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ABSTRACT

MULTILEVEL SECURE DATA STREAM MANAGEMENT SYSTEM

With the advent of mobile and sensor devices, situation monitoring applications are now feasible.

The data processing system should be able to collect large amount data with high input rate, com-

pute results on-the-fly and take actions in real-time. Data Stream Management Systems (DSMSs)

have been proposed to address those needs. In DSMS the infinite input data is divided by arriving

timestamps and buffered in input windows; and queries are processed against the finite data in

a fixed size window. The output results are updated by timestamps continuously. However, data

streams at various sensitivity levels are often generated in monitoring applications which should be

processed without security breaches. Therefore current DSMSs cannot prevent illegal information

flow when processing inputs and queries from different levels.

We have developed multilevel secure (MLS) stream processing systems that operate input data

with security levels. We’ve accomplished four tasks include: (1) providing formalization of a

model and language for representing secure queries, (2) investigating centralized and distributed

architectures able to handle MLS continuous queries, and designing authentication models, query

rewriting, optimization mechanisms, and scheduling strategies to ensure that queries are processed

in a secure and timely manner, (3) developing query sharing approaches to improve quality of ser-

vice. Besides we’ve implemented extensible prototypes with experiments to compare performance

between different process strategies and architectures, (4) and proposing an information flow con-

trol model adapted from the Chinese Wall policy that can be used to protect against sensitive data

disclosure, as an extension of multilevel secure DSMS for stream audit applications.
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Chapter 1

Introduction

1.1 Introduction to Data Stream Management System

Over 40 years development, relational DataBase ManagementSystem (DBMS) is sufficient to

process one-time queries against finite pre-stored relations with sound mechanisms like query op-

timization, crash recovery, security enforcement. On the other hand, with the advancements of mo-

bile devices and data transmission speed, situation monitoring applications such as border security

monitoring, battlefield monitoring, stock marketing analysis, emergency control and threat moni-

toring, are becoming a reality. The data processing system should be able to collect large amount

data with high input rate, compute results on-the-fly and take actions in real-time. To enable real-

time stream processing, there are eight requirements should be satisfied which are demonstrated

by Stonebraker and his fellows in [63]. The traditional DBMScannot be used directly for such

applications because of dissatisfaction at five critical requirements:

1. The system should be active to process messages “in stream” without any requirements to

store them. Traditional DBMS is passive system which storesthe input first then process,

which causes high latency.

2. Queries should use SQL on streams with built-in extensible stream-oriented primitives and

operators. Traditional SQL does not support stream-specific queries.

3. The system should be able to handle unexpected streaming input conditions such like de-
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layed, out-of-order, and missing. In DBMS extra mechanism needs to be developed for

those imperfect date and unexpected input rate.

4. The output of stream processing must be predictable and repeatable. Since SQL queries are

one-time query, they are only required to be repeatable after execution. Besides DBMS is

insufficient to ensure predictable and deterministic execution semantics for stream-specific

queries.

5. The system should be able to handle queries on combinations of live streaming data and

store tables. Some business applications perform seamlessly data analysis starting at some

point from the past data, then catch up to the real time. Such functions are not supported in

DBMS.

6. The system should be scalable and available at all time, and the integrity of data should be

guaranteed despite failures. Distributed DBMS successfully satisfies such requirement.

7. Distributed systems automatic and transparent to users.Similarly DBMS with the distribut-

ing extension meets this requirement.

8. Stream processing system is highly QoS-oriented. Commercial DBMSs in these days are

equipped with optimized and minimal-overhead engines to handle those real-time computa-

tions on large amount of inputs.

To fulfil those missing stream processing requirements as well as address the stream processing

applications, Data Stream Management Systems (DSMSs) [8, 12, 15, 30, 46, 64, 66, 41] have been

proposed. The infinite input data is divided by arriving timestamps and buffered in input windows;
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and queries are processed against the finite data in a fixed size window. The output results are

updated by timestamps continuously.

Figure 1.1: Data Stream Management System (DSMS)

A DSMS [12, 23, 26] architecture (based on the STREAM system [8]) is shown in Figure

1.1. The Continuous Query (CQ) can be defined by specificationlanguages, then processed by

the input processor to generate aquery plan. Each query plan is a directed graph of operators like

select, join, aggregate, etc. Each operator is associated with one or more inputqueuesand an output

queue. Those queues are used by the operators to propagate tuples.Synopsesare temporary storage

structures used by the operators (e.g., join) that need to maintain a state. One or more synopses

are associated with each operator that needs to maintain thecurrent state of the tuples for future

evaluation of the operator. The generated query plans are then instantiated, and query operators

are put in the ready state so that they can be executed. Based on stream scheduling strategies,
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the scheduler can pick a query, an operator, or a path as the scheduling unit for execution. The

run-time optimizer monitors the system, and initiates loadshedding mechanisms as and when

required. Both these QoS delivery mechanisms minimize resource usage (e.g., queue size) and

maximize performance and throughput. In addition, other QoS improvement mechanisms such as

static and dynamic approximation techniques are used to control the size of synopses. All the input

tuples are first processed by the Data Source Manager, which enqueues the tuples to input queues

of all the leaf operators associated with the stream. In the directed graph of operators, which is

namedoperator tree, the data tuples are propagated from the bottom most leaf operator to the root

operator. Each operator produces a stream of tuples. After aprocessed tuple exits the query plan,

the output manager sends it to the query issuer.

1.2 Problem Description and Motivation

Often times, the input data in real-time monitoring applications involve data streams belonging to

different security levels. Since database system processes personal and confidential data, privacy

preservation and security control are necessary. For example, a soldier equipped with sensors

sending out health and position data periodically can be accessed by the commander while the

medic is only allowed to access the health info. In DSMS, users in different security classifications

access and share a database consisting of a variety of sensitive data.

There are three major requirements for database security [17]: confidentiality, integrity, and

availability. Under the context of stream processing applications, arrival data is used mainly for

continuously observation, analysis and quick response, rather than long-term storage. So the con-

fidentiality and availability are the two issues in secure DSMS development. Researchers have

worked on secure query processing on DSMSs with access control. Specifically, these secure

4



DSMS works [4, 21, 20, 50, 54, 55] focus on providing forms of role-based access control where

users are assigned to roles, roles are assigned to permissions, and users acquire permissions by

activating the subset of roles assigned to them. However, current RBAC DSMSs are not perfect

solutions for continuous query applications by our observations as following. First, the covert

channel problem exists in RBAC DSMS architecture. A covert channel is a transfer of sensitive in-

formation from one process violates security policies, by the manipulation of a system resource in

such a way that it can be detected by another process. Second,in order to prevent security breach,

queries issued from users at different security levels should not communicate between each other

by current DSMS access control policies. Such rigid isolation of query process eliminates the pos-

sibilities of sharing computations and storage resources across levels. Such barrier can be broken

down if queries can be shared in a safe and effective manner. Besides, erroneous omission of an

access control check may reveal confidential data. Integration of third party off-the-shelf software

may cause policy checks to be bypassed altogether.

Besides access control model, security issues also exist inscheduling and load shredding

methods used in DSMS. Current studies of DSMS performance concentrate on better schedul-

ing [13, 45] and load shedding strategies [23, 60, 29] tryingto optimize the memory and CPU

usages. However, all those methods does not take security protection into account and cannot be

directly applied to DSMS applications with sensitive data.

On the other hand, DSMS is performance-oriented. Even though many approaches have tar-

geted on QoS with better scheduling and revising ideas, sharing execution and computation among

queries are seldom explored. For example, queries submitted at different times by the same user

or at the same time between different users are not supportedin general DSMSs. Besides, ear-

lier researches [37, 59, 28, 39] on sharing computation costs in DBMS cannot be directly used
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in our research. Most approaches focus on optimizing join queries; but the join operations are

implemented differently in data streams and database systems, so we cannot use many of these

optimization techniques. Moreover, the queries in DBMS arenot continuous and some of the pro-

posed approaches apply to one-time queries only. Also, strategies that optimize multiple queries at

any given point of time to find the best possible plan may not work in data stream systems as the

queries arrive asynchronously. As a result, new sharing approaches should be developed to handle

the special conditions in continuous queries. In addition,we need to prevent security violation

since while sharing queries across different security levels.

To have a deep investigation into those issues, we are developing DSMSs with multilevel se-

curity (MLS) control. The motivation for this is that MLS systems with its centrally-defined labels

have very simple and well-understood information flow policies. Compared with RBAC systems,

ours is a simplified and complete system which bears all need-to-solve security and performance

issues described above. Our two main goals are to find solutions to prevent illegal information

flows in MLS-DSMS applications, and explore the possible sharing mechanisms between queries

across different levels without security breaches. Experiments on centralized and distributed pro-

totypes are conducted to find the trade-offs of MLS security enforcement and process sharing. We

also explore the feasibility of applying MLS to distributedenvironment, as well as integrating new

access control mechanisms such as Chinese Wall policies in DSMS.

This research work is significant. To our best knowledge, this research is the first work ap-

plying multilevel security control to DSMS. The MLS-DSMS formalization model can express

the security level during query specification and query processing. The new scheduling strategies,

which prevent overt and covert channels during multilevel queries processing, can also be used for

network security research. The approaches of query sharingcan be applied to not only streaming
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applications but also traditional DBMS. The experiments ofprototype implementation can provide

statistical results of the overheads by introducing the MLSmechanism, and the benefits using shar-

ing and MLS-specific scheduling strategies. The investigations of distributed network and adapting

new access control policies such as Chinese Wall [58] bring forward ideas of applying the secure

DSMS to cloud applications.

The challenges of MLS-DSMS development include two main aspects from stream manage-

ment system and MLS control respectively.

• Some of unique characteristics of data stream processing systems are: (1) the input char-

acteristics of data streams are usually not controllable, highly bursty, continuous, and are

typically unpredictable, (2) data streams are read-only, (3) raw data streams are generated by

stream sources and derived data streams are generated by query operators, (4) data streams

are shared between operators to minimize resource usage, (5) queries are long running and

are not snapshot queries, (6) queries can involve data streams and relational tables, and

(7) applications have quality of service and accuracy requirements.

• Some of the unique requirements of multilevel security as well as other access controls are:

(1) system elements are classified via security levels, (2) prevention of covert storage and

timing channels, (3) trusted components vs. untrusted components, (4) overhead at each

component of the underlying system, (5) and under distributed network, how to preserve

security control and effective scheduling.
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1.3 Research Tasks

To address the above challenges, we summarize the research goals as four tasks. These tasks

are cohesive and related to each other, for the major goal of developing multilevel secure DSMS

streams with illegal information prevention and better performance in terms of faster execution

time. In general the following four tasks will be performed:

Task 1: Formalizing a Model and Language for Processing MLS Continuous Queries: We

will develop a formal model for processing multilevel secure continuous queries and propose

a language for expressing such queries. We plan to extend theConinuous Query Language

(CQL) [9] and propose a new semantics that is needed to process MLS continuous queries.

This will help define the notion of equivalence between queries needed for query plan opti-

mization and sharing.

Task 2: Investigating Centralized and Distributed MLS-DSMS Architectures: We will ex-

plore the possible DSMS architecture designs are able to address MLS continuous queries:

Centralized system such as replicated and trusted MLS-DSMSs, and a simple distributed

system with load balancing algorithm. To ensure secure execution for each architecture, we

plan to (1) identify the trusted components including inputstream shepherd operator, query

plan generator, query processor and so on, (2) introduce authentication modules with autho-

rization check to prevent illegal information flow, (3) design secure scheduling mechanisms,

(4) and develop safe load distribution algorithm in distributed system.

Task 3: Designing Sharing Approaches between Queries in theSame or across Different

Levels: DSMS expects heavy load of multiple queries and bursty inputs during execu-

8



tion. Without security violations, sharing queries as manyas possible is the straightforward

method to improve QoS by reducing execution time. Sharing queries in same level has been

published in our work [5, 6]. Besides that we are presenting the sharing possibilities across

different levels in more complex cases in this dissertation.

In addition to the three tasks, prototypes of replicated, trusted and a simple distributed ar-

chitectures will be implemented. The three prototypes allow us to study the effects of the

different architectures and process strategies on the performance for processing typical MLS

continuous queries. There are two main factors we would liketo investigate: (1) The secure

enforcement overheads by the new trusted processors, whichinclude the running time of

user authentication as well as the extra scheduling effortsfor secure executions. (2) The per-

formance gain and differences from the sharing query processing results, which means how

much response time we can reduce via reusing existing query processing results. We will

use different kinds of MLS queries like select, aggregation, and join for a complete overview

on the overhead and performance gains via experiments.

Task 4: Proposing CW-DSMS an Information Flow Control Model Adapted from the Chi-

nese Wall Policy: In the near future, clouds will provide situational monitoring services

using streaming data. Offering such services require securely processing data streams gen-

erated by multiple, possibly competing and/or complementing, organizations. Processing

of data streams also should not cause any overt or covert leakage of information across

organizations. Reusing the architecture design and query processing mechanisms, in this

dissertation we also propose an information flow control model adapted from the Chinese

Wall policy that can be used to protect against sensitive data disclosure. This secure DSMS
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extension is designed for stream data auditing applications.

1.4 Dissertation Structure

The dissertation is organized as follows. Chapter 2 presents related work. In Chapter 3, we give

a background introduction on the design, architecture, andprocess mechanism of Vanilla Stan-

ford STREAM, as well as discussions on the limitations of security preservation and performance

issues under applications with sensitive information. Chapter 4 discusses the multilevel formaliza-

tion model and continuous query language, and the extensionto support level-specific queries. In

Chapter 5 we first present the considerations of possible MLS-DSMS, then give details of repli-

cated architecture which provides better performance using secure sharing approaches and secure

execution via revised scheduling method. Chapter 6 discusses trusted architecture which provides

more flexibility on sharing across different levels withoutsecurity violation. In Chapter 7 we pro-

pose the ideas of applying DSMS to distributed environments, with exploration on topics of group

construction, secure execution and load distribution. In Chapter 8 we present a stream audit DSMS

using Chinese Wall policy access control. In Chapter 9, we first provide the MLS-DSMS imple-

mentation details on critical components, then present theexperiment evaluations on the overhead

and performance gains in MLS-DSMS. In Chapter 10, the conclusion and future work are dis-

cussed.
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Chapter 2

Related Work

2.1 Real-time and Stream Processing Systems

Temporal and Real-Time System Developments:Applications involving time-related input data

appear in works related to temporal and real-time databases[56]. In temporal DBMS, input data

come with arriving timestamps, so queries can be issued on data in certain time intervals. The idea

of valid time computation inspires the window buffer processing in DSMS. However, temporal

architecture cannot be adapted to DSMS applications because an extra temporal database is built

for queries; and all queries and input data are predictable.For real-time systems, their theories

cannot be used directly because of the differences on query duration, scheduling objects, and secu-

rity threats between real-time and data stream systems. First, real-time DBMS deals with transient

transactions while DSMS handles continuous queries. Second, real-time DBMS try to schedule

isolated transactions while DSMS uses operators as the execution unit. The last, in order to cause a

security breach, transactions might set up inference or covert channel via accessing the same data

item while continuous queries try to manipulate the sharingresponse time.

On the other hand, there are researches focus on designing a real-time MLS DBMS where

transactions having timing constraint deadlines executesin serialization order without security

violations. Issues like security breach and task scheduling are similar to our MLS-DSMS develop-

ment. Many concurrent control protocols, like 2PL high priority, OPT-Sacrifice, and OPT-WAIT

[38], deal with the high level transactions by suspending orrestarting them if they conflict with
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low level transactions. However, the starvation on high level transactions becomes serious if there

are too many conflicts in the system. S2PL [61] provides a better way on balancing the secu-

rity and performance among conflicting transactions: high level transactions should wait for the

commission of conflicting low level transactions only once then executed. Scheduling strategy in

MLS real-time transaction processing must address security, serialization and transaction dead-

lines, whereas the MLS-DSMS must address security, query response time and throughput.

Data Stream Management Systems:Most of the work carried out in DSMSs addresses vari-

ous problems ranging from theoretical results to implementing comprehensive prototypes on how

to handle data streams and produce near real-time response without affecting the quality of service.

There have been lot of works on developing QoS delivery mechanisms such as scheduling strate-

gies [26, 11, 13, 45, 10, 22, 72, 27] and load shedding techniques [26, 67, 68, 33, 14, 48]. Some

of the research prototypes include: Stanford Stream Data Manager [12], Aurora [15], Borealis

[30], and MavStream [46]. MaxStream Project developed by ETH Zurich [18] redesigns DSMS as

middle layer reusing popular existing stream processing systems.

Commercial DSMS products have been developed in these yearssuch as IBM InfoSphere Sys-

tems ver.3.0 [40], StreamBase CEP [65] and webMethods Business Event [7]. The goal is to deploy

for applications including algorithmic trading, market data management, intelligence and surveil-

lance, risk (pre and post-trade) evaluation, smart order routing, transaction cost analysis, pricing

and analytics, multi-asset trading, fraud detection, network monitoring, signal generation, statistic

assistant, etc. Clients and partners include buy and sell side firms, global exchanges, intelligence

and security organizations, eCommerce and online gaming firms, technology providers, and more.

Those products are driven by complex event processing whichaims to achieve better QoS stream

applications.
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2.2 DSMS Security

Security Models: There has been several recent works on RBAC secure DSMSs [4,21, 20, 50,

54, 55]. The authors in [4] present a three-stage framework to enforce access control without

introducing special operators, rewriting query plans, or affecting QoS delivery mechanisms. The

framework moved access control enforcement outside the query processing, and allows user-level

and role-level sharing of CQs and prevents underprivilegedCQs from processing all tuples. We

adapted the ideas of sharing between queries issued by userslogged in same roles.

In punctuation-based enforcement of RBAC over data streams[54, 55], access control policies

are transmitted every time using one or more security punctuations before the actual data tuple is

transmitted. Query punctuations define the privileges for aCQ. Both punctuations are processed

by a special stream shield operator that is part of the query plan. If the access check is successful,

the data tuples that follow the punctuations are allowed to pass. However, this method expects

input data within the same policies or in the same security level come in a consecutive way. The

policy switching cost will be extremely high if input data indifferent levels come with random

order. So punctuation approach is restricted to applications where input data in same policies are

clustered and will be handled sequentially.

Borealis DSMS project in [50] uses a post-query filter to enforce access control policies. The

filter applies security policies after query processing butbefore a user receives the results from

the DSMS. The main drawback is keeping users connected to thesystem even though there is no

output after post-filtering. Moreover, the access control filtering is done after query specification

which introduces wasted computations. To reduce the cost, supporting RBAC via query rewriting

techniques are proposed in [20, 21]. According to the privileges of the query submitter, queries are
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checked against a policy map for authorization before execution. Our system development adapts

their rewriting ideas by revising raw queries with level information for sharing analysis.

Information Flow control: MLS systems were the first to formalize the idea of information

flow control across centrally-defined security classifications. Most of the work in this area assumed

that the security labels cannot be changed inside the application. Myers and Liskov [53] proposed

a decentralized information flow control model which allowsthe users to control the flow of their

information and also allows for explicit declassification of information. Decentralized Information

Flow Control (DIFC) gives users the ability to create new policies while remaining constrained

by the information flow policies of others. Several researchers have worked on DIFC OS-level

policies [36, 77, 49]. Creating a language to express DIFC policies have also been explored by

researchers [35]. DIFC model provides threat detections onmalicious data modification to prevent

illegal information flow. The DIFC model can be the future work of MLS system development

integrated with user-specified constraints.

Decentralized Event Flow Control (DEFC) [51] have been proposed an architecture for ex-

pressing event-flow security policy in distributed multi-domain applications. In DEFC model,

events are classified with confidentiality and integrity labels which are processed by different pro-

cessing units. A unified event dispatcher is responsible to distribute each event to isolated security-

compatible unit. The unit finishes the computation then updates the event’s security labels if ap-

plicable. Our research adapts two ideas from them: isolating processing units in the system to shut

down potential unsafe communications, and providing output results with security level upgrading

using least upper bound of all computation involving data levels. For example, level of aggregation

output result should be the highest level of all input computing data.

On the other hand, the DEFC model cannot be applied to MLS -SMSbecause (1) The schedul-

14



ing unit is operator/plan in MLS systems rather than event. (2) Each event is isolated processing,

while MLS-DSMS is able to share processing plans based on security labels and similar query con-

text. (3) The units in event processing system are built withspecific processing functions, while

in MLS system the processing unit can be completely replicated except assigned with different

security labels.

Chinese Wall Policy: Brewer and Nash [19] first demonstrated how the Chinese Wall policy

can be used to prevent consultants from accessing information belonging to multiple companies in

the same conflict of interest class. However, the authors didnot distinguish between human users

and subjects that are processes running on behalf of users. Consequently, the model proposed is

very restrictive as it allows a consultant to work for one company only. Sandhu [58] improves upon

this model by making a clear distinction between users, principals, and subjects, defines a lattice-

based security structure, and shows how the Chinese Wall policy complies with the Bell-Lapadula

model [16]. In this work we’ve implemented a DSMS prototype with Chinese Wall policy control

and reusing design architecture and query processing mechanisms.

Security Threats: Imperva [42] a business security solution company proposedten top se-

curity threats on commercial DBMS. There are five from ten related to database design fit to our

secure DSMS system research:

1. Excessive privilege abuse. Users or applications are granted database access privileges in

excess of “business need-to-know” privileges in excess of business need-to-know. For ex-

ample, a teacher assistant can update the student scores butnot their personal information.

2. Legitimate privilege Abuse. Users might abuse legitimate access privileges for unauthorized

purposes, e.g., combines two authorized tables (e.g., Health record, Resident info) to con-
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struct a big table can tell sensitive information (e.g., John lived in Denver had a heart attack

two months ago).

3. Privilege Elevation. With database platform software vulnerabilities, hackers might be able

to get access privileges as an administrator.

4. Denial of Service (DOS). Common DOS techniques include data corruption, network flood-

ing, and server resource overload. Resource overload is particularly common in stream

processing environments.

5. Weak Authentication. Weak authentication schemes mightcause identity and login creden-

tial threats. If happens the hacker can deploy his own strategies to obtain sensitive informa-

tion.

Our MLS-DSMS prototype implementations have addressed 2nd, 3rd and 4th threats via the

following ways: (1) using security level as an attribute to grant query access control, (2) enforcing

simple security property and the restricted⋆-property of the Bell-Lapadula model in our multilevel

security system for all users, (3) and propose distributed MLS-DSMS framework to make each

node running as a server. Mitigation developments for 1st and 5th threats remain in our future

work.

2.3 DSMS Performances

Scheduling methods:With high volume of unexpected inputs, the DSMS needs a effective schedul-

ing method to run stream-specific queries in a long run. simplified and complex methods have been

developed and described as following:
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1. Round-Robin. This is the scheduler method run in StanfordSTREAM system [8]. Each

operator in plan will be scheduled in a linked list and will berun for a fixed time unit or

input queue becomes empty. Round-Robin avoids starvation because in each round each

operator will be executed for some time. There is no priorityamong tuples or operators.

2. FIFO First In First Out. DSMS executes input tuples through the plans based on the arrival

timestamp. Operators cannot access next tuple until the current tuple is completely handled.

As a result, some queries might suffer starvation if their input tuples in a bigger timestamp

are buffered in the queue waiting for others to complete. This scheduling does not support

query priority in MLS under bursty input situation. Since the timestamp used for ordering

cannot be changed, FIFO cannot put execution priority to specific queries with better re-

source release but later input arrival. On the other hand, FIFO is free from security violation

because execution order is based on tuple arrival timestampwhich cannot be manipulated by

users.

3. Greedy strategy. At any time instant, the operator has biggest operator memory release

capacityCO will be selected to execute.CO means the maximum number of tuples can be

consumed within this time unit by the tuple handling operator. However, the throughput of

queries are low under large numbers of input and one operatorwith bestCO will always be

scheduled for execution while others are blocked.

4. Chain strategy [13]. At any time, DSMS considers all tuples that are currently arrived in

the system. DSMS schedules a single time unit for the tuple that lies on the segment of

consecutive operators with biggest segment memory releasecapacity. If there are multiple

such tuples, system will pick the tuple which has the earliest arrival time. The scheduling
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priority is determined by segment memory release capacity.However, covert channel can be

established since high level plans always release more memory because of consuming more

qualified input data that are not accessible to low-level queries.

5. Operator Path Capacity strategy [45]. It considers the processing rate of an operator path

Pi (processing capacity)CP
Pi

as the priority. This method is an optimal one in terms of total

tuple latency among all scheduling strategies. However it suffers the same problem as Chain

strategy because in most cases the throughput of high level queries is much higher.

6. Segment strategy [44]. Instead of using operator path as priority unit, it first divide paths

into segmentation then set up execution order among those pieces according to their seg-

ment processing capacity. It improves the memory requirements on path capacity strategy

by sacrificing some response time for specific plan. Different from Chain, the execution

priority is assigned to the operators in segment rather thanthe tuples. There are many seg-

mentation methods on operator path. A simplified segment strategy can be applied where

only two segments is used in each operation path. Since the leaf nodes (normally the selec-

tion and projection nodes) in a path have faster processing capacities and lower selectivity

while others have much slower processing rate, the first segment includes leaf nodes and

consecutive operators if their capacity reaches a fixed ratio (like 80%) of previous consecu-

tive nodes. The second segment contains other operators in the path. The simplified segment

strategy is one of Memory Optimal Segment (MOS) strategies which aims to minimize the

total memory requirement as well as decrease the tuple latency.

None of these strategies can be directly applied to our system as they cause illegal information

flow. So we are creating new MLS scheduling strategies can solve covert channel problem as well
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as provide acceptable performance.

Load Shedding: Load shedding is another way to ensure QoS requirements of executing

queries during bursty input by discarding some input tuples. Aurora project developers proposed

that a proper load shedding mechanism should apply reasonable tuple-dropping algorithms on gen-

eral queries [67] and aggregation operators [68] to reduce the relative error as well as satisfy the

QoS requirements. The load shedding algorithms can be a random partial selection from all the

input data, or integrate a semantic drop operator to some query plan according to fixed query co-

efficients like selectivity and Loss/Gain ratio (low-data-utility/CPU-cycle-saving). Besides, their

conclusion forms the foundations of DSMS load shedding developments.

Based on researches [23, 23, 60, 29] load shedding mechanismshould cover the following fun-

damental issues. First, what are the timings and conditionsto activate load shedding by system

semantics. For example, parameters like current memory usage, CPU-cycle rate and bandwidth

are taken into account for load shedding from Aurora project[23]. Second, where is the perfect

execution location in query plans for shredder operators. Authors in [60] claimed that function

calls in input source operator is a best place for load shedding which saves buffering memory and

processing time. On the other hand, if shedding happens on some input stream shared by multiple

queries, the system must consider effects to those queries without shedding needs. Third, what is

the proper quantity of shedding load such that the quality ofquery outputs is not compromised?

The unpredictable input in DSMS reduces the efficiencies of pre-fixed shedding parameters, such

as selectivity, potential data utility and CPU cycle gain.Feedback control-based frameworkim-

plemented in Borealis project [29] is proposed to review output results periodically and then make

shedding adjustments to fit the QoS better. However, Borealis FIFO scheduling method will cost

huge buffer during brusty input data. Our future work is going to adapt the feedback framework
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with a sophisticated memory-optimized scheduler.

Query Sharing: In the context of DBMS, researchers have investigated how queries can ben-

efit by sharing their computation costs. Finkelstein [37] demonstrated how query graphs can be

used for detecting common sub-expressions across multiplequeries. Sellis [59] investigates the

problem of multi-query optimization where the goal is to obtain a good plan for multiple queries.

Chen and Dunham [28] have also looked into the problem of efficiently identifying common sub-

expressions for processing multiple queries. Goldstein and Larson [39] focus on how queries can

be optimized by using results from materialized views.

In general DSMSs like STREAM, Aurora, and Borealis, queriesissued by the same user at

the same time can share the Seq-window operators and synopses between each other. Besides

common input source operators, sharing intermediate computation results is a better way to make

big performance achievement. Jin and Carbonell [47] look into the problem of using predicate

indexing for query optimizing in streams where not all the continuous queries are submitted at the

same time. In this approach, a relation schema stores existing query plan information which will

be compared and updated when a new query arrives. Our DSMS development adapts their idea of

buffering query plans for comparison between existed and new queries.

2.4 Distributed DSMS

Cherniack et.al. [31] proposed the ideas of extending Aurora system to distributed environments.

They presents critical issues and solutions on developmentof distributed stream processing system

in their work.

Their proposed systemAurora∗ consists of multiple single-node Aurora servers that belong

to the same administrative domain and cooperate to run the Aurora query network on the input
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streams. The system is able to dynamically distribute the query load in terms of boxes. Specifically,

the operators/boxes of query plan are dynamically distributed to different machines.Aurora∗

development raises several critical issues in our distributed DSMS development: (1) How to set up

the distributed network and how to reduce the bandwidth of communications? (2) How to perform

load management from which operator/plan? (3) How to maintain high availability in distributed

system? For example, the system can use the k-safe standard:if the failure of any k servers does

not result in any message losses. (4) What are the failure detection and recovery mechanisms? In

Aurora∗ once upstream node detects some downstream nodes are unavailable, it will search its

catalog to find alternative participants to join and continue its query plan.

Chinese Wall and Cloud Computing: Wu et al. [73] show how the Chinese Wall policy

can be used for information flow control in cloud computing. The authors enforce the policies

at the Infrastructure-as-a-Service layer. The authors developed a prototype to demonstrate the

feasibility of their approach. In our current work, we have adapted the Chinese Wall policy and

demonstrated how stream data generated from the various organizations can be processed in a

secure manner. Our work is addressed at the Software-as-a-Service level. Tsai et al. [71] discusses

how the Chinese Wall policy can be used to prevent competing organizations virtual machines to

be placed on the same physical machine. Graph coloring is used for allocating virtual machines to

physical machines such that the Chinese Wall policies are satisfied and better utilization of cloud

resources is achieved. Jaeger et al. [43] argue that covert channels are inevitable and propose

the notion of risk information flows that captures both overtand covert flows across two security

levels. Capturing both covert flows and overt flows in a unifiedframework allows one to reason

about the risks associated with information leakage.
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Chapter 3

Background: STREAM DSMS

Our choice of MLS-DSMS development is based on the Stanford STREAM Project [8] because

of the following reasons. First, the Continuous Query Language (CQL) [9] is well-defined as the

semantic foundation for continuous queries. Second, in order to handle queries on different input

sources, they provide methods to synchronize timestamps among different input data [62]. Third,

the open source DSMS prototype is able to handle basic CQL queries from different clients with

multiple server instances.

In this chapter, we present a detailed introduction on Stanford STREAM system. After de-

scriptions of its architecture, query process, and interaction between commands and components,

STREAM limitations on secure stream processing are discussed.

3.1 STREAM DSMS Overview

Stanford STREAM is referred asvanilla DSMS system in this dissertation. The vanilla DSMS

is a comprehensive interactive interface for STREAM users,system administrators, and system

developers to visualize and modify query plans as well as query-specific and system-wide resource

allocation while the system is in operation [69]. We first present the architecture of STREAM then

discuss each component of the vanilla DSMS shown in Figure 3.1.

Theserveroperates in two phases. In the first phase it registers queries, streams, and relations

from theclient via the command unit. In the second phase, it executes the registered queries and
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Figure 3.1: DSMS System Architecture

propagates the outputs. No new queries, streams, or relations can be registered Once the second

phase starts. The client communicates with the DSMS server via a set of predefined messages

in multiple steps. The first two user commands corresponds tothe first phase and the next three

corresponds to the second phase.

1. Connect to Server:The client establishes command communication with the server. The

server creates a new server instance specific for that client. All the following command

messages are sent to this instance. This does not allow sharing of input streams or queries

among different clients. There is no notion of users, authentication, or security levels.

2. Register Query:The client registers input stream schemas, relations, and queries. At this

stage, a query registration message is sent to the interpretation unit which translates the

interpreted query to a logical query plan (a link of operators). The naive physical plan is also

generated.
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The input streams are connected to the query processor inputunit by the stream shepherd

unit. Users are required to bind input data sources with the stream schemas explicitly. This is

not suitable in the secure DSMS architecture as the users canonly access authorized tuples.

Thus, we have to modify the registration process. In the output unit, output connection

between DSMS and client is established after the queries areregistered.

3. Generate Plan:Once the DSMS receives command from the client indicating that all queries

have been registered and binding of input streams have been completed, it optimizes the

naive physical query plans created in the previous step. Also, graphs of physical plans are

generated for user view. The generated physical plans are instantiated in the execution unit

of the query processor and the list of operators are sent to the scheduler.

In the replicated MLS-DSMS, the query plans have to be generated in appropriate query

processor and should be linked to appropriate single level input streams so that there is no

illegal information flow.

4. Start and Stop Query Execution:Once the start query execution command is issued, the

scheduler instructs the execution unit to start running thespecified operators. Input, output,

and execution units process stream tuples continuously, and the computation results are sent

to the client until user issues the stop query execution command or there are no more input

tuples.

3.2 Query Process

Let us take a closer look on query process in vanilla system. In general, raw queries received by

the server will be processed in the following chain:
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CQL query -> Syntactic nodes in parse tree -> Semantic object s

-> Logical operation (logical plan) tree

-> Physical operation (physical plan) tree -> Execution uni ts

Figure 3.2: Query Process

The system components involved in query process is showed inFigure 3.2. And we explain

each component in details one by one. Some descriptions are from STREAM-0.6.0 manual [70].

• Parser. It takes in input stream/relation/view schema and query/monitor specification then

decompose the string sentence into different nodes. All parsed info are saved in aparseTree.

Other process units like query manager can get the registered info from specific nodes.

• Table Manager. In DSMS tables refer to streams and relationsin DSMS. The table manager

stores the names and attributes of registered stream/relation/view. The input info comes from

parseTree.
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• Query Manager. Registered queries and sub-queries are stored in query manager. Each query

will be assigned with a unique identifier (query-id) for further use. [70].

• Semantic Interpreter. Parse tree nodes generated by parserwill be handled in this module.

The syntactic parse tree is converted to specific a set of semantic objects [70].

• Logical Plan Generator. It transforms an interpreted semantic query to a logical query plan.

Those interpreted CQL queries are constructed in certain patterns. The generator checks

them by applying set of transformation rules.

• Plan Manager. Physical level entities including operators, queues, synopses,query plans

are managed by this module. By reading the logical plan, planmanager instantiates the

corresponding physical entities. [70].

• Scheduler. It creates a queue for all operators from physical plans. When scheduler starts

running, operators will run one by one and query by query.

From the process tree, there are several products during thequery transformation.

• NODEs. ParserCommand handles registered table as well as CQL queries by creating vari-

ous kinds of nodes as output. Some nodes can be constructed bybasic nodes, for example,

REL SPEC (relation specification) node has two fieldsrel name andattr list. attr list

refers toLIST node contains a list of attribute specification nodesATTR SPEC. The

parsing result is calledparse tree, which is a node contains set of basic nodes in its fields.

• Semantic query. This object is created by interpreter. Thisinternal representation differs

from the parse tree (NODE *) produced by the parser in the following ways: First, input
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relation/streams as well as their alias are connected to their internal identifiers. They are

assigned with a variable-id, and each attribute belongs to the schema is also assigned with

unique attribute-id. So each attribute can be denoted as< variable− id, attri− id >. While

in parse trees some attributes are implicit. Second, every input stream in the FROM clause is

associated with a window. In NODE * there could be streams without a window. The system

will add the default UNBOUNDED window for every stream in theFROM clause without a

window [70].

• Logical plan. Logical plan is a linked list of logical operators. Operators in plans are con-

structed as a tree structure, where the operators in lower level provide output their results

to the ones in higher level. The bottom operators consume theinput stream/relation while

the top (root) one produces the final query output. The tree isrepresented as a linked list

where the root operator will be the returned logical/physical plan. Operator is an interface

in DSMS, which can be used to represent logical plan, physical plan, and actual executing

operators.

Logical plan operators are different from the the one used inphysical plan. In logical plan

generator, semantic query is classified as two kinds: Select-From-Where (SFW) and Binary-

Join. The generator first produces a naive plan where semantic query is translated with a set

of logical operators represent the necessary operations inthe query. The execution order of

operators is determined during the translation, and it is saved as a linked list. To be specific,

each operator contains fieldsinput andoutputwhich denote the previous and next operators

in tree structure respectively. After the linked list is created, the top operator (which is the

last operator in query) is returned as logical plan object.
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In order to show how to construct the linked list in certain order, we take the naive SFW

logical plan generation for example. There are several steps of extracting the info from

semantic query to create a linked list of operators: 1) Generate a plan that joins the FROM

clause tables; 2) Apply WHERE clause predicates over the join; 3) Apply Aggregations and

perform group by if necessary; 4) Perform projections specified in SELECT clause; 5) Apply

Distinct operator if needed; 6) Apply Relation-to-Stream operators if present.

After a naive plan is generated, logical plan generator performs optimization to remove re-

dundant operators according to the CQL definition. The naiveplan is “transformed” to a

better logical one after certain optimizations.

• Physical plan. Similar to logic plan, physical plan is a linked list of physical operators. Since

the logical plan is the pointer of the top operator, the plan manager will go recursively in the

linked list then produce the corresponding physical operators by mapping with logical ones

to them as well as additional optimizations. For example, ifa logical plan has two sequential

select operators, only the child (lower level in tree structure) operator will be kept in physical

plan by appending parent’s predicate attribute with its own.

When the physical plan is done, plan manager will generate a special operatorquerysource

as the first but artificial operator in the physical plan. Thisquery source operator can be

shared among queries requesting the same input. This is a dummy operator found only at

the metadata level. [70].

Another case is that whether the registered query needs to output. If yes, we need to create a

specific operatoroutputinterfaces outside the system. this special operator is also put on the

top of the physical plan.
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• Execution units. When all queries are registered, plan manager will add all the auxiliary

structures like synopses, stores, queues to the plan. Thesestructures as well as related oper-

ators will sent to scheduler for execution.

3.3 Interactions

In this section, we take a second look at how the interaction commands cooperate with DSMS

components. In Figure 3.3, the left side are the public interaction methods and the right side

are those important process units in DSMS.

Figure 3.3: DSMS Methods

Public methods will be called by command connection processunit where the DSMS instance

is created. When command unit gets specific commands from client, it will call the responding

methods in DSMS. Now we explain how these methods interact with process units in DSMS.
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1. Begin Application. Five process units except scheduler are initialized. Parser is a process

unit which does not need initialization. All the process units except parser is locally initial-

ized in a DSMS instance.

2. Register Base Table/View. Both methods first pass the table name and schema to the parser

for node decomposition. Then the table manager will store the name and schema from the

parse tree; a table Id is returned. In the third step, base table registration will inform the plan

manager about the new table while view registration will indicate the mapping between the

previous registered query with a view table Id to the plan manager.

3. Register Query/Monitor. Monitor is a special query reflects the real-time data during query

execution.The CQL query will be sent to parser for decomposition and query manager for

storage. Parser returns a parse tree and query manager returns a unique query Id. The

semantic interpreter transform the nodes in parse tree to a internal query, which would be

used in logical plan generator later. After a logical plan isreturned, the plan manager will

product a corresponding physical plan and bind it with the query Id.

4. End Application. It is called when the client finishes all table/query registration. There are

several steps must be done before moving to execution.

(a) Plan optimization. The non-operation query sources arefirst removed from physical

plan. Then all operators without an output will be added witha sink operator in the

top. The sink operator consumes all input child operators without an output. After

that, the plan manager will try to merge select operations ifparent operator is select

and the child is select or join. The parent operator will be deleted from plan after the

predicates is properly appended to its child operator. Notice that if more than one plan
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uses the parent node, the merge cannot be done. Also the manager will try to merge

some project operators where parent is project and child is join.

(b) Adding auxiliary (non-operator) structures. These structures like synopses, stores,

queues should be attached to each operator in the plan. Thereare structures need to

be added which include the extraaggregation attributein aggregation operator.

Each synopsis is a distinct logical symbol indicates the input/output of an operator

while the store is synopsis allocator which allows sharing between synopses. Plan man-

ager will first add the proper synopsis type according to the operator then create stores

for synopses. Notice that synopsis-store assignment handles the “synopsis-sharing”

(it is actually “store-sharing”) between operators. For each operatoro, manager first

checks its output to see if any of the parent operators aboveo have synopses which

require thato assigns memory for their tuples. If yes,o will be attached with a sharable

store which will be assigned to the parents’ synopses later.Otherwise obsolete stores

are created. Each store keeps a stub record indicates synopses are assigned to it. In our

MLS development, we need to consider security level on synopsis sharing.

Queues are also attached to each operator. There are three types of queues:simple

queue, writer, and reader. A simple queue has one source and one destination opera-

tors, while a shared queue reader/writer has one source and many destination operators.

Writer is the output queue while reader is the input queue foreach operator.

(c) Instantiation. Plan manager instantiates memory manager and allocates static tuples

contain the constants that are used in operator computations. Execution operator spec-

ification will be added to corresponding physical operatorsin physical plan. After that,

the queues will be instantiated and attached to related those execution operators. Then
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the plan manager will link the synopses to their stores as well as link the operators to

their input stores. The link here means create the implementation of stores and syn-

opses from previous specification.

(d) Scheduler initialization. The execution attribute of operators in physical plan are added

into the scheduler.

5. Get Query Schema/XML Plan. Both methods are functions of the plan manager. Get query

schema can be returned by a given queryId before or after end of specification for checking

the schema definition. XML plan returns the plan for whole queries after end of specification.

XML plan can be submitted by users to simplify the input/stream registration. A simple

example for XML registration plan is presented as following. In the XML file user can

specify the schema of input stream, query detail, as well as the construction ways of input

data (with/without timestamp, input as a loop).

<Script>

<Table>

<Name>R</Name>

<isStream>true</isStream>

<isBase>true</isBase>

<Attr>

<Name>name</Name>

<Type>2</Type>

<Len>20</Len>

</Attr>

</Table>

<Query>

<QueryString>select * from R;</QueryString>

<isNamed>false</isNamed>

<hasOutput>true</hasOutput>

</Query>

<DemoBinding>
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<TableName>R</TableName>

<FileName>R.load</FileName>

<bLoop>true</bLoop>

<bAppTs>false</bAppTs>

</DemoBinding>

</Script>

6. Begin/Stop/Interrupt/Assume Execution. All methods refer to the scheduler. If the plan is

allowed to execute, scheduler will run the execution operators continuously until interrup-

tion/stop commands are received.

3.4 Continuous Query Language

In STREAM, the input data can be streams or relations, and a mixture of both. A streamS is a

bag of elements< s, t > wheres is a tuple belonging to the schema ofS andt is the input arrival

timestamp ofs. A relationR is a mapping from each time instant to a finite bag of tuples belonging

to the schema ofR.

Besides, queries are expressed by Continuous Query Language (CQL) which is an extension of

Structured Query Language (SQL) by supporting continuous queries on long-running input stream

data. In CQL, queries are processed periodically at each time instantheartbeatτ , using the input

data with a timestampt wheret ≤ τ . The input data are partitioned and buffered in asynopsis

(Syn) with a predefined finite size. At every heartbeatτ , the system processes the query with data

set in the window then transfer the results to users continuously. In general, there are three steps

during query processing showed in Figure 3.4: (1) Stream-to-Relation (S2R): For a heartbeatτ ,

input stream data with timestampst ≤ τ are transformed to a temporal relation. (2) Relation-to-

Relation (R2R): the input “relations” are processed by CQL operators and aresulting relationR(τ)
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is generated for eachτ . (3) Relation-to-Stream (R2S): the resultingR(τ) is transformed back to

stream as the long-running output results.

Figure 3.4: Three Steps of Query Processing

Correspondingly, there are three kinds of operators S2R, R2R, R2S to complete the query

processing. S2R operators, usually called Sequential Window (Seq-Win), handles query input

by generatingslide windows. The sliding windows are buffering synopses contain a historical

snapshot of a finite portion of the stream at each heartbeatτ . Based on different input requests,

slide windows are classified astuple-based, time-based, andpartitioned-by. Tuple-based window

over StreamS usually uses the form S[Rows N], which requires DSMS to buffer last N tuples of an

ordered stream with largest timestampt ≤ τ . Time-based window in the form S[Range T] contains

all tuples from timestampτ − T to τ . Note that a size constraint cannot be applied to time-based

window because of the unpredictable input tuple rates. Partitioned-by window is represented as

S[Partitioned By A1, ... Ak Rows N] whereA1, ..., Ak is a subset of attributes defined in stream

schema. This window logically partitionsS into different substreams based on equality of A1, ...,
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Ak, and computes a tuple-based window with sizeN independently on each substream, then take

the union of these windows to produce the input relation.

On the other hand, R2R operators are derived from traditional DBMS like selection, projection,

join, and aggregations such as maximum, minimum, average, sum, and count. They are responsible

for query computation on the mixture of input relations and streams in sliding windows. In step 3,

the final results are transformed back to the stream by relation-to-stream R2S operators.

With CQL operators, the query plan can be generated like a SQLquery tree where nodes rep-

resent the processing units – CQL operators, and the connection edges between nodes arequeues

storing the intermediate or final outputs generated by operators.Synopsisis maintained with opera-

tors which stores the temporal results for further computation. Except non-blocking operators like

selection and projection, only blocking operators like aggregation and join need synopses. Synop-

sis has different types according to the input window specifications. Tuples buffered in synopsis

contain expiration tags calculated from arrival timestampplus the window size. In query plan,

query processing starts from bottom input operators through the output in the top.

The first step of our work is to simulate a battlefield monitoring application. Each soldier equips

with sensors sending out Vitals and Positions info to the control center with DSMS continuously.

Users like commanders and medics issue real-time queries requesting real-time data analysis based

on the infinite remote streaming data. The schemes are showedbelow:

Vitals(soldier id (sid), blood pressure (bp), pulse rate (p r),

weight (weight));

Positions(soldier id (sid), latitude (lat), longitude (lo n));

Timestampts is attached to each tuple by vanilla DSMS indicating the arrival time instant.

The system forms two streams Vitals and Positions collecting information from all soldiers, com-
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putes query request in real-time, and transmits results back to users. CQL queriesQa, Qb andQc

illustrates the usages of three kinds of windows in vanilla system.

Qa: Find soldiers’ Vital and Position information from last

100 input tuples where the soldier is in longitude "12E".

CQL: SELECT * FROM Vitals[Rows 100] V, Positions[Rows 100] P

WHERE V.sid = P.sid AND P.lon = "12E"

Qb: Compute average of soldiers’ blood pressure from the dat a

received in 5 minutes.

CQL: SELECT AVG(bp)

FROM Vitals[Range 5 Minutes];

Qc: Compute the number of soldiers located in different

latitudes from last 500 input tuples.

CQL: SELECT COUNT(sid)

FROM Vitals[Partition By lat Rows 500];

3.5 Limitations

With the architecture design and query processing STREAM vanilla DSMS, four of five the miss-

ing stream processing requirements [63] in traditional DBMS are satisfied. (1) STREAM is an ac-

tive management system, which keeps stream data moving without storing the whole first; (2) CQL

is proposed to specify stream-specific queries; (3) The continuous queries can be handled so that

output results are predictable and repeatable; (4) Query inputs can be live stream or tables in finite

size.

The requirement on handling missing/out-of-order/delayed inputs are not considered in STREAM

because integration of those extra mechanisms causes high latency. Besides, STREAM prototype

does not focus on the correct arrival orders of inputs such asstock market analysis. In fact, a pos-

sible solution on delayed/out-of-order of input streams isproposed in Aurora DSMS usingslack
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methodin [1]: before query processing, the system uses 2 passes bubble sort on a limit size of

inputs trying to provide better ordered input sequence. Thesorting method uses small buffers and

computation power not causing big overhead in DSMS.

Our work is applying DSMS to multilevel scenario applications: input data are sensitive and

queries from different users are classified. In this section, we discuss the limitations of vanilla

STREAM in in two main aspects: security preservation and performance improvement.

Security Threats

In our design, security level is a special attribute existedin all input tuple schemes. Each input

should be attached with one security level then accessibility is determined. Queries with lower level

cannot access inputs with higher level. Anauthenticationmodule during client-server connection

must be added to the original DSMS.

To ensure security preservation, some might argue that adding a filtering in query pre-processing

might solve this problem. However, theinference problemexists in STREAM system. For exam-

ple, we have two queries issued by a low level (L) user:

Q1: Return max value and id of every two new inputs.

CQL: SELECT id, MAX(value) FROM Input[Rows 2]

WHERE level = "L";

Q2: Return all ids and values of every two inputs.

CQL: SELECT id, value FROM Input[Rows 2]

WHERE level = "L";

Suppose there are three inputs with schema (level,id,value) arrives in the following order:

(L,First,100),(L,Second,90),(H,Third,150). Since thisis a low level query, only the first two in-

puts will be considered for maximum computation. The outputresult forQ1 is 100,100,90, the
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number of computation times is 3; While the output result forQ2 is (First,100), (Second,90), the

computation times is 2. The reason is that the arrival of (H,Third,150)expires the first input

(L,First,100), which causes the computation of maximum. Byobserving those difference between

the two queries, low level user is able to infer the existenceof inputs from high level.

Another threat iscovert channel problem. By STREAM DSMS design, it uses a round-robin

scheduler to run all registered queries. Under sensitive info applications, malicious users can build

up a timing covert channel easily by affecting the response time of low level users. Suppose there

are two usersUh andUl in different level high and low. In timestamp 1, both users issue only 1

identical queryQ respectively.Q returns info from a stream with low level inputs. At timestamp 1

response time forUl should be fast. At timestamp 2,Uh issues 50Qs andUl maintains same 1Q.

The response time in timestamp 2 forUl will be significantly delayed by observation. By setting

up patterns such as issuing different numbers of queries at pre-designed timestamps,Uh builds a

channel to send 0/1 messages (suppose 0 for fast and 1 for slow) to Ul periodically. The design of

scheduler must be reconsidered under secure stream processing applications.

Performance Issues

Vanilla DSMS provides input sharing for all registered queries only if they are accessing the same

input streams and they are issued by the same user. Stream inputs are not shared between different

clients. Besides, query processing storage and results arenot shared between queries, even though

they are identical in syntax and query plans. In our work we aim to reuse the process and results

between queries in certain similar forms.

The expression power of CQL can also be improved by supporting queries in certain levels.

For example inQ1, original CQL cannot buffer tuples only in level L at the verybeginning. We’ve
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extended such limitations in our MLS models.

In the following chapters, we are providing the MLS models and formalizations. Then in

in different MLS-DSMS implementations, we propose solutions to handle the limitations of the

vanilla DSMS.
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Chapter 4

Multilevel Security Formalization

4.1 Multilevel Security Model

In order to support multilevel security (MLS), we first need to define MLS model for the system

as well as the CQL queries. An MLS-DSMS is associated with a security structure that is a partial

order, (L , <). L is a set of security levels, and< is the dominance relation between levels. If

L1 < L2, thenL2 is said to strictly dominateL1 andL1 is said to be strictly dominated byL2. If

L1 = L2, then the two levels are said to be equal.L1 < L2 or L1 = L2 is denoted byL1 ≤ L2.

If L1 ≤ L2, thenL2 is said to dominateL1 andL1 is said to be dominated byL2. L1 andL2 are

said to be incomparable if neitherL1 ≤ L2 norL2 ≤ L1. We assume the existence of a level U

(Unclassified), that corresponds to the level unclassified or public knowledge. The level U is the

greatest lower bound of all the levels inL . Any data object classified at level U is accessible to

all the users of the MLS DSMS. Each MLS DSMS objectx ∈ D is associated with exactly one

security level which we denote asL(x) whereL(x) ∈ L. (The functionL maps entities to security

levels.) We assume that the security level of an object remains fixed for the entire lifetime of the

object.

The users of the system are cleared to the different securitylevels. We denote the security

clearance of userUi by L(Ui). Consider a military setting consisting of four security levels: Top

Secret (TS), Secret (S), Confidential (C) and Unclassified (U). Their dominating relation is U<

C < S < TS. The user Jane Doe has the security clearance of Top Secret, L(JaneDoe) = TS.
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Each user has one or more associated principals. The number of principals associated with the

user depends on their security clearance; it equals to the number of levels dominated by the user’s

clearance. In our example Jane Doe has four principals: JaneDoe.TS, JaneDoe.S, JaneDoe.C and

JaneDoe.U. During each session, the user logs in as one of theprincipals. All processes that the

user initiates in that session inherit security level of thecorresponding principal.

Each continuous queryQi is associated with exactly one security level. The level of the query

remains fixed for the entire execution. The security level ofthe query is the level of the principal

who has submitted the query. For example, if Jane Doe logs in as JaneDoe.S, all queries initiated

by Jane Doe during that session will have the level Secret (S). A query consists of one or more

operatorsOP i. We require a queryQi to obey the simple security property and the restricted

⋆-property of the Bell-Lapadula model [16]. In MLS-DSMS, subjects are active elements of the

system like operators execute queries, while objects are passive elements of the system that contain

information such as queues, tuples, and input streams.

• A subjectSi with L(Si) = C can read an objectx only if L(x) ≤ C.

• A subjectSi with L(Si) = C can write an objectx only if L(x) = C.

Let us consider the benefits of applying BLP model in multilevel security. Simple security

property ensures no read-up and the restricted⋆-property allows only write-equally (no write-down

or write-up). Both ensure information can only flow up from low to high level.

An MLS-DSMS deals with different types of data objects. In real-time stream monitoring

applications, we have sensors that capture information. Werefer to these sensors asstream sources.

One or more sensors can add tuples to a stream. Each sensor or stream sourceSSi is associated

with a security levelL(SSi). The location of the sensor determines its security level. For example,
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if a sensorSSi is located in a top-secret location, then its security levelL(SSi) = TS. We refer to

the data stream generated from the sensors as the source datastream. The source data streamSi

generated from the sensorSSi inherits the security level of the sensor, that is,L(Si) = L(SSi). All

the sensors writing to a stream have the same security level as the stream. Each tuplet belonging to

the source data stream inherits the security level of the stream source, that is,L(t) = L(SSi). All

the tuples in the source data stream are at the same level. We assume that each source data stream

SSi is associated with a single security level. This assumptionis required to satisfy the restricted

⋆-property of the BLP model. Though, we assume source streamsare single level, we consider

our stream inside the data stream management system (i.e., once the tuples enter the system) to be

multilevel.

For each input data record, multilevel security can be supported at twogranularities: tuple and

attribute. In this dissertation, we put security enforcement at tuple by appending level attribute to

all input data.

4.2 Multilevel Queries

Consider the battlefield monitoring situation again and noweach input tuple comes with security

labels. Suppose control center runs a vanilla DSMS handlingfour queries (Qd, Qe, Qf andQg)

using the CQL language that does not support MLS specifications. So we have added the MLS

clauses, appropriately.

Qd: Compute the average bp and pr from the last 100 input data

in the unclassified level

CQL: SELECT AVG(bp), AVG(pr) FROM Vitals[Rows 100]

Where level = U

In queryQd, the stream window maintains the last 100 tuples in the synopses. This particular
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Table 4.1: User-CQ Relationship
USER QUERY LEVEL QUERY RESPONSE REQUESTED

Bob TS Qd at level U

Kim S Qe all levels dominated by S

Jim U Qf all levels dominated by U

Alice TS Qg all levels dominated by TS

query can be executed by a user at any level, since the security level is unclassified (U). Moreover,

the results returned by the query is independent of the security level at which the query is issued.

We term queries that run at a particular level assingle levelqueries.

Consider queriesQe, Qf , andQg where the same query is issued by users logged on at different

security levels as shown in Table 4.1. Note that, there is no explicit mention of security level in this

query. Thus, queriesQe, Qf , andQg are syntactically equivalent but will return different results.

QueriesQd andQf are syntactically different but will return the same response. We term queries

like Qe andQg asmultiple level queries as the result combines multiple levels.

Qe, Qf & Qg: Select AVG(bp),AVG(pr) From Vitals[Rows 100];

Consider a variation of the queriesQe, Qf , andQg using the partitioned clause shown below

asQ′

e, Q
′

f , andQ′

g. The results forQ′

e, Q
′

f , andQ′

g will be partitioned by the security levels.

For example, queryQ′

g will produce averages for each level separately rather thanthecombined

average for every 100 tuples across all levels.

Q’e, Q’f & Q’g: Select AVG(bp),AVG(pr) From Vitals[Rows 100

Partitioned By level];

MLS DSMS adapts CQL so that various MLS continuous queries (single level, multiple level,

partitioned, combined) can be expressed in the framework. In this research, the new language

calledMLS-CQL will extend the CQL syntax and define a new semantics that willdictate how
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MLS queries are interpreted and processed and what results can safely be returned to the user.

The formalism should capture the security level of the user issuing the query using the notion of

dominance of security levels. The formalism will also allowus to reason about query equivalences,

which, in turn, will help with query rewriting and query optimization. Besides, the formalization

is critical as it directs the design of the architecture and will also help in proving the correctness

and soundness of the algorithms.

4.3 Stream-to-Stream Window Operator

In CQL, condition filtering can only be specified in WHERE clause via select operator. S2R

Window operators are just used for buffering, which limits the flexibility of continuous queries

under multilevel secure circumstance: user might only needto buffer data within specific levels.

On the other hand, lack of control on buffering data in windowoperator might cause security

threats. For example, an U level user issues two queries at the same on input stream Vitals:

Q1: SELECT AVG(bp) FROM Vitals[ROWS 3]

WHERE level = U;

Q2: SELECT bp FROM Vitals[ROWS 3]

WHERE level = U;

Suppose there are 4 input tuples(timestamp,level,bp) arrive in the timestamp order, the compu-

tation results are performed on data in level U, which is showed in Table 4.2.

The U level user knows all inputs in timestamp 1, 2, and 4 except 3. From the computation

result in timestamp 4 turns out to be 130 instead of 120, he will know there is some high level

input arrive among timestamp 3 and 4, even though he does not see the input from the queries. As

a result, the existence of sensitive information is leak to unauthorized users.
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Table 4.2: Information Leak Example
TIMESTAMP INPUT WINDOW BUFFER RESULT

1 (1,U,100) (1,U,100) 100

2 (2,U,100) (1,U,100),(2,U,100) 100

3 (3,TS,140) (1,U,100),(2,U,100) N/A

(3,TS,140)

4 (4,U,160) (2,U,100),(3,TS,140) 130

(4,U,160) (NOT 120)

To prevent information leak as well as provide flexible continuous query in MLS, We propose to

introduce securestream-to-streamwindow operators that will provide a filter based on the security

level. Not like CQL traditional window operator converts a stream to a relation, our extension

provides a filtering operation on the stream prior to the application of the window operator. The

syntax is straightforward: users can request data in a special level setL like “ level in L” inside

window specification. Suppose a TS level user issuesQx:

Qx: Compute the average blood pressure (bp) of the soldiers f rom

last 100 input data where the clearance is in level C or U

CQL: Select AVG(bp) From Vitals[Rows 100 level in {C,U}];

The window operator is now stream-to-stream enabled. It should only buffer 100 input tuples

in level C or U. Data in other levels like TS and S are discardedeven though they are accessible

by the TS user. Comparatively, the system can conduct an authorization check in window level

specification. If a U level user issues the sameQx, the system should reject it since the query tries

to access data in unauthorized level C. By such specificationthe system can identify the acceptable

levels of the raw input data.

Level specification can also be done in WHERE clause of select. According to execution

semantics in traditional DBMS and CQL, the select operationis applied in where clause after
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input data tables are chosen. Similarly in MLS-DSMS, input streaming data are first buffered in

window operator, then filtered by select with level specification when tuples exit from the window.

Suppose a TS level user issues a queryQy:

Qy: Compute the average blood pressure (bp) of the soldiers

whose clearance in level C or U from last 100 input data

CQL: Select AVG(bp) From Vitals[Rows 100] Where level in {C, U};

The difference betweenQx andQy is the input data used for average computation. InQy, the

window operator buffers data with level in{TS,S,C,U} and then only those in level{C,U} will be

computed for average. Due to the different level specification ways between window and select

operators, the CQL representations as well as the computation results are distinguished.

With the MLS-CQL formalization, we can express the level request during query process step

1 S2R and step 2 R2R via window and select operators respectively. The level specifications help

identify illegal queries request on unauthorized data in higher level and perform possible sharing

analysis before query execution. In chapters ofreplicatedand trusted MLS-DSMS, we will discuss

the system architectures to address MLS-CQL queries.
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Chapter 5

Replicated MLS-DSMS

5.1 Multilevel Secure DSMS Architectures

In order to respect MLS constraints, vanilla STREAM architecture should be extended to achieve

logical isolation across the security levels. MLS-DBMS architectures [2, 24, 32] such aspar-

titioned, replicated, and trustedhave been investigated to see if these ideas can be applied to

DSMSs. From those researches the critical issue is to make a decision for each component as to

whether it should betrusted or not. Trusted components can handle tuples at different security

levels without causing illegal information flow. Each untrusted component has a security level

associated with it and can be uniquely defined or replicated for handle queries in different levels.

In general, different architecture choices affect the design of components as following:

• In partitioned architecture, each component receives onlythose tuples that have the same

security level as the component. The number of components ofspecific function is identical

to the number of security levels.

• If we use the replicated architecture, some components likequery processors can receive

tuples that are dominated by the level of that component. So the inputs in lower level are

duplicated to components in the same kind (e.g., query processor) but in different levels.

• In trusted architecture, all system components are unique and assigned with highest security

level. In other words, each component handles query requestfrom all different levels.
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Now we need to figure out which architecture is suitable for MLS query processing. We begin

with discussing the necessary components for MLS-DSMS developments. First, theuser interface

(UI) component is needed which consists of the input processor and output manager. We can make

this component trusted and allow it to accept queries and send results to users at different security

levels. The UI MLS extension is identical to the three proposed architectures.

We next discuss theinput stream handling component. Recall that sensors write tuples to

source data streams that have the same security level adhering to the restricted *-property. Often

times the source data streams having the same schema are merged into a single multilevel stream.

The stream shepherd operator is the entry point for an input stream and it also acts as the clearing

house. It converts tuples to internal representation, and writes to appropriate queues. Thus, trusted

stream shepherd operator is needed to handle multiple levels. The implementation can be done in

the three architectures.

Query processor is the DSMS execution unit runs query plans in different security levels. The

design decisions of components such asoperators, queues,andsynopsisimpact the system per-

formance as well as the security protection. We need to make achoice as to whether these would

be partitioned, replicated, or trusted.

Suppose partitioned architecture is used for the synopses.For processing the query shown

below, we have two synopsis Syn(L) and Syn(H), where Syn(L) contains only low-level tuples and

Syn(H) contains high-level tuples. Consider the followingquery issued by a high-level user:

Select sid, bp From Vitals[Rows 50,000];

For processing this query, we have to look at both Syn(H) and Syn(L). Moreover, we need

to figure out how many tuples to check for each one as the total tuples in the sliding window is

50,000 according to the arrival timestamps. In order to provide output in correct timestamp order,
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the result combination and reconstruction from low and highservers in partitioned architecture can

cause high latency.

On the other hand, in replicated synopsis we will have two levels of synopsis Syn(L) and

Syn(H) while in trusted synopsis only Syn(H) is needed. Since Syn(H) will store all the tuples,

the above query is more easily answered. The only negative side for replicated architecture is that

the low-level tuples are stored twice, costing space. For real-time queries request mixed streaming

data, query processing in replicated and trusted architectures appears to be much faster.

We next look at the property of query processor. In trusted architecture, we can have unified

trusted query processor that handles queries at all security levels. Alternatively, we may have query

processors at each security level that are responsible for the queries at the corresponding security

levels in replicated architecture. In addition to the abovecomponents, the designs of scheduler as

well as load shedding mechanism are also critical in performance and security issues.

By the analysis above, our research focus on centralized architectures as replicated and trusted

rather than the partitioned design. Our choice is based on the two reasons: first, replicated and

trusted architectures provide better performances on mixed level data processing, which is often

happened in MLS applications. Second, the two centralized designs face challenges on illegal in-

formation flow threats on query scheduling and executions, as well as sharing common resources

between processes across different levels. The explorations of security and performance topics

will benefit researches on MLS applications, DBMS development, and DSMS with security en-

forcements. In this and next sections, we will explain the replicated and trusted structure designs

in details.
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5.2 Replicated MLS-DSMS Architecture

Figure 5.1: Replicated MLS-DSMS Architecture

In the following sections, we would like to present the overview of replicated MLS-DSMS.

Then we provide details on how MLS queries are shared, generated, and executed. After that,

scheduling methods in this system are discussed.

The overview of replicated architecture is shown in Figure 5.1. It supports single and multiple

level queries. The replicated architecture has multiple query processors that execute queries domi-

nated by a particular level. The stream shepherd operators enqueue all tuples to a processor where

inputs’ level is up to the level of the processor. For instance, all the tuples up to level “high” are

enqueued to Level(high) processor.

Let us consider queriesQe, Qf andQg in Table 4.1 executed by replicated MLS DSMS again.

QueryQf is executed in the processor with Level(U);Qg andQ′

g are executed in the processor with

Level(TS). ThoughQe is syntactically equivalent toQg they are not shared as they are executed by
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different processors.

Qe, Qf & Qg: Select AVG(bp),AVG(pr) From Vitals[Rows 100];

Q’e, Q’f & Q’g: Select AVG(bp),AVG(pr) From Vitals[Rows 100

Partitioned By level];

Kim in level S issues Qe;

Jim in level U issues Qf;

Alice in level TS issues Qg;

5.3 Shared Query Processing

In this section, we give examples of MLS CQL queries and discuss how the processing of such

queries can be shared.

5.3.1 MLS-CQL Queries

We have an additional attribute calledlevel in each schema of a stream or relation. We can query

this attribute, or submit queries based on this attribute.

An MLS-CQL query can include the LEVEL attribute in the WHEREclause, SELECT clause,

and window specification. Let us consider the following examples, based on data streams Vitals

and Positions.

SELECT AVG(bp) WHERE LEVEL = "S" FROM Vitals [ROWS 100]

SELECT AVG(bp) FROM Vitals [ROWS 100 LEVEL = "S"]

SELECT AVG(bp) FROM Vitals [ROWS 100] WHERE LEVEL = "S"

In the first query the WHERE clause conditions are applied before a tuple enters a window. In

the second query, the window keeps only tuples based on the condition specified. In the third query,

the window maintains 100 tuples, but the WHERE clause is applied during AVG calculation. The

first and second queries are equivalent. Note that from previous section MLS-CQL Formalization,
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we use the second query to classify level filtering between select and window operators. Our MLS

DSMSs are able to address all three types of queries.

An MLS-CQL query may not reference the security level attribute at all. The query below

demonstrates this – it joins tuples from two streams. The sliding windows maintain the last 100

tuples for computations.

SELECT AVG(bp), AVG(pr)

FROM Vitals[ROWS 100], Position[ROWS 100]

WHERE Vitals.sid = Position.sid

Table 5.1: Continuous Queries
Query User Login Lv. Query Specification

Q1/Q′

1 Ann/Bob H SELECT AVG(bp)

FROM Vitals [PARTITIONED BY LEVEL ROWS 20]

Q2 Carl H SELECT AVG(bp) FROM Vitals [ROWS 20]

WHERE LEVEL = "L"

Q3 Dan H SELECT AVG(bp)

FROM Vitals [PARTITIONED BY LEVEL ROWS 5]

WHERE bp > 50

Q4 Dan H SELECT AVG(pr)

FROM Vitals [ROWS 10] V, Position [ROWS 10] P

WHERE V.sid = P.sid AND bp > 120 AND lon = "4E"

Q5 Ellen H SELECT V.sid, pr

FROM Vitals [ROWS 10] V, Position [ROWS 10] P

WHERE V.sid = P.sid AND bp > 120 AND lon ="4E"

Q6 Frank H SELECT sid, bp FROM Vitals

WHERE bp > 120

Q7 Gail H SELECT sid, bp, pr FROM Vitals

WHERE LEVEL = "L" AND bp > 120

Q8 John H SELECT sid FROM Vitals

WHERE pr > 100

Table 5.1 lists eight queries supported by replicated MLS-DSMS. For simplicity, we use only
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two levels high(H) and low(L) in those examples. And we consider only two types of windows:

tuple-based (Q2, Q4, Q5 from Table 5.1) and partitioned by windows (Q1 andQ3 from Table 5.1)

[9].

Processing each MLS query in our architecture involves several steps. First, the selection

condition of the query is written in conjunctive normal form. Subsequently, we generate the query

plan. In our framework, we represent a query plan in the form of a tree which we refer to as an

operator tree. Note that, many operator trees may be associated with a query corresponding to the

different plans. However, we show just one such tree for eachquery. The formal definition of an

operator tree appears below.

Definition 1. [Operator Tree] Anoperator treefor a queryQx, represented in the form ofOPT (Qx),

consists of a set of nodesNQx
and a set of edgesEQx

. Each nodeNi corresponds to some operator

in the queryQx. Each edge(i, j) in this tree connecting nodeNi with nodeNj signifies that the

output of nodeNi is the input to nodeNj . Each nodeNi is labeled with the name of the operator

Ni.op, its parametersNi.parm, the synopsisNi.syn, and input queuesNi.inputQueue which are

used for its computation. The label of nodeNi also includes the output produced by the node,

denoted byNi.outputQueue, that can be used by other nodes or sent as response to the user.

Operator trees for queriesQ6 andQ7 defined in Table 5.1 appear in Figures 5.2(a) and 5.2(b),

respectively. An operator tree has all the information needed for processing the query. Specifically,

the labels on the node indicate how the computation is to be done for evaluating that operator,

where an operator is the basic using of data processing in a DSMS. The name component specifies

the type of the operator, such as,select, project, join andaverage. The parameter indicates the set

of conjuncts for theselectoperator, or the set of attributes for theprojectoperator. The parameter is
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Figure 5.2: Operator Tree forQ6 andQ7

denoted as a set. For theselectoperator, parameter is the set of conjuncts in the selectioncondition.

For theprojectoperator it is a set of attributes. The synopsis is needed forthe blocking operators,

such as,join andaggregate, and has type (tuple-based or partitioned by) and size as itsattributes.

The input queues are derived from the streams and relations needed by the operator.

We use the streams (Vitals and Position) and continuous queries shown in Table 5.1 to discuss

query processing. We also assume the tuples sent by soldiersinvolved in a highly classified mission

to be classified as high (H) and other missions to be classified as low (L). Medics or users can

login in at different levels and submit queries. Also note that in Table 5.1 all queries are issued in

high (H) level. The main reason to choose one level is that all queries issued by a user logged in at

that level is processed by a query processor running at the that level. Hence we use examples from

H level to introduce and discuss various sharing methods. Allthese queries are executed by one

query processor at level high, shown in Figure 5.1.

QueriesQ1 andQ′

1, issued by Ann and Bob respectively, compute the average blood pressure
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of the last 20 tuples at each level in Vitals stream. QueryQ2 computes the average blood pressure

of the last 20 tuples having levelL. QueryQ3 computes the average blood pressure for the last 5

tuples at each level where the pressure is greater than 50. InqueriesQ4 andQ5, the last 10 tuples

that satisfy the selection conditions are maintained in thesynopses and are joined. Average and

projection are computed over the results from thejoin. In queriesQ6 toQ8, there are only selection

conditions and projection (duplicate preserving) operations.

5.3.2 Query Sharing

Typically, in a DSMS there can be several queries that are being executed concurrently. Query

sharing will increase the efficiency of these queries. Querysharing obviates the need for evaluating

the same operator(s) multiple times if different queries need it. In such a case, the operator trees of

different queries can be merged. In the Figure 5.3, we show how the operator trees ofQ4 andQ5

can be merged. Both use the sameseq-winoperator, as there is one seq-win operator per stream.

Later we will formalize how such sharing can be done.

In our replicated MLS-DSMS query processing architecture,we focus on sharing queries to

save resources such as CPU cycles and memory usage. In our architecture, we share queries that

are submitted by users with the same principal security level as all these queries run in the same

query processor. Since queries shared have the same security level, our replicated MLS-DSMS

query processor avoids security violations like covert channel during sharing.

We next formalize basic operations that are used for comparing the nodes belonging to different

operator trees. Such operations are needed to evaluate whether sharing is possible or not between

queries. We begin with the equivalence operator. If nodes belonging to different operator trees are

equivalent, then only one node needs to be computed for evaluating the queries corresponding to
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these different operator trees.

Definition 2. [Equivalence of Nodes] NodeNi ∈ NQx
is said to beequivalentto nodeNj ∈ NQy

,

denoted byNi ≡ Nj, whereNi, Nj are in the operator treesOPT (Qx), OPT (Qy) respectively,

if the following condition holds:Ni.op = Nj.op ∧ Ni.parm = Nj .parm ∧ Ni.inputQueue =

Nj .inputQueue.

In some cases, for evaluating nodeNi, belonging to operator treeOPT (Qx), we may be able

to reuse the results of evaluating nodeNj belonging to operator treeOPT (Qy). This is possible

if the nodes are related by the subsume relationship defined below. Such relationship is possible

when the operators match and are non-blocking and the operator parameters are related by a subset

relation.

Definition 3. [Subsume Relation of Nodes in Replicated DSMS] NodeNi ∈ NQx
is said to be

subsumedby nodeNj ∈ NQy
, denoted byNi ⊆R Nj , whereNi, Nj are in the operator trees

OPT (Qx), OPT (Qy) and are referred to assubsumed node, subsuming noderespectively, if the

following conditions hold:

1. Condition 1:

• Case 1 [Ni.op = project]: Ni.op = Nj.op ∧Ni.parm ⊆ Nj .parm

∧Ni.inputQueue = Nj.inputQueue.

• Case 2 [Ni.op = select]: Ni.op = Nj.op ∧Nj .parm ⊆ Ni.parm

∧Ni.inputQueue = Nj.inputQueue.

2. Condition 2:Ni.op is a non-blocking operator.
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Consider theselectnodes of the operator trees of queryQ6 andQ7 shown in Figure 5.2, where

theselectnode ofQ7 is subsumed by theselectnode ofQ6.

We have different forms of sharing that are possible in our architecture which we now discuss.

Complete Sharing

The best form of sharing is complete sharing where no additional work is needed for a new query.

However, in order to have complete sharing, the two queries must have equivalent operator trees.

The notion of equivalence of operator trees is given below.

Definition 4. [Equivalence of Operator Trees] Two operator treesOPT (Qx), OPT (Qy) are said

to be equivalent, denoted byOPT (Qx) ≡ OPT (Qy) if the following conditions hold.

1. for each nodeNi ∈ NQx
, there exists a nodeNj ∈ NQy

, such thatNi ≡ Nj.

2. for each nodeNp ∈ NQy
, there exists a nodeNr ∈ NQx

, such thatNp ≡ Nr.

The formal definition of complete sharing appears below.

Definition 5. [Complete Sharing] QueryQx can becompletely sharedwith an ongoing queryQy

submitted by a user at the same security level only ifOPT (Qi) ≡ OPT (Qj).

Complete sharing is possible only when the queries are equivalent. For example, queriesQ1

andQ′

1 have identical operator trees and can be completely shared.In such cases, we do not need

to do anything else for processing the new query. However, this may not happen often in practice.

Partial Sharing

We next define partial sharing which allows multiple queriesto share the processing of one or more

nodes, if they are related by the equivalence or subsume relation.
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Definition 6. [Partial Sharing] QueryQx can bepartially sharedwith an ongoing queryQy sub-

mitted at the same security level only if the following conditions hold

1. OPT (Qx) 6≡ OPT (Qy)

2. there existsNi ∈ NQx
andNj ∈ NQy

, such that one of the following holds:Ni ≡ Nj ,

Ni ⊆R Nj or Nj ⊆R Ni.

We have two forms of partial sharing which we describe below.The main motivation is the

sharing of blocking operators have to be handled differently from non-blocking operators. The

sharing of blocking is more restrictive in which the conditions for join, for example, must ex-

actly match the other query operator. On the other hand, withnon-blocking operator they can be

subsumed. The formal definition of these two forms of sharingappears below.

Definition 7. [Strict Partial Sharing] QueryQx can bestrict partially sharedwith an ongoing

queryQy submitted at the same security level only if the following conditions hold

1. OPT (Qx) 6≡ OPT (Qy)

2. there existsNi ∈ NQx
andNj ∈ NQy

, such thatNi ≡ Nj

3. there does not existNi ∈ NQx
andNj ∈ NQy

, such thatNi ⊆R Nj or Nj ⊆R Ni.

Definition 8. [Loose Partial Sharing] QueryQx can beloose partially sharedwith an ongoing

queryQy submitted at the same security level only if the following conditions hold

1. OPT (Qx) 6≡ OPT (Qy)

2. there existsNi ∈ NQx
andNj ∈ NQy

, such thatNi ⊆R Nj .

58



In the loose partial sharing, we will have a node on the ongoing query that subsumes a node of

an incoming query. When nodes are related by subsume relation, then it is possible to decompose

the subsumed nodes. The decomposition tries to make use of operator evaluation of the subsuming

node in order to evaluate the subsumed node. The decomposition is formalized below.

Definition 9. [Decomposition of Subsumed Nodes in Replicated DSMS] LetNi ⊆R Nj where

Ni ∈ OPT (Qx) andNj ∈ OPT (Qy). NodeNi can be decomposed into two nodesN ′

i andN ′′

i in

the following manner.

NodeN ′

i

1. N ′

i .op = Nj .op

2. N ′

i .inputQueue = Nj.inputQueue

3. N ′

i .parm = Nj.parm

NodeN ′′

i

1. N ′′

i .op = Ni.op

2. N ′′

i .inputQueue = N ′

i .outputQueue

3. N ′′

i .parm = Ni.parm−N ′

i .parm(if Ni.op = select)

N ′′

i .parm = N ′

i .parm−Ni.parm(if Ni.op = select)

Consider theselectnodes of the operator trees of queryQ6 andQ7 shown in Figure 5.2. In this

case, theselectnode ofQ7 is subsumed by theselectnode ofQ6. selectnode ofQ7 which is the

subsumed by theselectnode ofQ6 can be decomposed into twoselectnodes. One of these new

nodes mirrorQ6 and the other is also aselectnode that checks for the additional select condition.

Partial sharing is possible because of the overlap of operator trees.
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Definition 10. [Overlap of Operator Trees] Two operator treesOPT (Qx) OPT (Qy) are said to

overlapif OPT (Qx) 6≡ OPT (Qy) and there exists a pair of nodesNi andNj whereNi ∈ NQx

andNj ∈ NQy
such thatNi ≡ Nj .

Algorithm 1 : Merge Operator Trees
INPUT : OPT (Qx) andOPT (Qy)

OUTPUT: OPT (Qxy) representing the merged operator tree

InitializeNQxy
= {}1

InitializeEQxy
= {}2

foreach nodeNi ∈ NQx
do3

NQxy
= NQxy

∪Ni4

end5

foreach edge(i, j) ∈ EQx
do6

EQxy
= EQxy

∪ edge (i, j)7

end8

foreach nodeNi ∈ NQy
do9

if 6 ∃Nj ∈ NQx
such thatNi ≡ Nj then10

NQxy
= NQxy

∪Ni11

end12

end13

foreach edge(i, j) ∈ EQy
do14

if edge(i, j) 6∈ EQxy
then15

EQxy
= EQxy

∪ edge (i, j)16

end17

end18

When operator trees corresponding to two queries overlap, we can generate the merged operator

tree using Algorithm 1. The merged operator tree signifies the processing of the partially shared

queries.

Figure 5.3 illustrates the strict sharing ofOPT (Q4) andOPT (Q5). As shown, we shareselect

andjoin operators. The result of thejoin is processed by duplicate preserving project and aggrega-
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Figure 5.3: Strict Partial Sharing Operator Tree forQ4 andQ5

tion operators. On the other hand, seq-window operator is common to all queries using a stream.

Figures 5.2 (a) and (b) show theOPT (Q6) andOPT (Q7), respectively. Figure 5.2 (c) illustrates

theOPT (Q67) which shares both the query operations using the loose partial sharing approach. In

this case, the queryQ7 is subsumed byQ6 according to subsume relation definition. Based on the

decomposition of subsumed nodes definition, we splitQ7 select condition into two (bp > 120 and

level = “L”) nodes and then share thebp > 120 node withQ6.

5.4 Scheduling Strategies

A stream processing system handles continuous queries and maintains QoS during bursty input

period using scheduling strategies and load shedding techniques [52]. scheduling Researches [26,

11, 13, 45, 10, 22, 72, 27] put efforts to find reasonable execution orders, units, and timings among

multiple registered queries. These strategies are critical to a DSMS as they decide CPU allocation

schedules to reduce maximal memory requirement and tuple latency, improve throughput, and
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avoid starvation.

According to our observations there are three requirementsfor scheduling strategy design.

First, users at dominated levels should not be able to infer about the activities that are taking place

at dominating levels. For example, if a low level user can observe that his query is the only one

being processed and the throughput is low, he can infer that some high level query is also being

processed. Second, illegal information flow should not occur through covert channels because

of the sharing of CPU time, memory, and operators across security levels. Third, repeatedly not

executing queries at dominating levels may cause a starvation and impact the QoS.

Vanilla STREAM DSMS appliesoperator round-robin in scheduler. Query plan is a linked

list of operators. Operators of all query plans from the sameuser will be collected as a set and

they are expected to run consecutively in a round robin manner. After finishing all plans from

one user, the scheduler runs queries from another user, and so on. So all registered operators are

scheduled to run at least one time per scheduling round. Since DSMS requires fast continuous

response for each query, in one round each operator in a plan can process a small fixed number of

data tuples (e.g., 100 tuples per round) then switches to other operators. At each heartbeatτ , there

will be some tuples buffered in windows for all queries. The scheduler tries to run as many rounds

as possible per heartbeat. Because there is no priority among processors at different levels, “first

come first serve” strategy is used for plans. The queries fromthe same user registered first will be

executed earliest in each round. When a set of new plans arrives the scheduler under execution,

operators will be scheduled in the next execution round.

The regular scheduler runs all operators in every round, andstart over the rounds as many

as possible. Such mechanism prevents the starvation of latecoming queries: each operator is

scheduled to process a small amount of inputs in each round. However, this simple round robin
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scheduler suffers covert channel threat: the high level users can manipulate the response time of

low level queries by adding and reducing high level queries in the scheduler periodically.

To overcome covert channel,fixed time slot algorithm is proposed in our previous work [6].

It allocates fixed time slots for each security level and executes corresponding queries within each

time slot. If there are no incoming tuples or queries in certain slot, the scheduler remains idle. In

this algorithm, idle time slot in low level cannot be used forhigher level query execution or vice

versa to avoid covert channels. For instance, assume the time duration to be 250 milliseconds.

Assume that the scheduler is executing a low level query, andafter 50 milliseconds it determines

there are no new tuples to process. The scheduler now waits for 200 milliseconds before switching

to high level queries. On the other hand, we can start the highlevel queries after 50 millisec-

onds. If a new low level tuple arrives after that, it has to wait for 250 milliseconds for the high

level processor to complete, before an output is produced bythe low level processor. This can

reveal unauthorized information to low level users due to inconsistent/varied response times. The

fixed time slot method prevents overt and covert channel threats because queries from high level

cannot affect the response time of queries in low level. However, the system performance can be

significantly affected by the idle time slots.

To improve performance, a simplerevised fixed time slot algorithmcan be done by enforcing

new queries can be added to the scheduler at the beginning of each execution round. So the idle

time slot in low level can be borrowed by high level queries. Low level user is not able to “sense”

high level execution by issuing new queries in his time slot,because all new query registrations

will not interrupt running execution round. However, the performance cannot be improved in the

case that there are idle slots in high level unavailable to low level queries for security consideration.
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5.5 Replicated Prototype

We have proposed the replicated prototype in our journal paper [6]. Figure 5.4 shows our replicated

architecture for the following experiments. We provide a brief description on the key components.

Figure 5.4: Replicated MLS DSMS Architecture

• Trusted command unit is responsible for handling client communication, authentication, and

query processor instantiation. It accepts queries from users with different security levels.

Each user query needs to be associated with a security level that corresponds to the level at

which the query was submitted. Theauthentication moduleis built in trusted command unit

to perform user authentication and security level verification.

Thequery processor identifier(QPI) module gets users client ID, security level, and query

specifications from the authentication module. The QPI maintains the list of currently run-

ning query processors. The QPI first checks whether the user queries can be executed in one

of the query processors. If Yes, users client ID as well as allthe input queries are bound to
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that processor. If No, a new query processor is created at that level. We chose this approach

to avoid starting query processors if there are no users. Themaximum number of query

processors is same as the maximum number of security levels supported (4 in our case). The

trusted command unit sends the users level and registrationinformation to the trusted inter-

pretation unit. In addition, command unit still controls the query operations like commit and

abort with the help of the QPI unit.

• Trusted interpretation unit is responsible for generatingquery plans and setting up the op-

erators in the scheduler. It receives query information then creates the physical and logical

query plans. It sends the physical plans to the proper query processor. The list of operators

(also the physical plan) is sent to the trusted scheduler. The three built-in interpretation com-

ponents (parser, semantic interpreter,andlogical plan generator) and the execution unit of

the query processor should be modified accordingly to address MLS-CQL queries.

Theplan analyzerchecks whether it is possible to share the new coming query with any of

the currently executing queries using the buffer. The analysis bases on comparing the semi-

product plan of the new and existing plans. The semi-productplan is the semantic analysis

result of the query string. User-defined keywords like size of window ,executing operators,

output attribute numbers are saved and constructed into thesemi-product plan. Thebuffer

maintains the query level set information, semi-product, logical and physical plans for all

existing queries.

• There are multiple processors and each of them is untrusted,executes at a security level,

and has its own input, execution, and output units. Theinput unitcan accept input streams

from outside sources through trusted stream shepherd unit.It can also accept the output
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streams produced from other queries processed by the same query processor; this happens

when queries are shared. Theoutput unitsends the results back to users continuously.

Theexecution unitis used by the server to execute the physical plans continuously. This unit

contains the physical operators and their corresponding algorithms. In order to support MLS,

we need to modify the window processing so that it can supportfiltering conditions based on

security levels. The aggregation and join operator algorithms are also revised to compute the

least upper bound of the input tuples and use that as the security level of the output tuples.

All the operators are untrusted. The execution unit acceptsthe commands from the trusted

scheduler and executes the corresponding operators. Thereis only one operator running at

any point of time, since we have only one scheduler.

• Trusted scheduler will run all queries from different levels using different scheduling strate-

gies. It can run normal round-robin method, or other security-enhanced MLS strategies like

fixed time slot.

• Trusted stream shepherd unit handles input streams. In a real-life DSMS, input tuples from

different sources can be collected into one multilevel trusted input stream. This unit converts

the multilevel trusted streams to single level streams and sends it to the query processor.

Besides, load shedding mechanism can be applied here to control the input tuple number

under heavy load of data inputs.
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Chapter 6

Trusted MLS-DSMS

In this chapter, we first present the prototype of trusted MLS-DSMS in order to compare the dif-

ferences with replicated architecture. Then we explain query rewriting and optimization process

specially for trusted DSMS. After that, we present algorithms about query sharing across different

levels in trusted system.

6.1 Trusted Prototype

Figure 6.1: Trusted MLS DSMS Architecture
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Compared with replicated design, in trusted DSMS there is only one trusted query processor

which handles all registered queries in different levels. All queries and input data interact with

system components like operators and synopses which are generated by the same processor. So

issues like performance improvement and security protection are more complicated than replicated

architecture. Now we explain the key components one by one.

Trusted command unit is responsible for handling client communication, authentication, and

query processor instantiation. The command unit is trustedand it accepts queries from users with

different security levels. Each user query needs to be associated with a security level that corre-

sponds to the level at which the query was submitted. Theauthentication moduleis built in the

trusted command unit to perform user authentication and security level verification. User authenti-

cates by providing user name and password when connecting tothe DSMS host. The authentication

module then uses this information to retrieve the security level for the particular user. The trusted

command unit sends the users (query) level and registrationinformation to thequery rewriter. In

addition, command unit still controls the query operationslike commit and abort. After command

unit receives first query register request, it initiates a unique trusted query processor. This processor

will run all queries from different users.

Trusted query rewriter performs authorization check by comparing requesting datawith query

level. Since query authorization check is done before plan generation and execution, the system

is able to reject unauthorized queries which cause securityviolations. The query is rewritten and

optimized and submitted for further sharing analysis and plan generation inplan analyzer. The

authorization check, rewriting, and optimization are described in the next section.

Trusted interpretation unit is responsible for generating query plans that involve computation

sharing of queries and for setting up the operators in the scheduler. After theplan analyzerreceives
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revised queries from the query sanitizer module, it checks the sharing possibility of the new coming

query with any of the currently executing queries’ operator(s), such as window, select, project,

join, and aggregate operators. Thebuffer in this unit maintains the query level information and

execution plans for all existing queries. We have also modified the three built-in interpretation

components (parser, semantic interpreter,and logical plan generator) and the execution unit of

the query processor to filter tuples within a window based on security levels.

Trusted query processor run all queries from different users and there is only one in the system.

Operators from all queries are prioritized by the trusted scheduler.

Trusted stream shepherd unit handles input streams. In centralized DSMS, input tuples from

different sources can be collected into one multilevel trusted input stream. This unit is able to

activate load shedding mechanism when the system is under heavy load situation.

6.2 Secure Query Rewriting and Optimization

In this section, we discuss how queries submitted by users logged on at a security level are rewritten

in a secure form. Recall that queries are submitted by the users logged in at a given security level.

The streams that are input to the DSMS, which are referred to as source streams, also have a

security level. The individual tuples in the streams are also associated with a security level. Note

that, the level of tuple in a stream must be dominated by the level of the stream. The schema of any

stream in our model must consist of an attribute, which we refer to as level. The input tuples of the

source stream have a level value that is assigned by the source that generates it. The security level

of each tuple in the streams generated by DSMS is assigned a value generated by the system. Users

can submit queries based on the level, but cannot change its value. In the following examples, we

are using four different security levels U<C<S<TS and input streams Vitals and Positions.
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Consider the following queryQ1.

Q1: SELECT AVG(bp) FROM Vitals[Rows 100]

The response to this query depends on the level of the user. TSusers compute the average

blood pressure of 100 tuples at a time, each tuple may belong to any security level. When the same

query is issued by a C user, the response consists of the average blood presssure of 100 tuples of

soldiers belonging to U or C level.

Q1’: SELECT AVG(bp) FROM Vitals[Rows 100]

WHERE level in {U,C};

Some may argue that the above query rewriting (Q1’) is adequate for providing the response to

the C user. However, in this case, some soldiers in the set of 100 who are at level TS or S will not

be used for the average computation. Thus, the average will be computed on less than 100 soldiers.

This is clearly not desirable. Moreover, this also causes a security breach. It will be possible for

users at level C to know how many soldiers are at the S or TS level. Using the available operators

in CQL, we cannot express this query. In fact, there are no stream-to-stream operators in CQL.

Recall that we’ve proposed the stream-to-stream operator that will provide a filter based on the

security level and prior to the application of the window operator as demonstrated below.

Q1": SELECT AVG(bp) FROM Vitals[Rows 100 level in {U,C}];

Often times, queries with non-blocking operators do not have any window clause. QueryQ2

illustrates this point.

Q2: SELECT bp FROM Vitals;

Q2 is equivalent to the following query.

Q2’: SELECT bp FROM Vitals[Range Unbounded];
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Consequently, depending on the users who have submitted thequery, a filter can be applied

based on the security level to the window operations. This filter is automatically added by the

system. Thus, if a user at level S issues queryQ2, the query rewriting algorithm transforms it into

Q2” shown below.

Q2": SELECT bp FROM Vitals[Range Unbounded level in {U,C,S} ];

Users are also allowed to specify the filter condition in the window clause. In such a case, the

user specified filter is applied in conjunction with the system specified filter. For example, a user

at level TS may specify the following queryQ3.

Q3: SELECT AVG(bp) FROM Vitals[Rows 100 level in {U,C,TS}];

Our query rewriting algorithm will apply the system imposedconjunct based on the security

level: {U,C,TS} ∩ {U,C,S,TS} = {U,C,TS}, then transform it into the following queryQ′

3.

Q3’: SELECT AVG(bp) FROM Vitals[Rows 100 level in {U,C,TS}] ;

Note that, if a user at level S submitted queryQ3, such a query would be denied because the

user is requesting information that he is not permitted to view. Algorithm 2 gives our authorization

check algorithm. The algorithm takes as its input a queryQ, its security levelL, and the security

structure for the application that describes the set of levels and their dominance relations. The set

of streams in queryQ is denoted by the setQ.stream, whereQ.stream = {S1, S2, S3, . . . , Sn}

such thatn ≥ 1. LetWi be the window associated with streamSi. Let σi.level be the level clause

associated with the selection condition andWi.level be the set of levels associated with window

Wi. Note that, for a given stream,Wi = {} if there is no window specfied withSi. Similarly,

σi = {} if there is no select condition on security levels with respect to streamSi. Lines 1 to 6

compute the set of levels that are dominated byL – we call this setdominated. Lines 8 to 10 check
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if the set of specified levels in the window clause is a subset of dominated. Lines 11 and 12 check

is the select condition on the set of levels is a subset ofdominated. If either of these conditions is

violated for any stream, the authorization check fails. Otherwise, it succeeds.

Algorithm 2 : Authorization Check
INPUT : Query(Q), QueryLevel(L), Security Structure(L,≤)

OUTPUT: Result

dominated = {}1

foreach l ∈ L do2

if l ≤ L then3

dominated = dominated ∪ {l}4

end5

end6

foreachSi ∈ Q.Stream do7

if Wi.level 6⊆ dominated then8

return Authorization Failed9

end10

if σi.level 6⊆ dominated then11

return Authorization Failed12

end13

end14

return Authorization Passed15

Consider the following queries submitted by the users at level S.Q4 andQ5 will fail the autho-

rization checks, butQ6 will pass the test.

Q4(S): SELECT AVG(bp)

FROM Vitals[Range 3 minutes level in {TS,C,U}];

Q5(S): SELECT bp FROM Vitals Where level in {C,U,TS};

Q6(S): SELECT AVG(bp)

FROM Vitals[Range 3 minutes level in {S,C,U}];

Once a query successfully passes the authorization tests, the query rewriting algorithm trans-
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forms it into a form that ensures that the query can view only the appropriate tuples. Our rewriting

algorithm is given in Algorithm 6. Lines 1 – 6 creates the set of levels that are dominated by the

query levelL; this set is referred to asdominated. Lines 7 – 10 transform the streams without

windows to those with windows where rows are unbounded. In the absence of a filter clause, the

Wi.level is assigned the value ofdominated.

Algorithm 3 : Secure Query Rewriting
INPUT : AuthorizedQuery(Q), QueryLevel(L), Security Structure(L,≤)

OUTPUT: Q′ representing the rewritten query

dominated = {}1

foreach l ∈ L do2

if l ≤ L then3

dominated = dominated ∪ {l}4

end5

end6

foreachSi ∈ Q.Stream do7

if Wi = {} then8

Wi = Range Unbounded9

end10

if Wi.level = {} then11

Wi.level = dominated12

end13

end14

Consider the following queryQ7 submitted by S user. The query rewriting algorithm translates

it into Q′

7. Q7 andQ′

7 are given below.

Q7(S): SELECT bp FROM Vitals;

Q7’(S): SELECT bp

FROM Vitals [Range Unbounded level in {U, C, S}];

Once the query is rewritten in a secure form, we need to optimize it for efficient processing.
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In addition to the traditional optimizations, we give some new rules involving our new stream-to-

stream window operators. We support the different types of windows, each of which gets aug-

mented with a level clause after query rewriting. Recall that, Wi denotes the window of stream

Si andWi.level gives the set of levels associated with the window.Wi.type denotes the window

type whereWi.type ∈ {tuple based, time based, partition by}. Each streamSi may also have a

select condition, denoted byσi.level, that filters the result on the basis of security levels. Lines 3

– 5 checks if the intersection of window security levels withthose specified in the select condition

produces a null set. If so, an error message is returned to theuser. Otherwise, depending on the

type of window, the window filters and select security level clauses are rewritten. This is done in

lines 6 – 13.
Algorithm 4 : Secure Query Optimization

INPUT : SecureQuery(Q), QueryLevel(L), Security Structure(L,≤)

OUTPUT: Q′ representing the optimized query

foreachSi ∈ Q.Stream do1

if σi.level 6= {} then2

if Wi.level ∩ σi.level = {} then3

return Error: No Output Query4

end5

if Wi.type ∈ {time based, partition by} then6

Wi.level = Wi.level ∩ σi.level7

σi.level = {}8

end9

if Wi.type = tuple based then10

if Wi.level ⊆ σi.level then11

σi.level = {}12

end13

end14

end15

end16
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Consider the following queries submitted by TS users.Q8 returns an error.Q9, Q10, andQ11

are optimized toQ′

9, Q
′

10, andQ′

11 respectively.

Q8(TS): SELECT AVG(bp)

FROM Vitals[Range 3 minutes level in {TS,C,U}]

WHERE level in {S};

Q9(TS): SELECT AVG(bp)

FROM Vitals[Range 3 minutes level in {TS,C,U}]

WHERE level in {S,C,UC};

Q9’(TS): SELECT AVG(bp)

FROM Vitals[Range 3 minutes level in {C,U}];

Q10(TS): SELECT AVG(bp) FROM Vitals[Rows 100 level in {C}]

WHERE level in {C,U};

Q10’(TS): SELECT AVG(bp) FROM Vitals[Rows 100 level in {C}] ;

Q11(TS): SELECT AVG(bp)

FROM Vitals[Partition By level in {TS,S,C,U} Rows 100]

WHERE level in {C};

Q11’(TS): SELECT AVG(bp)

FROM Vitals[Partition By level in {C} Rows 100];

6.3 Query Execution and Sharing

Before query execution can proceed, the query plan must be generated. In this work, we represent

a query plan in the form of a tree which we refer to as an operator tree defined in Chapter 5.3.1. We

assume that the selection condition of the queries are written in a conjunctive normal form. Note

that, many operator trees may be associated with a query corresponding to the different plans.

However, we show just one such tree for each query.
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Table 6.1: Operator Nodes and Specific Parameters
Ni.op Ni.parm

select Ni.parm.cond = set of conjuncts of theselect

proj Ni.parm.attr = set of attributes listed in theproject

{avg, count, sum,max,min} Ni.parm = {}

Ni.op = join Ni.parm.cond = set of conjuncts in thejoin

tuple win Ni.parm.row = no. of rows

andNi.parm.level = the set of levels of tuples

that may be present in the buffer

time win Ni.parm.range = time interval for which the tuples

andNi.parm.level = the set of levels of tuples

part win Ni.parm.attr = attribute for deriving partitions,

Ni.parm.row = no. of rows in the buffer,

andNi.parm.level = the set of security levels of tuples

sel win Ni.parm.level = set of levels using for filtering

to produce another stream

In Table 6.1, we describe the different types of nodes of the operator tree and the parameters

for each type. The parameters consists of various fields, notall of the fields are applicable to every

operator.

Figure 6.2 shows the two operator treesOPT (Qx) andOPT (Qy) corresponding to queriesQx

andQy as following. Note that the two queries are issued by users inS and TS level respectively.

Qx(S): SELECT COUNT(sid)

FROM Vitals[Rows 100 level in {S,C,U}]

WHERE bp > 100 and level in {S};

Qy(TS): SELECT sid

FROM Vitals[Rows 100 level in {S,C,U}]

WHERE bp > 100;

Queries in a DSMS must be executed efficiently in a resource constrained environment. Thus,

if queries can share their computation, we save on the memoryand processing costs. Towards this

end, we demonstrate how queries can be shared.
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We next formalize basic operations that are used for comparing the nodes belonging to different

operator trees. Such operations are needed to evaluate whether sharing is possible or not between

queries. We begin with the equivalence operator, which is decided by the definition “Equivalence

of Nodes”. If nodes belonging to different operator trees are equivalent, then only one node needs

to be computing for evaluating the queries corresponding tothese different operator trees. In Figure

6.2 nodesOP1 andOP4 belonging toOPT (Qx) andOPT (Qy) respectively are equivalent.

In some cases, for evaluating nodeNi belonging to operator treeOPT (Qx), we may be able

to reuse the results of evaluating nodeNj belonging to operator treeOPT (Qy). This is possible

if the nodes are related by the subsumes relationship definedbelow. Such relationship is possible

when the operators match and are non-blocking and the operator parameters are related by a subset

relation.

Definition 11. [Subsume Relation of Nodes in Trusted DSMS] NodeNi ∈ NQx
is said to be

subsumedby nodeNj ∈ NQy
, denoted byNi ⊆T Nj , whereNi, Nj are in the operator trees

OPT (Qx), OPT (Qy) and are referred to assubsumed node, subsuming noderespectively, if the

following conditions hold:

1. Condition 1:

• Case 1 [Ni.op = project]: Ni.op = Nj.op∧Ni.parm ⊆ Nj .parm∧Ni.inputQueue =

Nj .inputQueue.

• Case 2 [Ni.op = select]: Ni.op = Nj.op∧Nj .parm ⊆ Ni.parm∧Ni.inputQueue =

Nj .inputQueue.

• Case 3 [Ni.op = sel win]: Ni.op = Nj .op∧Nj .parm ⊆ Ni.parm∧Ni.inputQueue =

Nj .inputQueue.
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• Case 4 [Ni.op = tuple win andNj .op = part win]: Ni.parm.rows = Nj .parms.rows∧

Ni.parm.level ⊆ Nj.parm.level ∧Ni.inputQueue = Nj.inputQueue

2. Condition 2:Ni.op is a non-blocking operator.

Figure 6.2: Query Sharing

When nodes are related by subsume relation, then it is possible to decompose the subsumed

nodes. The decomposition tries to make use of operator evaluation of the subsuming node in order

to evaluate the subsumed node. The decomposition is formalized below.

Definition 12. [Decomposition of Subsumed Nodes in Trusted DSMS] LetNi ⊆T Nj whereNi ∈

OPT (Qx) andNj ∈ OPT (Qy). NodeNi can be decomposed into two nodesN ′

i andN ′′

i in the

following manner.

NodeN ′

i
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1. N ′

i .op = Nj .op

2. N ′

i .inputQueue = Nj.inputQueue

3. N ′

i .parm = Nj.parm

NodeN ′′

i

1. N ′′

i .op = Ni.op (if Ni.op ∈ {select, sel win, project})

N ′′

i .op = select (if Ni.op = tuple win)

2. N ′′

i .inputQueue = N ′

i .outputQueue

3. N ′′

i .parm.cond = Ni.parm.cond−N ′

i .parm.cond (if Ni.op ∈ {select, sel win})

N ′′

i .parm.attr = N ′

i .parm.attr −Ni.parm.attr (if Ni.op = project)

N ′′

i .parm.cond = {(level ∈ Ni.parm.level)} (if Ni.op = tuple win)

In Figure 6.2 nodeOP2 ⊆T OP5. OP2 can be decomposed intoOP5 andOP7.

When operator trees corresponding to two queries overlap, we can generate the merged operator

tree using same merge Algorithm in replicated MLS-DSMS. Themerged operator tree signifies the

processing of the partially shared queries. Figure 6.2 shows merging of operator treesOPT (Qx)

andOPT (Qy); the merged operator tree is shown asOPT (Qxy).

6.3.1 More Sharing Examples

By algorithms of query rewriting and optimization, as well as the definitions described above, the

trusted DSMS can now completely or partially share queries across different levels, even between

different window operators. Here we show more sharing examples.

Multilevel Complete Sharing

We now look at two examples for complete sharing analysis.
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Qa(TS): SELECT AVG(bp)

FROM Vitals[Range 3 minutes level in {TS,C,U}]

WHERE level in {S,C,U};

Qb(TS): SELECT AVG(bp)

FROM Vitals[Range 3 minutes level in {S,C,U}]

WHERE level in {C,U};

The two queriesQa andQb will be optimized as the following queryQab, so they can be

completely shared.

Qab(TS): SELECT AVG(bp)

FROM Vitals[Range 3 minutes level in {C,U}];

The following two queries use different kinds of window operators, and they are issued by

users in different levels.

Qc(TS): SELECT AVG(bp)

FROM Vitals[Partition By level in {TS,S,C,U} Rows 100]

WHERE level in {C};

Qd(C): SELECT AVG(bp) FROM Vitals[Rows 100 level in {C}]

WHERE level in {C,U};

SupposeQc is an ongoing query andQd just arrives. By queries we can seeQc computes 4

average results in different levels, and only results in level C will be return.Qd returns average

computation on tuples only in level C. EvenQc has extra computation, the result is exactly same

asQd. SoQc andQd can be completed shared.

Multilevel Partial Sharing

Similar to replicated architecture, trusted MLS-DSMS can also perform strict and loose partial

sharing between queries. Strict partial sharing provides rules to share queries using blocking op-
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erators like join and aggregation (e.g., average, minimum,maximum, etc). Consider the following

two queriesQe andQf :

Qe(TS): SELECT AVG(bp)

FROM Vitals[Rows 200 level in {TS,S,C,U}]

WHERE level in {C,U};

Qf(TS): SELECT AVG(pr)

FROM Vitals[Rows 200 level in {C,U}]

WHERE level in {TS,S,C,U};

Qe cannot be partially shared byQf because the two tuple-based window operators are neither

in equal not subsumed relation. In other words, input tuple expiration forQe can be triggered when

a new tuple in level TS and S comes, whileQf does not. So the average computations between

two queries use different set of buffered 200 tuples.

Let us consider another pair of queriesQg andQh:

Qg(S): SELECT V.sid, bp, pr

FROM Vitals[Range 2 Minutes level in {S,U}] V,

Position[Range 2 Minutes level in {S,U}] P

WHERE V.sid = P.sid AND level in {C,U};

Qh(S): SELECT V.sid, lat, lon

FROM Vitals[Range 2 Minutes level in {C,U}] V,

Position[Range 2 Minutes in {C,U}] P

WHERE V.sid = P.sid AND level in {S,U};

After query rewriting and optimization,Qg andQh are transformed as following queriesQ′

g

andQ′

h. The join operation can be partially shared between them because there are no subsumed

relation between window operators by Definition 11.

Qg’(S): SELECT V.sid, bp, pr

FROM Vitals[Range 2 Minutes level in {U}] V,
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Position[Range 2 Minutes level in {U}] P

WHERE V.sid = P.sid;

Qh’(S): SELECT V.sid, lat, lon

FROM Vitals[Range 2 Minutes level in {U}] V,

Position[Range 2 Minutes in {U}] P

WHERE V.sid = P.sid;

Non-blocking operators such as selection and projection can be shared in loose partial sharing.

We try to reuse partial processing results from another query with higher level section in where

clause specification. Here is an example for loose partial sharing.

Qi(S): SELECT sid, bp FROM Vitals[Rows 100 level in {C,U}]

WHERE bp > 120 AND level in {C,S};

Qj(TS): SELECT sid, pr FROM Vitals[Rows 100 level in {S,C,U} ]

Where bp > 120 AND bp < 180 AND level in {C};

After query rewriting, the two queries are changed toQ′

i andQ′

j .

Qi’(S): SELECT sid, bp FROM Vitals[Rows 100 level in {C}]

WHERE bp > 120;

Qj’(TS): SELECT sid, pr FROM Vitals[Rows 100 level in {C}]

WHERE bp > 120 AND bp < 180;

Q′

i can be partially shared byQ′

j because select operators SQ′

j
⊆T SQ′

i
.

6.4 Scheduling Methods

To further improve performance without security violation, we are proposinground-robin with

dynamic threshold control algorithm. The scheduler first reorders all queries from lowest to

highest level, then execute the operators of particular level with a fix small amount of inputs in

each round like round-robin.
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A threshold control is to detect and change the execution wayof some operators in certain level.

If those operators consume most execution time in schedulerwhich causes starvation problem or

potential covert channels (e.g., takes 80% of execution time per round), all operators in that level

will be given two set ofpenalties: percentage penalty, the percentage of the operators in certain

level can be scheduled in each round;round penalty, the number of rounds of the penalty will last.

We use two random valuesα (e.g., from 0.3 to 0.8) andβ (e.g., from 1 to 10) as the two penalty

parameters respectively. Suppose there are 10 operators fromO1 to O10 in the scheduler.O1 and

Q2 are from high level queries and the others are from low level queries issued by a malicious user.

Suppose each operator takes equal time for executing the same amount inputs, and the scheduler

will execute those operators as following rounds:

• In round 1, scheduler runs all 10 operators and notices that operators in low level consumes

80% execution time. So all low level operators are put into penalty set and only part of them

(e.g, halfα = 0.5) can be executed in each round (only 4 of 8 operators fromO3 to O10 will

scheduled in next round). Besides, the penalty will last 10 rounds (β = 10).

• In round 2, scheduler runs operators fromO1 to O6. While O7 to O10 are hold without

execution.

• In round 3, scheduler runs operatorsO1, O2 andO7 toO10. Suppose the malicious low level

user issues new queries with 4 operatorsO11 to O14. The four queries are added to the low

level penalty queue, and parametersα andβ are changed (e.g.,α = 0.25,β = 6).

• In round 4, sinceα = 0.25, there are 12 * 0.25 = 3 operators from penalty set will be sched-

uled. So the scheduler runsO1, O2 andO11 to O13. If there is more low level queries come,

the two parameters will be changed with random values.
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By this algorithm two parametersα andβ are changed when there is a query coming or can-

cellation. Note that once the penalty set is established, the penalty will continuous for certain

rounds even though the operator number drops below threshold α by cancelling some queries in

this level. The consistent penalty and dynamic threshold prevent covert channels where high level

queries manipulate the response time of low level query by adding/cancelling numbers of high

level queries in certain time pattern. Besides, the performances can be improved since time slots

by levels are cancelled and there is no idle slot for specific level during execution.

On the other hand, this method is not perfect because penalties are applied to all queries in cer-

tain level if one of them violates threshold control. Such approach prevents covert channel threats

but affect the performances of other legal queries. In future work we plan to find a better detec-

tion algorithm can pinpoint the malicious user and suspend only those queries in the scheduler. In

current trusted MLS-DSMS implementation, we use round-robin scheduling method in order to

provide better performance.

84



Chapter 7

Distributed MLS-DSMS

System availability is one of three fundamental requirements in database security. In this chap-

ter, we propose a simple distributed MLS-DSMS. This work hasbeen presented in our newest

ASDN’13 paper [76].

In our distributed model, we assume there is a set of servers each with its unique id. Each

server has a preassigned security level which is never changed. The set of servers having the

same security level forms a group. Each server maintains a list of authorized users for that level.

Consequently, a client can submit his query to any server at the particular level. The server to

which a client submits his query is referred to as themaster. The other servers in the same level

act asslaves. The master coordinates the execution of the query. It receives the results from the

slaves and forwards them to the user. The members in a group communicate with each other with

respect to their load and status. Consequently, the master is able to achieve load balancing for the

given queries.

7.1 Prototype Implementation

In the following, we describe our prototype implementation.

7.1.1 Server Communications

Each startup DSMS server has a unique server ID (sid) as IP address and the port number, as

well as an pre-assigned security levelLs. Online servers with same security level form agroup
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Figure 7.1: Group Construction

for communication. Server information likesid and current cpu usage (cu) are sent to a particular

multicastgroupcontinuously. The servers are listening to others in the same group for getting their

peers’ information.

Communications between servers are allowed only if they arein the same group. Anip table

recording thesid andcu of available members in the group are kept in each server. Since the avail-

ability and CPU usage of servers are changed in real-time, the ip tableis also updated accordingly.

Figure 7.1 gives an example of how the two groups are constructed. Servers A, B and C in the

same level forms a group in level S. They are exchanging the server info to each other. Each server

maintains anip tablecontains all server info in the group. Servers D and E forms another group

in TS level. The two groups are disjoint.

7.1.2 Distributed Processing

Once a group is constructed, any server inside can handle therequest from clients in the same

security level. Now we explain distributed processing stepby step.
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Figure 7.2: Distributed DSMS Architecture

Client Connection:

Our prototype is showed in Figure 7.2. Each server maintainsa profile of authorized users whose

login level is identical to the server level. Authentication is performed when a user runs a client

software to connect to a server. Only the user whose usernameand password are present in the

profile are authorized for further operations. Recall that the server to which a user successfully

connects is called the master server. Other servers in the same group as the master are referred to

as slaves. Master acts as a dispatcher and distributes the query load for execution to slave servers.

Query Registration:

Once a user has been authenticated, the master uses all the available members in the group to act

as slaves and provide processing power for queries submitted by user. The client begins to register

input stream schemes in master and all slave servers. Besides, a query registration message from

client is redirected to theinterpretation unitin slaves which translates the interpreted query to
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a logical query plan (a link of operators). The naive physical plan is also generated. It then

redirects the user entering info to all available members inthe group and sends registration and

query generation commands to all slaves. Note that once the user begins registration, master would

not allow new server to participate in the processing of queries submitted by this user.

The incoming streams are connected to the query redirectionunit by thestream shepherd unitin

master. The stream shepherd unit is trusted and it will filterout tuples from the strictly dominating

level before sending it to the redirection unit. For example, the TS level input tuple will not enter

the redirection unit of master in level S. Output connectionbetween master and client is established

after the queries are registered.

Plan Generation:

Once the master receives command from the client indicatingthat all queries have been registered,

it requests all slaves for optimizing the naive physical query plans created in the previous step.

Also, graphs of physical plans are generated for user view. The generated physical plans are

instantiated in the execution unit of all slave servers.

Query execution:

Once thestart query execution commandis issued, master startsdistributed schedulerto dispatch

loads in different slave servers. In our DSMS system, all data that arrives within one second

are taken as aninput chunkwhich is handled by one slave. For simple queries without window

specification, the master delivers the whole chunk to a slave, waits and receives the execution

results which it sends back to the user.

Algorithm 5 is running continuously in master during query execution. Group detector and

distributed scheduler in our prototype coordinate together perform load distribution. There are two
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major functions in the distribution algorithm:

• The master reads CPU usagecu from every slave server. If the slave is not in heavy load (in

our casecu is smaller than 90%), the master can deliver a chunk of input data to the slave.

Otherwise, the “busy” slave is not considered to participate in this computation round.

• In every 1 minute, master server will update the existence and CPU usage information of

slaves in its ownip table. Offline servers will be deleted from this round and newcu values

are used for next load distribution scheduling.

Master acts as a dispatcher and distribute the query processing workload to slaves – this is,

however, transparent to the user.

7.2 Input Chuck Construction

CQL window operators are frequently used in streaming processing system. They are generated

as the bottom most operators in a query plan, and used to buffer input tuples within a fixed size

or a time period for further processing. For computations ofblocking operators such as join and

aggregation, the accuracy of processing results relies on previous and new coming inputs stored in

the buffer. In distributed DSMS, however, the inputs are divided asisolatedchunks then sent to

different slave machines. To preserve the data continuity in buffer between different chucks, our

distributed DSMS combines extra data with the current inputdata to current scheduled slave.

Definition 13. [Input Chuck Construction for Window Operators] For a CQL query using window

operator with input streamS, an input chuckIS = IwS + IcS, whereIwS = ΣSi(Ni), Si(Ni) represents

the lastN inputs from streamS in timestampi; IcS is the new data arrived in current timestamp.
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With the construction formula, we explain how input chucks are constructed by three example

queries. There are three queriesQa, qB, Qc submitted in distributed DSMS systems. From times-

tamp 1 to 4, the numbers of input data in VitalsV stream are 200, 50, 40, 70. And the numbers of

input data in PositionsP stream are 50, 30, 10, 80.

Qa: SELECT AVG(bp) FROM Vitals[ROWS 100];

Qb: SELECT (bp) FROM Vitals[RANGE 2 Seconds];

Qc: SELECT * FROM Vitals[ROWS 80], Positions[ROWS 80];

From Table 7.1, tuple-based window operator in master system should keep the part of previous

inputs received in earlier timestamps. For time-based window, the master buffers all inputs within

time period in window specification.

To illustrate the computation details in different slaves,let us see another queryQd runs in 1

master and 2 slave machinesS1 andS2. In timestamp 1 and 3, the new coming inputs are redirected

to S1 while in timestamp 2 the inputs are sent toS2.

Qd: Select AVG(bp) from Vitals[Rows 3];

From Table 7.2, in all timestamps (ts) except ts = 1, we can seethere is an extra legacy chuck

construction step before computation. The reason is obvious because the inputs from previous

timestamps are meaningful in current stage. With this chuckconstruction for every running slave

server, the outputs can be correctly sent back to user.
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Algorithm 5 : DSMS Load Distribution
INPUT : masterm, slave setS, current CPU usagecu, server infosid, refresh timert, IP

multicasting message in group

Read slave setS from m’s ip table;1

Start refresh timert;2

while StopExecution == falsedo3

foreachslave servers ∈ S do4

if s → cu ≤ 90% then5

m distribute an input chunk to addresss → sid6

end7

else8

Skip load distribution to addresss → sid9

end10

end11

if t ≥ 1 minutethen12

foreachslave servers ∈ S do13

Read IP multicasting messages from the group14

if s → sid is not foundthen15

Deletes from ip table inm16

end17

else18

Updates → cu using the updated info from the message19

end20

end21

Restart timert22

end23

end24
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Table 7.1: Input Chucks Construction Examples
Qa Qb Qc

ts=1, IV =200 IV =200 IV =200,IP=50

V =200, IwS =0, IwS =0, IwS =0, IcS=200

P=50 IcS=200 IcS=200 IwP =0, IcP=50

ts=2, IV =150 IV =250 IV =130,IP=80

V =50, IwS =V1(100), IwS =V1(200), IwS =V1(80), IcS=50

P=30 IcS=50 IcS=50 IwP =P1(50), IcP=30

ts=3, IV =140 IV =90 IV =120,IP=90

V =40, IwS =V1(50)+V2(50), IwS =V2(50), IwS =V1(30)+V2(50), IcS=40

P=10 IcS=40 IcS=40 IwP =P1(50)+P2(30), IcP=10

ts=4, IV =170 IV =110 IV =150,IP=160

V =70, IwS =V1(10)+V2(50)+V3(40), IwS =V3(40), IwS =V2(40)+V3(40), IcS=70

P=80 IcS=70 IcS=70 IwP =P1(50)+P2(30)+P3(10),

IcP=80

Table 7.2: Computation in Different Slaves
Input(ts, sid, bp,slave) Buffer(ts,sid,bp) AVG(sign,result)

(1,AAA,125,S1) (1,AAA,125) (+,125)

(1,BBB,100,S1) (1,AAA,125),(1,BBB,100) (-,125),(+,112.5)

(1,CCC,150,S1) (1,AAA,125),(1,BBB,100),(1,CCC,150) (-,112.5), (+,125)

Legacy Buffer Construction (1,AAA,125),(1,BBB,100),(1,CCC,150)

(2,DDD,110,S2) (1,BBB,100),(1,CCC,150),(2,DDD,110) (-,125), (+,120)

Legacy Buffer Construction (1,BBB,100),(1,CCC,150),(2,DDD,110)

(3,EEE,160,S1) (1,CCC,150),(2,DDD,110),(3,EEE,160) (-,120), (+,140)
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Chapter 8

Stream Audit Cloud Application

In this chapter, we extend MLS-DSMS to a secure stream audit applications. We are proposing

an information flow control model adapted from the Chinese Wall policy [58] that can be used to

provide secure processing of streaming data generated frommultiple organizations. The work of

CW-DSMS development has been presented in our newest SACMAT’13 paper [75].

A cloud contains a set of companies that offer services. In order to keep the cloud operational,

it is important to detect security and performance problemsin a timely manner. Thus, auditing live

events streaming from the cloud is very essential. Servicesoffered in a cloud can be competing or

complementing. To detect attacks and performance issues, the cloud has to be audited as a whole,

though the audit events may be generated by competing or complementing companies. Chinese

Wall policy aims to protect disclosure of company sensitiveinformation to potentially competing

organizations, but does not deal with complementing organizations. In a cloud, companies are

organized into various domains based on the types of services they provide. Each of these domains

forms aconflict of interest(COI) class. Companies in the same COI class are in direct competi-

tion. We must aim to prevent leakage of a company’s sensitiveinformation to other organizations

belonging to the same COI class. Companies that offer complementing services can be assigned

a complementing interest (CI) class. Companies in the same COI class cannot be in the same CI.

Companies belonging to the same CI have no such direct competition and do not require trusted

entities to manage their information.
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Streaming audit data generated by various organizations must be analyzed in real-time to detect

the presence of various types of attacks. A company may want to audit its own data to detect

malicious insider threats. Sometimes it may be needed to detect a denial-of-service attack for a

particular type of service offered by companies in a COI class. On the other hand, detecting the

delay between the service request and response may involve analyzing audit streams in a service

chain invocation that has multiple companies belonging to some CI class. For each such case, it

should be possible to detect the attack without causing a company’s sensitive information from

being leaked to its competitors.

To address secure stream auditing, we start with identifying the access requirements and the

information flow constraints for processing streaming audit data in a cloud computing environment.

We first adapt the Chinese Wall policy formulated by Sandhu [58] to formalize the information flow

constraints in clouds. Then we demonstrate how cloud computing queries can be formulated and

provide an architecture for executing such queries, using some ideas from replicated MLS-DSMS.

By applying the sharing strategies from MLS-DSMS system, wealso implement a prototype to

demonstrate the feasibility of our approach and show how theperformance is impacted by the

information flow constraints.

8.1 Information Flow Model

In the following, we present an information flow model for cloud applications to protect against

improper leakage and disclosure. We provide an informationflow model that is adapted from the

lattice structure for Chinese Wall proposed by Sandhu [58].

We have a set of companies that provide services in the clouds. The companies are partitioned

into conflict of interest classes based on the type of services they provide. Companies providing
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the same type of service are in direct competition with each other. Consequently, it is important

to protect against disclosure of sensitive information to competing organizations. We begin by

defining how the conflict of interest classes are represented.

Definition 14. [Conflict of Interest Class Representation:]The set of companies providing ser-

vice to the cloud are partitioned into a set ofn conflict of interest classes, which we denote by

COI1, COI2, . . ., andCOIn. Each conflict of interest classCOIi consists ofmi companies,

wheremi ≥ 1, that isCOIi = {1, 2, 3, . . . , mi}.

A set of companies, who are not in competition with each other, provide complementing ser-

vices in the cloud. A single company can provide some service, and sometimes multiple companies

may together offer a set of services. In the following, we define the notion of complementing in-

terest (CI) class and show how it is represented.

Definition 15. [Complementing Interest Class Representation:] The set of companies providing

complementing services is represented as an n-element vector [i1, i2, . . . , in], whereik ∈ COIk

∪ {⊥}. ik =⊥ signifies that it does not contain services from any company in COIk. ik ∈ COIk

indicates that it contains services from the correspondingcompany inCOIk. Our representation

forbids multiple companies that are part of the same COI class from being assigned to the same

complementing interest class.

We next define the security structure of our model. Each data stream, as well as the individual

tuples constituting it, is associated with a security levelthat captures its sensitivity. Security level

associated with a data stream dictates which entities can access or modify it. Input data stream

generated by an individual organization offering some service has a security level that captures

the organizational information. Input streams may be processed by the DSMS to generatederived
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streams. Derived data streams may contain information about multiple companies, some of which

are in the same COI class and others may belong to different COI classes. Before describing how

to assign security levels to derived data streams, we show how security levels are represented.

Definition 16. [Security Level Representation:]A security level is represented as ann-element

vector[i1, i2, . . . , in], whereij ∈ COIj ∪ {⊥} ∪ {T}. ij =⊥ signifies that it does not contain

information from any company inCOIj; ij = T signifies that the data stream contains information

from two or more companies belonging toCOIj; ij ∈ COIj denotes that it contains information

from the corresponding company inCOIj.

Consider the case where we have 3 COI classes, namely,COI1, COI2, andCOI3. COI1,

COI2, andCOI3 have 5, 3, and 2 companies, respectively. The audit stream generated by Com-

pany 5 inCOI1 has a security level of[5,⊥,⊥]. Similarly, the audit stream generated by Company

2 in COI3 has a security level[⊥,⊥, 2]. When audit streams generated from multiple companies

are combined, the information contained in this derived stream has a higher security level. For

example, audit stream having level[5,⊥, 2] contains information about Company 5 inCOI1 and

Company 2 inCOI3. It is also possible for audit streams to have information from multiple compa-

nies belonging to the sameCOI class. For example, a security level of[5,⊥, T ] indicates that the

data stream has information from Company 5 inCOI1, does not contain information fromCOI2,

and information about multiple companies inCOI3. We also have a level[⊥,⊥,⊥] which we

call public and that has no company specific information. The level[T, T, T ] correspond to level

trustedand it contains information pertaining to multiple companies in each COI class and can be

only accessed by trusted entities. We next define dominance relation between security levels.

Definition 17. [Dominance Relation:] Let L be the set of security levels,L1 and L2 be two
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security levels, whereL1, L2 ∈ L. We say security levelL1 is dominated byL2, denoted by

L1 � L2, when the following conditions hold: (∀ik = 1, 2, . . . , n)(L1[ik] = L2[ik] ∨ L1[ik] =⊥

∨L2[ik] = T ). For any two levels,Lp, Lq ∈ L, if neitherLp � Lq, nor Lq � Lp, we say thatLp

andLq are incomparable.

The dominance relation is reflexive, antisymmetric, and transitive. The levelpublic, denoted

by [⊥,⊥,⊥], is dominated by all the other levels. Similarly, the leveltrusted, denoted by[T, T, T ],

dominates all the other levels. Note that the dominance relation defines a lattice structure, where

level public appears at the bottom and the leveltrustedappears at the top. Incomparable levels

are not connected in this lattice structure. In our earlier example, level[5,⊥,⊥] is dominated

by [5,⊥, 2] and [5,⊥, T ]. [5,⊥, 2] is dominated by[5,⊥, T ]. That is, [5,⊥,⊥] � [5,⊥, 2] and

[5,⊥, 2] � [5,⊥, T ]. [5,⊥,⊥] and[⊥,⊥, 2] are incomparable.

Each data stream is assigned a security level. Each of the tuples constituting the data stream

also has a security level assigned to it. The security level of the individual tuples in a data stream

are dominated by the level of the data stream. When a DSMS operation is executed on multiple

input tuples, each having its own security level, an output tuple is produced. The security level of

the output tuple is the least upper bound (LUB) of the security levels of the input tuples.

Foreign Cloud

Client

Cloud Manager

Virtual Client Proxy

Session Manager

Security Token Service (STS)

Secure Conversation
...

Vertically Compatible 

Services Group

Cro
ss cloud 

event

Figure 8.1: Multi-Tier Architecture of a Cloud
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In audit application, various types of queries are executedto detect security and performance

problems. Each continuous queryQi, submitted by a process, inherits the security level of the

process. Similar to MLS-DSMS, we require a queryQi to obey the simple security property and

the restricted⋆-property of the Bell-Lapadula model [16].

1. QueryQi with L(Qi) = C can read a data streamx only if L(x) � C.

2. QueryQi with L(OP i) = C can write a data streamx only if L(x) = C.

Note that, for our example, a process executing at level[5,⊥, T ] can execute streams belonging

to Company 5 inCOI1 and all companies inCOI3 and also streams derived from them. Thus, the

process is trusted w.r.t.COI3, but not w.r.t. the other COI classes. Our information flow model

thus provides a finer granularity of trust than provided by the earlier models. Our goal is to allow

information flow only from the dominated levels to the dominating ones. All other information

flow, either overtly or covertly, should be disallowed by ourarchitecture.

8.2 Continuous Query Processing Architecture

In this section, we present our example application that motivates the need for secure stream pro-

cessing in cloud computing environments. We have a service that aims to prevent and detect

attacks in real-time in the cloud. Such a service provides warning about various types of attacks,

often involving multiple organizations.

Figure 8.1 shows a multi tier architecture of the cloud adopted from [74]. Various types of

auditing may take place in the cloud. The first level is thecompany auditing tier, not explicitly

shown in Figure 8.1, is represented by the users connected tosome service. In this tier, the activities

pertaining to an organization are analyzed in isolation. The next level is theservice auditing
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tier, identified by shaded ellipses that contain sets of resources and services. Each shaded ellipse

depicts vertically compatible services or resources; thisimplies the services or resources that can

be functionally substituted for each other, possibly on demand. Thecloud auditing tieris shown

with connecting dark arrows, which depicts the internal communication within the cloud due to a

service invocation chain.

Various types of audit streams must be captured to detect thedifferent types of attacks that

may take place in a cloud. The company auditing tier logs the activities of the various users in

the organization. If the behavior of an authorized user doesnot follow his usual pattern, we can

perform analysis to determine if the user’s authenticationinformation has been compromised. This

tier is responsible for analyzing the audit streams of individual companies in isolation. Typically,

at this layer, the audit streams generated by a single company are analyzed.

The service auditing tier logs information pertaining to the various companies who provide

similar services. Session Manager at this tier can detect whether there is a denial-of-service attack

targeted at a specific type of service. Session Manager analyzes audit streams generated from mul-

tiple competing organizations, so we need to protect against information leakage and corruption.

In short, the Session Manager needs to analyze data from one or more companies belonging to the

same COI class.

The cloud auditing tier collects audit information pertaining to a service invocation chain and

is able to detect the presence of man-in-the-middle attack.Cloud Provider is responsible for an-

alyzing audit streams from multiple organizations associated with service invocation chains, but

the organizations may not have conflict of interest. Thus, atthis tier, the audit streams from the

companies belonging to one or more CI classes are analyzed.

In order to detect and warn against these attacks, continuous queries must be executed on the
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streaming data belonging to various organizations. Queries must be processed such that there are

no overt or covert leakage of information across competing organizations.

We propose the architecture shown in Figure 8.2 that provides a way to capture events from the

cloud, monitor them, and trigger alerts. The architecture is based on cloud computing [74], data

stream processing [26, 12, 8, 30], event processing [25, 3],Chinese wall security [58], replicated

and trusted multilevel database management [2] and replicated MLS-DSMS in previous chapter.

As shown in Figure 8.2 there are several services offered in the cloud. Data generated by these

servers are propogated to the DSMS. For this paper, we consider a centralized DSMS architecture.

Compatible services are grouped and they interact based on client needs. Each of the service and

other servers contain an event detector to monitor and detect occurrence of interests. The detectors

sanitize and propagate the events to the data stream management system, which arrive at the stream
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source operator. This operator checks for the level of the incoming audit events and propagates

them to the appropriate query processor’s input queue. The query processor architecture is based

on the replicated model, where there is a one-to-one correspondence between query processors and

security levels. A query specified by a user at a particular level is executed by the query processor

running at that level. Also the query processor can only process data that are dominated by the

query processor level. This replicated approach allows theuse of untrusted query processors. After

processing the query results are disseminated to authorized users via the output queues of queries.

In addition to the query processors and stream source operator the data stream management system

contains various other components (trusted and untrusted)as discussed in the implementation and

experimental evaluation section.

Other alternative architectures include trusted and hybrid. In the trusted architecture there

will be only one query processor. This query processor is trusted and all continuous queries are

executed in this processor. This architecture will have less administrative overhead and also useful

during sharing of continuous queries. The disadvantages include creating trusted code is hard, and

threat of covert and overt channels. In the hybrid architecture, we can interleave the queries based

on the CIs and also have separate processor for handling trusted and public tuples. In this work we

consider the replicated architecture as the first step to runit in stream audit application.

8.3 Query Processing in Cloud DSMS

In this section, first we discuss the different types of queries that can be executed on cloud audit

data at the different tiers.
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8.3.1 Cloud CQL Queries

Consider a simple application that tries to detect example denial-of-service attacks in the cloud.

We have two conflict of interest classes denoted byCOI1 andCOI2. The constituent companies

in each COI class is given by,COI1 = {1, 2} andCOI2 = {A,B,C}. Examples of security

levels in our configuration are[⊥,⊥] (public knowledge),[T, T ] (completely trusted),[1,⊥] (data

from 1), [⊥, T ] (trusted w.r.t.COI2), [1, B] (data from 1 andB), [1, T ] (data from 1 inCOI1 and

trusted w.r.t.COI2). Continuous queries are executed at various tiers to detect performance delays

and possibly denial-of-service (DoS) attacks. In any giventier, different types of DoS attacks may

occur – some involving the data belonging to single organizations, others involving data belonging

to multiple organizations. Thus, a tier can have query processors at different levels, each of which

executes queries on data that it is authorized to view and modify.

We consider a single data stream, calledMessageLog , that contains the audit stream data

associated with message events, such assend andreceive . MessageLog is obtained from

SystemLog by filtering the events related to sending and receiving the messages. Note that,

MessageLog in reality may contain many other fields, but we only deal withthose that are

pertinent to this example. The various attributes inMessageLog areserviceId , msgType ,

sender , receiver , timestamp , outcome . serviceId is a unique identifier associated

with each service;msgType gives the type of message which is eithersend or receive ;

sender (receiver ) gives the id of the organization sending (receiving) the message;timestamp

is the time when the event (send or receive ) occurred; outcome denotessuccess or

failure of the event. In addition to these attributes, we have an attribute referred to aslevel

that represents the security level of the tuple. Thelevel attribute is assigned by the system and
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it cannot be modified by the user.

MessageLog(serviceId, msgType, sender, receiver,

timestamp, outcome)

The queries are expressed using the CQL language [9]. We describe the various types of queries

that can be executed at the various tiers.

8.3.1.1 Company Auditing Tier

In the company auditing tier, companies have access only to their own audit records.

In this section we give some sample queries that are executedby Company1to detect perfor-

mance delays and DoS attacks. All the queries are executed atlevel [1,⊥].

Query 1 (Q1)

Company1requests service fromCompanyB. It is trying to check the times when such message

could be successfully delivered.

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "success"

AND receiver = "CompanyB";

Query 2 (Q2)

Company1requests service fromCompanyB. It is trying to check the times when such message

could not be successfully delivered.

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB";
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8.3.1.2 Service Auditing Tier

Service auditing tier receives log records from all the companies making use of some service.

However, as the queries below demonstrate, not all the queries need to access all the data from the

same COI class.

Query 3 (Q3): Level [⊥, B]

Log records received at the service auditing tier can be analyzed by the Session Manager to find

out whetherCompanyBis not available for some service.

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB";

Query 4 (Q4): Level [⊥, T ]

Session Manager may wish to find out whether all companies inCOI2 are target of some DoS

attacks.

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB" OR receiver = "CompanyA" OR

receiver = "CompanyC";

8.3.1.3 Cloud Auditing Tier

Cloud auditing tier gets log records pertaining to all the services. However, the various queries

will have different types of security requirements.

Query 5 (Q5): Level [1, B]

Cloud Provider may want to look at all records pertaining toserviceId 5 and measure the

delays in order to detect possible man-in-the-middle attack. serviceId 5 involvesCompany1

andCompanyB.
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SELECT MIN(timestamp), MAX(timestamp)

FROM MessageLog [ROWS 100]

WHERE outcome = "success" AND serviceId = "5";

Query 6 (Q6): Level [1, B]

Cloud Provider wants to find the delay encountered byCompany1between sending the request

and receiving the service fromCompanyBfor the last 100 tuples.

SELECT R.timestamp - S.timestamp AS delay

FROM MessageLog R[Rows 100], MessageLog S[Rows 100]

WHERE S.msgType = "send" AND S.outcome = "success"

AND R.msgType = "receive" AND R.outcome = "success"

AND R.receiver = "Company1" AND R.sender = "CompanyB"

AND S.receiver = "CompanyB" AND S.sender = "Company1"

AND S.serviceId = R.serviceId;

Query 7 (Q7): Level [T, T ]

Cloud Provider may want to find out the delay incurred in the different service invocation chains.

SELECT MIN(timestamp), MAX(timestamp)

FROM MessageLog[ROWS 100]

WHERE outcome = "success"

GROUP BY serviceId;

8.3.2 Execution of Cloud Queries

For each tier, we may have one or multiple query processors. In the Company Auditing Tier, we

have a single query processor for analyzing each company data. Thus,Company1has a single

query processor at level[1,⊥]. In the Service Auditing Tier, we may have one or more query

processors running at different levels. In our examples, wecan have a query processor at level

[⊥, B] and another one at[⊥, T ]. Alternatively, we can use[⊥, T ] to process both the queries.
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Using [⊥, T ] to process the query at level[⊥, B] comes at a cost: the query submitted at[⊥, B]

must be rewritten such that it can access only those tuples that it is authorized to view. Similarly,

for the Cloud Auditing Tier, we may have a single query processor at level[T, T ] or two query

processors: one at level[1, B] and the other at[T, T ].

When a query has been submitted by a user, it must be rewrittento ensure that no unautho-

rized tuples are returned to the user. Our query rewriting algorithm modifies the algorithm in the

following ways. LetQx be the original query submitted at levelL(Qx). Let selectCond(Qx) and

window(Qx) be the selection and window condition associated with the query. The query rewriting

algorithm adds a new security conjunct to the existing selection condition. This conjunct ensures

that the tuples satisfying the query is dominated by the level of the query. The query rewriting

algorithm also restricts the window to filter those tuples that the query is authorized to view; this

is denoted by|window(Qx)|LQx
. The query rewriting algorithm is given below.

Algorithm 6 : Secure Query Rewriting
INPUT : (Qx)

OUTPUT: OPT (Q′

x) representing the rewritten query

if window(Qx) 6= {} then1

window(Qx) = |window(Qx)|L(Qx)2

end3

else4

selectCond(Qx) = selectCond(Qx) ∪ (level � L(Qx))5

end6

Let us considerQ5 once again that is submitted at Level[1, B].

SELECT MIN(timestamp), MAX(timestamp)

FROM MessageLog [ROWS 100]

WHERE outcome = "success" AND serviceId = "5";

If this query is executed by the query processor at Level[1, B], no rewriting is needed. How-
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ever, if the query is executed at Level[T, T ], the query must be rewritten to ensure that it can

view only authorized information. In such a case, the query is rewritten as follows. Note that the

DOMINATED BY is similar to keywordlevel in in the MLS language.

SELECT MIN(timestamp), MAX(timestamp) FROM

MessageLog [ROWS 100 WHERE level DOMINATED BY [1,B]]

WHERE outcome = "success" AND serviceId = "5"

 select (msgType=send , 

receiver=CompanyB)

MessaeLog

seq-win

output Q1

project timestamp

synopsis

select

outcome=success

output Q2

project timestamp

select

outcome=failure

Figure 8.3: Merged Operator Trees ofQ1 andQ2

With the defined information flow model, we can reuse the ideasof query sharing mechanisms

described in replicated MLS-DSMS. Figure 8.3 is an example sharingQ1 andQ2 in stream audit

application.
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Figure 8.4: CW-DSMS Prototype Architecture

8.4 Prototype Implementation

We have developed the replicated CW-DSMS shown in Figure 8.4. This system is a modified ver-

sion of Replicated MLS-DSMS from our previous work [5, 6]. The CW-DSMS supports: (1) multi-

user server with user authentication, (2) replicated queryprocessors executing at different security

levels, (3) a global trusted scheduler that schedules operators across all query processors, (4) a

global trusted interpretation unit that supports centralized query plan generation for all query pro-

cessors, (5) trusted stream shepherd operator that takes trusted streams and outputs streams based

on the security level of the query processor, (6) security level aware windows, (7) security level

aware query operators i.e., modification to blocking operators (e.g.,join, average) to create output

tuples with appropriate level identification, and (8) single security level input streams and tuples.

Compare with the replicated MLS-DSMS, we’ve made changes intheexecution unitcontains
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the physical operators and their corresponding algorithms. We have modified the window process-

ing so that it can support audit level models. Besides, we have modified the aggregate and join

operator algorithms to compute the least upper bound (LUB) of the input tuples specially for this

model and use that as the security level of the output tuples.For example, if an aggregate oper-

ation computes the maximum timestamp of three input tuples in levels[⊥, A], [⊥, B] and[⊥, C],

the output tuple is in level[⊥, T ]. On the other hand, all the operators are untrusted. The execution

unit accepts the commands from the trusted scheduler and executes the corresponding operators.

There is only one operator running at any point of time, sincewe have only one scheduler. The

output unitsends the results back to users continuously.

Theorem 1. The proposed architecture enforces the information flow constraints.

Proof. LetQ be a query submitted by a process at levell that operates on the relations and streams

in the DSMS. For each stream accessed by the query, the query rewriting operator takes into ac-

count the security level of the query and only provides the projection of the respective stream that

the process is authorized to view. The query is then forwarded to the processor that executes in the

same level as the query.

The query processor at levell can view only those input tuples whose levels are dominated by

l and produce output streams at levell. Thus, during query processing overt information flow can

only occur from levels dominated by levell to levell. In the proposed architecture, levell receives

tuples from dominated levels and stores them at its own level. There is no common storage that

is shared across security levels. Thus, a dominating level cannot manipulate the common storage

to pass information to the dominated level. This ensures that there are no covert storage channels.

The query processor at levell executes queries only in its allotted time slot as decided bythe trusted
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scheduler which ensures that there are no timing channels.

The above claim holds only when we consider the architecturein isolation. However, in real

world this is never the case and it is possible for the underlying framework to have covert channels.

For example, if the query processors at different levels areexecuting on the same server it is

possible to have storage and/or timing channels.
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Chapter 9

Prototype Implementation and Experimen-

tal Evaluation

In order to apply our MLS-CQL model, query sharing algorithms, and scheduling strategies, we

need to make changes in the original DSMS. The vanilla systemis based on a client-server ar-

chitecture, where clients register streams and queries andsubmit input streams, and the server

runs queries over the input data streams. The system maintains a one-to-one relationship between

clients and servers. The clients send connection establishment requests, and command messages

for registering streams, queries, generate query plans, execute, terminate, etc., to the server. The

clients allow users to create queries, create streams, and view outputs, and they also provide in-

put streams to the server. The server generates query plans consisting of operators, queues, and

synopses, instantiates queries, schedules and executes queries, provide run-time monitoring, and

maintains accuracy and QoS.

9.1 Prototype Implementation

In this section, we explain the key components need to be extended or re-designed for addressing

MLS system requirements.
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9.1.1 MLS-CQL Syntax

Our work supports stream-to-stream window operators in MLS-CQL. In the first step, we need

to revise the DSMS parser for supporting query syntax such as[Rows 100 level in{U,C}]. For

simplicity, we use number 1, 2, 3, and 4 to represent level U, C, S, and TS. So the window [Rows

100 level in{U,C}] can be represented as [Rows 100 12].

Stanford STREAM DSMS uses Bison parser to handle CQL raw queries. We gave a brief

summary on the parser processes in STREAM system, more details can be found at [34, 57].

1. All tokens(keywords in CQL queries) allowed in CQL statements are defined in source files

parser.h and parser.cc. Those input keywords like rows, range, etc are assigned withsymbol

numbersused for further parsing. In Bison theyytranslatetable is used to map lexical token

with symbol numbers.

2. Action (59 terminal symbols like CQL keywords) and GOTO (29 non-terminal symbols like

intermediate reducing words) tables are created before parsing. The two tables are abstract

concepts. Action table represents the terminated reduction rules and Goto table shows the

current state redirection when a keyword is scanned during parsing. There are 157 possible

states (from 0 to 156) and 81 reducing rules (in a file parser.yy).

3. In implementation, state change and reduction rules are stored in a couple of tables. Here

we only list those needed for MLS revise.

(a) yydefacttable stores the default reducing rules (In particular state, the reduction rules

are mostly used for all possible valid input symbols).

(b) yypacttable tells whether change state or use reduction for current state.
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(c) yytabletable stores the next state or non-default reduction rules for current state indexed

by yypacttable.

(d) yychecktable is used for various checking.

Now we explain how parser works. In any moment, parser is in certain statex. When a

new valid input token (with symbol numberA) comes, parser first checksyydefact[x]table to see

if any reduction rule should be apply. If the value is 0, that means no reduction rule is used.

Then system checksyypact[x] table which determines action/goto entry for current statex with

look-ahead tokenA. If yypact[x] = YYPACT NINF (always minus value), parser will uses the

corresponding reduction rule inyydefact. If yypact[x] = k positive number,k will added toA

and directed toyytablefor checking next proper action except using the default reduction rules.

Meanwhile,yycheck[k+A] = Ashould be satisfied before working withyytable.

After that, we look at the result ofyytable[k+A]. If it equals to positive numbery, it meansx

should be changed to next state y with shiftingA into stack; Otherwise, a negative value(-z)means

applying reduction rule z (except the one stored inyydefact). In the following we first show how

to create the new parser rule for [Rows size level]. The following table shows parsing rules for

[Rows size] in STREAM system.

Rows X Level

Table 9.1: STREAM Parsing Rules for [Rows Size]
RW ROWS(24) T INT(44)

state X Switch To Y(106)

state Y Switch To Z(127)

state Z Reduce Rule 53

To add “level” to the Rows window, we add a new state (A) 157 with revised reducing rule 53:
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RW ROWS N INT N INT (revised in parser.yy). The parsing rules should be revised as following:

Table 9.2: MLS-DSMS Parsing Rules for [Rows Size Level]

RW ROWS(24) T INT(44)

state X Switch To Y(106)

state Y Switch To A(157)

state A Switch To Z(127)

state Z Reduce Rule 53

And we need to revise the four tables accordingly (in file parse.cc).

1. In state X, we don’t have changes.

2. In state Y(106),yypact[106]= 104, thenyytable[104+44]= 157 (instead of Z=127).

3. In state A(157),yydefact[157]= 0 (no applicable rule),yypact[157]= 133,yytable[133+44]

= 127 (yytable has 178 entries),yycheck[133+44]= 44.

4. In state Z(127),yydefact[127]= 53 (using reduction rule 53),yystos[157]= 44 (internal

symbol table).

Range Unbounded Level

In trusted MLS-DSMS, we add level filtering in unbounded window during query rewriting. We

introduce a new state 158 in order to revise the [Range Unbounded] to [Range Unbounded Level].

Table 9.3: STREAM Parsing Rules for [Range Unbounded]

RW RANGE(25) UNBOUNDED(28)

state X(87) Switch To Y(107)

state Y(107) Switch To Z(128)

state Z(128) Reduce Rule 54
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the revised reduction rule is 54: RWRANGE UNBOUNDED NINT (revised in parser.yy).

The parsing table should be revised as following:

Table 9.4: MLS-DSMS Parsing Rules for [Range Unbounded Level]

RW RANGE(25) UNBOUNDED(28) T INT

state X(87) Switch To Y(107)

state Y(107) Switch To B(158)

state B(158) Switch To Z(128)

state Z(128) Reduce Rule 54

And we need to revise the four tables accordingly (in file parse.cc).

1. In state X, we don’t have changes.

2. In state Y(107),yypact[107]= 26, thenyytable[26+28]= 158 (instead of Z=54).

3. In state B(158),yydefact[158]= 0 (no applicable rule),yypact[158]= 134,yytable[134+44]

= 128 (yytable has 179 entries),yycheck[134+44]= 44.

4. In state Z(128),yydefact[128]= 54 (using reduction rule 54),yystos[158]= 44 (internal

symbol table).

Range X Second Level

Similarly, we need to make parsing rule changes in time-based window with certain time period.

Here we show one example changes [Range size second] to [Range size second level]. The original

reduction rule is 57, Y(144) = 57.

Table 9.5: STREAM Parsing Rules for [Range X Second]
RW RANGE(25) SECOND(29) T INT(44)

state Y(129) Switch To Z(144)

state Z(144) Reduce Rule 57
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Here we show the revised table. A new state 159 is introduced.

Table 9.6: MLS-DSMS Parsing Rules for [Range X Second Level]
RW RANGE(25) SECOND(29) T INT(44)

state Y(129) Switch To C(159)

state C(159) Switch To Z(144)

state Z(144) Reduce Rule 57

And we need to revise the four tables accordingly.

1. In state Y(129),yypact[129]= 102, thenyytable[102+29]= 159 (instead of 57).

2. In state C(159),yydefact[159]= 0 (no applicable rule),yypact[159]= 135,yytable[135+44]

= 144 (yytable has 180 entries),yycheck[135+44]= 44.

3. In state Z(144),yydefact[144]= 57 (using reduction rule 57),yystos[159]= 44 (internal

symbol table).

9.1.2 Sharing Plan Generation

In Chapter 3 we show the intermediate products of system fromCQL raw queries to execution

units during query plan generation.

CQL query -> Syntactic nodes in parse tree -> Semantic object s

-> Logical operation (logical plan) tree

-> Physical operation (physical plan) tree -> Execution uni ts

First we need to make a choice in which step to perform sharinganalysis. We would like to

do it before physical plan generation, the earlier the better. In general we can run sharing analysis

while the system performs one of three steps:

1. System is accepting raw input queries. There are two difficulties in this choice: the first one

is the complexity of table aliases. Suppose there are two queries as following:
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Qa: Select M.id From Vitals M, Positions N;

Qb: Select N.id From Vitals N, Positions M;

They are identical if Vitals and Positions are pointed to thesame input streams. However the

alias complicates the analysis.

The second problem is identifying the type of input: relation or stream. Vitals inQa andQb

can be a fixed size table, or a continuous input stream. From the raw input the system cannot

tell the type of inputs. So sharing analysis in raw query is not applicable.

2. In syntactic parser trees. CQL raw queries are constructed as a list of nodes. These syntactic

nodes only contain the information after parsing, like the attributes, operations, window size,

etc. They are not connected with the input streams/tables; So syntactic nodes are inappro-

priate to use for sharing analysis.

3. In Semantic objects. Those objects are well-structured and connected with inputs. For ex-

ample, a CQL query can be one of two basic types such as SFW (Select-From-Where) and

Binary-join. In SFW, there are three blocks select, from andwhere, and each of them con-

tains nodes. For nodes in from block, it must specify the input source, input window kind

and size, etc. All nodes are linked and ready to generate a logical plan.

We perform the sharing analysis by comparing existing semantic objects with the arriving

semantic objects from the new query. Since sharing starts from bottom to top, we first

compare the input source in FROM clause, then the WHERE, and the SELECT clause.

The analysis tries to share nodes as many as possible in the operator tree. According to

the sharing position (FROM, WHERE or WHERE) and type (partial or complete), the new
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query is able to reuse the logical and physical plans from existing queries before generating

its own plan.

We need to set up buffers for storing the semantic objects, logical and physical plans of all

executing plans. In sharing mechanism, if a query stops, thesystem checks whether there are some

executing queries reusing its plan. In this case, the query plan will stay for others even though the

query is terminated.

9.1.3 Execution/Generation Time Measuring

In STREAM prototype, there are two additional operatorsstream-sourceandoutputto be created

for every query plan of CQL queries. The stream-source operator connects input streams and

produce tuples only with positive sign. It acts like the stream source producer and located the

bottom most node in the operator tree. Output operator is thetop most node in operator tree, which

constructs the output in certain form to send it back to the users.

Our experiments require keeping track of the process time for certain query against limited

size inputs. We are only interest in the execution time of theplain operator tree without the two

additional operators. So the timer starts from the first tuple enters to an operator next to stream-

source, ends when the last tuple goes out from output operator. We’ve made the changes to add the

timer function.

Query plan generation time is most straightforward. Once the user decides to run queries, no

more queries are accepted by this user. So the generation time can be calculated between the start

of first plan generation and the end of the last plan.
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9.1.4 LUB Level Computation

Least Upper Bound (LUB) computation for level attribute is critical for blocking operators like

aggregations and join in our MLS-DSMS. Join LUB is relatively simple. Suppose there is a join

operator in S level which joins two tuplest1, t2 from C and U respectively. The output joined tuple

should be in level C by performing LUB(t1, t2). A small piece of code is used in our prototype:

outputElement.level =

((t1.Level>= t2.level)?t1.level:t2.level);

Aggregation operators like sum, count, max, min, avg are different from join. Every time a new

tuple arrives at or an old tuple expires from the computationwindow, there will be an aggregation

computation. It is time and resource consuming if we preformLUB of all involved data when a

computation happens. Instead in our system, we keep count numbers for each level from tuples

in the computation window. The size of counts are bound to thesize of window, as well as the

computation is only increase (for new input) or decrease (for expired buffered data) in most cases.

Specifically, we use the Bitwise operator to improve the performance:

if(inputElement.sign == plus)

aggrLUBLevel[1111 & inputElement.level]++;

else

aggrLUBLevel[1111 & inputElement.level]--;

aggrLUBLevel is an array storing the level counts. Index 0 for the array is to store the LUB

level of aggregation results. Since we use positive number 1,2,3,4 to represent level U,C,S,TS,

binary operations return the actual index in the array for count number updates. After that, we will

check if we need to update the output LUB level of aggregationresult. The following piece of code

shows level update is triggered only if the expired tuple equals to current LUB level of output as

well as the count for the expired tuple is 0.
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if(inputElement.sign == negative &&

inputElement.level == aggrLUBLevel[0] &&

aggrLUBLevel[inputElement.level] == 0){

for(int k=aggrLUBLevel[0]-1; k>=1; k--){

if(aggrLUBLevel[k]!=0){

aggrLUBLevel[0] = k;

break;

}

}

}

When the update happens, we try to find the count number not equal to 0 from highest (4) to

lowest (1). Then we assign the level with non-zero count to the LUB level. With the special care

for LUB levels in blocking operators, the output result can be corrected labelled and reused safely

via sharing mechanisms.

9.1.5 Scheduling Method

In the vanilla STREAM prototype, the scheduler uses round-robin algorithm to schedule operators.

We have modified the scheduler so that it can handle scheduling of queries in more than one query

processor. The scheduler maintains all executing query plan information shared by the trusted

interpretation unit. When a query plan is received by the scheduler, operators in the plan are

scheduled for execution from bottom to top order. The scheduler sends out commands (including

plan id and operator id) to the appropriate query processor to start executing an operator. The

operators execute at least once per scheduling round. When anew plan arrives at the scheduler,

operators of that plan will be scheduled in the next execution round. Such mechanism prevents

starvation of late coming queries, as each operator is scheduled every round. In every round, each

operator processes a maximum of 170 data tuples before switching to other operators. The DSMS
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can process a maximum input 100,000 tuples per second. “First come first serve” strategy is used

for executing the query plans. We adapt the round-robin method in our trusted scheduler which is

able to schedule operators across all query processors.

So the original round-robin does not assign time slice for operators but maximum processing

tuples for each round. In our time-slot algorithm, we set up 250 million-second for each level since

the heart beat is 1 second. In each time slot, we run operatorsin multiple rounds in specific levels.

To ensure the fast output, we adapt the ideas of handling maximum 170 tuples for each operator in

each round, while the scheduler will run it as many as possible during the assigned time slot.

9.2 Experiment Setup

MLS DSMSs are developed to achieve two main goals: security protection enforcement by in-

troducing trusted components and safe scheduling strategies, and performance improvement via

sharing queries in the same or different levels. We conduct empirical experiments to evaluate the

overhead of the security mechanisms and the performance gain of sharing ability between normal

and MLS-DSMS.

There are some metrics that can be used to study the performance and overhead of multi-

level security. Some of the most common metrics are: tuple latency, throughput, result accuracy,

starvation, number and complexity of trusted components, storage requirements, etc. In DSMS ap-

plications, QoS is the most critical factor to evaluate the system performance. So we useresponse

timefor query plan generation and execution to investigate the pros and cons of MLS DSMSs. For

the experiments, we are planning to generate synthetic datawith level labels and using different

kinds of queries like select, project, join, and aggregation (e.g., average). In general, we aim to

find answers of the following questions:
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• MLS Architectures vs. Vanilla System: What is the overhead caused by introducing the

multilevel security processing components.

• Modified scheduling overhead: Since scheduling has to be modified to incorporate security

levels, what are the impacts on query processing?

• Sharing vs. No Sharing: What are the effects of sharing and nosharing of queries? This

involves comparing all the approaches of complete and partial sharing.

• Sharing in the same vs. across different levels: What are thebenefits of sharing queries

across different levels?

• In CW-DSMS, what is the overhead causing by introduction of trusted components?

In the following sections, we first provide the details of experiment setup, then present the

experimental evaluations on those secure DSMSs.

Environment: All the experiments were conducted in a standalone system with Intel i7 Q820

1.73GHZ Quad core Processor, 6GB RAM, and Ubuntu 11.10 64bitOS. Processes except DSMS

are shut down and there is no internet/bluetooth/wireless connection to the machine.

Inputs: Experiments are under the simulation scenario of the battlefield monitoring application

discussed in Chapter 4. Each soldier equips with sensors sending out vital and position info to the

control center with DSMS continuously. The two input streamschemes are showed as following,

and Each tuple is associated with a security level, which canbe TS, S, C, or U, where U< C < S

< TS.

Vitals(soldier id (sid), blood pressure (bp), pulse rate (p r),

weight (weight), level (level));
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Positions(soldier id (sid), latitude (lat), longitude (lo n),

level (level));

For each of twoVitals andPositionsinput streams, we set up separate input files containing

numbers of tuple in different sizes like 500 thousand, 1 million, 2 million and 4 million. According

to experiment needs, the content of input files can be different. For example, all tuples of an input

can be in the same level, or the number of tuples in each level is 1/4 of total tuples. To create

light/heavy load situation, the input data rates vary from 10,000 to 100,000 tuples per second.

Besides, we are executing different kinds of queries as simple select, aggregation, join, as well as

mixed types of queries.

Data Collection: Our goal is to compare the response time of plan generation and query ex-

ecutions between different DSMSs or approaches. To record the exact running time, we should

eliminate other time factors introduced by irrelevant stages like query registration, plan analysis,

operate tree generation, returning results, etc. So a timeris set up to keep track of exact response

time. After plan generation, each registered query is transformed to an operator tree ready for exe-

cution. The timer begins to work when first input tuple entersthe bottom most operator (window)

of the tree, and stops when the last tuple exits from the top operator. The duration is the pure

response time of query execution. Similarly, we use the timer to keep track of the plan generation

time.

For each experiment, we will run five times and discard the first two runs. The average ex-

ecution time from the last three runs and the standard deviation will be presented as outcomes.

We will compare the overheads and performance gains in MLS systems with the benchmarks of

non-security control and no sharing systems respectively.
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9.3 Experiments on Replicated MLS-DSMS

The followed results are based on experiments of the vanillaSTREAM system and the replicated

MLS-DSMS prototype.

9.3.1 Experiment Expectations

Through the experiments, we should be able to know the following facts of MLS-DSMS imple-

mentations:

1. The overhead of MLS components. It should be insignificantto execution time otherwise

the MLS DSMS is not useful for real-world applications.

2. Performance improvement by sharing approach. Sharing between queries reduce the com-

plexities of plan generation as well as query execution by reusing the existing operator tree

structures and computation results. Specially, complete sharing should benefit more than

partial sharing.

3. The overhead of MLS scheduling strategies used in replicated MLS-DSMS. For specific

scheduling approach, the overhead is determined by the system load, data distribution and

query number in each level. Running the same set of queries under different parameters, we

can see which scenario is (or not) suitable for particular scheduling approach.

9.3.2 Overhead of MLS processing

We used three different data sets with 1, 2, and 4 Million tuples. The data input rate is 20,000

tuples per second. In each set, the number of tuples in each level was 1/4 of total tuples. In order to
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detect the overhead cost only, both vanilla and replicated MLS DSMS use the default round-robin

scheduling strategy with no load shedding.

Table 9.7: Performance Overhead Due to MLS Processing

We used the four experiments to study the performance overhead. The average execution time

are shown in Table 9.7. Experiment 1, 2 and 3 are running one simple select, one average with

group by, and one join queries respectively in both vanilla and replicated MLS-DSMS in highest

level. As join is an expensive operation when compared to other operations, the time by experiment

3 is more when compared to experiments 1 and 2. In general the overhead due to MLS processing

is negligible under all data sets as shown in Table 9.7.

In experiment 4, there are six queries that included multiple copies of the same queries used

in the previous experiments. Two copies of each query are used in experiment 1, 2, and 3, respec-

tively. These six queries used the same input streams. As shown in Table 9.7, the overhead due

to multilevel processing is between 0.54% and 0.88%. The system takes less performance hit with

4M tuples when compared to 1M tuples as the system stabilize over long run.
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9.3.3 Overhead of MLS Scheduling Strategy

In experiment 5, we study the overhead caused by the implementation of the fixed time slot round-

robin scheduler vs. the regular round robin scheduler. We executed four queries, each running at

different security levels. The input streams (Vitals1, Vitals2, Vitals3, and Vitals4) are replications

of the original Vitals stream. The input streams contain only unclassified tuples. We used a input

rate of 40,000 tuple/sec and data sets of 1M, 2M, and 4M tuples. The queries are shown below.

Q1(TS): SELECT sid, weight

FROM Vitals1[Rows 100 level in {TS,S,C,U}];

Q2(S): SELECT sid, weight

FROM Vitals2[Rows 100 level in {S,C,U}];

Q3(C): SELECT sid, weight

FROM Vitals3[Rows 100 level in {C,U}];

Q4(U): SELECT sid, weight

FROM Vitals4[Rows 100 level in {U}];

Table 9.8: Overhead Due to Trusted Scheduler and Stream Shepherd Operator

As shown in Table 9.8, the overhead due to the time slot scheduling is between 0.56% and

1.80%. The result is good because there are same input load ineach time slot (one query per time

slot). In this case we can see this scheduling method is undersuitable scenario. On the other hand,

if one of the levels has more tuples, then the overhead might be higher as other time slots have to

be exhausted before that level is rescheduled.
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9.3.4 MLS Query Sharing

Three input data sets with 500 Thousand, 1 Million, and 2 Million tuples were used at an input rate

of 20,000 to 40,000 tuples per second. In each input stream, the number of tuples in each level was

1/4 of total tuples. In order to detect the pure sharing gain,in both no sharing and sharing replicated

MLS systems we used the default round-robin scheduling strategy without load shedding.

We are using p value of T-test to evaluate the significance of differences by sharing. The T-test

is a statistical hypothesis test to determine if two data sets are significantly different from each

other. We use two tailed assuming unequal variances as setupwith confidence level 0.05. For the

two sets of data for comparison, if the p value is smaller than0.05, we say the sharing difference

is significant.

Complete Sharing

Four experiment sets are conducted to study the performancegain due to complete sharing. We

measured time costs of query execution and plan generation.

Table 9.9: Complete Sharing Execution - Performance Gain
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Table 9.10: Complete Sharing Plan Generation - PerformanceGain

Experiment 1, 2 and 3 are running identical queries as nine select, nine average with group-by,

and five join respectively in both sharing and no sharing MLS DSMS in highest level. Experiment

4 is mixed nine queries contains three select, three averagewith group-by, and three join from the

three previous experiments. As shown in Table 9.9 under Exp 3, the highest performance gain for

5 join queries was between 10.45% and 24.21%. Besides, the execution time performance gain of

the 4 experiments was between 3.28% to 24.21%. This variation is mainly due to the processing

time took by operators and due to the change in input rate. As load shedding is not enabled, we can

fine tuned the input rates to avoid inconsistent results. Forinstance, if the input rate is increased to

100,000 tuples per second, the DSMS was producing inconsistent results over the five runs of the

same experiment.

On the other hand, p values of all experiments are smaller than 0.05 so the performance differ-

ences are significant.

As shown in Table 9.10 the performance gain due to not creating already existing plans was

between 1.15% and 1.61%. But the gain is negligible when the standard deviation over the runs is

taken into account. There is not a lot of performance gain as sharing analysis consumes resources.
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Partial Sharing

Two experiments were set up to enable partial sharing. Experiment 1 and 2 are conducted with five

join and seven average queries respectively. The From and Where clauses were identical (to make

sure the same input data) in all the queries and the where clause in select operator was different

(e.g., different numbers of attributes or different aggregation computation types).

Table 9.11: Partial Sharing Execution - Performance Gain

Table 9.12: Partial Sharing Plan Generation - Performance Gain

Based on Table 9.11, the performance gain due to partial sharing was between 3.81% and

7.29%. On the other hand, the performance gain due to plan generation was 1% or less as shown in

Table 9.12. This shows that analyzing the existing plans forpartial sharing does not cause overhead

in the system. Similar to experiments on complete sharing, pvalues of all experiments are smaller

than 0.05 so the performance differences are significant.

From the results on replicated architecture, we can see the overhead by MLS components is
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insignificant and sharing mechanism provides better QoS by reducing the response time. On the

other hand, overhead of the new scheduling strategy like fixed time slot is not big if running in

certain suitable scenario.

9.4 Experiments on Trusted MLS-DSMS

9.4.1 Experiment Expectations

In this section, we discuss the experimental evaluations conducted to study the overhead of trusted

query rewriter, as well as performance gain by sharing queries across different levels.

1. The overhead of MLS components in trusted system. It should be insignificant to execution

time. We are running experiments for comparison between vanilla DSMS and no-sharing

trusted MLS-DSMS.

2. Performance improvement by sharing approach. We are running the experiments between

replicated and trusted systems. We are running the experiments in special scenarios where

there are overwhelming number of queries in certain same level arrives, as well as sharing

across different levels in trusted MLS-DSMS vs. non-sharing in replicated structure.

Three input data sets with 500 Thousand, 1 Million, and 2 Million tuples were used at an input

rate at 20,000 to 40,000 tuples per second. Tuples containeda security level (TS > S > C > U).

In each set, the number of tuples in each level was 1/4 of totaltuples.

9.4.2 Vanilla DSMS Vs. No-sharing Trusted MLS-DSMS

In order to study the overhead when compared to Vanilla DSMS due to the secure rewriting module,

we disabled the sharing ability of Trusted MLS-DSMS. We ran 3experiments with input rate 20000
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tuples per second to 1) measure the plan generation time, and2) measure the query execution time

(the time taken from first tuple entering the S2R operator andlast tuple exiting the query).

For trusted MLS-DSMS, all the queries are executed at the TS security level. The reason is that

Vanilla system does not classify users or queries based on security levels.

1. Experiment 1 (Range Unbounded Queries): We ran 4 identical queries. Note that the queries

run in trusted MLS-DSMS are rewritten in different form.

Vanilla: SELECT sid, weight FROM Vitals;

Trusted: SELECT sid, weight

FROM Vitals[Range Unbounded level in {TS,S,C,U}];

From Table 9.13, the performance overhead during executionis between 0.012% and 0.031%

and the overhead during plan generation is from 3.876% as shown in Table 9.14.

Table 9.13: Vanilla DSMS Vs. No-sharing Trusted MLS-DSMS : Execution

Vanilla
No-sharing

Trusted
Vanilla

No-sharing

Trusted

500K 25051 25058 0.031% 3.79 2.08

1M 50062 50073 0.022% 2.65 2.00

2M 100072 100084 0.012% 4.04 5.03

500K 26967 27419 1.677% 96.01 201.64

1M 51104 51861 1.481% 70.06 93.58

2M 101404 102104 0.691% 44.09 94.14

500K 35016 35047 0.089% 2.52 2.65

1M 60056 60083 0.046% 1.73 3.21

2M 110084 110111 0.024% 2.65 2.08

Execution

Input Rate 

20000

Data Size 

(tuples)

Average Execution Time 

(ms)
Overhead  

(in %)

Standard Deviation (ms)

Exp 1

Exp 2

Exp 3

2. Experiment 2 (JOIN Queries): We ran 4 identical queries.

Vanilla: SELECT *

FROM Vitals[Rows 100], Positions[Rows 100]

WHERE Vitals.sid = Positions.sid;
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Table 9.14: Vanilla DSMS Vs. No-sharing Trusted MLS-DSMS : Plan Generation

Vanilla
No-sharing

Trusted
Vanilla

No-sharing

Trusted

Exp 1 269.4 279.9 3.876% 2.6 2.5

Exp 2 272.2 279.1 2.531% 2.7 2.2

Exp 3 274.8 282.4 2.790% 1.6 1.8

Plan Generation

Average Execution Time 

(ms) for 3 Runs  
Overhead  

(in %)

Standard Deviation 

(ms) between 3 Runs

Trusted: SELECT *

FROM Positions[Rows 100 level in {TS,S,C,U}],

Vitals[Rows 100 level in {TS,S,C,U}]

WHERE Vitals.sid = Positions.sid;

Overhead of execution is between 0.691% and 1.677% as shown in Table 9.13 and plan

generation is 2.531% as shown in Table 9.14.

3. Experiment 3 (Range Window Queries): We ran 4 identical queries.

Vanilla: SELECT AVG(bp)

FROM Vitals[Range 10 seconds]

WHERE bp > 100 AND level in {S};

Trusted: SELECT AVG(bp)

FROM Vitals[Range 10 seconds level in {S}]

WHERE bp > 100;

As shown in Table 9.13, the performance overhead due to operators like Range window and

Average is between 0.024% and 0.089%. The rewriting and optimization overhead from

Table 9.14 is 2.790%.

As discussed above the overhead caused due to Trusted implementation over Vanilla DSMS is

almost negligible during query execution and is under 3.876% during plan generation.

132



9.4.3 Replicated Vs. Trusted

The major differences between our replicated/hybrid and trusted architecture implementations are:

(1) replicated system does not have query rewriter module. (2) replicated uses time-slot scheduling

which assigns identical time duration for running queries in each level to avoid covert channels.

While trusted system uses round-robin scheduler for all queries in different levels. (3) replicated

system establishes one server instance for users in each level, while trusted has only one server

instance for users from all levels. and (4) replicated hastrusted stream shepherd operatorwhich

can filter unqualified stream inputs for each server instance. Thus, time-based window in replicated

does not support level filtering and user can specify requesting levels in the WHERE condition for

computation. While trusted time-based window supports level filtering, since the stream shepherd

operator does not perform filtering.

To find the execution performance differences between thesetwo systems, we ran two exper-

iments with input rate 40000 tuples per second. We increasedthe input rate in order to create

a heavy load situation so that we can observe how the performance can be improved by sharing

queries in the same level and across levels. Besides, we still perform T-test to evaluate the signifi-

cance of sharing performance.

1. Experiment 4 (Sharing in Same Level): There are 4 users in TS level and each one runs the

following Join query:

Replicated and Trusted:

SELECT Vitals.sid, weight, location

FROM Positions[Rows 50 level in {U}],

Vitals[Rows 50 level in {U}]

WHERE Vitals.sid = Positions.sid;
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In replicated system all those queries must be run in the fixedtime slot in TS level. While

in trusted system, operators are run in the round-robin fashion. From Table 9.15, the per-

formance gain in the trusted system is between 63.659% and 108.909%. The above perfor-

mance benefit is due to the fact that the CPU is not idle in the trusted architecture.

Table 9.15: Replicated Vs. Trusted : Execution

2. Experiment 5 (Sharing across Levels): There are 2 users inTS and S level, respectively.

Each one runs all the following 4 Join queries. Note that the four queries cannot be shared

because of the different input size in window operators.

Replicated and Trusted:

SELECT Vitals.sid, weight, location

FROM Positions[Rows 90 level in {S,C,U}],

Vitals[Rows 10 level in {S,C,U}]

WHERE Vitals.sid = Positions.sid;

SELECT Vitals.sid, weight, location

FROM Positions[Rows 80 level in {S,C,U}],

Vitals[Rows 20 level in {S,C,U}]

WHERE Vitals.sid = Positions.sid;

SELECT Vitals.sid, weight, location

FROM Positions[Rows 70 level in {S,C,U}],

Vitals[Rows 30 level in {S,C,U}]

WHERE Vitals.sid = Positions.sid;

SELECT Vitals.sid, weight, location
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FROM Positions[Rows 60 level in {S,C,U}],

Vitals[Rows 40 level in {S,C,U}]

WHERE Vitals.sid = Positions.sid;

In the replicated system only queries issued by the users in the same level can be used for

sharing analysis. So queries in level S cannot be shared withqueries in level TS even though

they are in the similar context. On the other hand, in trustedMLS-DSMS queries can be

shared across levels.

From the results in Table 9.15 performance gain due to sharing the queries across levels is

between 61.620% to 67.241%.

The p values of the two experiments are smaller than 0.05 so the performance differences

are significant.

9.5 Experiments on CW-DSMS

We conducted experiments to compare the performance between the old vanilla DSMS and the

CW-DSMS prototype. Except experiment 6 (join operation), for all other experiments, we used

three different data sets with 2, 5, and 10 million tuples with a data input rate of 50,000 tuples

per second. Each tuple is associated with a COI class in termsof [x,0] or [0,y], wherex refers

to company 1 or 2 andy can be one of the companies A, B, or C.0 means the public knowledge

⊥. For all experiments, the round robin method is used for operator scheduling. The experiment

results are shown in Table 9.16. We measured the query execution time (the time taken from first

tuple entering the first operator of the query plan and last tuple exiting the query) for the following

experiments.

1. Experiment 1: Company auditing in level [1,⊥]
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Table 9.16: Performance Overhead of Chinese Wall Processing

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "success"

AND receiver = "CompanyB";

In order to maximize the difference in execution time, we used 100% selectivity (all tuples

are in level [1,⊥]) on both the systems, so that no tuples are filtered by the select operator.

As shown in Table 9.7 under Exp 1, the performance overhead due to security modification

to the vanilla DSMS is negligible for all the data sets used, and it is between 0.003% and

0.025%.

2. Experiment 2: Company auditing in level [1, ⊥] Here we used 50% selectivity. The

performance overhead is again negligible, and is between 0.002% and 0.017%.

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB";
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3. Experiment 3: Service auditing in level [⊥, B] In the service auditing experiments 3 and

4, the input stream has tuples at 5 different levels: [1,⊥], [2, ⊥], [⊥, A], [⊥, B] and [⊥, C].

Tuples in each level occupied 20% of the input stream. Since query 3 runs in level [⊥, B],

only 20% tuples from inputs should be processed by query 3. Soin the vanilla system we

must include the condition based on security level in the query:

Vanilla:

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB" AND level = [0,B];

CW-DSMS [0,B]:

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "failure"

AND receiver = "CompanyB";

In CW-DSMS, unqualified tuples i.e., tuples not in level [⊥, B], are filtered by the trusted

stream shepherd operator due to the replicated architecture. The performance overhead is

between 0.005% and 0.027% for all data sets used, which is again negligible.

4. Experiment 4: Service auditing in level [⊥, T] Using the same input from experiment 3,

the selectivity becomes 60% because level [⊥, T] is authorized to access inputs with levels

[⊥, A], [⊥, B] and [⊥, C].

Vanilla:

SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "failure"

AND (receiver = "CompanyB" OR receiver = "CompanyA"

OR receiver = "CompanyC")

AND (level = [0,A] OR level = [0,B] OR level = [0,C]);

CW-DSMS [0,T]:
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SELECT timestamp FROM MessageLog

WHERE msgType = "send" AND outcome = "failure"

AND (receiver = "CompanyB" OR receiver = "CompanyA"

OR receiver = "CompanyC");

The query language of CW-DSMS uses simplified form because ofthe replicated architec-

ture. As shown in Table 9.7, the performance overhead is between 0.003% and 0.023%.

5. Experiment 5: Cloud auditing in level [1, B]:

SELECT MIN(timestamp), MAX(timestamp)

FROM MessageLog [ROWS 100]

WHERE outcome = "success" AND serviceId = "5";

We studied the overhead caused by the least upper bound computations in CW-DSMS. The

output tuple level always reflects the highest possible level (COI class) of all the input tu-

ples involved in the computation. Inputs were either at [1,⊥] or [⊥,B]. To maximize the

difference, we used 100% selectivity. The performance difference due to LUB computation

is between 0.011% and 0.030%.

6. Experiment 6: Cloud auditing query 6 in level [1, B]

SELECT R.timestamp - S.timestamp AS delay

FROM MessageLog R[Rows 100], MessageLog S[Rows 100]

WHERE S.msgType = "send" AND S.outcome = "success"

AND R.msgType = "receive" AND R.outcome = "success"

AND R.receiver = "Company1" AND R.sender = "CompanyB"

AND S.receiver = "CompanyB" AND S.sender = "Company1"

AND S.serviceId = R.serviceId;

In the join query, input stream R and S refer to the same input stream source MessageLog.

We set up 50% selectivity for R and S respectively. To activate LUB computation on join,

input tuples were kept at either [1,⊥] or [⊥, B] and streamed in a random fashion.
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Since join is an expensive operation, the input rate of 50,000 tuples used in the previous

experiments caused an overload situation in both the systems. Thus, we reduced the data

input rate to 2,500 tuples per second. Accordingly, the datasizes of the three input tuple

sets were reduced to 100K, 250K, and 500K tuples, respectively. The performance overhead

is between 0.081% and 0.218%, which is higher than the other experiments. On the other

hand, the overhead is still considered negligible as it is within 0.218%.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

Traditional DBMS is not sufficient to support real-time stream processing application in following

reasons. (1) one-time SQL does not support continuous stream queries; (2) System cannot handle

queries between stored table and live inputs such as streaming data; (3) Processing mechanism

buffering first then execution causes unexpected storage cost and high latency.

Motivated by those real-time application needs, stream processing DSMSs have been devel-

oped to address continuous queries with unpredictable, massive input data. However, they do not

provide security protections on many situation monitoringapplications involve data that are clas-

sified at various security levels, such as battlefield monitoring, emergency threat, and resource

management. Existing DSMSs must be redesigned to ensure that illegal information flow do not

occur in such applications. Besides, the data stream management system should be able to deal

with QoS requirements of multiple queries under the pressure of heavy input load.

Our goal is to develop a multilevel secure DSMS, which is ableto provide security guarantee

against illegal information follow, support flexible continuous queries with level classification, and

execute multiple queries effectively by sharing and reuse mechanisms. Towards this end, this work

includes the following contributions:

1. Provide systematic analysis on query language, process details, architecture design of a typ-

ical DSMS STREAM system, and discussions of limitations on its security preservation and
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performance.

2. Formalize multilevel security model for data stream management system as well as the con-

tinuous query language. Continuous queries are able to support level-specific request.

3. Investigate possible system architectures with multilevel secure access control.

4. Develop replicated MLS-DSMS, which provides secure query scheduling and execution, as

well as sharing mechanisms between queries in the same security level.

5. Develop trusted MLS-DSMS, which provides query rewriting and optimization before query

generation, as well as sharing mechanisms between queries across different security levels.

6. Explore distributed system network, and propose group construction and load balancing

algorithms.

7. Extend secure DSMS to support stream audit application, cooperated with Chinese Wall

access control policy.

8. Implement the replicated, trusted, naive distributed MLS-DSMS and Chinese Wall DSMS

prototypes. We’ve run experiments to study the overhead introduced by security proper-

ties, the performance gain from sharing mechanisms, and performance differences between

trusted and replicated architectures.

10.2 Future Work

10.2.1 Security Label

In this work we take security level as a special attribute forevery input tuple. Providing MLS

control on different data granularity is one direction of our future work. If assigning security label
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to some attributes instead of the whole tuple, there will be more than one security clearance in

one data record. So users in different levels might be limited to access partial records and execute

certain queries. For example, an accountant intern might beable to get the salary average of the

company employees but cannot access individual record. In this case, we need to take care of the

excessive privilege abuse threat [42]. Query access control list, which defines what queries are

allowed against the table by specific user, is desirable.

10.2.2 More Sharing Consideration

Currently query sharing is the main approach to reduce the process time and resource usage. There

are still some extended considerations.

• Suppose there are more than one sharable queries, how to select the best to reduce the number

of operators in new queries plan.

• A new query is able to use sharing components from multiple queries.

• if the sharing cascade link is too long, what is the performance gain. For example,Q1 is

shared byQ2, Q2 is shared byQ3, and so on, willQn be sufficient compared with generating

its plan without sharing?

Another direction is to find more sharing possibilities. An interesting topic is sharing in join

operators using different input windows. Even though the computation operator can be identical,

the difficulties are the synchronization of the computationcontent and the outputs. There are

several reasons. First, the input order of arriving tuples are different between joins with window in

different sizes, which might cause incorrect computation.Second, the expiration (negative sign)

tuples are generated in different ways. Most stream computations will be triggered once receiving
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expired inputs. As a result, the outputs might be changed if sharing other join results. Besides,

extra order-correction mechanism might introduce storageoverhead and high latency.

10.2.3 Prototype Development

Currently we have implemented centralized replicated and trusted MLS-DSMS prototypes with

the functions like multilevel secure scheduling and execution, query rewriting and optimization,

queries sharing in the same and across levels. We aim to add more mechanisms which are useful

for MLS distributed system extension:

• We would like to introduce the simplify ordering and load shedding mechanisms developed

in Aurora system [1] under distributed network. By such way part of the imperfection input

situations like out-of-order/delay can be handled.

• We plan to introduce sophisticated encryption mechanisms for authentications between servers.

• We will investigate the possibilities of “execution rentalservice” between servers in different

levels. Suppose all the servers belongs to group in classified level are under heavy-load,

under what restrictions they can borrow servers from higherlevel like secret slaves to run

their sanitized queries.

• The master-slave architecture is easy the manage but fragile if master is down. We can

take the ideas of setting up back-up servers with k-safety guarantee, or develop a master

delegation mechanism in the network.

• Our load distribution algorithm is based on CPU usage only incurrent stage. In high volume

of input cases the limited storage is the bottleneck for machines. The distribution algorithm
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can be extent with sophisticated to detect different cases of heavy load and provide smarter

distribution.

• The current DSMS and the prototypes do not consider the user-specific constraints, which is

popular in some real-time applications. For example, an investor requests urgent stock alert

service like “Notify me in 10 seconds if the stock A’s price islower than the history average

in the market”. If the DSMS is designed to provide such service, it should put priority to this

query any time to satisfy the response time constraint. Userconstraint is a useful extension

in next MLS DSMS version.

10.2.4 Chinese Wall DSMS

A lot of work remains to be done. We have assumed that certain components are trusted. We have

made similar assumptions about the underlying infrastructure. However, we have not explicitly

stated our trust assumptions. We need to formally state and analyze these assumptions in view of

real-world constraints in order to evaluate the security ofour DSMS.

We plan to propose alternative architectures and do a comparative study to find out which

approach is the most suitable for processing cloud streaming queries. We also plan to implement

our query sharing ideas. Thus, when a new query is submitted,we need to check how plans for

existing queries can be reused to improve the performance. Note that, such verification must be

carried out dynamically. Towards this end, we plan to see howexisting constraint solvers can be

used to check for query equivalences. We also plan to evaluate the performance impact of dynamic

plan generation and equivalence evaluation. We also plan toinvestigate more on how scheduling

and load shedding can be done with information flow constraints.
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