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ABSTRACT

AUTOMATIC PARALLELIZATION OF "INHERENTLY" SEQUENTIAL

NESTED LOOP PROGRAMS

Most automatic parallelizers are based on detection of independent operations,

and most of them cannot do anything if there is a true dependence between opera-

tions. However, there exists a class of programs for which this can be surmounted

based on the nature of the operations. The standard and obvious cases are re-

ductions and scans, which normally occur within loops. Existing work that deals

with complicated reductions and scans normally focuses on the formalism, not

the implementation. To help eliminate the gap between the formalism and imple-

mentation, we present a method for automatically parallelizing such �inherently�

sequential programs. Our method is based on exact dependence analysis in the

polyhedral model, and we formulate the problem as a detection that the loop body

performs a computation that is equivalent to a matrix multiplication over a semir-

ing. It handles both a single loop as well as arbitrarily nested loops. We also deal

with mutually dependent variables in the loop. Our scan detection is implemented

in a polyhedral program transformation and code generation system (AlphaZ) and

used to generate OpenMP code. We also present optimization strategies to help

improve the performance of the generated code. Experiments on examples demon-

strate the scalability of programs parallelized by our implementation.
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Chapter 1

Introduction

Multi-core and many core processors are the current trends in microarchitecture.

Till the early 2000s, increasing the clock frequency of micro-processors gave most

software a performance boost without any additional e�ort on the part of the

programmers, or much e�ort on the part of compiler or language designers. How-

ever, due to power dissipation issues, it is no longer possible to increase clock

frequencies the same way it had been. Increasing the number of cores on the chip

has currently become the accepted way to use the increasing number of transis-

tors available, while keeping power dissipation in control. Parallel programming

is necessary to make e�cient use of these architectures. Writing sequential pro-

grams is quite intuitive and natural. However, parallel programming by hand is a

challenge for most programmers. Among several approaches to address this prob-

lem, one that is very promising but simultaneously very challenging is automatic

parallelization.

Automatic parallelization is the process of automatically converting a sequen-

tial program to a parallel program that can directly run on parallel platform. This

process requires no e�ort on part of the programmer in parallelization and is there-

fore very attractive. Some tools, like Polaris, PIPS [1], PLUTO [2], Omega [3],

PoCC [4], have already been developed for automatic parallelization. Most auto-
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matic parallelizers focus on distributing independent operations among processors

or threads. Despite their many advantages, such compilers fail when there is a

true (i.e., value based) dependence between operations. To overcome this limi-

tation, there are two broad approaches: (1) Optimistic parallelization [5]. For

e�ective optimistic parallelization, exploiting a higher abstraction to compiler is

crucial [6]. (2) Analyze special cases. One such special case allows the compiler

to break a certain class of dependences, when the underlying computations come

from a semantically-rich algebraic structure such as semiring. The most signi�cant

cases are scans and reductions. Reductions and Scans occurs frequently in scien-

ti�c applications, e.g., sequence analysis, sorting kernels, construction of trees and

summed-area tables, etc [7].

1.1 What is a Scan and a Reduction?

A scan is an operation that takes a binary associative operator � and a list of n

expressions

[e0, e1, . . . , en−1]

and returns a list

[e0, e0 � e1, . . . , e0 � · · · � en−1].

For example, if � is addition, given a list of values

[3, 1, 2, 6, 5, 3, 1]

a scan would return

[3, 4, 6, 12, 17, 20, 21].

A reduction is similar to a scan, but it only returns the single expression e0 �

e1 � · · · � en−1. The reduction result for the above example is 21. In some sense,

we can say that a reduction is a special case of a scan.
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As is well known, with P processors, a scan or reduction with size n can be

parallelized with a time complexity of O( n
P

+ log2P ) [7, 8]. Since P � n in most

practical applications, this is linearly scalable (i.e., iso-e�cient) parallelism. To

take advantage of this source of parallelization, some work [9�15] has been done

to recognize scans and reductions in programs.

1.2 Method Overview

The standard reduction and scan is characterized by an expression of the form

xi = xi−1 � ei that is repeatedly evaluated for a range of i. A compiler could

recognize a scan by identifying expressions written in this form. However, many

scans and reductions are not written in the standard form. In a seminal paper,

Kogge and Stone [9] showed that if we can transform a loop body into a so-

called �State-Vector Update� (SVU) form, we can parallelize the loop as a scan or

reduction. Look at the following example.

Example 1. The following loop computes xi using expression xi = ai ·xi−1+bi.

x[0] = b[0];

FOR i = 1 to n

S: x[i] = a[i] * x[i - 1] + b[i];

END FOR

The loop computes xi using expression xi = ai · xi−1 + bi, and this is not in the

standard form, so no scan can be recognized. However, the loop body expression

can be rewritten as an equivalent SVU expression:(
xi
1

)
=

(
ai bi
0 1

)(
xi−1

1

)

Let Xi =

(
xi
1

)
, Ai =

(
ai bi
0 1

)
, and X0 =

(
x0

1

)
=

(
b0
1

)
is the initial value of

Xi. Hence, the above program is equivalent to Xi = (
∏i

j=1Aj)X0. Since matrix
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multiplication is associative, the product of the matrices can be parallelized as a

scan. Many authors have generalized this elegant, well-known idea to automatic

parallelization [13�16].

We call an automatic parallelizer that �rst detects scans and reductions, and

then parallelizes programs based on this, a scan parallelizer. Since scans and reduc-

tions normally occur within loops, most scan parallelizers analyze loop programs.

Analysis of nested loops is much more di�cult than that for a single loop, so

most of the previous work only handles one dimensional loops [15,16]. Redon and

Feautrier [10] presented a method using the polyhedral model [17] to detect scans

and reductions in arbitrary nested A�ne Control Loop programs. However, they

recognize scans based on pattern matching of the standard form, and a heuris-

tic partial normalization algorithm that manipulates expressions into such a form.

Furthermore, works done previously about scans and reductions in arbitrary nested

loop programs do not have real implementations.

1.3 Our Contribution

In this thesis, we present a more general and practical method for automatic par-

allelization based on reductions and scans. Our method, based on a formalism

called the polyhedral model, is more general than previously proposed methods in

two important ways: we handle arbitrarily nested a�ne loop programs, and we

can detect a rich class of scans and reductions, based on extraction of expressions

involving semiring operations expressed as matrix-vector products.

We integrated our technique into a polyhedral program transformation and code

generation system. A code generator is implemented for automatic parallelization

of the detected scans. We have developed optimization techniques for the code that

is parallelized by our method. We also developed an analysis model to anticipate
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the ideal speedup.

1.4 Thesis Overview

The rest of this thesis is organized as follows: Chapter 2 gives some background

about the polyhedral model and the de�nitions that are used in the rest of the

thesis. Chapter 3 gives the examples that are used in rest of the thesis. Chapter 4

describes how to identify the scans and deduce the SVU form. Chapter 5 describes

how to do parallelization and optimization about scan and reduction. In Chapter 6,

we discuss related work, and �nally, the conclusion and future work is presented.
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Chapter 2

Background & Preliminaries

2.1 Polyhedral model

The compute intensive parts of many applications often spend most of their ex-

ecution time in nested loops. This is particularly common in scienti�c and engi-

neering applications, such as signal and image processing, bioinformatics, etc. The

polyhedral model provides a powerful abstraction to reason about a class of loop

programs, which are called A�ne Control Loop (ACL) programs. ACL programs

consist of arbitrary nested loop programs for which the loop bounds and array

accesses are a�ne functions of outer loop variables and program parameters. The

polyhedral model views an iteration of each statement as an integer point in a well-

de�ned space called the statement's domain, which is called polyhedron. With such

a representation for each statement and a precise characterization of statement de-

pendences, it is very helpful in analyzing the program and doing optimization.

Many authors show that polyhedral model is very useful in code generation and

automatic parallelization [2, 4, 17,18].

Domain The domain of a statement describes the iteration space in which the

statement is de�ned and is represented by a set of linear inequalities. An ACL

program consists of a sequence of statements, each statement is surrounded by
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loops in a given order. In Example 1 described in the introduction, statement S

is executed by the surrounding loop. Hence, the domain for the statement is

{i|0 ≤ i < n}

i is the index for the iteration space.

Dependence Two iterations Si and Sj are said to be dependent if they access

the same memory location and one of them is a write. A true dependence exists if

the source iteration writes to a memory location and the target reads the memory

location. True dependences are also called read-after-write (RAW) dependences, or

�ow dependences. Similarly, if a write happens after the read to the same location,

the dependence is called WAR dependence. WAW dependences are called output

dependences. Read-after-read or RAR dependences are not actually dependences,

but they still could be important in characterizing reuse. We say Si depends on

Sj, denoted as (Si → Sj), if Si is consumer and Sj is producer.

Dependence is an important concept in this thesis. Our detection relies on a

compiler pass called dependence analysis. We handle a class of programs for which

a preprocessing analysis can precisely identify all the the true dependences.

Uniform Dependence and Non-uniform Dependence A uniform dependence

is a dependence where distance between the source and target is a constant vector.

Such a dependence is also called a constant dependence and represented as a dis-

tance vector. In contract, if the distance is an a�ne function but not a constant,

the dependence is called non-uniform.

Polyhedral Reduced Dependence Graph In our technique we represent the

program dependences using a Polyhedral Reduced Dependence Graph (PRDG) [19].
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Before we de�ne PRDG, we �rst de�ne Reduced Dependence Graph (RDG).

In the RDG, each vertex represents a variable in the program, there is an edge

from vertex v1 to v2, if v1 depends on v2. A PRDG is an RDG, where every edge

is additionally labeled with a dependence, represented as {f,D}, where f is the

dependence function, and D is the domain where the dependence occurs, i.e., the

polyhedral domain of the associated statement. Figure 2.1 shows the PRDG for

Example 1.

x b

a S1 : {(i→ i− 1), {i|1 ≤ i ≤ n}}
S2 : {(i→ 0), {i|i == 0}}
S3 : {(i→ i), {i|0 < i ≤ n}}
S4 : {(i→ i), {i|0 < i ≤ n}}

S1

S2

S3

S4

Figure 2.1: The PRDG for Example 1

2.2 Terminology

Here we de�ne some terminology that is used in this thesis:

Recurrence Variables A variable (scalar variable or array variable) in a loop

program is called a recurrence variable i� the variable is directly or indirectly used

in its own de�nition. For example, in Example 1, the array variable x is a recur-

rence variable, since the computation of x[i] is using the de�nition of x[i− 1].

Recurrence Equations A linear recurrence equation is de�ned as

xz = f(x
z−
−→
d1
, . . . , x

z−
−→
dm

)

Where z belongs to the domain of x,
−→
di is called a dependence vector. An ACL

program can be transformed into a system of recurrence equations by exact data

�ow analysis [20].
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In this thesis, we use the Alphabets notation to represent the extracted linear

recurrence equations, since it is the input language of our system. Alphabets is an

equational programming language, which evolved from the language ALPHA [21],

a language originally used to describe and synthesize systolic systems. The math-

ematical representation of the computation in example 1 is

x(i) =

{
a(0), i = 0

a(i)× x(i− 1) + b(i), 0 < i < n

Written in Alphabets syntax:

x[i] =case

{|i == 0} : a[0];

{|0 < i < n} : a[i] · x[i− 1] + b[i];

esac;

Semiring A two-operator algebraic structure (R,⊕,⊗) is called a semiring [22], if

R is the carrier set with two binary operators, ⊕ and ⊗ that satisfy the following

properties:

• (R,⊕) is a commutative monoid with identity element e⊕:

� Associativity: (a⊕ b)⊕ c = a⊕ (b⊕ c)

� Commutativity: a⊕ b = b⊕ a

� Identity element: a⊕ e⊕ = e⊕ ⊕ a = a

• (R,⊗) is a monoid with identity element e⊗:

� Associativity: (a⊗ b)⊗ c = a⊗ (b⊗ c)

� Identity element: a⊗ e⊗ = e⊗ ⊗ a = a

• Identity element e⊕ annihilates R with respect to ⊗:

9



� l⊕ ⊗ a = a⊗ e⊕ = e⊕

For example, (R,+, ·), (R,max,+) are all useful instances of semirings. Since ma-

trix multiplication over a semiring is also associative, we can generalize Kogge and

Stone's idea to handle scans and reductions over a semiring. The key idea of gener-

alization of the detection technique is based on the algebraic properties of semiring.

State-Vector Update Form A system of recurrence equations is in SVU form

i� it can be rewritten as follows:
x1

x2
...
xn
1

←

e1,0 e1,1 · · · e1,m
e2,0 e2,1 · · · e2,m
...

...
. . .

...
0 0 · · · 1

×{⊕,⊗}

l1
l2
...
ln
1
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Chapter 3

Examples

Before describing our detection technique, we present a number of examples that

have various types of pre�x computations and scans. These examples are repeat-

edly used in this thesis.

Example 2. The following example computes the maximum segment sum (mss).

It is known as a programming pearl [23]. Given an array a, of n elements, the

segment 〈i, j〉 is the subarray from the i-th to the j-th elements, inclusive (there

are thus, n
2

2
. A segment sum, S[i, j] is the sum of all the elements in the segment

〈i, j〉, and the mss of the array is the maximum of S[i, j] over the n2/2 segments.

For example, the mss of [−1, 100,−2, 101,−3] is 100− 2 + 101 = 199.

x = a[0];

m = x;

FOR i = 1 to n

x = max(a[i], x + a[i]);

m = max(m, x);

END FOR

11



The equivalent system of recurrence equations is:

x[i] = case

{|i == 0} : a[0];

{|0 < i < n} : max(a[i], a[i] + x[i− 1]);

esac;

t[i] = case

{|i == 0} : x[0];

{|0 < i < n} : max(t[i− 1], x[i]); esac;

m = t[n];

The operator max is a binary operator that takes two values as input and

returns the bigger one. Most scan parallelizers fail since the x computed is imme-

diately used for computing mss.

Example 3. This example is Fibonacci Sequence. The following program com-

putes the �rst n Fibonacci numbers de�ned by, fib[i] = fib[i− 1] + fib[i− 2].

f[0] = 0;

f[1] = 1;

FOR i = 2 to n

f[i] = f[i-1] + f[i-2];

END FOR
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The equivalent system of recurrence equations is:

f [i] = case

{|i == 0} : 0;

{|i == 1} : 1;

{|1 < j < n} : f [i− 1] + f [i− 2];

esac;

This example has two recurrences on the left hand side of the computation.

Current scan parallelizers do not support the detection of multi-recurrence on the

left hand side of the computation.

Example 4. The following example computes an array of scans. The compu-

tation for the program is x[i][j] =

j∑
k=0

a[i][k].

FOR i = 0 to n

x[i][0] = a[i][0];

FOR j = 1 to m

x[i][j] = x[i][j-1] + a[i][j];

END FOR

END FOR

The equivalent system of recurrence equations:

x[i, j] = case

{|0 ≤ i < n&&j == 0} : a[i, 0];

{|0 ≤ i < n&&0 < j < m} : x[i, j − 1] + a[i, j];

esac;

13



i

j

Figure 3.1: The computation domain and dependence for Example 5, where n = 5

Example 5. The following program does a lexicographical pre�x sum compu-

tation on a triangular space with domain {i, j|0 ≤ i < n, 0 ≤ j ≤ i}. x[i][j] =
i−1∑
k=0

k∑
l=0

a[l][k] +

j∑
k=0

a[i][k]. The computation domain and dependences of this ex-

ample are shown in Figure 3.1.

x[0][0] = a[0][0];

FOR i = 1 to n

x[i][0] = x[i-1][i-1] + a[i][0];

FOR j = 1 to i

x[i][j] = x[i][j-1] + a[i][j];

END FOR

END FOR

14



The equivalent system of recurrence equations:

x[i, j] = case

{|i == 0} : a[0][0];

{|0 < i < n, j == 0} : x[i− 1, i− 1] + a[i, 0];

{|0 < i < n, 0 < j ≤ i} : x[i, j − 1] + a[i, j];

esac;

Most scan parallelizers detect the trivial scans inside the innermost loop, but will

not detect the whole program as a lexicographical scan.

Example 6. The following program exhibits a mutual dependence between vari-

able x and y.

x[0] = a[0];

y[0] = b[0];

FOR i = 1 to n

x[i] = x[i-1] + y[i-1] + a[i];

y[i] = x[i-1] + y[i-1] + b[i];

END FOR
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The equivalent system of recurrence equations:

x[i] = case

{|i == 0} : a[0];

{|0 < i < n} : x[i− 1] + y[i− 1] + a[i];

esac;

y[i] = case

{|i == 0} : b[0];

{|0 < i < n} : x[i− 1] + y[i− 1] + a[i];

esac;
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Chapter 4

Detection of Scans

Our analysis, like Redon and Feautrier, relies on exact data-�ow analysis [20] of an

a�ne control loop program to extract a System of Recurrence Equations (SRE).

Given such an SRE, the three major steps to detect scans are:

• Identify scan variables. Find the scan variables based on dependence analysis

on recurrence variables.

• Extract coe�cient matrix of the SRE.

• Transform the SRE into SVU form.

4.1 Identify Scan Variables

Scan variables are those recurrence variables that can be computed as a scan.

Therefore, before identifying scan variables, we �rst obtain the recurrence variables.

Given an SRE, we construct the PRDG for it, examine all the self dependences

of a variable on itself, either directly or through a cycle in the PRDG. If such a

cyclic dependence exists, we have identi�ed a recurrence variable.

Theorem 1. Any variable that is involved in a Strongly Connected Component

(SCC) of the PRDG is a recurrence variable.

17



Proof. For each vertex x in the SCC, let a be another vertex in the SCC. By

de�nition of SCC, there exists a path from x to a and a path from a to x, so there

is a path from x to x. In other words, there is a cyclic dependence on x. �

A recurrence variable is a scan variable if all the self dependences of this variable

are uniform (i.e., translations) and in the same direction.

Figure 4.1 shows the Strongly Connected Component for the PRDG of Exam-

ple 1. The self dependence of x is (i→ i− 1) , which is a uniform dependence, so

x is a scan variable.

x S1 : {(i→ i− 1), {i|1 ≤ i ≤ n}}
S1

Figure 4.1: The Strongly Connected Component for Example 1

After identifying the scan variables, the �nal step is to extract the coe�cient

matrix for the scan variables. The detailed algorithm for extracting the linear terms

for the matrix is shown in Figure 4.2, and the one for extracting the coe�cient of

the constant term is very similar, which is shown in Figure 4.3. Figure 4.4 gives

an example about how the algorithm for extracting the linear terms works. The

computation for the example is xi = ai · xi−1 + bi · yi−1 + c, where x and y are

both scan variables. It �rst constructs the expression tree of the right hand side

expression of the equation, then visits the tree from bottom to top and applying

the rules in the algorithm while visiting the tree.

The following section shows how to transform linear recurrence equations into

SVU form.
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Φ :: (Exp, x, Y )→ (Exp, boolean)
ΦJcK = (c, False)
ΦJxK = (e⊗, T rue)
ΦJyK = (e⊕, T rue)
ΦJvK = (v, False)
ΦJf eK = let (e′, b) = ΦJeK
in if b then error else (f e′, False)

ΦJe1 � e2K = let ((e
′
1, b1), (e

′
2, b2)) = (ΦJe1K,ΦJe2K)

in if b1 ∨ b2 then error else (e
′
1 � e

′
2, False)

ΦJe1 ⊕ e2K = let ((e
′
1, b1), (e

′
2, b2)) = (ΦJe1K,ΦJe2K)

in case (b1, b2) of
(True, True)→ (e

′
1 ⊕ e

′
2, T rue)

(True, False)→ (e
′
1, T rue)

(False, True)→ (e
′
2, T rue)

(False, False)→ (e
′
1 ⊕ e

′
2, False)

ΦJe1 ⊗ e2K = let ((e
′
1, b1), (e

′
2, b2)) = (ΦJe1K,ΦJe2K)

in if b1 ∧ b2 then error else (e
′
1 ⊗ e

′
2, b1 ∨ b2)

Figure 4.2: Algorithm Φ extracts the coe�cient matrix for scan variable x from
expression Exp over semiring (R,⊕,⊗). Y denotes a list of scan variables other
than x, v denotes a non-scan variable, c denotes a constant, f denotes a unary
operator, � denotes a binary operator other than ⊕ or ⊗. True and False indicate
whether the current term is involved with the scan variables.

4.2 State-Vector Update Form Transformation

The set of recurrence equations that we can solve need to satisfy the following

constraints:

• The recurrence equation needs to be a linear recurrence equation.

• The dependence vectors on a recurrence variable need to be in the same

direction. Two dependence vectors are in the same direction i� they have the

same primitive vector.
−→
d is one of the dependence vectors of the recurrence

variable, gcd(
−→
d ) returns the Greatest Common Divisor of the elements of

−→
d , The primitive vector of

−→
d is computed as

−→
d

gcd(
−→
d )
. Take the examples in

Figure 4.5. In (a), the dependence vectors on x are (−1,−1) and (−2,−2),

19



Φ :: (Exp, x, Y )→ (Exp, boolean)
ΦJcK = (c, T rue)
ΦJxK = (e⊗, False)
ΦJyK = (e⊕, False)
ΦJvK = (v, True)
ΦJf eK = let (e′, b) = ΦJeK
in if b then error else (f e′, False)

ΦJe1 � e2K = let ((e
′
1, b1), (e

′
2, b2)) = (ΦJe1K,ΦJe2K)

in if b1 ∨ b2 then error else (e
′
1 � e

′
2, False)

ΦJe1 ⊕ e2K = let ((e
′
1, b1), (e

′
2, b2)) = (ΦJe1K,ΦJe2K)

in case (b1, b2) of
(True, True)→ (e

′
1 ⊕ e

′
2, T rue)

(True, False)→ (e
′
1, T rue)

(False, True)→ (e
′
2, T rue)

(False, False)→ (e
′
1 ⊕ e

′
2, False)

ΦJe1 ⊗ e2K = let ((e
′
1, b1), (e

′
2, b2)) = (ΦJe1K,ΦJe2K)

in if b1 ∧ b2 then error else (e
′
1 ⊗ e

′
2, b1 ∨ b2)

Figure 4.3: Algorithm Φ extracts the coe�cient matrix for scan variable x from
expression Exp over semiring (R,⊕,⊗). Y denotes a list of scan variables other
than x, v denotes a non-scan variable, c denotes a constant, f denotes a unary
operator, � denotes a binary operator other than ⊕ or ⊗. True and False indicate
whether the current term is involved with constant coe�cient.

+

×

ai xi

+

×

bi yi

c

(ai, T rue)

(ai, T rue) (0, T rue)

(ai, False) (1, T rue)

(0, T rue)

(c, False)

(bi, False) (0, T rue)

Figure 4.4: Extract coe�cient of x
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i

j

i

j

(a) (b)

x[i,j] = x[i-1, j-1] + x[i-2,j-2] x[i,j] = x[i-1,j]+x[i-1,j-1]

Figure 4.5: (a) Dependence vectors of x are in the same directions, (b) Depen-
dence vectors of x in di�erent directions

the primitive vector for these two vectors is (1, 1). In (b), the dependence

vectors on x are (−1, 0) and (−1,−1), the primitive vector for (−1, 0) is

(1, 0), an (1, 1) for (−1,−1), so we say the dependences on x are not in the

same direction.

With regard to the above constraints, we de�ne the set of recurrence equations

that we can solve in the following subsections.

4.2.1 First order recurrence equation

In this section we de�ne a general class of �rst-order recurrence equations that can

be transformed into SVU form.

Given a semiring (R,⊕,⊗), a �rst order recurrence equation that can be solved

by our technique is de�ned as follows:

z ∈ D : xz = a⊗ x
z−
−→
d
⊕ b (4.1)
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where a and b are arbitrary expressions that do not involve the recurrence

variable x. They may involve other variables that do not have a cyclic dependence,

and therefore are considered as inputs to the computation of x. There might be

additional subexpressions a′ ⊗ x
z−
−→
d
on the right hand side combined using ⊕,

involving other self dependences on x, but they all must have the same
−→
d , and

these can be replaced, without loss of generality, by a single expression a. Since

there is only one recurrence dependence, the dependence for the recurrence variable

is always in the same direction.The following discusses how a matrix form can be

extracted under di�erent situations.

If gcd(
−→
d ) = 1, then a matrix form can be extracted(

xz
1

)
←
(
a b
0 1

)
×{⊕,⊗}

(
x
z−
−→
d

1

)
If gcd(

−→
d ) = t > 1. For example, xi = xi−2 + ai, this computation can be

computed with two scans, one scan on odd elements and another on even elements.

Let
−→
d = t ·

−→
δ , where gcd(

−→
δ ) = 1. We can transform equation (4.1) into a matrix

form by adding t − 1 temporary �accumulation variables.� The matrix form for

equation (4.1) is shown below.

xz
x
z−
−→
δ

x
z−2·

−→
δ

...
x
z−(t−1)·

−→
δ

1


←



0 0 · · · a b
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 · · · 1 0 0
0 0 · · · 0 1


×{⊕,⊗}



x
z−
−→
δ

x
z−2·

−→
δ

x
z−3·

−→
δ

...
x
z−
−→
d

1


4.2.2 M-th order recurrence equation

In an m-th order recurrence equation, the recurrence variable x occurs m times in

the right hand side of equations, each time with a di�erent dependence. It can be

rewritten in the form,

z ∈ D : xz = (a1 ⊗ xz−−→d1)⊕ · · · ⊕ (am ⊗ xz−−→dm
)⊕ b (4.2)
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where a is a list of m expressions and b is a single expression. The technique we

described in the previous section applies for the �rst-order recurrence equations.

However, a little manipulation of the previous method can often convert an m-th

order recurrence equation into a �rst-order recurrence equation.

As described at the beginning of this section, x is a scan variable if all the

dependences on x are in the same direction, so �rst we check that for every self-

dependence
−→
di on x, whether

−→
di

gcd(
−→
di)

are the same. If this does not hold, the com-

putation is not a scan. Let us assume that this holds, and the set {
−→
d1 ,
−→
d2 , . . . ,

−→
dm}

are distinct self dependences in ascending order of the value of their respective

gcds.

If gcd(
−→
d1) = 1 and

−→
di = i ·

−→
d1(i > 1), then equation (4.2) can be transformed

to the matrix form

xz
x
z−
−→
d1

x
z−
−→
d2
...

x
z−
−−−→
dm−1

1


←



a1 · · · am b
1 · · · 0 0
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 1


×{⊕,⊗}



x
z−
−→
d1

x
z−
−→
d2

x
z−
−→
d3
...

x
z−
−→
dm

1


The Fibonacci example described in the chapter 3 is a second-order recurrence

equation, it can be transformed into the following SUV form

 fi
fi−1

1

←
1 1 0

1 0 0
0 0 1

×{⊕,⊗}
fi−1

fi−2

1


If gcd(

−→
d1) 6= 1 or

−→
di = k ·

−→
d1(k 6= i), we can apply the trick that we used in

the �rst order recurrence, of adding some temporary accumulation variables, using

which we can also transform equation (4.2) into a semiring matrix form.

As we see above, as long as all the self dependences of the scan variable in the

recurrence equation are in the same direction, we can transform the recurrence

equation into matrix form, and compute it as a scan or reduction. However, if not
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all the directions are the same, for example, xi,j = xi−1,j + xi,j−1 + xi−1,j−1 + ai,j.

For this kind of dependence, we could try to obtain wavefront schedules using the

classic polyhedral scheduling algorithms [17]. Since this is not the focus of this

work, we do not discuss it here.

4.2.3 System of recurrence equations

In a system of recurrence equations, there is more than one recurrence variable

and these recurrence variables are the nodes in a SCC. Example 6 in chapter 3 is

such a system of recurrence equations.

We now show how to transform such a system of recurrence equations into

matrix multiplication form. For each recurrence variable v in the system, we check

if all the direct and indirect dependences on v are in the same direction. If all

the dependences on each variable are in the same direction, then a matrix mul-

tiplication form can be extracted, we can also add some temporary �accumulator

variables� if necessary.

In Example 6, there are two dependences on x, (i→ i−1) and (i→ i−1), one

from x itself and one from y, they are in the same direction, the dependences on

y are also in the same direction, so a matrix multiplication form can be extracted.

The matrix multiplication form for Example 6 is shown below:xiyi
1

←
1 1 a[i]

1 1 a[i]
0 0 1

×{+,×}
xi−1

yi−1

1


4.3 Detection of Lexicographical Scan

For Example 5 in chapter 3, most scan parallelizers only detect the scan inside the

innermost loop. Redon and Feautrier [10] showed that it is useful to detect the

scan as a lexicographical scan instead of arrays of scans. The parallelization for

lexicographical scan is more e�cient than parallelization of sequence of scans.
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Based on Redon and Feautrier's [10] algorithm for detecting multi-directional

scan, we present a way for detecting the lexicographical scan exploiting linear

semiring operations.

As we go up to lexicographical scan, we won't be able to represent the scan with

only one direction, therefore, we use a set of directions to represent a lexicographical

scan. For example, we use two directions to describe the scan in Example 5, (0, 1)

and (1, 1), the �rst direction shows the direction of the inner most scan, the second

direction is used to switch from the initial value of the previous slice of scan to the

initial value of the next slice of scan.

Before we go to the details of how to detect lexicographical scan, �rst we need to

de�ne a variant of the lexicographic minimum. Let D ⊆ Zp be a convex polyhedral

set and let ei be vectors of the same Zp space.

D
min
e0,...,ek

(z) = z −
k∑
i=0

viei

Where (v1, ..., vk = lexmax(µ0, ..., µk|(µ0, ..., µk) ∈ Nk, z −
∑k

i=0 µi · ei) ∈ D) The

lexmax function represents the classical lexicographical maximum.

It is obvious that a lexicographical scans can not be detected directly. They

can be found using mutli-stage detection, the basic idea is detect the innermost

scan �rst, then try to merge the initial branches into the detected scan as much as

possible. Detection of the innermost scan is the same as described above, so the

main question is how to merge the initial value branches into the detected scan?

Assume a scan S is detected, Ds is the domain for the scan, Dg represents the

initial domain of scan S, a set of vector {e0, ..., ek} are the extracted directions for

scan S. The jth initial branch can be merged into the detected scan s if it satis�es

the following:

• Dgj ∩ Dg 6= ∅, where D
g
j is the domain of the jth initial branch.
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• It is a recurrence equation of the same recurrence variable with the detected

scan. The computation of the branch is in the form f(v(I0
j (z)), ..., v(Imj (z))),

v represents the variable computed by the scan, I ij is the ith dependence

function of the jth initial branch.

• Either a new direction or an old direction can be extracted from the initial

branch.

• An SVU form can be extracted from the initial branch.

Let D = DS ∪ Dg A direction e can be extracted by resolving the following

integer problem:

∀A ∈ Dgj , e = z −
D

min
e0,...,ek

(I ij(z))

If a constant direction e can be found for all the dependence functions in the jth

branch, and an SVU form can be extracted, then this branch can be merged into

the detected branch.

In example 5, a scan on variable x is detected �rst in the third branch with

direction (0, 1). DS = {0, i < n, 0 < j ≤ i}, Dg = {0 ≤ i < n, j = 0}. The

second branch with domain {i, j|0 < i < n, j = 0} computes the initial value of

the detected scan, and it is a recurrence equation on x. There is one dependence

function in the branch (i, j → i − 1, j − 1). The vector e is the solution of the

following problem:

∀z ∈ {i, j|0 ≤ i < n, j = 0} : e = z −
D

min
e0,...,ek

(z + (−1,−1))

It is possible to transform this problem to a mere maximization problem under

the following constraints:
µ > 0

z − e =

(
z0 − 1

z1 − 1

)
− µ ·

(
0

1

)
z − e ∈ {i, j|0 ≤ i < n, j = 0}
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Problems like this can be solved by some tools, like Parametric Integer Program

(PIP) [24], PIP �nds the lexicographic minimum of the set of integer points which

lie inside a convex polyhedron which depends linearly on one or more parameters.

In this example, the result for e is (1, 1), it is a constant vector, so a new direction

is extracted. Applying the coe�cient matrix extraction algorithm to this branch,

a matrix form

(
1 a[i][0]
0 1

)
can be extracted for the branch, then the branch of the

initial value is merged. After that, no more branches can be merged into the scan.

4.4 Reduction

Until now, we have only focused on scan detection. Let us now address detection

of reductions. Based on the recurrence equations, we can say that a reduction is a

special case of scan, any value computed in the scan can be computed as a reduc-

tion. If a scan is used only on a �nite domain, then it is not necessary to compute

all the values, so we can recognize the values in this �nite domain as reductions

and remove the scan. For example, in the mss example, the computation of t is

detected as a scan �rst, however, only the last value of t is used in the de�nition

of m, so we say that the computation of m is a reduction.
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Chapter 5

Code Generation

We integrated the scan detection technique into our polyhedral program transfor-

mation and code generation system AlphaZ. The framework of our scan parallelizer

is shown in Figure 5.1. A C program is can be transformed into recurrence equa-

tions through GeCoS [25]. Our scan parallelizer takes recurrence equations as

input, detects scans and generates parallelized scan code.

In this chapter, we described how to parallelize a scan or reduction. We also

proposed some optimization strategies to improve the performance.

Scan/Reduction Detection Code Generator

Output

Equational Program
Parallelized C program

(OpenMP)

Input

Optimization 
 analysis

C program
GeCoS

Figure 5.1: Framework for the scan parallelizer
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8 14 7

29

reduction reduction reduction

reduction

Figure 5.2: Example for reduction paralllelization, p = 3

5.1 Parallelization of Scan and Reduction

Much work has been done for the parallelization of scans and reductions [7,16,26,

27].

The parallelization of reduction is straightforward, and consists of two phases:

local reduction and global reduction. Given an associative operator � an a list

of expressions [e0, e1, . . . , en−1], we want to do a reduction using p threads. First,

we distribute the n elements to the p threads, every thread performs a sequential

reduction on n
p
elements. After p local reduction values are produced, a single

thread performs a global reduction on the p local reduction values. Figure 5.2

shows an example for how the reduction parallelization works. Furthermore, in

OpenMP, there is even a direct pragma to do the reduction whenever the operator

is one of the prede�ned ones.

The classic scan parallelization algorithm is shown in Figure 5.3. It contains

three phases: local scan, global scan and �nal add. In the �rst phase, the n

elements are distributed to the p threads, every thread performs a sequential scan

on n
p
elements. Then a single thread performs a global scan on the last scan value

of produced by each thread. Finally, each thread performs a local add to each
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2 5 6 8 12 15 21 22 24 25 26 29

scan scan scan

2 5 6 8 4 7 13 14 2 3 4 7

8 14 7

8 22 29

2 5 6 8 4 7 13 14 2 3 4 7

scan

add add

Figure 5.3: Example for classic scan parallelization, p = 3

value of its block.

Recently, Merrill and Grimshaw's work [26] points out that the parallelization

of scan is actually I/O bound. The classic parallelization described above has 4n

memory accesses. To reduce the memory access, they change the �rst phase to local

reduction. They �rst let each thread do a sequential reduction on n
p
elements. After

p local reduction values are produced, a single thread performs a global scan on the

p local reduction values. Finally, each thread performs a local scan with the proper

initialization value form the global scan. This way, they save n memory access,

since reduction requires only n memory accesses. Figure 5.4 gives an example of

how Merrill and Grimshaw's scan parallelization works.

However, as we observed in the above algorithm, in phase one, the reduction

value of the last thread is actually useless, it is not used in any computation, so

instead of distributing the n elements to p threads, we divide the elements into

(p + 1) chunks. In the �rst phase, thread 0 does a scan on chunk 0 instead of a
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reduction reduction reduction

scan

scan scan scan

Figure 5.4: Example for Merrill and Grimshaw's scan parallelization, p = 3

reduction, every other thread performs a reduction on its own chunk�nothing has

to be done for the last chunk. After the last value of scan and (p−1) local reduction

values are produced, a single thread performs a global scan of the p values. Finally,

each thread does a scan on the last p chunks with the proper initialization value

form the global scan. Figure 5.5 gives an example of how our algorithm works.

The example we used to illustrate the parallelization algorithm is a list of

value, but the parallelized program does a parallelization for Xi = (
∏i

j=1Aj)X0,

which mainly does a matrix-matrix multiplication. The original sequential program

iterates over Xi = AiXi−1, which iterates over a matrix-vector multiplication.

Compare the parallelized version with the original program, the parallelized version

has O(m) overhead, m is the size of the coe�cient matrix. Hence, optimization is

necessary to improve the performance of the parallelized code.
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Figure 5.5: Example for our scan parallelization, p = 3

5.2 Optimization of Matrix Multiplication

Since most overhead comes from the matrix-matrix multiplication, the �rst opti-

mization we considered is the optimization of matrix-matrix multiplication. Mat-

suzaki [13] presented an optimization based on abstract matrix multiplication in

the work for automatic parallelization of tree reductions. Their method removes

the redundant variables and computations by detecting the constant propagation.

Based on this idea, we developed some optimization of matrix multiplication.

We use Z to denote e⊕, I to denote e⊗, C denotes the constant value and V

denotes non-constant values. The semantics for the abstract operators ⊕′ and

⊗′ are shown in Figure 5.6. Let Mi =
∏i

j=0Ai, Mi = Ai ×{⊕′,⊗′} Mi−1. In the

optimization phase, we will iterate through the matrix multiplication about the

abstract matrix until the same abstract matrix pattern appears.

Assume the following matrix is the initial matrix.(
V V
Z I

)
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⊕′ Z I C V
Z Z I C V
I I V V V
C C V V V
V V V V V

⊗′ Z I C V
Z Z Z Z Z
I Z I C V
C Z C V V
V Z V V V

Figure 5.6: Semantics for ⊕′ and ⊗′ with the abstract values

The iteration for the matrix yields the following results.(
V V
Z I

)
→
(
V V
Z I

)
→
(
V V
Z I

)
The stable matrix has two V elements, which indicates that we need those two

V elements for the computation. Similarly, if the initial matrix is similar to the

above matrix, but with the �rst element as I, we can �nd that it yields the following

computation.

(
I V
Z I

)
→
(
I V
Z I

)
→
(
I V
Z I

)
So we only need one V element for the computation. However, in our case, this

optimization is not enough to reduce the overhead of matrix multiplication. Here

is a three order recurrence equation, xi = ai · xi−1 + bi · xi−2 + ci · xi−3 + di, the

coe�cient matrix Ai is the following
ai bi ci di
1 0 0 0
0 1 0 0
0 0 0 1


The abstract representation for this coe�cient matrix is

V V V V
I Z Z Z
Z I Z Z
Z Z Z I
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Applying Matsuzaki's method, we iterate through the matrix multiplication

until the same matrix pattern occurs. We get the following result
V V V V
I Z Z Z
Z I Z Z
Z Z Z I

→

V V V V
V V V V
I Z Z Z
Z Z Z I

→

V V V V
V V V V
V V V V
Z Z Z I


There will be twelve elements need to be computed during the matrix mul-

tiplication. Further optimization is needed to achieve comparable performance

regarding to the original computation. The following result shows the �rst itera-

tion over matrix multiplication with the original coe�cient matrix.

M1 =


a1 b1 c1 d1

1 0 0 0
0 1 0 0
0 0 0 1



a0 b0 c0 d0

1 0 0 0
0 1 0 0
0 0 0 1


Let m1,0 be the �rst element of the second row of M1

m1,0 = 1× a0 + 0× b0 + 0× c0 + 0× d0

= a0

The value of m1,0 is a copy of value a0, no other computation is needed. We

achieve this optimization by unrolling the computation of matrix multiplication

and remove unnecessary computations for each element.

There are some other trivial optimizations we can do. For example, if Ai is

a constant matrix, which never changes, then we can do the reduction for Ai in

log(n) step using the power of Ai.

5.3 Load balance

Most scan parallelizers handle one dimensional scan, and it is relatively easy to

distribute data evenly to each thread. However, in our case, since we deal with
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lexicographical scan, it is possible that the domain of the scan is some shape that

can not be distributed evenly as simple as one dimensional scan.

To address this problem, one important thing to know is the number of integer

points in the polytope, or the volume of the polytope.

Clauss and Loechner [28] presented an automatic method for computing the

number of integer points contained in a convex ploytope or in a union of convex

polytopes. It computes the Ehrhart polynomial, which is a parametric expression

of the number of integer points. Here we use their Ehrhart polynomial result.

Assume the domain of a scan is a parameterized polytope P , the Ehrhart

polynomial of the polytope is represented as V (P). Given p threads, ideally, each

thread should get V (P)
p+1

work. To do this, we try to divide the polytope along the

outer dimension, we add one more constraint to the outer dimension, so that the

outer dimension is parameterized by x, the new ploytope's Ehrhart polynomial is

V (P(x)). The index value of thread i can be computed by solving the following

problem

V (P)

(p+ 1)
· (i+ 1) = V (P(x))

We use the Newton-Raphson method [29] to compute the value of x, then the ith

chunk has the outermost index in the range of f(i) to f(i+ 1).

However, there is still some imbalance in the computation. Assume that we

have a scan S, the volume of the scan domain is N , the overhead of the matrix-

matrix multiplication after optimization is β. Now we have p threads, what is the

ideal speedup? As we described before, in phase one, thread 0 is doing a scan,

which is a matrix-vector multiplication, and the other threads are doing reduction

over matrix-matrix multiplication. If we divide the work evenly into (p+1) chunks,

the other threads which is doing a reduction over matrix-matrix multiplication will

do β times more work than thread 0, and there is an imbalance. To get the best
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performance, we want thread 0 to do the same work as the the other threads,

assume thread 0 gets n work, each of the other thread gets N−n
p

work. We want

n = β · N − n
p

Then we get

n · p = N · β − n · β

n · (p+ β) = N · β

n = N · β

p+ β

When n = N · β
p+β

, the parallel execution time PT is

PT = n+
N − n
p

= n+
N − n
p

= n · 1 + β

β

= N · β

p+ β
· 1 + β

β

=
(1 + β) ·N
p+ β

The best sequential time is N , the ideal speedup will be

speedup =
N

(1+β)·N
p+β

=
p+ β

1 + β

5.4 Experimental Validation

The technique presented here has been implemented and used to generate OpenMP

code. The structure of the code generated by the code generator is shown in

Figure 5.7.
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#pragma omp parallel for

{

Do index computation using Newton-Rapson method

#pragma omp barrier

Initialize the begin and end variables of each thread block

if(thread_num == 0)

{

Scan computation parameterized with begin and end

}

else

{

Reduction computation parameterized with begin and end

}

#pragma omp barrier

#pragma omp single

{

Scan computation on the reduction result

}

#pragma omp barrier

Initialize the begin and end variable of the each thread block

Compute the new initialize value for each thread

Scan computation parameterized with begin and end

}

Figure 5.7: The structure of the generated code
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To con�rm the e�ciency and scalability of the parallelization algorithm, we ran

our code generator on the following examples.

Polynomial Scan The polynomial scan computes x[i] = c · x[i − 1] + a[i],

It computes polynomial evaluation through the Horner scheme. The parallelized

computation computes a scan on a (2, 2) matrix over semiring (R,×,+). The test

size for this problem is 229.

Convolution The convolution computes x[i] = a0+a1 ·x[i−1]+a2 ·x[i−2]+

a3 ·x[i− 3] + a4 ·x[i− 4] . It is a forth-order recurrence equation. It is parallelized

with a (5, 5) matrix over semiring (R,×,+). The test size for this problem is 229.

Lexicographical Scan on a Rectangle space Here we does a lexicographical

scan on rectangle space. The main computation is x[i, j] = A[i, j]·x[i, j−1]+B[i, j].

It is parallelized with a (2, 2) matrix over semiring (R,×,+).

Lexicographical Scan on a Triangle space This is example has the same

domain with example 5 in chapter 3. The main computation is the same with the

above example x[i, j] = A[i, j] ∗ x[i, j − 1] +B[i, j].

All the testing is done on a machine equipped with one XeonE5520 (8 cores; 2.26

GHz) and 12 GB memory. The running environment is Fedora 15, each program

is compiled using icc 12.0.3 with the O3 optimization. For speedup, we compare

with the sequential code without matrix multiplication. The results are shown in

Figure 5.8 and Figure 5.9.

Figure 5.8 shows the speedup for horner scheme, lexicographical scan on a rect-

angle space and triangular space. Since the computation for these four programs

are very similar, the overhead of the matrix computation are the same and they

have the same ideal speedup. Horner scheme and the lexicographical scan on rect-

angle space are very close to the ideal speedup. However, the performance for the

triangle lexicographical scan without balancing the load are very poor. After we �x
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Figure 5.8: Speedup for the testing program

the load balancing problem, it matches the ideal speedup. So the load balancing

problem is important to get good speedup.

Figure 5.9 shows the result for convolution. The speedup for the original con-

volution is far below the ideal. In convolution, the parallelized program does a

computation over a 5 by 5 matrix, so the overhead of the reduction will be rela-

tively larger than the above programs, then the load balance problem for the �rst

chunk is obvious. We can see form the result that after we �xing the load balance

problem for the �rst chunk, the speedup gets very close to ideal.
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Figure 5.9: Speedup for convolution

40



Chapter 6

Related Work

The parallel implementation of recurrence equations was �rst discussed by Karp,

Miller and Winograd [30]. They treated program dependences as inviolate con-

straints that any parallelization had to respect. Later, in a seminal paper, Kogge

and Stone [9] described the �rst successful �dependence breaking� technique, that

proposed a parallelzation of a general class of recurrence equations. They also

introduced the �matrix notation� where the computation is described as a small

matrix-vector product, and the associativity of this operation leads to e�cient and

scalable parallelization.

Lander and Fischer [31] descibed an e�cient, general-purpose circuit for scan

operations. Blelloch [7] also his text describes the implementation of pre�x-sum

computation on parallel machines, and gives a strong motivation for using scan

computations as a �primitive� or a library. He presents a set of practical examples,

such as quicksort line-of-sight and watershed computations in topographical/geo-

graphical data, and spanning tree computations.

In the context of automatic parallelization, especially in the polyhedral model,

the earliest work on parallelization of reductions and scans is due to Redon and

Feautrier [10]. They present a scan detector which is based on analyzing systems

of recurrence equations extracted from an imperfectly neted a�ne control loop
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program. They deal with scalar reductions, array reductions/scans and arrays

of reductions/scans. They also described a scan algebra for the combination of

scans, and some semantics preserving transformations on recurrence equations that

embody scans.

They propose and use a normal form on which their main detection algorithm

is applicable, and a normalization technique to bring other more general programs

into such a form. They separate the system graph into strongly connected com-

ponents (SCCs), and use the core algorithm separately on each SCC. The core

algorithm e�ectively identi�es a dependence cycle involving a node, performs re-

peated substitution through a process called called total elimination seeking to

reduce the entire SCC into a single node. They then inspect the composition of

the computation along a dependence cycle to see if it matches the pattern of a

scan. If either total elimination or the pattern matching fails, their algorithm

gives up, which prevents it from detecting many scans. For example, in the system

of equations

xi = xi−1 + yi−1

yi = xi + ai

we can do a simple substitution of y in the de�nition of x and remove the de�nition

for y, and this yields xi = 2xi−1+ai. However, the total elimination will fail if there

is no common vertex for all the circuits in the SCC. In general, this situation occurs

when there is a mutual dependence. Furthermore, they recognize the scans based

on pattern matching, and one of the common limitations for pattern matching

method is that it will fail once the target becomes too complicated.

Redon and Feautrier [8] also present a method to schedule programs with reduc-

tions based on the recurrence equations. Although they assume an ideal (PRAM)

machine model, they show that the generated schedules can be adapted to work
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on real parallel machines.

Matsuzaki et. al [13] proposed an algebraic approach for deriving reductions

from recursive tree programs. They extended the matrix multiplication model

to arbitrary semirings, which makes the systematic parallelization of reductions

become more practical. Xu [14] demonstrated an automatic type-based system

that detects parallelizability of sequential functional programs.

Han and Liu [12] describe a speculative parallelization method based on de-

tecting partial reduction variables, i.e., those that either cannot be proven to be

reductions, or that violate the requirements of a reduction variable in some way.

More recently, Sato and Iwasaki [15] developed a sophisticated and pragmatic

system incorporating most of these algebraic approaches. Their system proposed

many enhancements to existing analysis techniques to optimize the generated code,

to detect hidden max operators from existing imperative codes, and an extension

of the algorithms of Xu et. al [14] and Matsuzaki et. al [13] to detect semiring

matrix operations from expressions.

All previous methods su�er from one limitation or the other. In particular,

the techniques of Redon and Feautrier does not use any of the work on matrix

operations on semirings, and the recent work on algebraic techniques [13�15] are

limited to only detect reductions or scans in single loops, and do not detect multi-

dimensional or lexicographic scans.

Our method based on the exact dependence analysis on systems of recurrence

equations, detects both scans and reductions in the nested loops. It also deals with

variables that have mutual dependence. The technique based on extracting matrix

multiplication form makes our method more general and powerful. Overall, our

method can handle a wider range of programs than the previous work.

43



Chapter 7

Conclusion

We presented a method for automatically parallelizing a class of �inherently� se-

quential programs. It is based on the classic recurrence parallelization technique

of Kogge and Stone [9] but extended to nested loops, where the problems are more

di�cult. Our method extends the state of art, it handles a wider range of programs

than the previous works. We can automatically detect reductions, arrays of scans,

lexicographic scan, and scans with mutually dependent variables.

We implemented our scan detection method in a polyhedral program trans-

formation and code generation system. We also developed a code generator to

generate parallel code for the detected scan.

However, there is some future works remains to be done:

• Scans and reductions in other forms. There are still some kind of hidden scans

and reductions that we do not handle at that point, for example, reductions

written in a tree way.

• Detect scans in the outer loop. Such as the matrix power example B = AK ,

the inner loop does a matrix matrix multiplication. A simple parallelization

is parallelizing the matrix matrix multiplication. However, sometimes the

matrix size is too small to gain bene�t from this kind of parallelization, and

k is fairly large. Then we can try to parallelize the outer loop as a scan.
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• Optimization of Matrix Multiplication. Currently, we assume that the op-

timization analysis given, we take the �nal stable matrix and generate the

corresponding code.

• More experiments have to be done. Our current examples for the lexico-

graphical graphical scans are constructed examples, some experiments about

the real world applications need to be done to prove the value of our work.
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