DISSERTATION

MULTILEVEL SECURE DATA STREAM MANAGEMENT SYSTEM

Submitted by
Xing Xie

Department of Computer Science

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University

Fort Collins, Colorado

Summer 2013

Doctoral Committee:
Advisor: Indrakshi Ray
Indrajit Ray

Robert France
Daniel Turk

Copyright by Xing Xie 2013

All Rights Reserved

ABSTRACT

MULTILEVEL SECURE DATA STREAM MANAGEMENT SYSTEM

With the advent of mobile and sensor devices, situation tbadng applications are now feasible.
The data processing system should be able to collect largetrdata with high input rate, com-
pute results on-the-fly and take actions in real-time. Dét@a® Management Systems (DSMSs)
have been proposed to address those needs. In DSMS theeiinijpiit data is divided by arriving
timestamps and buffered in input windows; and queries anegased against the finite data in
a fixed size window. The output results are updated by timgstecontinuously. However, data
streams at various sensitivity levels are often generatetbinitoring applications which should be
processed without security breaches. Therefore curreM®3Xannot prevent illegal information
flow when processing inputs and queries from different kvel

We have developed multilevel secure (MLS) stream procgssiatems that operate input data
with security levels. We've accomplished four tasks ineluql) providing formalization of a
model and language for representing secure queries, (@3tigating centralized and distributed
architectures able to handle MLS continuous queries, asdjdi@g authentication models, query
rewriting, optimization mechanisms, and scheduling sgig&s to ensure that queries are processed
in a secure and timely manner, (3) developing query shappgoaches to improve quality of ser-
vice. Besides we've implemented extensible prototypels @xperiments to compare performance
between different process strategies and architectutean(proposing an information flow con-
trol model adapted from the Chinese Wall policy that can le®lue protect against sensitive data

disclosure, as an extension of multilevel secure DSMS feast audit applications.

ACKNOWLEDGEMENTS

| would like to take this opportunity to thank my advisor, Dndrakshi Ray for her patiently
support and continually encouragement during my PhD stu@oborado State University. With
her insightful advice, my skills on writing and communicats, as well as publication records
are improved day by day. Besides the academic guidance, @r.hRs shared her study and life
experience that give me confidence and ideas to cope withhtikenges in life.

| would like to thank Dr. Indrajit Ray for kindness help in #eeyears and teaching me computer
security theories which is critical aspect of this diss@sta | would like to thank Dr. Daniel E.
Turk for contributing insightful comments in my proposabgoreliminary presentations. | would
like to thank Dr. Robert France for teaching the knowledgeastware models and engineering,
which helps a lot during prototype development in my disgerh. | also want to thank Russell
Wakefield, | learn from him for the earnest and responsiltiéude to class and students. My
thanks also to Dr. Ping Yang from Stony Brook University and Baman Adaikkalavan from
Indiana University South Bend, I've improved programmimgl avriting skills from you.

| would like to thank all faculty members and colleagues impater Science department, for
giving me the advices and conveniences in my daily life. Ksao all my friends and colleagues
here, Yun Zou, Aritra Bandyopadhyay, Tarik MoatazRamadaduwabi, Malgorzata Urbanska,
Dieudo Mulamba, and Zhiquan Sui, for their constructivé@em and support.

To my mother Fei, thank you for the determined mind suppgniny PhD dream in U.S. even
through you are suffering the disease. You are always in maytlaad sharing with my pains and
gains. To my father Xingyu, thank you for showing me how to bsifive and tough in life under
challenges. My special thanks to my lifelong friends Gailat¥s and Porter Woods, you welcome

and help me enjoy life here.
Last but not least, | would like to express my gratitude to mfeviehaohua for her deepest
love and wholeheartedly support. Thank you for believingia right from the beginning of this

journey. You are truly wonderful.

DEDICATION

This thesis is dedicated to my mother Fei,
to my father Xingyu,

and to my love Zhaohua.

1

11

1.2

1.3

1.4

TABLE OF CONTENTS

Introduction
Introduction to Data Stream ManagementSystem
Problem Description and Motivation
ResearchTasks e

Dissertation Structure e e

2 Related Work

2.1

2.2

2.3

2.4

Real-time and Stream Processing Systemso
DSMS Security e e e
DSMS Performances e

Distributed DSMS s

3 Background: STREAM DSMS

3.1

3.2

3.3

3.4

3.5

STREAMDSMS OVEIVIEW o ot e e e e e e e e e e e
QUENY ProCess o o e e e e e e
Interactions e
Continuous Query Language e e

Limitations e

4 Multilevel Security Formalization

4.1

4.2

4.3

Multilevel Security Model
Multilevel Queries e e

Stream-to-Stream Window Operator i

11

11

13

16

20

22

22

24

29

33

36

40

5 Replicated MLS-DSMS

5.1 Multilevel Secure DSMS Architectures L.
5.2 Replicated MLS-DSMS Architecture
5.3 Shared Query Processing e
5.3.1 MLS-CQLQUENES o e e e
5.3.2 QuerySharing
5.4 Scheduling Strategies e
5.5 Replicated Prototype e

6 Trusted MLS-DSMS

6.1 Trusted Prototype e
6.2 Secure Query Rewriting and Optimization
6.3 Query Executionand Sharing L
6.3.1 More Sharing Examples e

6.4 SchedulingMethods e

7 Distributed MLS-DSMS

7.1 Prototype Implementation e
7.1.1 Server CommunicationS e e
7.1.2 Distributed Processing e

7.2 InputChuck Construction e e

8 Stream Audit Cloud Application

8.1 Information Flow Model

Vii

a7

a7

50

51

51

55

61

64

67

67

69

75

79

82

85

85

85

86

89

93

8.2 Continuous Query Processing Architecture oL 98

8.3 Query ProcessinginCloudDSMS 101
8.3.1 Cloud CQLQUErES i i i e e e 102
8.3.1.1 Company Auditing Tier e 103
8.3.1.2 Service Auditing Tier e e 104
8.3.1.3 Cloud Auditing Tier e e e e 104
8.3.2 Executionof Cloud Queries e e 105
8.4 Prototype Implementation e 108
9 Prototype Implementation and Experimental Evaluation 1n

9.1 Prototype Implementation e 111
9.1.1 MLS-CQLSyntax e e e 112
9.1.2 Sharing Plan Generation e 116
9.1.3 Execution/Generation Time Measuring oo v oL 118
9.1.4 LUBLevelComputation e 119
9.1.5 SchedulingMethod e 120
9.2 ExperimentSetup e 121
9.3 Experiments on Replicated MLS-DSMS 124
9.3.1 Experiment Expectations e 124
9.3.2 Overhead of MLS processing. i it i 124
9.3.3 Overhead of MLS Scheduling Strategy L. 126
9.34 MLSQuerySharing e 127
9.4 ExperimentsonTrusted MLS-DSMS 0. ... 130

viii

9.4.1 ExperimentExpectations e 130

9.4.2 VanillaDSMS Vs. No-sharing Trusted MLS-DSMS 130
9.4.3 ReplicatedVs. Trusted e 133
9.5 ExperimentsonCW-DSMS e 135
10 Conclusions and Future Work 140
10.1 CoNCIUSIONS e e 140
10.2 Future Work 141
10.2.1 SecurityLabel e e 141
10.2.2 More Sharing Consideration 142
10.2.3 Prototype Development. L e e 143
10.2.4 Chinese WallDSMS e 144
References 145

LIST OF TABLES

4.1 User-CQRelationship. e e

4.2 InformationLeak Example L e

5.1 Continuous QUeries e e e

6.1 Operator Nodes and Specific Parameters

7.1 Input Chucks Construction Examples oo

7.2 Computationin DifferentSlaves oo L

9.1 STREAM Parsing Rules for [Rows Size] uu. ...
9.2 MLS-DSMS Parsing Rules for [Rows Size Level]
9.3 STREAM Parsing Rules for [Range Unbounded]

9.4 MLS-DSMS Parsing Rules for [Range Unbounded Level]
9.5 STREAM Parsing Rules for [Range X Second]

9.6 MLS-DSMS Parsing Rules for [Range X Second Level]
9.7 Performance Overhead Due to MLS Processing
9.8 Overhead Due to Trusted Scheduler and Stream Shepherdt@p.
9.9 Complete Sharing Execution - Performance Gain

9.10 Complete Sharing Plan Generation - Performance Gain
9.11 Partial Sharing Execution - Performance Gain
9.12 Partial Sharing Plan Generation - Performance Gain

9.13 Vanilla DSMS Vs. No-sharing Trusted MLS-DSMS : Exeonti.

. 114

. 114

. 115

. 115

. 116

125

126

. 127

. 128

9.14 Vanilla DSMS Vs. No-sharing Trusted MLS-DSMS : Plan &ation
9.15 Replicated Vs. Trusted : Execution i e

9.16 Performance Overhead of Chinese Wall Processing

Xi

11

3.1

3.2

3.3

3.4

5.1

5.2

5.3

5.4

6.1

6.2

7.1

7.2

8.1

8.2

8.3

8.4

LIST OF FIGURES

Data Stream Management System (DSMS) 3
DSMS System Architecture e 23
Query Process e 25
DSMS Methods e 29
Three Steps of Query Processing i e e 34
Replicated MLS-DSMS Architecture, 50
Operator Treefa@s andQ; o o v o i e e 54
Strict Partial Sharing Operator TreefarandQs 61
Replicated MLS DSMS Architecture, 64
Trusted MLS DSMS Architecture 67
Query Sharing e 78
Group Construction e e e 86
Distributed DSMS Architecture e 87
Multi-Tier ArchitectureofaCloud, 97
CQ Processing Architecture L e 100
Merged Operator Trees@fandQ, i 107
CW-DSMS Prototype Architecture e 108

Xii

Chapter 1

Introduction

1.1 Introduction to Data Stream Management System

Over 40 years development, relational DataBase Manage8ystem (DBMS) is sufficient to
process one-time queries against finite pre-stored raeatioth sound mechanisms like query op-
timization, crash recovery, security enforcement. On therchand, with the advancements of mo-
bile devices and data transmission speed, situation nrargtapplications such as border security
monitoring, battlefield monitoring, stock marketing arsaty emergency control and threat moni-
toring, are becoming a reality. The data processing syshkemld be able to collect large amount
data with high input rate, compute results on-the-fly ane taitions in real-time. To enable real-
time stream processing, there are eight requirements gtheusatisfied which are demonstrated
by Stonebraker and his fellows in [63]. The traditional DBM&hnot be used directly for such

applications because of dissatisfaction at five criticgureements:

1. The system should be active to process messages “in Stvamut any requirements to
store them. Traditional DBMS is passive system which sttmesnput first then process,

which causes high latency.

2. Queries should use SQL on streams with built-in exteasbieam-oriented primitives and

operators. Traditional SQL does not support stream-spepitries.

3. The system should be able to handle unexpected streanpng)¢onditions such like de-

layed, out-of-order, and missing. In DBMS extra mechanigrds to be developed for

those imperfect date and unexpected input rate.

4. The output of stream processing must be predictable getable. Since SQL queries are
one-time query, they are only required to be repeatable efiecution. Besides DBMS is
insufficient to ensure predictable and deterministic elenwlsemantics for stream-specific

gueries.

5. The system should be able to handle queries on combisatiblive streaming data and
store tables. Some business applications perform sedyntkda analysis starting at some
point from the past data, then catch up to the real time. Suiettions are not supported in

DBMS.

6. The system should be scalable and available at all tintetranintegrity of data should be

guaranteed despite failures. Distributed DBMS succedgsfatisfies such requirement.

7. Distributed systems automatic and transparent to uSarslarly DBMS with the distribut-

ing extension meets this requirement.

8. Stream processing system is highly QoS-oriented. CorialdDBMSs in these days are
equipped with optimized and minimal-overhead engines talleathose real-time computa-

tions on large amount of inputs.

To fulfil those missing stream processing requirements dsawaddress the stream processing
applications, Data Stream Management Systems (DSMSs2[85]1 30, 46, 64, 66, 41] have been

proposed. The infinite input data is divided by arriving tstanps and buffered in input windows;

and queries are processed against the finite data in a fixedveizlow. The output results are

updated by timestamps continuously.

User Input Uﬂ
CQ Output

’ CQ Input Processor ‘

; ’ CQ Instantiator

|

’ Scheduler

I

Run-Time Optimizer

Query Processor

Data Source
Management

DSMS E

s-w:seg-window, ss:stream shepherd

Figure 1.1: Data Stream Management System (DSMS)

<

A DSMS [12, 23, 26] architecture (based on the STREAM syst8if shown in Figure
1.1. The Continuous Query (CQ) can be defined by specificdioguages, then processed by
the input processor to generatgaery plan Each query plan is a directed graph of operators like
select, join, aggregate, etc. Each operator is associatiedme or more inpugueuesnd an output
gueue. Those queues are used by the operators to propggatefynopseare temporary storage
structures used by the operators (e.g., join) that need totanaa state. One or more synopses
are associated with each operator that needs to maintacuthent state of the tuples for future
evaluation of the operator. The generated query plans areittstantiated, and query operators

are put in the ready state so that they can be executed. Basstleam scheduling strategies,

the scheduler can pick a query, an operator, or a path as tieelslong unit for execution. The
run-time optimizer monitors the system, and initiates lsaédding mechanisms as and when
required. Both these QoS delivery mechanisms minimizeuresousage (e.g., queue size) and
maximize performance and throughput. In addition, othe® @oprovement mechanisms such as
static and dynamic approximation techniques are used tinaidhe size of synopses. All the input
tuples are first processed by the Data Source Manager, whigreees the tuples to input queues
of all the leaf operators associated with the stream. In the éuegtaph of operators, which is
namedoperator tree the data tuples are propagated from the bottom most leaatmpeo the root
operator. Each operator produces a stream of tuples. Afiev@ssed tuple exits the query plan,

the output manager sends it to the query issuer.

1.2 Problem Description and Motivation

Often times, the input data in real-time monitoring applmas involve data streams belonging to
different security levels. Since database system prosgsssonal and confidential data, privacy
preservation and security control are necessary. For eearapsoldier equipped with sensors
sending out health and position data periodically can bessad by the commander while the
medic is only allowed to access the health info. In DSMS, sisedifferent security classifications
access and share a database consisting of a variety ofigedsita.

There are three major requirements for database security ¢bnfidentiality, integrity, and
availability. Under the context of stream processing agpions, arrival data is used mainly for
continuously observation, analysis and quick responsigerrghan long-term storage. So the con-
fidentiality and availability are the two issues in secureM¥Sdevelopment. Researchers have

worked on secure query processing on DSMSs with accessotorpecifically, these secure

4

DSMS works [4, 21, 20, 50, 54, 55] focus on providing formsalé&rbased access control where
users are assigned to roles, roles are assigned to pemsissiod users acquire permissions by
activating the subset of roles assigned to them. HowevereictuURBAC DSMSs are not perfect
solutions for continuous query applications by our obsrua as following. First, the covert
channel problem exists in RBAC DSMS architecture. A coveamel is a transfer of sensitive in-
formation from one process violates security policies,Hg/manipulation of a system resource in
such a way that it can be detected by another process. Senarder to prevent security breach,
queries issued from users at different security levels lshoot communicate between each other
by current DSMS access control policies. Such rigid isotatf query process eliminates the pos-
sibilities of sharing computations and storage resourcessa levels. Such barrier can be broken
down if queries can be shared in a safe and effective manrmesid&s, erroneous omission of an
access control check may reveal confidential data. Integraf third party off-the-shelf software
may cause policy checks to be bypassed altogether.

Besides access control model, security issues also exsthaduling and load shredding
methods used in DSMS. Current studies of DSMS performanpeertrate on better schedul-
ing [13, 45] and load shedding strategies [23, 60, 29] tntm@ptimize the memory and CPU
usages. However, all those methods does not take secusigcpion into account and cannot be
directly applied to DSMS applications with sensitive data.

On the other hand, DSMS is performance-oriented. Even thougny approaches have tar-
geted on QoS with better scheduling and revising ideasirghaxecution and computation among
gueries are seldom explored. For example, queries sulohaittdifferent times by the same user
or at the same time between different users are not suppiortigeneral DSMSs. Besides, ear-
lier researches [37, 59, 28, 39] on sharing computationsdasDBMS cannot be directly used

5

in our research. Most approaches focus on optimizing jokrigs; but the join operations are
implemented differently in data streams and databasergsteo we cannot use many of these
optimization techniques. Moreover, the queries in DBMSrarecontinuous and some of the pro-
posed approaches apply to one-time queries only. Alsdegies that optimize multiple queries at
any given point of time to find the best possible plan may natwio data stream systems as the
gueries arrive asynchronously. As a result, new sharingoaghes should be developed to handle
the special conditions in continuous queries. In additiwa,need to prevent security violation
since while sharing queries across different securityl$eve

To have a deep investigation into those issues, we are gergl®SMSs with multilevel se-
curity (MLS) control. The motivation for this is that MLS ggsns with its centrally-defined labels
have very simple and well-understood information flow pekc Compared with RBAC systems,
ours is a simplified and complete system which bears all needve security and performance
issues described above. Our two main goals are to find sokutm prevent illegal information
flows in MLS-DSMS applications, and explore the possiblaisiggmechanisms between queries
across different levels without security breaches. Expents on centralized and distributed pro-
totypes are conducted to find the trade-offs of MLS secunfpreement and process sharing. We
also explore the feasibility of applying MLS to distributedvironment, as well as integrating new
access control mechanisms such as Chinese Wall policieSMI

This research work is significant. To our best knowledges thgearch is the first work ap-
plying multilevel security control to DSMS. The MLS-DSMSrfoalization model can express
the security level during query specification and query essing. The new scheduling strategies,
which prevent overt and covert channels during multilevedrees processing, can also be used for
network security research. The approaches of query sheaindpe applied to not only streaming

6

applications but also traditional DBMS. The experimentproftotype implementation can provide
statistical results of the overheads by introducing the Migghanism, and the benefits using shar-
ing and MLS-specific scheduling strategies. The investgatof distributed network and adapting
new access control policies such as Chinese Wall [58] bongdrd ideas of applying the secure
DSMS to cloud applications.

The challenges of MLS-DSMS development include two maireetspfrom stream manage-

ment system and MLS control respectively.

e Some of unique characteristics of data stream processstgrag are: (1) the input char-
acteristics of data streams are usually not controllabtghiy bursty, continuous, and are
typically unpredictable, (2) data streams are read-o8)ygw data streams are generated by
stream sources and derived data streams are generatedrigyopaeators, (4) data streams
are shared between operators to minimize resource usgggjdbes are long running and
are not snapshot queries, (6) queries can involve datanssread relational tables, and

(7) applications have quality of service and accuracy regquents.

e Some of the unique requirements of multilevel security alé ageother access controls are:
(1) system elements are classified via security levels, (@)gmtion of covert storage and
timing channels, (3) trusted components vs. untrusted ooems, (4) overhead at each
component of the underlying system, (5) and under diseibutetwork, how to preserve

security control and effective scheduling.

1.3 Research Tasks

To address the above challenges, we summarize the resezatshag four tasks. These tasks
are cohesive and related to each other, for the major goad\adldping multilevel secure DSMS
streams with illegal information prevention and betterf@enance in terms of faster execution

time. In general the following four tasks will be performed:

Task 1: Formalizing a Model and Language for Processing MLS ©ntinuous Queries: We
will develop a formal model for processing multilevel sezaontinuous queries and propose
a language for expressing such queries. We plan to extenddhmuous Query Language
(CQL) [9] and propose a new semantics that is needed to gddeS continuous queries.
This will help define the notion of equivalence between egeneeded for query plan opti-

mization and sharing.

Task 2: Investigating Centralized and Distributed MLS-DSMS Architectures: We will ex-
plore the possible DSMS architecture designs are able teeasld/ILS continuous queries:
Centralized system such as replicated and trusted MLS-BSM&d a simple distributed
system with load balancing algorithm. To ensure securewiatfor each architecture, we
plan to (1) identify the trusted components including inptneam shepherd operator, query
plan generator, query processor and so on, (2) introduteatitation modules with autho-
rization check to prevent illegal information flow, (3) dgsisecure scheduling mechanisms,

(4) and develop safe load distribution algorithm in disitéd system.

Task 3: Designing Sharing Approaches between Queries in thBame or across Different

Levels: DSMS expects heavy load of multiple queries and bursty mpluiring execu-

tion. Without security violations, sharing queries as masyossible is the straightforward
method to improve QoS by reducing execution time. Shariregiga in same level has been
published in our work [5, 6]. Besides that we are presentiegsharing possibilities across

different levels in more complex cases in this dissertation

In addition to the three tasks, prototypes of replicatagsted and a simple distributed ar-
chitectures will be implemented. The three prototypesnallis to study the effects of the
different architectures and process strategies on thenpeshce for processing typical MLS
continuous queries. There are two main factors we wouldtbkavestigate: (1) The secure
enforcement overheads by the new trusted processors, widlklde the running time of

user authentication as well as the extra scheduling effortsecure executions. (2) The per-
formance gain and differences from the sharing query peicgsesults, which means how
much response time we can reduce via reusing existing quenesgsing results. We will

use different kinds of MLS queries like select, aggregatand join for a complete overview

on the overhead and performance gains via experiments.

Task 4: Proposing CW-DSMS an Information Flow Control Model Adapted from the Chi-
nese Wall Policy: In the near future, clouds will provide situational monitay services
using streaming data. Offering such services require sgcprocessing data streams gen-
erated by multiple, possibly competing and/or complenmgntorganizations. Processing
of data streams also should not cause any overt or coveradgeatf information across
organizations. Reusing the architecture design and quegepsing mechanisms, in this
dissertation we also propose an information flow control ed@diapted from the Chinese

Wall policy that can be used to protect against sensitiva declosure. This secure DSMS

extension is designed for stream data auditing application

1.4 Dissertation Structure

The dissertation is organized as follows. Chapter 2 presetdted work. In Chapter 3, we give
a background introduction on the design, architecture, @modess mechanism of Vanilla Stan-
ford STREAM, as well as discussions on the limitations olsiy preservation and performance
issues under applications with sensitive information. f&e4 discusses the multilevel formaliza-
tion model and continuous query language, and the extetsisumpport level-specific queries. In
Chapter 5 we first present the considerations of possible-BBE$IS, then give details of repli-
cated architecture which provides better performancegusgcure sharing approaches and secure
execution via revised scheduling method. Chapter 6 digsusgsted architecture which provides
more flexibility on sharing across different levels withgeturity violation. In Chapter 7 we pro-
pose the ideas of applying DSMS to distributed environmenitk exploration on topics of group
construction, secure execution and load distribution.Haiier 8 we present a stream audit DSMS
using Chinese Wall policy access control. In Chapter 9, vet firovide the MLS-DSMS imple-
mentation details on critical components, then presengxperiment evaluations on the overhead
and performance gains in MLS-DSMS. In Chapter 10, the canmiuand future work are dis-

cussed.

10

Chapter 2

Related Work

2.1 Real-time and Stream Processing Systems

Temporal and Real-Time System DevelopmentsApplications involving time-related input data
appear in works related to temporal and real-time datalj&g¢sin temporal DBMS, input data
come with arriving timestamps, so queries can be issuedtanmaertain time intervals. The idea
of valid time computation inspires the window buffer pragiag in DSMS. However, temporal
architecture cannot be adapted to DSMS applications beaaugxtra temporal database is built
for queries; and all queries and input data are predictabte.real-time systems, their theories
cannot be used directly because of the differences on queagidn, scheduling objects, and secu-
rity threats between real-time and data stream systens, Féal-time DBMS deals with transient
transactions while DSMS handles continuous queries. Skgeal-time DBMS try to schedule
isolated transactions while DSMS uses operators as theigxeainit. The last, in order to cause a
security breach, transactions might set up inference agrtahannel via accessing the same data
item while continuous queries try to manipulate the shar@gponse time.

On the other hand, there are researches focus on designeg-amne MLS DBMS where
transactions having timing constraint deadlines executeserialization order without security
violations. Issues like security breach and task schedalie similar to our MLS-DSMS develop-
ment. Many concurrent control protocols, like 2PL high ptig OPT-Sacrifice, and OPT-WAIT

[38], deal with the high level transactions by suspendingestarting them if they conflict with

11

low level transactions. However, the starvation on higleléransactions becomes serious if there
are too many conflicts in the system. S2PL [61] provides aebethy on balancing the secu-
rity and performance among conflicting transactions: haytel transactions should wait for the
commission of conflicting low level transactions only onkert executed. Scheduling strategy in
MLS real-time transaction processing must address sggcsatialization and transaction dead-
lines, whereas the MLS-DSMS must address security, quspporese time and throughput.

Data Stream Management Systemsviost of the work carried out in DSMSs addresses vari-
ous problems ranging from theoretical results to implemgntomprehensive prototypes on how
to handle data streams and produce near real-time respahsetaffecting the quality of service.
There have been lot of works on developing QoS delivery n@sh@s such as scheduling strate-
gies [26, 11, 13, 45, 10, 22, 72, 27] and load shedding teclesifR6, 67, 68, 33, 14, 48]. Some
of the research prototypes include: Stanford Stream Dataalfer [12], Aurora [15], Borealis
[30], and MavStream [46]. MaxStream Project developed bl ZUrich [18] redesigns DSMS as
middle layer reusing popular existing stream processiistesys.

Commercial DSMS products have been developed in these $eehsas IBM InfoSphere Sys-
tems ver.3.0[40], StreamBase CEP [65] and webMethods BssiBvent [7]. The goal is to deploy
for applications including algorithmic trading, marketalananagement, intelligence and surveil-
lance, risk (pre and post-trade) evaluation, smart ordatirrg, transaction cost analysis, pricing
and analytics, multi-asset trading, fraud detection, netvwnonitoring, signal generation, statistic
assistant, etc. Clients and partners include buy and sielfsims, global exchanges, intelligence
and security organizations, eCommerce and online gamimg fiechnology providers, and more.
Those products are driven by complex event processing waimb to achieve better QoS stream
applications.

12

2.2 DSMS Security

Security Models There has been several recent works on RBAC secure DSM&4 [20, 50,
54, 55]. The authors in [4] present a three-stage framewmrnforce access control without
introducing special operators, rewriting query plans,figcing QoS delivery mechanisms. The
framework moved access control enforcement outside they guecessing, and allows user-level
and role-level sharing of CQs and prevents underprivileQ@s from processing all tuples. We
adapted the ideas of sharing between queries issued byloggesl in same roles.

In punctuation-based enforcement of RBAC over data str¢aim$5], access control policies
are transmitted every time using one or more security patictas before the actual data tuple is
transmitted. Query punctuations define the privileges f6a Both punctuations are processed
by a special stream shield operator that is part of the quiary. jpf the access check is successful,
the data tuples that follow the punctuations are allowedassp However, this method expects
input data within the same policies or in the same securitglleome in a consecutive way. The
policy switching cost will be extremely high if input data different levels come with random
order. So punctuation approach is restricted to applinatwhere input data in same policies are
clustered and will be handled sequentially.

Borealis DSMS project in [50] uses a post-query filter to ecdoaccess control policies. The
filter applies security policies after query processing iefore a user receives the results from
the DSMS. The main drawback is keeping users connected ®y#tiem even though there is no
output after post-filtering. Moreover, the access contitdrfing is done after query specification
which introduces wasted computations. To reduce the cogpating RBAC via query rewriting

techniques are proposed in [20, 21]. According to the mgeks of the query submitter, queries are

13

checked against a policy map for authorization before eb@tuOur system development adapts
their rewriting ideas by revising raw queries with levelarrhation for sharing analysis.

Information Flow control: MLS systems were the first to formalize the idea of informatio
flow control across centrally-defined security classifaasi Most of the work in this area assumed
that the security labels cannot be changed inside the apiplic Myers and Liskov [53] proposed
a decentralized information flow control model which allaive users to control the flow of their
information and also allows for explicit declassificatidnrdormation. Decentralized Information
Flow Control (DIFC) gives users the ability to create newigies while remaining constrained
by the information flow policies of others. Several researshhave worked on DIFC OS-level
policies [36, 77, 49]. Creating a language to express DIFIZips have also been explored by
researchers [35]. DIFC model provides threat detectiomaalitious data modification to prevent
illegal information flow. The DIFC model can be the future Wwaf MLS system development
integrated with user-specified constraints.

Decentralized Event Flow Control (DEFC) [51] have been psmal an architecture for ex-
pressing event-flow security policy in distributed mulardain applications. In DEFC model,
events are classified with confidentiality and integritydisbwhich are processed by different pro-
cessing units. A unified event dispatcher is responsibléstaloute each event to isolated security-
compatible unit. The unit finishes the computation then tgglthe event’s security labels if ap-
plicable. Our research adapts two ideas from them: is@aincessing units in the system to shut
down potential unsafe communications, and providing outpsults with security level upgrading
using least upper bound of all computation involving datele. For example, level of aggregation
output result should be the highest level of all input cormutata.

On the other hand, the DEFC model cannot be applied to MLS -B&t&use (1) The schedul-

14

ing unit is operator/plan in MLS systems rather than eve2it E@ch event is isolated processing,
while MLS-DSMS is able to share processing plans based amigelabels and similar query con-

text. (3) The units in event processing system are built wjtécific processing functions, while
in MLS system the processing unit can be completely re@ata&xcept assigned with different
security labels.

Chinese Wall Policy: Brewer and Nash [19] first demonstrated how the Chinese Vigittyp
can be used to prevent consultants from accessing infambélonging to multiple companies in
the same conflict of interest class. However, the authorsdlidistinguish between human users
and subjects that are processes running on behalf of userseGuently, the model proposed is
very restrictive as it allows a consultant to work for one gamy only. Sandhu [58] improves upon
this model by making a clear distinction between userscppais, and subjects, defines a lattice-
based security structure, and shows how the Chinese Watypmmmplies with the Bell-Lapadula
model [16]. In this work we've implemented a DSMS prototypéwChinese Wall policy control
and reusing design architecture and query processing misohs

Security Threats: Imperva [42] a business security solution company proptsedop se-
curity threats on commercial DBMS. There are five from teatesl to database design fit to our

secure DSMS system research:

1. Excessive privilege abuse. Users or applications amnetepladatabase access privileges in
excess of “business need-to-know” privileges in excessusiness need-to-know. For ex-

ample, a teacher assistant can update the student scorest luir personal information.

2. Legitimate privilege Abuse. Users might abuse legitevadcess privileges for unauthorized

purposes, e.g., combines two authorized tables (e.g.tiHesdord, Resident info) to con-

15

struct a big table can tell sensitive information (e.g.,Alved in Denver had a heart attack

two months ago).

3. Privilege Elevation. With database platform softwartnetabilities, hackers might be able

to get access privileges as an administrator.

4. Denial of Service (DOS). Common DOS techniques includa darruption, network flood-
ing, and server resource overload. Resource overload fgydarly common in stream

processing environments.

5. Weak Authentication. Weak authentication schemes nughs$e identity and login creden-
tial threats. If happens the hacker can deploy his own sfiegdo obtain sensitive informa-

tion.

Our MLS-DSMS prototype implementations have addressed 2mband 4th threats via the
following ways: (1) using security level as an attribute targ query access control, (2) enforcing
simple security property and the restrictegroperty of the Bell-Lapadula model in our multilevel
security system for all users, (3) and propose distributéBNDSMS framework to make each
node running as a server. Mitigation developments for 1dt%th threats remain in our future

work.

2.3 DSMS Performances

Scheduling methods:With high volume of unexpected inputs, the DSMS needs atfeschedul-
ing method to run stream-specific queries in a long run. sfiregland complex methods have been

developed and described as following:

16

1. Round-Robin. This is the scheduler method run in Stan®FREAM system [8]. Each
operator in plan will be scheduled in a linked list and will han for a fixed time unit or
input queue becomes empty. Round-Robin avoids starvagoause in each round each

operator will be executed for some time. There is no priaityong tuples or operators.

2. FIFO First In First Out. DSMS executes input tuples thitotlte plans based on the arrival
timestamp. Operators cannot access next tuple until thherdLiuple is completely handled.
As a result, some queries might suffer starvation if thgautntuples in a bigger timestamp
are buffered in the queue waiting for others to complete s Bloheduling does not support
query priority in MLS under bursty input situation. Sincettimestamp used for ordering
cannot be changed, FIFO cannot put execution priority teifipeueries with better re-
source release but later input arrival. On the other harieDR$ free from security violation
because execution order is based on tuple arrival timestdrgh cannot be manipulated by

users.

3. Greedy strategy. At any time instant, the operator hagdsigoperator memory release
capacityCO will be selected to execut€€O means the maximum number of tuples can be
consumed within this time unit by the tuple handling operaktowever, the throughput of
gueries are low under large numbers of input and one openattobestCO will always be

scheduled for execution while others are blocked.

4. Chain strategy [13]. At any time, DSMS considers all tspleat are currently arrived in
the system. DSMS schedules a single time unit for the tu@elibs on the segment of
consecutive operators with biggest segment memory relsgsacity. If there are multiple
such tuples, system will pick the tuple which has the edrhesval time. The scheduling

17

priority is determined by segment memory release capagdawever, covert channel can be
established since high level plans always release more mydmoause of consuming more

qualified input data that are not accessible to low-leveligse

5. Operator Path Capacity strategy [45]. It considers tliegssing rate of an operator path
P; (processing capacity)';, as the priority. This method is an optimal one in terms ofltota
tuple latency among all scheduling strategies. Howeveifiess the same problem as Chain

strategy because in most cases the throughput of high laeeies is much higher.

6. Segment strategy [44]. Instead of using operator pattriagtp unit, it first divide paths
into segmentation then set up execution order among thesepiaccording to their seg-
ment processing capacity. It improves the memory requinésnen path capacity strategy
by sacrificing some response time for specific plan. Diffefesm Chain, the execution
priority is assigned to the operators in segment rather tharnuples. There are many seg-
mentation methods on operator path. A simplified segmeategly can be applied where
only two segments is used in each operation path. Since @fi@deles (normally the selec-
tion and projection nodes) in a path have faster processipgaities and lower selectivity
while others have much slower processing rate, the first eaggincludes leaf nodes and
consecutive operators if their capacity reaches a fixed (bke 80%) of previous consecu-
tive nodes. The second segment contains other operattrs path. The simplified segment
strategy is one of Memory Optimal Segment (MOS) strategii€hvaims to minimize the

total memory requirement as well as decrease the tupleckaten

None of these strategies can be directly applied to our syatethey cause illegal information
flow. So we are creating new MLS scheduling strategies caresalvert channel problem as well

18

as provide acceptable performance.

Load Shedding: Load shedding is another way to ensure QoS requirementseafugrg
queries during bursty input by discarding some input tupfasrora project developers proposed
that a proper load shedding mechanism should apply reaksotiugibe-dropping algorithms on gen-
eral queries [67] and aggregation operators [68] to redoeeadlative error as well as satisfy the
QoS requirements. The load shedding algorithms can be amapartial selection from all the
input data, or integrate a semantic drop operator to somey guien according to fixed query co-
efficients like selectivity and Loss/Gain ratio (low-dattlity/ CPU-cycle-saving). Besides, their
conclusion forms the foundations of DSMS load shedding ldgwveents.

Based on researches [23, 23, 60, 29] load shedding mechahaud cover the following fun-
damental issues. First, what are the timings and conditomstivate load shedding by system
semantics. For example, parameters like current memoyeyusaPU-cycle rate and bandwidth
are taken into account for load shedding from Aurora prdj28}. Second, where is the perfect
execution location in query plans for shredder operatorsthérs in [60] claimed that function
calls in input source operator is a best place for load smgddahich saves buffering memory and
processing time. On the other hand, if shedding happensroe sgput stream shared by multiple
gueries, the system must consider effects to those queitlesuvshedding needs. Third, what is
the proper quantity of shedding load such that the qualitguary outputs is not compromised?
The unpredictable input in DSMS reduces the efficienciegeffixed shedding parameters, such
as selectivity, potential data utility and CPU cycle gaikeedback control-based framewark-
plemented in Borealis project [29] is proposed to reviewpatitesults periodically and then make
shedding adjustments to fit the QoS better. However, Bar&dkO scheduling method will cost

huge buffer during brusty input data. Our future work is gpia adapt the feedback framework

19

with a sophisticated memory-optimized scheduler.

Query Sharing: In the context of DBMS, researchers have investigated havigsi can ben-
efit by sharing their computation costs. Finkelstein [37hdestrated how query graphs can be
used for detecting common sub-expressions across mutfydaes. Sellis [59] investigates the
problem of multi-query optimization where the goal is toaihta good plan for multiple queries.
Chen and Dunham [28] have also looked into the problem ofieffity identifying common sub-
expressions for processing multiple queries. GoldstethLaarson [39] focus on how queries can
be optimized by using results from materialized views.

In general DSMSs like STREAM, Aurora, and Borealis, quergssied by the same user at
the same time can share the Seq-window operators and sybpseeen each other. Besides
common input source operators, sharing intermediate ctatipo results is a better way to make
big performance achievement. Jin and Carbonell [47] loa& the problem of using predicate
indexing for query optimizing in streams where not all thetoouous queries are submitted at the
same time. In this approach, a relation schema storesraxigtiery plan information which will
be compared and updated when a new query arrives. Our DSM$ogeavent adapts their idea of

buffering query plans for comparison between existed amdqeeries.

2.4 Distributed DSMS

Cherniack et.al. [31] proposed the ideas of extending Ausystem to distributed environments.
They presents critical issues and solutions on developaifelsgtributed stream processing system
in their work.

Their proposed systemurora® consists of multiple single-node Aurora servers that bglon

to the same administrative domain and cooperate to run tlerawuery network on the input

20

streams. The system is able to dynamically distribute tleeygwad in terms of boxes. Specifically,
the operators/boxes of query plan are dynamically distetbuo different machinesAurora*
development raises several critical issues in our digethDSMS development: (1) How to set up
the distributed network and how to reduce the bandwidth ofroanications? (2) How to perform
load management from which operator/plan? (3) How to madritegh availability in distributed
system? For example, the system can use the k-safe stanfdéwelfailure of any k servers does
not result in any message losses. (4) What are the failueetiet and recovery mechanisms? In
Aurora® once upstream node detects some downstream nodes arelaivlayai will search its
catalog to find alternative participants to join and congifts query plan.

Chinese Wall and Cloud Computing: Wu et al. [73] show how the Chinese Wall policy
can be used for information flow control in cloud computingaeTauthors enforce the policies
at the Infrastructure-as-a-Service layer. The authoreldped a prototype to demonstrate the
feasibility of their approach. In our current work, we hawapted the Chinese Wall policy and
demonstrated how stream data generated from the varioasinegions can be processed in a
secure manner. Our work is addressed at the Software-asva&eSlevel. Tsai et al. [71] discusses
how the Chinese Wall policy can be used to prevent competiggnizations virtual machines to
be placed on the same physical machine. Graph coloring ésfasallocating virtual machines to
physical machines such that the Chinese Wall policies disfisd and better utilization of cloud
resources is achieved. Jaeger et al. [43] argue that covannels are inevitable and propose
the notion of risk information flows that captures both oaertl covert flows across two security
levels. Capturing both covert flows and overt flows in a unifregnework allows one to reason

about the risks associated with information leakage.

21

Chapter 3

Background: STREAM DSMS

Our choice of MLS-DSMS development is based on the Stanfa@iREAM Project [8] because
of the following reasons. First, the Continuous Query Laggi(CQL) [9] is well-defined as the
semantic foundation for continuous queries. Second, iera@handle queries on different input
sources, they provide methods to synchronize timestamps@udifferent input data [62]. Third,
the open source DSMS prototype is able to handle basic CQtieguieom different clients with
multiple server instances.

In this chapter, we present a detailed introduction on 8t@nETREAM system. After de-
scriptions of its architecture, query process, and intemadetween commands and components,

STREAM limitations on secure stream processing are digcliss

3.1 STREAM DSMS Overview

Stanford STREAM is referred asnilla DSMS system in this dissertation. The vanilla DSMS
is a comprehensive interactive interface for STREAM ussystem administrators, and system
developers to visualize and modify query plans as well asygsigecific and system-wide resource
allocation while the system is in operation [69]. We firstgaet the architecture of STREAM then
discuss each component of the vanilla DSMS shown in Figure 3.

Theserveroperates in two phases. In the first phase it registers qistieams, and relations

from theclient via the command unit. In the second phase, it executes tistesgd queries and

22

Input Stream source
Input Streams l l l
A A A
1. Connect to Server

Connection Info Stream Shepherd Unit

2. Register Query A

User

Commands |_3- Generate Plan Command Unit

Input
Connection

YYYVvYY

4. Start Query execution

5. Stop Query execution

\

Queries |

Interpretation Unit Z}glelan Input Unit

List of - -
Operators Execution Unit

Execution

Query Processor

Client

Server

Figure 3.1: DSMS System Architecture

propagates the outputs. No new queries, streams, or rmedaten be registered Once the second
phase starts. The client communicates with the DSMS seigea get of predefined messages
in multiple steps. The first two user commands correspondsetdirst phase and the next three

corresponds to the second phase.

1. Connect to ServerThe client establishes command communication with theeserVhe
server creates a new server instance specific for that clidhtthe following command
messages are sent to this instance. This does not allownghafrinput streams or queries

among different clients. There is no notion of users, autbation, or security levels.

2. Register Query:The client registers input stream schemas, relations, aerdes. At this
stage, a query registration message is sent to the intatipretunit which translates the
interpreted query to a logical query plan (a link of operg}olhe naive physical plan is also
generated.

23

The input streams are connected to the query processor umiiuby the stream shepherd
unit. Users are required to bind input data sources withttleas schemas explicitly. Thisis
not suitable in the secure DSMS architecture as the usersrdgmccess authorized tuples.
Thus, we have to modify the registration process. In the Wumit, output connection

between DSMS and client is established after the queriesgigtered.

3. Generate PlanOnce the DSMS receives command from the client indicatiagdh queries
have been registered and binding of input streams have hmapleted, it optimizes the
naive physical query plans created in the previous stepo,Ajsaphs of physical plans are
generated for user view. The generated physical plans stanitiated in the execution unit

of the query processor and the list of operators are senetsdheduler.

In the replicated MLS-DSMS, the query plans have to be geéeéria appropriate query
processor and should be linked to appropriate single leyeltistreams so that there is no

illegal information flow.

4. Start and Stop Query Executio®nce the start query execution command is issued, the
scheduler instructs the execution unit to start runningsgiecified operators. Input, output,
and execution units process stream tuples continuoughythrencomputation results are sent
to the client until user issues the stop query execution canthor there are no more input

tuples.

3.2 Query Process

Let us take a closer look on query process in vanilla systengeheral, raw queries received by

the server will be processed in the following chain:

24

CQL query -> Syntactic nodes in parse tree -> Semantic object S
-> Logical operation (logical plan) tree
-> Physical operation (physical plan) tree -> Execution uni ts

CQL Query/Table Schema

CQL Query ; +

Query Manager

NODE * parse tree

Schema parseTrees
Query parseTrees l \

Table Manager

Semantic Interpreter

Semantic Queryl

Logical Plan Generator

Logical Plan +

Plan Manager

Physical Plan +

Execution Units v

Scheduler ‘

Figure 3.2: Query Process

The system components involved in query process is showEdyure 3.2. And we explain

each component in details one by one. Some descriptionscemeSTREAM-0.6.0 manual [70].

e Parser. It takes in input stream/relation/view schema aretygmonitor specification then
decompose the string sentence into different nodes. Adlgahinfo are saved in@arseTree

Other process units like query manager can get the regisirgie@from specific nodes.

e Table Manager. In DSMS tables refer to streams and relatioDSMS. The table manager
stores the names and attributes of registered streandrélaew. The inputinfo comes from

parseTree

25

Query Manager. Registered queries and sub-queries aegl stauery manager. Each query

will be assigned with a unique identifier (query-id) for fuet use. [70].

e Semantic Interpreter. Parse tree nodes generated by palisee handled in this module.

The syntactic parse tree is converted to specific a set ofrg@nudbjects [70].

e Logical Plan Generator. It transforms an interpreted seimguaery to a logical query plan.
Those interpreted CQL queries are constructed in certaiernpa. The generator checks

them by applying set of transformation rules.

e Plan Manager. Physical level entities including operatqrgeues, synopses,query plans
are managed by this module. By reading the logical plan, planager instantiates the

corresponding physical entities. [70].

e Scheduler. It creates a queue for all operators from phlyglaas. When scheduler starts

running, operators will run one by one and query by query.

From the process tree, there are several products durirguerg transformation.

e NODEs. ParserCommand handles registered table as well Bg)G&ies by creating vari-
ous kinds of nodes as output. Some nodes can be constructessizynodes, for example,
REL_SPEC (relation specification) node has two fieldS_name andattr_list. attr_list
refers toL1ST node contains a list of attribute specification nod&sSI'R_SPEC. The

parsing result is calledarse tregewhich is a node contains set of basic nodes in its fields.

e Semantic query. This object is created by interpreter. Titernal representation differs

from the parse tree (NODE *) produced by the parser in thefohg ways: First, input

26

relation/streams as well as their alias are connected ftoititernal identifiers. They are
assigned with a variable-id, and each attribute belongkdsthema is also assigned with
unigue attribute-id. So each attribute can be denoted es-iable —id, attri —id >. While

in parse trees some attributes are implicit. Second, enpuytistream in the FROM clause is
associated with a window. In NODE * there could be streambauit a window. The system
will add the default UNBOUNDED window for every stream in tRROM clause without a

window [70].

Logical plan. Logical plan is a linked list of logical opevas. Operators in plans are con-
structed as a tree structure, where the operators in lowel peovide output their results
to the ones in higher level. The bottom operators consumefhé stream/relation while
the top (root) one produces the final query output. The treepsesented as a linked list
where the root operator will be the returned logical/phgisptan. Operator is an interface
in DSMS, which can be used to represent logical plan, phiyplea, and actual executing

operators.

Logical plan operators are different from the the one usgghiysical plan. In logical plan
generator, semantic query is classified as two kinds: SElech-Where (SFW) and Binary-
Join. The generator first produces a naive plan where secrgury is translated with a set
of logical operators represent the necessary operatioimeiquery. The execution order of
operators is determined during the translation, and ituedas a linked list. To be specific,
each operator contains fieldgut andoutputwhich denote the previous and next operators
in tree structure respectively. After the linked list isatied, the top operator (which is the

last operator in query) is returned as logical plan object.

27

In order to show how to construct the linked list in certaider we take the naive SFW
logical plan generation for example. There are severalsstépextracting the info from

semantic query to create a linked list of operators: 1) Gaeeax plan that joins the FROM
clause tables; 2) Apply WHERE clause predicates over thme 8)iApply Aggregations and
perform group by if necessary; 4) Perform projections dpeetin SELECT clause; 5) Apply

Distinct operator if needed; 6) Apply Relation-to-Streaperators if present.

After a naive plan is generated, logical plan generatorgoer$ optimization to remove re-
dundant operators according to the CQL definition. The nplae is “transformed” to a

better logical one after certain optimizations.

Physical plan. Similar to logic plan, physical plan is a Bdlist of physical operators. Since
the logical plan is the pointer of the top operator, the plamager will go recursively in the
linked list then produce the corresponding physical opesabty mapping with logical ones
to them as well as additional optimizations. For example |dfgical plan has two sequential
select operators, only the child (lower level in tree stuoe} operator will be kept in physical

plan by appending parent’s predicate attribute with its.own

When the physical plan is done, plan manager will generapeeial operatoquery.source
as the first but artificial operator in the physical plan. Tdigry source operator can be
shared among queries requesting the same input. This is engwperator found only at

the metadata level. [70].

Another case is that whether the registered query needgpatolf yes, we need to create a
specific operatooutputinterfaces outside the system. this special operatoraspison the

top of the physical plan.

28

e Execution units. When all queries are registered, plan gemwill add all the auxiliary
structures like synopses, stores, queues to the plan. Shestures as well as related oper-

ators will sent to scheduler for execution.

3.3 Interactions

In this section, we take a second look at how the interactimmmands cooperate with DSMS
components. In Figure 3.3, the left side are the public atgon methods and the right side

are those important process units in DSMS.

Begin Application —

Specification
Table Manager
Register Query/ 1 \

Register Monitor 2 Query Manager

Register Base Table/
Register View

. Semantic Interpreter
DSMS Public Methods

End Application Logical Plan Generator

Specification 1.1

Get Query Schema/ 1 Plan Manager

Get XML Plan

1 1.2 create

Begin/Stop/Interrupt/ 4
Resume Execution

Scheduler

Figure 3.3: DSMS Methods

Public methods will be called by command connection prooegsvhere the DSMS instance
is created. When command unit gets specific commands frantclit will call the responding
methods in DSMS. Now we explain how these methods interabtpybcess units in DSMS.

29

1. Begin Application. Five process units except schedulerirgtialized. Parser is a process
unit which does not need initialization. All the processtsimixcept parser is locally initial-

ized in a DSMS instance.

2. Register Base Table/View. Both methods first pass the tadnine and schema to the parser
for node decomposition. Then the table manager will stoeenlime and schema from the
parse tree; a table Id is returned. In the third step, base tagistration will inform the plan
manager about the new table while view registration wilicate the mapping between the

previous registered query with a view table Id to the plan aggn.

3. Register Query/Monitor. Monitor is a special query refidbe real-time data during query
execution.The CQL query will be sent to parser for decontmysand query manager for
storage. Parser returns a parse tree and query managersratumique query Id. The
semantic interpreter transform the nodes in parse treenteanal query, which would be
used in logical plan generator later. After a logical plametirned, the plan manager will

product a corresponding physical plan and bind it with thergud.

4. End Application. It is called when the client finishes alblie/query registration. There are

several steps must be done before moving to execution.

(a) Plan optimization. The non-operation query sourcedieseremoved from physical
plan. Then all operators without an output will be added wvaitink operator in the
top. The sink operator consumes all input child operatothaut an output. After
that, the plan manager will try to merge select operationmient operator is select
and the child is select or join. The parent operator will bledel from plan after the
predicates is properly appended to its child operator.d¢dhat if more than one plan

30

(b)

(©)

uses the parent node, the merge cannot be done. Also the enamidigry to merge
some project operators where parent is project and chitans |

Adding auxiliary (non-operator) structures. Theseaidtres like synopses, stores,
gueues should be attached to each operator in the plan. @hedructures need to
be added which include the extaggregation attributen aggregation operator.

Each synopsis is a distinct logical symbol indicates theuifqutput of an operator
while the store is synopsis allocator which allows shariegveen synopses. Plan man-
ager will first add the proper synopsis type according to fherator then create stores
for synopses. Notice that synopsis-store assignment ésurtdé “synopsis-sharing”
(it is actually “store-sharing”) between operators. Fatheaperatoio, manager first
checks its output to see if any of the parent operators abdwave synopses which
require thab assigns memory for their tuples. If yeswill be attached with a sharable
store which will be assigned to the parents’ synopses |@#rerwise obsolete stores
are created. Each store keeps a stub record indicates gga@sassigned to it. In our
MLS development, we need to consider security level on ssisggharing.

Queues are also attached to each operator. There are tpeedfyqueuessimple
gueue, writer, and readerA simple queue has one source and one destination opera-
tors, while a shared queue reader/writer has one source amgleestination operators.
Writer is the output queue while reader is the input queueéah operator.
Instantiation. Plan manager instantiates memory memaid allocates static tuples
contain the constants that are used in operator compusatitxecution operator spec-
ification will be added to corresponding physical operatogghysical plan. After that,
the queues will be instantiated and attached to relatec tewscution operators. Then

31

the plan manager will link the synopses to their stores atagdink the operators to
their input stores. The link here means create the impleatient of stores and syn-
opses from previous specification.

(d) Scheduler initialization. The execution attribute peeators in physical plan are added

into the scheduler.

5. Get Query Schema/XML Plan. Both methods are functione®ptan manager. Get query
schema can be returned by a given queryld before or after fesyeaification for checking

the schema definition. XML plan returns the plan for wholereggeafter end of specification.

XML plan can be submitted by users to simplify the input/atneregistration. A simple
example for XML registration plan is presented as following the XML file user can
specify the schema of input stream, query detail, as welhasonstruction ways of input

data (with/without timestamp, input as a loop).

<Script>

<Table>
<Name>R</Name>
<isStream>true</isStream>
<isBase>true</isBase>

<Attr>
<Name>name</Name>
<Type>2</Type>
<Len>20</Len>

</Attr>

</Table>

<Query>
<QueryString>select * from R;</QueryString>
<isNamed>false</isNamed>
<hasOutput>true</hasOutput>

</Query>

<DemoBinding>

32

<TableName>R</TableName>
<FileName>R.load</FileName>
<bLoop>true</bLoop>
<bAppTs>false</bAppTs>
</DemoBinding>
</Script>

6. Begin/Stop/Interrupt/Assume Execution. All methodeiréo the scheduler. If the plan is
allowed to execute, scheduler will run the execution opesatontinuously until interrup-

tion/stop commands are received.

3.4 Continuous Query Language

In STREAM, the input data can be streams or relations, andxéunei of both. A streant is a
bag of elements: s,t > wheres is a tuple belonging to the schema$tndt is the input arrival
timestamp ok. ArelationR is a mapping from each time instant to a finite bag of tuplesrigghg
to the schema oR.

Besides, queries are expressed by Continuous Query Laa@G&.) which is an extension of
Structured Query Language (SQL) by supporting continuaesigs on long-running input stream
data. In CQL, queries are processed periodically at eaahitistantheartbeatr, using the input
data with a timestampwheret < 7. The input data are partitioned and buffered isyaopsis
(Syn) with a predefined finite size. At every heartbeahe system processes the query with data
set in the window then transfer the results to users contisiyo In general, there are three steps
during query processing showed in Figure 3.4: (1) StreaiRefation S2R: For a heartbeat,
input stream data with timestamps< 7 are transformed to a temporal relation. (2) Relation-to-

Relation R2R): the input “relations” are processed by CQL operators ams$alting relationR(r)

33

is generated for each (3) Relation-to-StreanmR23: the resultingR(7) is transformed back to

stream as the long-running output results.

1. Input Buffer
Stream-to-Relation (S2R)

Relations

2. Computation

3. Return Results Relation-to-Relation (R2R)
Relation-to-Stream (R2S)

Figure 3.4: Three Steps of Query Processing

Correspondingly, there are three kinds of operators S2mR, BR2S to complete the query
processing. S2R operators, usually called Sequential 8Min@Geg-Win), handles query input
by generatingslide windows The sliding windows are buffering synopses contain a hisdb
snapshot of a finite portion of the stream at each hearthe8ased on different input requests,
slide windows are classified asple-based, time-basedndpartitioned-by Tuple-based window
over Streant usually uses the form S[Rows N], which requires DSMS to biu#st N tuples of an
ordered stream with largest timestamg 7. Time-based window in the form S[Range T] contains
all tuples from timestamp — 7" to 7. Note that a size constraint cannot be applied to time-based
window because of the unpredictable input tuple rates.itPartd-by window is represented as
S[Partitioned By A, ... A, Rows N] whereA,, ..., A; is a subset of attributes defined in stream

schema. This window logically partitiorfsinto different substreams based on equality of A,

34

A, and computes a tuple-based window with széendependently on each substream, then take
the union of these windows to produce the input relation.

On the other hand, R2R operators are derived from traditiDBMS like selection, projection,
join, and aggregations such as maximum, minimum, average,and count. They are responsible
for query computation on the mixture of input relations atvrdams in sliding windows. In step 3,
the final results are transformed back to the stream by oeldti-stream R2S operators.

With CQL operators, the query plan can be generated like a @§@ky tree where nodes rep-
resent the processing units — CQL operators, and the caanexiges between nodes apgeues
storing the intermediate or final outputs generated by apereBynopsiss maintained with opera-
tors which stores the temporal results for further compaiatexcept non-blocking operators like
selection and projection, only blocking operators likeragation and join need synopses. Synop-
sis has different types according to the input window speatitons. Tuples buffered in synopsis
contain expiration tags calculated from arrival timestgohys the window size. In query plan,
guery processing starts from bottom input operators thrdhg output in the top.

The first step of our work is to simulate a battlefield monitgrapplication. Each soldier equips
with sensors sending out Vitals and Positions info to thercbeenter with DSMS continuously.
Users like commanders and medics issue real-time queasséng real-time data analysis based

on the infinite remote streaming data. The schemes are shusled:

Vitals(soldier id (sid), blood pressure (bp), pulse rate (p r,
weight (weight));
Positions(soldier id (sid), latitude (lat), longitude (lo n));

Timestampts is attached to each tuple by vanilla DSMS indicating thevalrime instant.

The system forms two streams Vitals and Positions collgatiformation from all soldiers, com-

35

putes query request in real-time, and transmits results tuagsers. CQL querie9,, @, andQ.
illustrates the usages of three kinds of windows in vanistem.

Qa: Find soldiers’ Vital and Position information from last
100 input tuples where the soldier is in longitude "12E".
CQL: SELECT * FROM Vitals[Rows 100] V, Positions[Rows 100] P
WHERE V.sid = P.sid AND P.lon = "12E"

Qb: Compute average of soldiers’ blood pressure from the dat a
received in 5 minutes.

CQL: SELECT AVG(bp)
FROM Vitals[Range 5 Minutes];

Qc: Compute the number of soldiers located in different
latitudes from last 500 input tuples.

CQL: SELECT COUNT(sid)
FROM Vitals[Partition By lat Rows 500];

3.5 Limitations

With the architecture design and query processing STREAMIaeDSMS, four of five the miss-
ing stream processing requirements [63] in traditional DBMe satisfied. (1) STREAM is an ac-
tive management system, which keeps stream data movingutishoring the whole first; (2) CQL
is proposed to specify stream-specific queries; (3) Thelmoots queries can be handled so that
output results are predictable and repeatable; (4) Quentsican be live stream or tables in finite
size.

The requirement on handling missing/out-of-order/delagputs are not considered in STREAM
because integration of those extra mechanisms causesabggity. Besides, STREAM prototype
does not focus on the correct arrival orders of inputs suctak market analysis. In fact, a pos-

sible solution on delayed/out-of-order of input streamprigposed in Aurora DSMS usirgjack

36

methodin [1]: before query processing, the system uses 2 passddebsbrt on a limit size of
inputs trying to provide better ordered input sequence. sdreng method uses small buffers and
computation power not causing big overhead in DSMS.

Our work is applying DSMS to multilevel scenario applicaso input data are sensitive and
gueries from different users are classified. In this se¢tiem discuss the limitations of vanilla

STREAM in in two main aspects: security preservation andigperance improvement.

Security Threats

In our design, security level is a special attribute existedll input tuple schemes. Each input
should be attached with one security level then accedyitsldetermined. Queries with lower level
cannot access inputs with higher level. Amthenticatiormodule during client-server connection
must be added to the original DSMS.

To ensure security preservation, some might argue thahg@diltering in query pre-processing
might solve this problem. However, ti&ference problenexists in STREAM system. For exam-
ple, we have two queries issued by a low level (L) user:

Q1: Return max value and id of every two new inputs.
CQL: SELECT id, MAX(value) FROM Input[Rows 2]
WHERE level = "L"

Q2: Return all ids and values of every two inputs.
CQL: SELECT id, value FROM Input[Rows 2]
WHERE level = "L"
Suppose there are three inputs with schema (level,id,yvaluges in the following order:

(L,First,100),(L,Second,90),(H, Third,150). Since tlgsa low level query, only the first two in-

puts will be considered for maximum computation. The outgsult for), is 100,100,90, the

37

number of computation times is 3; While the output result@eris (First,100), (Second,90), the
computation times is 2. The reason is that the arrival of (@ 150)expires the first input
(L,First,100), which causes the computation of maximumoBgerving those difference between
the two queries, low level user is able to infer the existasfaaputs from high level.

Another threat isovert channel problemBy STREAM DSMS design, it uses a round-robin
scheduler to run all registered queries. Under sensitieedapplications, malicious users can build
up a timing covert channel easily by affecting the respoimse of low level users. Suppose there
are two userg$/, andU, in different level high and low. In timestamp 1, both usesusonly 1
identical query respectively() returns info from a stream with low level inputs. At timestafn
response time fol/; should be fast. At timestamp 2}, issues 5)s andl/; maintains same Q).
The response time in timestamp 2 {Grwill be significantly delayed by observation. By setting
up patterns such as issuing different numbers of querieseadgsigned timestamps;, builds a
channel to send 0/1 messages (suppose 0 for fast and 1 fQrtsloéjvperiodically. The design of

scheduler must be reconsidered under secure stream prarapplications.

Performance Issues

Vanilla DSMS provides input sharing for all registered degonly if they are accessing the same
input streams and they are issued by the same user. Streata arp not shared between different
clients. Besides, query processing storage and resulteoashared between queries, even though
they are identical in syntax and query plans. In our work vme @ reuse the process and results
between queries in certain similar forms.

The expression power of CQL can also be improved by supmpdureries in certain levels.

For example i), original CQL cannot buffer tuples only in level L at the vdrgginning. We've

38

extended such limitations in our MLS models.
In the following chapters, we are providing the MLS modelsl dormalizations. Then in
in different MLS-DSMS implementations, we propose solasido handle the limitations of the

vanilla DSMS.

39

Chapter 4

Multilevel Security Formalization

4.1 Multilevel Security Model

In order to support multilevel security (MLS), we first needdefine MLS model for the system
as well as the CQL queries. An MLS-DSMS is associated witrcarsty structure that is a partial
order, (, <). L is a set of security levels, and is the dominance relation between levels. If
Ly < Ls, thenL, is said to strictly dominaté,; and L, is said to be strictly dominated bis,. If
L, = Lo, then the two levels are said to be equB|. < L, or L, = L, is denoted by.; < Ls.
If L, < Lo, thenL, is said to dominaté.; and L is said to be dominated b#,. L, and L, are
said to be incomparable if neithér, < L, nor L, < L;. We assume the existence of a level U
(Unclassified), that corresponds to the level unclassifrgaublic knowledge. The level U is the
greatest lower bound of all the levelslin Any data object classified at level U is accessible to
all the users of the MLS DSMS. Each MLS DSMS object D is associated with exactly one
security level which we denote d$x) whereL(z) € L. (The functionL maps entities to security
levels.) We assume that the security level of an object nesni@xed for the entire lifetime of the
object.

The users of the system are cleared to the different sedexigls. We denote the security
clearance of usdV; by L(U;). Consider a military setting consisting of four securitydls: Top
Secret (TS), Secret (S), Confidential (C) and Unclassified TUeir dominating relation is U

C < S < TS. The user Jane Doe has the security clearance of Top Sé¢retneDoe) = TS.

40

Each user has one or more associated principals. The nurhpenoipals associated with the
user depends on their security clearance; it equals to thdeauof levels dominated by the user’s
clearance. In our example Jane Doe has four principalsDiané&S, JaneDoe.S, JaneDoe.C and
JaneDoe.U. During each session, the user logs in as one pfittegpals. All processes that the
user initiates in that session inherit security level of¢heresponding principal.

Each continuous query; is associated with exactly one security level. The levehefquery
remains fixed for the entire execution. The security levehefquery is the level of the principal
who has submitted the query. For example, if Jane Doe logs daaeDoe.S, all queries initiated
by Jane Doe during that session will have the level SecretA$juery consists of one or more
operatorsOP;. We require a query); to obey the simple security property and the restricted
*-property of the Bell-Lapadula model [16]. In MLS-DSMS, geitis are active elements of the
system like operators execute queries, while objects as\melements of the system that contain

information such as queues, tuples, and input streams.

e A subjectS; with L(S;) = C can read an objeatonly if L(z) < C.

e A subjectS; with L(S;) = C can write an object only if L(z) = C.

Let us consider the benefits of applying BLP model in mulélesecurity. Simple security
property ensures no read-up and the restrigtptbperty allows only write-equally (no write-down
or write-up). Both ensure information can only flow up fronwlto high level.

An MLS-DSMS deals with different types of data objects. lalrBme stream monitoring
applications, we have sensors that capture informatiorrefée to these sensorsstseam sources
One or more sensors can add tuples to a stream. Each sens@aon sourceS; is associated
with a security level(S.S;). The location of the sensor determines its security leve eikample,

41

if a sensorS.S; is located in a top-secret location, then its security [yl S;) = TS. We refer to
the data stream generated from the sensors as the sourcgrdata. The source data stre&mn
generated from the sens®6; inherits the security level of the sensor, thatiss;) = L(SS;). All
the sensors writing to a stream have the same security Istleéastream. Each tuplédelonging to
the source data stream inherits the security level of tleastrsource, that id,(¢) = L(SS;). All
the tuples in the source data stream are at the same levelsdia that each source data stream
SS; is associated with a single security level. This assumpsaaquired to satisfy the restricted
*-property of the BLP model. Though, we assume source streaensingle level, we consider
our stream inside the data stream management system fice.tloe tuples enter the system) to be
multilevel.

For each input data record, multilevel security can be stipdat twogranularities tuple and
attribute. In this dissertation, we put security enforcetrat tuple by appending level attribute to

all input data.

4.2 Multilevel Queries

Consider the battlefield monitoring situation again and eaeh input tuple comes with security
labels. Suppose control center runs a vanilla DSMS handdng queries 4, Q., @y and@),)
using the CQL language that does not support MLS specifitati®o we have added the MLS

clauses, appropriately.

Qd: Compute the average bp and pr from the last 100 input data
in the unclassified level

CQL: SELECT AVG(bp), AVG(pr) FROM Vitals|[Rows 100]
Where level = U

In query@y, the stream window maintains the last 100 tuples in the ssg®pThis particular

42

Table 4.1: User-CQ Relationship

USER | QUERY LEVEL | QUERY | RESPONSE REQUESTED
Bob TS Qg at level U
Kim S Q. all levels dominated by S
Jim U Qf all levels dominated by U
Alice TS Qg all levels dominated by TS

guery can be executed by a user at any level, since the selawet is unclassified (U). Moreover,
the results returned by the query is independent of the ggdevel at which the query is issued.
We term queries that run at a particular levekagyle levelqueries.

Consider querie®)., (), and@, where the same query is issued by users logged on at different
security levels as shown in Table 4.1. Note that, there isxpbat mention of security level in this
query. Thus, querie§., Q;, andQ), are syntactically equivalent but will return different ués.
Queries); and @), are syntactically different but will return the same resgan\We term queries
like Q. and@, asmultiple level queries as the result combines multiple levels.

Qe, Of & Qg: Select AVG(bp),AVG(pr) From Vitals[Rows 100];

Consider a variation of the queri€s,), andQ, using the partitioned clause shown below
as@, Q}, andQ;. The results forQ),, Q;, and @, will be partitioned by the security levels.
For example, query); will produce averages for each level separately rather thaoombined
average for every 100 tuples across all levels.

Qe, Qf & Q'g: Select AVG(bp),AVG(pr) From VitalsfRows 100
Partitioned By level];

MLS DSMS adapts CQL so that various MLS continuous queriegia level, multiple level,
partitioned, combined) can be expressed in the framewankthis research, the new language
calledMLS-CQL will extend the CQL syntax and define a new semantics thatdigtate how

43

MLS queries are interpreted and processed and what resuitsafely be returned to the user.
The formalism should capture the security level of the usswning the query using the notion of
dominance of security levels. The formalism will also allosvto reason about query equivalences,
which, in turn, will help with query rewriting and query optization. Besides, the formalization
is critical as it directs the design of the architecture ariltlalso help in proving the correctness

and soundness of the algorithms.

4.3 Stream-to-Stream Window Operator

In CQL, condition filtering can only be specified in WHERE ddauvia select operator. S2R
Window operators are just used for buffering, which limhe flexibility of continuous queries
under multilevel secure circumstance: user might only riedaliffer data within specific levels.
On the other hand, lack of control on buffering data in windoperator might cause security
threats. For example, an U level user issues two querieg gatime on input stream Vitals:

Q1: SELECT AVG(bp) FROM VitalsS]ROWS 3]
WHERE level = U;
Q2: SELECT bp FROM VitalsfROWS 3]
WHERE level = U;
Suppose there are 4 input tuples(timestamp,level,bpeanithe timestamp order, the compu-
tation results are performed on data in level U, which is stubim Table 4.2.
The U level user knows all inputs in timestamp 1, 2, and 4 ex8eg-rom the computation
result in timestamp 4 turns out to be 130 instead of 120, hekwdw there is some high level

input arrive among timestamp 3 and 4, even though he doe®adhs input from the queries. As

a result, the existence of sensitive information is leakrtauthorized users.

44

Table 4.2: Information Leak Example

TIMESTAMP | INPUT | WINDOW BUFFER | RESULT
1 (1,U,100) (1,U,100) 100
2 (2,U,100) | (1,U,100),(2,U,100)] 100
3 (3,7S,140)| (1,U,100),(2,U,100)] N/A
(3,TS,140)
4 (4,U,160) | (2,U,100),(3,TS,140) 130
(4,U,160) (NOT 120

To prevent information leak as well as provide flexible coatius query in MLS, We propose to
introduce securstream-to-strearwindow operators that will provide a filter based on the siégur
level. Not like CQL traditional window operator converts teeam to a relation, our extension
provides a filtering operation on the stream prior to the igppbn of the window operator. The
syntax is straightforward: users can request data in a&pegel setL like “level in L” inside
window specification. Suppose a TS level user isspes

Qx: Compute the average blood pressure (bp) of the soldiers f rom
last 100 input data where the clearance is in level C or U

CQL: Select AVG(bp) From Vitals[Rows 100 level in {C,U}];

The window operator is now stream-to-stream enabled. lalshanly buffer 100 input tuples
in level C or U. Data in other levels like TS and S are discarelseh though they are accessible
by the TS user. Comparatively, the system can conduct arazdtion check in window level
specification. If a U level user issues the sae the system should reject it since the query tries
to access data in unauthorized level C. By such specifictttmaystem can identify the acceptable
levels of the raw input data.

Level specification can also be done in WHERE clause of seléctording to execution

semantics in traditional DBMS and CQL, the select operaisoapplied in where clause after

45

input data tables are chosen. Similarly in MLS-DSMS, ingrteaming data are first buffered in
window operator, then filtered by select with level spectf@awhen tuples exit from the window.
Suppose a TS level user issues a qugpy

Qy: Compute the average blood pressure (bp) of the soldiers
whose clearance in level C or U from last 100 input data
CQL: Select AVG(bp) From Vitals[Rows 100] Where level in {C, U},

The difference betwee@, and@), is the input data used for average computation’)}nthe
window operator buffers data with level {TS,S,C,U and then only those in lev¢lC,U} will be
computed for average. Due to the different level specificatvays between window and select
operators, the CQL representations as well as the compntasults are distinguished.

With the MLS-CQL formalization, we can express the leveluest during query process step
1 S2R and step 2 R2R via window and select operators resplctivhe level specifications help
identify illegal queries request on unauthorized data ghar level and perform possible sharing
analysis before query execution. In chapters ofreplicatettrusted MLS-DSMS, we will discuss

the system architectures to address MLS-CQL queries.

46

Chapter 5

Replicated MLS-DSMS

5.1 Multilevel Secure DSMS Architectures

In order to respect MLS constraints, vanilla STREAM arattiiee should be extended to achieve
logical isolation across the security levels. MLS-DBMShatectures [2, 24, 32] such gmar-
titioned, replicated andtrusted have been investigated to see if these ideas can be applied to
DSMSs. From those researches the critical issue is to makeisiah for each component as to
whether it should bérusted or not. Trusted components can handle tuples at differentrgg
levels without causing illegal information flow. Each urgted component has a security level
associated with it and can be uniquely defined or replicatetidndle queries in different levels.

In general, different architecture choices affect theglesif components as following:

e In partitioned architecture, each component receives thrdge tuples that have the same
security level as the component. The number of componerggagiific function is identical

to the number of security levels.

o If we use the replicated architecture, some componentsglilkegy processors can receive
tuples that are dominated by the level of that component.h8ariputs in lower level are

duplicated to components in the same kind (e.g., query peacgbut in different levels.

e In trusted architecture, all system components are unigdessigned with highest security

level. In other words, each component handles query refroestall different levels.

47

Now we need to figure out which architecture is suitable for9vjuery processing. We begin
with discussing the necessary components for MLS-DSMSIdpugents. First, thaser interface
(Ul) component is needed which consists of the input praessd output manager. We can make
this component trusted and allow it to accept queries and sesults to users at different security
levels. The Ul MLS extension is identical to the three pragmbarchitectures.

We next discuss thaput stream handling component. Recall that sensors write tuples to
source data streams that have the same security level agherihe restricted *-property. Often
times the source data streams having the same schema aednmdma single multilevel stream.
The stream shepherd operator is the entry point for an irtpedr® and it also acts as the clearing
house. It converts tuples to internal representation, aitéswo appropriate queues. Thus, trusted
stream shepherd operator is needed to handle multiplesleVee implementation can be done in
the three architectures.

Query processor is the DSMS execution unit runs query pladgferent security levels. The
design decisions of components suclopsrators, queuesandsynopsisimpact the system per-
formance as well as the security protection. We need to makeiae as to whether these would
be partitioned, replicated, or trusted.

Suppose partitioned architecture is used for the synopBes.processing the query shown
below, we have two synopsis Syn(L) and Syn(H), where Syn¢htains only low-level tuples and
Syn(H) contains high-level tuples. Consider the followingery issued by a high-level user:
Select sid, bp From Vitals[Rows 50,000];

For processing this query, we have to look at both Syn(H) antlS. Moreover, we need
to figure out how many tuples to check for each one as the tgpdéd in the sliding window is
50,000 according to the arrival timestamps. In order to i®wutput in correct timestamp order,

48

the result combination and reconstruction from low and Isigitvers in partitioned architecture can
cause high latency.

On the other hand, in replicated synopsis we will have twelewf synopsis Syn(L) and
Syn(H) while in trusted synopsis only Syn(H) is needed. &i8gn(H) will store all the tuples,
the above query is more easily answered. The only negatieefsr replicated architecture is that
the low-level tuples are stored twice, costing space. Fadrtime queries request mixed streaming
data, query processing in replicated and trusted architestppears to be much faster.

We next look at the property of query processor. In trustetiisecture, we can have unified
trusted query processor that handles queries at all sgtewéls. Alternatively, we may have query
processors at each security level that are responsiblédagueries at the corresponding security
levels in replicated architecture. In addition to the aboemponents, the designs of scheduler as
well as load shedding mechanism are also critical in perémire and security issues.

By the analysis above, our research focus on centralizédtectures as replicated and trusted
rather than the partitioned design. Our choice is based eivitb reasons: first, replicated and
trusted architectures provide better performances ondriese! data processing, which is often
happened in MLS applications. Second, the two centralissibas face challenges on illegal in-
formation flow threats on query scheduling and executiosisyell as sharing common resources
between processes across different levels. The explasatbsecurity and performance topics
will benefit researches on MLS applications, DBMS developthand DSMS with security en-
forcements. In this and next sections, we will explain th@icated and trusted structure designs

in details.

49

5.2 Replicated MLS-DSMS Architecture

- ; N
Up to Up to
Level(Low) Up to Level(high)

Query Processor
e.g., Unclassified

Level(...)
Query Processor

Query Processor
e.g., Top Secret

Level(Low,...)
Level(Low,...,High)

Source Stream
% A A

Management using
[Data Stream Sources]

KLevel(Low)

Stream Shepherd
Operator

s-w:seq-window

Untrusted Components ‘
ss:stream shepherd

Trusted Components ‘

Figure 5.1: Replicated MLS-DSMS Architecture

In the following sections, we would like to present the owew of replicated MLS-DSMS.
Then we provide details on how MLS queries are shared, gitgrand executed. After that,
scheduling methods in this system are discussed.

The overview of replicated architecture is shown in Figue & supports single and multiple
level queries. The replicated architecture has multipErgprocessors that execute queries domi-
nated by a particular level. The stream shepherd operatgrsegie all tuples to a processor where
inputs’ level is up to the level of the processor. For ins&radl the tuples up to level “high” are
enqueued to Level(high) processor.

Let us consider querigg.,)y andQ, in Table 4.1 executed by replicated MLS DSMS again.
Query(); is executed in the processor with Level(d); andQ, are executed in the processor with

Level(TS). Though®. is syntactically equivalent tQ, they are not shared as they are executed by

50

different processors.

Qe, Of & Qg: Select AVG(bp),AVG(pr) From Vitals[Rows 100];

Qe, Qf & Q'g: Select AVG(bp),AVG(pr) From VitalsfRows 100
Partitioned By levell;

Kim in level S issues Qe;

Jim in level U issues Of;

Alice in level TS issues Qg;

5.3 Shared Query Processing

In this section, we give examples of MLS CQL queries and disdwow the processing of such

gueries can be shared.

5.3.1 MLS-CQL Queries

We have an additional attribute calleVelin each schema of a stream or relation. We can query
this attribute, or submit queries based on this attribute.

An MLS-CQL query can include the LEVEL attribute in the WHERERuse, SELECT clause,
and window specification. Let us consider the following epées, based on data streams Vitals
and Positions.

SELECT AVG(bp) WHERE LEVEL = "S" FROM Vitals [ROWS 100]

SELECT AVG(bp) FROM Vitals [ROWS 100 LEVEL = "S"|

SELECT AVG(bp) FROM Vitals [ROWS 100] WHERE LEVEL = "S"

In the first query the WHERE clause conditions are appliedieed tuple enters a window. In
the second query, the window keeps only tuples based on tititimm specified. In the third query,
the window maintains 100 tuples, but the WHERE clause isiegpluring AVG calculation. The
first and second queries are equivalent. Note that from pue\section MLS-CQL Formalization,

51

we use the second query to classify level filtering betwetstsand window operators. Our MLS
DSMSs are able to address all three types of queries.

An MLS-CQL query may not reference the security level atitéoat all. The query below
demonstrates this — it joins tuples from two streams. Thirgliwindows maintain the last 100
tuples for computations.

SELECT AVG(bp), AVG(pr)
FROM VitalsfROWS 100], Position[ROWS 100]
WHERE Vitals.sid = Position.sid

Table 5.1: Continuous Queries
Query User Login Lv. | Query Specification

Q1/Q} | Ann/Bob H SELECT AVG(bp)
FROM Vitals [PARTITIONED BY LEVEL ROWS 20]
Q2 Carl H SELECT AVG(bp) FROM Vitals [ROWS 20]
WHERE LEVEL = "L"
Q3 Dan H SELECT AVG(bp)

FROM Vitals [PARTITIONED BY LEVEL ROWS 5]
WHERE bp > 50

Q. Dan H SELECT AVG(pr)

FROM Vitals [ROWS 10] V, Position [ROWS 10] P
WHERE V.sid = P.sid AND bp > 120 AND lon = "4E"
Qs Ellen H SELECT V.sid, pr

FROM Vitals [ROWS 10] V, Position [ROWS 10] P
WHERE V.sid = P.sid AND bp > 120 AND lon ="4E"

Qs Frank H SELECT sid, bp FROM Vitals
WHERE bp > 120

Q7 Gail H SELECT sid, bp, pr FROM Vitals
WHERE LEVEL = "L" AND bp > 120

Qs John H SELECT sid FROM Vitals

WHERE pr > 100

Table 5.1 lists eight queries supported by replicated MLSM3. For simplicity, we use only

52

two levels high(H) and low(L) in those examples. And we cdasionly two types of windows:
tuple-based®-, Q4, Q5 from Table 5.1) and partitioned by window@{ and@; from Table 5.1)
[9].

Processing each MLS query in our architecture involvesragwteps. First, the selection
condition of the query is written in conjunctive normal farBubsequently, we generate the query
plan. In our framework, we represent a query plan in the fofra wee which we refer to as an
operator tree Note that, many operator trees may be associated with gaemesponding to the
different plans. However, we show just one such tree for egehy. The formal definition of an

operator tree appears below.

Definition 1. [Operator Tree] Anoperator treéor a queryq.., represented in the form 6fPT'(Q..),
consists of a set of nodég;, and a set of edgeB,,,. Each nodeV; corresponds to some operator
in the queryQ,. Each edg€s, j) in this tree connecting nod®; with nodeXN; signifies that the
output of nodeV; is the input to nodeV;. Each nodeV; is labeled with the name of the operator
N;.op, its parametersV;.parm, the synopsi&V;.syn, and input queued/;.inputQueue which are
used for its computation. The label of node also includes the output produced by the node,

denoted byV;.outputQueue, that can be used by other nodes or sent as response to the user

Operator trees for queri€gs and(), defined in Table 5.1 appear in Figures 5.2(a) and 5.2(b),
respectively. An operator tree has all the information eeddr processing the query. Specifically,
the labels on the node indicate how the computation is to Ime dor evaluating that operator,
where an operator is the basic using of data processing infd>¥he name component specifies
the type of the operator, such aglect project join andaverage The parameter indicates the set

of conjuncts for theselectoperator, or the set of attributes for thejectoperator. The parameter is

53

Q7 Output
Q7 Output H

Qs Output B Qs Output
H Select

Select bp>120 AND

bp>120 EVEL = “L”

Vitals Stream V Vitals Stream V Vitals Stream V

(a) OPT(Q,) (b) OPT(Q,) (c) OPT(Q,)
Figure 5.2: Operator Tree f@Qg andQ;

denoted as a set. For teelectoperator, parameter is the set of conjuncts in the selectindition.
For theprojectoperator it is a set of attributes. The synopsis is needethéoblocking operators,
such asjoin andaggregate and has type (tuple-based or partitioned by) and size astitbutes.
The input queues are derived from the streams and relateeted by the operator.

We use the streams (Vitals and Position) and continuousegugiown in Table 5.1 to discuss
guery processing. We also assume the tuples sent by satuiehged in a highly classified mission
to be classified as hight{) and other missions to be classified as |dW.(Medics or users can
login in at different levels and submit queries. Also notattim Table 5.1 all queries are issued in
high (/) level. The main reason to choose one level is that all geé&ied by a user logged in at
that level is processed by a query processor running at #téetvel. Hence we use examples from
H level to introduce and discuss various sharing methodsth&le queries are executed by one
guery processor at level high, shown in Figure 5.1.

Queries®; and();, issued by Ann and Bob respectively, compute the averagmligoessure

of the last 20 tuples at each level in Vitals stream. Qugrgomputes the average blood pressure
of the last 20 tuples having levél Query(@; computes the average blood pressure for the last 5
tuples at each level where the pressure is greater than Behmes), and(@s, the last 10 tuples
that satisfy the selection conditions are maintained insir@pses and are joined. Average and
projection are computed over the results fromjtie. In querie)s to Qs, there are only selection

conditions and projection (duplicate preserving) opereti

5.3.2 Query Sharing

Typically, in a DSMS there can be several queries that anegbexecuted concurrently. Query
sharing will increase the efficiency of these queries. Qskaring obviates the need for evaluating
the same operator(s) multiple times if different queriesthié. In such a case, the operator trees of
different queries can be merged. In the Figure 5.3, we shawthe operator trees @, and(Qs

can be merged. Both use the saseg-winoperator, as there is one seq-win operator per stream.
Later we will formalize how such sharing can be done.

In our replicated MLS-DSMS query processing architectwe,focus on sharing queries to
save resources such as CPU cycles and memory usage. In bitecltae, we share queries that
are submitted by users with the same principal securityl esell these queries run in the same
guery processor. Since queries shared have the same gdeueit our replicated MLS-DSMS
guery processor avoids security violations like coverincig during sharing.

We next formalize basic operations that are used for com@éahie nodes belonging to different
operator trees. Such operations are needed to evaluathevistaring is possible or not between
gueries. We begin with the equivalence operator. If nodesigéng to different operator trees are

equivalent, then only one node needs to be computed for auadthe queries corresponding to

55

these different operator trees.

Definition 2. [Equivalence of Nodes] Nod¥; € N, is said to beequivalento nodeN; € Ny,
denoted byV; = N,, whereN;, N; are in the operator tree® PT(Q,.), OPT((),) respectively,
if the following condition holds:N;.op = Nj.op A N;.parm = Nj.parm A N;.inputQueue =

N; . inputQueue.

In some cases, for evaluating not¥g belonging to operator tre@ PT'((),.), we may be able
to reuse the results of evaluating nalle belonging to operator tre®@ P7°((),). This is possible
if the nodes are related by the subsume relationship defiakadvb Such relationship is possible
when the operators match and are non-blocking and the ap@@tameters are related by a subset

relation.

Definition 3. [Subsume Relation of Nodes in Replicated DSMS] Nvde= N, is said to be
subsumedy nodeN; € Ng,, denoted byN; Cr N;, whereN;, N; are in the operator trees
OPT(Q.), OPT(Q,) and are referred to asubsumed nodesubsuming nodesspectively, if the

following conditions hold:

1. Condition 1:

e Case 1 [V;.op = project]: N;.op = N;.op A N;.parm C N;.parm

A NiinputQueuve = Nj.inputQueue.

e Case 2 [V;.op = select]: N;.op = Nj.op A Nj.parm C N;.parm

A N;.inputQueue = Nj.inputQueue.

2. Condition 2:N;.op is a non-blocking operator.

56

Consider theselectnodes of the operator trees of quépy and(); shown in Figure 5.2, where
theselectnode of(); is subsumed by theelectnode of()s.

We have different forms of sharing that are possible in ochiéecture which we now discuss.
Complete Sharing
The best form of sharing is complete sharing where no aduitivork is needed for a new query.
However, in order to have complete sharing, the two querigst imave equivalent operator trees.

The notion of equivalence of operator trees is given below.

Definition 4. [Equivalence of Operator Trees] Two operator tre@$7'(Q),.), OPT(Q,) are said

to be equivalent, denoted BYP7(Q,) = OPT(Q,) if the following conditions hold.
1. for each nodeV; € Ny, , there exists a nod®’; € Ny, such thatV; = N,
2. foreach nodeV, € Ny, there exists a nod®, € Ny, , such thatV,, = N,..
The formal definition of complete sharing appears below.

Definition 5. [Complete Sharing] Query), can becompletely sharedith an ongoing query),

submitted by a user at the same security level onlyRf'(Q;) = OPT(Q;).

Complete sharing is possible only when the queries are alguitz For example, queri€g,
and@) have identical operator trees and can be completely sharetich cases, we do not need
to do anything else for processing the new query. Howevisrntlay not happen often in practice.
Partial Sharing
We next define partial sharing which allows multiple quetteshare the processing of one or more

nodes, if they are related by the equivalence or subsumigorela

57

Definition 6. [Partial Sharing] Query(, can bepartially sharedvith an ongoing query), sub-

mitted at the same security level only if the following ctinds hold

1. OPT(Q,) # OPT(Q,)

2. there existsV; € Ng, and N; € Ng,, such that one of the following holdsy; = N,

N; Cpr Nj or Nj Cgr N;,.

We have two forms of partial sharing which we describe beldWwe main motivation is the
sharing of blocking operators have to be handled diffeyeindm non-blocking operators. The
sharing of blocking is more restrictive in which the conalits forjoin, for example, must ex-
actly match the other query operator. On the other hand, matitblocking operator they can be

subsumed. The formal definition of these two forms of shasimgears below.

Definition 7. [Strict Partial Sharing] Query(@, can bestrict partially sharedvith an ongoing

query@, submitted at the same security level only if the followingdttons hold

1. OPT(Q,) # OPT(Q,)

2. there existsV; € Ng, andN; € Ny, such thatV; = N;

3. there does not exis{; € Ny, andN; € Ny, , such thatV; Cr N; or N; Cg N;.

Definition 8. [Loose Partial Sharing] Query), can beloose partially sharewith an ongoing

query@, submitted at the same security level only if the followingdtbons hold

1. OPT(Q,) # OPT(Q,)

2. there existsV; € N, andN; € Ng,, such thatV; Cr N;.

58

In the loose partial sharing, we will have a node on the onggurery that subsumes a node of
an incoming query. When nodes are related by subsume rel#tien it is possible to decompose
the subsumed nodes. The decomposition tries to make useatopevaluation of the subsuming

node in order to evaluate the subsumed node. The decongpasifiormalized below.

Definition 9. [Decomposition of Subsumed Nodes in Replicated DSMSM.eCr N; where
N, € OPT(Q,) andN; € OPT(Q,). NodeN; can be decomposed into two nodésand N/’ in

the following manner.

NodeN/

1. Nl.op = Nj.op
2. Nj.inputQueuve = Nj.inputQueue

3. N/.parm = Nj.parm
NodeN/

1. N!.op = Nj.op
2. N!.inputQueue = N!.outputQueue
3. N!'.parm = N;.parm — N/.parm(if N;.op = select)

N!.parm = N!.parm — N;.parm(if N;.op = select)

Consider theselectnodes of the operator trees of quély and(@; shown in Figure 5.2. In this
case, theselectnode of(); is subsumed by theelectnode of()s. selectnode of(); which is the
subsumed by theelectnode of()s can be decomposed into tvgelectnodes. One of these new
nodes mirror)s and the other is alsoselectnode that checks for the additional select condition.
Partial sharing is possible because of the overlap of opetiaes.

59

Definition 10. [Overlap of Operator Trees] Two operator tre€sP7'(Q),,) OPT((),) are said to
overlapif OPT'((Q),) # OPT(Q,) and there exists a pair of nodé$, and N; whereN; € N,

andN; € Ny, such thatV; = N;.

Algorithm 1: Merge Operator Trees
INPUT: OPT(Q.) andOPT(Q,)

OUTPUT: OPT(Q.,) representing the merged operator tree
Initialize Ng,, = {}
2 Initialize Eg,, = {}
3 foreachnodeN; € Ny, do
| Na., = Na.,, UN;
5 end
foreachedge(i, j) € Eg, do

‘ Eq.,, = Eq,, Uedge (i, j)

s end

9 foreachnodeN; € Ny, do
10 | if AN; € Ng, such thatV; = N; then

=

N

()]

~

u | | N, =No, UN;
12 end
13 end

14 foreachedge(i, j) € Eg, do
15 if edge(i, j) ¢ Eq,, then

16 ‘ Eq,, = Eq,, Uedge (i,7)
17 end
18 end

When operator trees corresponding to two queries overlapan generate the merged operator
tree using Algorithm 1. The merged operator tree signifiesatocessing of the partially shared
gueries.

Figure 5.3 illustrates the strict sharing@P1'(@),) andOPT(Qs). As shown, we shargelect

andjoin operators. The result of thein is processed by duplicate preserving project and aggrega-

60

Qs Output

§)=

Strict Sharing

e

Sel
lon

\
\

|

H Input/output queues

ect
=4E
=
v
=

Position Stream P

operator

Syn

Vitals Stream V Synopsis

Figure 5.3: Strict Partial Sharing Operator Tree@@andQs

tion operators. On the other hand, seg-window operatorns@on to all queries using a stream.
Figures 5.2 (a) and (b) show tliePT'(Qs) andO PT'(Q)~), respectively. Figure 5.2 (c) illustrates
the O PT(Q¢7) which shares both the query operations using the loosepsinaring approach. In
this case, the query- is subsumed by)s according to subsume relation definition. Based on the
decomposition of subsumed nodes definition, we gpliselect condition into twobp > 120 and

level = “L") nodes and then share thg > 120 node withQ.

5.4 Scheduling Strategies

A stream processing system handles continuous queries amdains QoS during bursty input
period using scheduling strategies and load shedding igaobs [52]. scheduling Researches [26,
11, 13,45, 10, 22, 72, 27] put efforts to find reasonable ei@torders, units, and timings among
multiple registered queries. These strategies are drit@DSMS as they decide CPU allocation
schedules to reduce maximal memory requirement and tupdadg improve throughput, and

61

avoid starvation.

According to our observations there are three requiremfemtscheduling strategy design.
First, users at dominated levels should not be able to iftfeutthe activities that are taking place
at dominating levels. For example, if a low level user caneolrs that his query is the only one
being processed and the throughput is low, he can infer tmagsigh level query is also being
processed. Second, illegal information flow should not o¢btwough covert channels because
of the sharing of CPU time, memory, and operators acrosgisgtevels. Third, repeatedly not
executing queries at dominating levels may cause a starvatid impact the QoS.

Vanilla STREAM DSMS appliesperator round-robin in scheduler. Query plan is a linked
list of operators. Operators of all query plans from the saiser will be collected as a set and
they are expected to run consecutively in a round robin nranAger finishing all plans from
one user, the scheduler runs queries from another usercamal sSo all registered operators are
scheduled to run at least one time per scheduling round.eSDX8MS requires fast continuous
response for each query, in one round each operator in a @taprocess a small fixed number of
data tuples (e.g., 100 tuples per round) then switches &r ofberators. At each heartbeathere
will be some tuples buffered in windows for all queries. Theexduler tries to run as many rounds
as possible per heartbeat. Because there is no priority gmacessors at different levels, “first
come first serve” strategy is used for plans. The queries fhansame user registered first will be
executed earliest in each round. When a set of new plansartie scheduler under execution,
operators will be scheduled in the next execution round.

The regular scheduler runs all operators in every round,stad over the rounds as many
as possible. Such mechanism prevents the starvation otdaeng queries: each operator is
scheduled to process a small amount of inputs in each roundeter, this simple round robin

62

scheduler suffers covert channel threat: the high levelsusen manipulate the response time of
low level queries by adding and reducing high level quemne$ée scheduler periodically.

To overcome covert channdixed time slot algorithm is proposed in our previous work [6].
It allocates fixed time slots for each security level and axes corresponding queries within each
time slot. If there are no incoming tuples or queries in dersdot, the scheduler remains idle. In
this algorithm, idle time slot in low level cannot be used iagher level query execution or vice
versa to avoid covert channels. For instance, assume tleedimation to be 250 milliseconds.
Assume that the scheduler is executing a low level queryadiled 50 milliseconds it determines
there are no new tuples to process. The scheduler now wak€@milliseconds before switching
to high level queries. On the other hand, we can start the leigdl queries after 50 millisec-
onds. If a new low level tuple arrives after that, it has totwar 250 milliseconds for the high
level processor to complete, before an output is producethéyow level processor. This can
reveal unauthorized information to low level users due twmirsistent/varied response times. The
fixed time slot method prevents overt and covert channelthrigecause queries from high level
cannot affect the response time of queries in low level. Handhe system performance can be
significantly affected by the idle time slots.

To improve performance, a simplevised fixed time slot algorithmcan be done by enforcing
new queries can be added to the scheduler at the beginniragbfexecution round. So the idle
time slot in low level can be borrowed by high level querieswllevel user is not able to “sense”
high level execution by issuing new queries in his time dbegause all new query registrations
will not interrupt running execution round. However, thefpemance cannot be improved in the

case that there are idle slots in high level unavailablewdéwel queries for security consideration.

63

5.5 Replicated Prototype

We have proposed the replicated prototype in our journap@@d. Figure 5.4 shows our replicated

architecture for the following experiments. We provide @bdescription on the key components.

! ! 1. Connect to Server QUErieS =t m e :

- | Comectioninfo+ | UITITITITIITIT Trusted !

; j_ Usemams, pwd p! i Authentication | | ____gi _IMePreeiontnt

. ;. (SRS : 1y] :

i i) ' . userlevel 11 Plan Analyzer | ' Buffer !'

k . 2. Register Query -] ' ;;Sharlng analysis: o

! User 3 T Trusted 3) (TR

; Commands ;_3- Generate Plan »' C d Unit ‘ List of

. . . i 1 Operators

' I 4. Start Query execution P imm iy g Physical Ot 3 Physical

j 3 1t Query Processor - | Query Plan ; Trusted ! Qu}; Plan

. . 5. Stop Query execution | . ! Identifier o . Scheduler ; y

i 3 b1 S 3 es—

i i

b 3 Execution

I ' & commands

; i _ . lnput Unit” 7 i r dnput Onit 7775
E ' ! Execution Unit . ' Execution Unit .
| | ' . | .
] ; |] ; }
i 1 Output results Do AR T ER SRttt)
b - Output Unit]] Output Unit 1
i e N oo el S RE oo AN A | - - - S

3 3 Output results Query Processor 'n" Query Processor 'm'

1 1

k et P ,

' 1 1 3

i 3 E Trusted 3

! i i Stream Shepherd Unit '

i Clients 1 Multi-user Server AR AT N

1 1 Input Streams

AAAAAAA

i_...-. Newcomponents

Input Stream source
" Modified components

Figure 5.4: Replicated MLS DSMS Architecture

e Trusted command unit is responsible for handling clientiemmication, authentication, and
guery processor instantiation. It accepts queries fromsuséh different security levels.
Each user query needs to be associated with a security lestetdrresponds to the level at
which the query was submitted. Thathentication modules built in trusted command unit

to perform user authentication and security level veriftcat

Thequery processor identifigiQPI) module gets users client ID, security level, and query
specifications from the authentication module. The QPI ta@is the list of currently run-
ning query processors. The QPI first checks whether the useies can be executed in one
of the query processors. If Yes, users client ID as well athalinput queries are bound to

64

that processor. If No, a new query processor is created dliethel. We chose this approach
to avoid starting query processors if there are no users. nfda@mum number of query
processors is same as the maximum number of security laygt®sed (4 in our case). The
trusted command unit sends the users level and registiafiamation to the trusted inter-
pretation unit. In addition, command unit still controlgtijuery operations like commit and

abort with the help of the QPI unit.

Trusted interpretation unit is responsible for generatjngry plans and setting up the op-
erators in the scheduler. It receives query informatiom treates the physical and logical
guery plans. It sends the physical plans to the proper quegepsor. The list of operators
(also the physical plan) is sent to the trusted schedulex tfifee built-in interpretation com-
ponents farser, semantic interpretesndlogical plan generatorand the execution unit of

the query processor should be modified accordingly to addviesS-CQL queries.

Theplan analyzerchecks whether it is possible to share the new coming quetyamy of
the currently executing queries using the buffer. The aiallyases on comparing the semi-
product plan of the new and existing plans. The semi-proplact is the semantic analysis
result of the query string. User-defined keywords like siz&iadow ,executing operators,
output attribute numbers are saved and constructed inteeime-product plan. Thbuffer
maintains the query level set information, semi-produmgjdal and physical plans for all

existing queries.

There are multiple processors and each of them is untrusketutes at a security level,
and has its own input, execution, and output units. ifp&it unitcan accept input streams

from outside sources through trusted stream shepherd linian also accept the output

65

streams produced from other queries processed by the sane ocessor; this happens

when queries are shared. Thtput unitsends the results back to users continuously.

Theexecution units used by the server to execute the physical plans contstyorhis unit
contains the physical operators and their correspondgayi#thms. In order to support MLS,
we need to modify the window processing so that it can sugip@ring conditions based on
security levels. The aggregation and join operator algor#t are also revised to compute the
least upper bound of the input tuples and use that as theityelewel of the output tuples.
All the operators are untrusted. The execution unit acaggt€ommands from the trusted
scheduler and executes the corresponding operators. iEhené/ one operator running at

any point of time, since we have only one scheduler.

Trusted scheduler will run all queries from different lesraking different scheduling strate-
gies. It can run normal round-robin method, or other segumithanced MLS strategies like

fixed time slot.

Trusted stream shepherd unit handles input streams. In-Gfee@ASMS, input tuples from

different sources can be collected into one multilevelted$nput stream. This unit converts
the multilevel trusted streams to single level streams amdis it to the query processor.
Besides, load shedding mechanism can be applied here twoktm input tuple number

under heavy load of data inputs.

66

Chapter 6

Trusted MLS-DSMS

In this chapter, we first present the prototype of trusted NDLSMS in order to compare the dif-
ferences with replicated architecture. Then we explaimguewriting and optimization process
specially for trusted DSMS. After that, we present algangrabout query sharing across different

levels in trusted system.

6.1 Trusted Prototype

Input Stream source

""""" = 1. Connect to Server Inout Streams I
] 1 Connection Info+ | . _ . _ . _. . _.._. . _. _ P v Y v
| . username, pwd [| : PREURIIN ST SU A .
3 e 1 I | 1
] 1 Authentication . Stream Shepherd Unit
! 2. Register Query E - | ! !
| L l -
" User ! 3. Generate Plan 1 Trusted |
! . Command Unit 3
- Commands ' .
k . 4. Start Query Execution 1 :
E 1 k A
H : . ! Start/Stop
! 5. Stop Query Execution . "
] ' pQuery i] Execution
k : user level +
b i Queries _ ¥ _ . . _..
] . Reject Unauthorized 1 ! Generate
: ' _Queries ! Trusted Plan ST -
| ’.‘ 1 Query Rewriter !] Input Unit |
i . Revised 1~ - ToiToiToiToITon -
. . Queries ! Execution Unit
i | Ruenes, Lo YL . . !
. | ! Trusted > b
- ; . .-.._Interpretation Unit | : OQD OOO :
3 ! R ¥ L Query | TITToiTIriTTTT
! b 4 lan Analyzer ! ' 1 Plans b . .
; : ; :Sharing analysis: ; buffer : Qutput Unit §
K 1 | oo R) ST
! i List of +
' : Operators
p] T Trusted - Execution Trusted
] 1 1
; 3 Output results . _ Scheduler_ 1 commands Query Processor
1 1
! Client Server
70 New components St Modified components

Figure 6.1: Trusted MLS DSMS Architecture

67

Compared with replicated design, in trusted DSMS there kg one trusted query processor
which handles all registered queries in different leveldl geries and input data interact with
system components like operators and synopses which aezaged by the same processor. So
issues like performance improvement and security prateetie more complicated than replicated
architecture. Now we explain the key components one by one.

Trusted command unit is responsible for handling client communication, autteatiton, and
guery processor instantiation. The command unit is truateblit accepts queries from users with
different security levels. Each user query needs to be &gedowith a security level that corre-
sponds to the level at which the query was submitted. dutbentication modulés built in the
trusted command unit to perform user authentication andrggdevel verification. User authenti-
cates by providing user name and password when connecting BSMS host. The authentication
module then uses this information to retrieve the secueigllfor the particular user. The trusted
command unit sends the users (query) level and registratiormation to thequery rewriter In
addition, command unit still controls the query operatibks commit and abort. After command
unit receives first query register request, it initiatesigua trusted query processor. This processor
will run all queries from different users.

Trusted query rewriter performs authorization check by comparing requesting wétaquery
level. Since query authorization check is done before plregation and execution, the system
is able to reject unauthorized queries which cause secudtgtions. The query is rewritten and
optimized and submitted for further sharing analysis arah generation iplan analyzer The
authorization check, rewriting, and optimization are di&sa in the next section.

Trusted interpretation unit is responsible for generating query plans that involve aatatpon
sharing of queries and for setting up the operators in thedidbr. After theplan analyzereceives

68

revised queries from the query sanitizer module, it cheoksharing possibility of the new coming
guery with any of the currently executing queries’ operg@prsuch as window, select, project,
join, and aggregate operators. Tiwffer in this unit maintains the query level information and
execution plans for all existing queries. We have also medlithe three built-in interpretation
componentsfarser, semantic interpreteandlogical plan generatoy and the execution unit of
the query processor to filter tuples within a window basedemusty levels.

Trusted query processor run all queries from different users and there is only onbé@system.
Operators from all queries are prioritized by the trustdtesaler.

Trusted stream shepherd unit handles input streams. In centralized DSMS, input tuples fr
different sources can be collected into one multileveltadsnput stream. This unit is able to

activate load shedding mechanism when the system is uneey head situation.

6.2 Secure Query Rewriting and Optimization

In this section, we discuss how queries submitted by usggelon at a security level are rewritten
in a secure form. Recall that queries are submitted by thes lsgged in at a given security level.
The streams that are input to the DSMS, which are referred teoarce streams, also have a
security level. The individual tuples in the streams are alssociated with a security level. Note
that, the level of tuple in a stream must be dominated by thed tef the stream. The schema of any
stream in our model must consist of an attribute, which werrf as level. The input tuples of the
source stream have a level value that is assigned by theesthacgenerates it. The security level
of each tuple in the streams generated by DSMS is assignddeagenerated by the system. Users
can submit queries based on the level, but cannot changalits.\in the following examples, we

are using four different security levelsdC<S<TS and input streams Vitals and Positions.

69

Consider the following querg); .

Q1l: SELECT AVG(bp) FROM Vitals[Rows 100]

The response to this query depends on the level of the useus&S compute the average
blood pressure of 100 tuples at a time, each tuple may betoagyt security level. When the same
guery is issued by a C user, the response consists of thegaviel@od presssure of 100 tuples of
soldiers belonging to U or C level.

Q1: SELECT AVG(bp) FROM Vitals[Rows 100]
WHERE level in {U,C};

Some may argue that the above query rewritig) is adequate for providing the response to
the C user. However, in this case, some soldiers in the sé®Who are at level TS or S will not
be used for the average computation. Thus, the averageensthimputed on less than 100 soldiers.
This is clearly not desirable. Moreover, this also causescarity breach. It will be possible for
users at level C to know how many soldiers are at the S or T$. l&d&ng the available operators
in CQL, we cannot express this query. In fact, there are m@astrto-stream operators in CQL.

Recall that we've proposed the stream-to-stream opetadbmtill provide a filter based on the
security level and prior to the application of the window gier as demonstrated below.

Q1" SELECT AVG(bp) FROM Vitals[Rows 100 level in {U,C}];

Often times, queries with non-blocking operators do noehawy window clause. Quely-
illustrates this point.

Q2: SELECT bp FROM Vitals;

Q- is equivalent to the following query.

Q2 SELECT bp FROM Vitals[Range Unbounded];

70

Consequently, depending on the users who have submitteguéry, a filter can be applied
based on the security level to the window operations. Thisrfis automatically added by the
system. Thus, if a user at level S issues qugsythe query rewriting algorithm transforms it into

2" shown below.

Q2": SELECT bp FROM VitalsfRange Unbounded level in {U,C,S} 1

Users are also allowed to specify the filter condition in thedew clause. In such a case, the
user specified filter is applied in conjunction with the systepecified filter. For example, a user
at level TS may specify the following que¢ys.

Q3: SELECT AVG(bp) FROM Vitals[Rows 100 level in {U,C,TS}];

Our query rewriting algorithm will apply the system imposazhjunct based on the security
level: {U,C, TS N {U,C,S,TS = {U,C,TS}, then transform it into the following quexyy.

Q3. SELECT AVG(bp) FROM Vitals[Rows 100 level in {U,C,TS}] ;

Note that, if a user at level S submitted quély, such a query would be denied because the
user is requesting information that he is not permitted éswiAlgorithm 2 gives our authorization
check algorithm. The algorithm takes as its input a qugyyts security levell, and the security
structure for the application that describes the set ofi$emed their dominance relations. The set
of streams in query) is denoted by the s&).stream, whereQ.stream = {S;,Ss,Ss,...,5.}
such that: > 1. Let W, be the window associated with stredn Let ;.level be the level clause
associated with the selection condition dftlicvel be the set of levels associated with window
W;. Note that, for a given streanil; = {} if there is no window specfied withy;. Similarly,

o; = {} if there is no select condition on security levels with retge streams;. Lines 1 to 6
compute the set of levels that are dominated.bywe call this setlominated Lines 8 to 10 check

71

if the set of specified levels in the window clause is a subdbminated Lines 11 and 12 check
is the select condition on the set of levels is a subsdbafinated If either of these conditions is

violated for any stream, the authorization check fails.gdthse, it succeeds.

Algorithm 2 : Authorization Check
INPUT : Query(?), QueryLevel(.), Security Structurd(, <)

OUTPUT: Result
1 dominated = {}
2 foreach/ € L do
3 if { < L then

4 ‘ dominated = dominated U {1}
s | end
6 end

7 foreach S; € Q.Stream do

8 if W,.level £ dominated then
9 ‘ return Authorization Failed
10 end

11 if 0;.level € dominated then

12 ‘ return Authorization Failed
13 end
14 end

15 return Authorization Passed

Consider the following queries submitted by the users & I8w), andQ; will fail the autho-

rization checks, buf)s will pass the test.

Q4(S): SELECT AVG(bp)
FROM Vitals[Range 3 minutes level in {TS,C,U}];

Q5(S): SELECT bp FROM Vitals Where level in {C,UTS};

Q6(S): SELECT AVG(bp)
FROM Vitals[Range 3 minutes level in {S,C,U}];

Once a query successfully passes the authorization testsguery rewriting algorithm trans-

72

forms it into a form that ensures that the query can view amdyappropriate tuples. Our rewriting
algorithm is given in Algorithm 6. Lines 1 — 6 creates the ddewels that are dominated by the
query levelL; this set is referred to asominated Lines 7 — 10 transform the streams without
windows to those with windows where rows are unbounded. érattsence of a filter clause, the

W;.level is assigned the value dbminated

Algorithm 3: Secure Query Rewriting
INPUT : AuthorizedQueryQ), QueryLevel(), Security Structurdy, <)

OUTPUT: ' representing the rewritten query
1 dominated = {}
2 foreach/ € L do
3 if [< Lthen

4 ‘ dominated = dominated U {1}
s | end
6 end

7 foreach S; € Q.Stream do

8 if W; ={} then

9 W; = Range Unbounded
10 end

11 if W.level = {} then

12 W;.level = dominated
13 end

14 end

Consider the following quer§),; submitted by S user. The query rewriting algorithm traresat
itinto Q4. @, andQ)’ are given below.

Q7(S): SELECT bp FROM Vitals;

Q7'(S): SELECT bp
FROM Vitals [Range Unbounded level in {U, C, S}];

Once the query is rewritten in a secure form, we need to opéntifor efficient processing.

73

In addition to the traditional optimizations, we give son@wvrules involving our new stream-to-
stream window operators. We support the different typesiofiows, each of which gets aug-
mented with a level clause after query rewriting. Recalt,thi; denotes the window of stream
S; andW;.level gives the set of levels associated with the winddlW.type denotes the window
type wherelV,.type € {tuple_based, time_based, partition_by}. Each streany; may also have a
select condition, denoted ly.level, that filters the result on the basis of security levels. ki8e
— 5 checks if the intersection of window security levels wvifibse specified in the select condition
produces a null set. If so, an error message is returned tosire Otherwise, depending on the
type of window, the window filters and select security leMauses are rewritten. This is done in

lines 6 — 13.
Algorithm 4. Secure Query Optimization
INPUT : SecureQueryp), QueryLevel(), Security Structurd(, <)

OUTPUT: ' representing the optimized query
foreach S; € Q.Stream do

=

2 if 0;.level # {} then

3 if W,.level N o;.level = {} then

4 ‘ return Error: No Output Query
5 end

6 if W;.type € {time_based, partition_by} then
7 W,;.level = W;.level N o;.level
8 o;.level = {}

9 end

10 if W;.type = tuple_based then

11 if W;.level C o;.level then

12 o;.level = {}

13 end

14 end

15 end

16 end

74

Consider the following queries submitted by TS usépg.returns an errorQ)y, (019, andQ;
are optimized t@);, },, andQ);, respectively.

Q8(TS): SELECT AVG(bp)
FROM Vitals[Range 3 minutes level in {TS,C,U}]
WHERE level in {S};

Q9(TS): SELECT AVG(bp)
FROM Vitals[Range 3 minutes level in {TS,C,U}]
WHERE level in {S,C,UC};

Q9'(TS): SELECT AVG(bp)
FROM Vitals|[Range 3 minutes level in {C,U}];

Q10(TS): SELECT AVG(bp) FROM Vitals[Rows 100 level in {C}]
WHERE level in {C,U};

Q10 (TS): SELECT AVG(bp) FROM Vitals|fRows 100 level in {C}]

Q11(TS): SELECT AVG(bp)
FROM Vitals[Partition By level in {TS,S,C,U} Rows 100]
WHERE level in {C};

Q11'(TS): SELECT AVG(bp)
FROM Vitals[Partition By level in {C} Rows 100];

6.3 Query Execution and Sharing

Before query execution can proceed, the query plan musthergged. In this work, we represent
a query plan in the form of a tree which we refer to as an opetae defined in Chapter 5.3.1. We
assume that the selection condition of the queries areenritt a conjunctive normal form. Note
that, many operator trees may be associated with a quergspmnding to the different plans.

However, we show just one such tree for each query.

75

Table 6.1: Operator Nodes and Specific Parameters

N;.op N;.parm
select N;.parm.cond = set of conjuncts of theelect
proj N;.parm.attr = set of attributes listed in theroject
{avg, count, sum, max, min} | N;.parm = {}
N;.op = join N;.parm.cond = set of conjuncts in thpin
tuple_win N;.parm.row = no. of rows

and N;.parm.level = the set of levels of tuples
that may be present in the buffer

time_win N;.parm.range = time interval for which the tuples
andN;.parm.level = the set of levels of tuples

part_win N;.parm.attr = attribute for deriving partitions,
N;.parm.row = no. of rows in the buffer,
and N;.parm.level = the set of security levels of tuplgs

sel_win N;.parm.level = set of levels using for filtering
to produce another stream

In Table 6.1, we describe the different types of nodes of {herator tree and the parameters
for each type. The parameters consists of various fieldslhot the fields are applicable to every
operator.

Figure 6.2 shows the two operator trée87'((),) andOPT((),) corresponding to querieg,

and@), as following. Note that the two queries are issued by usesand TS level respectively.

Qx(S): SELECT COUNT(sid)
FROM Vitals[Rows 100 level in {S,C,U}]
WHERE bp > 100 and level in {S};

Qy(TS): SELECT sid
FROM Vitals[Rows 100 level in {S,C,U}]
WHERE bp > 100;

Queries in a DSMS must be executed efficiently in a resournstcained environment. Thus,
if queries can share their computation, we save on the meamatyprocessing costs. Towards this
end, we demonstrate how queries can be shared.

76

We next formalize basic operations that are used for comg@éhie nodes belonging to different
operator trees. Such operations are needed to evaluatkevlsbiaring is possible or not between
gueries. We begin with the equivalence operator, which ¢sdael by the definition “Equivalence
of Nodes”. If nodes belonging to different operator treesequivalent, then only one node needs
to be computing for evaluating the queries correspondinigese different operator trees. In Figure
6.2 nodes) P, andO P, belonging toO PT'(Q,) andOPT((),) respectively are equivalent.

In some cases, for evaluating node belonging to operator tre@ P7(Q)..), we may be able
to reuse the results of evaluating nale belonging to operator tre@ P7°((),). This is possible
if the nodes are related by the subsumes relationship ddbielesv. Such relationship is possible
when the operators match and are non-blocking and the ap@atameters are related by a subset

relation.

Definition 11. [Subsume Relation of Nodes in Trusted DSMS] Nodec N, is said to be
subsumedy nodeN; € Ng,, denoted byN; Cr N;, whereN;, N; are in the operator trees
OPT(Q.), OPT((Q,) and are referred to asubsumed nodesubsuming nodeespectively, if the
following conditions hold:

1. Condition 1:
e Case 1[V,.op = project]: N;.op = Nj.opAN;.parm C N;.parmAN;.inputQueue =
Nj.inputQueue.
e Case 2 [V;.op = select]: N;.op = Nj.opA\N;.parm C N;.parm A N;.inputQueue =
N; . inputQueue.
e Case 3[V;.op = sel_win]: N;.op = N;j.opAN;.parm C N;.parmAN;.inputQueue =
Nj.inputQueue.

77

e Case4|V;.op = tuple-win andN,.op = part_win]: N;.parm.rows = N;.parms.rows/\

N;.parm.level C Nj.parm.level N N;.inputQueue = Nj.inputQueue

2. Condition 2:N;.op is a non-blocking operator.

Qx(S): Output Qy(TS): Output Qx(S) Output Qy(TS) Output

level in {S}

Syn
[Rows 100
level in
SV

[Rows 100
level in
S,C,U

Vitals Vitals V!
(a). OPT(Qx) (b).OPT(Qy) [Rows 100
level in

S.C.U

Vitals Stream
(c).OPT(Qxy)

Figure 6.2: Query Sharing

When nodes are related by subsume relation, then it is gedsildlecompose the subsumed
nodes. The decomposition tries to make use of operatorai@tuof the subsuming node in order

to evaluate the subsumed node. The decomposition is fareasltielow.

Definition 12. [Decomposition of Subsumed Nodes in Trusted DSMSM.&t N; whereN; €
OPT(Q),) andN; € OPT(Q,). NodeN; can be decomposed into two nodésand N/ in the

following manner.

NodeN/

78

1. N/.op = Nj.op
2. N].inputQueue = Nj.inputQueue

3. N/.parm = Nj.parm

NodeN/

1. N/.op = N;.op (if N;.op € {select, sel_win,project})
N!.op = select (if N;.op = tuple_win)

2. N!.inputQueue = N/.outputQueue

3. N/ .parm.cond = N;.parm.cond — N].parm.cond (if N;.op € {select, sel_win})
N!.parm.attr = N!.parm.attr — N;.parm.attr (if N;.op = project)

N/ .parm.cond = {(level € N;.parm.level)} (if N;.op = tuple_win)

In Figure 6.2 nod® P, Cr OPs5. OP, can be decomposed int@P; andO P.

When operator trees corresponding to two queries overlapan generate the merged operator
tree using same merge Algorithm in replicated MLS-DSMS. iteeged operator tree signifies the
processing of the partially shared queries. Figure 6.2 shroerging of operator tre€3P7'((Q)..)

andOPT(Q,); the merged operator tree is shownaBT' (),).

6.3.1 More Sharing Examples

By algorithms of query rewriting and optimization, as wedlthe definitions described above, the
trusted DSMS can now completely or partially share quertesss different levels, even between

different window operators. Here we show more sharing exesap

Multilevel Complete Sharing

We now look at two examples for complete sharing analysis.

79

Qa(TS): SELECT AVG(bp)
FROM Vitals[Range 3 minutes level in {TS,C,U}]
WHERE level in {S,C,U};

Qb(TS): SELECT AVG(bp)
FROM Vitals[Range 3 minutes level in {S,C,U}]
WHERE level in {C,U};
The two queries), and (), will be optimized as the following querg),,, so they can be
completely shared.
Qab(TS): SELECT AVG(bp)
FROM Vitals|[Range 3 minutes level in {C,U}];
The following two queries use different kinds of window ogters, and they are issued by

users in different levels.

Qc(TS): SELECT AVG(bp)
FROM Vitals[Partition By level in {TS,S,C,U} Rows 100]
WHERE level in {C};

Qd(C): SELECT AVG(bp) FROM VitalsfRows 100 level in {C}]
WHERE level in {C,U};
Suppos&).. is an ongoing query an@, just arrives. By queries we can s€e computes 4
average results in different levels, and only results irell€ will be return. @, returns average
computation on tuples only in level C. Evéh has extra computation, the result is exactly same

as@y. SoQ. and(@), can be completed shared.

Multilevel Partial Sharing

Similar to replicated architecture, trusted MLS-DSMS cé#so @erform strict and loose patrtial

sharing between queries. Strict partial sharing providéssrto share queries using blocking op-

80

erators like join and aggregation (e.g., average, minimmaximum, etc). Consider the following
two queries). andQ;:

Qe(TS): SELECT AVG(bp)
FROM Vitals[Rows 200 level in {TS,S,C,U}]
WHERE level in {C,U};

Qf(TS): SELECT AVG(pr)
FROM Vitals[Rows 200 level in {C,U}]
WHERE level in {TS,S,C,U};
Q). cannot be partially shared l6y; because the two tuple-based window operators are neither
in equal not subsumed relation. In other words, input tupferation for(), can be triggered when
a new tuple in level TS and S comes, whije does not. So the average computations between
two queries use different set of buffered 200 tuples.

Let us consider another pair of queri@s and(),:

Qg(S): SELECT V.sid, bp, pr
FROM Vitals[Range 2 Minutes level in {S,U}] V,
Position[Range 2 Minutes level in {S,U}] P
WHERE V.sid = P.sid AND level in {C,U};

Qh(S): SELECT V.sid, lat, lon
FROM Vitals[Range 2 Minutes level in {C,U}] V,
Position[Range 2 Minutes in {C,U}] P
WHERE V.sid = P.sid AND level in {S,U};
After query rewriting and optimizatior), and @, are transformed as following queri€,
and(@),. The join operation can be partially shared between therausecthere are no subsumed

relation between window operators by Definition 11.

Qg’'(S): SELECT V.sid, bp, pr
FROM Vitals[Range 2 Minutes level in {U}] V,

81

Position[Range 2 Minutes level in {U}] P
WHERE V.sid = P.sid;

Qh'(S): SELECT V.sid, lat, lon
FROM Vitals[Range 2 Minutes level in {U}] V,
Position[Range 2 Minutes in {U}] P
WHERE V.sid = P.sid;

Non-blocking operators such as selection and projectiarbesshared in loose partial sharing.
We try to reuse partial processing results from anotheryqugth higher level section in where

clause specification. Here is an example for loose partaiist).

Qi(S): SELECT sid, bp FROM Vitals|fRows 100 level in {C,U}]
WHERE bp > 120 AND level in {C,S};

Qj(TS): SELECT sid, pr FROM Vitals[Rows 100 level in {S,C,U}]
Where bp > 120 AND bp < 180 AND level in {C};

After query rewriting, the two queries are changed)tcand @)’

Qi'(S): SELECT sid, bp FROM Vitals[Rows 100 level in {C}]
WHERE bp > 120;

Qj'(TS): SELECT sid, pr FROM VitalsfRows 100 level in {C}]
WHERE bp > 120 AND bp < 180;

Q; can be partially shared by’; because select operatorg SrSy.

’
i

6.4 Scheduling Methods

To further improve performance without security violatiove are proposingound-robin with
dynamic threshold control algorithm. The scheduler first reorders all queries from lowest to
highest level, then execute the operators of particulael leith a fix small amount of inputs in
each round like round-robin.

82

A threshold control is to detect and change the executionoffagme operators in certain level.
If those operators consume most execution time in scheddimh causes starvation problem or
potential covert channels (e.g., takes 80% of executioa per round), all operators in that level
will be given two set ofpenalties percentage penalfythe percentage of the operators in certain
level can be scheduled in each rourand penaltythe number of rounds of the penalty will last.
We use two random values(e.g., from 0.3 to 0.8) and (e.g., from 1 to 10) as the two penalty
parameters respectively. Suppose there are 10 operatarsky to O, in the schedulerO; and
Q- are from high level queries and the others are from low leueligs issued by a malicious user.
Suppose each operator takes equal time for executing the aaraunt inputs, and the scheduler

will execute those operators as following rounds:

e Inround 1, scheduler runs all 10 operators and notices fhetabors in low level consumes
80% execution time. So all low level operators are put intoghty set and only part of them
(e.g, halfa = 0.5) can be executed in each round (only 4 of 8 operators g O,y will

scheduled in next round). Besides, the penalty will lastdlhds (¢ = 10).

e In round 2, scheduler runs operators fr@m to Os. While O; to O, are hold without

execution.

e Inround 3, scheduler runs operatars, O, andO- to O;,. Suppose the malicious low level
user issues new queries with 4 operatOss to O4. The four queries are added to the low

level penalty queue, and parameterand are changed (e.gy = 0.25,3 = 6).

e Inround 4, sincex = 0.25, there are 12 * 0.25 = 3 operators from penalty set wibthed-
uled. So the scheduler rung, O, andO;; to Oq3. If there is more low level queries come,
the two parameters will be changed with random values.

83

By this algorithm two parameters and are changed when there is a query coming or can-
cellation. Note that once the penalty set is establishes ptnalty will continuous for certain
rounds even though the operator number drops below thiiéshby cancelling some queries in
this level. The consistent penalty and dynamic threshadsigart covert channels where high level
gueries manipulate the response time of low level query lingdcancelling numbers of high
level queries in certain time pattern. Besides, the perémees can be improved since time slots
by levels are cancelled and there is no idle slot for spe@fiellduring execution.

On the other hand, this method is not perfect because penate applied to all queries in cer-
tain level if one of them violates threshold control. Sucpraach prevents covert channel threats
but affect the performances of other legal queries. In &utmork we plan to find a better detec-
tion algorithm can pinpoint the malicious user and suspentg those queries in the scheduler. In
current trusted MLS-DSMS implementation, we use roundrr@icheduling method in order to

provide better performance.

84

Chapter 7

Distributed MLS-DSMS

System availability is one of three fundamental requiretsi@m database security. In this chap-
ter, we propose a simple distributed MLS-DSMS. This work hasn presented in our newest
ASDN'13 paper [76].

In our distributed model, we assume there is a set of senaais with its unique id. Each
server has a preassigned security level which is never edanghe set of servers having the
same security level forms a group. Each server maintairst aflauthorized users for that level.
Consequently, a client can submit his query to any serveneaparticular level. The server to
which a client submits his query is referred to as th&ster The other servers in the same level
act asslaves The master coordinates the execution of the query. Itvesdahe results from the
slaves and forwards them to the user. The members in a groomuoaicate with each other with
respect to their load and status. Consequently, the masabite to achieve load balancing for the

given queries.

7.1 Prototype Implementation

In the following, we describe our prototype implementation

7.1.1 Server Communications

Each startup DSMS server has a unique serverstld) (as IP address and the port number, as

well as an pre-assigned security level Online servers with same security level forng@up

85

/ Group (level S)

Server C
level S
134.32.7.13:7003

sid+cu

Server A
level S
129.82.6.21:9001

sid+cu sid+cu

Server B
level S
127.45.5.42:8002

ip_table (level S):
<sid + cu>
129.82.6.21:9001 + 45%
127.45.5.42:8002 + 10%
134.32.7.13:7003 + 78%

<

Group (level TS)

sid+cu

Server E

level TS

66.87.91.5:8015

Server D
level TS
34.55.76.4:7014

Figure 7.1: Group Construction

for communication. Server information likéd and current cpu usageu) are sent to a particular
multicastgroupcontinuously. The servers are listening to others in theesgmoup for getting their
peers’ information.

Communications between servers are allowed only if theyratiee same group. Aip_table
recording thesid andcu of available members in the group are kept in each servece3imre avail-
ability and CPU usage of servers are changed in real-tireépttableis also updated accordingly.
Figure 7.1 gives an example of how the two groups are consttucServers A, B and C in the
same level forms a group in level S. They are exchanging tivessmfo to each other. Each server
maintains anp_table contains all server info in the group. Servers D and E fornwtleer group

in TS level. The two groups are disjoint.

7.1.2 Distributed Processing

Once a group is constructed, any server inside can handletuest from clients in the same

security level. Now we explain distributed processing $teggtep.

86

Input Stream source

: : 1. Connect to Server
y - SID,username, pwd |- g
' I > 1 Ui
! ! 2. Register Query |/ [A AR
3 ._ﬁ;>f :
; User E 3. Generate Plan 1 Command 4

—_— N FEUNE S SUU. AR AEEEREEE o
: Commands 370\ iery Execution : Unit ' : Input Data | 1 Inbut Unit P
i ' L ! . nput Uni
] ; > : o » e 1
. - " 1
! : S ! Schemes | ._.._.._.._._.._..]
H ' ' ' Subnet 1 Queries ' . L
3 3 4 1 p : Interpretation Unit
i 3 Schemes ¥ ! Detector ! = E p ,,,,,,,,,,,, _I
i : Queres” " STITIINIG
; : Commands 3 Distriuted | ; Execution |)
1 E] 1 ' ' mmana: r . . 1
; 3 i 1 Scheduler : ; Execution Unit |
! . Shatdidue U —" !
' - I \ 1 i
f , i . ouput | T
i | I . . . |results J -
3 . Redirection Unit . :
i] Output results] .<—-V Output Unit 1
i ; o S
i '
i i
. Client | Master Server Slave Servers

" Modified components

Figure 7.2: Distributed DSMS Architecture

Client Connection:

Our prototype is showed in Figure 7.2. Each server maint@im®file of authorized users whose
login level is identical to the server level. Authenticatiis performed when a user runs a client
software to connect to a server. Only the user whose useraachpassword are present in the
profile are authorized for further operations. Recall that $erver to which a user successfully
connects is called the master server. Other servers in the geoup as the master are referred to

as slaves. Master acts as a dispatcher and distributeseinglqad for execution to slave servers.

Query Registration:

Once a user has been authenticated, the master uses alatlabdl@/members in the group to act
as slaves and provide processing power for queries sulohbiyteser. The client begins to register
input stream schemes in master and all slave servers. Besidgiery registration message from

client is redirected to thenterpretation unitin slaves which translates the interpreted query to

87

a logical query plan (a link of operators). The naive phylsgan is also generated. It then

redirects the user entering info to all available memberhéngroup and sends registration and
guery generation commands to all slaves. Note that oncesttrebegins registration, master would
not allow new server to participate in the processing of igsesubmitted by this user.

The incoming streams are connected to the query redireatibby thestream shepherd urii
master. The stream shepherd unit is trusted and it will fdteértuples from the strictly dominating
level before sending it to the redirection unit. For examfile TS level input tuple will not enter
the redirection unit of master in level S. Output connechietween master and client is established

after the queries are registered.

Plan Generation:

Once the master receives command from the client indic#tiaigall queries have been registered,
it requests all slaves for optimizing the naive physicalrgjydans created in the previous step.
Also, graphs of physical plans are generated for user vielwe Jenerated physical plans are

instantiated in the execution unit of all slave servers.

Query execution:

Once thestart query execution commaislissued, master startisstributed scheduleto dispatch
loads in different slave servers. In our DSMS system, aladhat arrives within one second
are taken as amput chunkwhich is handled by one slave. For simple queries withoutdam
specification, the master delivers the whole chunk to a shasaéts and receives the execution
results which it sends back to the user.

Algorithm 5 is running continuously in master during quereeution. Group detector and

distributed scheduler in our prototype coordinate toggpeeform load distribution. There are two

88

major functions in the distribution algorithm:

e The master reads CPU usagefrom every slave server. If the slave is not in heavy load (in
our casecu is smaller than 90%), the master can deliver a chunk of inptd tb the slave.

Otherwise, the “busy” slave is not considered to parti@patthis computation round.

e In every 1 minute, master server will update the existenck@RU usage information of
slaves in its ownp_table Offline servers will be deleted from this round and newalues

are used for next load distribution scheduling.

Master acts as a dispatcher and distribute the query piagea®rkload to slaves — this is,

however, transparent to the user.

7.2 Input Chuck Construction

CQL window operators are frequently used in streaming [msiog system. They are generated
as the bottom most operators in a query plan, and used tor biffet tuples within a fixed size
or a time period for further processing. For computationblo€king operators such as join and
aggregation, the accuracy of processing results reliesexqus and new coming inputs stored in
the buffer. In distributed DSMS, however, the inputs ared#id asisolatedchunks then sent to
different slave machines. To preserve the data continaityifer between different chucks, our

distributed DSMS combines extra data with the current imjati& to current scheduled slave.

Definition 13. [Input Chuck Construction for Window Operators] For a CQLejy using window
operator with input streany, an input chuclkls = ¢ + I, wherel§ = 3.5;(N;), S;(N;) represents

the last/V inputs from streany' in timestamp; /¢ is the new data arrived in current timestamp.

89

With the construction formula, we explain how input chucks eonstructed by three example
gueries. There are three queri@s, gz, Q. submitted in distributed DSMS systems. From times-
tamp 1 to 4, the numbers of input data in Vitdlsstream are 200, 50, 40, 70. And the numbers of
input data in Position® stream are 50, 30, 10, 80.

Qa: SELECT AVG(bp) FROM VitalsfROWS 100];
Qb: SELECT (bp) FROM VitalsfRANGE 2 Seconds];

Qc: SELECT * FROM VitalsfROWS 80], Positions|ROWS 80];

From Table 7.1, tuple-based window operator in master systeould keep the part of previous
inputs received in earlier timestamps. For time-based awndhe master buffers all inputs within
time period in window specification.

To illustrate the computation details in different slavies,us see another que€y, runs in 1
master and 2 slave machingsandsS;. In timestamp 1 and 3, the new coming inputs are redirected
to S; while in timestamp 2 the inputs are sent$n

Qd: Select AVG(bp) from Vitals[Rows 3];

From Table 7.2, in all timestamps (ts) except ts = 1, we carilsse is an extra legacy chuck
construction step before computation. The reason is obvi@mcause the inputs from previous
timestamps are meaningful in current stage. With this cloacistruction for every running slave

server, the outputs can be correctly sent back to user.

90

Algorithm 5: DSMS Load Distribution

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

INPUT : mastern, slave setS, current CPU usage:, server infosid, refresh timet, IP

multicasting message in group

Read slave sei from m’s ip_table;
Start refresh timet;
while StopExecution == falseo

end

foreach slave serves € S do

if s — cu < 90% then
‘ m distribute an input chunk to address— sid
end
else
‘ Skip load distribution to address— sid
end

end
if ¢ > 1 minutethen

foreach slave servek € S do
Read IP multicasting messages from the group
if s — sid is not foundthen
‘ Deletes from ip_table inm
end
else
‘ Updates — cu using the updated info from the message
end

end
Restart timet

end

91

Table 7.1: Input Chucks Construction Examples

Qa Qb Qe

ts=1, 7,200 7,=200 7,=200.75=50
V=200, I¥=0, I¥=0, [%=0, I&=200
P=50 I5=200 I5=200 I%=0, 1$=50

ts=2, Ty=150 Iy=250 7v=130,7Zp=80
V=50, T¥=V4(100), T¥=V4(200), I¥=V4(80), I5=50
P=30 I$=50 I$=50 I'5=P;(50), I$=30

ts=3, Iy=140 Zy=90 Tv=120,7p=90
V=40, Ig=V1(50)+V>(50), Ig=V5(50), Ig¢=V1(30)+V,(50), 1&=40
P=10 I5=40 I5=40 | I%=Py(50)+Py(30), I6=10

ts=4, 7,=170 T,=110 T,=150,Z=160
V=70, | Ig=V1(10)+V; (50)+V5(40), Ig=V3(40), Ig =V5(40)+V35(40), Ig=70
P=80 I5=70 I5=70 | T%=Py(50)+P(30)+P5(10),

15=80

Table 7.2: Computation in Different Slaves

Input(ts, sid, bp,slave)

Buffer(ts,sid,bp)

AVG(sign,result)

(1,AAA,1255,)
(1,BBB,100,5;)
(1,CCC,1505))

(1,AAA,125)
(1,AAA,125),(1,BBB,100)

(+,125)
(-,125),(+,112.5)

(1,AAA,125),(1,BBB,100),(

1,CCC,150

Legacy Buffer Constructiorn
(2,bDD,110,55)

(1,AAA,125),(1,BBB,100),(

(1,BBB,100),(1,CCC,150),(2,DDD,11d

1,CCC,150
) (-,125), (+,120)

Legacy Buffer Constructiorn

(3,EEE,1605))

(1,BBB,100),(1,CCC,150),(2,DDD,110)
(1,CCC,150),(2,DDD,110),

(3,EEE,160) (-,120), (+,140)

92

(-,112.5), (+,125)

Chapter 8
Stream Audit Cloud Application

In this chapter, we extend MLS-DSMS to a secure stream apgiications. We are proposing
an information flow control model adapted from the Chinesd Wdalicy [58] that can be used to
provide secure processing of streaming data generatednnoltiple organizations. The work of
CW-DSMS development has been presented in our newest SACINAARper [75].

A cloud contains a set of companies that offer services. dieioio keep the cloud operational,
it is important to detect security and performance problenastimely manner. Thus, auditing live
events streaming from the cloud is very essential. Sendgffesed in a cloud can be competing or
complementing. To detect attacks and performance issues|dud has to be audited as a whole,
though the audit events may be generated by competing orleamepting companies. Chinese
Wall policy aims to protect disclosure of company sensitifermation to potentially competing
organizations, but does not deal with complementing oggditins. In a cloud, companies are
organized into various domains based on the types of sarthey provide. Each of these domains
forms aconflict of interes{COI) class. Companies in the same COI class are in direcpetim
tion. We must aim to prevent leakage of a company’s sensitfeemation to other organizations
belonging to the same COI class. Companies that offer carmgaiéing services can be assigned
a complementing interest (Cl) class. Companies in the sa@leclass cannot be in the same CI.
Companies belonging to the same CI have no such direct cdimpetnd do not require trusted

entities to manage their information.

93

Streaming audit data generated by various organizatioss lneuanalyzed in real-time to detect
the presence of various types of attacks. A company may waatidit its own data to detect
malicious insider threats. Sometimes it may be needed trtatdenial-of-service attack for a
particular type of service offered by companies in a COl<gla3n the other hand, detecting the
delay between the service request and response may invodzang audit streams in a service
chain invocation that has multiple companies belongingotoes Cl class. For each such case, it
should be possible to detect the attack without causing gpaayis sensitive information from
being leaked to its competitors.

To address secure stream auditing, we start with idengfyire access requirements and the
information flow constraints for processing streaming daia in a cloud computing environment.
We first adapt the Chinese Wall policy formulated by Sandi@lif&formalize the information flow
constraints in clouds. Then we demonstrate how cloud camgpgueries can be formulated and
provide an architecture for executing such queries, usingesdeas from replicated MLS-DSMS.
By applying the sharing strategies from MLS-DSMS system.alg® implement a prototype to
demonstrate the feasibility of our approach and show howp#réormance is impacted by the

information flow constraints.

8.1 Information Flow Model

In the following, we present an information flow model for etbapplications to protect against
improper leakage and disclosure. We provide an informdtamw model that is adapted from the
lattice structure for Chinese Wall proposed by Sandhu [58].

We have a set of companies that provide services in the cldusscompanies are partitioned

into conflict of interest classes based on the type of seswioey provide. Companies providing

94

the same type of service are in direct competition with eablero Consequently, it is important
to protect against disclosure of sensitive information ampeting organizations. We begin by

defining how the conflict of interest classes are represented

Definition 14. [Conflict of Interest Class Representation:]The set of companies providing ser-
vice to the cloud are partitioned into a set ofconflict of interest classes, which we denote by
COI, COI,, ..., andCOI,. Each conflict of interest clas§OI; consists ofm; companies,

wherem; > 1, thatisCOI;, = {1,2,3,...,m;}.

A set of companies, who are not in competition with each otheavide complementing ser-
vices in the cloud. A single company can provide some seraiog sometimes multiple companies
may together offer a set of services. In the following, wertethe notion of complementing in-

terest (CI) class and show how it is represented.

Definition 15. [Complementing Interest Class Representatin:] The set of companies providing
complementing services is represented as an n-elememrveéct, . .., i,], wherei, € COI

U {L}. ix =L signifies that it does not contain services from any compady(@ /. i, € COI}
indicates that it contains services from the correspondiogpany inC'OI,. Our representation
forbids multiple companies that are part of the same COIglasm being assigned to the same

complementing interest class.

We next define the security structure of our model. Each degars, as well as the individual
tuples constituting it, is associated with a security lékat captures its sensitivity. Security level
associated with a data stream dictates which entities cagsa®r modify it. Input data stream
generated by an individual organization offering some iserias a security level that captures
the organizational information. Input streams may be @sed by the DSMS to generaterived

95

streams Derived data streams may contain information about meltpmpanies, some of which
are in the same COI class and others may belong to differehtl@Sses. Before describing how

to assign security levels to derived data streams, we shansbourity levels are represented.

Definition 16. [Security Level Representation:]A security level is represented as arelement
vector iy, s, . . ., i,], Wherei; € COI; U {L} U {T}. i; =1 signifies that it does not contain
information from any company i0O1;; i; = 1" signifies that the data stream contains information
from two or more companies belongingd@®/;; i; € COI; denotes that it contains information

from the corresponding company @0 ;.

Consider the case where we have 3 COI classes, nadély;, COI,, andCOI3;. COI,
COI,, andCOI3 have 5, 3, and 2 companies, respectively. The audit streaergted by Com-
pany 5inCOI, has a security level @b, L, L]. Similarly, the audit stream generated by Company
2in COI3 has a security levéll, L, 2]. When audit streams generated from multiple companies
are combined, the information contained in this derivedastr has a higher security level. For
example, audit stream having ley&| L, 2] contains information about Company 5GrO1; and
Company 2inCO1s. Itis also possible for audit streams to have informatiomfimultiple compa-
nies belonging to the sant@O! class. For example, a security level[df L, T'] indicates that the
data stream has information from Company %i@1,, does not contain information frodOI,,
and information about multiple companies@rOI;. We also have a levéll, |, 1] which we
call publicand that has no company specific information. The 1€Vel", 7] correspond to level
trustedand it contains information pertaining to multiple compemin each COI class and can be

only accessed by trusted entities. We next define dominahatan between security levels.

Definition 17. [Dominance Relation:] Let L be the set of security levelé,;, and L, be two

96

security levels, wherd,;, L, € L. We say security level, is dominated byL,, denoted by
L, =< Ly, when the following conditions holdV{, = 1,2,...,n)(Ly[ix] = Lalix] V Li[ix] =L
VLs[iy] = T). For any two levels.,, L, € L, if neitherL, < L,, nor L, < L,, we say that_,

and L, are incomparable.

The dominance relation is reflexive, antisymmetric, andditave. The levebublic, denoted
by[L, L, 1], is dominated by all the other levels. Similarly, the letrebted denoted byT", 7', T,
dominates all the other levels. Note that the dominancéioelaefines a lattice structure, where
level public appears at the bottom and the letreistedappears at the top. Incomparable levels
are not connected in this lattice structure. In our earlianeple, level[5, L, L] is dominated
by [5, L,2] and[5, L, T]. [5,L,2] is dominated byj5, L, 7. Thatis,[5, L, L] < [5,1,2] and
[5,L1,2] <[5, L,7]. [5,L, L] and[L, L, 2] are incomparable.

Each data stream is assigned a security level. Each of thestapnstituting the data stream
also has a security level assigned to it. The security lelleindividual tuples in a data stream
are dominated by the level of the data stream. When a DSMS&bpelis executed on multiple
input tuples, each having its own security level, an outpple is produced. The security level of

the output tuple is the least upper bound (LUB) of the segleitels of the input tuples.

Foreign Cloud %
— P o Gos:“
o

“Session Manager Vertically Comatible—_

Client

Figure 8.1: Multi-Tier Architecture of a Cloud

97

In audit application, various types of queries are exectdetktect security and performance
problems. Each continuous quet}, submitted by a process, inherits the security level of the
process. Similar to MLS-DSMS, we require a quélyto obey the simple security property and

the restricted-property of the Bell-Lapadula model [16].
1. QueryQ; with L(Q,;) = C can read a data streanonly if L(x) < C.
2. QueryQ; with L(OP;) = C can write a data streamonly if L(z) = C.

Note that, for our example, a process executing at Igvel, 7'] can execute streams belonging
to Company 5 ilC"O1; and all companies in'O1; and also streams derived from them. Thus, the
process is trusted w.r.tCO13, but not w.r.t. the other COI classes. Our information flondelo
thus provides a finer granularity of trust than provided by ¢larlier models. Our goal is to allow
information flow only from the dominated levels to the donting ones. All other information

flow, either overtly or covertly, should be disallowed by auchitecture.

8.2 Continuous Query Processing Architecture

In this section, we present our example application thaivatas the need for secure stream pro-
cessing in cloud computing environments. We have a serfigedims to prevent and detect
attacks in real-time in the cloud. Such a service providesimg about various types of attacks,
often involving multiple organizations.

Figure 8.1 shows a multi tier architecture of the cloud addgtom [74]. Various types of
auditing may take place in the cloud. The first level is toepany auditing tiernot explicitly
shown in Figure 8.1, is represented by the users connecseuairte service. In this tier, the activities
pertaining to an organization are analyzed in isolation.e Tiext level is theservice auditing

98

tier, identified by shaded ellipses that contain sets of resewand services. Each shaded ellipse
depicts vertically compatible services or resources;ithfies the services or resources that can
be functionally substituted for each other, possibly on aedx Thecloud auditing tieris shown
with connecting dark arrows, which depicts the internal oamication within the cloud due to a
service invocation chain.

Various types of audit streams must be captured to detedliffezent types of attacks that
may take place in a cloud. The company auditing tier logs tiwiies of the various users in
the organization. If the behavior of an authorized user amdollow his usual pattern, we can
perform analysis to determine if the user’s authenticati@rmation has been compromised. This
tier is responsible for analyzing the audit streams of iiiligl companies in isolation. Typically,
at this layer, the audit streams generated by a single coyrgreranalyzed.

The service auditing tier logs information pertaining te trarious companies who provide
similar services. Session Manager at this tier can deteetiven there is a denial-of-service attack
targeted at a specific type of service. Session Managerzswfudit streams generated from mul-
tiple competing organizations, so we need to protect agaif@mation leakage and corruption.
In short, the Session Manager needs to analyze data fromranere companies belonging to the
same COI class.

The cloud auditing tier collects audit information pertagto a service invocation chain and
is able to detect the presence of man-in-the-middle att&@dsud Provider is responsible for an-
alyzing audit streams from multiple organizations asgediavith service invocation chains, but
the organizations may not have conflict of interest. Thushiattier, the audit streams from the
companies belonging to one or more CI classes are analyzed.

In order to detect and warn against these attacks, contngoeries must be executed on the

99

k- L Q
\—/grvices

Figure 8.2: CQ Processing Architecture

] Audit Events I

[

streaming data belonging to various organizations. Qseniest be processed such that there are
no overt or covert leakage of information across competiggmizations.

We propose the architecture shown in Figure 8.2 that pre\adeay to capture events from the
cloud, monitor them, and trigger alerts. The architectarkased on cloud computing [74], data
stream processing [26, 12, 8, 30], event processing [2%;1@hese wall security [58], replicated
and trusted multilevel database management [2] and réptiddLS-DSMS in previous chapter.

As shown in Figure 8.2 there are several services offerdugmclioud. Data generated by these
servers are propogated to the DSMS. For this paper, we aarsicentralized DSMS architecture.
Compatible services are grouped and they interact baselileom weeds. Each of the service and
other servers contain an event detector to monitor and t@tearrence of interests. The detectors

sanitize and propagate the events to the data stream maeaggratem, which arrive at the stream

100

source operator. This operator checks for the level of theriming audit events and propagates

them to the appropriate query processor’s input queue. Tikeygrocessor architecture is based

on the replicated model, where there is a one-to-one canelgmnce between query processors and
security levels. A query specified by a user at a particulagllis executed by the query processor

running at that level. Also the query processor can only ggeaata that are dominated by the

guery processor level. This replicated approach allowsisleeof untrusted query processors. After

processing the query results are disseminated to autdansz's via the output queues of queries.

In addition to the query processors and stream source @pdénatdata stream management system
contains various other components (trusted and untruatediscussed in the implementation and

experimental evaluation section.

Other alternative architectures include trusted and lklybfh the trusted architecture there
will be only one query processor. This query processor istédiand all continuous queries are
executed in this processor. This architecture will have &ministrative overhead and also useful
during sharing of continuous queries. The disadvantagidsde creating trusted code is hard, and
threat of covert and overt channels. In the hybrid architectwe can interleave the queries based
on the Cls and also have separate processor for handlirigdrasd public tuples. In this work we

consider the replicated architecture as the first step td rarstream audit application.

8.3 Query Processing in Cloud DSMS

In this section, first we discuss the different types of qeeethat can be executed on cloud audit

data at the different tiers.

101

8.3.1 Cloud CQL Queries

Consider a simple application that tries to detect exameptead-of-service attacks in the cloud.
We have two conflict of interest classes denoted’fay/; andC'O1l,. The constituent companies
in each COI class is given by;OI, = {1,2} andCOI, = {A, B,C'}. Examples of security
levels in our configuration argl, L] (public knowledge)[7", T') (completely trusted),l, L] (data
from 1), [L, T (trusted w.r.t.COI,), [1, B] (data from 1 and3), [1, 7] (data from 1 inCOI, and
trusted w.r.t.C'O1,). Continuous queries are executed at various tiers to te¢eiormance delays
and possibly denial-of-service (DoS) attacks. In any givemn different types of DoS attacks may
occur — some involving the data belonging to single orgditma, others involving data belonging
to multiple organizations. Thus, a tier can have query psaoes at different levels, each of which
executes queries on data that it is authorized to view andfynod

We consider a single data stream, caldssagelog , that contains the audit stream data
associated with message events, suchesl andreceive . Messagelog is obtained from
SystemLog by filtering the events related to sending and receiving tlessages. Note that,
MessagelLog in reality may contain many other fields, but we only deal wihlbse that are
pertinent to this example. The various attributediessagelLog areserviceld , msgType,
sender , receiver ,timestamp , outcome . serviceld is a unique identifier associated
with each servicemsgType gives the type of message which is eittsand or receive
sender (receiver)givesthe id ofthe organization sending (receiving) thesagetimestamp
is the time when the evensénd or receive) occurred;outcome denotessuccess or
failure of the event. In addition to these attributes, we have aibaté referred to akevel

that represents the security level of the tuple. Tewel attribute is assigned by the system and

102

it cannot be modified by the user.
Messagelog(serviceld, msgType, sender, receiver,
timestamp, outcome)
The queries are expressed using the CQL language [9]. Welie#te various types of queries

that can be executed at the various tiers.

8.3.1.1 Company Auditing Tier

In the company auditing tier, companies have access onheio@wn audit records.

In this section we give some sample queries that are exebyt€dmpanylto detect perfor-
mance delays and DoS attacks. All the queries are executexkfl, | |.
Query 1 (1)

CompanyXequests service fro@ompanyBIlt is trying to check the times when such message
could be successfully delivered.

SELECT timestamp FROM Messagelog
WHERE msgType = "send" AND outcome = "success"
AND receiver = "CompanyB";

Query 2 (23)

CompanyZXequests service fro@ompanyBilt is trying to check the times when such message
could not be successfully delivered.

SELECT timestamp FROM Messagelog
WHERE msgType = "send" AND outcome = "failure"
AND receiver = "CompanyB";

103

8.3.1.2 Service Auditing Tier

Service auditing tier receives log records from all the cames making use of some service.

However, as the queries below demonstrate, not all theegiaged to access all the data from the
same COI class.

Query 3 (3): Level [L, B]

Log records received at the service auditing tier can beyaadlby the Session Manager to find

out whetheiCompanyBs not available for some service.

SELECT timestamp FROM Messagelog

WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB";

Query 4 (4): Level [L, T]

Session Manager may wish to find out whether all compani&s(x, are target of some DoS

attacks.

SELECT timestamp FROM Messagelog

WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB" OR receiver = "CompanyA" OR
receiver = "CompanyC";

8.3.1.3 Cloud Auditing Tier

Cloud auditing tier gets log records pertaining to all theviees. However, the various queries
will have different types of security requirements.

Query 5 (5): Level 1, B]

Cloud Provider may want to look at all records pertainingéoviceld 5 and measure the
delays in order to detect possible man-in-the-middle kttaerviceld 5 involvesCompanyl
andCompanyB

104

SELECT MIN(timestamp), MAX(timestamp)
FROM MessagelLog [ROWS 100]
WHERE outcome = "success" AND serviceld = "5";

Query 6 (¢): Level[1, B]

Cloud Provider wants to find the delay encountere€bynpanybetween sending the request
and receiving the service fro@ompanyHor the last 100 tuples.

SELECT R.timestamp - S.timestamp AS delay

FROM MessageLog R[Rows 100], MessagelLog S[Rows 100]
WHERE S.msgType = "send" AND S.outcome = "success"
AND R.msgType = "receive" AND R.outcome = "success"
AND R.receiver = "Companyl" AND R.sender = "CompanyB"
AND S.receiver = "CompanyB" AND S.sender = "Companyl"
AND S.serviceld = R.serviceld;

Query 7 (27): Level [T, T]

Cloud Provider may want to find out the delay incurred in tHéedent service invocation chains.

SELECT MIN(timestamp), MAX(timestamp)
FROM MessagelLog[ROWS 100]

WHERE outcome = "success"

GROUP BY serviceld;

8.3.2 Execution of Cloud Queries

For each tier, we may have one or multiple query processarthd Company Auditing Tier, we
have a single query processor for analyzing each compamy ddtus,Companylhas a single
query processor at levél, 1]. In the Service Auditing Tier, we may have one or more query
processors running at different levels. In our examplescare have a query processor at level
[L, B] and another one atL, 7. Alternatively, we can uséL, 7| to process both the queries.

105

Using [L, 7] to process the query at level, B] comes at a cost: the query submitted_at B]
must be rewritten such that it can access only those tup#sttis authorized to view. Similarly,
for the Cloud Auditing Tier, we may have a single query pregoest level[T, T or two query
processors: one at levgl, B] and the other dtl’, 7).

When a query has been submitted by a user, it must be rewtittensure that no unautho-
rized tuples are returned to the user. Our query rewritiggrddhm modifies the algorithm in the
following ways. LetQ, be the original query submitted at leve{(..). Let selectCond(@Q.) and
window(Q),) be the selection and window condition associated with tleeygrhe query rewriting
algorithm adds a new security conjunct to the existing selecondition. This conjunct ensures
that the tuples satisfying the query is dominated by thellef/éhe query. The query rewriting
algorithm also restricts the window to filter those tuplestttine query is authorized to view; this

is denoted bywindow(Q.)|z,, - The query rewriting algorithm is given below.

Algorithm 6 : Secure Query Rewriting
INPUT: (Q.)
OUTPUT: OPT(Q.,) representing the rewritten query
if window(Q,) # {} then
‘ window(Qy) = |window(Qy)| L.
3 end

=

N

4 else
5 ‘ selectCond(Q,) = selectCond(Q,) U (level = L(Q))
6 end

Let us conside€); once again that is submitted at LeVg| B].

SELECT MIN(timestamp), MAX(timestamp)
FROM MessagelLog [ROWS 100]
WHERE outcome = "success" AND serviceld = "5";

If this query is executed by the query processor at LéveB], no rewriting is needed. How-

106

ever, if the query is executed at LeVigl, 7', the query must be rewritten to ensure that it can
view only authorized information. In such a case, the quemgwritten as follows. Note that the
DOMINATED BY is similar to keywordlevel inin the MLS language.

SELECT MIN(timestamp), MAX(timestamp) FROM
MessagelLog [ROWS 100 WHERE level DOMINATED BY [1,B]]
WHERE outcome = "success" AND serviceld = "5"

project tim@ project timestamp

select select
outcome=success outcome=failure

select (msgType=send ,
receiver=CompanyB)

seq-win synopsis

i

MessaelLog

Figure 8.3: Merged Operator Trees@fandQ,

With the defined information flow model, we can reuse the idéagiery sharing mechanisms
described in replicated MLS-DSMS. Figure 8.3 is an exampéiag (), and(); in stream audit

application.

107

] ! 1. Connect to Server QUETES e s
k 3 D .
!] Connection Inic; + P N y : Trusted !
] : usemame, pw .| | Authentication :) Interpretation Unit i
k . = asecurity level | 3
] 1 3 E . [
k : 2. Register Query - i [A B
! User ! g Trusted .
; Commands ;_3. Generate Plan ' Command Unit List of
. ;.
3 3 3 1
1 1 4. StartQuery execution | . ' _ ... hysical R R 9 ge_rgtors .
i 4 - \ ; Physical U Trusted | Physical
i] 1 1 Query Processor : I Query Plan , lruste E Query Plan
. . 5. Stop Query execution | @ ! Identifier b | . Scheduler
i] | JRRERRREP P 2 NUNENEONE.
i !)
k Execution
! ! & commands
; ; .- InputOnit "7 g o dnputUnit 7
! g ' Execution Unit . i Execution Unit .
; 1 1 . 1 .
3] | ; |
1 1 Output results EREER- S st b ERCER- SR st R H
3 -t] Output Unit 3 i Output Unit 3
k] e EER T B e LR
3 3 Output results Query Processor 'n" Query Processor 'm’
1 1
i . PR I \
: ! Trusted :
i ! ; Stream Shepherd Unit
i Clients 1 Multi-user Server AT UL N
b q Input Streams

,,,,,,,

: New components

Input Stream source
" Modified components

Figure 8.4: CW-DSMS Prototype Architecture
8.4 Prototype Implementation

We have developed the replicated CW-DSMS shown in FigureTh# system is a modified ver-
sion of Replicated MLS-DSMS from our previous work [5, 6].eT@W-DSMS supports: (1) multi-
user server with user authentication, (2) replicated qpesgessors executing at different security
levels, (3) a global trusted scheduler that schedules tipsracross all query processors, (4) a
global trusted interpretation unit that supports cergegliquery plan generation for all query pro-
cessors, (5) trusted stream shepherd operator that talstsdrstreams and outputs streams based
on the security level of the query processor, (6) securitgllaware windows, (7) security level
aware query operators i.e., modification to blocking ogesate.g.join, average to create output
tuples with appropriate level identification, and (8) sengécurity level input streams and tuples.

Compare with the replicated MLS-DSMS, we've made changéisaexecution unitontains

108

the physical operators and their corresponding algorithteshave modified the window process-
ing so that it can support audit level models. Besides, we mawdified the aggregate and join
operator algorithms to compute the least upper bound (LUB)einput tuples specially for this
model and use that as the security level of the output tuptes.example, if an aggregate oper-
ation computes the maximum timestamp of three input tupldésviels| L, A], [L, B] and|L, C],
the output tuple is in levéll, T']. On the other hand, all the operators are untrusted. Theiggac
unit accepts the commands from the trusted scheduler amditesethe corresponding operators.
There is only one operator running at any point of time, siweehave only one scheduler. The

output unitsends the results back to users continuously.

Theorem 1. The proposed architecture enforces the information flovstramts.

Proof. Let () be a query submitted by a process at |é\teht operates on the relations and streams
in the DSMS. For each stream accessed by the query, the guerimg operator takes into ac-
count the security level of the query and only provides tloggmtion of the respective stream that
the process is authorized to view. The query is then forwcatdéhe processor that executes in the
same level as the query.

The query processor at levietan view only those input tuples whose levels are dominaged b
[and produce output streams at lekeThus, during query processing overt information flow can
only occur from levels dominated by levieio levell. In the proposed architecture, levekceives
tuples from dominated levels and stores them at its own .Iélleére is no common storage that
is shared across security levels. Thus, a dominating learel@t manipulate the common storage
to pass information to the dominated level. This ensuretstiiesie are no covert storage channels.

The query processor at levedxecutes queries only in its allotted time slot as decidethéyrusted

109

scheduler which ensures that there are no timing channels. O

The above claim holds only when we consider the architedturgolation. However, in real
world this is never the case and it is possible for the undaglframework to have covert channels.
For example, if the query processors at different levelsexiecuting on the same server it is

possible to have storage and/or timing channels.

110

Chapter 9

Prototype Implementation and Experimen-
tal Evaluation

In order to apply our MLS-CQL model, query sharing algorifirand scheduling strategies, we
need to make changes in the original DSMS. The vanilla syséelpased on a client-server ar-
chitecture, where clients register streams and queriessahdhit input streams, and the server
runs queries over the input data streams. The system mardane-to-one relationship between
clients and servers. The clients send connection estaidishrequests, and command messages
for registering streams, queries, generate query plaesugx, terminate, etc., to the server. The
clients allow users to create queries, create streams, iandoutputs, and they also provide in-
put streams to the server. The server generates query masisting of operators, queues, and
synopses, instantiates queries, schedules and exec@essjyrovide run-time monitoring, and

maintains accuracy and QoS.

9.1 Prototype Implementation

In this section, we explain the key components need to band&tbor re-designed for addressing

MLS system requirements.

111

9.1.1 MLS-CQL Syntax

Our work supports stream-to-stream window operators in MICH . In the first step, we need
to revise the DSMS parser for supporting query syntax sudqRRess 100 level in{U,C}]. For
simplicity, we use number 1, 2, 3, and 4 to represent level \§,@nd TS. So the window [Rows
100 level in{U,C}] can be represented as [Rows 100 12].

Stanford STREAM DSMS uses Bison parser to handle CQL rawiggslelVe gave a brief

summary on the parser processes in STREAM system, morésdedaibe found at [34, 57].

1. All tokengkeywords in CQL queries) allowed in CQL statements are ddfin source files
parser.h and parser.cc. Those input keywords like rowggragtc are assigned wistymbol
numberaused for further parsing. In Bison tlygtranslatetable is used to map lexical token

with symbol numbers.

2. Action (59 terminal symbols like CQL keywords) and GOTQ (®n-terminal symbols like
intermediate reducing words) tables are created befosenuarThe two tables are abstract
concepts. Action table represents the terminated reduatiles and Goto table shows the
current state redirection when a keyword is scanned durngimpg. There are 157 possible

states (from 0 to 156) and 81 reducing rules (in a file parggr.y
3. In implementation, state change and reduction rulestaredsin a couple of tables. Here
we only list those needed for MLS revise.

(a) yydefacttable stores the default reducing rules (In particularestidte reduction rules
are mostly used for all possible valid input symbols).

(b) yypacttable tells whether change state or use reduction for custate.

112

(c) yytabletable stores the next state or non-default reduction rolesurrent state indexed
by yypacttable.

(d) yycheckable is used for various checking.

Now we explain how parser works. In any moment, parser is maiestatex. When a
new valid input token (with symbol numb@&) comes, parser first checkgdefact[x]table to see
if any reduction rule should be apply. If the value is O, thagams no reduction rule is used.
Then system checkgypact[x] table which determines action/goto entry for current sxabgth
look-ahead toker\. If yypact[x] = YYPACT_NINF (always minus value), parser will uses the
corresponding reduction rule iyydefact If yypact[x] = k positive numberk will added toA
and directed tgytablefor checking next proper action except using the defaulticgdn rules.
Meanwhile,yycheck[k+A] = Ashould be satisfied before working wiglgtable

After that, we look at the result ofytable[k+A]. If it equals to positive numbey, it meansx
should be changed to next state y with shifthgnto stack; Otherwise, a negative valge) means
applying reduction rule z (except the one storegydefac}. In the following we first show how
to create the new parser rule for [Rows size level]. The valhg table shows parsing rules for

[Rows size] in STREAM system.

Rows X Level

Table 9.1: STREAM Parsing Rules for [Rows Size]
RW_ROWS(24) T_INT(44)

state X| Switch To Y(106)
state Y| Switch To Z(127)
state Z Reduce Rule 53

To add “level” to the Rows window, we add a new state (A) 15hwévised reducing rule 53:

113

RW_ROWS NINT N_INT (revised in parser.yy). The parsing rules should beseias following:

Table 9.2: MLS-DSMS Parsing Rules for [Rows Size Level]
RW_ROWS(24) T_INT(44)

state X| Switch To Y(106)
state Y| Switch To A(157)
state A| Switch To Z(127)
state Z Reduce Rule 53

And we need to revise the four tables accordingly (in file pas).
1. In state X, we don’t have changes.
2. In state Y(106)yypact[106]= 104, theryytable[104+44]= 157 (instead of Z=127).

3. Instate A(157)yydefact[157F 0 (no applicable rule)ypact[157]= 133,yytable[133+44]

=127 (yytable has 178 entriegycheck[133+44} 44.

4. In state Z(127)yydefact[127]= 53 (using reduction rule 53yystos[157]= 44 (internal

symbol table).
Range Unbounded Level

In trusted MLS-DSMS, we add level filtering in unbounded vwandduring query rewriting. We

introduce a new state 158 in order to revise the [Range Urdiexjrio [Range Unbounded Level].

Table 9.3: STREAM Parsing Rules for [Range Unbounded]
RW_RANGE(25) | UNBOUNDED(28)

state X(87) | Switch To Y(107)
state Y(107) Switch To Z(128)
state Z(128) Reduce Rule 54

114

the revised reduction rule is 54: RRANGE UNBOUNDED NINT (revised in parser.yy).

The parsing table should be revised as following:

Table 9.4: MLS-DSMS Parsing Rules for [Range Unbounded [Leve

RW_RANGE(25) | UNBOUNDED(28) TUINT
state X(87) | Switch To Y(107)
state Y(107) Switch To B(158)
state B(158) Switch To Z(128)
state Z(128) Reduce Rule 54

And we need to revise the four tables accordingly (in file pas).
1. In state X, we don’t have changes.
2. In state Y(107)yypact[107]= 26, thenyytable[26+28]= 158 (instead of Z=54).

3. In state B(158)yydefact[158} 0 (no applicable rule)yypact[158]= 134,yytable[134+44]

=128 (yytable has 179 entrieg)check[134+44} 44.

4. In state Z(128)yydefact[128]= 54 (using reduction rule 54yystos[158]= 44 (internal

symbol table).
Range X Second Level

Similarly, we need to make parsing rule changes in time<basadow with certain time period.
Here we show one example changes [Range size second] todRemegsecond level]. The original

reduction rule is 57, Y(144) = 57.

Table 9.5: STREAM Parsing Rules for [Range X Second]
RW_RANGE(25)| SECOND(29) T_INT(44)

state Y(129) Switch To Z(144)
state Z(144) Reduce Rule 57

115

Here we show the revised table. A new state 159 is introduced.

Table 9.6: MLS-DSMS Parsing Rules for [Range X Second Level]

RW_RANGE(25)| SECOND(29) T_INT(44)
state Y(129) Switch To C(159)
state C(159) Switch To Z(144)
state Z(144) Reduce Rule 57

And we need to revise the four tables accordingly.

1. In state Y(129)yypact[129]= 102, theryytable[102+29]= 159 (instead of 57).

2. In state C(159)ydefact[159} 0 (no applicable rule)yypact[159]= 135,yytable[135+44]

= 144 (yytable has 180 entrieg)check[135+44} 44.

3. In state Z(144)yydefact[144]= 57 (using reduction rule 57}ystos[159]= 44 (internal

symbol table).

9.1.2 Sharing Plan Generation

In Chapter 3 we show the intermediate products of system f&@h raw queries to execution

units during query plan generation.

CQL query -> Syntactic nodes in parse tree -> Semantic object S
-> Logical operation (logical plan) tree
-> Physical operation (physical plan) tree -> Execution uni ts

First we need to make a choice in which step to perform sharadysis. We would like to
do it before physical plan generation, the earlier the belttegeneral we can run sharing analysis

while the system performs one of three steps:

1. System is accepting raw input queries. There are two difiis in this choice: the first one
is the complexity of table aliases. Suppose there are twoegias following:

116

Qa: Select M.id From Vitals M, Positions N;

Qb: Select N.id From Vitals N, Positions M;

They are identical if Vitals and Positions are pointed togame input streams. However the

alias complicates the analysis.

The second problem is identifying the type of input: relator stream. Vitals i), andQ),
can be a fixed size table, or a continuous input stream. Fremath input the system cannot

tell the type of inputs. So sharing analysis in raw query isapplicable.

. In syntactic parser trees. CQL raw queries are consttadea list of nodes. These syntactic
nodes only contain the information after parsing, like ttigtautes, operations, window size,
etc. They are not connected with the input streams/tablesy8tactic nodes are inappro-

priate to use for sharing analysis.

. In Semantic objects. Those objects are well-structunedcannected with inputs. For ex-
ample, a CQL query can be one of two basic types such as SF\&c{Febm-Where) and
Binary-join. In SFW, there are three blocks select, from amere, and each of them con-
tains nodes. For nodes in from block, it must specify the irgource, input window kind

and size, etc. All nodes are linked and ready to generatei@alqgan.

We perform the sharing analysis by comparing existing séimabjects with the arriving
semantic objects from the new query. Since sharing stasta frottom to top, we first
compare the input source in FROM clause, then the WHERE, aadBELECT clause.
The analysis tries to share nodes as many as possible in @ratoptree. According to

the sharing position (FROM, WHERE or WHERE) and type (padracomplete), the new

117

guery is able to reuse the logical and physical plans frorstiexj queries before generating

its own plan.

We need to set up buffers for storing the semantic objectgcdb and physical plans of all
executing plans. In sharing mechanism, if a query stopsysem checks whether there are some
executing queries reusing its plan. In this case, the quary\ill stay for others even though the

query is terminated.

9.1.3 Execution/Generation Time Measuring

In STREAM prototype, there are two additional opera&tream-sourcandoutputto be created
for every query plan of CQL queries. The stream-source épe@nnects input streams and
produce tuples only with positive sign. It acts like the atmesource producer and located the
bottom most node in the operator tree. Output operator iihenost node in operator tree, which
constructs the output in certain form to send it back to thegsis

Our experiments require keeping track of the process timedaain query against limited
size inputs. We are only interest in the execution time ofgtlaén operator tree without the two
additional operators. So the timer starts from the firsteugiters to an operator next to stream-
source, ends when the last tuple goes out from output opekiiive made the changes to add the
timer function.

Query plan generation time is most straightforward. Oneeuber decides to run queries, no
more queries are accepted by this user. So the generatiertéimbe calculated between the start

of first plan generation and the end of the last plan.

118

9.1.4 LUB Level Computation

Least Upper Bound (LUB) computation for level attribute rdical for blocking operators like
aggregations and join in our MLS-DSMS. Join LUB is relatwveimple. Suppose there is a join
operator in S level which joins two tuples ¢, from C and U respectively. The output joined tuple

should be in level C by performing LUB(, ¢5). A small piece of code is used in our prototype:

outputElement.level =
((t1.Level>= t2.level)?tl.level:t2.level);

Aggregation operators like sum, count, max, min, avg aferdint from join. Every time a new
tuple arrives at or an old tuple expires from the computatordow, there will be an aggregation
computation. It is time and resource consuming if we prefatB of all involved data when a
computation happens. Instead in our system, we keep coummbens for each level from tuples
in the computation window. The size of counts are bound tosthe of window, as well as the
computation is only increase (for new input) or decreasedipired buffered data) in most cases.

Specifically, we use the Bitwise operator to improve theqrenbince:

if(inputElement.sign == plus)
aggrLUBLevel[1111 & inputElement.level]++;
else
aggrLUBLevel[1111 & inputElement.level]--;

aggr LU B Level is an array storing the level counts. Index O for the arrayp istore the LUB
level of aggregation results. Since we use positive numi#&B8.4 to represent level U,C,S,TS,
binary operations return the actual index in the array fantmumber updates. After that, we will
check if we need to update the output LUB level of aggregatesnlt. The following piece of code
shows level update is triggered only if the expired tupleadsjto current LUB level of output as
well as the count for the expired tuple is O.

119

if(inputElement.sign == negative &&
inputElement.level == aggrLUBLevel[0] &&
aggrLUBLevel[inputElement.level] == 0){
for(int k=aggrLUBLevel[0]-1; k>=1; k--)}{
if(aggrLUBLevel[K]'=0){
aggrLUBLevel[0] = Kk;
break;

When the update happens, we try to find the count number nai &m0 from highest (4) to
lowest (1). Then we assign the level with non-zero count éolttiB level. With the special care
for LUB levels in blocking operators, the output result cacorrected labelled and reused safely

via sharing mechanisms.

9.1.5 Scheduling Method

In the vanilla STREAM prototype, the scheduler uses rowtdrralgorithm to schedule operators.
We have modified the scheduler so that it can handle schedofliqueries in more than one query
processor. The scheduler maintains all executing queny ipf@rmation shared by the trusted
interpretation unit. When a query plan is received by thesdaler, operators in the plan are
scheduled for execution from bottom to top order. The scleediends out commands (including
plan id and operator id) to the appropriate query processastdrt executing an operator. The
operators execute at least once per scheduling round. Whew plan arrives at the scheduler,
operators of that plan will be scheduled in the next exeouttmind. Such mechanism prevents
starvation of late coming queries, as each operator is stde@very round. In every round, each

operator processes a maximum of 170 data tuples beforenémgtto other operators. The DSMS

120

can process a maximum input 100,000 tuples per secondt déinse first serve” strategy is used
for executing the query plans. We adapt the round-robin ateth our trusted scheduler which is
able to schedule operators across all query processors.

So the original round-robin does not assign time slice farafors but maximum processing
tuples for each round. In our time-slot algorithm, we set b @illion-second for each level since
the heart beat is 1 second. In each time slot, we run opeiiatorsitiple rounds in specific levels.
To ensure the fast output, we adapt the ideas of handlingmanril70 tuples for each operator in

each round, while the scheduler will run it as many as possibting the assigned time slot.

9.2 Experiment Setup

MLS DSMSs are developed to achieve two main goals: securdteption enforcement by in-
troducing trusted components and safe scheduling stestegnd performance improvement via
sharing queries in the same or different levels. We condugtigcal experiments to evaluate the
overhead of the security mechanisms and the performanoefaharing ability between normal
and MLS-DSMS.

There are some metrics that can be used to study the perfoeraard overhead of multi-
level security. Some of the most common metrics are: tupdaty, throughput, result accuracy,
starvation, number and complexity of trusted componetdsage requirements, etc. In DSMS ap-
plications, QoS is the most critical factor to evaluate ty&tesm performance. So we ussponse
timefor query plan generation and execution to investigate tbe @nd cons of MLS DSMSs. For
the experiments, we are planning to generate syntheticvdgtdevel labels and using different
kinds of queries like select, project, join, and aggregaf.g., average). In general, we aim to

find answers of the following questions:

121

e MLS Architectures vs. Vanilla System: What is the overheadsed by introducing the

multilevel security processing components.

e Modified scheduling overhead: Since scheduling has to beafieddo incorporate security

levels, what are the impacts on query processing?

e Sharing vs. No Sharing: What are the effects of sharing anshaoing of queries? This

involves comparing all the approaches of complete andgbattiaring.

e Sharing in the same vs. across different levels: What ardémefits of sharing queries

across different levels?

In CW-DSMS, what is the overhead causing by introductiomadted components?

In the following sections, we first provide the details of exment setup, then present the
experimental evaluations on those secure DSMSs.

Environment: All the experiments were conducted in a standalone systimimtel i7 Q820
1.73GHZ Quad core Processor, 6GB RAM, and Ubuntu 11.10 &@®itProcesses except DSMS
are shut down and there is no internet/bluetooth/wirelessection to the machine.

Inputs: Experiments are under the simulation scenario of the ligttlenonitoring application
discussed in Chapter 4. Each soldier equips with sensodsngeaut vital and position info to the
control center with DSMS continuously. The two input streschemes are showed as following,
and Each tuple is associated with a security level, whichbealS, S, C, or U, where & C < S
<TS.

Vitals(soldier id (sid), blood pressure (bp), pulse rate (p r,
weight (weight), level (level));

122

Positions(soldier id (sid), latitude (lat), longitude (lo n,
level (level));

For each of twovitals and Positionsinput streams, we set up separate input files containing
numbers of tuple in different sizes like 500 thousand, lionll2 million and 4 million. According
to experiment needs, the content of input files can be diffeffeor example, all tuples of an input
can be in the same level, or the number of tuples in each |lseviMi of total tuples. To create
light/heavy load situation, the input data rates vary frobpOD0 to 100,000 tuples per second.
Besides, we are executing different kinds of queries aslsisgiect, aggregation, join, as well as
mixed types of queries.

Data Collection: Our goal is to compare the response time of plan generatidrgaery ex-
ecutions between different DSMSs or approaches. To retaréxact running time, we should
eliminate other time factors introduced by irrelevant sgalike query registration, plan analysis,
operate tree generation, returning results, etc. So a st up to keep track of exact response
time. After plan generation, each registered query is foanged to an operator tree ready for exe-
cution. The timer begins to work when first input tuple entbesbottom most operator (window)
of the tree, and stops when the last tuple exits from the tegatpr. The duration is the pure
response time of query execution. Similarly, we use therttm&eep track of the plan generation
time.

For each experiment, we will run five times and discard the fiwe runs. The average ex-
ecution time from the last three runs and the standard dewiatill be presented as outcomes.
We will compare the overheads and performance gains in MIs&gys with the benchmarks of

non-security control and no sharing systems respectively.

123

9.3 Experiments on Replicated MLS-DSMS

The followed results are based on experiments of the vaBillREAM system and the replicated

MLS-DSMS prototype.

9.3.1 Experiment Expectations

Through the experiments, we should be able to know the fatigacts of MLS-DSMS imple-

mentations:

1. The overhead of MLS components. It should be insignifitargxecution time otherwise

the MLS DSMS is not useful for real-world applications.

2. Performance improvement by sharing approach. Sharitvwgele@ queries reduce the com-
plexities of plan generation as well as query execution bigirg the existing operator tree
structures and computation results. Specially, comple&gisg should benefit more than

partial sharing.

3. The overhead of MLS scheduling strategies used in raplicMLS-DSMS. For specific
scheduling approach, the overhead is determined by themsylsiad, data distribution and
guery number in each level. Running the same set of querdsr ulifferent parameters, we

can see which scenario is (or not) suitable for particulaedaling approach.

9.3.2 Overhead of MLS processing

We used three different data sets with 1, 2, and 4 MilliongaplThe data input rate is 20,000

tuples per second. In each set, the number of tuples in eaehwas 1/4 of total tuples. In order to

124

detect the overhead cost only, both vanilla and replicate® SMS use the default round-robin

scheduling strategy with no load shedding.

Table 9.7: Performance Overhead Due to MLS Processing

Data Size Average Execution Ul Standard Deviation (ms)
(tuples) Time (ms) Due to MLS-

Vanilla [MLS-DSMS| DSMS (in %) | vanilla MLS-DSMS
1M 50063 50068 0.010% 5.29 4.58
Exp 1 2M 100069] 100079 0.011% 9.29 4.04
4M 200071| 200082 0.005% 2.52 2.52
1M 50065 50070 0.011% 4.73 2.31
Exp 2 2M 100068] 100077 0.009% 7.77 6.08
4M 200075 200081 0.003% 3.51 7.21
1M 50528 50596 0.134% 12.50 45.54
Exp 3 2M 100535] 100628 0.093% 5.86 25.66
AM 200557 200655 0.049% 32.50 79.05
1M 53072 53544 0.882% 131.87 183.44
Exp 4 2M 103850 104456 0.580% 397.64 441.46
4AM 204463 205576 0.541% 243.36 210.66

We used the four experiments to study the performance oadrlihe average execution time
are shown in Table 9.7. Experiment 1, 2 and 3 are running anplsiselect, one average with
group by, and one join queries respectively in both vanitld eeplicated MLS-DSMS in highest
level. As join is an expensive operation when compared teratherations, the time by experiment
3 is more when compared to experiments 1 and 2. In generalvre@ad due to MLS processing
is negligible under all data sets as shown in Table 9.7.

In experiment 4, there are six queries that included matgupies of the same queries used
in the previous experiments. Two copies of each query aré insexperiment 1, 2, and 3, respec-
tively. These six queries used the same input streams. AsrshioTable 9.7, the overhead due
to multilevel processing is between 0.54% and 0.88%. Theesytakes less performance hit with

4M tuples when compared to 1M tuples as the system stabizelong run.

125

9.3.3 Overhead of MLS Scheduling Strategy

In experiment 5, we study the overhead caused by the impleti@mof the fixed time slot round-

robin scheduler vs. the regular round robin scheduler. Véewed four queries, each running at
different security levels. The input streams (Vitals1 a4, Vitals3, and Vitals4) are replications
of the original Vitals stream. The input streams contairyamiclassified tuples. We used a input

rate of 40,000 tuple/sec and data sets of 1M, 2M, and 4M tuples queries are shown below.

QL(TS): SELECT sid, weight
FROM Vitalsl[Rows 100 level in {TS,S,C,U}];

Q2(S): SELECT sid, weight
FROM Vitals2[Rows 100 level in {S,C,U}];

Q3(C): SELECT sid, weight
FROM Vitals3[Rows 100 level in {C,U}];

Q4(V): SELECT sid, weight
FROM Vitals4[Rows 100 level in {U}];

Table 9.8: Overhead Due to Trusted Scheduler and Streanh8tte@perator

Average Execution Time
(ms)

Standard Deviation (ms)

Data Size Overhead

MLS-DSMS | MLS-DSMS i MLS-DSMS
(tuples) S L (in %) . MLS-DSMS
egular egular
Scheduler | Scheduler Scheduler MLS Scheduler
1M 26928 27424 1.807% 74.22 60.93
Exp 5 2M 51853 52318 0.889% 58.80 58.03
4M 101966 102541 0.560% 67.87 35.04

As shown in Table 9.8, the overhead due to the time slot sdimgdis between 0.56% and
1.80%. The result is good because there are same input l@atimtime slot (one query per time
slot). In this case we can see this scheduling method is wuitable scenario. On the other hand,
if one of the levels has more tuples, then the overhead mighidher as other time slots have to
be exhausted before that level is rescheduled.

126

9.3.4 MLS Query Sharing

Three input data sets with 500 Thousand, 1 Million, and 2ibfilkuples were used at an input rate
of 20,000 to 40,000 tuples per second. In each input strdeamumber of tuples in each level was
1/4 of total tuples. In order to detect the pure sharing gaibpth no sharing and sharing replicated
MLS systems we used the default round-robin schedulingestyavithout load shedding.

We are using p value of T-test to evaluate the significancéfiegrdnces by sharing. The T-test
is a statistical hypothesis test to determine if two data aet significantly different from each
other. We use two tailed assuming unequal variances as wétuponfidence level 0.05. For the

two sets of data for comparison, if the p value is smaller (&, we say the sharing difference

is significant.

Complete Sharing

Four experiment sets are conducted to study the performgaicedue to complete sharing. We

measured time costs of query execution and plan generation.

Table 9.9: Complete Sharing Execution - Performance Gain

Average Execution Time (ms) Standard Deviation (ms)
Data Size Performance o
(tuples) Complete . Gain (in %) Complete .
No-Sharing No-Sharing
Sharing Sharing
500K 17795.0 19228.0 8.053% 524.9 467.7 2.7E-02
Exp 1 1M 34189.3 37321.0 9.160% 1173.5 1038.2 2.6E-02
2M 68207.7 72673.3 6.547% 995.7 577.9 5.4E-03
500K 45443.7 50023.7 10.078% 323.7 790.4 4.3E-03
Exp 2 M 87061.3 95074.7 9.204% 191.8 498.9 3.4E-04
2M 175681.7] 193476.0 10.129% 445.4 1802.6 2.2E-03
500K 30386.3 33563.0 10.454% 367.4 503.4 1.3E-03
Exp 3 1M 54479.0 65988.0 21.126% 543.5 1113.2 5.3E-04
2M 105859.7] 131491.3 24.213% 1156.7 2496.3 7.3E-04
500K 34697.0 36125.3 4.116% 151.1 282.6 4.2E-03
Exp 4 M 67581.3 70112.0 3.745% 3301 3245 7.0E-04
2M 135166.3] 13%601.3 3.281% 1033.0 788.8 5.1E-03

127

Table 9.10: Complete Sharing Plan Generation - Perform&ade

Average Execution Time Standard Deviation
Improvement
for 3 Runs (ms) . between 3 Runs (ms)
. — due to sharing c —
omp.e © No Sharing (in %) omp.e € No Sharing
Sharing Sharing
Exp 1 (Plan
Generation) 762.0 774.0 1.575% 2.7 6.0
Exp 2 (Plan
Generation) 767.6 776.4 1.158% 3.5 8.8
Exp 3 (Plan
Generation) 374.2 378.7 1.188% 3.7 7.0
Exp 4 (Plan
Generation) 771.6 784.0 1.613% 3.2 5.4

Experiment 1, 2 and 3 are running identical queries as nileets@ine average with group-by,
and five join respectively in both sharing and no sharing MLV in highest level. Experiment
4 is mixed nine queries contains three select, three avevah@roup-by, and three join from the
three previous experiments. As shown in Table 9.9 under Expe3highest performance gain for
5 join queries was between 10.45% and 24.21%. Besides, goeitan time performance gain of
the 4 experiments was between 3.28% to 24.21%. This vami&imainly due to the processing
time took by operators and due to the change in input rateoag $hedding is not enabled, we can
fine tuned the input rates to avoid inconsistent resultsifistance, if the input rate is increased to
100,000 tuples per second, the DSMS was producing incemsistsults over the five runs of the
same experiment.

On the other hand, p values of all experiments are smaller@@b so the performance differ-
ences are significant.

As shown in Table 9.10 the performance gain due to not crgatiready existing plans was
between 1.15% and 1.61%. But the gain is negligible whentdredgard deviation over the runs is

taken into account. There is not a lot of performance gairnadrsy analysis consumes resources.

128

Partial Sharing

Two experiments were set up to enable partial sharing. Exeet 1 and 2 are conducted with five
join and seven average queries respectively. The From areté\dtauses were identical (to make

sure the same input data) in all the queries and the wherseciauselect operator was different

(e.q., different numbers of attributes or different aggtemn computation types).

Table 9.11: Partial Sharing Execution - Performance Gain

Average Execution Time (ms) Standard Deviation (ms)
Data Size Performance
. p-value
(tuples) Partial . Gain (in %) Partial .
No-Sharing No-Sharing
Sharing Sharing
500K 18770.3 19970.3 6.393% 428.1 148.2 2.9E-02
Expl iM 35383.0 36733.7 3.817% 436.0 328.9 1.5E-02
2M 69903.0 72841.7 4.204% 527.6 722.8 6.1E-03
500K 33588.3 35839.0 6.701% 437.5 333.2 2.7E-03
Exp 2 1M 67405.0 72322.0 7.295% 653.9 944.0 2.8E-03
2M 132964.7] 140305.0 5.520% 1007.9 1415.5 2.7E-03

Table 9.12: Partial Sharing Plan Generation - Performaraie G

Average Execution Time Standard Deviation
for 3 Runs (ms) LI between 3 Runs (ms)
- due to sharing -
Partllal No Sharing (in %) Partllal No Sharing
Sharing Sharing
Exp 1 (Plan
Generation) 375.0 377.9 0.770% 33 4.7
Exp 2 (Plan
Generation) 572.4 578.7 1.087% 3.1 2.3

Based on Table 9.11, the performance gain due to partiaingharas between 3.81% and
7.29%. On the other hand, the performance gain due to plargion was 1% or less as shown in
Table 9.12. This shows that analyzing the existing planpéotial sharing does not cause overhead

in the system. Similar to experiments on complete sharivgJyees of all experiments are smaller

than 0.05 so the performance differences are significant.

From the results on replicated architecture, we can seevilsde@ad by MLS components is

129

insignificant and sharing mechanism provides better QoStyaing the response time. On the
other hand, overhead of the new scheduling strategy likel fixee slot is not big if running in

certain suitable scenario.

9.4 Experiments on Trusted MLS-DSMS
9.4.1 Experiment Expectations

In this section, we discuss the experimental evaluationdected to study the overhead of trusted

guery rewriter, as well as performance gain by sharing gaexcross different levels.

1. The overhead of MLS components in trusted system. It shioelinsignificant to execution
time. We are running experiments for comparison betweeill&@ddSMS and no-sharing

trusted MLS-DSMS.

2. Performance improvement by sharing approach. We arengitihe experiments between
replicated and trusted systems. We are running the expetsnie special scenarios where
there are overwhelming number of queries in certain saned kevives, as well as sharing

across different levels in trusted MLS-DSMS vs. non-st@nmreplicated structure.

Three input data sets with 500 Thousand, 1 Million, and 2ibtiltuples were used at an input
rate at 20,000 to 40,000 tuples per second. Tuples contaisedurity level{S > S > C' > U).

In each set, the number of tuples in each level was 1/4 of tiopéeés.

9.4.2 Vanilla DSMS Vs. No-sharing Trusted MLS-DSMS

In order to study the overhead when compared to Vanilla DSM&d the secure rewriting module,

we disabled the sharing ability of Trusted MLS-DSMS. We rax@eriments with input rate 20000

130

tuples per second to 1) measure the plan generation time)andasure the query execution time
(the time taken from first tuple entering the S2R operatorlasituple exiting the query).
For trusted MLS-DSMS, all the queries are executed at thes€8rgy level. The reason is that

Vanilla system does not classify users or queries basedaomigelevels.

1. Experiment 1 (Range Unbounded Queries): We ran 4 idégicaies. Note that the queries

run in trusted MLS-DSMS are rewritten in different form.
Vanilla: SELECT sid, weight FROM Vitals;

Trusted: SELECT sid, weight
FROM Vitals|[Range Unbounded level in {TS,S,C,U}];

From Table 9.13, the performance overhead during execistlmgtween 0.012% and 0.031%

and the overhead during plan generation is from 3.876% asrshioTable 9.14.

Table 9.13: Vanilla DSMS Vs. No-sharing Trusted MLS-DSMSkeEution

A E tion Ti
Execution Verage execttion 1ime Standard Deviation (ms)
Data Size (ms) Overhead
Input Rate -
(tuples)) No-sharing| (in %)) No-sharing
20000 Vanilla Vanilla
Trusted Trusted
500K 25051 25058 0.031% 3.79 2.08
Exp 1 1M 50062 50073 0.022% 2.65 2.00
2M 100072 100084 0.012% 4.04 5.03
500K 26967 27419 1.677% 96.01 201.64
Exp 2 1M 51104 51861 1.481% 70.06 93.58
2M 101404 102104 0.691% 44.09 94.14
500K 35016 35047 0.089% 2.52 2.65
Exp 3 1M 60056 60083 0.046% 1.73 3.21
2M 110084 110111 0.024% 2.65 2.08

2. Experiment 2 (JOIN Queries): We ran 4 identical queries.

Vanilla: SELECT =
FROM Vitals|[Rows 100], Positions[Rows 100]
WHERE Vitals.sid = Positions.sid;

131

Table 9.14: Vanilla DSMS Vs. No-sharing Trusted MLS-DSMSarPGeneration

Average Execution Time Standard Deviation
. (ms) for 3 Runs Overhead (ms) between 3 Runs
Plan Generation -
_ No-sharing [(in %) : No-sharing
Vanilla Vanilla
Trusted Trusted
Exp 1 269.4 279.9 3.876% 2.6 2.5
Exp 2 272.2 279.1 2.531% 2.7 2.2
Exp 3 274.8 282.4 2.790% 1.6 1.8

Trusted: SELECT =
FROM Positions[Rows 100 level in {TS,S,C,U}],
VitalsfRows 100 level in {TS,S,C,U}]
WHERE Vitals.sid = Positions.sid,;

Overhead of execution is between 0.691% and 1.677% as showable 9.13 and plan
generation is 2.531% as shown in Table 9.14.

3. Experiment 3 (Range Window Queries): We ran 4 identicaligs.

Vanilla: SELECT AVG(bp)
FROM Vitals[Range 10 seconds]
WHERE bp > 100 AND level in {S};

Trusted: SELECT AVG(bp)
FROM Vitals[Range 10 seconds level in {S}]
WHERE bp > 100;

As shown in Table 9.13, the performance overhead due to wpsié&ke Range window and
Average is between 0.024% and 0.089%. The rewriting andmgdtion overhead from

Table 9.14 is 2.790%.

As discussed above the overhead caused due to Trusted iemdkeion over Vanilla DSMS is
almost negligible during query execution and is under 38 d@iring plan generation.

132

9.4.3 Replicated Vs. Trusted

The major differences between our replicated/hybrid amstéd architecture implementations are:
(2) replicated system does not have query rewriter modR)eeplicated uses time-slot scheduling
which assigns identical time duration for running queriegach level to avoid covert channels.
While trusted system uses round-robin scheduler for altigaen different levels. (3) replicated
system establishes one server instance for users in eaglhWhile trusted has only one server
instance for users from all levels. and (4) replicated thasted stream shepherd operatwhich
can filter unqualified stream inputs for each server instahbas, time-based window in replicated
does not support level filtering and user can specify requgktvels in the WHERE condition for
computation. While trusted time-based window supportsllékering, since the stream shepherd
operator does not perform filtering.

To find the execution performance differences between ttvasesystems, we ran two exper-
iments with input rate 40000 tuples per second. We incre#isgdnput rate in order to create
a heavy load situation so that we can observe how the perfarenean be improved by sharing
gueries in the same level and across levels. Besides, wpesfibrm T-test to evaluate the signifi-

cance of sharing performance.

1. Experiment 4 (Sharing in Same Level): There are 4 userSiteVel and each one runs the

following Join query:

Replicated and Trusted:

SELECT Vitals.sid, weight, location

FROM Positions[Rows 50 level in {U}],
Vitals|Rows 50 level in {U}]

WHERE Vitals.sid = Positions.sid;

133

In replicated system all those queries must be run in the fixee slot in TS level. While
in trusted system, operators are run in the round-robindashFrom Table 9.15, the per-
formance gain in the trusted system is between 63.659% a®@09%. The above perfor-

mance benefit is due to the fact that the CPU is not idle in theted architecture.

Table 9.15: Replicated Vs. Trusted : Execution

Execution Average Execution Time Standard Deviation
Input Rate Data Size Performance el
(tuples) | Replicated| Trusted Gain (in %) | Replicated | Trusted
40000
500K 29297 14024 108.909% 888.99 236.16] 5.7E-04
Exp 4 1M 49032 27105 80.898% 1073.54 324.86| 3.1E-04
2M 88957 54355 63.659% 1266.34 471.32| 9.6E-05
500K 35899 21466 67.241% 766.06 567.65| 2.5E-05
Exp 5 1M 66061 40266 64.063% 2058.97 943.91| 4.3E-04
2M 113206 70044 61.620% 3530.80 1598.39] 4.7E-04

2. Experiment 5 (Sharing across Levels): There are 2 usef§iand S level, respectively.
Each one runs all the following 4 Join queries. Note that the fjueries cannot be shared

because of the different input size in window operators.

Replicated and Trusted:

SELECT Vitals.sid, weight, location

FROM Positions[Rows 90 level in {S,C,U}],
Vitals[Rows 10 level in {S,C,U}]

WHERE Vitals.sid = Positions.sid;

SELECT Vitals.sid, weight, location

FROM Positions[Rows 80 level in {S,C,U}],
Vitals[Rows 20 level in {S,C,U}]

WHERE Vitals.sid = Positions.sid;

SELECT Vitals.sid, weight, location

FROM Positions[Rows 70 level in {S,C,U}],
Vitals[Rows 30 level in {S,C,U}]

WHERE Vitals.sid = Positions.sid;

SELECT Vitals.sid, weight, location

134

FROM Positions[Rows 60 level in {S,C,U}],
Vitals|Rows 40 level in {S,C,U}]
WHERE Vitals.sid = Positions.sid;

In the replicated system only queries issued by the usetsisame level can be used for
sharing analysis. So queries in level S cannot be sharedjwéties in level TS even though
they are in the similar context. On the other hand, in truste®-DSMS queries can be

shared across levels.

From the results in Table 9.15 performance gain due to shéane queries across levels is

between 61.620% to 67.241%.

The p values of the two experiments are smaller than 0.05espéhiformance differences

are significant.

9.5 Experiments on CW-DSMS

We conducted experiments to compare the performance betiieeold vanilla DSMS and the
CW-DSMS prototype. Except experiment 6 (join operation},dll other experiments, we used
three different data sets with 2, 5, and 10 million tupleshvédtdata input rate of 50,000 tuples
per second. Each tuple is associated with a COI class in tefijps0] or [0,y], wherex refers
to company 1 or 2 ang can be one of the companies A, B, or@means the public knowledge
L. For all experiments, the round robin method is used for atperscheduling. The experiment
results are shown in Table 9.16. We measured the query éxeduhe (the time taken from first
tuple entering the first operator of the query plan and Igsetaxiting the query) for the following

experiments.

1. Experiment 1: Company auditing in level [1, 1]

135

Table 9.16: Performance Overhead of Chinese Wall Proggssin

Data Size | Average Execution Time (ms) |Overhead| Standard Deviation (ms)
(tuples) Vanilla CW-DSMS Due to Vanilla CW-DSMS

2M 40031 40041 0.025% 2.52 2.52

Exp 1 5M 100046 100055 0.009% 2.08 321
10M 200057 200063| 0.003% 3.21 2.52

2M 40032 40039 0.017% 252 1.53

Exp 2 5M 100042 100049 0.007% 2.08 2.65
10M 200052 200056 0.002% 3.51 .57

2M 40030 40041 0.027% 2.89 1.73

Exp 3 5M 100043 100057 0.014% 3.06 3.51
10M 200054 200065| 0.005% 2.08 3.06

2M 40044 40053 0.023% 3.51 2.65

Exp 4 5M 100056 100065 0.009% 2.89 4.93
10M 200062 200069 0.003% 1.53 2.52

2M 40047 40059 0.030% 252 3.51

Exp 5 5M 100082 100099 0.018% 493 6.81
10M 200094 200116 0.011% 458 6.24

100K 40532 406211 0.218% 11.36 30.35

Exp 6 250K 100593 100726 0.132% 9.85 30.09
500K 200628 200789 0.081% 1447 33.86

SELECT timestamp FROM Messagelog
WHERE msgType = "send" AND outcome = "success"

AND receiver = "CompanyB";

In order to maximize the difference in execution time, wedu$80% selectivity (all tuples
are in level [1,1]) on both the systems, so that no tuples are filtered by thezseperator.

As shown in Table 9.7 under Exp 1, the performance overheadalsecurity modification
to the vanilla DSMS is negligible for all the data sets used] & is between 0.003% and

0.025%.

. Experiment 2: Company auditing in level [1, L] Here we used 50% selectivity. The

performance overhead is again negligible, and is betwd®?29 and 0.017%.

SELECT timestamp FROM Messagelog
WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB";

136

3. Experiment 3: Service auditing in level [L, B] In the service auditing experiments 3 and
4, the input stream has tuples at 5 different levels:[L,[2, L], [L, A], [L, B]and [L, C].
Tuples in each level occupied 20% of the input stream. Sinezyg3 runs in level [, B],
only 20% tuples from inputs should be processed by query 3n 8te vanilla system we

must include the condition based on security level in theyjue

Vanilla:

SELECT timestamp FROM Messagelog

WHERE msgType = "send" AND outcome = "failure"
AND receiver = "CompanyB" AND level = [0,B];

CW-DSMS [0,B]:

SELECT timestamp FROM Messagelog

WHERE msgType = "send" AND outcome = "failure"
AND receiver = "CompanyB";

In CW-DSMS, unqualified tuples i.e., tuples not in level, [B], are filtered by the trusted
stream shepherd operator due to the replicated archigeclitre performance overhead is

between 0.005% and 0.027% for all data sets used, which is aggligible.

4. Experiment 4: Service auditing in level [L, T] Using the same input from experiment 3,
the selectivity becomes 60% because level T] is authorized to access inputs with levels

[L,A],[L, B]and [L, C].

Vanilla:

SELECT timestamp FROM Messagel.og
WHERE msgType = "send" AND outcome
AND (receiver = "CompanyB" OR receiver = "CompanyA"
OR receiver = "CompanyC")

AND (level = [0,A] OR level = [0,B] OR level = [0,C]);

"failure"

CW-DSMS [0,T]:

137

SELECT timestamp FROM Messagelog
WHERE msgType = "send" AND outcome = "failure"
AND (receiver = "CompanyB" OR receiver
OR receiver = "CompanyC");

"CompanyA"

The query language of CW-DSMS uses simplified form becauskeofeplicated architec-

ture. As shown in Table 9.7, the performance overhead isd®t®.003% and 0.023%.

. Experiment 5: Cloud auditing in level [1, B]:

SELECT MIN(timestamp), MAX(timestamp)

FROM MessagelLog [ROWS 100]

WHERE outcome = "success" AND serviceld = "5

We studied the overhead caused by the least upper bound tatiopa in CW-DSMS. The
output tuple level always reflects the highest possiblel IE@®1 class) of all the input tu-
ples involved in the computation. Inputs were either at [1or [L,B]. To maximize the

difference, we used 100% selectivity. The performanceskfice due to LUB computation

is between 0.011% and 0.030%.

. Experiment 6: Cloud auditing query 6 in level [1, B]

SELECT R.timestamp - S.timestamp AS delay

FROM MessageLog R[Rows 100], MessageLog S[Rows 100]
WHERE S.msgType = "send" AND S.outcome = "success"
AND R.msgType = "receive" AND R.outcome = "success"
AND R.receiver = "Companyl" AND R.sender = "CompanyB"
AND S.receiver = "CompanyB" AND S.sender = "Companyl"
AND S.serviceld = R.serviceld;

In the join query, input stream R and S refer to the same inpeias source MessageLog.
We set up 50% selectivity for R and S respectively. To aaivaiB computation on join,
input tuples were kept at either [1] or [L, B] and streamed in a random fashion.

138

Since join is an expensive operation, the input rate of SD{0Ples used in the previous
experiments caused an overload situation in both the sgstdinus, we reduced the data
input rate to 2,500 tuples per second. Accordingly, the detas of the three input tuple
sets were reduced to 100K, 250K, and 500K tuples, respéctivee performance overhead
is between 0.081% and 0.218%, which is higher than the ottgaranents. On the other

hand, the overhead is still considered negligible as it thiwi0.218%.

139

Chapter 10

Conclusions and Future Work

10.1 Conclusions

Traditional DBMS is not sufficient to support real-time sine processing application in following
reasons. (1) one-time SQL does not support continuouswstye@ries; (2) System cannot handle
gueries between stored table and live inputs such as singagtaita; (3) Processing mechanism
buffering first then execution causes unexpected storagteaoa high latency.

Motivated by those real-time application needs, streancgesing DSMSs have been devel-
oped to address continuous queries with unpredictablesiveamput data. However, they do not
provide security protections on many situation monitom@pglications involve data that are clas-
sified at various security levels, such as battlefield momi¢p emergency threat, and resource
management. Existing DSMSs must be redesigned to ensuridleégal information flow do not
occur in such applications. Besides, the data stream maragesystem should be able to deal
with QoS requirements of multiple queries under the presetiheavy input load.

Our goal is to develop a multilevel secure DSMS, which is @ablprovide security guarantee
against illegal information follow, support flexible camtious queries with level classification, and
execute multiple queries effectively by sharing and reusetranisms. Towards this end, this work

includes the following contributions:

1. Provide systematic analysis on query language, proeta#s] architecture design of a typ-
ical DSMS STREAM system, and discussions of limitationstersecurity preservation and

140

performance.

. Formalize multilevel security model for data stream nggmaent system as well as the con-

tinuous query language. Continuous queries are able tamsuppel-specific request.

. Investigate possible system architectures with mukilsecure access control.

. Develop replicated MLS-DSMS, which provides secure gseheduling and execution, as

well as sharing mechanisms between queries in the samatgdeuel.

. Develop trusted MLS-DSMS, which provides query rewgtand optimization before query

generation, as well as sharing mechanisms between quergessalifferent security levels.

. Explore distributed system network, and propose groupsttoction and load balancing

algorithms.

. Extend secure DSMS to support stream audit applicatioaperated with Chinese Wall

access control policy.

. Implement the replicated, trusted, naive distributed9VIDSMS and Chinese Wall DSMS
prototypes. We've run experiments to study the overheaddaoted by security proper-
ties, the performance gain from sharing mechanisms, aridrpgance differences between

trusted and replicated architectures.

10.2 Future Work

10.2.1 Security Label

In this work we take security level as a special attributegeery input tuple. Providing MLS

control on different data granularity is one direction of &uwture work. If assigning security label

141

to some attributes instead of the whole tuple, there will arthan one security clearance in
one data record. So users in different levels might be ldnideaccess partial records and execute
certain queries. For example, an accountant intern miglatdbeto get the salary average of the
company employees but cannot access individual recordhigrcase, we need to take care of the
excessive privilege abuse threat [42]. Query access ddrgtowhich defines what queries are

allowed against the table by specific user, is desirable.

10.2.2 More Sharing Consideration

Currently query sharing is the main approach to reduce thegss time and resource usage. There

are still some extended considerations.

e Suppose there are more than one sharable queries, howdbtkelbest to reduce the number

of operators in new queries plan.
e A new query is able to use sharing components from multipérigs.

e if the sharing cascade link is too long, what is the perforoeagain. For exampley, is
shared byQ-,), is shared by)3, and so on, will),, be sufficient compared with generating

its plan without sharing?

Another direction is to find more sharing possibilities. Aweresting topic is sharing in join
operators using different input windows. Even though th@potation operator can be identical,
the difficulties are the synchronization of the computatbomtent and the outputs. There are
several reasons. First, the input order of arriving tuptegéferent between joins with window in
different sizes, which might cause incorrect computati8acond, the expiration (negative sign)
tuples are generated in different ways. Most stream cortipatawill be triggered once receiving

142

expired inputs. As a result, the outputs might be changebafisg other join results. Besides,

extra order-correction mechanism might introduce stomgehead and high latency.

10.2.3 Prototype Development

Currently we have implemented centralized replicated ansted MLS-DSMS prototypes with
the functions like multilevel secure scheduling and executquery rewriting and optimization,
gueries sharing in the same and across levels. We aim to atglmexchanisms which are useful

for MLS distributed system extension:

e We would like to introduce the simplify ordering and load dtiemg mechanisms developed
in Aurora system [1] under distributed network. By such wayt pf the imperfection input

situations like out-of-order/delay can be handled.
¢ We planto introduce sophisticated encryption mechanismathentications between servers.

o We will investigate the possibilities of “execution rensafvice” between servers in different
levels. Suppose all the servers belongs to group in claddéiesl are under heavy-load,
under what restrictions they can borrow servers from hidénl like secret slaves to run

their sanitized queries.

e The master-slave architecture is easy the manage butdrdgiaster is down. We can
take the ideas of setting up back-up servers with k-safeyaniee, or develop a master

delegation mechanism in the network.

e Our load distribution algorithm is based on CPU usage onguiment stage. In high volume

of input cases the limited storage is the bottleneck for nmesh The distribution algorithm

143

can be extent with sophisticated to detect different catbsavy load and provide smarter

distribution.

e The current DSMS and the prototypes do not consider thegpmsaiic constraints, which is
popular in some real-time applications. For example, aastor requests urgent stock alert
service like “Notify me in 10 seconds if the stock A's pricdasver than the history average
in the market”. If the DSMS is designed to provide such serpMicshould put priority to this
guery any time to satisfy the response time constraint. baestraint is a useful extension

in next MLS DSMS version.

10.2.4 Chinese Wall DSMS

A lot of work remains to be done. We have assumed that certaitponents are trusted. We have
made similar assumptions about the underlying infrastirect However, we have not explicitly
stated our trust assumptions. We need to formally state malg¢ze these assumptions in view of
real-world constraints in order to evaluate the securitguofDSMS.

We plan to propose alternative architectures and do a catiparstudy to find out which
approach is the most suitable for processing cloud streagueries. We also plan to implement
our query sharing ideas. Thus, when a new query is submittedieed to check how plans for
existing queries can be reused to improve the performanoge tHat, such verification must be
carried out dynamically. Towards this end, we plan to see éxsting constraint solvers can be
used to check for query equivalences. We also plan to ewalbatiperformance impact of dynamic
plan generation and equivalence evaluation. We also plamvéstigate more on how scheduling

and load shedding can be done with information flow congsain

144

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch @meck, Christian Convey, Sangdon
Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonilkrora: a new model and ar-
chitecture for data stream managemeitie Very Large Data Base Journdl2(2):120-139,
August 2003.

Marshall D. Abrams, Sushil G. Jajodia, and Harold. J. &editors.Information Security:
An Integrated Collection of EssaydeEE Computer Society Press, Los Alamitos, CA, USA,
1st edition, 1995.

Raman Adaikkalavan and Sharma Chakravarthy. Snoopit&rval-based event specifica-
tion and detection for active databasdsansactions of Data Knowledge and Engineering
59(1):139-165, 2006.

Raman Adaikkalavan and Thomas Perez. Secure SharedhGous Query Processing. In
Proceedings of the ACM Symposium on Applied Computing (Batams Track)Taiwan,
Mar 2011.

Raman Adaikkalavan, Indrakshi Ray, and Xing Xie. Mw@ti€l secure data stream process-
ing. In Proceedings of the 25th annual IFIP WG 11.3 conference om[Rat applications
security and privacy (DBSec’'llpages 122-137. Springer-Verlag, 2011.

Raman Adaikkalavan, Xing Xie, and Indrakshi Ray. Mui€l secure data stream process-
ing: Architecture and implementatiodournal of Computer Securit0(5):547-581, 2012.

Software AG. Webmethods business eventshttp://www.softwareag.com/
corporate/products/wm/events/capabilities/default.a sp.

[8] Arvind Arasu, Brian Babcock, Shivhath Babu, John Ciestz, Mayur Datar, Keith Ito,

Rajeev Motwani, Utkarsh Srivastava, , and Jennifer Widontregn: The stanford data
stream management system. Technical Report 2004-20 o&danfolLab, 2004.

[9] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The Cintinuous query language:

[10]

Semantic Foundations and Query Executidery Large Data Base Journgl5(2):121-142,
2006.

Ron Avnur and Joseph M. Hellerstein. Eddies: ContiralpAdaptive Query Processing.
Proceedings of the ACM SIGMOD International Conference @amadjement of Datgages
261-272, May 2000.

145

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Martiyand Dilys Thomas. Operator
scheduling in data stream systenifie Very Large Data Base Journal3(4):333-353, 2004.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Mantw and Jennifer Widom. Mod-
els and issues in data stream systems.Pioceedings of the Twenty-first ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Syspames 1-16, June 2002.

Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mdyatar. Chain: operator schedul-
ing for memory minimization in data stream systemsPtoceedings of the 2003 ACM SIG-
MOD international conference on Management of dai@ges 253—-264, June 2003.

Brian Babcock, Mayur Datar, and Rajeev Motwani. Loaddding for aggregation queries
over data streams. IIAroceedings of International Conference on Data Engirmegnpages
350-361, March 2004.

Hari Balakrishnan, Magdalena Balazinska, Don Carkigyr Cetintemel, Mitch Cherniack,
Christian Convey, Eddie Galvez, Jon Salz, Michael StorebyaNesime Tatbul, Richard
Tibbetts, and Stan Zdonik. Retrospective on aurdexry Large Data Base Journal: Special
Issue on Data Stream Processjrig(4):370-383, 2004.

David E. Bell and Leonard J. LaPadula. Secure compytsems: Unified exposition and
multics interpretation. Technical Report MTR-2997, Thet#®liCorp., Burlington Road,
Bedford, MA 01730, USA, March 1976.

Elisa Bertino and Ravi Sandhu. Database security —eqois¢ approaches, and challenges.
IEEE TRANS. DEPENDABLE SECUR. COMRI271):2-19, 2005.

Irina Botan, Younggoo Cho, Roozbeh Derakhshan, NihabBr, Ankush Gupta, Laura M.
Haas, Kihong Kim, Chulwon Lee, Girish Mundada, Ming-Chidra8, Nesime Tatbul, Ying
Yan, Beomijin Yun, and Jin Zhang. A demonstration of the nta&esh federated stream
processing system. IAroceedings of International Conference of Data Enginegrpages
1093-1096, 2010.

David F. C. Brewer and Michael J. Nash. The Chinese Wadiity Policy. pages 206—214,
May 1989.

Jianneng Cao, Barbara Carminati, Elena Ferrari, arahfiee Tan. Acstream: Enforcing
access control over data streani¥ata Engineering, International Conference,dn1495—
1498, 2009.

146

[21] Barbara Carminati, Elena Ferrari, and Kian Lee Tan. oieihg access control over data
streams. IrProc. of the ACM SACMATpages 21-30, 2007.

[22] Don Carney, Ugur Cetintemel, Alex Rasin, Stan ZdoMitch Cherniack, and Mike Stone-
braker. Operator scheduling in a data stream man&yeceedings of Very Large Data Base
pages 838—849, August 2003.

[23] Donald Carney, Ugur Cetintemel, Mitch Cherniack, Sthan Convey, Sangdon Lee, Greg
Seidman, Michael Stonebraker, Nesime Tatbul, and Stanl&dBnik. Monitoring Streams
- A New Class of Data Management Applications.Aroceedings of the International Con-
ference on Very Large Data Basgmges 215-226, August 2002.

[24] Silvana Castano, Maria Grazia Fugini, Giancarlo Miéateand Pierangela Samarati.
Database Security (ACM Press BooRddison-Wesley, 1994.

[25] Sharma Chakravarthy and Raman Adaikkalavan. EventStrehms: Harnessing and Un-
leashing Their Synergy. Imternational Conference on Distributed Event-based &yst
pages 1-12, July 2008.

[26] Sharma Chakravarthy and Qingchun Jiaf8iream Data Processing: A Quality of Service
Perspective Modeling, Scheduling, Load Shedding, and @nipvent Processing Ad-
vances in Database Systems , Vol. 36. Springer, 2009.

[27] Sharma Chakravarthy and Vamshi Pajjuri. Schedulingt&gies and Their Evaluation in a
Data Stream Management SystemBMNCOD, pages 220-231, 2006.

[28] Fa-Chung Fred Chen and Margaret H. Dunham. Common Suégsion Processing in
Multiple-Query Processing. IEEE Transactions on Knowledge and Date Engineering
10(3):493-499, 1998.

[29] Yicheng Tu, Song Liu, Sunil Prabhakar, and Bin Yao. Lehéddding in stream databases: a
control-based approach. Rrocessings International Conference on Very Large DataeBa
pages 787—-798, 2006.

[30] Mitch Cherniack, Hari Balakrishnan, Magdalena Batskia, Donald Carney, Ugur
Cetintemel, Ying Xing, and Stanley B. Zdonik. Scalabletrilisited stream processing. In
Conference on Innovative Data Systems Resea@bs3.

[31] Mitch Cherniack, Hari Balakrishnan, Magdalena Batskia, Donald Carney, Ugur
Cetintemel, Ying Xing, and Stan Zdonik. Scalable DistréziStream Processing. @IDR

147

2003 - First Biennial Conference on Innovative Data SystBesearchAsilomar, CA, Jan-
uary 2003.

[32] Committee on Multilevel Data Management Security, Parce Studies Board, Commission
on Engineering and Technical Systems, National ResearahdllpNational Academy Press,
Washington D.CMultilevel data management secutityarch 1983.

[33] Abhinandan Das, Johannes Gehrke, and Mirek Riedewalpproximate join processing
over data streams. IRroceedings of the ACM-SIGMOD International ConferencéViam-
agement of Datgpages 40-51, June 2003.

[34] Charlies Donnelly and Richard M. Stallmam®ison Manual for Version 1.875: Using the
YACC-compatible Parser Generatdfree Software Foundation, 2003.

[35] Petros Efstathopoulos and Eddie Kohler. Manageable-dgnained information flow.
SIGOPS Operating System Rev;ié®:301-313, April 2008.

[36] Petros Efstathopoulos, Maxwell Krohn, Steve VanDe&odCliff Frey, David Ziegler, Eddie
Kohler, David Mazieres, Frans Kaashoek, and Robert Molrabels and event processes in
the asbestos operating systeaiGOPS Oper. Syst. Re89:17-30, October 2005.

[37] S. J. Finkelstein. Common Subexpression Analysis iteDase Applications. IRroceed-
ings, International Conference on Management of Data (SBEN] pages 235-245, June
1982.

[38] Binto George and Jayant R. Haritsa. Secure Concurrémytrol in Firm Real-Time
DatabasesDistributed and Parallel Database$:275-320, 1997.

[39] Jonathan Goldstein and Per A. Larson. Optimizing cegerising materialized views. In
Proceedings, International Conference on Management ¢ DBIGMOD) pages 331-342,
June 2001.

[40] IBM. Infosphere system 3.0, 2012.http://www.ibm.com/software/data/
infosphere/streams/

[41] IBM Stream Processing. http://domino.research.ibm.com/comm/
research_projects.nsf/pages/esps.index.html

[42] Impreva. Top ten database threats: How to mitigate tbestraignificant database vulner-
abilities, February 2011 http://www.globalsecuritymag.com/IMG/pdf/WP_
TopTen_Database_Threats.pdf

148

[43] TrentJaeger, Reiner Sailer, and Yogesh Sreenivasanalying the risk of covert information
flows in virtual machine systems. Rroceedings of the 12th ACM symposium on Access
control models and technologigzages 81-90, New York, NY, USA, 2007. ACM.

[44] Qingchun Jiang and Sharma Chakravarthy. Schedulnagesgfies in a data stream manage-
ment system. Technical report, UT Arlington, 2003.

[45] Qingchun Jiang and Sharma Chakravarthy. Schedulmagesfies for processing continuous
queries over streams. Rilst Annual British National Conference on Databagesyes 16—
30, July 2004.

[46] Qingchun Jiang and Sharma Chakravarthy. Anatomy ofta Baeam Management System.
In ADBIS Research Communicatio2€06.

[47] Chun Jin and Jaime Carbonell. Predicate indexing fordmental multi-query optimization.
In Proceedings of the 17th international conference on Fotioda of intelligent systems
ISMIS’08, pages 339-350, Berlin, Heidelberg, 2008. SprAderlag.

[48] Balakumar Kendai and Sharma Chakravarthy. Load Singddi MavStream: Analysis, Im-
plementation, and Evaluation. Rroceedings, International British National Conferenae o
Databases (BNCODpages 100-112, 2008.

[49] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan @&r, M. Frans Kaashoek, Eddie
Kohler, and Robert Morris. Information flow control for stiard os abstractionsSIGOPS
Operating System Reviewl:321-334, October 2007.

[50] Wolfgang Lindner and Jorg Meier. Securing the boedhta stream engine. Rroceedings
of the 10th International Database Engineering and Applaas Symposium (IDEA)ages
137-147, 2006.

[51] Matteo Migliavacca, loannis Papagiannis, David M. By8rian Shand, Jean Bacon, and Pe-
ter Pietzuch. Defcon: high-performance event processitiginformation security. IrPro-
ceedings of the 2010 USENIX conference on USENIX annuatitaditonferenceUSENIX-
ATC’10, pages 1-1, Berkeley, CA, USA, 2010. USENIX Assaoiat

[52] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian lig@ck, Shivnath Babu, Mayur
Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein Rofdt Varma. Query process-
ing, resource management, and approximationCdnference on Innovative Data Systems
Researchpages 245-256, 2003.

149

[53] Andrew C. Myers and Barbara Liskov. Protecting privaging the decentralized label
model. ACM Transactions on Software Engineering and Methodold@SEM) 9(4):410—
442, 2000.

[54] Rimma V. Nehme, Hyo-Sang Lim, Elisa Bertino, and ElkeRAindensteiner. StreamShield:
A stream-centric approach towards security and privacyaita gtream environments. In
proceedings of ACM SIGMQages 1027-1030, 2009.

[55] Rimma V. Nehme, Elke A. Rundensteiner, and Elisa BertiA security punctuation frame-
work for enforcing access control on streaming dataPioceedings of International Con-
ference of Data Engineeringages 406—415, 2008.

[56] Gultekin Ozsoyoglu and Richard T. Snodgrass. Tempamdlreal-time databases: a survey.
Knowledge and Data Engineering, IEEE Transactions@@):513 —532, August 1995.

[57] Satya Kiran Popuri. Understanding c parsers genefatephu bison, 2006www.cs.uic.
edu/ ~ spopuri/cparser.html

[58] Ravi Sandhu. Lattice-Based Enforcement of Chinesd3Vall (8):753—763, 1992.

[59] Timos K. Sellis. Multi-Query OptimizationACM Transactions on Database Systems Jour-
nal, 13(1):23-52, 1988.

[60] Sharma Chakravarthy and Qingchun Jiaif8iream Data Processing: A Quality of Service
Perspective Modeling, Scheduling, Load Shedding, and @nipvent Processing Ad-
vances in Database Systems , Vol. 36. Springer. ISBN 9787/73.002-0, 2009.

[61] Sang H. Son and Rasikan David. Design and analysis ofarsdéwo-phase locking proto-
col. InComputer Software and Applications Conference (COMPSAEghteenth Annual
International pages 374 —379, November 1994.

[62] Utkarsh Srivastava and Jennifer Widom. Flexible tim@nagement in data stream systems.
In Proceedings of the 23th ACM SIGMOD-SIGACT-SIGART symposiu Principles of
database systempages 263—-274, 2004.

[63] Michael Stonebraker, Ugur Cetintemel, and Stan ZkloThe 8 requirements of real-time
stream processingIGMOD Recorgd34(4):42—-47, December 2005.

[64] StreamBasehttp://www.streambase.com

[65] StreamBase. Streambase CEP platform. http://www.streambase.com/
products/streambasecep

150

[66] Sybase. Sybase Aleri Streaming Platform Home Pagd).2@1p://m.sybase.com/
products/financialservicessolutions/complex-event-p rocessing

[67] Nesime Tatbul, Ugur Cetintemel, Stan Zdonik, Mitche@hiack, and Michael Stonebraker.
Load shedding in a data stream managerproceedings of Very Large Data Bageages
309-320, September 2003.

[68] Nesime Tatbul and Stanley B. Zdonik. Window-aware Ishddding for aggregation queries
over data streams. Rroceedings of Very Large Data Bagmges 799-810, 2006.

[69] STREAM Team. Stream: The stanford stream data manafechnical Report 2003-21,
Stanford InfoLab, 2003.

[70] STREAM Team. STREAM Prototype Source Codé&tanford University, 2005.http:
/linfolab.stanford.edu/stream/code/

[71] Tien-Hao Tsai, Yen-Chung Chen, Hsiu Huang, Pei-Mingahg, and Kuo-Sen Chou. A
practical chinese wall security model in cloud computingggs 1-4, September 2011.

[72] Stratis D. Viglas and Jeffery F. Naughton. Rate-basgelyjoptimization for streaming in-
formation sources. IRroceedings of the ACM-SIGMOD International Conferencéviam-
agement of Datgpages 37-48, June 2002.

[73] Ruoyu Wu, Gail-Joon Ahn, Hongxin Hu, and Mukesh SingHaformation flow control in
cloud computing. pages 1-7, October 2010.

[74] Rui Xie and Rose Gamble. A Tiered Strategy for Auditinghe Cloud. INIEEE Interna-
tional Conference on Cloud Computintune 2012.

[75] Xing Xie, Indrakshi Ray, Raman Adaikkalavan, and Roser®le. Information flow control
for stream processing in clouds. Rroceedings of the 18th ACM Symposium on Access
Control Models and Technologie&msterdam, The Netherlands, June 2013. To appear.

[76] Xing Xie, Indrakshi Ray, Waruna Ranasinghe, Philipsb&it, Pramod Shashidhara, and
Anoop Yadav. Distributed multilevel secure data streantgssing. InProceedings of the
12th International Workshop on Assurance in Distributedt&ys and Network$&hiladel-
phia,USA, July 2013. To appear.

[77] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Koljeind David Mazieres. Making infor-
mation flow explicit in histar. IfProceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation - Volup@SDI '06, pages 19-19, Berkeley, CA, USA,
2006. USENIX Association.

151

