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ABSTRACT OF THESIS 

 

 

EVALUATION OF STRATEGIES FOR ERADICATION OF AUJESZKY’S DISEASE 

(PSEUDORABIES) IN COMMERCIAL SWINE FARMS IN CHIANG-MAI AND 

LAMPOON PROVINCES, THAILAND 

  

Several strategies for eradicating Aujeszky’s disease (Pseudorabies) in Chiang-

Mai and Lampoon Provinces, Thailand, were compared using a computer simulation 

model, the North American Animal Disease Spread Model (NAADSM). The duration of 

the outbreak, the number of infected herdss and the number destroyed herds were 

compared during these simulated outbreaks. Destruction, zoning for restricted 

movement and improved detection and vaccination strategies were studied. 

 

 Destruction was found to be the most effective method to eradicate 

Pseudorabies. Although zoning and ring vaccination did not influence this model, the 

recommendations from this study are to apply both destruction and three zone (3, 8 and 

16 kilometers) restricted movements along with enhanced detection and a 16 

vaccination ring. 

 Naree Ketusing 
 Department of Clinical Sciences 
 Colorado State University 
 Fort Collins, CO 80523 
 Summer 2010 
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CHAPTER 1 
 

INTODUCTION AND OBJECTIVE OF THESIS 
 

Aujeszky’s Disease Virus (ADV), also known as Pseudorabies virus 

(PRV), belongs to the subfamily Alphaherpesvirinae within the family 

Herpesviridae. This virus is responsible for causing severe economic losses 

to the swine industry worldwide.  The disease was described in cattle in the 

United States as early as 1813 (Penseart and Kluge, 1989), but the etiology of 

ADV was first recognized as a nonbacterial agent in Hungary in 1902 

(Aujeszky, 1902). Subsequently, ADV has emerged as an important disease 

in most areas of the world where pigs are raised. Clinical signs of ADV are 

variably characterized by central nervous system (CNS) signs in older pigs 

and reproductive failure in pregnant animals. Although pigs represent the only 

natural reservoir for ADV and serve as a source of infection for other species, 

most mammals, except horses and higher primates including human beings, 

are susceptible and show clinical signs of the disease with the potential to be 

fatal (Wittmann and Rziha, 1989). 

In spite of ADV eradication efforts in several countries, outbreaks of 

Aujeszky’s Disease (AD) are still reported in some countries. The evident 

increase in disease severity, prevalence, and worldwide distribution could be 

due to several possibilities. First, new viral strains have emerged; second, the 

disease may be aggravated by an interaction between ADV and other 

pathogens; third, animal movement and modern transportation may help 

spread the disease; and lastly, changes in swine management may provide a 
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suitable environment that makes it easy for the virus to maintain and spread 

within or among herds (Thanawongnuwech, 2002).  

  Control policies and eradication programs vary among countries. A 

control program is intended to reduce the prevalence of ADV-infected herds to 

a biologically and/or an economically justifiable level. An eradication program 

is endorsed with an initial aim of eliminating the virus from a specific area in 

order to reach the final goal of an ADV-free country. Many Asian countries 

choose to ignore the presence of ADV and have no official control policy. 

Thus, local veterinarians are responsible for implementing control programs 

with the pig producers. If no formal policy is in place, the end result could be 

the spread of ADV among swine herds, vaccine expenditures continuing for 

an indefinite time, economic losses due to reduced productivity, and fatalities 

in other domestic species living in proximity to the infected herds.  Therefore, 

guidelines must be established to control the spread of ADV between herds 

and to reduce its prevalence within infected herds.  

Since the first outbreak of ADV in Thailand in 1980, there is evidence 

that showed the virus was still circulating in the swine population. Currently, 

Thailand has not yet employed an eradication plan. Therefore, the objectives 

of this study were to evaluate the Pseudorabies virus (Aujeszky’s Disease) 

eradication program in commercial swine operations and to estimate its 

effectiveness in the northern region of Thailand, specifically Chiang-mai and 

Lampoon Provinces, by using infectious disease modeling instead of 

experimental studies. Data sources are from retrospective studies of foot-and-

mouth disease surveillance in these two areas.  
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The specific objectives of this study were to compare three eradication 

strategies—destruction strategy (destruction and no destruction of 

animals/herds infected), zoning or animal movement restriction strategy (no 

zoning, three and eight kilometers zoning, and three, eight, and 16 kilometers 

zoning), and vaccination strategy (no vaccination, vaccination within eight 

kilometers ring, and vaccination within 16 kilometers rings). 

 



CHAPTER 2 
 

REVIEW OF LITERATURE 
 

Introduction 

Pseudorabies, also known as Aujeszky’s Disease (AD) or mad itch 

(Gustafson, 1986), is an important economic problem in the swine industry. 

The disease is characterized by three overlapping syndromes involving the 

CNS, respiratory system or reproductive system (Taylor, 1999) that vary 

among different age groups. Many parts of the world have Pseudorabies as 

an endemic disease; however, most of those countries have developed 

numerous programs for eradication. 

 

Etiology 

Pseudorabies is a viral disease, DNA herpesvirus-1. As a general rule, 

herpes viruses are composed of double-stranded, linear DNA genomes 

enclosed with an icosahedral capsid, and they often persist in a latent state in 

animals that have recovered from the disease (Pomeranze et al., 2005).  

Although swine are the reservoir for this virus, it can affect other 

domestic animal species (cattle, sheep, goats, horses, dogs, cats), as well as 

wild animals (rats, mice, raccoons, opossums, rabbits, coyotes, several fur-

bearing mammals and others), except higher primates and humans. 

 

Viral characteristics 

The virus is shed in the saliva and nasal secretions. It can be 

transmitted via direct contact, nose-to-nose or the fecal-oral route. Indirect 
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transmission via inhalation of aerosolized virus and transmission by fomites 

also commonly occurs. 

Virus survival depends on environmental factors, such as humidity, 

temperature and pH. The virus can survive for seven hours in air with a 

relative humidity of 55% or greater and can spread up to two kilometers. 

Other studies have demonstrated that the virus can persist in nonchlorinated 

well water for up to seven hours, for two days in green grass, soil, and feces, 

for three days in contaminated feed, and for four days in straw bedding 

(Merial Ltd., 2008). In most instances, the virus probably does not survive 

more than two weeks outside the pig, except during cold weather when the 

virus may survive for up to 15 weeks. Because the virus is enveloped, it can 

be inactivated by drying, sunlight and high temperatures (≥ 37°C). 

Furthermore, it can be destroyed by many disinfectants, including orthophenyl 

phenol, quaternary ammonium compound, iodine compound and 5% sodium 

hydroxide. 

 

Clinical Signs 

Signs vary depending on the immune status and age of the pig, the 

viral strain, and the infectious dose. Younger swine infected with PRV typically 

show CNS signs while older swine more often show signs of respiratory 

disease.  

For suckling pigs the incubation period of PRV is two to four days. 

Piglets have a loss of appetite, a fever, and are uninterested in their 

environment. Within 24 hours the piglets will dramatically develop signs of 

CNS infection including trembling, excessive salivation, incoordination, ataxia, 
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and seizures. They will die within 24 to 36 hours after showing CNS signs. 

The mortality rate for this group is extremely high, almost 100%.  

Weaned pigs, aged three to nine weeks, tend to develop the same 

severe signs as described for suckling pigs. However, the mortality rate for 

weaned pigs is lower than for suckling pigs. Typically 50% of infected three to 

four week old animals die. Pigs five to ten weeks old develop lethargy, 

anorexia, and fever (41 to 42°C) within three to six days of infection. Infected 

animals often exhibit respiratory signs such as sneezing, nasal discharge, a 

severe cough, and difficulty breathing. Pigs with respiratory illness often lose 

body weight, leading to economic losses for commercial swine farms. Pigs will 

recover after five to ten days once the fever and anorexia resolve. Protection 

against secondary infection can reduce the mortality rate such that it rarely 

exceeds 10%.  

In adult swine the typical signs of PRV infection involve the respiratory 

system, although some show CNS abnormalities. The morbidity is quite high 

(approaching 100% of infected animals), whereas the mortality is relatively 

low (1 to 2% of infected animals). Clinical signs appear in three to six days 

and include a febrile response (41 to 42°C), listless behavior, loss of appetite 

with accompanying weight loss, and mild-to-severe respiratory signs. These 

animals will typically exhibit rhinitis as evidenced by sneezing and nasal 

discharge. The respiratory illness may develop to pneumonia with a harsh 

cough and difficult breathing. Clinical signs are usually present for six to ten 

days followed by a rapid recovery.  

Sows in the first trimester of pregnancy will usually reabsorb the 

fetuses in utero. If infection occurs within the second and third trimester, it can 
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lead to abortion, stillbirths, or weak piglets that die within 48 hours of birth. 

Some piglets may even be normal at birth, while others are weak and some 

are stillborn due to transplacental transmission of the PRV. The incidence of 

reproductive failure is low, being 20% or less of pregnant swine (Kluge et al., 

1999).  

 

Epidemiology 

The first PRV outbreak reported in Asia was in China in the 1950s (Li 

and Guo, 1994). As time progressed the disease gained access to other 

Asian countries including Taiwan in 1971 (Lin et al., 1972), Malaysia in 1976 

(Lee et al., 1979), Singapore in 1977 (Koh et al., 1979), Thailand in 1977 

(Sunyasootcharee et al., 1978), Japan in 1981 (Fukusho, 1982), Philippines in 

1985 (Marero, 1985), and South Korea in 1987 (Kim et al., 1988). 

PRV may have spread to these Asian countries through the importation 

of PRV-infected breeding stock. The first outbreak in Japan was associated 

with the importation of sows from The Netherlands (Fukusho, 1982).  Based 

on the results of the restriction endonuclease assay of the viral genome, 

PRVs isolated from Japan (Yamagata-S81 strain) and Thailand (NK strain) 

are similar to the virus found in central Europe (Nishimori et al., 1987; 

Yamada et al., 1992).  

Movement of infected animals appears to be a major obstacle for 

disease control. Several outbreaks in Thailand were reported by local 

veterinarians and regional laboratories following the first outbreak in the 

centrally located Nakornpratom province (Sunyasootcharee et al., 1980; 
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Suksaithaichana et al., 1984). A similar scenario was observed in other Asian 

countries (Lee and Lin, 1975; Lee et al., 1979; Lou and Yang, 1997).  

Several Asian countries have regions of high PRV prevalence (Wang, 

et al., 1996; Jasbir et al., 1998; Liao et al., 1999; Damrongwatanapokin et al., 

2000), with the exception of Japan and South Korea (Lyoo et al., 1997) that 

have a low prevalence. In Japan the Pseudorabies incidence has been limited 

by an official control program, but persists in certain areas. The use of gE-

deleted vaccines and differential enzyme-linked immunosorbent assay 

(ELISA) kits in Thailand has made it possible to determine PRV 

seroprevalence in that country’s swine population since 1987 (Urairong et al., 

1994). The PRV seroprevalence appeared to decline after more producers 

incorporated the attenuated gE-deleted vaccine into their vaccination program 

(Urairong et al., 1994). A recent report by Damrongwatanapokin et al. (2000) 

found that the estimated prevalence of PRV in Thailand was more than 40%, 

particularly in the breeding stock, within some high-density pig-farming areas; 

however, the prevalence of PRV infection in most fattening pig farms was 

lower than 30%. Based on year 2000 information from the Veterinary 

Diagnostic Laboratory at Chulalongkorn University in Thailand, more than 

70% of swine herds that submitted sera for PRV gE ELISA had serological 

evidence of infection by a field PRV.  A very high proportion of pigs with PRV 

become latently infected (Sabo, 1985); therefore, latently infected gilts 

entering the breeding pool may serve an important role in persistent herd 

infections. No existing PRV vaccine can completely prevent latency in the 

face of a superinfection, i.e., massive exposure with virulent virus. Thus 

reactivation of the infection in a latently infected animal might result in a high 
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proportion of a population becoming infected with field strain virus or a variant 

virulent virus without being detected. 

 

Prevention and Control 

Control and eradication programs are variable. The most precise 

program involves a no-vaccination strategy. In some cases, vaccination with 

differential vaccines is used and sometimes combined with the testing and 

slaughter of infected pigs. And, in some cases, there is no regulation of 

Pseudorabies. Unfortunately only a few Asian countries, including Japan and 

Taiwan, currently have official control policies (Fujita, 1994; Sung and Yang, 

1994). In Taiwan, a program was initiated involving the use of hyperimmune 

serum, vaccination, and certain management procedures for the control of 

PRV; this program was established to reduce the number of fatalities and 

reproductive failure caused by PRV outbreaks (Hsu and Lee, 1984). Thailand 

has not yet implemented a control program but intends to do so in the near 

future.  

Early efforts to control the disease include work in Malaysia on the use 

of a formalin-inactivated vaccine in pigs and sheep that, experimentally, 

produced satisfactory protection (Lee et al., 1979). However, oil-adjuvant 

inactivated vaccine did not work well in Singapore (Koh et al., 1979). The 

attenuated PRV vaccine developed for local use in China yielded satisfactory 

results in preventing the disease in pigs, sheep, and cattle (Li and Guo, 1994). 

In Japan, the gE-deletion vaccine was employed beginning in 1993 in Tohoku 

and PRV was eliminated from this area in 1997 (Asai et al., 1998).  

Vaccination has changed the disease status and tremendously reduced 
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serious outbreaks. Because of viral latency and the voluntary nature of 

vaccination and culling, PRV is able to persist even in herds that are regularly 

vaccinated. When regulations and controls are based on the misconception 

that PRV vaccinated pigs exposed to field virus will not become infected and 

will not spread the infection, widespread dissemination of the disease is 

possible. Sporadic PRV outbreaks have been reported in China regardless of 

prophylactic measures (Lou and Yang, 1997; Xu et al., 1997; Tong and Chen, 

1999). Efficient vaccination programs rely on an understanding of the 

limitations of the vaccine and strict controls on the movement of infected and 

exposed pigs, regardless of their vaccination status. Since vaccination is 

voluntary at the farmer’s expense, and since there is no financial aid in the 

case of the outbreak, PRV outbreaks are usually not reported. This situation 

makes control programs impossible in some countries. 

 

Epidemiological Modeling 

As we move through the 21st century, the use of epidemiological 

modeling is increasing dramatically. Models are built to explain and predict 

patterns of disease and to see what is likely to happen if various control 

strategies are adopted. The most efficient disease control program can be 

generated by these precise models. Accurate models also lead to a better 

understanding of the life cycle of infectious agents (Thrushfield, 2005).  

Several studies report the strategies and criteria for controlling and 

eradicating other infectious diseases, and the following are some examples 

that use modeling as a tool. Schoenbaum and Disney (2003) used a 

stochastic model to simulate outbreaks of foot-and-mouth disease (FMD) and 
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to recommend a mitigation strategy in the United States. A similar study was 

performed in Japan by Tsutsui et al. (2003) in following an outbreak in 2000. 

In addition, Wongsathapornchai et al. (2008) used a compartment model (the 

SLIRV model) in 2008 to evaluate control of FMD in southern Thailand. 

Stochastic modeling has also been used to evaluate the effectiveness of 

control measures for Johne’s disease in dairy herds (Lu et al., 2010). In The 

Netherlands a computer simulation model was used to support policy making 

in the control of Pseudorabies (Buijtels et al., 1997). Researchers used 

modeling to aid in making disease import decisions regarding risky animal 

(Disney et al., 2003).  

An epidemiological model can also be used to evaluate national 

surveillance programs and improve surveillance for infected and uninfected 

countries. For example, Pratley et al. (2007) used the BSurvE model to 

evaluate the national surveillance programs for bovine spongiform 

encephalopathy in an unspecified European country. The use of simulation 

modeling can save money and time.  It was a valuable aid in interpreting the 

serological test in a survey study of Newcastle Disease (ND) in Switzerland 

and resulted in easier decision making regarding ND control and surveillance 

there and in other countries (Gohm et al., 1999). Sometimes models are 

employed to examine retrospective data in order to clarify historical 

epidemiological or risk analysis for the spread of disease. Examples of 

retrospective or historical modeling of emerging zoonoses include model 

analysis of Ebola outbreaks in Congo and Uganda (Chowell et al., 2004) and 

model analysis of the spread of bovine viral diarrhea in beef herds (Smith et 

al., 2010).  
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Modeling can aid the decision making process relative to control or 

eradication of animal disease, predicting disease incidence or prevalence, 

testing epidemiological hypotheses, monitoring health programs and to 

manipulate society or influence people (Salman, 2009). Models built to 

simulate an outbreak have the distinct advantage of being relatively 

inexpensive compared to actual disease outbreaks. They can be used to 

determine how a system might respond to different events or interventions 

and provide an alternative experimental approach. Models may be used to 

assess disease behavior under a variety of conditions and to compare the 

efficacy of different disease control strategies (Reeves, 2009). Also, models 

attempt to mimic processes that occur within a system. They emphasize 

realism rather than mathematical rigor (Miller, 1976). However, the models 

also have their limitations. It is impossible to create a fully accurate model, 

although more reliable data will result in a more precise model.  There are 

some characteristics and components of disease or even of host behavior 

which are still unknown. Models are not able to predict precisely the term of 

the epidemic or which animals will be infected, but a model may provide 

confidence intervals for epidemic behavior and establish the risk of infection 

(Keeling and Rohani, 2008). Although most pathogens have several hosts, 

most modeling studies are limited to examining one host and one pathogen 

(Keush et al., 2009).       
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CHAPTER 3 

 
 

EVALUATION OF STRATEGIES FOR ERADICATION OF AUJESZKY’S 

DISEASE (PSEUDORABIES) IN COMMERCIAL SWINE FARMS IN 

CHIANG-MAI AND LAMPOON PROVINCES, THAILAND 

 

INTRODUCTION 

Aujeszky’s disease (AD), also known as Pseudorabies, is a major 

economic threat to swine producers all over the world. This is a viral disease, 

and the clinical signs vary with the age of the animal at the time of infection. 

The Pseudorabies virus (PRV) belongs to the Alphaherpesvirinae subfamily of 

the Herpesviridae family of viruses (Mettenleiter, 2000). In piglets, 

Pseudorabies infection can result in a disorder of the central nervous system. 

In weaners and fatteners the respiratory system is primarily affected, but the 

nervous system may also be involved.  When boars and sows are infected, 

AD may result in disorders of the reproductive system. Swine are known to be 

a reservoir of the Pseudorabies virus and serve as a source of infection for 

most mammals with the exception of primates and humans (Pejsak and 

Truszcyński, 2006). 

The first description of Pseudorabies in the USA was made as early as 

1813, and cattle were reported to have severe itching; this gave rise to mad 

itch as a name for the disease. In 1902 Aladar Aujeszky isolated this virus 

from a dog, ox, and cat and demonstrated that it caused the same disease in 

swine (Beran, 2002). In Asia the first report of a PRV outbreak occurred in 

China in the 1950s (Li and Guo, 1994).  Later the disease was introduced into 
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other Asian countries, including Thailand in 1977 (Sunyasootcharee et al., 

1978).  

PRV can be found throughout the world, especially in regions with 

dense swine populations including South America, Asia and Europe.  There 

have been no reports of PRV in Norway, Finland or Malta.  The countries of 

Germany, Austria, Sweden, Denmark, The United Kingdom, Canada and New 

Zealand have eradicated the disease from their domestic swine populations. 

The United States domestic swine population has been free from PRV since 

2004. In the countries that are considered free from the PRV, vaccination is 

not allowed.  PRV is still circulating, however, in the wild boar or feral swine 

populations in the United States, Germany, Poland, France, Italy and other 

places (Lipowski and Pejsak, 2002). 

As mentioned above, PRV was first diagnosed in Thailand in 1977 and 

still continues to circulate in the swine population in that country. There is a 

desire to eradicate PRV in Thailand. The Thai government through the 

Department of Livestock Development is considering a plan to review 

available control strategies, and to compare and evaluate which strategies 

would be suitable for Thailand; this would be accomplished utilizing a 

computer simulation model, The North American Animal Disease Spread 

Model.  

The North American Animal Disease Spread Model (NAADSM) was 

created to simulate the spread and control of animal diseases in a population 

of susceptible livestock herds. The characteristics of NAADSM are 

represented at the herd base level rather than at the individual animal level. 

The disease model is a state transition model from susceptible to infected and 

14 
 



immune state (Figure 1). Random stochastic processes are used in each 

simulated outbreak, and the results include a range of possible outcomes 

from each simulation. In a scenario each herd is assigned a particular latitude 

and longitude, and the disease development is shown in daily time steps. 

Furthermore, NAADSM also includes a cost-accounting component that is 

useful for estimating costs related to simulated outbreaks.  Therefore 

NAADSM is a suitable model for evaluating a PRV eradication program in 

commercial swine farms; estimating the effectiveness of a PRV eradication 

program in the northern region of Thailand, in Chiang-mai and Lampoon 

Provinces; estimating the number of vaccine doses needed in the event of a 

Pseudorabies virus outbreak in Chiang-Mai and Lampoon Provinces; and 

estimating the cost to the government for implementing such eradication 

strategies (Further study). 

 
 
Figure 1.  Illustration of the state transition model as simulated by NAADSM. When 
disease occurs within a unit, it moves from one disease state to another. The 
interruption of this cycle may occur upon the implementation of disease control 
mechanisms (Harvey et al., 2007). 
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MATERIALS AND METHODS 

Area, study population  

This study was conducted in the northern region of Thailand, in 

Chiang-Mai and Lampoon Provinces (Figure 2). This area was selected 

because of available detailed data. The study included finishing, farrow-to-

finish, and parent stock swine farms.  

 
Figure 2. Map of Thailand showing the area, within Chiang-Mai and Lampoon 
Provinces covered by the current study. 
 

Source of the data 

Geographical coordinates for commercial swine farms were collected 

by a research team conducting the Study of Prototype of Foot and Mouth 

Disease Free Area in the Chiang Mai - Lampoon Zone and Nan Provinces 
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(Rojanasathein et al., 2004).  Herds were geocoded with a Global Positioning 

system (GPS, Garmin® GPS72) in the World Geodetic System 1984. The 

research team also provided information on the type of herd (finishing farm, 

farrow-to-finish farm and parent stock farm) and census data.  Any duplicate 

data were deleted, and the data were combined if they had the same 

coordinates but a different owner. Farm size was classified by the total 

number of pigs: small (<500), medium (500 to 5000), and large (>5000). 

 

Factors included in the analysis 

This study was conducted under the implicit assumptions that (1) all 

susceptible swine were equally susceptible, (2) all infected swine were equally 

infected and spread the virus throughout the herd, and (3) all PRV-infected 

swine eventually showed clinical signs. Since there have been no previous 

studies of PRV characteristics in Thailand, disease parameters may vary from 

those seen in other countries. 

 

Model structure 

In this study we used The North American Animal Disease Spread 

Model (NAADSM) version 3.1.23. The model is focused on between-herd 

spread, and the herd is used as the modeling unit. To control variables among 

herds, herds were subdivided into three different herd types: parent stock, 

farrow-to-finish, and finishing farm. 
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MODEL PARAMETERS  

1. Disease parameter 

NAADSM is a state spatial model and a herd based model. We 

assigned one state to each simulated herd: susceptible, latent, subclinical 

infectious, clinical infectious, naturally immune, vaccine immune or dead. 

While running the model the herds change among these states. Table 1 

shows the definition of the disease transition states. The model of each 

scenario started with one latent herd and the rest were susceptible. A latently 

infected herd was selected from the central and more densely populated area. 

This central location was selected to provide susceptible herds in all directions 

for secondary spread of PRV. 

Table 1: Definitions of disease transition states used in this model. 

Transition (health) state 
of the herd 

Definition of the health state 
 

Susceptible All animals in the herd are not infected and are able 
to contract the infection. 

Latent 
 

Period between exposure and infectious. Some 
animals in the herd are infected during the time 
before they shed the virus. 
 

Subclinical infectious Some animals in the herd are infected and are 
shedding the virus but exhibit no clinical signs. 

Clinical infectious 
 

Some animals in the herd are infected, shedding 
the virus and having visible clinical signs. 
 

Naturally immune 
 

Animals in the herd have recently recovered from 
the infection and the herd is not susceptible. 
 

Vaccine immune 
 

Animals in the herd have vaccine-induced active 
immunity toward the disease and the herd is not 
susceptible. 
 

Dead All animals in the herd were slaughtered via a 
stamping-out program to control the disease. 
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The disease characteristics and time periods in transition states of PRV 

were modeled based on historical outbreaks, literature reviews and expert 

opinions. Probability density functions were needed to describe the duration of 

each state on a herd level basis (Table 2). Using risk analysis software for 

Excel (@RISK version 4.5) we selected the best probability density function 

by fitting disease characteristics, based on expert opinion, with the study 

population. For each production type, the latent period was assumed to follow 

a log-logistic distribution. The value of alpha, beta and gamma varies by the 

type of production. The farrow-to-finish production values were -0.36, 2.29 

and 2.00, respectively. The finishing production values were -0.42, 2.32 and 

2.15, and the parent stock production values were -0.32, 2.20 and 2.02, 

respectively.  The subclinical infectious period for the farrow-to-finish and 

finishing production type were assumed to follow Gaussian (Normal) 

distributions with a mean and standard deviation of 5.41 and 0.88 days and 

14.43 and 1.19 days, respectively. Parent stock was assumed to follow a 

triangular distribution with minimum, most likely, and maximum of 2.96, 5.00 

and 8.04 days. The clinical infection period was assumed to follow log-logistic 

distribution for all production types with various values for alpha, beta and 

gamma. The farrow-to-finish production type had values of 24.85, 22.49 and 

2.25, while finishing had 27.07, 104.19 and 2.18, and the values for parent 

stock were 13.59, 42.72 and 4.75.   We assumed that every vaccinated herd 

remained immune for the whole year covering the time period according to a 

lognormal distribution (mean and standard deviation of 300 and 60 days). 

Examples of the probability density functions which were used for the disease 

parameters are shown in APPENDIX A. 
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Table 2: Probability density function used for each disease state and production 
type.  Distributions parameters are listed for Log-logistic (gamma, alpha, beta), 
Gaussian (mean, standard deviation), Triangular (minimum, mode, maximum) and 
Lognormal (mean, standard deviation). 

Disease state Production type Value/distribution used 

Latent Farrow-to-finish 
Finishing 
Parent stock 

Log-logistic (-0.36, 2.29, 2.00)  
Log-logistic (-0.42, 2.32, 2.15) 
Log-logistic (-0.32, 2.20, 2.02) 

Subclinical Infectious Farrow-to-finish 
Finishing 
Parent stock 

Gaussian (5.41, 0.88) 
Gaussian (14.31, 1.19) 
Triangular (2.96, 5.00, 8.04) 

Clinical Infectious Farrow-to-finish 
Finishing 
Parent stock 

Log-logistic (24.85, 22.49, 2.25) 
Log-logistic (27.07, 104.19, 2.18) 
Log-logistic (13.59, 42.72, 4.75) 

Immune All production  Lognormal (300, 60) 
 

2. Spread option—contact spread and airborne spread 

2.1 Contact spread 

The spread option in this model simulated three simultaneous spread 

mechanisms: direct contact, indirect contact and airborne spread. Spread of 

infection by direct contact was based on simulated contact or movements of 

animals among infected and susceptible herds. Indirect contact was based on 

simulated contact or movements of people, equipment and vehicles. The 

movement directions were random. Transmission via direct contact, indirect 

contact and airborne spread can occur if the infected unit is subclinically 

infectious or clinically infectious. The disease can spread between different 

production types.  

The contact rate is the average number of shipping or outgoing 

contacts per day from a unit. Normally contact rates are specified 

independently for each pairing of production type; however, in this model we 

assumed the contact rate for each pairing was the same and used contact 
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rates of 0.03 (direct) and 2.1 (indirect). Thus, 0.03 indicates that the average 

number of movements or contacts between herds would occur three times in 

a period of 100 days, and the indirect contact rate means that the average 

number of shipments would be twice (2.1) per day. We used a probability of 

infection transfer of 0.2 (direct) and 0.01 (indirect) (P. Katie, personal 

communication, January 13, 2010); this is the probability that if a contact 

occurs, it will be adequate for transferring the infection.   

The movement directions were random, and the distances of 

movement were based on two probability density functions, one for direct 

contact and the other for indirect contact. The distance distributions for direct 

and indirect contact were assumed to each be a triangular density with a 

minimum, most likely, and maximum of 0, 40, 190 days for direct contact and 

0.5, 25 and 60 days for indirect contact (P. Katie, personal communication, 

January 13, 2010). 

 

2.2 Airborne spread 

An airborne spread or local area spread was simulated based on 

proximity to infected farms. The input parameters included in an airborne 

spread option are wind direction, rate of spread, probability of infection at 1km 

from the source and the maximum distance of spread.  In this study, wind 

spread was assumed to be random (0-360 degrees). The rate of disease 

transfer (based on expert opinion) declined exponentially from the source, and 

the probability of spread per day at 1 km distance was set at 0.5.  
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3. Control strategy–detection, tracing and zoning 

3.1 Detection 

This model can detect only clinically infectious herds. The detection of 

infectious herds was based on two probabilities as input parameters, the 

probability of observing signs and the probability of reporting signs. The 

overall probability of detection was equal to the product of these two 

probabilities. Probability describing detection is given as a time dependence 

function. It is assumed to be 100% specific, with no false positive cases and 

the detected units are automatically quarantined the same day of detection.  

The probability of observing clinical signs represents the probability 

that the farmer or the veterinarian would report suspicious signs of PRV to 

regulatory authorities given that infection had been present in the herd for a 

certain number of days. This probability of observing signs may be set 

individually by production type. For the farrow-to-finish and parent stock 

production types, it was assumed that signs would worsen over 60 days, and 

that  probability would be linear with 1% at day 0, 50% at day 14 and 90% at 

day 60. For the finishing production type the assumption was that signs would 

worsen over 60 days, and that probability of observing and reporting for this 

production type would be linear with 0% at day 0, 15% at day 7 and reaching 

up to 85% at day 60. 

The probability of reporting an observed clinical sign represents the 

probability that the herd would be reported to animal health authorities based 

on the awareness of farmers and veterinarians of a recent outbreak of PRV. 

We assumed that this probability was the same for all production types. Time 

dependence function starts at 88% probability at day 0 and 99% at day 8-14.      
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3.2 Tracing  

In this model, we conducted trace-forward (trace-out) investigation for 

all production types. The tracing occurred immediately and only one step 

forward. If a recipient of contact was successfully traced, it was automatically 

quarantined and may also have been preemptively destroyed. Assuming 

traces were the same for all production types, the trace direct contacts were 

simulated at 60 days before detection with 98% probability of trace success 

and trace indirect contacts were simulated 14 days before detection with 80% 

probability of trace success.  

 

3.3 Zoning (animal movement restriction)  

Zoning (animal movement restriction) involved a circular zone created 

to restrict movement and enhance detection in a surveillance area. Different 

strategies for zoning were studied and added after the destruction strategy. 

The first strategy was no zoning; in this case there was no movement 

restriction and no enhanced detection. Other strategies included a zoning 

radius of three kilometers, eight kilometers and 16 kilometers.  

 The effect of a three kilometer zone radius for all production types was 

to alter the direct movement rate (i.e.,100% at day 0, dramatically decreased 

to 0% at day 2, and maintained at 0% until day 14), the indirect movement 

rate (i.e.,100% at day 0, decreased to 20% at day 3-4, and progressed 

linearly to 25% of day 14), and the probability of detection (i.e., multiplied for 

the probability of observing clinical signs by 2). 

The effect of an eight kilometer zone radius for all production types was 

to alter the direct movement rate (i.e., 100% at day 0, decreased to 25% at 
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day 3-4, and decreased to 1% at day 7), the indirect movement rate (i.e., 

100% at day 0, decreased to 50% at day 3-4, and decreased to 25% day 7) 

and the probability of detection (i.e., multiplied for the probability of observing 

clinical signs by 1). 

The effect of a 16 kilometer zone radius for all production types was to 

alter the probability of detection (i.e. multiplied for the probability of observing 

clinical signs by 1). 

  

6. Eradication strategies—destruction and vaccination  

6.1 Destruction 

The model simulated the destruction of herds detected with PRV for all 

production types. A delay of two days before implementing the destruction 

program was assumed. The destruction capacity was assumed to be up to 

five units per day at day 14. Priorities for destruction were based on detection, 

number of days holding (the greater the number of holding days, the higher 

the priority) and production type (parent stock, farrow-to-finish then finishing 

only). All detected herds were assumed to be destroyed.  

 

6.2 Vaccination 

Vaccination campaigns were simulated in this model for all production 

types. Assuming two diseased units of any production type must be detected 

before the vaccination program begins, a 14-day delay in unit immunity 

followed vaccination. Capacity to vaccinate herds was assumed to be up to 

100 herds per day at day 14 with the vaccination ring having a radius of up to 

16 km. The vaccination priorities were based on reason for vaccination (ring 
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size), production type (parent stock, farrow-to-finish and finish only) and days 

holding. As a limitation of NAADSM version 3.1.23, the vaccine would be 

100% effective in bringing complete immunity to the entire vaccinated herd. 

 

7. Scenarios and output 

Different scenarios were studied in the same demographic population 

of herds, rate of disease spread and disease detection except vaccination and 

zoning strategies. One thousand iterations of each scenario were modeled. 

 This study compared destruction with no destruction strategies, then 

added zoning (by comparing no zone, three and eight kilometers, and three, 

eight and 16 kilometers) and finally added vaccination (by comparing no 

vaccination, vaccination 8 kilometers, and vaccination 16 kilometers). 

Output varied with the primary items of interest including the number of herds 

and animals infected, number of herds detected, number of herds and 

animals vaccinated, and duration of outbreaks in days.  When destruction and 

vaccinations were complete, the outbreak was considered over with no more 

latent or infectious herds.  

 

RESULTS 

The following results were based on 1000 simulated iterations (or 

outbreaks) of each scenario. The 95th percentile of all possible outcomes 

produced by the simulation model was used for summarizing output 

parameters, unless otherwise specifically noted. The strategy initially 

compared was the population-destroy strategy (Table 3). When destruction 

was included in the model, the duration of the outbreak was 165 days. In 

contrast, when the strategy was excluded in the model, the disease becomes 
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endemic (the outbreak was greater than 30,000 days). The total number of 

herds and animals infected decreased by 99% if the model contained the 

population-destroy strategy. 

Table 3: Mean, standard deviation (SD) and the 95 percentile (p95) for the duration 
of outbreak (days), total number of herds infected, and total number animals infected 
over the outbreak (1000 scenarios) by different destruction strategies (no destroy and 
destroy). 

Scenario Output summary No destroy Destroy
Mean >20000 96
SD >10000 51

Duration of outbreak 
(days) 
 p95 >30000 165

Mean 14313 194
SD 2499 17

Total number of herds 
infected over the 
outbreak p95 15418 213

Mean 13297183 177117
SD 2171056 19451

Total number of animals 
infected over the 
outbreak p95 14306444 199702
 

The comparisons of zoning strategies are summarized in Table 4. 

When considering zoning as it was described in the materials and methods, 

the duration of the outbreak varied from 176 to 181 days (approximately six 

months) depending on the scenario. In each of these scenarios, the first day 

of detection for an infected herd was day 20. Disease detection was a 

hundred percent in all scenarios since the model assumed a hundred percent 

specificity of detection.  

When comparing the scenario that included zones of three kilometers 

and eight kilometers with the no-zone (no movement restriction) scenario, the 

length of the outbreak was increased by one day. Approximately 1300 fewer 

animals (with approximately 1% of the total infected animals) and seven fewer 

herds (with approximately 3% of the total infected herds) became infected. 

The total number of detected and destroyed animals and the total number of 
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detected and destroyed herds was decreased 1% and 3%, respectively, when 

the zoning was added. 

Table 4: Mean, standard deviation (SD), and the 95 percentile (p95) of duration of 
outbreak (days), the first day of detection, total number of herds and animals 
infected, detected and destroyed over the outbreak (1000 scenarios) by different 
zoning or animal movement restriction strategies (no zoning, three and eight 
kilometers zoning, and three, eight, and 16 kilometers zoning).  

 

Scenario 
Output summary No zone 3 and 8 

Kilometers 
3, 8 and 16 
kilometers

Mean 117 112  114
SD 43 51  58

Duration of outbreak 
(day) 

p95 176 177  181

Mean 16 16  16
SD 3 3  3

Day of 1st detection of 
infected herd 

p95 20 20  20

Total number of herds 
infected over the 
outbreak 

Mean 
SD 
P95 

221
5

226

206 
13 
219 

203
16
218

   
   

Mean 200241 189359  185702
SD 4201 14961  17496

Total number of 
animals infected over 
the outbreak p95 202401 201147  200949

Mean 221 206  203
SD 5 13  16

Total number of herds 
detected by clinical 
signs over the outbreak p95 226 219  218

Mean 221 206  203
SD 5 13  16

Total number of herds 
destroyed over the 
outbreak p95 226 219  218

Mean 200241 189359  185702
SD 4201 14961  17496
p95 202401 201147  200949

  

Total number of 
animals destroyed over 
the outbreak 
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On the other hand, when including zoning of three kilometers, eight 

kilometers and 16 kilometers, the duration of the outbreak was increased by 

five days based on the 95% percentile of the no-zone scenario. There were 

1500 fewer animals (with approximately 1% of the total infected animals) and 

eight fewer herds (with approximately 4% of the total infected herds) that 

became infected when the zoning was added. The total number of detected 

and destroyed animals and the total number of detected and destroyed herds 

with zoning were, respectively, 1% and 4% less than the total number of 

destroyed animals in the no-zone scenario. In view of vaccination, by 

comparing the eight kilometer and 16 kilometer vaccination ring with no 

vaccination (Table 5), the duration of outbreak was decreased by 16 days 

(6%) for both the eight kilometer ring and the 16 kilometer ring.  

Approximately 2% fewer herds became infected when the vaccination ring 

was eight kilometers and 16 kilometers.  The total number of destroyed herds 

was decreased by 3% with the eight kilometer vaccination ring and 4% with 

the 16 kilometer vaccination ring. The total number of vaccinated herds in the 

eight kilometer vaccination ring was 420. When the ring size was increased to 

16 kilometers the total number of vaccinated herds increased by 6%. 
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Table 5:  Mean, standard deviation (SD), and the 95 percentile (p95) of duration of 
outbreak (days), total number of herds and animals infected, destroyed, and 
vaccinated over the outbreak (1000 scenarios) by different vaccination strategies (no 
vaccination, vaccination within eight kilometers ring and vaccination within 16 
kilometers ring). 

 

Scenario 
Output summary No vac 8Km 16Km

Mean 114 99  96
SD 58 77  51

Duration of outbreak 

p95 181 165  165

Total number of herds 
infected over the 
outbreak 

Mean 
SD 
p95 

203
16
218

194 
17 
214 

194
17
213

Mean 185702 177125  177117
SD 17496 19629  19451

Total number of 
animals infected over 
the outbreak p95 200949 199993  199702

Mean 203 189  188
SD 16 18  18

Total number of herds 
destroyed over the 
outbreak p95 218 211  209

Mean 185702 173922  172422
SD 17496 19891  19995

Total number of 
animals destroyed 
over the outbreak p95 200949 198464  198184

Mean  380  402
SD  30  30

Total number of herds 
vaccinated 

p95  420  447

Mean   323776  348898
SD   34725  33998

Total number of 
animals vaccinated 

p95   374206  400036

DISCUSSION 

 Simulation models are limited in that they cannot predict the 

future nor do they represent a real-time outbreak; instead they should be used 

to aid decision making, planning, identifying potential results and evaluating 

strategies based on available data. The results in this study represent an 

outbreak in commercial swine farms in Chiang-Mai and Lampoon Provinces 
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only and do not refer to the national or regional level.  The accuracy of data 

affects the usefulness of the disease spread model. Our data were obtained 

since 2004 and was the most current and accurate data available for this 

study. The population data could certainly be modified if more current 

information became available.   

The model used in this study, North American Animal Disease Spread 

Model (NAADSM) version 3.1.23, has its own limitations. This model was 

developed for foot and mouth disease and may not accurately reflect the 

properties of pseudorabies virus (PRV). The latency, a major characteristic of 

herpesvirus, was difficult to confine in this model. Additionally, in this study the 

model assumes the movements are random, and this may not be appropriate 

in the swine industry, especially when animals move within a production 

system.    

The disease parameters were not specific for the viral strain in 

Thailand but were instead based on viral properties reported in the scientific 

literature. It is reasonable that a new viral strain with different properties could 

appear, and the results may deviate from this study. Generally, vaccines are 

not 100% effective; however, this model assumed 100% effectiveness of 

vaccination. Vaccination only prevented the appearance of clinical signs but 

did not prevent viral infection. The efficiency of vaccination refers to its ability 

to protect the animals from showing clinical signs. Since the NAADSM version 

3.1.23 does not allow for adjustment of the vaccine effectiveness, the actual 

duration of outbreak (days), as well as the total number of animals and herds 

infected and destroyed, may differ from this study. Alternative control 

measures may be necessary. The immune status of commercial swine in this 
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model was considered to be naïve, and this also may have affected the 

results.  

Destruction (destroy strategy) of infected herds is an action common to 

many countries as they attempt to eradicate PRV. We compared two 

strategies, with and without destruction.  Destruction appeared to be the most 

beneficial of all the approaches toward eradicating PRV infection; the duration 

of the outbreak (days) decreased dramatically from over 30,000 days (7 

years) to 165 days (less than one year), and total number of herds and 

animals infected decreased by 99% when the destruction strategy was added.  

The zoning (animal movement restriction) strategy was added after the 

destruction strategy and was implemented to restrict movement and enhance 

detection in a surveillance area. There did not seem to be any relevant 

difference between the three zone scenarios examined in this study as the 

duration of outbreak increased one to five days when zoning was applied.  

However, if we applied the 3, 8 and 16 kilometer zones, this appeared to 

relieve the infection and decrease the number of herds that had to be 

destroyed. 

Ring vaccination was also studied as a tool to control and eradicate 

PRV. The model applied a vaccination strategy after the implementation of 

destruction and zoning (animal movement restriction) strategies. Both eight 

kilometer and 16 kilometer ring vaccination decreased the 95th percentile 

duration of outbreaks from 181 days to 165 days. The 16 kilometer ring 

seemed more effective in alleviating the outbreak and reduced the infection 

and destruction rates more than the eight kilometer ring.  

 

31 
 



CONCLUSION 

 It is apparent from this study that the destruction strategy has the 

greatest impact in eradicating Pseudorabies virus (PRV). Zoning (animal 

movement restriction) and ring vaccination after the destruction strategy were 

not shown to be significant influences to this model based on the duration of 

outbreak (days), and the total number of animals and herds infected, 

detected, and destroyed. However, the duration of outbreak, number of 

infections and herds destroyed declined when zoning and vaccination were 

implemented. Therefore, until further study is completed the 

recommendations from this study are to apply a destroy strategy and three-

zone (3, 8 and 16 kilometers) movement restriction, as well as enhanced 

detection with a 16 kilometer vaccination ring to eradicate PRV in Chiang-Mai 

and Lampoon Provinces.  

 

FURTHER STUDY 

 Determination of the most cost-effective choice of both zone and 

vaccination rings is recommended for future research.  Evaluation of other 

strategies for eradicating Pseudorabies virus (PRV) is also recommended for 

future study. 

32 
 



LITERATURE CITED 
 

Asai, T., Tajima, M., Watanbe, H., et al. 1998. Prevalence of antibodies to 
field pseudorabies virus in pigs of herd vaccinated with live vaccine. J.Vet. 
Med. Sci. 60: 399-400. 
 

Aujeszky, A. 1902. Ueber eine neue Infektionkrankheit bei Haustieren. 
Zentralbl Bakteriol Abt I Orig B Hyg Krankenhaushyg Betriebshyg. Praev. 
Med. 32: 353-357. 
 

Beran, G.W. 2002. Pseudorabies: A century of learning. In: Morilla, A., Yoon 
K.J. and Zimmerman, J.J (Eds). Trends in Emerging Viral Infections of Swine. 
Iowa, Blackwell. pp. 211-216. 
 

Buijtels, J., Huirne, R., Dijkhuizen, A., et al. 1997. Computer simulation to 
support policy making in the control of pseudorabies. Vet. Micro. 55: 181-185. 
 

Chowell, G., Hengartner, N.W., Castillo-Chavez, C., et al. 2004. The basic 
reproductive number of Ebola and the effects of public health measures: The 
cases of Congo and Uganda. J Theor Biol. 299(1): 119-126. 
 

Damrongwatanapokin, S., Damrongwatanapokin, T., Pinyochon, W.,  
Parchariyanon, S. 2000. Serological survey of Aujeszky’s disease virus 
infection in Thailand. In: Proceeding of the International Pig Veterinary Society 
Congress. pp. 612. 
 

Disney W.T., Peters M.A. 2003. Simulation modeling to derive the value-of-
information for risky animal disease-import decisions. Prev. Vet. Med. 61(3): 
171-184. 
 

Fujita, T. 1994. Aujeszky’s disease control program in Japan. In: Aujeszky’s 
disease OIE symposium, Bangkok, Thailand. pp. 85-96. 
 

Fukusho, A. 1982. The first outbreak of Aujeszky’s disease in swine in Japan. 
Jpn. Agri. Res. Q. 16: 131-135. 
 

Gustafson, D. P. 1986. Pseudorabies. In:  Leman A.D., Glock R.D., Mengeling 
W.L., Penny R.H.C., Scholl E., and Straw B. (Eds.), Diseases of Swine (6th 
ed.). Iowa State University Press. Ames, Iowa. pp. 209-223. 
 

33 
 



Gohm, D.S., Thür B., Audigé L., et al. 1999. A survey of Newcastle disease in 
Swiss laying-hen flocks using serological testing and simulation modeling. 
Prev. Vet. Med. 38(4): 277-288.  
 

Harvey, N., Reeves, A., Schoenbaum, A., et al. 2007. The North American 
Animal Disease Spread Model: A simulation model to assist decision making 
in evaluating animal disease incursions. Prev.  Vet. Med. 82: 176–197 
 

Hsu, F.S., Lee, R.C.T. 1984. Use of hyperimmune serum, vaccination, and 
certain management procedures for control of pseudorabies in swine. J. Am. 
Vet. Med. Assoc. 184: 1463-1466. 
 

Jasbir, S., Ali, A.R.M., Tee, C.H., et al. 1998. Serological survey of swine 
disease in Sarawak. J. Vet. Malays. 10: 81-83.  
 

Keeling, M.J, Rohani, P. (Eds.), 2008. Modeling Infectious Disease in Humans 
and Animals. Princeton University, New Jersy. pp. 7-10. 
 

Keush, G.T., Pappaioanou, M., González M.C. (Eds.), 2009. Sustaining 
Global Surveillance and Response to Emerging Zoonotic Diseases. The 
National Academies, Washington, DC. pp. 56-64. 
 

Kim, B.H., Lee, J.B., Song, J.Y., et al. 1988. Study on Aujeszky’s disease in 
Korea. Restriction endonuclease analysis of Aujeszky’s disease virus 
genomes isolated from piglets in Korea. Korean Vet. Res. Rep. Rural Dev. 
Adm. 30: 37-41. 
 

Kluge, J.P., Beran G.W., Hill H.T., et al. 1999. Pseudorabies (Aujeszky’s 
disease). In Straw B.E., D’Allaire S., Mengeling W.L., and Taylor T.J. (Eds.), 
Diseases of Swine (8th ed.). Iowa State University Press. Ames, Iowa. pp. 
233-46. 
 

Koh, J.G.W., Ngiam, T.T., Chang, C.F. 1979. Aujeszky’s disease in pigs 
previously immunized with an inactivated vaccine. Singapore Vet. J. 3:15-24.  
 

Lee, J.Y.S, Wilson, M.R., Povey, R.S.C. 1979. The efficacy of an inactivated 
vaccine against pseudorabies in pigs and sheep. Kaijan Vet. 11: 58-64.  
 

Lee, R.C.T., Lin, T.C. 1975. The epizootiology and control measures of 
Aujeszky’s disease in Taiwan. Republic of Chi. Bull. OIE. 84: 331-337. 

34 
 



Li, Y., Guo, B. 1994. The Aujeszky disease situation in the People’s Republic 
in China. In: Aujeszky’s Disease OIE Symposium, Bangkok, Thailand. pp. 83-
84. 
 

Liao, M.H., Chang, T., Chamg, C.D., et al. 1999. Epidemiological survey of 
pseudorabies antibody among sows in Taiwan. Bull. Natl. Pingtung Univ. Sci. 
Technol. 8: 295-300.  
 

Lin, S.C., Tung, M.C., Liu, C.I., et al. 1972. An outbreak of pseudorabies in 
swine in Pintung. Chin. J. Microbiol. 5: 56-68. 
 

Lipowski, A.,Pejsak, Z. 2002. Antibody prevalence of pseudorabies virus in 
feral pigs in Poland. Proc. Congr. Int. Pig Vet. Soc. 2: 223. 
 

Lou, G.M.,Yang, D.K. 1997. Diagnosis and control of Aujeszky’s disease. 
Chin. J. Anim. Quarantine. 14: 22-23. 
 

Lu, Z., Schukken, Y.H., Smith, R.L., et al. 2010. Stochastic simulations of a 
multi-group compartmental model for Johne’s disease on US dairy herds 
with test-based culling intervention. J. Theor. 
Biol.doi:10.1016/j.jtbi.2010.03.034. 
 

Lyoo, Y.S., Park, C.K., Kim, L.M., et al. 1997. Seroepidemiology of the major 
swine infectious diseases in Cheju. Korean J. Vet. Res. 37: 765-772. 
 

Marero, R.F. 1985. Philippines. In: Delta-Porta AJ (Ed), Veterinary viral 
diseases: Their significance in South-East Asia and the Western Pacific. 
Academic, London. pp. 229-233. 
 

Mettenleiter, T. 2000. Aujeszky’s disease (Pseudorabies) virus: the virus and 
molecular pathogenesis—state of the art. Vet. Res. 31: 99-115. 
 

Merial Ltd., 2008 Pseudorabies: Introduction. Available at: 
http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/102200.htm. 
Accessed August 27, 2008. 
 

Miller, W.M., 1976. A state-transition model of epidemic foot-and-mouth 
disease. In:  Ellis, P.R., Shaw, A.P.M., and Stephens, A.J. (Eds.), New 
techniques in Veterinary Epidemiology and Economics, Proceeding of a 

35 
 

http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/102200.htm
http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/102200.htm.%20Accessed%20August%2027,%202008
http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/102200.htm.%20Accessed%20August%2027,%202008


sympsium, University of Reading, England. ISVEE I. 
http://www.sciquest.org.nz. 
 

Nishimori, T., Imada, T. Sakurai, M., et al. 1987. Restriction endonuclease 
analysis of Aujeszky’s disease viruses isolated in Japan. Jpn. J. Vet. Sci. 49: 
365-367. 
 

Pejsak, Z., Truszcyński, M.J., 2006. Aujeszky’s disease (Pseudorabies). In: 
Straw B.E., Zimmerman, J.J., D’Allaire, S. and Taylor D.J. (Eds). Disease of 
Swine (9th ed). Iowa State University Press. Ames, Iowa. pp. 419-433. 
 

Pensaert, M.B., Kluge, J.B. 1989. Pseudorabies virus (Aujeszky’s disease). 
In: Pensaert M.B. (Ed.), Virus infection of porcine. Elsevier, Amsterdam, pp. 
39-64. 
 

Prattley, D.J., Morris, R.S., Cannon, R.M., et al. 2007. A model (BSurvE) for 
evaluating national surveillance programs for bovine spongiform 
encephalopathy. Prev. Vet. Med. 81(4): 225-235. 
 

Pomeranz, E.L., Reynolds, E.A. , Hengartner, J.C. 2005. Molecular Biology of 
Pseudorabies Virus: Impact on Neurovirology and Veterinary Medicine. 
Microbiol. Mol. Biol. Rev. 69(3): 462-500. 
 

Reeves, A. 2009. Introduction to modeling. In: Introduction to Epidemiologic 
Simulation Modeling. Fort Collins, CO: USDA Centers for Epidemiology and 
Animal Health. pp. 17-25. 
 

Rojanasathein, S., Padungtod, P., Yaemsakun, P. et al. 2004. Study  of   
Prototype of  Foot  and  Mouth Disease  Free  Area  in  Chiang Mai - 
Lumphun  Zone  and  Nan  Provinces. Unpublised manuscript, Chiangmai 
University, Chiang Mai, Thailand. 
 

Sabo, A. 1985. Analysis of reactivation of latent pseudorabies virus infection 
in tonsils and gasserian ganglia of pigs. Acta. Virol. 29: 393-402. 
 

Salman, M.D. 2009. Epidemiology & Disease Spread Concepts for NADDSM. 
In: Introduction to Epidemiologic Simulation Modeling. Fort Collins, CO: USDA 
Centers for Epidemiology and Animal Health. pp. 1-15. 
 

36 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TBK-4NSWV6T-1&_user=1493582&_coverDate=10%2F16%2F2007&_alid=1144383683&_rdoc=2&_fmt=high&_orig=search&_cdi=5145&_sort=r&_docanchor=&view=c&_ct=10&_acct=C000053133&_version=1&_urlVersion=0&_userid=1493582&md5=da998d31b950f34de286507469c34f15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TBK-4NSWV6T-1&_user=1493582&_coverDate=10%2F16%2F2007&_alid=1144383683&_rdoc=2&_fmt=high&_orig=search&_cdi=5145&_sort=r&_docanchor=&view=c&_ct=10&_acct=C000053133&_version=1&_urlVersion=0&_userid=1493582&md5=da998d31b950f34de286507469c34f15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TBK-4NSWV6T-1&_user=1493582&_coverDate=10%2F16%2F2007&_alid=1144383683&_rdoc=2&_fmt=high&_orig=search&_cdi=5145&_sort=r&_docanchor=&view=c&_ct=10&_acct=C000053133&_version=1&_urlVersion=0&_userid=1493582&md5=da998d31b950f34de286507469c34f15


Schoenbaum, M.A., Disney, T.W. 2003. Modeling alternative mitigation 
strategies for a hypothetical outbreak of foot-and-mouth disease in the United 
States. Prev. Vet. Med. 58(1-2): 25-52. 
 

Smith, R.L., Sanderson, M.W., Renter, D.G., et al. A stochastic risk-analysis 
model for the spread of bovine viral diarrhea virus after introduction to naïve 
cow-calf herds. PREVET(2010), doi:10.1016/j.prevetmed.2010.02.009. 
 

Suksaithaichana, P., Sukpanyatham, N., Sinsuwong, N., et al. 1984. An 
outbreak of Aujeszky’s disease in pigs in the southern part of Thailand. Thai. 
J. Vet. Med. 14: 309-314.  
 

Sung, H.T., Yang, P.C. 1994. Eradication of Aujeszky’s disease in Taipei, 
China. In:Aujeszky’s disease OIE Symposium, Bangkok, Thailand. pp. 97-
103. 
 

Sunyasootcharee, B., Arjsongkun, P., Fuengfoopong, M. 1978. A preliminary 
report on discovery of a disease resembling Aujeszky’s disease in pigs. J. 
Thai. Vet. Med. Assoc. 29: 1-11. 
 

Sunyasootcharee, B. Kongsmak, S., Arjsongkun, P. 1980. Recent outbreaks 
of Aujeszky’s disease in pigs with particular reference to laboratory diagnosis 
of clinical cases. Thai. J. Vet. Med. 10: 102-118. 
 

Taylor, D.J. 1999. Pig Disease (7th ed.). St. Edmundsbury. Bury St Edmunds. 
Suffolk. pp. 69-80  
 

Thanawongnuwech, R. 2002. Aujeszky’s disease in Asia. In: Morilla, A., Yoon, 
K.J., Zimmerman, J.J. (Eds.), Trends in Emerging Viral Infections of Swine, 
Iowa State University Press. Ames, Iowa. pp. 221-224. 
 

Thrushfield, M.V., 2005. Veterinary Epidemiology (3rd Ed.). Blackwell, Oxford. 
pp. 340-354. 
 

Tong, G.Z., Chen, H.C. 1999. Current situation of outbreaks of Aujeszky’s 
disease and the therapeutic and prophylactic measures taken in China. Chin. 
J. Vet. Sci. 19: 1-2. 
 

37 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TBK-47T8DGH-1&_user=1493582&_coverDate=04%2F30%2F2003&_alid=1144383057&_rdoc=1&_fmt=high&_orig=search&_cdi=5145&_sort=r&_docanchor=&view=c&_ct=7691&_acct=C000053133&_version=1&_urlVersion=0&_userid=1493582&md5=124c2dc8a4457d37ae361376b51f3b47
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TBK-47T8DGH-1&_user=1493582&_coverDate=04%2F30%2F2003&_alid=1144383057&_rdoc=1&_fmt=high&_orig=search&_cdi=5145&_sort=r&_docanchor=&view=c&_ct=7691&_acct=C000053133&_version=1&_urlVersion=0&_userid=1493582&md5=124c2dc8a4457d37ae361376b51f3b47
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TBK-47T8DGH-1&_user=1493582&_coverDate=04%2F30%2F2003&_alid=1144383057&_rdoc=1&_fmt=high&_orig=search&_cdi=5145&_sort=r&_docanchor=&view=c&_ct=7691&_acct=C000053133&_version=1&_urlVersion=0&_userid=1493582&md5=124c2dc8a4457d37ae361376b51f3b47


38 
 

Tsutsui, T., Minami, N., Koiwai, M., et al. 2003. A Stochastic-modeling 
evaluation of the foot–and-mouth disease survey conducted after the outbreak 
in Miyazaki, Japan in 2000. Prev. Vet. Med. 61(1): 45-58. 
 
Urairong, K., Sakpuaram, T., Wajjwalku, W., et al. 1994. Aujeszky’s disease in 
Thailand and Asian countries. In: Aujeszky’s disease OIE symposium, 
Bangkok, Thailand. pp. 77-82. 
 

Wang, J.Y., Li, J.Q., Feng, B., et al. 1996. Serological investigation of 
Aujeszky’s disease in pigs at the partial arears in Shaanxi Province. Chinese. 
J. Vet. Sci. Technol. 26: 15-16. 
 

Wittmann, G., Rziha, H.J. 1989. Aujeszky’s disease (pseudorabies) in pigs. In: 
Wittmann G. (Ed.), Herpesvirus disease of cattle, horses and pigs. Boston. 
Kluwer Academic. pp. 230-235. 
 

Wongsathapornchai, K., Salman, M.D., Edwards, J.R., et al. 2008. Use of 
epidemiologic risk modeling to evaluate control of foot-and-mouth disease in 
southern Thailand.  Am. J. Vet. Res. 69(2): 240-51. 
 

Xu, M.J. Chen, K.Y., Ning, L.Z. 1997. A report on four years tracking survey of 
pseudorabies in a breeding pig farm. J. Hunan Agri. Univ. 23: 378-381. 
 

Yamada, S., Nishimori, T., Shimizu, M. 1992. Characterization of 
pseudorabies viruses recently isolated in Japan by restriction endonuclease 
assay. J. Vet. Med, Sci. 54: 541-549. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wongsathapornchai%20K%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Salman%20MD%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Edwards%20JR%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
javascript:AL_get(this,%20'jour',%20'Am%20J%20Vet%20Res.');


APPENDIX 

 
Examples of the probability density function used for disease parameter 

of Pseudorabies
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 Example 1: Log-logistic function described the disease state (latent period) of 
finishing production type. 
 

LogLogistic ( -0.42, 2.32, 2.15 )
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Example 2: Triangular function described the disease state (subclinical 
infectious period) of parent stock production type. 
 

Triangular ( 2.96, 5.00, 8.04 )
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Example 3: Gaussian function described the disease state (subclinical 
infectious period) of farrow-to-finish production type. 
 

Gaussian ( 5.41, 0.88 )
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Example 4: Lognormal function described the disease state (immune period) 
of all production types. 
 

Lognormal ( 300.00, 60.00 )
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	Although swine are the reservoir for this virus, it can affect other domestic animal species (cattle, sheep, goats, horses, dogs, cats), as well as wild animals (rats, mice, raccoons, opossums, rabbits, coyotes, several fur-bearing mammals and others), except higher primates and humans.
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