrigation + Dry: 219 | Dry: 159 |Dry: 178 | Dry: 108 | Dry: 223 | Dry: 170

Rainfall (mm) | Wet: 267 | Wet: 207 | Wet: 208 | Wet: 164 | Wet: 293 | Wet: 230

Ambient/Enric | 380/550 | 380/550 | 390/550 | 390/550 |390/550 | 390/550

hed [CO,]

(Ppm)

Source(s) (Nortonet al., 2008; Lanmet al., 2012c; Fitzgeraldt al., 2016)

188




Table A12. Key details for the seven seasons of rice cropping at Shizukuishi, lwate, Japan.

Experiment ID | JFRice9 | JFRice9 | JFRice0 | JFRiceO | JFRice0 | JFRice0 | JFRice0
> 8 9 0 3 4 7 8
Planting Date 07-May- | 28-Apr- | 29-Apr- | 01-May- | 01-May- | 01-May- | 01-May-
1998 1999 2000 2003 2004 2007 2008
Harvest Date 29-Sep- | 20-Sep- | 19-Sep-
1998 1999 1999

N Fertilization | Low: 40 | Low: 40 | Low: 40 | CRN: CRN: All: 90 | All: 90

(kg N ha') Med: 80 | Med: 90 | Med: 90 | 80 80
High: High: High: Spl: 90 | Spl: 90
120 150 150

Ambient/Enriche| 368/662 | 369/640 | 365/586 | 366/570 | 365/548 | 379/570 | 376/576
d [CO] (ppm)
Source(s) (Kim et al., 2003a, 2003b; (Shimonoet al., (Hasegawat al.,
Kobayashkt al., 2006) 2008) 2013)

Table A13. Key details for the three seasons of wheat and two seasons of soy cropping at
Changping, Beijing, China.

Experiment ID> | CHWht07 CHWht08 CHWht09 CHSoy09 CHSoy11
Planting Date 07-Oct-2007| 10-Oct-2008| 10-Oct-2009| 17-Jun-2009 24-Jun-2011
Harvest Date 07-Jun-2008| 13-Jun-2009 27-Jun-2010| 06-Oct-2009| 04-Oct-2011

N Fertilization Low: 100 Low: 100 Low: 100 4.8 4.8
(kg N ha') High: 170 | High: 170 | High: 170
Irrigation + 459 319 323 420 647

Rainfall (mm)
Ambient/Enriched 415/550 415/550 415/550 415/550 415/550
[CO] (ppm)
Source(s) (Lamet al., 2012b; Haret al., 2015) (Lamet al., 2012a; Haet
al., 2014)
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Soilsinput data from simulated FACE experiments

Table Al4. Soils input data used for simulations of FACE experiments at the Maricopa, AZ, USA site.

Layer | Layer | Bulk Field Wilting | % % Sand| % Clay | % Min soil | Saturated | pH
Upper | Lower | Density| Capacity| Point | Roots Organic| water hydraulic
Bound | Bound | (g/cn?) | (V/V) (V/v) in layer matter | content | conductivity
(cm) (cm) (v/v) (cml/s)

0 2 1.31 0.3 0.215 | 1% 35% 34% 1% 0.14508 | 0.00064 8.5
2 5 1.31 0.3 0.215 | 5% 35% 32% 1% 0.10881 | 0.00064 8.5
5 10 1.31 0.3 0.215 | 28% 35% 32% 1% 0.07254 | 0.00064 8.5
10 20 1.27 0.3 0.215 | 34% 35% 32% 1% 0.018135| 0.00064 8.5
20 30 1.27 0.3 0.215 |11% 35% 32% 1% 0 0.00064 8.6
30 45 1.3 0.29 0.205 | 6% 35% 30% 1% 0 0.00021 8.6
45 60 1.47 0.29 0.205 | 5% 35% 30% 0% 0 0.00021 8.6
60 75 1.57 0.23 0.205 | 3% 35% 30% 0% 0 0.00021 8.6
75 90 1.57 0.23 0.164 | 2% 45% 30% 0% 0 0.00047 8.6
90 105 1.57 0.23 0.164 | 1% 45% 30% 0% 0 0.00047 8.6
105 120 1.57 0.23 0.164 | 1% 50% 30% 0% 0 0.00047 8.6
120 150 1.57 0.23 0.164 | 1% 55% 30% 0% 0 0.00047 8.6
150 180 1.57 0.23 0.164 | 1% 60% 30% 0% 0 0.00047 8.6
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Table A15. Soil input data used for simulations of FACE experiments at the Champaign, IL, USA site.

Layer | Layer | Bulk Field Wilting | % % Sand| % Clay | % Min Saturated | pH
Upper | Lower | Density | Capacity| Point Roots Organic| soll hydraulic
Bound | Bound | (g/cn?) | (V/v) (V/v) in layer matter | water | conductivity
(cm) (cm) content | (cm/s)

0 2 1.34 0.30917 | 0.1221 | 0.01124| 0.06 0.2 0.02 0.09768| 0.00038 6.8
2 5 1.34 0.30917 | 0.1221 | 0.04494| 0.06 0.2 0.02 0.07326| 0.00038 6.8
5 10 1.34 0.30917 | 0.1221 | 0.2809 | 0.06 0.2 0.02 0.04884| 0.00038 6.8
10 20 1.34 0.30917 | 0.1221 | 0.33708| 0.06 0.2 0.02 0.01221] 0.00038 6.8
20 30 1.34 0.30917 | 0.1221 | 0.11236| 0.06 0.2 0.02 0 0.00038 6.8
30 45 1.28 0.34333 | 0.16326| 0.05618| 0.06 0.3 0.02 0 0.00018 55
45 60 1.25 0.38276 | 0.20767| 0.04494| 0.03 0.37 0 0 0.00012 6
60 75 1.25 0.38276 | 0.20767| 0.03371| 0.03 0.37 0 0 0.00012 6
75 90 1.25 0.38276 | 0.20767| 0.02247| 0.03 0.37 0 0 0.00012 6
90 105 1.25 0.38276 | 0.20767| 0.01124| 0.03 0.37 0 0 0.00012 6
105 120 1.25 0.38276 | 0.20767| 0.01124/ 0.03 0.37 0 0 0.00012 6
120 150 1.25 0.38276 | 0.20767| 0.01124/ 0.03 0.37 0 0 0.00012 6
150 180 1.28 0.33963 | 0.15736| 0.01124| 0.02 0.28 0 0 0.00021 6.3
180 210 1.28 0.33963 | 0.15736| 0.01124| 0.02 0.28 0 0 0.00021 6.3
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Table A16. Soil input data used for simulations of FACE experiments at the Horsham, Victoria, Australia site.

Layer | Layer | Bulk Field Wilting | % % Sand| % Clay | % Min Saturated | pH
Upper | Lower | Density| Capacity| Point | Roots Organic| soil hydraulic
Bound | Bound | (g/cn?) | (V/v) (Vv/v) in layer matter | water | conductivity
(cm) (cm) content| (cm/s)

0 2 1.14 0.39 0.2 0.01 0.325 |0.35 0.01248| 0.08 0.00086 8.4
2 5 1.14 0.39 0.2 0.04 0.325 |0.35 0.01248| 0.06 0.00086 8.4
5 10 1.14 0.39 0.2 0.25 0.325 |0.35 0.01248| 0.04 0.00086 8.4
10 20 1.14 0.39 0.2 0.3 0.3 0.4 0.01248| 0.01 0.00086 8.4
20 30 1.3 0.4 0.23 0.1 0.3 0.4 0.00708| 0 0.00086 8.4
30 45 1.3 0.4 0.23 0.05 0.275 |0.45 0.00708| 0 0.00086 8.4
45 60 1.37 0.42 0.27 0.04 0.275 |0.45 0.00354| 0 0.00086 8.9
60 75 1.4 0.43 0.3 0.03 0.25 0.5 0.00177| 0 0.00086 9
75 90 1.4 0.45 0.35 0.02 0.25 0.5 0.00044| 0 0.00086 9
90 105 1.4 0.45 0.35 0.01 0.225 |0.55 0.00044| 0 0.00086 9
105 120 1.4 0.45 0.36 0 0.225 | 0.55 0.00022| 0 0.00086 9
120 150 1.4 0.45 0.37 0 0.2 0.6 0.00011| 0 0.00086 9.1
150 180 1.4 0.45 0.37 0 0.2 0.6 0.00011| 0 0.00086 9.1
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Table A17. Soil input data used for simulations of FACE experiments at the Shizukuishi, Iwate, Japan site.

Layer | Layer | Bulk Field Wilting | % % Sand| % Clay | % Min Saturated | pH
Upper | Lower | Density | Capacity| Point Roots Organic| soil hydraulic
Bound | Bound | (g/cn?) | (V/v) (Vv/v) in layer matter | water | conductivity
(cm) (cm) content| (cm/s)

0 2 0.73 0.32494 | 0.10263| 0.01 0.43 0.26 0.0083 | 0.08 0.00086 5.6
2 5 0.73 0.32494 | 0.10263| 0.04 0.43 0.26 0.0083 | 0.06 0.00086 5.6
5 10 0.73 0.32494 | 0.10263| 0.25 0.43 0.26 0.0083 | 0.04 0.00086 5.6
10 20 0.73 0.32494 | 0.10263| 0.3 0.43 0.26 0.0083 | 0.01 0.00086 5.6
20 30 0.73 0.32494 | 0.10263| 0.1 0.43 0.26 0.0083 | 0 0.00086 5.6
30 45 0.73 0.32494 | 0.10263| 0.05 0.43 0.26 0.0083 | 0 0.00086 5.6
45 60 0.73 0.32494 | 0.10263| 0.04 0.43 0.26 0.0083 | 0 0.00086 5.6
60 75 0.73 0.32494 | 0.10263| 0.03 0.43 0.26 0.0083 | 0 0.00086 5.6
75 90 0.73 0.32494 | 0.10263| 0.02 0.43 0.26 0.0083 | 0 0.00086 5.6
90 105 0.73 0.32494 | 0.10263| 0.01 0.43 0.26 0.0083 | 0 0.00086 5.6
105 120 0.73 0.32494 | 0.10263| 0 0.43 0.26 0.0083 | 0 0.00086 5.6
120 150 0.73 0.32494 | 0.10263| 0 0.43 0.26 0.0083 | 0 0.00086 5.6
150 180 0.73 0.32494 | 0.10263| 0 0.43 0.26 0.0083 | 0 0.00086 5.6
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Table A18. Soil input data used for simulations of FACE experiments at the Changping, Beijing, China site.

Layer | Layer | Bulk Field Wilting | % % Sand| % Clay | % Min Saturated | pH
Upper | Lower | Density| Capacity| Point | Roots Organic| soll hydraulic
Bound | Bound | (g/cn?) | (V/v) (V/v) in layer matter | water | conductivity
(cm) (cm) content| (cm/s)

0 2 1.21 0.344 0.156 | 0.01 0.33 0.33 0.0106 | 0.08 0.000205 |8.4
2 5 1.21 0.344 0.156 | 0.04 0.33 0.33 0.0106 | 0.06 0.000205 |8.4
5 10 1.21 0.344 0.156 | 0.25 0.33 0.33 0.0106 | 0.04 0.000205 |8.4
10 20 1.21 0.344 0.156 |0.3 0.33 0.33 0.0106 | 0.01 0.000205 |8.4
20 30 1.21 0.344 0.156 | 0.1 0.33 0.33 0.0106 | O 0.000205 |8.4
30 45 1.21 0.344 0.156 | 0.05 0.33 0.33 0.0106 | O 0.000205 |8.4
45 60 1.21 0.344 0.156 | 0.04 0.33 0.33 0.0106 | 0O 0.000205 |8.4
60 75 1.21 0.344 0.156 | 0.03 0.33 0.33 0.0106 | O 0.000205 |8.4
75 90 1.21 0.344 0.156 |0.02 0.33 0.33 0.0106 | O 0.000205 |8.4
90 105 1.21 0.344 0.156 |0.01 0.33 0.33 0.0106 | O 0.000205 |8.4
105 120 1.21 0.344 0.156 |0 0.33 0.33 0.0106 |0 0.000205 |8.4
120 150 1.21 0.344 0.156 |0 0.33 0.33 0.0106 | 0O 0.000205 |8.4
150 180 1.21 0.344 0.156 |0 0.33 0.33 0.0106 |0 0.000205 |8.4
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Initial DayCent calibration

This work made use of a recently updated version of DayCent that includes improved simulation
of crop LAl and water use and crop growth based on thermal time accumulation (ie., growing
degree days rather than calendar days). The rationale, testing and validation of these

improvements is described in Zhang (2016).

The goal of the initial calibration process was to minimize systematic bias within DayCent

results compared to important observational variables. In practice, the parameters controlling
RUE and crop phenology were adjusted as little as possible from default values (which are not
cultivar-specific) until the absolute value of relative bias was less than 10%. Modest adjustments
to the water use, N limitation, and root allocation parameters were made to improve agreement

between observed and simulated season ET, C:N and R:S ratios, respectively.

Crop thermal time parameters for each crop were adjusted to achieve agreement with observed

crop anthesis and flowering dates. The resulting parameter values were not necessarily the same
as those reported in papers, since methods of thermal time calculation were not always consistent
with the one used by DayCent, and temperatures in weather input files were not identical to those

measured by on-site weather stations.

In two cases this could not be achieved (Table A14): R:S ratio for wheat, and C:N ratio for rice.
The discrepancy in R:S ratio for wheat was caused by a single DayCent simulation of irrigated
wheat in Horsham, which was moderately water-stressed and thus increased belowground
allocation and reached a R:S ratio of 0.094 versus an observed value of 0.0%8 gL.am

2012c). The simulated water input was close to the reported amount (34 cm simulated vs 30 cm
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reported by Langt al., 2012c), but this was very low relative to the comparable totals reported

for non-water stressed wheat treatments at Maricopa (greater than 60 cm from Kihall

1995 and Hunsaket al., 200Q.

Table A19. DayCent modeled vs. measured performance statistics after calibration to

observations from ambient, unstressed FACE treatments. Note that crop-outcome combinations

with fewer than three observations were excluded.

Crop | Outcome | Intercept | Slope R? N P Bias | RMSE
(SE) (SE)
Soy Yield 38.3(37.3) 0.602 | 0.38 8 0.103 6.57 | 27.1
(g C m?) (0.314)
Cs4 Yield 232 (153) | 0.295 |0.155 |5 0.512 7.44 | 110
(g C m?) (0.398)
Cs4 Season |3.59(20.3)0.795 |0.521 |6 0.106 135 | 115
ET (mm) (0.382) 7
Wheat | Yield 82.2 (26.5)| 0.614 |0.734 |13 0.000185 | -1.37 | 63.6
(g C m?) (0.112)
Wheat | Season | 58.8 (44.6)| 0.0529 | 0.00248| 4 0.95 -4.35|4.2
ET (mm) (0.75)
Wheat | C:N Ratio| -36.6 2.26 0.291 |6 0.269 8.37 [ 4.94
(48.1) (1.77)
Wheat | R:S Ratio | -0.0202 1.4 0.999 |3 0.0186 -4.02 | 0.0067
(0.00238) | (0.0409 2
)
Rice | Yield 12.7 (83.1)| 0.897 | 0.407 13 0.019 5.32 | 37
(g C m?) (0.326)
Rice | C:N Ratio| 179 (143) | -3.93 0.178 |6 0.404 -35.2|15.5
(4.22)

The C:N ratio of several rice observations based on Shimtaio(2008) was derived from

reported N uptake and dry biomass figures, assuming a 40% C content of dry biomass. While

these treatments included N application comparable with the medium N treatments ef (Kim
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al., 2003b), the observed values averaged a C:N ratio of 52.1, which was substantially higher

than corresponding values from the low N treatments of @iah, 2003b).
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Figure A6. Observed vs. simulated grain yields for soybean, wheat, ricesangp€ (corn &
sorghum) from ambient, unstressed treatments only. Solid black lines depict 1:1 lines, while
dotted gray lines show linear regression of observed on simulated values. Simulated results
shown here reflect DayCent performance after calibrating crop parameters unrel@@g to [
response, including radiation use efficiency (RUE), phenology, biomass N requirements, and C
partitioning.

Calibrated DayCent crop.100 parameter files

The following are the specific calibrated crop parameter sets (contained in an input file known as
a crop.100 file) used for each crop at each site. Note that parameter values for a given crop
sometimes vary between different sites, butGk response parameters were calibrated to be

the same for a given crop across sites. The actual files exist in a single column but have been

converted to two-column format here for readability.
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Champaign, lllinois, USA 0.0 'PRBMN(1,2)'

0.0 'PRBMN(2,2)'
Maize 0.0 'PRBMN(3,2)'

60.0 'PRBMX(1,1)’
C6 corn built on: C603 corn-c6 P31 420.0 'PRBMX(2,1)'
0.185 'PRDX(1)" 6/15/10 SAW 1.2  420.0 'PRBMX(3,1)’
30.0 'PPDF(1)' 0.0 'PRBMX(1,2)'
45.0 'PPDF(2)' 0.0 'PRBMX(2,2)'
1.0 'PPDF(3)' 0.0 'PRBMX(3,2)'
2.5 'PPDF(4)' 0.12 'FLIGNI(1,1)'
0.0 'BIOFLG' 0.0 'FLIGNI(2,1)'
1800.0 '‘BIOKS' 0.06 'FLIGNI(1,2)'
0.9 'PLTMRF' 0.0 'FLIGNI(2,2)'
150.0 'FULCAN' 0.06 'FLIGNI(1,3)'
5 'FRTCINDX' 0.0 'FLIGNI(2,3)'
0.4 'FRTC(1)' 6/3/10 SAW .5 0.58 'HIMAX' 6/15/10 SAW 0.60
0.1 'FRTC(2)' 0.5 'HIWSF'
90.0 'FRTC(3)' days 1.0 'HIMON(2)'
0.1 'FRTC(4)' 0.0 'HIMON(2)'
0.1 'FRTC(5)' 0.75 'EFRGRN(1)'
0.3 'CFRTCN(1)' 0.6 'EFRGRN(2)'
0.25 'CFRTCN(2)' 0.6 'EFRGRN(3)’'
0.5 'CFRTCW(1)' 0.04 'VLOSSP'
0.1 'CFRTCW(2)' 0.0 'FSDETH(1)'
700.0 '‘BIOMAX' 700 0.0 'FSDETH(2)'
20.0 'PRAMN(1,1)' 15 0.0 'FSDETH(3)'
150.0 'PRAMN(2,1)' 500.0 'FSDETH(4)'
190.0 'PRAMN(3,1)' 0.1 'FALLRT'
62.5 'PRAMN(1,2)' 0.05 'RDRJ'
150.0 'PRAMN(2,2)' 0.05 'RDRM'
150.0 'PRAMN(3,2)' 0.14 'RDSRFC'
40.0 'PRAMX(1,1)' 2.0 '‘RTDTMP'
230.0 'PRAMX(2,1)' 0.0 'CRPRTF(1)'
230.0 'PRAMX(3,1)' 0.0 'CRPRTF(2)'
125.0 'PRAMX(1,2)' 0.0 'CRPRTF(3)'
230.0 'PRAMX(2,2)' 0.05 'MRTFRAC'
230.0 'PRAMX(3,2)’ 0.0 'SNFXMX(1)'
45.0 'PRBMN(1,1)' -15.0 'DEL13C'
390.0 'PRBMN(2,1)' 1.0 'CO2IPR(1)'
340.0 'PRBMN(3,1)' 0.82 'CO2ITR(L)!
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1.0

1.0

1.0

1.0

1.0

1.0

1.0
0.10000
0.15000
0.05000
0.00000
0.00000
1.25000
1.00000
4.00000
1.50000
0.23000
0.23000
0.23000
0.25000
7.00000
0.50000
-13.000
730.00
-3.5

10

30

650

650
120.0
0.5

0.12

1.0

2.0

1.40

11

0.6

0.02

0.9

0.9

'CO2ICE(1,1,1)
'CO2ICE(1,1,2)
'CO2ICE(1,1,3)
'CO2ICE(1,2,1)'
'CO2ICE(1,2,2)'
'CO2ICE(1,2,3)'
'CO2IRS(1)'
'CKMRSPMX(1)'
'CKMRSPMX(2)'
'CKMRSPMX(3)'
'CMRSPNPP(1)’
'CMRSPNPP(2)'
'CMRSPNPP(3)'
'CMRSPNPP(4)'
'CMRSPNPP(5)'
'CMRSPNPP(6)'
'CGRESP(1)'
'CGRESP(2)'
'CGRESP(3)'
'NO3PREF(1)'
'CLAYPG'
'CMIX!
‘TMPGERM'
'DDBASE'’
"TMPKILL'
'BASETEMP"
'BASETEMP(2)'
'MNDDHRV'
'MXDDHRV'
'CURGDYS'
'CLSGRES'
'CMXTURN!
'NPP2CS(1)'
'CAFUE'
'EMAX'
'KCET'
'KLIGHT"
'SLA'
'LEAFCL'
'LEAFEMERG"
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0.3 'LEAFMX'
0.02 'LEAFPM'
103 'DDEMERG'
850 'DDLAIMX'
Soybean

SYBN soybeans built on: SY02 Soybeans
Mead?2

0.07 'PRDX(1)' 6/15/10 SAW 0.65
27.0 'PPDF(1)'

40.0 'PPDF(2)' 40 8/20/10 SAW
1.0 'PPDF(3)'

2.5 'PPDF(4)'

0.0 '‘BIOFLG'

1800.0 '‘BIOK5'

1.4 'PLTMRF'

150.0 'FULCAN'

5 'FRTCIN'

0.35 'FRTC(1)' 6/8/10 SAW 0.5 .4
0.05 'FRTC(2)' 0.1 8/13/10 SAW
60.0 'FRTC(3)' days

0.1 'FRTC(4)' 6/8/10 SAW 0.2
0.1 'FRTC(5)’

0.4 'CFRTCN(2)'

0.25 'CFRTCN(2)'

0.5 'CFRTCW(1

0.1 'CFRTCW(2)'

200.0 'BIOMAX'

5.0 'PRAMN(1,1)'

150.0 'PRAMN(2,1)'

100.0 'PRAMN(3,1)'

15.0 'PRAMN(1,2)'

150.0 'PRAMN(2,2)'

100.0 'PRAMN(3,2)'

15.0 'PRAMX(1,1)'

230.0 'PRAMX(2,1)’

100.0 'PRAMX(3,1)’

30.0 'PRAMX(1,2)’

230.0 'PRAMX(2,2)'



100.0
24.0
390.0
100.0
0.0
0.0
000.0
32.0
420.0
100.0
0.0
0.0
000.0
0.12
0.0
0.06
0.0
0.06
0.0
0.55
0.5
1.0
0.0
0.70
0.57 .75
0.6
0.6
0.04
0.0
0.0
0.0
500.0
0.1
0.5
0.15
0.14
2.0
0.0
0.0
0.0

'PRAMX(3,2)’
'PRBMN(L,1)
'PRBMN(2,1)
'PRBMN(3,1)
'PRBMN(L,2)
'PRBMN(2,2)
'PRBMN(3,2)’
'PRBMX(1,1)’
'PRBMX(2,1)'
'PRBMX(3,1)’
'PRBMX(1,2)’
'PRBMX(2,2)’
'PRBMX(3,2)’
'FLIGNI(L,1)’
'FLIGNI(2,1)’
'FLIGNI(L,2)’
'FLIGNI(2,2)'
'FLIGNI(L,3)'
'FLIGNI(2,3)'

'HIMAX' 6/8/10 SAW 0.31
'HIWSF' 0.25 8/13/10 SAW .5
'HIMON(1)' 6/18/10 SAW 2
'HIMON(2)' 6/18/10 SAW 1
'EFRGRN(1)' 6/16/10 SAW

'EFRGRN(2)’
'EFRGRN(3)'
'VLOSSP'
'ESDETH(L)'
'ESDETH(2)’
'ESDETH(3)’
'ESDETH(4)
'FALLRT'
'RDRJ'
'RDRM'
'RDSRFC'
'RTDTMP'
'CRPRTF(1)'
'CRPRTF(2)'
'CRPRTF(3)'
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0.05
0.0600
-27.0
1.12
0.58

1.0

1.0

1.0

1.0

1.0

1.0

1.0
0.10000
0.15000
0.05000
0.00000
0.00000
1.25000
1.00000
4.00000
1.50000
0.23000
0.23000
0.23000
0.50000
6.00000
0.50000
-17.0000
500

-2.0

10

30

900

900
120.0
0.5

0.12

1.0

2.0

0.90

'MRTFRAC'
'SNFXMX (1)
'DEL13C'
'CO2IPR(1)'
'CO2ITR(L)'
'CO2ICE(1,1,1)'
'CO2ICE(1,1,2)’
'CO2ICE(1,1,3)
'CO2ICE(1,2,1)
'CO2ICE(1,2,2)
'CO2ICE(1,2,3)
'CO2IRS(1)
'CKMRSPMX(1)'
'CKMRSPMX(2)'
'CKMRSPMX(3)'
'CMRSPNPP(1)'
'CMRSPNPP(2)’
'CMRSPNPP(3)’
'CMRSPNPP(4)’

'CMRSPNPP(5)'
'CMRSPNPP(6)’
'CGRESP(1)’
'CGRESP(2)’
'CGRESP(3)'
'NO3PREF(1)'
'CLAYPG'
'CMIX'
"TMPGERM'

'DDBASE'
“TMPKILL'
'BASETEMP"
'BASETEMP(2)’
'MNDDHRV' 100
'MXDDHRV' 400
'CURGDYS'
'CLSGRES
'CMXTURN'
'NPP2CS(1)
'CAFUE'

'EMAX'



11
0.6
0.025
0.7
0.85
0.30
0.00
103
1000

'KCET
'KLIGHT'
'SLA'
'LEAFCL'
'LEAFEMERG'
'LEAFMX'
'LEAFPM'
'DDEMERG'
'DDLAIMX'

Maricopa, Arizona, USA

Sorghum

SORG sorghum built from corn built on:
C603 corn-c6 P31

0.115
30.0
45.0
1.0
2.5
0.0
1800.0
0.9
150.0
5

0.4
0.1
90.0
0.1
0.1
0.3
0.25
0.5
0.1
700.0
20.0
150.0
190.0
62.5

'PRDX(1)" 6/15/10 SAW 1.2
'PPDF(2)'
'PPDF(2)'
'PPDF(3)'
'PPDF(4)'
'‘BIOFLG'

'‘BIOKS'
'PLTMRF'

'FULCAN'

'FRTCINDX'
'FRTC(1)' 6/3/10 SAW .5
'FRTC(2)'

'FRTC(3)' days
'FRTC(4)'
'FRTC(5)'
'CFRTCN(1)'
'CFRTCN(2)'
'CFRTCW(1)'
'CFRTCW(2)'

'BIOMAX' 700
'PRAMN(1,1)' 15

'PRAMN(2,1)'

'PRAMN(3,1)'
'PRAMN(1,2)'
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150.0
150.0
40.0
230.0
230.0
125.0
230.0
230.0
45.0
390.0
340.0
0.0
0.0
0.0
60.0
420.0
420.0
0.0
0.0
0.0
0.12
0.0
0.06
0.0
0.06
0.0
0.55
0.5
1.0
0.0
0.75
0.6
0.6
0.04
0.0
0.0
0.0
500.0
0.1
0.05

'PRAMN(2,2)’
'PRAMN(3,2)’
'PRAMX(1,1)’
'PRAMX(2,1)’
'PRAMX(3,1)’
'PRAMX(1,2)’
'PRAMX(2,2)’
'PRAMX(3,2)’
'PRBMN(L,1)
'PRBMN(2,1)
'PRBMN(3,1)
'PRBMN(L,2)
'PRBMN(2,2)
'PRBMN(3,2)
'PRBMX(1,1)’
'PRBMX(2,1)’
'PRBMX(3,1)’
'PRBMX(1,2)’
'PRBMX(2,2)’
'PRBMX(3,2)’
'FLIGNI(L,1)’
'FLIGNI(2,1)’
'FLIGNI(L,2)’
'FLIGNI(2,2)’
'FLIGNI(L,3)'
'FLIGNI(2,3)'
'HIMAX' 6/15/10 SAW 0.60
'HIWSF'
'HIMON(1)'
'HIMON(2)'
'EFRGRN(L)
'EFRGRN(2)
'EFRGRN(3)
'VLOSSP'
'FSDETH(L)
'FSDETH(2)'
'FSDETH(3)'
'FSDETH(4)'
'FALLRT'
'RDRJ'



0.05
0.14

2.0

0.0

0.0

0.0

0.05

0.0
-15.0
1.0

0.82

1.0

1.0

1.0

1.0

1.0

1.0

1.0
0.10000
0.15000
0.05000
0.00000
0.00000
1.25000
1.00000
4.00000
1.50000
0.23000
0.23000
0.23000
0.25000
7.00000
0.50000
-13.000
1000.00
-3.5

10

30

850

850

'RDRM'
'RDSRFC'
'RTDTMP
'CRPRTF(1)'
'CRPRTF(2)'
'CRPRTF(3)'
'MRTFRAC'
'SNFXMX(1)'
'DEL13C'
'CO2IPR(1)'
'CO2ITR(L)'
'CO2ICE(1,1,1)
'CO2ICE(1,1,2)
'CO2ICE(1,1,3)
'CO2ICE(1,2,1)
'CO2ICE(1,2,2)'
'CO2ICE(1,2,3)'
'CO2IRS(1)'
'CKMRSPMX(1)'
'CKMRSPMX(2)'
'CKMRSPMX(3)'
'CMRSPNPP(1)'
'CMRSPNPP(2)'
'CMRSPNPP(3)’
'CMRSPNPP(4)'
'CMRSPNPP(5)'
'CMRSPNPP(6)'
'CGRESP(1)'
'CGRESP(2)'
'CGRESP(3)'
'NO3PREF(1)'
'CLAYPG'
'CMIX!
‘TMPGERM!
'DDBASE'
"TMPKILL'
'BASETEMP'
'BASETEMP(2)'
'MNDDHRV"
'MXDDHRV'
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120.0
0.5
0.12
1.0
2.0
1.40
1.2
0.6
0.02
0.9
0.9
0.3
0.02
103
1000

Wheat

'CURGDYS'
'CLSGRES
'CMXTURN'
'NPP2CS(1)
'CAFUE'
'EMAX'
'KCET'
'KLIGHT'
'SLA'
'LEAFCL'
'LEAFEMERG"
'LEAFMX'
'LEAFPM'
'DDEMERG'
'DDLAIMX'

SWa3 spring wheat build on: W3F5

GDD, new LAI

0.105 'PRDX(1)'
0.105 'PRDX(1)'
20.0 'PPDF(1)'
40.0 'PPDF(2)'
0.7 'PPDF(3)'
5.0 'PPDF(4)'
0.0 '‘BIOFLG'
1800.0 '‘BIOKS'

40 'PLTMRF'
150.0 'FULCAN'
5.00000 'FRTCINDX'
0.4 'FRTC(1)'
0.03 'FRTC(2)'
60.0 'FRTC(3)' days
0.1 'FRTC(4)'

0.1 'FRTC(5)'

0.4 'CFRTCN(L)'
0.25 'CFRTCN(2)'
0.6 'CFRTCW(1)'
0.1 'CFRTCW(2)'

Wheat,



300.0
14.0
100.0
100.0
28.0
160.0
200.0
40.0
200.0
230.0
120.0
260.0
270.0
45.0
390.0
340.0
0.0
0.0
0.0
60.0
420.0
420.0
0.0
0.0
0.0
0.15
0.0
0.06
0.0
0.06
0.0
0.45
0.5
1.0
0.0
0.65
0.6
0.6
0.04
0.0

'BIOMAX'
'PRAMN(L,1)
'PRAMN(2,1)
'PRAMN(3,1)
'PRAMN(L,2)
'PRAMN(2,2)’
'PRAMN(3,2)’
'PRAMX(1,1)’
'PRAMX(2,1)’
'PRAMX(3,1)’
'PRAMX(1,2)’
'PRAMX(2,2)’
'PRAMX(3,2)’
'PRBMN(Z,1)
'PRBMN(2,1)
'PRBMN(3,1)
'PRBMN(L,2)
'PRBMN(2,2)
'PRBMN(3,2)’
'PRBMX(1,1)’
'PRBMX(2,1)’
'PRBMX(3,1)’
'PRBMX(L,2)’
'PRBMX(2,2)'
'PRBMX(3,2)’
'FLIGNI(L,1)"
'FLIGNI(2,1)'
'FLIGNI(L,2)'
'FLIGNI(2,2)’
'FLIGNI(1,3)
'FLIGNI(2,3)'
'HIMAX'
'HIWSF'
'HIMON(1)'
'HIMON(2)'
'EFRGRN(1)'
'EFRGRN(2)’
'EFRGRN(3)'
'VLOSSP'
'FSDETH(L)
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0.0

0.0
200.0
0.12
0.05
0.05
0.14
2.0

0.0

0.0

0.0

0.05

0.0
-27.0
1.22
0.88
1.08

1.0

1.0

1.08

1.0

1.0

1.0
0.10000
0.15000
0.05000
0.00000
0.00000
1.25000
1.00000
4.00000
1.50000
0.23000
0.23000
0.23000
0.25000
6.00000
0.50000
-10.0000
1000.00

'FSDETH(2)'
'FSDETH(3)'

'FSDETH(4)'
'FALLRT'
'RDRJ'
'RDRM'
'RDSRFC'

'RTDTMP'

'CRPRTF(L)'
'CRPRTF(2)’
'CRPRTF(3)'

'MRTFRAC'

'SNEXMX(1)"

'DEL13C'
'CO2IPR(1)

'CO2ITR(L)'
'CO2ICE(1,1,1)

'CO2ICE(1,1,2)
'CO2ICE(1,1,3)

'CO2ICE(1,2,1)’

'CO2ICE(1,2,2)’
'CO2ICE(1,2,3)’
'CO2IRS(1)

'CKMRSPMX (1)’
'CKMRSPMX(2)'
'CKMRSPMX(3)'
'CMRSPNPP(1)'
'CMRSPNPP(2)'
'CMRSPNPP(3)'
'CMRSPNPP(4)'
'CMRSPNPP(5)'
'CMRSPNPP(6)'
'CGRESP(1)'
'CGRESP(2)'
'CGRESP(3)'
'NO3PREF(1)'
'CLAYPG'
'CMIX!
"TMPGERM'
'DDBASE’



-20.0

26
500
500
120.0
0.5
0.12
1.0
2.0
0.90
1.2
0.85
0.03
0.4
0.7
0.15
0.0
0.01
1000

“TMPKILL'
'BASETEMP"
'BASETEMP(2)'
'MNDDHRV'
'MXDDHRV'
'CURGDYS'
'CLSGRES'
'CMXTURN'
'NPP2CS(1)'
'CAFUE'
'EMAX'
'KCET'
'KLIGHT'
'SLA'
'LEAFCL'
'LEAFEMERG'
'LEAFMX'
'LEAFPM'
'DDEMERG'
'DDLAIMX'

Horsham, Victoria, Australia

Wheat

SW3AU spring wheat build on: W3F5

Wheat, GDD, new LAI

0.16
20.0
40.0
0.7

5.0

0.0
1800.0
40
150.0
5.00000
0.4
0.03
60.0

'PRDX(1)’

'PPDF(1)'
'PPDF(2)'
'PPDF(3)'
'PPDF(4)’
'BIOFLG'
'‘BIOKS5'
'PLTMRF'
'FULCAN'
'FRTCINDX'
'FRTC(1)'
'FRTC(2)'
'FRTC(3)' days
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0.05
0.1
0.4
0.25
0.6
0.1
300.0
14.0
100.0
100.0
28.0
160.0
200.0
40.0
200.0
230.0
120.0
260.0
270.0
45.0
390.0
340.0
0.0
0.0
0.0
60.0
420.0
420.0
0.0
0.0
0.0
0.15
0.0
0.06
0.0
0.06
0.0
0.52
0.50
1.0

'FRTC(4)
'FRTC(5)
'CFRTCN(L)

'CFRTCN(2)'
'CFRTCW(L)'
'CFRTCW(2)'
'BIOMAX'
'PRAMN(L,1)
'PRAMN(2,1)
'PRAMN(3,1)
'PRAMN(L,2)
'PRAMN(2,2)
'PRAMN(3,2)’
'PRAMX(1,1)’

'PRAMX(2,1)’

'PRAMX(3,1)’

'PRAMX(1,2)’

'PRAMX(2,2)’

'PRAMX(3,2)’

'PRBMN(Z,1)

'PRBMN(2,1)

'PRBMN(3,1)
'PRBMN(L,2)
'PRBMN(2,2)’
'PRBMN(3,2)

'PRBMX(1,1)’

'PRBMX(2,1)’

'PRBMX(3,1)’
'PRBMX(L,2)’
'PRBMX(2,2)’
'PRBMX(3,2)’

'FLIGNI(1,1)’
'FLIGNI(2,1)'
'FLIGNI(L,2)'
'FLIGNI(2,2)’
'FLIGNI(L,3)'
'FLIGNI(2,3)'
'HIMAX'
'HIWSF'
'HIMON(1)'



0.0

0.65

0.6

0.6

0.04

0.0

0.0

0.0
200.0
0.12
0.05
0.05
0.14
2.0

0.0

0.0

0.0

0.05

0.0
-27.0
1.22
0.88
1.08

1.0

1.0

1.08

1.0

1.0

1.0
0.10000
0.15000
0.05000
0.00000
0.00000
1.25000
1.00000
4.00000
1.50000
0.23000
0.23000

'HIMON(2)'
'EFRGRN(1)’
'EFRGRN(2)'
'EFRGRN(3)’
'VLOSSP'
'FSDETH(L)'
'FSDETH(2)'
'FSDETH(3)'
'FSDETH(4)'
'FALLRT'
'RDRJ'
'RDRM'
'RDSRFC'
'RTDTMP'
'CRPRTF(1)'
'CRPRTF(2)'
'CRPRTF(3)'
'MRTFRAC'
'SNFXMX(L)'
'DEL13C'
'CO2IPR(L)'
'CO2ITR(L)'
'CO2ICE(1,1,1)
'CO2ICE(1,1,2)’
'CO2ICE(1,1,3)
'CO2ICE(1,2,1)
'CO2ICE(1,2,2)
'CO2ICE(1,2,3)
'CO2IRS(1)
'CKMRSPMX(1)'
'CKMRSPMX(2)'
'CKMRSPMX(3)'
'CMRSPNPP(1)’
'CMRSPNPP(2)’
'CMRSPNPP(3)’
'CMRSPNPP(4)’
'CMRSPNPP(5)'
'CMRSPNPP(6)'
'CGRESP(1)'
'CGRESP(2)'
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0.23000 'CGRESP(3)'
0.25000 'NO3PREF(1)'
6.00000 'CLAYPG'
0.50000 'CMIX!
-10.0000 ‘TMPGERM'
900.00 'DDBASE'
-20.0 "TMPKILL'

5 'BASETEMP'
26 'BASETEMP(2)'
500 'MNDDHRV
500 'MXDDHRV
120.0 'CURGDYS'
0.5 'CLSGRES'
0.12 'CMXTURN'
1.0 'NPP2CS(1)
2.0 'CAFUE'

0.90 'EMAX'

1.2 'KCET

0.85 'KLIGHT"
0.03 'SLA'

0.4 'LEAFCL'

0.7 'LEAFEMERG'
0.15 'LEAFMX’

0.0 'LEAFPM'

0.01 'DDEMERG"
1000 'DDLAIMX’

Shizukuishi, lwate, Japan
Rice

RICL spring wheat build on: W3F5
Wheat, GDD, new LAI

0.145 'PRDX(L)'
30.0 'PPDF(L1)
45.0 'PPDF(2)
1.0 'PPDF(3)
2.50 'PPDF(4)
0.0 'BIOFLG'
1800.0 'BIOKS5'



40
150.0
5.0
0.4
0.03
60.0
0.0001
0.0001
0.4
0.25
0.6
0.1
700.0
20.0
100.0
100.0
40.0
160.0
200.0
40.0
200.0
230.0
120.0
260.0
270.0
45.0
390.0
340.0
0.0
0.0
0.0
60.0
240.0
240.0
0.0
0.0
0.0
0.15
0.0
0.06

'PLTMRF'
'FULCAN'
'FRTCINDX'
'FRTC(1)'
'FRTC(2)'
'FRTC(3)' days
'FRTC(4)'
'FRTC(5)'
'CFRTCN(1)'
'CFRTCN(2)'
'CFRTCW(1)'
'CFRTCW(2)'
'BIOMAX'
'PRAMN(1,1)'
'PRAMN(2,1)'
'PRAMN(3,1)'
'PRAMN(1,2)'
'PRAMN(2,2)'
'PRAMN(3,2)'
'PRAMX(1,1)'
'PRAMX(2,1)'
'PRAMX(3,1)'
'PRAMX(1,2)'
'PRAMX(2,2)'
'PRAMX(3,2)'
'PRBMN(1,1)'
'PRBMN(2,1)'
'PRBMN(3,1)'
'PRBMN(1,2)'
'PRBMN(2,2)'
'PRBMN(3,2)'
'PRBMX(1,1)’
'PRBMX(2,1)'
'PRBMX(3,1)'
'PRBMX(1,2)'
'PRBMX(2,2)'
'PRBMX(3,2)’
'FLIGNI(1,1)’
'FLIGNI(2,1)’
'FLIGNI(1,2)’
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0.0
0.06
0.0
0.45
0.5
1.0
0.0
0.65
0.6
0.6
0.04
0.0
0.0
0.0
200.0
0.12
0.05
0.05
0.14
2.0
0.0
0.0
0.0
0.05
0.0
-27.0
1.21
0.75
1.05
1.0
1.0
1.05
1.0
1.0
1.0
0.1
0.150
0.050
0.0
0.0

'FLIGNI(2,2)'
'FLIGNI(1,3)’
'FLIGNI(2,3)'
'HIMAX'
'HIWSF'
'HIMON(L)'
'HIMON(2)’
'EFRGRN(L)
'EFRGRN(2)’
'EFRGRN(3)’
'VLOSSP'
'FSDETH(L)
'FSDETH(2)'
'FSDETH(3)'
'FSDETH(4)'
'FALLRT'
'RDRJ'

'RDRM"
'RDSRFC'
'RTDTMP"
'CRPRTF(1)'
'CRPRTF(2)'
'CRPRTF(3)'
'MRTFRAC'
'SNFXMX(1)'
'DEL13C'
'CO2IPR(1)'
'CO2ITR(L)'
'CO2ICE(1,1,1)
'CO2ICE(1,1,2)
'CO2ICE(1,1,3)
'CO2ICE(1,2,1)
'CO2ICE(1,2,2)'
'CO2ICE(1,2,3)'
'CO2IRS(1)'
'CKMRSPMX (1)’
'CKMRSPMX(2)'
'CKMRSPMX(3)'
'CMRSPNPP(1)'
'CMRSPNPP(2)’



1.250 'CMRSPNPP(3)’
1.0 'CMRSPNPP(4)'
4.0 'CMRSPNPP(5)'
1.5 'CMRSPNPP(6)'
0.230 'CGRESP(L)'
0.230 'CGRESP(2)'
0.230 'CGRESP(3)'
0.250 'NO3PREF(1)
6.0 'CLAYPG'

0.5 'CMIX
-10.0000 TMPGERM'
1200.00 'DDBASE'
-20.0 TMPKILL'

5 'BASETEMP'

26 'BASETEMP(2)’
800 'MNDDHRV
800 'MXDDHRV'
120.0 ‘CURGDYS'
0.5 'CLSGRES'
0.12 'CMXTURN!
1.0 'NPP2CS(1)
2.0 'CAFUE'

0.9 'EMAX'

1.2 'KCET'

0.85 'KLIGHT'

0.03 'SLA'

0.4 'LEAFCL'

0.7 'LEAFEMERG'
0.15 'LEAFMX'

0.0 'LEAFPM'

0.01 'DDEMERG'
1200 'DDLAIMX’

Changping, Beijing, China

Soybean

SYBNCH soybeans built on: SY02
Soybeans Mead2
0.11 'PRDX(1)' 6/15/10 SAW 0.65

20.0 'PPDF(1)'

35.0 'PPDF(2)' 40 8/20/10 SAW
1.0 'PPDF(3)'

2.5 'PPDF(4)'

0.0 '‘BIOFLG'

1800.0 '‘BIOKS'

14 'PLTMRF'

150.0 'FULCAN'

5 'FRTCIN'

0.35 'FRTC(1)' 6/8/10 SAW 0.5 .4
0.05 'FRTC(2)' 0.1 8/13/10 SAW
60.0 'FRTC(3)' days

0.1 'FRTC(4)' 6/8/10 SAW 0.2
0.1 'FRTC(5)'

0.4 'CFRTCN(1)'

0.25 'CFRTCN(2)'

0.5 'CFRTCW(1)'

0.1 'CFRTCW(2)'

200.0 '‘BIOMAX'

5.0 'PRAMN(1,1)'

150.0 'PRAMN(2,1)'

100.0 'PRAMN(3,1)'

15.0 'PRAMN(1,2)'

150.0 'PRAMN(2,2)'

100.0 'PRAMN(3,2)'

15.0 'PRAMX(1,1)'

230.0 'PRAMX(2,1)'

100.0 'PRAMX(3,1)'

30.0 'PRAMX(1,2)’

230.0 'PRAMX(2,2)'

100.0 'PRAMX(3,2)’

24.0 'PRBMN(1,1)'

390.0 'PRBMN(2,1)'

100.0 'PRBMN(3,1)'

0.0 'PRBMN(1,2)'

0.0 'PRBMN(2,2)'

000.0 'PRBMN(3,2)'

32.0 'PRBMX(1,1)’

420.0 'PRBMX(2,1)’

100.0 'PRBMX(3,1)’



0.0
0.0
000.0
0.12
0.0
0.06
0.0
0.06
0.0
0.28
0.5
1.0
0.0
0.70
0.57 .75
0.6
0.6
0.04
0.0
0.0
0.0
500.0
0.1
0.5
0.15
0.14
2.0
0.0
0.0
0.0
0.05
0.0600
-27.0
1.12
0.58
1.0
1.0
1.0
1.0
1.0

'PRBMX(1,2)’
'PRBMX(2,2)’
'PRBMX(3,2)’
'FLIGNI(L,1)"
'FLIGNI(2,1)'
'FLIGNI(L,2)’
'FLIGNI(2,2)’
'FLIGNI(L,3)'
'FLIGNI(2,3)'

'HIMAX' 6/8/10 SAW 0.31
'HIWSF' 0.25 8/13/10 SAW .5
'HIMON(1)' 6/18/10 SAW 2
'HIMON(2)' 6/18/10 SAW 1
'EFRGRN(1)' 6/16/10 SAW

'EFRGRN(2)’
'EFRGRN(3)’
'VLOSSP'
'FSDETH(L)'
'FSDETH(2)'
'FSDETH(3)'
'FSDETH(4)'
'FALLRT'
'RDRJ'
'RDRM'
'RDSRFC'
'RTDTMP"
'CRPRTF(1)'
'CRPRTF(2)'
'CRPRTF(3)'
'MRTFRAC'
'SNFXMX(L)
'DEL13C'
'CO2IPR(L)'
'CO2ITR(L)'
'CO2ICE(1,1,1)'
'CO2ICE(1,1,2)
'CO2ICE(1,1,3)
'CO2ICE(1,2,1)
'CO2ICE(1,2,2)
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1.0

1.0
0.10000
0.15000
0.05000
0.00000
0.00000
1.25000
1.00000
4.00000
1.50000
0.23000
0.23000
0.23000
0.50000
6.00000
0.50000
-17.0000
500.0
-2.0

10

30

700

700
120.0
0.5

0.12

1.0

2.0

0.90

11

0.6
0.025
0.7

0.85
0.30
0.00
103

900

'CO2ICE(1,2,3)
'CO2IRS(1)

'CKMRSPMX (1)’
'CKMRSPMX(2)'
'CKMRSPMX(3)'
'CMRSPNPP(1)'
'CMRSPNPP(2)'
'CMRSPNPP(3)'
'CMRSPNPP(4)'

'CMRSPNPP(5)’
'CMRSPNPP(6)’
'CGRESP(1)’
'CGRESP(2)’
'CGRESP(3)’
'NO3PREF(1)'
'CLAYPG'
'CMIX'
‘TMPGERM'
'DDBASE'
“TMPKILL'
'BASETEMP"
'BASETEMP(2)’
'MNDDHRV" 100
'MXDDHRV' 400
'CURGDYS'
'CLSGRES
'CMXTURN'
'NPP2CS(1)'
'CAFUE'
'EMAX'
'KCET'
'KLIGHT'
'SLA'
'LEAFCL'
'LEAFEMERG'
'LEAFMX'
'LEAFPM'
'DDEMERG'
'DDLAIMX’



Wheat 0.0 'PRBMN(2,2)

0.0 'PRBMN(3,2)'
W3 winter wheat build on: W3F5 Wheat, 60.0 'PRBMX(1,1)'
GDD, new LAI 420.0 'PRBMX(2,1)'
0.23 'PRDX(1)' 420.0 'PRBMX(3,1)’
20.0 'PPDF(1)' 0.0 'PRBMX(1,2)'
40.0 'PPDF(2)' 0.0 'PRBMX(2,2)'
0.7 'PPDF(3)' 0.0 'PRBMX(3,2)'
5.0 'PPDF(4)' 0.15 'FLIGNI(1,1)'
0.0 'BIOFLG' 0.0 'FLIGNI(2,1)'
1800.0 '‘BIOKS5' 0.06 'FLIGNI(1,2)'
40 'PLTMRF' 0.0 'FLIGNI(2,2)'
150.0 'FULCAN' 0.06 'FLIGNI(1,3)'
6.00000 'FRTCINDX' 0.0 'FLIGNI(2,3)'
0.4 'FRTC(1)' 0.5 'HIMAX'
0.03 'FRTC(2)' 0.50 'HIWSF'
60.0 'FRTC(3)" days 1.0 'HIMON(2)'
0.1 'FRTC(4)' 0.0 'HIMON(2)'
0.1 'FRTC(5)' 0.65 'EFRGRN(1)'
0.4 'CFRTCN(1)' 0.6 'EFRGRN(2)'
0.25 'CFRTCN(2)' 0.6 'EFRGRN(3)’
0.6 'CFRTCW(1)' 0.04 'VLOSSP'
0.1 'CFRTCW(2)' 0.0 'FSDETH(1)'
300.0 'BIOMAX' 0.0 'FSDETH(2)'
14.0 'PRAMN(1,1)' 0.0 'FSDETH(3)'
100.0 'PRAMN(2,1)' 200.0 'FSDETH(4)'
100.0 'PRAMN(3,1)' 0.12 'FALLRT'
28.0 'PRAMN(1,2)' 0.05 'RDRJ'
160.0 'PRAMN(2,2)' 0.05 'RDRM'
200.0 'PRAMN(3,2)' 0.14 'RDSRFC'
40.0 'PRAMX(1,1)' 2.0 '‘RTDTMP'
200.0 'PRAMX(2,1)" 0.0 'CRPRTF(1)’
230.0 'PRAMX(3,1)' 0.0 'CRPRTF(2)'
120.0 'PRAMX(1,2)' 0.0 'CRPRTF(3)
260.0 'PRAMX(2,2)' 0.05 'MRTFRAC'
270.0 'PRAMX(3,2)' 0.0 'SNFXMX(1)'
45.0 'PRBMN(1,1)' -27.0 'DEL13C'
390.0 'PRBMN(2,1)’ 1.22 'CO2IPR(1)'
340.0 'PRBMN(3,1)’ 0.88 'CO2ITR(1)'
0.0 'PRBMN(1,2)' 1.08 'CO2ICE(1,1,1)'
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1.0 '‘CO2ICE(1,1,2)' 800.00 'DDBASE'

1.0 'CO2ICE(1,1,3)' -20.0 "TMPKILL'
1.08 'CO2ICE(1,2,1) 5 'BASETEMP'
1.0 'CO2ICE(1,2,2)’ 26 'BASETEMP(2)'
1.0 'CO2ICE(1,2,3)' 200 'MNDDHRV'
1.0 'CO2IRS(1)' 200 'MXDDHRV'
0.10000 'CKMRSPMX(1)' 120.0 'CURGDYS'
0.15000 'CKMRSPMX(2)' 0.5 'CLSGRES'
0.05000 'CKMRSPMX(3)' 0.12 'CMXTURN'
0.00000 'CMRSPNPP(1)' 1.0 'NPP2CS(1)
0.00000 'CMRSPNPP(2)' 2.0 'CAFUE'
1.25000 'CMRSPNPP(3)' 0.90 'EMAX'
1.00000 'CMRSPNPP(4)' 1.2 'KCET
4.00000 'CMRSPNPP(5)' 0.85 'KLIGHT'
1.50000 'CMRSPNPP(6)' 0.06 'SLA'
0.23000 'CGRESP(1)' 0.4 'LEAFCL'
0.23000 'CGRESP(2)' 0.7 'LEAFEMERG'
0.23000 'CGRESP(3) 0.15 'LEAFMX'
0.25000 'NO3PREF(L)' 0.0 'LEAFPM'
6.00000 'CLAYPG' 0.01 'DDEMERG'
0.50000 'CMIX! 800 'DDLAIMX’
-10.0000 ‘TMPGERM'
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