DISSERTATION

A SEMI-DYNAMIC RESOURCE MANAGEMENT FRAMEWORK FOR MULTICORE

EMBEDDED SYSTEMS WITH ENERGY HARVESTING

Submitted by
Yi Xiang

Department of Electrical and Computing Engineering

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Fall 2015

Doctoral Committee:
Advisor: Sudeep Pasricha
Anura Jayasumana

H. J. Siegel
Michelle Mills Strout

Copyright by Yi Xiang 2015

All Rights Reserved

ABSTRACT

A SEMI-DYNAMIC RESOURCE MANAGEMENT FRAMEWORK FOR MULTICORE

EMBEDDED SYSTEMS WITH ENERGY HARVESTING

Semiconductor technology has been evolving rapidly over the past several decades,
introducing a new breed of embedded systems that are tiny, efficient, and pervasive. These
embedded systems are the backbone of the ubiquitous and pervasive computing revolution,
embedded intelligence all around @dten, such embedded intelligence for pervasive computing
must be deployed at remote locations, for purposes of environment sensing, data processing,
information transmission, etc. Compared to current mobile devices, which are mostly supported
by rechargeable and exchangeable batteries, emerging embedded systems for pervasive computing
favor a self-sustainable energy supply, as their remote and mass deployment makes it impractical
to change or charge their batteries. The ability to sustain systems by scavengingfrenergy
ambient sources is called energy harvesting, which is gaining monument for its potential to enable
energy autonomy in the era of pervasive computing. Among various energy harvesting techniques,
solar energy harvesting has attracted the most attention due to its high power density and
availability.

Another impact of semiconductor technology scaling into the deep submicron level is the
shifting of design focus from performance to energy efficiency as power dissipation on a chip
cannot increase indefinitely. Due to unacceptable power consumption at high clock rate, it is
desirable for computing systems to distribute workload on multiple cores with reduced execution

frequencies so that overall system energy efficiency improves while meeting performance goals.

Thus it is necessary to adopt the design paradigm of multiprocessing for low-power embedded
systems due to the ever-increasing demands for application performance and stringent limitations
on power dissipation.

In this dissertation we focus on the problem of resource management for multicore
embedded systems powered by solar energy harvestmbaVeé conducted substantial amount
of research on this topic, which has led to the design of a semi-dynamic resource management
framework designed with emphasis on efficiency and flexibility that can be applied to energy
harvesting-powered systems with a variety of functionality, performance, energy, ahtityelia
goals. The capability and flexibility of the proposed semi-dynamic framework are veéfied
issues we have addressed with it, including: (i) minimizing miss rate/miss penalty of systems with
energy harvesting, (ii) run-time thermal control, (iii) coping with process variation induced core-
to-core heterogeneity, (iv) management of hybrid energy storage, (v) scheduling of task graphs
with inter-node dependencies, (vi) addressing soft errors during execution, (vii) mitigating aging
effects across the chip over time, and (vii) supporting mixed-criticality scheduling on

heterogeneous processors.

ACKNOWLEDGEMENTS

| would like to thank all the individuals whose encouragement and support have made the
completion of this dissertation possible.

First and foremost, | would like to express my sincere gratitude to my advisor, Dr. Sudeep
Pasricha, who has patiently guided me through the entire process of graduate study step by step.
In the last year of my bachelor program in semiconductor physics, | made up my mind to seek
overseas study opportunities in another area to feed my curiosity about the interactiors betwe
computer hardware and software. Although the picture of snowcapped mountains on the ECE
department website was impressive, it was Dr. Pasricha’s description of research on multicore
embedded systems that immediately caught my eye and enlightened me about the field. Since then
| have never looked back as | was fortunate enough to join his research group and to receive his
help, which changed my life. In the first year, the course and research work suggested by Dr.
Pasricha helped prepare me with basic skills for research and reassured me that | had found my
area of interests. After that, it was his vision and wisdom that stimulated me to look at research
problems with more critical and creative thinking, which led to several publications in well-known
conferences and journals. For countless times, | was impressed by his thoroughness and attention
to detail despite his tight schedule, from which | got to know his passion and enthusiasm for
research. On the other hand, he is the type of advisor that is caring enough to suggest his graduate
students to slow down, get some rest, and recharge whenever he senses high pressure on them. Dr.
Pasricha can also give good life advice when required, which helped me to overcome various

difficulties and confusions in life and study during my graduate school years. | really appreciate

all the hdp, guidance, and inspiration | received from Dr. Pasricha, who made it possible for me
to survive the trials of graduate school with unforgettable memories and broadened horizons.

| would like to take this opportunity to thank the respected members of my PhD committee,
Dr. H. J. Siegel, Dr. Anura Jayasumana, and Dr. Michelle Mills Strout. Their feedback helped me
to rediscover my research and refine my work from different perspectives. | am also thankful to
my colleaguesn Dr. Pasricha’s MECS lab for their collaboration during my Ph.D. study: Yong
Zou, Nishit Kapadia, and Brad Donohoo. Also this list cannot be complete without mentioning
company and help from Srinivas Desai, Vipin Kumar Kukkala, Ishan Thakkar, Saideep Tiku, C
Sai Vineel Reddy, Shirish Bahirat, Yuhang Li, Tejasi Pimpalkhute, Pramit Rajkrishna, Dalton
Young, Daniel Dauwe, and Shoumik Maiti.

| would like to thank my family, especially my parents, for their support to pursue my Ph.D.
on the other side of the planet. | cannot wait to share more good news with them in the future as |
continue with my work and study. Their kindness shaped my view of this world and made me the
person | am.

Thank you to Yixiao, for all her love and support.

TABLE OF CONTENTS

ABSTRACT .. e | PP
ACKNOWLEDGEMENTS ... e e e e e aaanns V........
TABLE OF CONTENT S ... e e e e eeennnnns Vi........
LIST OF TABLES ... i e e e e et ettt e e et s e e e e e e e e e e e e e eeeennnnnens X
LIST OF FIGURES ... Xl
LIST OF ALGORITHMS ... e XV
LIST OF ACRONYMS ..ottt e et e e e e e e e XV........

1. INTRODUCTION ...ttt e e e e e e e et e e e e e a e et e e e e e e e e e eeeeeeeees 1
1.1. ENERGY HARVESTINGottt 1
1.2. REAL-TIME MULTICORE EMBEDDED SYSTEMS ... 5

1.2.1. EMBEDDED SYSTEMS ...t 5
1.2.2. REAL-TIME SYSTEMS AND WORKLOAD MODELS..........ccooiiiiie e 6
1.2.3. MULTICORE PROCESSORS IN EMBEDDED SYSTEMS........cooviiiiiii, 8

1.3. BACKGROUND AND RELATED WORK ON RESOURCE MANAGEMENT FOR
LOW POWER REAL-TIME EMBEDDED SYSTEMS WITH ENERGY

HARVESTING ...t e et e et e e e e e e e e e e e e e 15
1.4. DISSERTATION OQUTLINE ..o e 19
2. SEMI-DYNAMIC SCHEDULING ALGORITHM FOR INDEPENDENT TASKS.............. 22
2.1. BACKGROUND AND CONTRIBUTION.......cciiiiiiiiiiiiiieiii e 22
2.2. PROBLEM FORMULATION ..ottt e e e e e e e eenennnes 26
2.2.1. ENERGY HARVESTING AND ENERGY STORAGE MODULEcccccceevnnnn. 26
2.2.2. PERIODIC REAL-TIME WORKLOAD WITH INDEPENDENT TASKS 27

Vi

2.2.3. DPM AND DVFS-ENABLED MULTI-CORE PROCESSOR.............ocoiviviiiiiiiiinns 28

2.2.4. RUN-TIME SCHEDULER ... 30
2.2.5. SCHEDULING PROBLEM OBJECTIVEccoiiiiii e 30
2.3. MOTIVATION ..ttt e e ettt b e e e e e e e e e e e e e eeeenennnnnes 31

2.3.1. MOTIVATION FOR SEMI-DYNAMIC ALGORITHMoooviiiiiiiiiiiiieeee, 31
2.3.2. MOTIVATION FOR HYBRID ENERGY STORAGE ..., 34
2.3.3. MOTIVATION FOR HETEROGENEITY-AWARE ALLOCATIONcccvvvvrnnne 35
2.3.4. MOTIVATION FOR RUN-TIME THERMAL MANAGEMENT.........ccovvviiiiiinnnns 36

2.4. PROPOSED RUN-TIME ENERGY AND WORKLOAD MANAGEMENT

FRAMEWORK 37
2.4.1. SEMI-DYNAMIC ALGORITHM OVERVIEW ..o 37
2.4.2. HYBRID ENERGY STORAGE SYSTEM AND ENERGY BUDGETING............. 40

2.4.3. CRITICAL FREQUENCY, CORE HETEROGENEITY AND THERMAL AWARE
WORKLOAD ESTIMATION ... e 44

2.4.4. TASK PENALTY AND CORE HETEROGENEITY AWARE TASK REJECTION

AND ALLOCATION ...ttt e e e e e e e e e e e e 49

2.4.5. DVFS SWITCHING-AWARE DUALSHFEED METHODcccvvviiiiiiiiiiiiiieeeeeee, 51

2.5. EXPERIMENTAL RESULTS ..o e 55
2.5.1. EXPERIMENT SETUP ...ttt s 55
2.5.2. COMPARISON BETWEEN SDA AND PRIOR WORKcciiiiiiiiieeeiiiieeeeeiiiis 57
2.5.3. ANALYSIS OF SDA WITH HYBRID ENERGY STORAGE ...t 60
2.5.4. ANALYSIS OF CORE HETEROGENEITY-AWARE MANAGEMENT 64
2.5.5. ANALYSIS OF RIN-TIME THERMAL MANAGEMENT ... 65
2.5.6. ANALYSIS OF SCHEDULING OVERHEADccoiiiiiiiiiiee e 67

2.6. CHAPTER SUMMARY ...ttt e e e 68

vii

3. TEMPLATE-BASED SCHEDULING ALGORITHM FOR TASK GRARS.................c.. 70

3.1. BACKGROUND AND CONTRIBUTION........cottiiiiiiiiiiii e 70

3.2. RELATED WORK ...ttt e ettt e e e e e e e e e e e eennnnnnes 73

3.3. PROBLEM FORMULATION ...ttt e e e e e e e eennnenes 74
3.3.1. PERIODIC REAL-TIME WORKLOAD WITH TASK GRAPHS..........cccocceiiiinn. 75
3.3.2. SOFT ERROR MODELcciiiiiiiiiiii e 77
3.3.3. HARD ERROR MODEL ...ttt 78
3.3.4. RUN-TIME SCHEDULER ..ot 81
3.3.5. PROBLEM OBJECTIVE ..ottt 81

3.4. HYBRID SCHEDULING FRAMEWORK: MOTIVATION AND OVERVIEW............ 81

3.5. OFFLINE TEMPLATE GENERATION ...t 83
3.5.1. MILP-BASED OFFLINE TEMPLATE GENERATIONouviiiiiiiiieieeeeieeeeeeeeiiiiis 84
3.5.2. FAST HEURISTIC-BASED OFFLINE TEMPLATE GENERATIONcccvvvveenn. 90

3.6. ADAPTIVE ONLINE MANAGEMENTcooiiiiiiii e 97
3.6.1. RUN-TIME TEMPLATE SELECTIONcciiiiiiiiiiii e 97
3.6.2. AGING-AWARE ALLOCATION OF WORKLOAD PARTITIONSccovvvvninne 98

3.6.3. DYNAMIC ADJUSTMENT FOR SLACK RECLAMATION AND SOFT ERROR

HANDLING AT RUN-TIME ... 99
3.7. EXPERIMENTAL RESULTS .ottt 103
3.7.1. EXPERIMENT SETUP ..ottt e e 103
3.7.2. TEMPLATE GENERATION ANALYSIS ..o 103

3.7.3. EVALUATION OF SYSTEM PERFORMANCE WHOUT ERROR INJECTION
AND EXECUTION TIME VARIANCE ... 106

3.7.4. EVALUATION OF SYSTEM PERFORMANCE WITH SOFT ERROR INJECTION
AND EXECUTION TIME VARIANCE ... 110

viii

3.7.5. EVALUATION OF SYSTEM HARD RELIABILITY AND MTTFccoeeeee. 112

3.8. CHAPTER SUMMARY ...t eeaann 114
4. MIXED-CRITICALITY SCHEDULING ON HETEROGENEOUS SYSTEMS. 115
4.1. BACKGROUND AND CONTRIBUTION.....ccttiiiiiiiiiie e 115
4.2. RELATED WORK ...cotti e e 119
4.3. PROBLEM FORMULATION ...coiiiiiiiiiiiiiiiie e 121
4.3.1. MIXED-CRITICALITY WORKLOAD MODEL.......cccottiiiiiiiiiiiiieeeeeeeeeeeeiiiie 122
4.3.2. HETEROGENEOUS MULTICORE COMPUTING PLATFORM..........ccevvvvininnnnns 123
4.3.3. ENERGY HARVESTING, STORAGE, AND BUDGETINGcccovvvviiiiiiiinnns 124
4.3.4. PROBLEM OBJECTIVE ...cooiiiiitiiiiiii e 125
4.4. SEMI-DYNAMIC FRAMEWORK FOR MIXED-CRITICALITY SCHEDULNG..... 126
4.5. RUN-TIME MIXED-CRITICALITY SCHEDULING..........ccoiiiiiiiiiii e 127
4.5.1. SOFT DEADLINE-AWARE PRIORITY METRICoooviiiiiiiieeiis 127
4.5.2. DYNAMIC WORKLOAD FILTERING AND BALANCINGccoovvvriiiiiiiinn. 130
4.6. EXPERIMENTAL RESULTS ...ttt e e e e e e 132
4.6.1. EXPERIMENT SETUP ..ot 132
4.6.2. DESIGN-TIME TEMPLATE GENERATION ANALYSIS ..., 134
4.6.3. TIMING INTENSITY METRIC EVALUATION ..o 135
4.6.4. MIXED-CRITICALITY SCHEDULING PERFORMANCE EVALUATION........ 136
4.6.5. CHAPTER SUMMARY ...ttt 139
5. CONCLUSION AND FUTURE WORK ... 141
5.1. RESEARCH CONCLUSIONttt 141
5.2, FUTURE WORK ...ttt et e e e e ettt ettt a e e e e e e e e e e e eeenennnnes 143
BIBLIOG R A PHY et e et e e e e e e e e e eennrnn 146

LIST OF TABLES

Table 1 Xscale Processor Power and Frequency Levels [43].......ccccoiiiimiiiiiiiiieiiiieeeeeeeeeeee 28
Table 2 Miss Rate Comparison on MiBENCh ... 60
Table 3 Comparison between Throttling and Proactive Schemesccccoiiiiiiiiiiiiien 67
Table 4 Inputs for MILP FOrmMUIALIONoooiiiiiiiiiiiie e e e e e e e eeeeeeennnnes 84
Table 5 Decision Variables in MILP FOrmulation ..ot 85

Table 6 Results of MILP Based Schedule Template Generation for A 4-core Homogeneous

=01 o =To [0 [=To IS} A1 (=T o 1 FR TP PP O PP PPPPPPPPPPP 104
Table 7 Computation Resource Requirement of MILP and ATGooovviiiiiiiiiiiiiiiiiiee e 106
Table 8 System MTTF and Performance Comparison with Different Failure Thresholds 113
Table 9 Characteristics of Mixed-Criticality Workloads..............uuueiiiiiiiiiiiiiii 123
Table 10 Configuration of Heterogeneous MultiCOre ProCeSSOruuuveuriiiiiieeeeeeeerieeeeeeennnnenns 133

LIST OF FIGURES

Figure 1 Normalized Search Frequency of “Energy Harvesting” over Time [6]vvvuiiiinnnnnnn. 2

Figure 2 TE-Power PROBE Thermal Harvester by Micropelt [8] ... 3
Figure 3 Photovoltaic Panels at Various SCalES.............uuuuiuiiiiiiiiie e eeeaeeees 4
Figure 4 Example of Tiny Embedded Computer with Wi-Fi and Bluetooth......................oooee 5
Figure 5 Workload Models Considered in this DISSErtation.............cccuvvveerinimmeeeeeennnieeee e 8
Figure 6 Increasing Processor-Memory Performance Gap [19]cueeeeviiiiiiiiiieiiniiieeeeeiiiee 9
Figure 7 Approaching Power Wall with Dennard Scaling [21]...........uuuuemiimiiiiiiiiiiiiiiee 10
Figure 8 Diagram of Tile64 processor by Tilera [25]......cccoooiiiiiiiiiiiiiiiie e 11
Figure 9 A Typical big.LITTLE System by ARM [23]........uuiiiiiiiiiiiiiiiiiieeeeeeeee e 12
Figure 10 AMD Fusion APU: “LLANO [27] ...uuuuutttiiiiiiiiiieeeeee e 14
Figure 11 Preview of Contributions of this DISSErtationccccvveeiiiiiiiiiieeeee e 19
Figure 12 Real-Time Embedded Processing with Solar Energy Harvestingccccccceeeeeeeiiiinnnn, 26
Figure 13 Real-Time Scheduling with Energy Harvestingcccoouuiiiiiiiiiiiiiiiiiiieieieeeeeeee e 31
Figure 14 Motivation for Proposed Semi-Dynamic APProachcccccoovvviiiiiiiiiiiiiiiiiieieeeeeeeen 32
Figure 15 An Example of Solar Intensity vs. Ambient Temperaturecccccccveeiieeeeinnns 37
Figure 16 lllustration of Semi-Dynamic AlQOrithimcccuiiiiiiiii 38
Figure 17 Design Flow of Our Proposed SDA-Based Framework.............cocccuvvvveeiinionneeeeeennnee 40
Figure 18 Proposed Hybrid Energy Storage SYSIEMcoooiviiiiiiiiiiiiiiiiiii e 42
Figure 19 Hybrid Storage Management POIICY ... 43
Figure 20 Energy Efficiency Of XSCale PrOCESSONcooeiiiiiiiiiiiiiiiiiieie ettt 46
Figure 21 Energy Efficiency and Switching Proportion for the XScale Processor 51

Xi

Figure 22 Comparison of Frequency Selection Methodsccccuviiiiiiiiii 55

Figure 23 Miss Rates for Different Schedule WINdOW SizZesuuueiiiiiiiiiiiiiiiiiis 56
Figure 24 Miss Rate Comparison with Light Workload..................eiiiiiiiiiineieenn 58
Figure 25 Miss Rate Comparison with Heavy Workloadccccuiiiiiiiiiiiiieeeeeeeeee 59
Figure 26 Overall Miss Penalty COMPAriSONcooiiiiiiiiiiiiiiiee ettt e e 61
Figure 27 Overall MiSS Rate COMPANISONuuiiiiiiiiiiiiiieeeeeeee e e e e e e e e e e e e e e e e e e 62
Figure 28 Miss Rate Reduction for HY-SDA Compared to UTBcccceiiiiiiiiiiciiieeeeeee 63
Figure 29 Overall Miss Rate Comparison with Core Heterogeneityccccoevveeeiiiiiiiiiiinnnnen 65
Figure 30 Peak Temperature of Various Thermal Management TeChniquesccccceeeeeeinnnnnn 66
Figure 31 Comparison of Scheduling Overhead..............oooiiiiiiiiii e 68
Figure 32 DAG Scheduling on Multicore Embedded System Platform with Solar Energy......... 75
Figure 33 Example of Applications Modeled aS DAGSuuiviiiiiiiiiiiieiii e 76
Figure 34 Overview of Hybrid Workload Management Frameworkooooeiiiivvviiiinnnnnne. 82
Figure 35 Timing Constraints for Periodic Task Graph Setcccoooeiiiiii e 87
Figure 36 Analysis-Based Schedule Template Generation HEUISHICcvvvviiiiiiieiiiiiiiiiiie 90
Figure 37 An lllustration Example of Implicit Deadline Calculation................cccooiiiiiiiiiiiinenne. 93
Figure 38 Residual Energy Availability OVer TIMEccuuiiiiiiiiiiiiieee e 97
Figure 39 lllustrative Example of Slack Time Reclamation.............cccoccovviieiiiniiinneeieen 100
Figure 40 Frequency Level Occurrence Distribution for All Task Nodes............ccccvveeviviiinnnnn. 105
Figure 41 Task Nodes Comparison in Terms of Overall System Task Graph Miss Rate 108

Figure 42 Comparison of Overall System Task Graph Miss Rate on Synthetic Task Graph Set
WITN HIGNEE DOP ...ttt e e e e e e e e e e e e e e e s e bbb e e e 109

Figure 43 Miss Rate Comparison with Run-Time Techniques Enabled Progsessive..... 111

Xii

Figure 44 Comparison of reliability and MTTF for different workload allocation schemes 112
Figure 45 Overview of the Proposed Harvesting-Aware McSF Framework with A Mixed-
Criticality Workload and A Single-ISA Heterogeneous Multicore Embedded System............. 121

Figure 46 lllustration of Energy Budgeting and Execution Scheduling Across Schedule Windows

(01T o T SRS 125
Figure 47 lllustration of Timing Intensity for (2, 5)-soft Deadline Case...........ccccceeeevevvveveennnnns 129

Figure 48 Miss Penalties for Generated Schedule Templatescccccciiiiii i 134
Figure 49 System Miss Penalties under Different Intensity Scale Factors...............ccccccvvvvvnnnne. 135
Figure 50 Miss Penalties and Instance Miss Rates across Configurationsccccccccvevveeeeennn. 138

Xiii

LIST OF ALGORITHMS

Algorithm 1 Energy Budgeting with Hybrid Energy Storage..........cccovvviiiiiiiiiiiiiiiiiiiiieeee e 43
Algorithm 2a Active Core Selection and Workload Estimationcccccoooiiiiiiiiiiiiiniiieeee, 46
Algorithm 2b Heterogeneity-Aware Workload EStimation ... 48
Algorithm 3 Heterogeneity Aware Task Rejection and ASSIGNMeENt...........ccccccvvviiiiiiiiiieeieeeeeeenn. 49
Algorithm 4 Dual-Speed Method with Inter-Task SWitChing............cc.uuvviiiiiii s 54
Algorithm 5 Initializing of Tentative Schedule Templateccccoviiiiiiiiiiie 91
Algorithm 6 List Scheduling Based Approach for Task Scheduling............cccccoiiiiiiiiiiiiin. 94
Algorithm 7 Checkpoint-Based Iterative ANAIYSIScccccuiiriiiiiiiiiiiieeeeee e 96
Algorithm 8 Dynamic Workload Distribution in Awareness of Core Agingcccccvvvvvvinnenne. 98
Algorithm 9 Dynamic Slack Reclamation and Soft Error Handlingccceeeiiiiiiiinnn. 101
Algorithm 10 Dynamic Workload Filtering and Scheduling..............eevevis 130

Xiv

APU

CMOS

DTS

DoP

DVFS

EDF

EM

ILP

| SA

MILP

MPPT

MTTF

NBTI

NOC

NTC

RTOS

SMP

STC

TDDB

TDP

LIST OF ACRONYMS

accelerategrocessingunit
complementarynetal-oxide semiconductor
digital thermalsensor

degreeof parallelism

dynamicvoltage andrequencyscaling
earliestdeadlinefirst scheduling algorithm
electromigration
instructionlevelparallelism

instructionset architecture

mixed integerinearprogramming
maximumpower point tracking
meantime-to-failure
negativebiastemperaturénstability
network-on-chip

nearthresholdcomputing

reaktime operatingsystem
simulatedannealing
symmetricmultiprocessor
superthresholdcomputing

time dependentlielectricbreakdown

thermaldesignpower

XV

LIST OF PUBLICATIONS

Y. Xiang, S. Pasricha, "Mixed-Criticality Scheduling on Heterogeneous Multicore Systems
Powered by Energy Harvesting”, ACM Transaction on Embedded Computing (TIHTQS),

review.

Y. Xiang, S. Pasricha, "Soft and Hard Reliability-Aware Scheduling for Multicore Embedded
Systems with Energy Harvesting”, IEEE Transactions on Multi-Scale Computing Systems

(TMSCS),under review.

Y. Xiang, S. Pasricha, "Run-Time Management for Multi-Core Embedded Systems with
Energy Harvesting", IEEE Transactions on Very Large Scale Integration Systems);TVLSI

March 2015.

Y. Xiang, S. Pasricha, "Fault-Aware Application Scheduling in Low Power Embedded
Systems with Energy Harvesting”, ACM/IEEE International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), October 2014.

Y. Xiang, S. Pasricha, "A Hybrid Framework for Application Allocation and Scheduling in
Multicore Systems with Energy Harvesting", ACM Great Lakes Symposium on VLSI

(GLSVLSI), May 2014.

XVi

B. Donohoo, C. Ohlsen, S. Pasricha, C. Anderson, Y. Xiang, "CoAteate Energy
Enhancements for Smart Mobile Devices", IEEE Transactions on Mobile Computing, July

2013.

Y. Xiang, S. Pasricha, "Harvesting-Aware Energy Management for Multicore Platforms with

Hybrid Energy Storage”, ACM Great Lakes Symposium on VLSI (GLSVLSI), May 2013.

Y. Xiang, S. Pasricha, "Thermal-Aware Semi-Dynamic Power Management for Multicore
Systems with Energy Harvesting”, IEEE International Symposium on Quality Electronic

Design (ISQED), March 2013.

Y. Zou, Y. Xiang, S. Pasricha, "Characterizing Vulnerability of Network Interfaces in

Embedded Chip Multiprocessors", IEEE Embedded System Letters, June 2012.

Y. Zou, Y. Xiang, S. Pasricha, "Analysis of On-chip Interconnection Network Interface
Reliability in Multicore Systems", IEEE International Conference on Computer Design

(ICCD), October 2011.

XVii

1. INTRODUCTION

Energy constraints remain the major factor that limits the availability and versatility of
embedded systenns the era of pervasive computing [1]. Despite tremendous efforts in academia
and industry to improve the energy efficiency of current embedded devices, there is still need for
an effective solution that can be applied to energy-constrained embedded systems deployed in
remote locations around the world [2]. This chapter contains an introduction to the basic concepts
of energy harvesting, which has emerged recently as an attractive altetmatipply energy for
embedded systems when other energy sources are limited or unavailable. Also, we introduce real-
time multicore embedded systems as the target platform type in this dissertation. Lastly, this
chapter discusses the need for an intelligent resource management framework to exploit the full

potential of multicore embedded systems powered by energy harvesting.

1.1.ENERGY HARVESTING

Energy harvesting, also known as power harvesting or energy scavenging, is tee pfoce
deriving energy from external sources, such as wind energy, thermal energy, kinetic energy, and
solar energy [3]. With its history tracing back to the invention of windmills and waterwheels, in
recent years energy harvesting has attracted ever-increasing interest and invesbmetiis fr
industrial sector, the research community, and individual prospectors due to its positive effects on
both the environment and the economy, two of the major concerns for modern society. The energy
harvesting technologies market was worth $131.4 million in 2012 and is projected to increase to

$4.2 billion in 2019 [4]. Figure 1 shows chanigeweb search frequency for the tefenergy

harvesting over time, which is broadly in line with the rising interest in this topic. In this

dissertation, we focus on energy harvesting technologies used for electronic devices [5].

Seach Frequency of "Energy Harvesting"

2007 2008 2009 2010 2011 2012 2013 2014

Figure 1 Normalized Search Frequency of “Energy Harvesting” over Time [6]

Although energy exists everywhere in the physical universe in multiple forms, only some

forms can be effectively converted into electric energy to power electronarsysincluding
piezoelectric energy, thermal energy, wind energy, and solar energy. Listed betomaref the

most common forms of energy available for energy harvesting:

e Piezoelectric energyPiezoelectric effect is the phenomenon of accumulating electric

charge in certain solid materials when mechanical stress is applied. This effect can be

utilized to convert subtle energy sources, such as seismic vibration, acoustic noise, and

ambient object motion, into electric energy, which becomes available in the faam of
voltage difference between material surfaces B4. piezoelectric energy harvesting

techniques usually generate electric power in the ordano€rowatt, they are normally

employed only in micro-scale electronic devices. A common example of piezoelectric

energy harvesting is step detection sensors deployed in sports shoes.

Figure 2 TE-Power PROBE Thermal Harvester by Micropelt [8]

Thermal energyHeat flow due to thermal gradient in a conducting material can also
produceavoltage difference and thus provides the possibility of converting thermal energy
into electric energy. [9] The major drawback of this form of energy harvesting is the fact
that long-term stable thermal gradients are only available in particular places, limiting the
location flexibility in deployment. Therefore, systems powered by thermal gradients are
usually seen attached to the surface of other heating objects as parasitic devices. For
example, Figure 2 shows tHEE-Power PROBE thermal harvester manufactured by
Micropelt, which can be attached to hot surfaces, such as a pipe with warm water flowing
through it, to enable thermal harvesting by dissipating heat through its heanhtsink
ambient air [8].

Wind energyWind energy has been demonstrated to be both technically and economically
viable [10]. The most common exploitation of wind enasyith the help of large-scale

wind turbines deployed at geographically windy locations around the world, which provide

an auxiliary clean energy source to power grids for utility providers. On the other hand,
small-scale wind turbines also exist for specific applications such as auxiliary power supply
for boats. The major issue facing the harvesting of wind energy lies in its strict location

requirement and unstable wind conditions over time.

Figure 3 Photovoltaic Panelsat Various Scales

Solar energySolar energy [11], which is widely considered as a possible replacement for
the more costly fossil energy in the future, is probably the most discussed source of
renewable energy in recent years. Solar enesrdgrived from sunlight which is the most
plentiful and widely distributed renewable energy source on earth. The most common
method of harvesting solar energy is to convert solar radiation into electricity using
photovoltaic panels (solar panels) [12]. As a result of technological advancements, there
have been significant reductions in manufacturing cost and improvements in conversion
efficiency of photovoltaic panels. In addition, photovoltaic panels are avadabéeious
scales, making it practical for applications in different areas ranging from industrial utility

energy production to consumer level electronics, as examples shbwnre 3.Therefore,

solar energy is widely recognized as the most promising source of energy harvesting for

electronic systems.

In this dissertation, we consider solar energy as the source of energy harvesting to power
real-time embedded multicore systems for best-effort execution due to its advantages in power

density, availability, and scalability.

1.2.REAL-TIME MULTICORE EMBEDDED SYSTEMS
This section introduces and motivates the use of the primary category of platforms
considered in this dissertation: real-time multicore embedded systems powered by solar energy

harvesting.

Figure 4 Example of Tiny Embedded Computer with Wi-Fi and Bluetooth

1.2.1. EMBEDDED SYSTEMS
An embedded system is a computer system with dedicated functions that is integrated within

a larger mechanical or electrical system, often with real-time computing constraints [13].

Embedded systenae involvedin a large portion of our daily life and have been ubiquitously
deployed all over the world. We can find their existence for numerous applications, from space
stationsto microwave ovens, usually in small but powerful forms. Figure 4 shows an example of
an embedded computing system with Wi-Fi and Bluetooth support. In the upcoming era of
pervasive computing, embedded systems can play an even more important role with the help of

energy harvesting technologies to achieve energy autonomy.

1.2.2.REAL-TIME SYSTEMS AND WORKLOAD MODELS

Computing systems with timing behavias part of their performance or correctness
criterion are called real-time computing systems [14]. While logical correctness is nefessary
all types of computing systems, real-time systems are also subject to certain timingntsnstra
usually characterized ateadlinesto finish real-time jobs. These deadlines for the system and

workload can further be classified into hard, soft, and firm deadlines:

e Harddeadline Missing of a hard deadline is considered total system failure that in practice
may lead to undesirable or even catastrophic consequences [15]. Therefore, hard real-time
systems should have zero toleratee hard deadline miss. Sualstrong guarantee in
timing is only necessary for retitne systems where delayed response would actually
cause great loss profit, damagen physical surroundings, or even harm to human beings.

For example, aircraft engine control systems must be designed to deal with hard deadlines
in a robust manner as any delayed action may result in a dangerous flight stateai@ince h
deadlines define very strict timing constraints, hard real-time embedded systems usually

require abundant on-board resource to guarantee high robustness.

e Softdeadline Unlike hard deadlines, soft deadlines can be missed without any immediate
impact on system performance and functionality. Soft real-time systems are typically
designed for non-critical, less timing-sensitive applications [16]. An example can be a data
sensing hub trying to updaagemote server with data samples stored in its on-board buffer
gueue, for which a single transmission task can miss its deadline without significant impact
to thesystem’s effectiveness, as another transmission can be scheduled in the next interval.
However, the system may still fageperformance impact if there are too many soft
deadline misses in a short period of time because its on-board buffer queue will then fill
up. In such a case, the sensing hub will drop less important data points to make room for
new ones so that the system continues execution without total failure. Compared to hard
deadlines, soft deadline constraints provide more flexibility in system design, enabling
more effective trade-offs between the deadline miss rate and other criteria suclygas ener
efficiency.

e Firm deadline A deadline is firm if missing it results in immediate system performance
degradation [17]. As with soft deadlines, missing a firm deadline does not lead to total
system failure. However, missing any firm deadlines leads to immediate performance
penalty and the task with the missed firm deadline is dropped as delayed output is
considered invalid. A good example of firm real-time systems is a security camera system
that always tries to provide the latest captured frames to its client. E\dystem fails to
deliveraframe by its deadline, this missed frame should be dropped immediately in order

to avoid accumulation of delay for the upcoming frames.

As solar energy harvesting is unable to guaraats@ble and continuous energy supply

hard real-time systems are not suitable candidates to work with energy harvesting, thus these

systems are beyond the scope of this dissertation. Our contribution focuses on embedded systems
with firm deadlines, the miss rate of which is the main criteria to improve gilignted energy
supply. Our work also considers soft deadlines in certain parts of this dissertation to form a more

flexible workload model.

L L & 3

9 12

1S
0
m_ m
L I UL
0

4 8 12

.
5]
—

0) 12 ot -

Independent Task Model Task Graph Model Multithreaded Application Model

Figure 5 Workload Models Considered in this Dissertation

To model real-time applications with varying structures and requirements, this dissertation
considers three types of workload models (see Figure 5): independent tasks, task graphs with
dependencies, and multithread applications, which are described in more detail in Section 2.2, 3.3,
ard 4.3, respectively. Our work also mainly focuses on optimizations for periodic arrivals [18] of

these different types of workloads.

1.2.3.MULTICORE PROCESSORS IN EMBEDDED SYSTEMS

Multicore processors are computing units with more than one processing core manufactured
on a single chip, which are used across many application domains including supercomputing,
mobile computing, and embedded processing. Although the concept of multiprocessing has for
long been implemented using multiple discrete CPUs for supercomputers and servers, multicore

processors have not been commonly used until recent years, when it became clear that it was no

longer viable to improve performance of processors by merely increasing their operatingdyeque
or architectural complexity. The reasons for the paradigm shift towards multicore computing can

be characterized by thi¢hree wall$ of computing [19]:

1000 | 7., MProc

“Moore’s Law”

)

g 1 00 ... Processor-Memory
g Performance Gap:
= (grows 50% / year)
..,g 1 0 .. 0

S . .~ DRAM

Figure 6 Increasing Processor-Memory Performance Gap [19]

e Memory wall Due to the increasing performance gap between processors and memory, as
shown in Figure 6, memory access delay has become a main obstacle hindering computing
performance improvement. Thus merely increasing clock speed of emerging processors
does not yield performance gain anymore because the processors spend significant amount
of time waiting for data to arrive from memory. Even worse, higher frequency usually
means much higher power consumption and reduced energy efficiency.

e |LP wall: Itis hard to find enougimstructionlevelparallelism(IL P) in a single application
to maintain high utilization of components on a high-performance single-core processor.

Besides, attempts to extract high ILP from processors often results in low energy efficiency.

For exampleanout-of-order processor design compared in [20] against an in-order design
resulted in 2.4x performance improvement at the cost of 4.3x more power consumption,

indicating a substantial energy efficiency reduction of 45%.

GHz

The Power Wall
3-0 Xeon

65 nm’

Pentium M =

2 0 90 nm
Pentium IV _-:
130 nm
1.0 __:'
Pentium Il =
180 nm_ =
Pentium
350 nm -
80486 -
80386
4004 soso. ;ﬁ_ _______ - _-..- o
1970 1980 1990 2000

Figure 7 Approaching Power Wall with Dennard Scaling [21]

e Power wall It is not possible to increase processor power dissipation indefinitely no matter
how much performance we may gain. Figure 7 shows that the rising clock speed of
processorsad already approached the power wall in the early 2000s, which represents the
limit on thermal designpower (TDP) for a single chip due to problems in technology
scaling and thermal dissipation. Thus, the processing capabéityan extract from a
processor does not depend on its peak performance anymore. Maintaining execution at
maximum clock speed leads to core overheating because of the exponential increase in

power dissipation with factorial increase in operating frequency. Instead, the design focus

10

for today’s processors has shifted to energy efficiency because performance per watt

decides how much processing power can be utilized for a given power budget.

Due to stringent power/energy constraints, energy efficiency is even more crucial for
embedded systems in terms of performance as well as service avai(@biiibye that a system
can be functioning). For this reason, recent years have led to increasing popularity of multicore
processors in high-end embedded systems, especially for mobile devices [22] [23] [24].

The introduction of multicore processing has also ushered in a variety of processor
architecture compositions. Based on the types of cores integrated, multicore processors can be

classified into three categories:

I

b2
DDR2 Controller 0 DDR2 Controller 1 ‘
IT1T 1111 1 i
== f iHMACPHY
R, ™ e 5 ;
<:i> arac, I Dc »| GbED
™. 1011 111 :
spi " - :
Fiex oy &= GbE 1
It i -
= & Flex |
PCle 0 ul e M 4 A=
my ST ETE H o E 12 xaun
IT1 I 1T II1 1 1
DDR2 Controller 3 DDR2 Controller 2
= s

4 4

Figure 8 Diagram of Tile64 processor by Tilera [25]

11

HomogeneousBy reusing the same design for all cores across the chip, homogeneous
multicore processors provide a symmetric architecture that simplifies the programming
model and on-board resource management. For example, Figure 8 showkeéde T
processor designed by Tilera, a homogenous many core chip with 64 identical processors
arranged in an 8x8 array and connected through a 2D mesh network [25]. However, this
approach overlooks the opportunity to provide diversity in hardware to better support

diverse execution patterns of different types of applications.

GIC-400

Interrupts Interrupts

Memory Controller System Port
Ports

Figure9 A Typical big.LITTLE System by ARM [23]

Single-ISA heterogeneau#\ single-ISA heterogeneous multicore processor [26] is
composed of processing cores with the same instruction set architecture but diverse core
implementations with respect to parameters such as clock speed, cache configuration, out-

of-order execution support, etdRM’s big.LITTLE architecture [23], an example of

12

typical single-ISA multicore system, can be seeRigure 9. Compared to a homogeneous
system, such heterogeneous design can prawvigeeater ability to adapt to specific
demands of different applications/tasks for improvement in both performance and energy
efficiency. Additionally, there is no need to rewrite software for specific core types and
workload can be migrated freely among cores as all cores execute the same instruction set.
However, such processors require an intelligent system resource management scheme to
evaluate workload and choose the right execution strategy to attain its full capability.
Heterogeneous-1SAhis is the most aggressive heterogeneous design pattern for multicore
processors. Usually a heterogeneous-ISA multicore processor consists of one cluster of
cores for general purpose processing, while the other cluster consists of application-
specific processing units that provide hardware acceleration to heavy-weight tasks with
improved speed and efficiency. This design paradigm is common in embedded systems
with one or more cores for general-purpose computing and accelerator cores for data-
intense computation. It also finds a place in personal computers, workstations, and data
centers in the form afeneralpurpose computing ographicsprocessingunits (GPGPUS)

on a single chip. Figure 10 shows theceleratedprocessingunit (APU) processor
developedit AMD, which is a typical example afheterogeneous-ISA multicore processor

with built-in general-purpose cores and graphics processing cores. MVpibssesses
significant potential, the main obstacle to widespread implementation of this design
paradigm is its demand for increased efforts in hardware/software co-design to best match
a given workload to its highly customized architecture. Additionally, the workload must
be partiioned to different core types at design-time, as it is almost impossible to migrate

workload between cores with different ISAs on-the-fly.

13

Graphics SIMD
Array

Figure 10 AMD Fusion APU: “LLANO” [27]

In this dissertation, we explore the problem of resource management for multicore embedded
systems under energy constraints from solar energy harvesting. For most of this dissertation, we
assume homogenous multicore processors as the target platform. However, we also consider
single-ISA heterogeneous multicore processors to tackle the problem of mixed-criticality
workload scheduling with energy harvesting. Even for homogenous multicore processors, our
framework still considers core-heterogeneity caused by non-ideal factors such as process
variations [28] and aging effects [29]. Principally, we consider multicore processors as the
inevitable choice for systems powered by energy harvesting because of the benefits they provide

in energy efficiency.

14

1.3.BACKGROUND AND RELATED WORK ON RESOURCE MANAGEMENT FOR LOW
POWER REAL-TIME EMBEDDED SYSTEM WITH ENERGY HARVESTING

Limitation in the energy budget is one of the major constraints facing embedded systems
which can impact their availability, performance, or even correctness during execution.
Traditionally, the operating duration of embedded systems with no external energy supply was
limited by the energy budget provided by batteries. On the other hand, embedded systems powered
by energy harvesting have a dynamically changing energy budgéet dagations in the energy
replenish rate from harvesting sources. For both cases, it is necessary to manage on-board
resources intelligently to trade-off between timing performance and energy efficiency so that
systems can operate more effectively. In this dissertation, we will focus on addressing this problem
of energy optimization for multicore processors in real-time embedded systems.

Dynamicvoltagefrequencyscaling (DVFS) has been proven to be one of the most effective
ways to make trade-offs between energy efficiency and computation performance for computing
systems at rutime [30]. With this technique, processors can scale down supply voltageaind
operation frequency)(on-the-fly to reduce dynamic power consumption [31]. The main reasons

for its effectiveness are twofold:

e Processors cannot or do not need to always execute at peak perforiRapaessors can
find slack in computation to slow down for energy savings whenever the system workload
is not fully utilizing a processor. In most cases, processors are just not designed with the
expectations to keep running at their full capability, especially with modern multicore
processors hitting the power wall and facing thermal dissipation limitsp&@ser wall
discussion in Section 1.2.3). Additionally, embedded processors powered by energy

harvesting may be forced to reduce energy consumption by lowering their voltage and/or

15

frequency at any time as there is no guarantee of a stable and sufficient energydoudge
support a high operating voltage and frequency level at all times.

e Processors are based on CMOS logic, which usually has much higher energy efficiency
with lower clock spee@t most operationMpp, f) points, the dominant power consumption
for microprocessors is the dynamic component, which originates from the switching
activity of CMOS logic gates. Dynamic power consumption of a processor is
approximately proportional to its frequency, and to the square of its supply voltage, as

shown in Equation (1), where C is the collective capacitive load of processor [32]:

Paynamic = C X Vpp? X f (1)
In addition, higher frequency requires higher supply voltage to avoid timing violations in
synchronized CMOS logic. Thus, boosting execution frequency of a processor can lead to
significant increase in power consumption (which typically increases energy consumption)
and it is usually desirable to minimize execution frequency of processors whenever

possible.

In this dissertation, we utilize the DVFS technique to control performance and energy
consumption of real-time embedded systems powered by energy harvesting. Apart from DVFS,
dynamicpowermanagemen(DPM) is another approach for run-time energy optimization, which
selectively turns off components or changes power states of electronic systems for energy saving
[33]. In this dissertation, DPM is considered as a secondary mechanism for energy saving that is
utilized under special scenarios, as turning off a component for some time with DPM can sub-
optimally impact the over system, e.g., requiring higher execution frequency for other components

or at later times to meet deadlines.

16

Many prior research projects have utilized DVFS techniques to optimize energy
consumption of real-time processors dynamically. An early work [34] addressed the problem of
power aware scheduling of periodic hard real-time tasks using DVFS. This study proved that an
optimal execution frequency meant for energy minimization and meeting all task deaathres c
deduced for any periodic hard real-time policy that can fully utilize the processor (e.g. Earliest
Deadline First, Least Laxity First). Another early work integrated DVFS scheduling algorithms
with areakttime operatingsystem RTOS) to provide significant energy savings while maintaining
real-time deadline guarantees [30h [35] algorithms were proposed to optimize energy
consumption of homogeneous multiprocessors with DVFS support. They also considered co-
optimization methods for the minimizing of energy consumption and task rejection penalty.
However, none of these papers consider the challenges arising from utilizing energy harvesting in
real-time embedded systems.

Solar energy harvesting is increasingly becoming an attractive solution in théoopigtstin
clean sustainable energy for emerging embedded systems. Recently, a few papexplbeact
improvements in the efficiency and reliability of such systems ([36] [37] [38]). Some of these
works focugd on the implementation of energy harvesting systems and their energy conversion
circuits (e.g., [38]). We are more concerned in this dissertation about related work on run-time
management and scheduling for real-time embedded systems with energy harvesting. An early
work [39] proposed the lazy scheduling algorithm (LSA) that executed tasks as late as possible,
reducing deadline miss rates when compared to the classidadst deadline first (EDF)
algorithm. However, LSA does not consider DVFS and always executes tasks at full speed.
Because a processor’s dynamic power is generally a convex function of its operating frequency,

running the processor at a frequency lower than the maximum frequency often results in higher

17

energy efficiency. In [40], the proposed energy-aware DVFS technique (EA-DVFS) takes
processor DVFS into consideration for energy harvesting-aware scheduling. EADNES)

task slack to slow down execution speed, thereby achieving more energy savings than LSA,
especially when total task utilization is low. Later the same authors proposed a more intelligent
technique called harvestirayvare DVFS (HA-DVFS) [41], which improved energy efficiency by
distributing multiple arriving tasks as evenly as possible over time and executing them with more
uniform frequency. Recently, Chetto [42] proposed a semi-online EDF-based scheduling
algorithm that is theoretically optimaHowever, these research efforts are only limited to
uniprocessor systems and have not considered execution on multi-core platforms.

There are a few notable research efforts that have considered multiprocessing with energy
harvestingln [36], a run-time framework is proposed for intelligently adjusting run-time system
workload on multi-core platforms that use photovoltaic array for energy harvesting, so that the
array works at its maximum operation points, producing more power for the computation system.
However, the proposed work assumes grid utility as a backup energy source which may not be
viable for many types of embedded systems. Also their approach is not applicable to real-time
embedded systems with deadlines and operating constraints, which is the focus of this dissertation.
A utilization-based technique (UTB) was proposed in [43] to better address periodic task
scheduling in energy-harvesting embedded systems. UTB takes advantage of the predictability
provided by the periodic task information for more efficient task allocation than in prior work.
Moreover, UTB was extended to support multi-core platforms by allocating a subset of tasks to
each core and executing the single-core UTB algorithm separately on each core. Zhang et al. [44]
introduced a deadline-aware scheduling algorithm with energy migration strategies specifically

designed to manage distributed supercapacitors in sensor networks.

18

In this dissertation, we propose a novel semi-dynamic approach for resource management of
real-time multicore embedded systems that leads to significant improvement in energy efficiency
while providing flexibility to simultaneously address other concerns such as thermal management,
hybrid energy storage, allocation for heterogeneous multicore systems, task dependencies,

transient faults, and processor aging effects.

1.4.DISSERTATION OUTLINE
In this dissertation, we propose a semi-dynamic resource management framework for multicore
embedded systems powered by energy harvesting. A high level overview of the contributions we

make is shown in Figure 11. The rest of this dissertation is organized as follows:

Real-Time Workloads |
i dent task ﬁ
BELLEA R S minimize miss rate/penalty

task graphs /
DVFS-enabled l Lo acint Loy ic AL enerey
AN form temperature | core variation
homogeneous
soft error hard error
heterogeneous
firm deadline | soft deadline
Enefﬂ . I.ﬂgsl ms -

e task-to-core mapping

“._ * intra-core scheduling
* communication mapping
* voltage-frequency selection
* core shutdown support

photovoltaic arrays

batteries[hybrid ‘supercapacitors

battery

&
R

supercapacitor

|
Lo |
L]
L |

Figure 11 Preview of Contributions of this Dissertation

19

In Chapter 2, we presert semi-dynamic schedulinglgorithm (SDA) for scheduling
independent tasks on energy harvesting capable multicore embedded systems. The fundamental
idea of our proposed semi-dynamic framework is to delay utilization of harvested energy by a
certain amount of time, which is the length of all schedule windows, so that instantaneous
harvesting power variations will not impact system execution immediately, allowing semi-
dynamic adjustments of system strategies to utilize rgceatrvested energy intelligently with
low scheduling overhead. We study the benefits of a semi-dynamic framework on stabilizing
execution frequencies of processors even with power variations due to energy harvesting, which
helps to reduce total energy consumption over time. Besides, the flexibility of the proposed semi-
dynamic scheme allows further exploration and optimization for a number of related topics, such
as hybrid energy storage system, core heterogeneity due to process variations, andngyerheati
Additionally, a dual-speed method is also introduced to overcome the performance impact of
discrete frequency levels.

In Chapter 3, we apply our proposed semi-dynamic framework to the scheduling problem
for task graphs with dependencies between tasks, resulting in a template-based scheduling
algorithm. Compared to the previous contribution, here we address the even more difficult problem
of scheduling task graphs with inter-node dependencies on systems that rely entirely on limited
and fluctuating solar energy harvesting. As the limited energy supply prevents the deployment of
complex scheduling algorithms at run-time, we propose a template-based algorithm in which
scheduling complexity can be offloaded to dedigme to pre-compute an execution strategy for
task graphs. Note that our template-based algorithm still allows run-time execution adjustments so
thatasystem can still address the problems of soft errors and aging effects on-the-fly. For design-

time template generation, we propose two methods: onenigeal integerlinear programming

20

(MILP) optimization method and the other one is a navellysis-basedemplategeneration
(ATG) method.

In Chapter 4, we apply our semi-dynamic framework and template-based scheduling method
to the problem of mixed-criticality scheduling on single-ISA heterogeneous multicore processors
powered by energy harvesting. We considered a norédality workload set characterized by
varying parallelism models, miss penalties, and deadline constraint types for tasks. #fkmogel
intensity-aware penalty densityetric is introduced to estimate the importance of each task
instance. With this metric, our proposed algorithm can fndalanced resource allocation
dynamically for different mixed-criticality workload types so as to maximize oveyatem
performance.

Lastly, Chapter 5 summarizes our research contributions and concludes this dissertation,

with a discussion on future research directions.

21

2. SEMI-DYNAMIC SCHEDULING ALGORITHM FOR INDEPENDENT TASKS

In this chapter, we propose a novel framework for real-time energy and workload
management in multi-core embedded systems with solar energy harvesting and a petirod real-
independent task set as the workload. Compared to prior work, our framework makes several novel
contributions and possesses several advantages, including (i) a semi-dynamic scheduling heuristic
that dynamically adapts to run-time harvested power variations without losing the consistency of
periodic tasks, (ii) a battery-supercapacitor hybrid energy storage module for more effstiemt sy
energy management, (iii) a coarse-grained core shutdown heuristic for additional energy saving,
(iv) energy budget planning and task allocation heuristics with process variation tolerance, (v) a
novel dual-speed method specifically designed for periodic tasks to address discrete frequency
levels and DVFS switching overhead at the core level, and (vi) an extension to prepare the system

for thermal issues arising at run-time during extreme environmental conditions.

2.1.BACKGROUND AND CONTRIBUTION

Power and energy constraints have led to significant changes in the design of contemporary
computing systems. In the last decaitieeadievel parallelism (TLP) to improve performance
within a power budget has seen widespread adoption across various computing platforms, ranging
from high-end servers to desktops, as well as embedded devices. Recent years have also witnessed
an increase in the use of multi-core processors in low-power embedded devices. With advances in
parallel programming and power management techniques, embedded devices with multi-core
processors and TLP support are outperforming single-core platforms in performance and energy

efficiency [24].

22

As core counts continue to increase to keep up with rising application complexity, techniques
for run-time workload distribution and energy management are the key to achieving energy savings
in emerging multi-core embedded systems. Moreover, advances in parallel programming and
increasing performance demands from embedded computing have forced implementations of high-
end embedded processors composed of many cores running at the GHz level. Unfortunately, such
increased performance levels in multi-core processors result in much higher power density than
ever before, creating the risk of overheating when core utilization is high. Moreover, as CMOS
technology scales down to integrate more cores on the same die area, process variations have
become prominent, significantly impacting the system-level design and management of multi-core
chips [28]. As the impact of time-varying power density and variations is hard to predict at design-
time, it becomes critical to employ intelligent run-time techniques in emerging multi-core
platforms that can adapt to these challenging system requirements.

For some embedded applications, we may require energy autonomous devices that utilize
ambient energy to perform computations without relying entirely on an external power supply
frequent battery charges. Because it is the most widely available esoengy solar energy and
its harvesting for embedded systems has attracted a lot of attention in recent ye&®3 [36].[

Due to the variable nature of solar energy harvesting, deployment of an intelligent reméigge
management scheme is not only beneficial but also essential for meeting system performance,
robustness, and energy goals. To exploit the capabilities of energy harvesting systems, several
prior efforts have explored workload scheduling for embedded systems witinteahsks [39]
[40] [41] [43]. An early work [39] proposed thazyschedulingalgorithm (L SA) that executed
tasks as late as possible, reducing deadline miss rates when compared to the EDF algorithm.

However, LSA does not consider DVFS and always executes tasks at full speed. Because a

23

processor’s dynamic power is generally a convex function of frequency, operating the processor

at a frequency lower than the maximum frequency often results in higher energy effiéiency.
utilization-basedtechniqugUTB) was proposed in [43] to better address periodic task scheduling

in energy-harvesting embedded systems. UTB takes advantage of the predictability provided by
the periodic task information for more efficient task allocation than in prior work. Moreover, UTB
was extended to support multi-core platforms by allocating a subset of tasks to each core and
executing the single-core UTB algorithm separately on each core. More discussion omvialated

in the field of scheduling with solar energy harvesting can be seen in Section 1.3. Besides, there
are many relevant research projects in the field of energy optimization for embedded systems that
do not consider energy harvesting. A Li-lon battery-supercapacitor hybrid storage system that
supports a long lifetime, wireless sensor network was described in [46], presenting a good example
of hybrid energy system design, from which we derives a customized hybrid storage system in this
chapter. In [47] the HypoEnergy framework was proposed to extend power supply life-time of
hybrid battery-supercapacitor systems. An algorithm for application scheduling and power
management of chip multiprocessors with awareness of within-die processor variations was
proposed in [48]. In [49], a thermal-aware task allocation and scheduling algorithm was proposed
which was used as a subroutine for hardware/software co-synthesis.

In this chapter, we propose a nogemi-dynamicalgorithm (SDA) based framework with
energy budgeting that manages energy and workload allocation at run-time for multi-core
embedded systems with solar energy harvesting capability. Our framework aims to minimize
deadline miss rate and penalty of periodic tasks in the presence of variant and insufficient energy

harvesting conditions. In addition, our framework possesses the flexibility to be able to

24

accommodate other goals, such as run-time thermal management and process variation aware

workload distribution. The novelty and main contributions of this work are summarized as follows:

e Unlike prior work, SDA reacts to run-time energy shortages and fluctuations proactively
to find significantly greater scope for energy savings, especially in multi-core platforms.

e A hybrid energy storage system is designed to decouple the run-time management scheme
from variations in energy harvesting, as well as to enhance charging/discharging efficiency.

e The energy and task distribution heuristics in SDA take system heterogeneity into
consideration by assigning workloads with awareness of variations due to within-die
process variations.

e At the core level, a novel dual-speed frequency selection method is deployed to combine
two neighboring discrete frequency levels for superior energy efficiency with awareness
of dynamic voltage/frequency switching overhead.

e Our framework cooperates with basic throtting mechanisms to tackle processor
overheating. Additionally, it dynamically re-allocates workload or shuts down cores for
more proactive multi-level throttling to reduce the occurrences and overhead of system

overheating.

Our experimental studies show that our framework is able to outperform the best known
prior work (UTB [43]) on run-time management of periodic tasks for real-time systems with
energy harvesting, achieving superior task drop penalty/rate reduction and eneigyogff
Additionally, our framework also provides the flexibility to adapt to run-time thermal variations

and supports core heterogeneity-aware workload distribution.

25

2.2.PROBLEM FORMULATION
Our focus of this chaptes on the problem of effective workload and energy management
for real-time multi-core embedded systems running periodic tasks, and powered by solar energy,

as shown irFigure 12 The following sections describe the key components of our system model.

g

£\
™ Q{‘:J : =} Energy Flow == == Information Flow
b .ol
N\
Solar
Radiation r——
T —— cheduler K
\\
P
’ AN
' %
AY -
.| Energy Storage L o /
Photovoltaic Array Module kﬁ‘t

Embedded
Processor

Figure 12 Real-Time Embedded Processing with Solar Energy Harvesting

2.2.1.ENERGY HARVESTING AND ENERGY STORAGE MODULE

A photovoltaic (PV) array is used as a power source for our embedded system, converting
ambient solar energy into electric power. Naturally, the amount of harvested power varies over
time due to changing environmental conditions, like angle of sunlight incidence, cloud density,
temperature, humidity, etc. To cope with the unstable nature of the solar energy source,
rechargeable batteries and supercapacitors can be used to buffer solar energy collected by
photovoltaic cells. In our study, the converted solar power at time t is den®ed)a3he energy

Enx charged into the energy storage system between time instanoes$ is given by:

26

t2

EH(tl ~ tz) = nchrg f PH(t) dt 2

t1

wherercnrg IS a coefficient between 0 and 1 to represent charging efficiency of the energy
storage system. The capacity of the energy storage device is limited and clearly hanargfed
will be wasted if the energy storage device is already fully charged. We assutaskleiecution
must be halted when the remaining energy in the system goes below a specified threshold. This

step is essential to maintaining the system state and ensure graceful shutdown.

2.2.2.PERIODIC REAL-TIME WORKLOAD WITH INDEPENDENT TASKS

In many real-world applications, an energy autonomous embedded system powered by solar
energy harvesting is deployed to execute certain types of repetitive lightwesdtitme tasks,
such as sensing, controlling, and data preprocessing. We assume a taskl sedegfendent
periodic real-time taskg: {1, ..., =} for such use cases, in which each periodic taslas a
characteristic triple{Ci, Di, Ti), i€{1, ..., N}. Ci is the maximum number of CPU clock cycles
needed to finish a job instance of taskeferred to as theorst-caseexecutioncycles(WCEC).
The relative deadline of the tadl, is the time interval betweenj@b’s arrival time and its firm
deadline (see Section 1.2.2). A job instance is missed if it is not finished before its dGadine.
the period of the task. At the beginning of each period, a new job instance of that task will be
dispatched to the system. Like most recent works on periodic task scheduling (e.g., [43]) we
assume thdD; equalsT;, with all jobs expected to finish before the arrival of the next job instance
of the same task. We also define an attribGtevhich is the miss penalty associated with each
task. Each time that a task’s job misses its deadline, the job will be aborted and the penalty applied

to the system. Thus, we can refine the triplet for taak(Ci, Ti, X). The relative importance of a

27

task can be characterized byeanalty densityparameter, defined as the ratio of the task miss
penalty and WCECX;/C;) [35]. In this chapter, we assume the system is designed to execute one
set of periodic real-time tasks consistently and information of tasks such as execution time and

miss penalty is profiled at desidime and thus is available to the run-time scheduler.

Table 1 Xscale Processor Power and Frequency L evels[43]

Leve o 123 |45
Voltage(V) - /075 10 | 13| 16 18
Power (MW) 40 | 80 | 170 | 400 | 900 | 1600

Frequency(MHz) idle | 150 | 400 | 600 | 800 | 1000
Energy Efficiency 0 [1.8752.353 1.5 |0.889 0.625

2.2.3.DPM AND DVFS-ENABLED MULTI-CORE PROCESSOR

We consider an embedded system with a low power multi-core processor that has support
for task preemption. We assume that the frequency of each core can be adjusted individually (i.e.,
the processor possesses per-core DVFS capability) as observed in recent implementations with
this capability enabled in industry and academia [50] [51]. Each cond loéscrete voltage and
frequency levelsp: {Lo, ... , Lu}. Each level is characterized by (v;, p,), JE{1, ..., M}, which
represents voltage, average power, and frequency respectively. We consider power-frequency
levels of the Xscale processor as shown in Table 1. Here, level O represents the idle power of the
processor when no task is executed while the system stays in active state. Typically, the dynamic
power-frequency function is convex. Thus, a processor running at lower frequency can teglexpec
to execute the same number of cycles with lower energy consumption. However, this is not always
the case due to the increasing prominence of leakage power in recent CMOS technologies. To find
an energy optimal frequency, we represent energy efficiencywef lavel Li by §; = cycles

executed/energy consumedifif From Table 1 we can conclude that level 2 is the most energy

28

efficient because executing at this level consumes the least energy for a given numbessof cycl
The most energy efficient level is often caltzdtical level in the literature and thus: = f2[52].
Although it is desirable to execute tasks at this critical frequency level for energy-efficiency,
executing tasks d¢+ may end up being insufficient to finish all task instances by their deadlines,
due to the unique timing constraints of each task. As we also consider inter-core heterogeneity
caused by within-die process variations, some cores have lower maximum frequency and higher
static power values than for the ideal case. For each core, unsuppbteactls are blocked to
ensure system stability.

The utilization of a periodic taskJj is defined with respect to the full speed (maximum
frequency) provided by the processor. A task’s utilization is its execution time under the maximum
frequency divided by its period:

Ci/fmax

U, =
L Tl

(3)

The utilization for an entire task set is simply the accumulation of the utilization for all the
tasks in the set. In preemptive real-time systems, a task set is schedulablegyetsteleadline

first (EDF) algorithm for a frequencyif it meets the following condition:

fi

max

Utotal < (4)

When total task set utilization is known, the most energy efficient frequency can be deduced
from this equation, assumirfg > f... [34].

Also, unlike any prior work, we consider thermal management in an energy harvesting multi-
core processing environment. We assume that each core in the multi-core processigitas a
thermalsensor(DTS) implemented to monitor run-time temperature independently [53]. We set

85°C as the thermaetpointat which throttling is initiated to halt all processor execution (i.e.,

29

throttling threshold = 85°C) [54]. When throttling is triggered, a core must halt execution and shift

to idle state until its temperature drops to 80°C.

2.2.4.RUN-TIME SCHEDULER

This module is an important component of the system for information gathering and
execution control. The scheduler dynamically gathers information by monitoring the energy
storage medium and multi-core processor state (Figure 12). The gathered data, together with
offline-profiled information about task execution times and energy consumption on cores informs
a management algorithm in our scheduler that coordinates operation of the multi-core platform at
run-time. Each core is eventually assigned a strategy by the scheduler to guide intra-core task

execution.

2.2.5.SCHEDULING PROBLEM OBJECTIVE

Our primary optimization objective is to perform task allocation and scheduling at run-time
such that total task miss rate (or penalty) is minimized. Our technique must react to changing
harvested energy dynamics to complete as much (critical) work as possible, thus maximizing
overall system utility and cost effectiveness. Further, our task allocation should be cognizant of
processor thermal behavior and frequency limits of each core (due to process variations) to ensure

system stability.

30

2.3.MOTIVATION
2.3.1.MOTIVATION FOR SEMI-DYNAMIC ALGORITHM
In this section, we present the motivation for applying our semi-dynamic algorithm to the

problem of workload and energy management in energy harvesting multi-core systems.

N N

<1000 L1000 -

< 800 fgmeeaztt <800 - —

_5 170 mw _5 288 .

5 S 200 -

) > g0 >

- 1234567t_8() - 1234567t_8()
ime (s ime (s

(a) nonuniform frequency (b) uniform frequency

Figure 13 Real-Time Scheduling with Energy Harvesting

2.3.1.1.IMPORTANCE OF BALANCED WORKLOAD EXECUTION

As dynamic power consumption in processors is typically a convex function of frequency,
increasing the processor frequency level can lead to significantly higher power consumption and
much lower energy efficiency, as shown in Table 1. Imbalances in workload allocation require
sub-optimally changing voltage-frequency levels that can result in higher power consumption than
for a balanced workload allocation case. To illustrate this point, we compare average power
consumption for two different schedules in Figure 13, both of which execute a workload for 4.8
billion cycles within 8 seconds. The schedule in Figure 13(a) executes with non-uniform speeds
(800MHz and 400MHz) while the one in Figure 13(b) has uniform execution speed fixed at
600MHz. A simple analysis based on Table 1 shows that the schedule in Figure 13(b) is more

energy efficient with average power consumption of 400 mW compared to 535 mW for the

31

schedule in Figure 13(a). This example highlights how maintaining a uniform execution speed is
critical for energy efficiency, which in turn motivates the need for an intelligent run-time

management approach that minimizes instances of workload imbalance across cores over time.

2.3.1.2.SDA FRAMEWORK FOR RUN-TIME WORKLOAD DISTRIBUTION

In this section, we provide a motivational example to illustrate the benefits of our SDA
framework that integrates energy budgeting to achieve better workload distribution at run-time

than in existing approaches, under varying solar energy harvesting scenarios.

- ! - T T - T

(a) UTB Schedule with Sufficient Energy

800
600
fexec
—r — .

(MHz)

time (ms)

(k) UTB Schedule with Insufficient Energy

800
600

e [B E
I T

(MHz) time (m-s)

(¢) SDA Schedule with Insufficient Energy
800 -

600
. I .

(MHz) time (ms)

Figure 14 Motivation for Proposed Semi-Dynamic Approach

Most prior work deals with dynamic solar energy variations by halting, dropping, or
speeding up the execution of a current task, changing instantly from an initial schedule deduced
offline. For energy harvesting aware periodic task set scheduling, the best known prior work, UTB
[43], also follows this strategy. Although UTB deduces an optimal initial schedule offline
assuming sufficient energy, it does not cope well with run-time energy variations, and there is

scope for notable improvements as discussed below:

32

The task dropping mechanism in UTB reacts to run-time energy shopasgsely only

when the current task lacks sufficient energy to finish in time. In the motivational example
shown in Figure 14, we assume a task set with four periodic tasks), where each task

has WCEC of 2.4 million CPU cycles and a task period of 12ms. According to Table 1,
Equation (3) and Equation (4), UTB initially sets execution frequency to 800MHz so that
all tasks can finish with the best efficiency if energy is sufficient, as shown in Figure 14(a).
However, the real challenge arises when the run-time energy budget is insufficient. Let us
assume that the remaining energy in the energy storage is 7200uJ and harvested power in

the next 36ms (3 periods) is 200mW, i.e., 200uJ of incoming energy per microsecond.

After finishing three jobs, the energy storage is depleted, and UTB has to drop jobs due to
insufficient energy, as shown in Figure 14(b). Only 6 out of 12 job instances are finished
with UTB, resulting in a high 50% miss rate. With the same energy budget, our proposed
SDA technique copes with energy shortagephyactively dropping tasks. It drops one
task,zs, based on the energy budget which helps to execute the remaining tasks steadily at
a lower frequency of 600 MHz. According to Table 1, executing at 600MHz corresponds
to a power consumption of 400mW, which is dramatically lower than 900mW at 800MHz
due to the nonlinear relation between frequency and power consumption. As can be seen
in Figure 14(c), all accepted job instancestior 73 are finished and the overall miss rate

is 25%, which is significantly lower than the 50% miss rate achieved by UTB.

UTB encourages dropping tasks with longer execution time, because finishing them
requires more energy than other tasks. This biased dropping may be undesirable for real-
time applications, as tasks with longer execution time may represent complex applications

of high priority. Moreover, it is nontrivial to add priority awareness into UTB due to its

33

passive task dropping scheme mentioned above. Our SDA framework allocates tasks and
performs task dropping with the awareness of the miss penalty corresponding to each task.
e On multi-core platforms, UTB partitions tasks into separate sets and then executes each set
on a core using a single-core scheduling algorithm. However, as all cores are dependent on
the same energy source, such isolated run-time adjustment is not amenable to learning
upcoming energy requirements of other cores, leading to sub-optimal schedules. SDA
avoids inter-core energy resource contention by allocating tasks based on energy budgets
assigned to each core. In addition, static task partitioning in UTB wastes the flexibility
provided by a multi-core platform. In contrast, SDA triggers task reallocation dynamically

for improved results.

In summary, we found several limitations with the best known prior work on energy
harvesting-aware energy and workload management. Our SDA scheme is designed to address
these limitations and improve upon prior work. In the following sections, we discuss other issues
related to multi-core embedded systems powered by solar energy harvesting. To cope with these
issues, we exploit the flexibility of SDA to integrate hybrid energy storage, heteroganeitg-
task allocation, and run-time thermal management, forming a cross-layer design that improves

performance, stability, and adaptivity of target systems.

2.3.2.MOTIVATION FOR HYBRID ENERGY STORAGE

Most prior efforts on harvesting-aware task scheduling assume a near-ideal battery as the
energy storage medium that is limited merely by its capacity, ignoring other factorsssuch a
nonlinear efficiency, slow charge rate, and limited lifetime in terms of recharge cycles [55]. When

applied to real-world platforms, overlooking these factors can result in suboptimal or even

34

unrealistic design and scheduling techniques that diminish system efficiency, stability, and
lifespan. For example, the rate capacity effect leads to decreasing batteryycageait
discharging current increases [47]. Supercapacitors present an interesting alternatiegiés batt

for energy storage with benefits over electro-chemical batteries, such as orders of magnitude
higher recharge cycles, ease of charging, and significantly higher efiecggncy. However, high
capacity supercapacitors are not practical for small-package low-power embedded systems due to
their significantly lower energy density and higher leakage overhead than an electro-chemical
battery, even with the state-of-art supercapacitor technology [56]. Recent work has shown that a
battery-supercapacitor hybrid system can overcome the limitations of both types ofstogy

mediums [47] [46]. Therefore we employ a hybrid energy storage system for our work.

2.3.3.MOTIVATION FOR HETEROGENEITY-AWARE ALLOCATION

As CMOS feature sizes continue to scale, process variations in manufacturing are becoming
more and more prevalent, causing performance asymmetry within a chip. For multi-core
processors, within-die process variations differentiate critical path delays among cores such that
the maximum frequencies supported by cores may diverge from their nominal specification [28]
Without awareness of this undesirable inter-core heterogeneity, a run-time management scheme
may distribute excessive workload to slower cores. Even worse, faulty schedules that try to finish
these excessive workloads will be deployed, ending up with a high miss rate due to energy and
CPU time being wasted on tasks that cannot be finished in time. Overclocking slower cores is a
possibility, but is often not a viable option due its high likelihood of causing timing violations on
the critical path. Thus an appropriate run-time energy management framework must coesider int

core frequency variations; otherwise it may lower system performance by causing task overloading

35

on certain cores, which can create workload imbalances that also additionally reduce the energy

efficiency of the entire system.

2.3.4.MOTIVATION FOR RUN-TIME THERMAL MANAGEMENT

The motivations for considering run-time thermal management for energy harvesting based

multi-core embedded systems are:

Limited power budgets and form factors of embedded systems make it uneconomical, if
not inapplicable, to apply aggressive cooling techniques used on desktop and server
systems, such as cooling fans and large heat sinks. With increasing power density and
absence of active cooling, high performance multi-core embedded processors can easily
end up causing thermal emergencies during their long operation periods. Such overheating
of processors is known to harm system reliability and stability. A throughput-focused run-
time management scheme that ignores this risk may fail to maintain system stability and
end up with thermal runaway. Perhaps most importantly, frequent thermal throttling that is
initiated in processors to cope with thermal emergencies may end up disrupting balanced
scheduling strategies, reducing system performance and overall energy efficiency.

Due to the inherent nature of solar energy, solar energy harvesting systems tend to receive
abundant energy to run at full speed around the middle of the day. However, continuously
executing at full-speed creates excessive heat in the processor package and tcan lead
overheating issues. Around the same time, the ambient temperature is also usually the
highest in the day (Figure 15), making it even more difficult for the processor to cool down

around those hours without intervention.

36

e Thus there is a critical need to consider run-time thermal management strategies for energy
harvesting based embedded systems as thermal issues can have a notable impact on the

performance, energy efficiency, and reliability of such systems.

1200 Solar Intensity and Ambient Temperature Profile

40

— Intensity (W/m?)

1000}

800}

600}

Intensity (W/m?)

400} SN

200}

’,,

Temperature (°C)

éjAM

7AM

9AM

11AM

1PM

3PM

135

w
o

N
w
Temperature (° C)

120

SPM

7PFVF

Figure 15 An Example of Solar Intensity vs. Ambient Temperature

2.4.PROPOSED RUN-TIME ENERGY AND WORKLOAD MANAGEMENT FRAMEWORK
2.4.1.SEMI-DYNAMIC ALGORITHM OVERVIEW

In this section, we present a holistic overview of our novel energy and workload management
framework based oa semi-dynamicalgorithm (SDA). Subsequent sections present more details
of each major component in our SDA-based framework.

One of the underlying ideas behind SDA is to exploit time-segmentation during energy
management, as illustrated in Figure 16. At each specified time interval (epoch), there is a
reschedule point, where the execution strategy can be adjusted based on the energy budget

provided by the energy storage system. A time frame between two reschedule points is called a

37

schedule windoywithin which the strategy specified at the prior reschedule point is in effect until
the next reschedule point. Thus reschedule points provide dynamic adaptivity needed byyhe energ
harvesting aware system to adjust the task execution strategy, while the schedule window enables
stable execution that utilizes periodic task information for better energy efficiency, as illustrated
in Figure 14(c). For example, from schedule window 1 to 4 in Figure 16, it can be seen that under
low energy conditions, SDA maintains execution at optimal low (critical) frequency with different
number of cores activated. Cores only execute at higher frequency when thehameegied is
abundant as in schedule windows 6 and 7. In this manner, SDA can provide better execution
efficiency to improve performance under variable solar radiance conditions.

At each reschedule point, we update the execution strategy for the upcoming schedule

window with a rescheduling scheme composed of three stages:

reschedyle point schedule window [active core B inactive core
A \‘) 1 1

1
1
1
l
1
1
'
1
'
1
1
'
1
1
1
|

harvested powel

s i i P

core
activation

execution strategy

execution
frequency

1 2 3 4 5 6 7 8 9 Schedue

Window

Figure 16 Illustration of Semi-Dynamic Algorithm

38

Energy budgetingThis stage estimates the energy budget available for the upcoming
schedule window based on the status of the hybrid energy storage system. Estimating the
energy budget decouples run-time system management from energy variations in the
environment, making it possible to deduce a stable balanced execution strategy that
maximizes energy efficiency.

Workload estimationThis second stage evaluates the amount of workload that can be
supported by the energy budget, and forks into two separate paths. When energy budget is
below a thresholdEw, the first path is chosen with a focus on active-core selection to
improve energy efficiency under a low energy budget. When energy budget iskahove

the second path is chosen with a focus on variation-aware workload assignment to ensure
that no core is required to run at a frequency higher than its maximum limit. Note that there
is no need to consider active core selection and variation-aware assignment at the same
time, as maximum frequency variation only matters when the energy budget is high and
active core selection only helps when energy budget is very low (Sectidhland

2.4.3.2. Additionally, this stage can proactively reduce workload when thermal issues
arise at run-time.

Task rejection and allocatiorBased on the amount of workload estimated by the previous
stage, this stage takes the periodic task set and filters out the subset of tasks that are less
important. The remaining tasks are accepted for execution and are allocated to cores with

awareness of core heterogeneity.

39

Section 2.4.2 hybrid storage scheduling
energy budgeting (set execution strategy)

energy budget

Section 2.4.3.1 Section 2.4.3.2

active-core workload heterogensllty;j
selection estimation awa”:j workloa
assignment

v
proactive thermal-aware
workload adjustment

l workload target

periodic task set H task rejection

accepted tasks Section 2.4.4

Section 2.4.3.3

task allocation

per core schedule

Y execution
Section 2.4.5 execution with (comply with execution
dual-speed method strategy)

Figure 17 Design Flow of Our Proposed SDA-Based Framework

These three stages are organized in an order such that successor stages make use of efforts
made by previous stages, rather than diminishing them, and are described in the following sections
(Sections 2.4.2, 2.4.3, and 2.4.4). After the execution strategy is fixed for a schedule window, cores
apply a dual-speed switching method to improve energy efficiency in the presence of discrete
frequency levels, which is discussed in Section 2.4.5. The complete design flow of our proposed

SDA framework is shown in Figure 17.

2.4.2.HYBRID ENERGY STORAGE SYSTEM AND ENERGY BUDGETING
In this section, we describe our hybrid energy storage system and its management policy that
determines the energy budget for the upcoming schedule window, thereby isolating run-time task

scheduling from fluctuations in solar energy harvesting.

40

2.4.2.1.BATTERY-SUPERCAPACITOR HYBRID ENERGY STORAGE

Inspired by [46], we propose a hybrid energy storage system with one Li-lon battery and
two separate supercapacitors connected by a dc bus, as shown in Figure 18. During each schedule
window, one capacitor is used to collect energy extracted from the PV array, while the other one
is used as a power source for system operation or battery charging. At each reschedule point, the
two supercapacitors switch their roles. Supercapacitors charge the battery only when their saved
energy exceeds peak requirements of processors running at full speed. The PV array, battery, and
supercapacitors are coupled with bidirectional dc-dc converters to serve the purpose of voltage
conversions between components withximumpower point tracking (M PPT) [38] and voltage
level compatibility. This hybrid battery and dual-supercapacitor design has several advantages

over a non-hybrid system:

e The supercapacitors can support embedded processors directly, taking advantage of a much
lower charging/discharging overhead compared to a battery.

e The electro-chemical battery offers high capacity to preserve energy esprca#parios
with excessive harvested energy. On the other hand, the capacity requirement of
supercapacitors is much smaller.

e The supercapacitor with energy buffered during the last schedule window acts as a known
stable energy source for the system in the upcoming schedule window. Thus our energy
budgeting does not require energy harvesting power predication. Besides, the stable energy
source makes it possible to charge the battery with a steady constant current for more

effective charging [55].

41

Oy —

To PV : i
DC-DC DC-DC — Battery
array converter converter I'

- To
embedded
N processor

DC-DC DC-DC
converter converter
Supercapacitor Supercapacitor

Figure 18 Proposed Hybrid Energy Storage System

2.4.2.2HYBRID ENERGY STORAGE BASED ENERGY BUDGET

We propose an energy budgeting heuristic that selects among energy sources
(supercapacitors and battery), sets the amount of energy to charge the battEgygoratd
assigns the energy budget for system execution in the upcoming schedule wiagdeyy, @s
shown in Algorithm 1. The heuristic is based on storage levels of the balfégy dnd
supercapacitol{/c) with range 1, 2, and 3, representing respectively charge level of low, medium,
and high.LVc is classified into three levels (lines 1-3) based on two thresholds: i) energy budget
to execute a single core at critical frequen€y:) and ii) energy budget to execute all cores at
maximum frequencyH...x NUM_CORE). As we want to avoid battery charging/ discharging
overhead, there are only two scenarios where the battery is selected as a power source: i) when
energy harvested in the supercapacitor is below a critical levVel£ 1); and ii) when battery
storage level is highL{/s = 3) such that battery overflow becomes a possibility (line 4). The battery
is charged only when energy in the supercapacitor exceeds peak requirements of the processor

(lines 12-14). This hybrid storage management and energy budgeting policy is shown in Figure 19.

42

Algorithm 1 Energy Budgeting with Hybrid Energy Storage
Input:

(1) Ecap, harvested energy in charged capacitor

(i1) LV, battery energy storage level

(i11) E., energy budget to execute one core at critical frequency
(iv) Enax, energy budget to execute one core at maximum frequency
(v) NUM CORE, number of cores in embedded processor

Output: Epuaeer, assigned energy budget for next schedule window

l.if Ecap<Eert: LVce1
2. elseif Ecap > Emax X NUM_CORE : LVc <« 3
3.else: LVc«2
4. if LVp > LVc:
5. set to discharge battery
6. ifLVB=2: Ebudget <« Ecxt x NUM_CORE
7. ifLVB=3: Epudget < Emax X NUM_CORE
8. else :
0. set to discharge supercapacitor

10. ifLVc=1: Ebudget —0

11. if LVC =2: Ebudget <« Ecap

12. ifLVc=3:

13. Ebudget «— Emax X NUM_CORE

14. Echrg — Ecap - Ebudget

The resulting energy budgetodsge: reflects the amount @nergy dynamically collected

from the energy harvesting system at run-time and can be considered as a stapkuppérdor

the next schedule window so that a uniform execution strategy can be enabled for energy efficiency

- discharging battery battery stays idle - charging battery
status/policy LV =low LVg = medium LV = high

LVc = low budget=0

AVSNUCEITLN budget=Eqo, | budget=Eggy,

LV, = high

Figure 19 Hybrid Storage M anagement Policy

43

2.4.3.CRITICAL FREQUENCY, CORE HETEROGENEITY AND THERMAL AWARE
WORKLOAD ESTIMATION

This section describes our approach for energy budget-based workload estimation at the
beginning of each schedule window, which intelligently estimates the optimal workload to be
allocated for each core while considering energy efficiency, core heterogameitiemperature
distributions.

At each reschedule point, our scheme first estimates the amount of workload that can be
supported in the upcoming schedule window using the energy budget provided by the hybrid
energy storage system. As shown in Figure 17 earlier, this stage forks into two paths based on the
energy budget thresholB;. As discussed in Section 2.2.3, multi-core processors may have cores
that have a lower maximum frequency due to within-die process variations. We assume that
within-die variations are measured after manufacturing by variation acquisition methods, such as
vMeter, proposed in [57], and maximum frequency of each core is considered as known to the run-
time manager. The energy budget threshigkl,s defined as the energy budget required for the
slowest core to run at its maximum frequency. As we assume even the slowest core is able to run
above critical level, it is always true that > Ec. When the average budget per core is below
Ew, uniform workload distribution is sufficient to ensure that every core runs below its maximum
frequency and the run-time manager focuses on active core count selection for energy savings. On
the other hand, when the average energy budget for each core is high&inththe core
heterogeneity cannot be ignored and the run-time manager sstich heuristic that activates all
cores and estimates workloagked on each core’s achievable frequency. Apart from workload
estimation, this stage also takes core temperatures into consideration for proactive run-time

thermal management. The final outputs of this stage are the cores to activate and the workload to

44

support in the upcoming schedule window. The following subsections describe the three main

components of this stage.

2.4.3.1.CRITICAL FREQUENCY-AWARE ACTIVE CORE SELECTION

We propose a heuristic that selects the number of cores to activate and workload to allocate
on each core, assuming uniform workload distribution among activated cores. The motivation for
this active core selection heuristic (that is executed only for low energy budget scenarios) is that
running a processor below its critical frequency decreases energy efficiency bessesmm from
Table 1. This situation can occur when the energy budget is so low that only a small subset of tasks
can be accepted for execution, i.e., after evenly distributing these tasks to all cores, utilization on
each core is smaller than maximum utilization supported by the critical frequency. With our active
core selection heuristic, we can shut down some cores at each reschedule point based on the
estimated energy budget. The power dissipated by inactive cores is negligible and the remaining
cores can then receive enough workload to run at critical frequency. Also the associated power
state switching overhead is minimal as we only trigger core shutdown at reschedule points.
However, arbitrarily shutting down cores to reach a frequency higher than critical is not always
optimal. Figure 20 shows the maximum energy-efficiency for different frequencies on the XScale
processor. Suppose cores execute at goinithout shutdown. After shutdown of one core, the
extra power budget allows us to run the remaining core(s) at higher frequencies Buch ais
D. But not every higher frequency is viable, e.g., frequénlgads to even lower energy efficiency
than A, before shutdown! Thus it is important to compare resulting energy efficiencies before

making a core shutdown decision.

45

2.5 -

-
wu
1

Energy Efficiency
=

Critical Freguency

o
i
1

100 200 300 400 500 600 700 800 S00 1000
Frequency

Figure 20 Energy Efficiency of X Scale Processor

The pseudo code of the active core selection heuristic is given in Algorithm 2a. The core
shutdown procedure is triggered when the energy budget is unable to support all active cores to
execute at their critical frequency (line 2). Subsequently (lines 3-10) if one less active core results
in a better efficiencyg(Unum core-1) > 0(Unum_core), then the scheduler shuts down one core. If the
energy budget for the current schedule window is extremely low, eventually all cores in the system
will be shut down to save harvested energy for future execution. Recursively, these gteps set
number of cores to keep active. Finally, the objective task-set utilization (i.e., the amount of
workload that the system can support) is obtained by aggregating the supported utilization of each
core (line 11). As a result of this selection heuristic, the number of cores activated is tightly related

to the energy budget available.

Algorithm 2a Active Core Selection and Workload Estimation

Input:

(1) Ebuager, energy budget for coming schedule window

(11) 6(U), dual-speed method energy efticiency profile (see Section 2.4.5)
for task utilizations from 0 to 1

Output: U,s, objective utilization for next schedule window

46

1. num_aCtiVe «— NUM_CORE, Eper_core: E)udge(num_active
2. while Eper core < Ecrt and num_active >0 :

3. Enumﬁcore <« Ebudget/ l’lum_aCthe
4, Enum_core-1 <— Ebudget/ (num_active-1)
5 calculate foum core-1 and foum core, maximum frequencies supported by

Enum_core—l and Enum_core
based on Inequation (4), calculate Unum_core-1 and Unum_core, maximum utilization
supported by foum core-1 and faum core
7 look up profile for 6 (Unum core) and & (Unum_core-1)
8. if S(Unum_core—l) > S(Unum_core) :
9. num_active <— num_active — 1
10. update Eper_core) Uper_core
11. Uobj <= Uper core X num_active

N

2.4.3.2.CORE HETEROGENEITY-AWARE WORKLOAD ESTIMATION

When per-core average energy budget for the next schedule wikslaye{NUM_CORE
is above the energy threshok,, we have sufficient energy budget to activate all cores and the
main concern shifts to assigning workload in a heterogeneity-aware manner (Algorithm 2b). The
key idea is to recursively assign workload and energy budget to the slowest unassigned core based
on its frequency limit until energy budget per core is below a threshold for the remaining
unassigned cores. The inputs of this heuristic are the energy budget for the upcoming schedule
window, Enudges NUMber of cores on the chilUM_CORE and, peak frequency supported by
each cores,.u(core_id). Initially, all cores will be activated for the next schedule window (line
1) as the energy budget is capable of executing all cores above critical level, i.e.,
Ebudgef NUM_CORE > B > Ecrt. In the main loop, we first find the slowest core and calclaie
which is the maximum workload utilization that the core can support (lines 4-5). This utilization
is accumulated into the objective workload utilization of the systéy, and the corresponding

energy consumptiorkiow, is deduced from the energy budget (line 6). Then the heuristic updates

47

(line 7, 8) and compares (line 3) per-core average budget and threshold energy again for the rest
of cores. After the main loop, the remaining energy budget will be evenly distributed to the

unassigned cores and the final utilization is calculated (lines 9-11).

Algorithm 2b Heterogeneity-Aware Workload Estimation

Input: f,cur(core_id), peak frequency supported by each cores
Output: U,s, objective workload utilization of system for next window

.num_active «— NUM_CORE

.num_unassigned «— NUM_CORE

. while Eper core > Eth and num_unassigned > 0 :

low_id « core_id of unassigned core with lowest peak frequency
Ulow <« ﬁ)eak(CllI'_id)/fmax

Uobj — Uobj + Ulow, Ebudget «— Ebudget — Elow

num_unassigned «— num_unassigned — 1

update Eper core, Etn for unassigned cores

. calculate fper core, maximum frequencies supported by Eper core

. based on Inequation (4), calculate Uper core, maximum utilization supported by fper core
. Uobj <= Uobj + Uper core X num_unassigned

—O0VENA U AW~

— —

2.4.3.3.PROACTIVE RUN-TIME THERMAL MANAGEMENT

As discussed in Section 2.2.3, processors typically enforce throttling mechanisms to avoid
thermal run-away. However, when a throttling decision is enforced, a processor has to drop all
executing tasks and halt the system until temperature drops below a certain value. A system that
encounters throttling often has frequent and dramatic changes in execution speed, which will
hamper system energy efficiency. For this reason, in addition to the baseline enforced throttling
mechanisms in processors, we propose to integrate a proactive reaction thigshatd slightly
lower temperature than the baseline throttling thresA@ldo trigger measures that reduce system
workload proactively with the goal of minimizing overheating and balancing workload over time.

The details of our proposed scheme are summarized as follows:

48

e Cores with higher temperature than others are always given priority when there is a chance
of core shutdown in Algorithm 2a

e Cores with temperature above a proactive reaction threshigld,only run at critical
frequency, so as to finish their limited workload with the highest energy efficiency and low
power dissipation;

e When system peak temperature exceggds the core which is operating at the peak

temperature will be shut down to address the thermal hotspot in the system.

Thus, our run-time thermal management approach proactively manages workload to limit
processor overheating so that occurrences of enforced throttling can be reduced for more stable

execution, compared to traditionally used reactive throttling solutions.

2.4.4. TASK PENALTY AND CORE HETEROGENEITY AWARE TASK REJECTION AND
ALLOCATION
This section describes how periodic tasks are allocated to cores or dropped, based on the

awareness of individual task penalties and available core heterogeneity.

Algorithm 3 Heterogeneity Aware Task Rejection and Assignment

Input:

(i) Uobj, Objective utilization from Algorithm 2 (a or b)

(ii) w, full task set assigned to system for scheduling

(i) U, total utilization of task set y

Output: fopi(core_id) optimal execution frequency of each core for upcoming schedule window

1. sort task set y in non-decreasing order of tasks’ penalty densities
2. Yaccepted— W, Uaccepted «— Uy,

3.for n=1toN:

4. if Uaccepted™ Uobj

5. rejectthtask

6 lkcepted«— Uaccepted— U(nth task)
7. €se

49

8. done with task rejectidoeak
9. sot accepted task set yacceptedn NON-increasing order of task utilization
10.for n = 1 to Nccepted:
11. filter out cores that has ¥ Ucore> Ucore_max
12. assign'htask to active core with the lowest utilization
13. get assigned task utilization for each active corgUd
14. based on Inequation (4), calculatgdore_id)
15. execute assigned tasks on each core with dual-speed heuristic

To add task priority control in SDA, we distinguish a task’s importance by assigning a miss
penalty to each task [35]. In this stage, our framework rejects tasks with lower penalty density
(Section2.2.2 first, rather than simply drop tasks with longer execution time, to allocate the
limited energy budget to more important tasks for miss penalty reduction. In particular, for the
case when all tasks are assigned an identical miss penalty, this scheme reduces miss penalty
equivalent to miss rate. We describe our task rejection heuristic below in Algorithm 3.

In lines 1-8, we sort all tasks in ndrereasing order of the tasks’ penalty densities so that
we can then reject tasks iteratively until the remaining tasks’ total utilization is lower than the
objective utilization given by Algorithm 2 (described earlier). The remaining tasks form the
accepted task set and are assigned to all active cores using a simple but effective approach in line
9-12. This approach not only enables priority control among tasks, but also distributes workload
to each core as evenly as possible for balanced execution under a stable frequency. Algs it ensur
that the assigned workload will not exceed a core’s maximum capability. After all accepted tasks
are assigned, we obtain the actual utilization and optimal frequency of each core foxtthe ne

schedule window.

50

2.4.5.DVFS SWITCHING-AWARE DUAL-SPEED METHOD

The previous section showed how we distribute accepted tasks among cores and deduce the
theoretical optimum execution frequency for each core, which, howevemlikely to be
supported directly by processors with discrete frequency levels. To address this problem this
section introduces a dual-speed method, which approximates the objective optimal frequency by
switching between its two adjacent discrete frequencies [58]. For convenience, we denote the

adjacent higher frequency fagn, the lower one asw, and the objective optimal frequencyfas

Power vs Frequency
T T

1600 T T
1400
1200
1000

Paua{fol;)
(mW)

Average Power

Sauailfory)

arigh(foni)

800
600 -
400

1 1 1 1 1 | |
200 300 400 500 600 700 800 900

Energy Efficiency

05

0

E o2
=
LS

1 1 1 1 1 L L
200 300 400 500 600 700 800 900 1000

o o o
+ [+1] [24]
T T T

Ratio of Higher Frequency
o
a8
T

o 900

1 L
200 300 400 500 600 700 800 900 1000

objective frequency (MHz), fob;

Figure 21 Energy Efficiency and Switching Proportion for the X Scale Processor

51

Firstly, to guide the switching between two adjacent discrete frequencies, we need to
calculate the proportion of cycles to execute Wit denoted asmigh. Assume that the total
number of cycles to be executeddsEmulatingfonj with a combination ofiow andfhigh implies
finishing C within the same amount of time, which is:

C apgnC (1 —apign)C
fobj fhigh flow

(5)

From this equation, we can deduce the propotii@n for each objective frequendlyy;, as

1/fobj - 1/fiow
1/fhigh - 1/fiow

pigh (fobj) = (6)

As fiow andfhigh are determined bigyj, there is a onés-one correspondence betwegigh andfop;,
and the values afign(fobj) can be calculated offline for a given task set. Based on the definition of
energy efficiency in SectioB.2.3 the theoretical efficiency of the dual-speed methie(fon)
can also be obtained offline as the objective frequency divide by the average power consumption.
Based on the processor power-frequency model given in Table 1, the calewigtéd) and
odual(fonj) is shown in Figure 21. We can see that even with dual-speed switching, the efficiency
will decrease whefy,; drop below critical frequencyert = 400MHz. Thus forfon; < fert, we should
disable dual-speed switching and fix execution speéd.at

However, it is non-trivial to get close to theoretical efficiency in a dual-speed method

implementation, due to the following difficulties:

e Excessive DVFS switching results in massive switching overhead that considerably
reduces energy efficiency [59]

e Executing afiow for too long can cause task timing violations;

e Executing afhigh for too long results in timing slack before the arrival of new job instances

of periodic tasks, which is wasted as idle cycles, thus reducing energy efficiency.

52

To address these issues, we implement a simple and intuitive dual-speed mechanism with
inter-task switching, which aims to execute as many tasks as possible before switching to another

frequency. This mechanism is described below:

e Inorder to prevent unnecessary DVFS switching, we denote number of cycles continuously
executed afnigh to be Chigh and set a threshol@iresh When Chigh = Cinresh Whether

switching tofiow Or staying afhigh brings about the same energy consumption, i.e.,

Cinresn/ Onigh Cthresh/ Qnign

fh' h = Popt f +2X Eswitch (7)
g opt

Phign

wherepopt is the average power consumption of executing with two frequencies to emulate
fopt @nd Eswich is DVFS switching overhead. The valué Gurest{fobj), can be easily
calculated offline. From Equatidi@), whenChigh < Cinresh the system forbids switching to

flow, @s it leads to higher energy cost.

e To avoid task timing violation dbw, our dual-speed method always sets execution speed
to fhign initially. After finding a proper chance to switchfig, execution frequency jumps
back tofhigh as soon as a certain number of cycles have been execdigdsath that
Chigh/(Chigh+Ciow) = anigh, according to the specified proportion.

e To avoid undesirable idle cyclesfagn, our dual-speed method switchedié@ if number
of unfinished job instances is not greater than 1, indicating possible shortage of workload.
On the other hand, this step also helps to reduce number of switches as it halts switching

to fiow When job instances in the queue are sufficient.

The steps above are summarized in Algorithm 4. Note that in line 3, frequency switching

will not be triggered ifon; < fert, as executing below critical frequency must be avoided.

53

Algorithm 4 Dual-Speed Method with Inter-Task Switching

Input:

(1) fonj, Objective optimal frequency

(ii) anigh(fon)) and Cinrest{fonj), Switching proportion and threshold profile
fios; from 400 to 1000 MHz

1. feur < fhigh

2.whiletrue :

3. |f fobj > fcrt:

4 if fcur = fhigh .

5. Chigh < Chigh + 1

6. if jobpool.size < 1 and Chigh > Ghnresh:

7 feur <= fiow

8. if four = fiow

9. Cow <~ Cow +1

10. |f Clow > C:high X (1'(1)/ .

11. four < fhigh

12. 16w<0, Chigh==0

13. if at reschedule point :

14. updati,; based on Inequation (3)

15. find adjacent frequencies such fipak fopt< fhign
16. fetchy; o (fobj) and Garesnfobj) from profile

To illustrate the advantage of our dual-speed method with inter-task switching, we compare
it to three alternatives: (i3ingle-speed methodhich finds a higher than optimal frequency
directly supported by the processor and does not switch frequency at iallrgiask methodhat
aggressively toggles speed during executions for every task while considering switching overhead;
and (iii) ideal casewhere intra-task method is applied, with switching overhead set to O to achieve
theoretical best case efficiency. The comparison study calculates task miss rate and sets per core
utilization to 100%. As can be seen in Figure 22 sihgle-speegcheme shows the worst result
as it always executes &igh when energy is available. Thetra-task method works better by
switching between two DVFS levels. However, its miss rate is still significantly higher than the
ideal case due to excessive DVFS switching overhead. By presetting switching threshold and
monitoring available workloads in the job pool, mter-taskswitching scheme finds appropriate

switching points and results in a miss rate that is close to the ideal case.

54

407

Mumber of Cores = 32
35 L Total Task Utilization = 1.0*Mumber of Cores 4
21.0 %

25.8 %

21.0 %%

202 %

Tatal Task Miss Rate (%)
(%]
[=]
T

single intra inter ideal
Frequency Selaction Methods

Figure 22 Comparison of Frequency Selection M ethods

2.5.EXPERIMENTAL RESULTS
2.5.1.EXPERIMENT SETUP

We developed a simulator in C++ to implement and evaluate the effectiveness of our
proposed SDA framework for ruime energy and workload management. The processor’s power
model was described in Table 1. Additionally, we ignore the timing delay to wake up cores from
sleep state (~order of milliseconds) once per schedule window as it has a negligible impact on
overall performance due to the much larger window size (~order of minutes). The energy
harvesting profile is obtained from historical weather data from Golden, Colorado, USA, provided
by the Measurement and Instrumentation Data Center (MIDC) at the National Renewable Energy
Laboratory (NREL) [60]. Our harvesting-based embedded system only executes durin@ daytim
over a span of 750 minutes, from 6:00 AM to 6:30 PM and shuts down when solar radiation is
unavailable.

In most experiments, we use synthetic task sets so than we can explore corner cases and have

control over the spectrum of workload characteristics during testing. We generated 50 random

55

tasks for each test set configuration in our experiments. Each task set has an average task execution
time randomly selected from 5 to 10 seconds. We vary the periods of all tasks in a task set based
on the desired level of utilization required from the entire task set. We also ran experiments with

the MiBench benchmark suite of embedded applications [61].

16

Number of Cores = 8
1sLNumber of Periodic Tasks = 80

Total Task Miss Rate (%)

3 4 5 6 7 8
Schedule Window Size (min)

Figure 23 Miss Rates for Different Schedule Window Sizes

To determine the appropriate schedule window size for the SDA algorithm we ran several
experiments with different window sizes. Figure 23 shows a set of results (miss rates) for our
random task with 100% utilization on a core. We found that when window size increases from 1
to 5 minutes, there is a notable decrease in task miss rate. The reason behind this trend is that
smaller schedule window sizes cause more task instances to span across the boundary of two
different schedule windows, disrupting the newly assigned execution schedules of the next
window. On the other hand, when we continue increasing window size beyond 5 minutes, the
performance benefits become negligible while the demand on supercapacitor capacity to buffer

energy harvested during a schedule window increases linearly. We found this trend to be consistent

56

for simulations with multiple cores as well. Thus we set 5 minutes as the size of schedule window
in SDA for our experiments, to balance system performance and supercapacitor capacity

requirements.

2.5.2.COMPARISON BETWEEN SDA AND PRIOR WORK

In this first set of experiments, we compare overall miss rates bekve®VFS[41], UTB
[43] and our propose8DAframework for different number of homogeneous cores ranging from
1 to 32 with insufficient energy harvesting, for which the energy storage system is not stressed
with surplus energy, so that the comparison in this subsection is focused on scheduling
performance of SDA compared to prior work, without considering the advantages from our
improved energy storage system design. We modeled the state-of-tindization-based
algorithm (UTB) in our environment. In addition, we also extendedettergyharvestingaware
DVFS technique(HA-DVFS) for multi-core systems with balanced task partitioning across
multiple cores, to enable another comparison point. With increasing number of cores, we scale
harvesting power, number of tasks, and total task utilization linearly so as to keep a consistent and
reasonable per core workload and energy budget.

First, we experiment on a workload with per core utilization set to 40%, which has moderate
energy requirements such that the system can execute at critical frequency for highest efficiency
when energy is sufficient. The results are shown in Figure 24. HA-DVFS can be seen to have a
much higher miss rate as it does not make use of periodic task information and thus underestimates
future workload. For the other two techniques, the advantage of SDA over UTB is small for the
single-core setup because task utilization is not very high. However, with increasing number of

cores, SDA’s advantage expands considerably even though per-core workload and energy budget

57

stays the same. One reason for this trend is that UTB uses an isolated task dropping scheme on
each core, which is based on energy availability prediction for one upcoming task, ignoring
workload on other cores that compete for the same energy source. In contrast, SDA performs task
rejection before assigning accepted tasks to different cores; thus the workload is adapted to a
system-wide energy budget that has been predicted. Furthermore, SDA actually benefits from
increasing number of cores as it exploits the flexibility to shut down some cores for higher

efficiency.

100

Total Task Utilization = 0.4*Number of Cores = HA-DVFS
== UTB
mm SDA

Total Task Miss Rate (%)

16 32

4 8
Number of Cores

Figure 24 Miss Rate Comparison with Light Workload

We also compare UTB and SDA under a much heavier workload, with per core utilization
set to 100%, results for which are shown in Figure 25. Not surprisingly, the heavier workload
expands the performance gap between UTB and SDA. The reason for the increasing performance
gap is that the higher workload implies more stringent timing and energy constraints, under which

SDA’s balanced run-time adjustment becomes more effective, as discussed in Section 2.3.1.2. As

58

a result, the most significant difference between these two techniques can be seen footee 32-c
platform scenario, where SDA achieves approximately 70% miss rate reduction compared to UTB.
Additionally, the results of SDA have less variation on multiple task sets compared to UTB, which
indicates that task set randomness has less impact on SDA as its dynamic adjustment is based on

the scope of the entire task set, and not just individual tasks.

100

Total Task Utilization = 1.0*Number of Cores == UTB
== SDA

80 92

71.3
68.4
61.1
6 55.8
52.7
4
.6
1
.6 9 6

2
0 1 2 4 8 16

Number of Cores

o

Total Task Miss Rate (%)
o

(=]

32

Figure 25 Miss Rate Comparison with Heavy Workload

Additionally, we compare performance of HA-DVFS, UTB, and SDA by scheduling a 4-
core system running a set of applicatiojped, gsort, dijkstra, patricia, blowfish, susan,)tiff
extracted from MiBench, a benchmark suite of embedded applications [61], with total utilizatio
of 160%, where every application executes recursively based on its assigned period with each
application execution request considered as an independent task instance. The result in Table 2
shows higher miss rates compared to average values with a similar 4-core configuration in Figure

24. The reason lies in the application set’s higher average length of task instances compared to

59

most of the randomly generated tasks, making it harder to balance workload among cores and
leading to higher overhead when a task instance’s life cycle spans across two schedule windows,
as discussed earlier in Section 2.5.1.

Table2 Miss Rate Comparison on MiBench

Scheduling Technique | HA-DVFS uTB SDA
Total Miss Rate 58.5% 33.8% 25.8%

2.5.3.ANALYSIS OF SDA WITH HYBRID ENERGY STORAGE

This set of experiments explores the performance benefits of our proposed SDA algorithm
together with the proposed hybrid energy storage system. Compared to the previous section that
focuses on scenarios with insufficient energy harvesting, experiments in this section assume per-
core nominal harvested energy scaled up by a factor of two, so that the system receives more than
sufficient energy occasionally and surplus energy needs to be stored to support execution when
harvesting power drops. We use the approach from [47] to model rate capacity effect oEbatterie
by scaling efficiency based on discharge current. Also we implemented four variants of SDA,
namely (i)BA-SDA SDA for battery-only system with doubled battery capacity,G#SDA
SDA for supercapacitor-only system with doubled supercapacitor capacitiI@g-SDASDA
with hybrid storage and focus on miss rate reductionH¥SDA SDA with hybrid storage and
focus on miss penalty reduction. These variants of our approach were compared against UTB.
Additionally, UTB, BA-SDA and CA-SDA rely on anoving averagealgorithm for energy
harvesting prediction [41] as they do not have dual-supercapacitor design to buffer harvested
energy for upcoming schedule windows. All task sets have utilization of 100% for this set of
experiments. Additionally, tasks are assigned a miss penalty ranging from 1 to 100 with a uniform

distribution. We compared average overall miss penalty and miss rate for these various techniques,

60

with increasing multi-core platform complexity (from 1 to 16 cores). Capacities of batteries and
supercapacitors, and nominal harvested energy for the entire system scale linearly with number of

cores in the processors.

10 : - :
Total Task Utilization = 1.0*Number of Cores - UTB

mm BA-SDA
mm CA-SDA
wen MISS5-5DA
mm HY-SDA

Total Task Miss Penalty / (Number of Cores X e6)

A
Number of Cores

Figure 26 Overall Miss Penalty Comparison

The results for this experiment are shown in Figure 26 and Figure 27. Similar to the
conclusion in the previous section, both BA-SDA and CA-SDA have lower miss penalty (Figure
26) and miss rate (Figure 27) than UTB, and their advantage expands with increasing number of
cores. However, their advantage over UTB is less significant compared to what we see in the
previous section (Figure 25). The reason is two-fold: firstly, with doubling of per-core nominal
harvested energy in this set of experiments, the stringent energy constraint, which highlights the
difference between UTB and SDA, is relaxed significantly; secondly, with more than sufficient
energy harvesting, management of surplus energy becomes the new bottleneck that partially
diminishes the advantage of SDA. Respectively, the performances of BA-SDA and CA-SDA

mainly suffer from lower charging/discharging efficiency of the battery and limiteaitapéathe

61

supercapacitor. Also, CA-SDA has advantage over BA-SDA with increasing number of cores in
the system as systems with more cores have higher demands on discharging current; and

supercapacitors, with their high power density, serve high current load more efficiently than

batteries [47].

50
Total Task Utilization = 1.0¥Number of Cores

.-540 mm MISS-SDA
s mm HY-SDA
@
o
e 30
u
L
=
ﬁ 20
s
©
©
F10

4
Number of Cores

Figure 27 Overall Miss Rate Comparison

For MISS-SDA and HY-SDA, integration with our hybrid storage system managed by the
SDA-based policy results in a much lower miss penalty and miss rate compared to UTB, BA-SDA
and CA-SDA. Even though this significant performance improvement is due to the introduction of
a hybrid storage system in MISS-SDA and HY-SDA, the efficient management of sybhd h
storage system is made possible by the semi-dynamic scheme of SDA, which offers flexibility at
reschedule points to select the appropriate energy source and deduce optimal energy budgets at the
start of each schedule window. Additionally, the difference between MISS-SDA and HY-SDA is

in how they prioritize minimization of miss rate and miss penalty. The HY-SDA scheme leads to

62

the lowest task miss penalty, with up to 65% reduction compared to UTB, while MISS-SDA results
in a slightly higher miss penalty than HY-SDA as it focuses on miss rate reduction. As expected,
the miss rate for MISS-SDA is the lowest and has less variation compared to HY-SDA (Figure

27).

35 Harvesting Power Profile
G s My WA
30_ | i | | | I
< 25§ M 'l_' ‘ ‘l‘ |m['|l| 'I W ~1'r| !
S VLA 1
a f IIII| ‘ .‘ ‘ ||'| | | \ I||| |I|‘
=15 | Il ”,.“ ||’ I
10 iy | | T . r
5 “|J ' \ ‘ ‘ JJ ll}' t,' ’I |'|I|I ;'-,ﬂj | l__ _,!il ||| I
O6AM BAM 10AM 12PM 2PM 4PM 6PM
§ 100 Miss Rate Reduction over Time
<
=)
©
=
o
7]
o
g
i~
o
v
L a0 \ .
= 6AM 8AM 10AM 12PM 2PM 4PM 6PM

Time (min)

Figure 28 Miss Rate Reduction for HY-SDA Compared to UTB

We also further explored the results for miss rate reduction obtained with HY-SDA
compared to UTB for each schedule window. These results on a 16-core system are shown in
Figure 28. We can see that the HY-SDA results in a higher miss rate than UTB irbgabyse
it shuts down all cores until the supercapacitor is sufficiently charged to avoid executing with
inefficient frequencies under the critical level. Subsequently, higher miss rate reduction for HY -
SDA is achieved when harvesting power is low or changes dramatically, reflecting the advantage

that HY-SDA has over UTB to cope with stringent energy budgets and its ability to filter out solar
63

harvesting variations. Moreover, HY-SDA results in a more significant miss rate reduction after
12 PM. The reason for this is that HFBDA’s high energy efficiency leads to more energy savings

in the battery, which enables more tasks to be executed and meet their deadlines.

2.5.4.ANALYSIS OF CORE HETEROGENEITY-AWARE MANAGEMENT

Next, we study the performance impact of core heterogeneity caused by within-@igsproc
variations. Based on results from [48] we set core frequency variation within a die an®3% a
static power variation as 50% with normal distribution. When a frequency level cannot be reached
by a core, the system always conservatively sets frequency to the next lower disgueteciye
level. We tested three different setups, namely (@riation-Unaware SDA with core
heterogeneity-aware techniques disabled. Also we assume that the system will force cores to
execute at frequencies no higher than their maximum capability to ensure stabiMgriétjon-

Aware SDA with our core heterogeneity-aware techniques; andH@mogeneousan ideal case
assuming no heterogeneity.

The results for this study are shown in Figure 29. It can be seen that without awareness of
within-die process variation, the system suffers from a very high miss rate, as the assigned
workload exceeds the actual execution capabilities of slower cores on the die, resulting in a faulty
schedule which wastes energy and CPU time on tasks that cannot be finished in time. In
comparison, with core heterogeneity-aware workload distribution, the system avoids faulty
scheduling and alleviates the impact of process variation. However, as expected, the results are
inferior to that obtained for the ideal case which has homogeneous cores unaffected by process
variation, because of the degradation in maximum throughput supported and non-uniform

workload distribution forced by inter-core heterogeneity.

64

70

Total Task Utilization = 1.0*Number of Cores I_ Variation-Unaware

H Variation-Aware
sok EEE Homogeneous

un
=]

Total Task Miss Rate (%)

10

16
Number of Cores

Figure 29 Overall Miss Rate Comparison with Core Heter ogeneity

2.5.5.ANALYSIS OF RUN-TIME THERMAL MANAGEMENT

In this section, we explore the impact of run-time thermal management in an energy
harvesting environment. While prior work [36] has considered the effect of temperature on
maximum power point tracking in energy harvesting systems, it has not considered the impact of
thermal-induced overheating on task execution throttling and slowdown in energy harvesting
embedded systems. To simulate a scenario with high overheating risk (as discussed in Section
2.3.4), we evaluate our approach for a very heavy workload with per core utilization set to 100%.
Our environmental profile considers high solar intensity and ambient temperatures from 9AM to
3PM. For thermal analysis, we integrated our simulator with HotSpot, a thermal modeling and
analysis tool [62]. We set package parameters of the Hotspot tool to model a 16-core processor
with no power-hungry cooling system (only a heat spreader and heat sink is assumed). We assume
die area of our chip to be a 16mm x 16mm, with cores placed in a mesh topology. Then we set

processor package size as 60mm x 60mm, which is also the size of heat spreader and heat sink. In

65

our tests, we compare the performance of three schemisn@)hrottling A basic SDA scheme

with no run-time thermal management scheme. This is representative of current state of the art
scheduling techniques for energy harvesting systems that ignore thermal isstiesyt(ling: We

again consider our SDA scheme without thermal-awareness, but here system hardware can
measure temperature and reactively enforce throttling when temperature exceeds the throttling
threshold; (iii)Proactive This is our SDA approach that integrates proactive core slowdown and

task redistribution from Section 2.4.3.3 to proactively address hotspots in the systems.

100 Peak Temperature vs Time
‘ Non-Throttling|

— Throttling
| — Proactive

95

a0

85

80

75

Peak Temperature (°C)

70

65

&AM 10AM 11AM 12PM 13PM 14PM 15PM
Time

Figure 30 Peak Temperatureof Various Thermal Management Techniques

The results for the three schemes are shown in Figure 30. It can be seen Nhan-the
Throttling scheme suffers from high peak temperatures for extended periods of time. Such high
temperatures will significantly impact the system stability and reliability. In contrast, the reactive
Throttling scheme is able to control temperature to stay below the throttling threshold for a

majority of the time. In Figure 30 the red dashed line indicates the throttling threshold at 85°C and

66

the green dashed line shows the threshold at 80°C at which throttling terminates. Note that peak
temperature seldom drops to 80°C in simulation. This is due to the fact that other un-throttled cores
take over the role of thermal hotspots in the system from the throttled cores. Our TA-SDA
Proactive scheme proactively performs core slowdown when temperature exceeds a proactive
reaction threshold (set to 82°C, and shown with the blue dashed line shown in Figure 30). This
scheme helps to increase energy efficiency by avoiding unbalanced frequencies cremeddly
throttling. Table 3 shows how our proactive approach not only reduces peak temperature, but also
reduces the number of throttling instances, which allows more efficient scheduling management,
culminating in an overall improved task miss rate. The results highlight the benefits of proactive

run-time thermal management.

Table 3 Comparison between Throttling and Proactive Schemes

average peak | number of overall task miss
UnEriel MEREEEmERD SEVERS temperature throttlings rate
Throttling 79.60°C 94 35.92%
Proactive 78.53°C 74 35.33%

2.5.6.ANALYSIS OF SCHEDULING OVERHEAD

To compare scheduling overhead between UTB, HA-DVFS and our proposed SDA
framework, we executed the scheduling procedures of these schemes on the gem5 simulator [63]
with a single thread at 1GHz to observe average execution time overhead averaged over all task
instances when managing a 16-core system running 160 periodic tasks with a scheduling
granularity of 1ms. The results of this study are shown in Figure 31, in which we can see that
SDA+DUAL has less scheduling overhead (with respect to performance and energy) compared to

UTB while providing more features such as hybrid storage-based energy budgeting, thermal

67

management, and dual-speed switching. The main reason for the lower overhead with
SDA+DUAL is that it is designed to reuse intermediate information computed at the beginning of
each schedule window, avoiding frequent on-the-fly scheduling procedure invocations during task
execution, with dual-speed method as the exception. The HA-DVFS also has much lower overhead
than UTB’s, as well as SDA+DUAL, as most of its features are triggered only when a new task
instance is available. We were also interested in quantifying the overhead of our dual-speed
method, which is perhaps the most complex run-time component in our scheduling framework.
We therefore also present the scheduling overhead for SDA-DUAL, which disabled the dual-speed
feature. It can be seen that without the dual-speed method, our scheduler execution tieygnd en

overheads become lower than overheads for UTB and HA-DVFS.

Number of Cores = 16

Number of Periodic Tasks = 160 — UTB
5 HA-DVFS
2o SDA+DUAL
B SDA-DUAL 26

=
[

17.430
10.894

,_.
[=]

15

o

11.462

7.164 10.462
6.539

10

>

Y
w
Average energy overhead per task instance {m1J)

Average timing overhead per task instance (ms)

Figure 31 Comparison of Scheduling Overhead

2.6.CHAPTER SUMMARY
In this chapter, we proposed a novel framework for run-time energy and workload
management based onsami-dynamic algorithm (SDA), for real-time multi-core embedded

68

systems with solar energy harvesting. Compared to the best known previous work, our approach
is promising for energy-harvesting based multicore embedded systems: 1) up to 70 % miss rate
reduction and 65% miss penalty reduction for SDA compared to the best know prior work, UTB,;
2) Analysis with system overheating considerations establishes the need for combing proactive
thermal management during scheduling, as done in our SDA approach, to reduce both miss rate
and average peak temperature among cores; 3) SDA with core-heterogeneity awaresi@ss pres
miss rate reduction of 49% compared to SDA without such awareness when process variation
effects on maximum frequency and power are considered. Overall, SDA provides a holistic
solution with many novel components, integrating a new hybrid energy storage system, task drop
penalty awareness, run-time thermal management, and core heterogeneity awareness. Moreover,
the design methodology of a semi-dynamic framework for resource management is the core idea

of our research, which will be applied to address further issues in the rest of this dissertation.

69

3. TEMPLATE-BASED SCHEDULING ALGORITHM FOR TASK GRAPHS

The problem of scheduling weightedirected acyclic graphs (DAGs) on a set of
homogeneous cores under optimization goals and constraints is known to be NP-complete [64]. In
this chapter, we address the even more difficult problem of scheduling on systems that rely entirely
on limited and fluctuating solar energy harvesting. The limited energy supply prevents the
deployment of complex scheduling algorithms at run-time. Moreover, execution of applications
that will not have enough energy or computation resources to complete due to shortages in
harvested solar energy can lead to significant wasted energy with no beneficial outcome.
Fortunately our concept of semi-dynamic scheduling proposed in last chapter can be applied to
address these challenges. Thus in this chapter, we propbgearid workload management
framework(HyWM) that combines template-based hybrid scheduling with our energy budget
window-shifting strategy derived from semi-dynamic framework in last chapter to decouple run-
time application execution from the complexity of DAG scheduling in the presence of fluctuations
in energy harvesting. Basically, our framework generates schedule templates at design-time with
an emphasis on energy efficiency and uses lightweight online management schemes to react to
run-time system dynamics. Moreover, our framework also considers varying aspect of issues like

stochastic task execution time, random transient faults, and progressive aging effects.

3.1.BACKGROUND AND CONTRIBUTION
Due to the variable nature of solar radiation intensity, the most suitable role of embedded
systems with limited-scale solar energy harvesting as the only energy source is to host non-critical

applications that allow for imperfect operation. Thus it may not be desirable to consider such

70

systems for real-time applications with hard deadlines, such as life-support mechanisms and
powertrain controllers, for which any deadline miss is a critical system failure that may have
catastrophic consequences. Instead, it is more practical to deploy such systems without energy
guarantees for best-effort execution of soft or firm real-time applications where a deadline miss is
not considered a failure of the entire system but a degradation of performance.

Consider an example of such a best-effort embedded system powered by energy harvesting
that is deployed for continuous structural integrity sensing at a remote location on a bridge. For
each operation interval, a usable raw data point can be collected from sensor modules bgexecutin
certain real-time control tasks such as data accessing, data post-processing and data-transmission.
In the event of an energy shortage, the system stays operational with certain datarcollecti
intervals ignored such that overall sensing quality is sacrificed in favor of ensuring system
continuity.

To achieve best-effort operation with limited resources, the deployment of an intelligent run-
time resource management strategy is not only beneficial but also essential. Such a strategy must
possess low overhead, so as to not stress the limited energy resources at run-time. As shown in
section 1.3, several prior efforts have explored workload scheduling for such real-time embedded
systems with energy harvesting. However, all of these efforts are aimed at independent task
execution models, and cannot be easily extended to more complex application sets that possess
inter-node data dependencies, such as workloads represemtiegcbgicyclic graphs(DAGS).

Due to aggressive scaling in CMOS technology, emerging multicore processors are also
facing ever-increasing likelihoods of transient faults (i.e., soft errors) and permanent faults (i.e.,
hard errors). Co-optimization of reliability and energy-efficiency have thus becoenécal

design concern in recent work on task scheduling [65] [66] [67] [68] [69] [70] [71][[/3]

71

However none of these efforts focus on energy harvesting based systems. For low-power
embedded systems that scale down voltage and frequency for energy savings, the rate of transient
fault occurrences, caused by a variety of factors, e.g., high-energy cesrttmror alpha particle

strikes, and capacitive and inductive crosstalk [74], is more severe as lower supply voltage leads
to drastically increased susceptibility to transient faults [75]. Additionally, embedded systems with
energy harvesting must also consider the impact of hard errors because a major incentive of
deploying such systems is long-term system autonomy, which requires an extended system
lifetime. For these reasons, we believe it is necessary to study workload management schemes that
consider both transient errors and aging effects to enhance system reliability and lifetime for low-
power systems with energy harvesting.

In this chapter, we propose a low-overhead soft and hard reliability-éwanid workload
management framewortHyWM) to address the problem of allocating and scheduling multiple
applications on multicore embedded systems powered by energy harvesting, and in the presenc
of transient and aging faults. Compared to prior work, the novelty of our work can be summarized

as follows:

e A hybrid application mapping and scheduling framework is proposed that integrates a
rigorous design-time analysis methodology with lightweight run-time components for low-
overhead energy management in solar energy harvesting based multicore embedded
systems for the first time.

e We propose two different approaches to solve the DAG scheduling problem attdasjgn-
generating schedule templates composed of energy-efficient application execution

schedules for various energy budgets that can be encounterediateun-

72

e Our allocation scheme for workload partitions considers different wear-out profiles of
cores and adjusts workload distribution accordingly to maximize lifetime of the entire
system.

e Our run-time scheduler utilizes a novel lightweight run-time heuristic that co-manages run-
time slack reclamatiormandsoft/hard error handlingn a multicore computing environment

without diminishing the benefits of schedule templates generated at diesegn-

3.2.RELATED WORK

Many prior research projects have focused on the problem of run-time management and
scheduling for embedded systems with energy harvesting, as we discussed in settmwel/&r,
none of them take inter-task dependency into consideration.

Several other efforts have explored mapping and schedulingkegtaph based workloads.
Luo et al. proposed a hybrid technique to find a static schedule for known periodic task graphs at
designtime with the flexibility to accommodate aperiodic tasks dynamically attime-[76].
Sakellariou et al. proposed hybrid heuristics for DAG scheduling on heterogeneous processor
platforms [77]. Coskun et al. proposed a hybrid scheduling framework that adjusts the task
execution schedule dynamically to reduce thermal hotspots and gradients for MPSoCs [54]
However, all of these prior efforts cannot maintain performance when applied to energy
harvesting systems that possess a fluctuating energy supply at run-time. Some of these efforts also
do not focus on energy as a design constréuir work specifically targets the problem of energy-
aware scheduling of multiple co-executing task graphs in energy harvesting based multicore

platforms.

73

A few efforts have addressed the problem of reliability and energy co-optimization during
scheduling. For soft-error reliability, Zhu et al. proposed an approach to insert a recovery task
during slack time obtained from executing multiple tasks [65]. To address the conservative nature
of individual-recovery based approaches, Zhao et al. proposed a shared recovery technique that
shares a small number of recovery nodes among all nodes executing tasks, to meet a system wide
reliability target [66]. This SHR technique also has been applied to address reliability during
scheduling of DAG-based workloads [67]. For hard failures, prior work has studied aging effects
that lead to permanent system failure, sucexgro migration (EM), negativebias temperature
instability (NBT1), andtime dependentlielectric breakdown(TDDB). Coskun et al. proposed a
framework to evaluate architecture-level effects of task scheduling and power management on
lifetime of multi-processors [71]. An analytical model to estimate lifetime reliability of multi-
processors with a periodic workload was proposed in [72]. Basoglu et al. quantitatively evaluated
the long-term impact of NBTI-aware tacore mapping for multi-processors [7Rpne of these
works target systems with unstable supply from energy harvdstiogr. work, unlike prior efforts
on integrating reliability during scheduling, we do not aim to satisfy a target reliahétead,
our focus is on alleviating the impact of soft and hard errors to finish as many applications correctly
as possible and extending expected lifetime for a system with a time varying and stringent energy

budget from energy harvesting.

3.3.PROBLEM FORMULATION
This section focuses on hybrid allocation and scheduling of multiple task-graph applications
with real-time deadlines on multicore embedded systems with solar energy harvesting, in the

presence of soft and hard errors, as shown in Figure 32. Although key components and assumptions

74

of system platform, like energy harvesting system and processor model, are similar to those in
Chapter 2, problem formulated in this chapgemore complex with emphasis on several new

design considerations such as task dependencies, soft errors, and system lifetime.

Errors

Energy
Conversion & Storage
Module
]
< 4
Photovoltaic System ! ’,r’ Multicore
: ’,’ Embedded Processor
Application Set (DAGs) > '
PR S ‘ Online |

wn - -> o
g . Scheduler = "Tv=aL_ i
~ Schedule
Template
Library

Offline L__——"'—'
‘ Scheduler |

Figure 32 DAG Scheduling on Multicore Embedded System Platform with Solar Energy

3.3.1.PERIODIC REAL-TIME WORKLOAD WITH TASK GRAPHS

The main change problem formulation of this chapter is the introduction of workload
model with dependencie®Ve consider multicore systems hosting multiple recursive real-time
applications modeled as periodic task graphs,Gy, ... , Gng}, such as the examples shown in
Figure 33. Each of thidg applications is represented by a weigldieectedacyclicgraph (DAG),
denoted a$&i: (ti, e, Ti, Dij), I€{1, ..., Ng}, which contains a set of task nodes{zy, ..., 7j} with
worst-case execution cycla&CEG, (number of CPU clock cycles needed to finish a taskhe
worst case); and a set of directed edgeSz. ..., &}, used to represent inter-task dependences
with communication (inter-core data transfer) delay from source to destination nodes represented

asCOMMsrc ast A task node can have multiple dependences to/from other nodes, forking/rejoining

75

execution paths in the task graph. We assume that every task graph’s execution paths rejoin at its

last task node, which accumulates results and concludes execution.

start start start

end end end

Figure 33 Example of Applications Modeled as DAGs

Every periodic task graph has a unique pefipdnd nodes in the graph are assigned relative
deadlinesDi;. At the beginning of each period, a new instance of a task graph will be dispatched
to the system for execution. A task node’s relative deadline, Dij, is the time interval between the
task graph instance’s arrival time and node firm deadline (see Section 1.2.2). A task graph instance
misses its deadline if it cannot finish executing any nodes before their deadlines. In this work, we
assume that the deadline of each task graph’s last node Dj -1 equalsTi, i.e., for a periodic task graph,
its instance has to finish execution or be dropped before the arrival of the next instance.

In this chapter, we assume the actual time (clock cycles) required to executeai@siay
vary at run-time due to variations in memory system behavior and randomness in application
procedures. We therefore use probability distributions to model variations in task node execution
time [78] and assume that clock cycles consumed by a task node never exceed its WCEC.

Similarly, to assess the computatioreitsity of an application relative to a processor’s full
capability, the computation utilization of a periodic task grdphnp is defined as the sum of
execution times of all its task nodes for the highest processor clock frequency divided by its period

76

Zj WCECi,j/fmax

Ucompi = T, ,1E{], ...,Ng} (8
i

Also we define communication utilization of a periodic task grdphn{m as the sum of the
communication times for all of its edges di by the task graph’s period:

Y COMMFK,
Ucommi = %;l € {1, ---;Ng})
i

The computation/communication utilization of the entire multi-application workload is simply the
accumulation of utilizations for all task graphs, which provides an indication of the overall

workload intensity of a DAG application set.

3.3.2.SOFT ERROR MODEL

A system is said to be real-time if the total correctness of an operation depends not only upon
its logical correctness, but also upon the time in which it is performed [14]. In most part of this
dissertation, we focused on timing constraints of task instances by counting miss rate in regard to
firm deadlines. In this chapter, we also look into logical correctness when counting miss rate and
assume that task nodes can produce incorrect output due to soft errors occurring during execution
and such incorrect outputs can be detected by verification logic executed at the gnthotaisk
execution. To recover from a soft error, the task node with a faulty output must be re-executed,
otherwise the output of the entire task graph will become invalid, which is counted as a task graph
miss. We apply the exponential model proposed in [75] to simulate soft error rates, as shown in
Equation (10

d(1-1) (10)
Af) = 10T Fmin

where/lo is the average error rate corresponding to the maximum frequeigy, constant that
indicates the sensitivity of error rate to voltage scalfpg,is the normalized minimum core

77

frequency, and is the normalized core frequency. It can be observed that lower power execution
at lower supply voltage (and thus frequency) to save energy can result in an exponenrdisg incre

in soft error rate [67].

3.3.3.HARD ERROR MODEL

In addition to soft errors, we also consider aging effects that eventually lead to hard errors
(permanent failure) in electronic systems. We adapt an analytical method to capture system-level
lifetime reliability in embedded systems with multiple cores. In the rest of this section we first
introduce how aging effects are modeled in our work and then describe a method to calculate
reliability of a multicore embedded system according to a specified level of failure tolerance.

Many prior research efforts model hard reliability characteristics of systemsmeary
timeto-failure (MTTF) prediction [71]. However, for aging effects, it is more intuitive to model
the changing of reliability over time due to progressive wear-out [79]. In our work, we estimate
instantaneous hard reliability of a core, which reflects the possibility of core’s avoidance of
permanent failure within a time epoch. We utilize a Weibull distribution, which is one of the most
widely used and versatile lifetime distributions in reliability engineering, to characterize per-core
wear-out over time [80]. The instantaneous hard reliability of a single core at &®(i§ can be

expressed as:
aAY
R(t) =e @ (11)
whereo andp represent the scale parameter and slope parameter in the Weibull distribution,

respectively. Whiles is a constant that reflects architectural characteristics of €asehighly

dependent on the operating history of the core. Thus in our reliability model we need to deduce

78

the relationship between the scale parameter o and operating history of the processing core. Firstly,

by the definition of a Weibull distribution, MTTF of a core can be calculated as

1
MTTF = a x I'(1 + E) (12)
Then we can represent the scale paranactst
MTTF
XA=—
1
ra+ %) (13)

This representation makes it possible to calculate the scale parameter for a core’s instantaneous
hard reliability model by adapting various MTTF-based hard error models, sueleca®
migration (EM), time dependentlielectric breakdown(TDDB), andnegativebias temperature
instability (NBT1) [71] [72] [73]. In this work we focus on EM-based aging, the MTTF model for

which can be expressed as:
Eg
MTTF = Ag(J = Jerie) "ekT (14)

whereAy is a material-related constadts Vagx f x pi [71], andJerit is the critical current density.

Then we have

Ea
o = AO(Vdd X f X pi _]crit)_nekT

ra+ %)

(15)

whereVyg, f, andT can be controlled by our workload management framework.

To approximate aging effects over time, we use a fixed time epoch of lengghthe basic
time unit, for which averaged core frequency, supply voltage and temperature are agpked to
above model for hard reliability calculation. According to [72], the reliability of a core at time
epochty, as the result of accumulated wear-out effects in previous time epochis foimz, can

be approximately calculated as:

79

_(yw-1_At p
R(t,) = e 0 a@ (16)
Also, MTTF of a core can then be represented as
MTTF = Z At X R(t;) (17)
i=0

For multicore systems, it is essential to consider not just reliability of each core individually,
but rather the impact of aging on the entire system. We define a system-level failure thigshold (
as the maximum number of core failures allowed before the entire system is considered to have
failed. For example, ifi=0, the system fails as soon as one core fails, i.e., all cores must maintain

their functionality to keep system up. The hard reliability of a system for this case is:

N
Rsys (tw)h=o = k=1Rk(tw) (18)

whereN is number of cores in a system. For general cases, where failure thiestaslé non-
zero value, the hard reliability of system can be calculated as shown below:
Rsys(tw)h = Rsys(tw)h—l + ZF C{l.....n}(HkEF(l - Rk(tw)) X er{l,...,n}\F Rk(tw)) (19)

|Fl=h
h€[1,N—1]
In the above equation, hard reliability of the system is calculated recursively, such that reliability

of the system with failure thresholdequals reliability of the system with thresholdhel plus

the probability of the system to have exattlyores failed. Different cores usually have different
hard reliabilities due to uneven workload distribution among them, therefore when calculating
probability of a certain number of cores failed, it is essential to enumerate all cases in tombina

and sum up their probabilities.

80

3.3.4.RUN-TIME SCHEDULER

This module is an important component of the system for run-time information gathering
and dynamic application execution control. The online scheduler gathers information by
monitoring the energy storage medium and the multicore processor (Figure 32). The gathered
information, together with preloaded schedule template library generated by the offline scheduler
for the given workload (discussed further in Section 3.5), allows the run-time scheduler to

coordinate operation of the multicore platform at run-time.

3.3.5.PROBLEM OBJECTIVE

The primary objective of our workload management framework is to allocate and schedule
the execution of a workload composed of multiple application task graphs (DAGs) arriving
periodically and running in parallel simultaneously at run-time, suchdtatask graph miss rate
is minimizedOur framework must react to changing run-time scenarios, such as varying harvested
energy budgets, variations in task execution time, and random transient faults, to schedule as many
of the task graph instances as possible without overloading the system with complex re-scheduling
calculations at run-time. The framework must also consider slack reclamation to aggressively save
energy and support soft-error handling to avoid finishing task graphs with incorrect output (which
is counted as a task graph miss). As a secondary objective, the framework must take aging effects

into consideration tonaximize overall system lifetime

3.4.HYBRID SCHEDULING FRAMEWORK: MOTIVATIONAND OVERVIEW
The problem of schedulingveighted directed acyclic graphs (DAGs) on a set of

homogeneous cores under some optimization goals and constraints is known to be NP-complete

81

[64]. This paper addresses the even more difficult problem of scheduling on systems that rely
entirely on limited and fluctuating harvested energie limited energy supply prevents the
deployment of complex scheduling algorithms at run-tivh@.eover,execution of applications

that will not have enough energy or computation resources to complete due to shortages in

harvested solar energy can lead to significant wasted energy with no beneficial outcome.

Harvesting

Power
%
L

___¢_

o
Energy Budget
Window Shifting tem

chedulerndow
' ‘)Q Energy Harvested
\ \n Schedule Window
temp temp
B

Selected Templa‘!e

Processor
Workload

Schedule Window

1 2 3 4 5 6 7 3 S

Figure 34 Overview of Hybrid Workload M anagement Framewor k

To address these challenges, we propodeyaid workload management framework
(HyWM) that combinesemplate-based hybrid schedulimigh anenergy budget window-shifting
strategy derived from semi-dynamic framework proposed in Chapter 2 to decouple run-time
application execution from the complexity of DAG scheduling in the presence of fluctuations in
solar energy harvesting. An important underlying idea in this framework, as shown in Figure 34,

is time-segmentation during run-time workload control that creates an independent stable energy

82

environment for run-time scheduling within each segment. The time of system execution is
partitioned intoschedule windowsf identical length, which is referred to as thyger-periodof

the DAG workload. An energy budget is assigned to a schedule window at its beginning, based on
the amount of harvested and unused energy from the previous window. This conservative budget
assignment scheme, callethergy budget window-shiftingan delay utilization of harvested
energy slightly to ensure that dynamic variations in energy harvesting do not halt tingoexaic
applications in subsequent windows. The run-time scheduler knows the amount of energy that is
available at the beginning of each window, and selects the best-fit schedule template generated at
design-ime based on this energy budget.

In the following sections, we describe our proposed framework in detail. Section 3.5
describes two design-time scheduling template generation approaches. Section 3.6 presents a run-
time scheduler with aging-aware allocation of workload partitions, lightweight slack reclamation,
and integrated soft error handling heuristics. Experimental results to validate our framework are

presented in Section 3.7.

3.5.0FFLINE TEMPLATE GENERATION

In this section, we propose and discuss two different approaches to solveA@e D
scheduling problem at design-time. Both approaches generate schedule templates composed of
energy-efficient execution schedules for various energy budgets. The first approach ignbased
mixed integer linear programming (MILP) that ensures schedule optimality for maximum
performance. The second approach iarsalysis-basetemplategeneration(ATG) heuristic that
is faster and more scalable than MILP, to accommodate larger problem sizes with acceptable

compromise in schedule optimality.

83

3.5.1.MILP-BASED OFFLINE TEMPLATE GENERATION

We formulated an MILP problem to aid with the generation of optimal task scheduling
templates at desigimme. The MILP formulation aims to minimize miss rate for DAG instances in
a schedule window under a given energy budget constraint. The constructed formulation is solved
multiple times offline with different energy budget constraints to generate a set of schedule
templates for the run-time scheduler to select. As our formulation focuses on workload
management within an independent schedule window, in this section we assume periodic task
graphs in sefy are unrolled into a set of all task graph instances that arrive within a schedule
window, y": {Gl4,...,GIni}. Our target processor hak cores, each withN; discrete frequency

levels.

3.5.1.1.INPUTS AND DECISION VARIABLES

For our MILP formulation, we provide several inputs that represent the energy budget and
characteristics of the target workload and platform, as shown in Table 4. The energy budget
parameterENGY_BGT allows different schedule template outcomes, such that each of them can
best match the available energy budget. W&E T, andENGY/, parameters are calculated based
on worst case execution cycl®CEQ of every task node for every frequency level supported by

the processing cores (see Tabje 1

Table 4 Inputsfor MILP Formulation

I nputs Description

EGY_BGT | energy budget of the schedule template to generate
ARRIVAL | arrival time of task graph instance

DDLINE;; | deadline of task graph instanosode |

WCET, worst-cast execution time of task nqds frequency levdl, [# 0
ENGY energy consumption of task nodat frequency levdl, whenl =
i 0, ENGY0=0

84

COMMerc get communication delay when preceding naate and descender
> nodedstare allocated to separate cores

Ni, Nt, NI,| number of task graph instances, number of task nodes, num

and Nc frequency levels, and number of cores

T In our formulation, task nodes can be indexed in two different ways:
1) Local ID: tuple(i, j) for task nodg of task graph
2) Global ID: single variablgfor task nodg in the entire set

Table5 Decision Variablesin MILP Formulation

Variables | Description
miss binary variable to indicate if task graph instantcemissed
Execution start time of task grapbn nodg. Note that we
start; also use variablend; as the end time of execution. O
W) schedule does not consider task preemption soethdj =
start; + WCET;;
freg; binary variable which indicates if task nofés assignec
' with frequency level
allocy binary variable which indicates if task nodis mapped tc
: corek, k# 0
deg, binary variable which indicates if task nodeand;’ are
/ NOT mapped to the same core (decoupled)
bef, binary variable which indicates if task nodes schedulec
J beforej’

There are two major requirements for decision variables in our MILP proQ)eimey must
form a complete representation of a feasible execution scheduldii)atitey should make it
possible to represent all constraints and objectives as linear formulations. Table 5 shows decision
variables used in our formulation. The binary indicators of task graph miss, are used to
construct the major part of the objective function. ffeg, , whenl = O, it indicates that task node
J is not scheduled for execution and is thus to be dropped. The indideggrandbef; are used

to construct constraints that arrange timings of task nodes without direct dependencies.

85

3.5.1.2.0PTIMIZATION OBJECTNE

The major objective of the MILP formulation is to minimize the number of misses of task
graph instances in a schedule window. Additionally, we include an auxiliary objective: the
percentage of energy budget used, so that the MILP optimization also searches fdule sdtte
the least energy consumption possible. Note that this auxiliary objective does not sacrifice
minimization of number of task graph misses for less energy consumption, as the energy usage
percentage, with value no greater than 1, always has less impact on the objective function value

than any single task graph instance miss. The objective formulation is shown below:

: < . M YILo(ENGY;; X freq;))
Min: Z miss; + ’ ' EGY BGT (20)
i=1

3.5.1.3.CONSTRAINTS

The constraints in our formulation guarantee the satisfaction of the energy budget and
correctness of the execution schedule for the target workload and platform. The key constraints

are described as follows:

e Energy constraint for a schedule windoWotal energy consumption of all task nodes at

their assigned frequency levels should be less or equal to the energy budget:

Nt NI

Z Z(ENGYJ-J x freq;,) <EGY_BGT (21)

j=11=0
e Timing constraints for task graph schedulinye formulate multiple constraints, which
when combined together form a complete timing constraint for all task graph instances and

their task nodes, as illustrated in Figure 35.

86

_ task node of graph, G _ T . task node of other graphs

(a.1) Starting n.ode . (b.1) Node starts after (a.2) Ending node finishes
archiiltting starts after arrival time precedent node finished before deadline deadline
of graph A of graph A
i |
[|
B N =,
| ~ “1
CoreB | Y |
ore
1 1 1
: e :
(b.1) Node starts after inter- (c) Avoid execution time
core communication finished overlapping on the same core
Figure 35 Timing Constraintsfor Periodic Task Graph Set
o Timing constraints for graph instanceBhe two constraints below confine start time

of the first task node and end times of task nodes with deadlines to ensure that timing
requirements of their corresponding task graph instances are satisfied, as illustrated in
Figure 35 (a.1, a.2).

start(;) = ARRIVAL; — M X miss; i € [1,N;] (22)

NI
end(i,j) = Start(i‘j) + (WCET(L])‘I X fTqu'j)'l) (23)
=1

end jy < DDLINE; ; + M X miss; i €[1,N;],j €[1,Nt] (24)
We use a sufficiently large constant, M, in the formulation to equivalently represent
“if” statements that cancel out constraints when miss = 1 (graph instance dropped). The
constraints can be canceled out whass = 1 because large values of M ensure that
the inequality is satisfied for any variable values in range. In the rest of this paper, we
use the same approach for “if” statements. However, for the purpose of intuitive

representation, the following séais show “if” statements explicitly.

87

o Timing constraints for task nodes with dependenciés type of constraints shown
below model dependencies by forcing destination task nodes to start only after their
predecessor nodes have finished. Also the constraints take communication cost into
consideration when two dependent nodes are decoupled (not allocated to the same
core), as illustrated in Figure 35 (b.1, b.2):

if miss; = 0:

end; syc) + COMMgyc gsr X deCgreqsr < Start(qse) (25)

€ [1,N;], (src,dst) € edges of G; ,G; € Y+

o Timing constraints for task nodes without dependen@ies:type of constraints shown
below address the fact that task nodes allocated to the same core cannot overlap their
execution times, as each core executes only one task at a time without preemption, as
shown in Figure 35 (c).

dec; j» < 2 — allocs; — allocsr (26)
j €[1,Nt],j' € [1,Nt],j #j',k € [1,Nc]

dec; + > allocsj,k + allocsjr,kr -1 (27)

],
j€[1,Nt],j € [1,Nt],j #]'
k € [0,Nc],k € [1,Nc], k # k'

These constraints represent relations between task node allocation vaalkdgs,

and node pair decoupling variablégeg,. The constraint in (26) ensures that the pair
decoupling variable is equal to 0 when task nodes are on the same core. The constraint
in (27) forces the decoupling variable to be 1 when two task nodes are found to be

allocated to different cores.

88

With the value ofdeg, available, the following constraints are used to avoid timing

conflicts for every pair of task nodes:

bef; j + befj ; —dec; s =1 (28)
if bef; i1 =0: endj <start; (29)
if befy ;=0: end; <starty (30)

j €[1,Nt],j" € [1,Nt],j #j' for (28-30)

The constraint in (28) implies that the task npdhould be scheduled either before or
after task nodg¢’ when they are allocated on the same core. Based on the scheduled
order of these two tasks, the constraint in (29 and 30) ensures that the task node only
starts when earlier scheduled task nodes are finished. When two task nodes are

decoupled to two different cores, the constraints in (29 and 30) cancel out [81].

e Constraints for target platformThe type of constraints shown below guarantee that only

one frequency level and at most one core are selected for execution of each task node:

NI
> frequ=1 jelLN] (31)
1=0
Nc
z allocj, <1, j€[1N,] (32)
k=1
Nc
if freq;o = 0: Z allocjy =1, j€[1,N] (33)
k=1

Atask is indicated as dropped in the generated schedule when its frequency level is set
to 0. The constraint in (33) ensures that all tasks that are not dropped will be allocated
to a core; otherwise they may end up being executed on a “ghost core” to escape timing

constraints with other tasks.

89

All of the above constraints are necessary to create a correct, feasible and optimal set of
schedule templates, for a set of chosen energy budgets. We also establish additional constraints

(not shown for brevity) to eliminate obviously sub-optimal solutions and reduce the search space

for the MILP solver.

L Tentative Schedule - Workl‘oad (DAGsl
Tentative Initialize Initialization ®
Schedule
J
E Budget
Task Graphs to Accept Energy . gej

(1] 1[0 1]
Task Node Allocation®

OOBOED| s

Task Node Frequency
Assignment*

22l ol2]o]

Task Node Priority*
(for Execution Order)

> Simulation

Save Occasionally For
Possible Rewinds

1
1

Iterative Analysis Checkpoints

(System Status)

Return to
Simulation

Inefficient
Events ?

_ Load to Rewind

No
&
Reached End Time

Save as Final
Schedule Template

* value = 0 for task nodes

End
Simulation & Analysis> of unaccepted task graphs

Figure 36 Analysis-Based Schedule Template Generation Heuristic

3.5.2.FAST HEURISTIC-BASED OFFLINE TEMPLATE GENERATION

The MILP optimization approach can provide optimal static schedule templates when online
performance is the primary goal and the complexity of the workload is not excessive. For problems
with larger sizes, however, the complexity of MILP optimization will increase dramatically such

that the execution time of the MILP solver becomes impractical, even for desmgexploration.

90

Thus we propose another novahalysis-basedtemplate generation (ATG) heuristic that
emphasizes scalability and fast solution generation with an acceptable compromise on the
optimality of generated schedule templates.

The outline of our proposed ATG method is illustrated in Figure 36. The main idea in ATG
is to iteratively analyze and improve performance of tentative execution schedules based on
feedback from stepy-step simulation, which detects energy inefficient events to help make
informed updates to the tentative schedule that is evaluated in another round of analysis. ATG also
has an in-built checkpoint mechanism to save system status so that a new round of analysis after
rewind event (discussed later) saves time before a modification on a tentative schedule takes effect.
The three main components of ATG are outlined below:

Firstly, Algorithm 5 shows the steps to generate an initial tentative schedule for ATG based
on a specified energy budget level. The algorithm starts out by finding the workload utilization
that can be supported by a given energy budget level (step 1~3). Then the schedule sudosgits a
of task graphs for execution and drops the remaining task graphs (step 4~11), while ensuring that
task graphs with lower WCECs are more likely to be accepted and the total utilization of the task
graphs satisfies the supportable workload utilization for the given energy budget. The generated
initial schedule conservatively rules out some obviously sub-optimal portions of the solution space
during scheduling and reserves enough headroom for upcoming iterative analysis and scheduling.
The resulting initial schedule does not include core allocation and priority assignment of task nodes

yet, which will be decided by the list scheduling algorithm used in a later stage.

Algorithm 5 Initializing of Tentative Schedule Template

Input:

(1) w, task graph set to be scheduled

(i) EGY_BGT specified energy budget for one schedule window
(iii) Twin, duration of a schedule window

(iv) num_coresnumber of cores in system

91

(V) fmax maximum frequency of processors

(vi) Ugi, utilization of periodic task graph Gi

Output:

(i) miss, binary variables to indicate is task graph Gi is missed/dropped in schedule
(i) freq, assigned frequency level of task node tj, value range [0, I\

1.avg power < (EGY_BGT/Twin)/num_cores
2. findfrer, the highest frequency that can be supported by avg_power
3. Uef fref/ fmax
4. Uaccepted<— 0
5.sort y according to WCEC of each task graph
6.while Uaccepted< Uref :
7. find the task graph with lowest WCEG, G
8. miss— FALSE f
9. for 1in all task nodes of G

10. fI'qu(— fref

11. uccepted<— Uaccepted"' Uai

 Default values of all elements iniss for all task graphs i§RUE

Secondly, a list scheduling based algorithm is adapted to our problem and applied during
iterative analysis, as shown in Algorithm 6. The algorithm is divided into two parts: Part | is
concerned with task priority assignment, while Part Il deals with allocation and execution order
scheduling of task nodes.

First, we discuss the priority assignment in Part I. In our application model, not all task nodes
in a task graph will have deadlines assigned to represent timing requirements of the corresponding
real-time application (see section 3.3.1). For task nodes with deadlines assigned, we refer to their
associated deadlines agplicit deadlinesOn the other hand, for tasks nodes without explicitly
assigned deadlines, there still exists a laiast-to-finish for each of them to allow all remaining
task nodes with explicit deadlines to finish. Thus tasks without explicitly assigned deadlines can
be said to havenmplicit deadlines We use implicit or explicit deadline to represent priority of a
task node, as the earlier the deadline is, the more urgent it is to finish the task node to avoid a

deadline miss for the entire task graph.

92

Algorithm 6 shows the heuristic in Part | that calculates implicit deadlines of all task nodes
by using a nested function to traverse the entire task graph starting from task nodes with explicit
deadlines assigned (step 1~4). Then in step 5~9, the nested function is called to back-traverse from
nodes with explicit deadlines to predecessor nodes, calculating implicit deadlines of other task
nodes in a depth-first manner. As a task node can have multiple successor nodes in a task graph,
multiple values of implicit deadline can be derived from different calculation paths or different
explicit deadlines of nodes. To address this issue, steps 7 and 8 ensure that only the earliest value
among all derived ones is ke a task node’s implicit deadline. An illustrative example of this

priority (implicit deadline) assignment heuristic is shown in Figure 37.

Other Predecessor Nodes in Task Graph .-~ Compare:
(Omitted in this figure) RN 1750 - 1100 - 200 < 1800 — 800 - 50

\ Pick the earlier one:
\ Implicit Deadline = 1750 - 1100 - 200
= 450

Implicit Deadline |1 / ® Compare:
= 2000 - 100 - 150 2000-100-50< 1800
=1750 Implicit Deadline = 1800

Execution Time = 100
Explicit Deadline = 2000

Figure 37 An lllustration Example of Implicit Deadline Calculation

Part Il of Algorithm 6 shows the steps for allocating and scheduling task nodes during each
simulation step. For task node allocation, a task pool is used to collect task nodes that are ready to
be allocated and each core has a record of WCET required to finish all task nodes alrgaeg assi

to it. A good allocation scheme should distribute task nodes to cores so that their workloads are as

93

evenly balanced as possible. In steps 10~15, we use a heuristic that is similar to a first-fit
decreasing algorithm for the bin-packing problem [82], which sorts task nodes in decreasing order
based on their WCETs and then iteratively allocates the task node with highest WCETS to cores
with lowest WCETs accumulated for execution. The scheduling of task nodes on each core is
performed based on the earliest implicit dead line first (EiDF) algorithm (steps 16~18), which is

essentially EDF that uses implicit deadlines generated in part I. With multiple task graphs to be
scheduled at the same time, EiDF gives priority to task nodes in the critical path of different task

graphs, after comparing their implicit deadlines.

Algorithm 6 List Scheduling Based Approach for Task Scheduling

Part | Task node priority (implicit deadline) assignment
(Called every time tentative schedule is changed)

Input:

(1) w, task graph set to be scheduled

(i) DD_LINE, deadline of task graph instariceodej

(i) WCET;, worst cast execution time of each task node in task graph

(iv) COMMesre,dsi communication delay between nagte and nodedst

Output: implicit_priority;, implicit deadlines as priority indicators of task nade

priority_assign():

1.for Giny:

2. for 7jin task nodes of Gwith deadline constraints :
3. dead_priority— DD_LINE;;

4. call nested_prity(t)

nested_priority(tj):
5.for 7j in all predecessor nodes of 7j :
6 implicit_deadline «— implicit_priorityj -WCET; — COMM;-,
7. if implicit_priority; > implicit_deadline :
8. implicit_priority < implicit_deadline
9 call nested priority(tj)
Part Il List scheduling method

(Called in every simulation sjep

Input:
(i) sys_poalsystem task pool, containing task nodes that are ready to allocate

(i) core_poal, task pool for coré, containing allocated task nodes that are ready to execute
(i) CORE_WCEY, remaining WCET of all task nodes assigned to kore

94

(iv) implicit_priority;, implicit deadlines as priority indicators of task nade
Output:

(i) allog, allocation results of task nodevalue range [0, num_cores]

(ii) selected task node to execute in current simulation step

list_schedule&():
10. sort sys_pool according to WCET of each node
11.for all task node sys_pool :
12. find 7 in sys_pool with highest WCET
13. find core, with lowest CORE_WCET
14, allocate; to corek, allog « k
15. CORE_WCEJ— CORE_WCET«k + WCET;
16.for all coresin system :
17. sort core_poolk according to implicit deadline of each tasks
18. select task node with earliest implicit deadline to execute

 Allocated task is not ready to execute until preceding dependencies are resolved

Lastly, at the core of the ATG heuristic is a checkpoint-based iterative analysis method, as
shown in Algorithm 7. At the beginning of each simulation step, the ATG heuristic saves the
current system status as a checkpoint for newly arriving task graphs, so that the simulation can
rewind to this checkpoint saved before the schedule for the new task graph takes effect (step 2~3).
Subsequently, a list scheduler is invoked and the system executed for one simulation step with the
tentative schedule (step 4~5). When energy inefficient events are detected during execution, the
ATG heuristic will update the execution schedule accordingly and rewind to a previous checkpoint
for another round of evaluation with an updated schedule (step 6~16). If ATG detects depletion of
the energy budget before finishing all accepted task graphs in the current schedule (energy
violation event), one accepted task graph with highest WCEC will be dropped in the updated
schedule and simulation rewinds for re-analysis (step 6~9). If ATG detects a task node that missed
its implicit or explicit deadline (timing violation event), which implies that a deadline miss for the
task graph it belongs to is inevitable, the tentative schedule will be updated to boost execution
frequency of related task nodes: the task node in the critical path with the lowest frequency

assigned will get a frequency boost (step 11~13); and if there exists a task node from another task

95

graph allocated to the same core that finished just before the nodes with timing violation, it will
also get a frequency boost (step 14~15).

Note that WCETSs of selected task nodes change with their boosted frequencies, thus we call
a nested priority assignment function starting from these nodes to recalculate implicit deadlines of
their predecessors. Then simulation rewinds for re-analysis with the new schedule (step 16). If the
current simulation step detects no energy inefficient events, the simulation continues to the next
step (step 17~18). When the entire schedule window is analyzed without energy inefficient events,
the analysis process ends and the updated schedule is saved as a schedule template for the specified

energy budget (step 19).

Algorithm 7 Checkpoint-Based Iterative Analysis

Input:

(i) EGY_BGT specified energy budget for one schedule window

(ii) Twin, duration of a schedule window

(i) implicit_priority;, implicit deadlines as priority indicators of task negde
(iv) initial tentative schedule from Algorithm 5

Output: static schedule template for energy budgdi@ly_BGT

1.while Teur < Twin :

2. if new task graph (@rrives :

3. checkpoing— all system status (include Tcur)

4. alloc « list_schedule()

5. execute for one step using tentative schedule

6. if EGY_BGT depleted during execution :

7. find arrived task graph with highest WCEC, G

8. miss— TRUE

9. all system status «— checkpoint;
10. eseif node 1) of task graph @Gmissed its implicit deadline :
11. find the critical path in @at ends at 1
12. find ;- , the task node with lowest frequency assigned
13. freg« freqy + 1, nested priority(tj)
14. find 7;~, the task finished just before tj on the same core
15. freg « freq;> + 1, nested priority(tj~)
16. all system status «— checkpoint;
17. dse:
18. Tur = Teur + Tstep

19. save final tentative schedule as schedule template

96

At designtime, the ATG heuristic is executed multiple times for different energy budget
levels (similar to the MILP approach) to generate a set of schedule templates for the run-time

scheduler to select from, based on the harvested and available energy in the target multicore

computing platform.

3.6.ADAPTIVE ONLINE MANAGEMENT

3.6.1.RUN-TIME TEMPLATE SELECTION

- Energy Required by Schedule Template

- Backup Energy for This Schedule Window

Energy Budget

Schedule
1 2 3 4 5 6 7 8 9 i

Figure 38 Residual Energy Availability over Time

The main goal of our run-time scheduler is to monitor harvested solar energy and select the
best-fit template for an upcoming schedule. With schedule templates generated aimesagd-
energy budgets provided at the beginning of each schedule window, this is a low-overhead
operation, done by selecting the schedule template that finishes the most task graph instances,
contingent on the energy budget. Each selected template provides a schedule vaHtdeesk-
allocation, execution order, and frequency assignment for every task node. As the offline schedule

97

template assumes all cores to be identical, each task node is actually only assigned to a virtual core
id. We call a set of task nodes assigned offline to a core idvaskébad partition each of which

should be allocated to a dedicated physical core for execution in the upcoming schedule window.
This partitionto-core allocation can be adjusted dynamically to mitigate aging effect that leads to
hard failures (see section 3.6.2). On the other hand, the amount of residual energy that exceeds the
energy requirement of the selected schedule template is used as backup energy (Figure 38) for
possible task re-execution to recover from detected faults caused by soft errors during execution

(see section 3.6.3).

3.6.2.AGING-AWARE ALLOCATION OF WORKLOAD PARTITIONS

After a schedule template is selected based on the energy budget for a schedule window, our
framework can trigger a scheme to allocate workload to cores with awareness of core aging to
enhance system lifetime. Although schedule templates set fixed execution strategies for all task
nodes, there still exists some flexibility as the allocatiowardkload partitionsto cores can still
be altered from the default provided by the schedule template, for a homogeneous multicore

platform.

Algorithm 8 Dynamic Workload Distribution in Awareness of Core Aging

Input:

(i) work_partition_set set of workload chunks in schedule template, each chunk should be
executed on an individual core

(i) R_setreliability of cores

Output: Allocation of workload partitions to cores

1.for each reliability detection interval :
2. update R_set

3. sort cores in non_decreasing order of hard reliabilities
4.for each schedule window :

5. get work_partition_set from selected schedule template

6. sort work_partition_set in non-decreasing order of workload

98

partitions’ total task execution cycles
7. for all coresn systent
8. allocate workload partition with lowest execution cycles to
unassigned core with lowest hard reliability

The outline of our aging-aware dynamic workload allocations scheme is shown in Algorithm
8. We assume that our scheduler can fetch hard reliability information of cores from aging
detection circuitry [83] or execution history tracking mechanisms at certain interval (much longer
interval than schedule windows) [75] (steps 1~3). Besides, at the beginning of each schedule
window, workload partitions are fetched from the selected schedule template (step 4~6). Then
recursively our heuristic allocates unassigned workload partitions with the lowest workload
intensity to idle cores with the lowest hard reliability. As a result, cores with faster wear-out during
previous system operation are more likely to receive less workload than others so that aging
processing on the entire multicore system can be rebalanced. Otherwise, some cores may be
utilized more intensively than others and detrimentally impact system lifetime of the multicore

chip.

3.6.3.DYNAMIC ADJUSTMENT FOR SLACK RECLAMATION AND SOFT ERROR
HANDLING AT RUN-TIME

Utilizing static schedule templates for run-time workload management shifts the burden
associated with the complex task graph scheduling problem to dasmgrHowever, embedded
systems can encounter unpredictable variations at run-time such as those due to fluctuations in
harvested solar energy, slight variations in task execution time on the same core, and randomness
of soft error occurrences. Among these factors, the fluctuations in harvested solar energy are

already dealt with in our framework by using the energy budget window-shifting technique and

99

the schedule template set prepared for different energy budget levels. In this section, we introduce
a lightweight run-time management scheme that provides an integrated solution to address slack
reclamation and soft error handling without diminishing the benefits of schedule templates

generated at desigime. This scheme is described in Algorithm 9.

Execution | slack !
frequency | time
commuhication
i Next Task to
Execute
Original execution schedule in ti:emplate time

Execution
frequencyT

communication ! i
i i slack time claimed

Next Task to Execute

When slow down is possib*e, slack tirine claimed time

Execution

frequency

slack time
passed on

]
i
communication

Next Task to
Execute

When slow down is impossible, slack time passed on time

Figure 39 Illustrative Example of Slack Time Reclamation

Our run-time management scheme can reclaim slack time that becomes available when a
task node finishes before its worst case finishing time. This slack time can be used to slow down
execution of upcoming task nodes, to save energy. The offline generated schedule templates have
a designated start time recorded for all task nodes, to help identify any instances of slack time.
Whenever a new task node is about to start execution, the amount of slack time is calculated by

subtracting the node’s designated start time with the current time (steps 4~5). If the amount of

100

slack time is usable, slower execution frequency is assigned to the task node for the purpose of
saving energy (step 6~7). Even if the amount is not sufficient to step down a frequency level, the

task node will start execution earlier than the designated time and thus the slack time can be passed
on to upcoming tasks, as shown in Figure 39. The estimated amount of energy saved is added to

the backup energy for use during possible task re-execution in the presence of soft errors (step 8).

Algorithm 9 Dynamic Slack Reclamation and Soft Error Handling

Input:

(i) Twin, duration of a schedule window

(ii) v, task graph set to be scheduled

(iii) start, designated time to stattecution of 7j in selected schedule template
(iv) bkup_energy amount backup energy for a schedule window

Output: static schedule template for energy budget of EGY_BGT

1.while Teur < Twin :

2. load schedule in template
3. for 1 in taskpool :
4. if 7j is about to start execution anel/K start :
5. slack time <« startj — Tcur
6. while slack_time > WCET increased at fredL:
7. freg— freqi— 1
8. bkup energy «<— bkup energy + energy saved
9. execute task nodes based on schedule template
10. for 1y in just finished tasks :
11. if error detected on 7j :
12. if Teur< StarI :
13. schedule another instance of 1j to re-execute
14. elseif 3 a freq that has reduced WCET &F stari :
and can be supported by bkup_energy:
15. free— freq,
16. bkup energy < bkup energy — energy_used
17. schedule another instance of 1 to re-execute
18. ese:
19. find next node teceexte on the same core, 1)
20. if 1€ G, 1 € G and G#Gy :
21. update remain WCEC of both graphs
22. if Gy has more WCEC
23. drop G
24. schedule 1 to re-execute
25. else:
26. drop G

101

27. else:
28. drop G

Our runtime management scheme is also capable of reacting to soft errors wittohode-
node soft error detection. Whenever a task node finishes execution, the correctness of the result is
verified to trigger an error handling heuristic if errors are detected during task node axecuti
(steps 10~11). If there is slack time directly available, the system reclaims it to execute a new
instance of the faulty task node (step 12~13). If sufficient slack time is not available, the error
handling heuristic checks to determine if there exists a higher frequency supportable by the
available backup energy to finish re-execution of the fault-affected task node before its implicit
deadline (steps 14~17). If both options are not viable for the faulty task node, the heuristic will
attempt to drop other task graphs with higher WCEC so that the faulty node can be rescheduled.
This process involves checking if the next node scheduled to execute on the same core is from
another task graph (step 18~20). If true, both task nodes have the WCEC of their unfinished nodes
updated and the task graph with the higher WCEC is dropped (step 21~26).

The three error handling stages described above attempt to exploit slack time, backup energy
and relatively less important task graphs to save the computation efforts invested into all
predecessor nodes of the faulty task node, for better overall energy efficiency. During slack
reclamation and error handling, all task nodes that do not belong to faulty or dropped task graphs
will not have their template-designated finish time compromised, thus a chosen schedule template

remains effective during run-time workload management.

102

3.7.EXPERIMENTAL RESULTS
3.7.1.EXPERIMENT SETUP

We developed a simulator in C++ to evaluate our proposed soft and hard reliability-aware
hybrid workloadmanagement framewoilldyWM). For offline schedule template generation, we
wrote a python script that constructs the data structure of task graphs using the NetworkX package.
We formulated the MILP problem usingaNU linear programmingkit (GL PK) [84]. We chose
the Gurobi Optimizer [85] as our MILP solver to generate the optimal schedule templates. We
generated task graph sets based ométeorking telecom andauto-industryapplications from
the EmbeddedSystem Synthesis Benchmarkuite (E3S) [86] and the distribution of actual
execution times of task nodes is obtained from [78]. We also used synthetic task graph sets from
TGFF [87]. In the rest of this section, we first analyze characteristics of the generaedlech
templates and then study system performance for our proposed hybrid workload management

scheme compared to prior work.

3.7.2.TEMPLATE GENERATION ANALYSIS

In the first set of experiments, we check the quality and optimality of the schedule templates
generated using our MILP approach on a 4-core system. We scale task node exemitbfotar
periodic task graphs from E3S with computation utilization set to 0.8x4 and communication
utilization set to 0.15x4, i.e., a total workload utilization of 0.95%4, which sets a stringent timing
requirement for a system with 4 cores. The resulting periodic task graphs with targeted utilization
have periods ranging from 20 to 60 seconds and execution times at 1000MHz operating frequency
ranging approximately from 16 to 48 seconds with maximum per-graph parallelism of 4. Besides,

apart from the deadlines at task-graph termination nodes, we randomly select few task nodes in

103

each task graph to assign explicit deadlines that result in even more stringent timing requirements
(Note: utilization of the entire task graph stays the same as it is calculated based on maximum
frequency; see section 3.3.1). Based on the periods of the generated task graphs, we set the length
of schedule window to be 1 minute, within which 9 task graph instances arrive in the system for
execution. We generated 11 schedule templates with energy budgets evenly distributed from O to
Epeak Where Eeakis the assumed peak energy budget (240 Joules) available from our solar energy

harvesting system.

Table 6 Results of MILP Based Schedule Template Generation for A 4-core Homogeneous

Embedded System
iempiate IpENer0y budge OUSEEE Energy budgetusag (00 M
0 0J 9.000 0.0% 0J 9
1 243 7.846 84.6% 20.3] 7
2 483 5.920 92.0% 44.23 5
3 723 4.968 96.8% 69.7J 4
4 96J 4.726 72.6% 69.7J 4
5 1207 3.808 80.8% 97.0J 3
6 144 2.904 90.4% 130.2] 2
7 168 2.775 77.5% 130.2] 2
8 192 1.923 92.3% 177.2] 1
9 216J 1.820 82.0% 177.2] 1
10 240J 0.965 96.5% 231.6J 0

The results of the schedule template generation for a system with four cores are shown in
Table 6. We can observe that schedule template 10, with a peak energy budget can finish all task
instances in time, showing the competence of our MILP optimization to deal with stringent timing
constraints even for heavy workloads with per-core utilization as high as 0.95. Note that while
96.5% of Eeakis required to finish all task instances, template 3 with energy budget less tRan 1/3
of Epeakmanaged to successfully schedule more than half of the inst@hea®sults demonstrate

how our approach can create efficient schedules even under highly constrained energy budget

104

requirementsThe schedule performance is a reflection of our MILP optimization approach that
finds the optimal schedule by sacrificing more energy-hungry task graph instances, reserving
energy for less energy-hungry ones, and scaling down execution frequency whenever possible for
optimal energy efficiency, thereby minimizing the miss rate of task graphs. Note that there are
three pairs of templates in Table 6 that are identical to each other with the same extent of energy
usage and instance misses. Thus it is unnecessary to increase number of budget levels indefinitely
(much beyond number of application task graph instances in a window) as the resulting smaller
energy budget difference between levels will lead to identical and redundant schedule templates

that increase storage overheads.

100% Freguency level occurrence distribution for all task nodes

[Dropped

90%: B 150MHz

4 [400MHz

B0%; [600MHz

70%: s 800MHz

EE 1000MHz
60%
50%:
40%:-
30%
20%-
10%
0%

TEMPLATE 0 TEMPLATE 2 TEMPLATE 4 TEMPLATE 6 TEMPLATE 8 TEMPLATE 10

Figure 40 Frequency Level Occurrence Distribution for All Task Nodes

To study the quality of schedule templates from another perspective, we show how our MILP
optimization approach selects frequencies for task nodes under different energy budget constraints,

as shown in Figure 40. We can observe from the figure that templates with higher energy budgets

105

utilize higher frequency levels more frequently than templates with lower budgets. Templates with

lower energy budget end up dropping more tasks and slow down execution for better energy
efficiency. Note that the 150MHz frequency is never used by any schedule; this is due to the fact
that the frequency level of 150MHz has lower efficiency and lower speed than the 400MHz level

(see Table 1 in Chapter 2). Therefore our MILP optimization approach rules out this sub-optimal

frequency choice as it is always better to schedule at 400MHz instead.

While the MILP approach generates optimized schedule templates, we found that the
approach is not scalable for larger problem sizes. Table 7 shows a comparison between the MILP
and ATG heuristics, in terms of execution time and memory footprint, for two problem instances
of different sizes. It can be observed that the MILP approach requires significant computation
resources for large problem sizes, which may not be practical even at tiegigithe ATG
heuristic is much faster, but this speedup comes at the cost of lower performance due to sub-

optimal schedule templates generated (see next section).

Table 7 Computation Resource Requirement of MILP and ATG

Method Complexity Memory Execution
Number of node Number of edge, footprint time
ATG 6 44 42 MB 0.1hour
MILP 257 MB 6.5hour
ATG 61 MB 1lhour
MILP Ll 2R 7693 MB 492hour

3.7.3.EVALUATION OF SYSTEM PERFORMANCE WITHOUT ERROR INJECTION AND
EXECUTION TIME VARIANCE

In this section, we compare overall system task graph miss rate for the two variants of our
hybrid workload management framework: HyWM-LP and HyWM-ATG, against workload

management approaches proposed in prior work. Our simulation uses realistic energy harvesting

106

profiles based on historical weather data from Golden, Colorado, USA, provided by the
Measurement andinstrumentationData Center (MIDC) of the National RenewableEnergy
Laboratory (NREL) [60]. As we assume that our system only operates in daylight, system
performance is evaluated over a span of 750 minutes from 6:00 AM to 6:30 PM, when solar
radiation is available.

To compare our approach with state-of-the-art approaches, we implemented two additional
schemes: 1) SDA from Chapter 2, which divides system execution time into segments and selects
a stable frequency to execute a subset of the workload that can be supported by thesaesigyed
budget; and 2) LP+SA [88], which finds a feasible but non-optimal schedule using MILP, and uses
this schedule as an initial solution tesimulatedannealing(SA) based heuristic that finds a near-
optimal solution. To compare HYWM with these approaches, we adapt the techniques to our
environment and problem formulation. As SDA is designed for energy-constrained scheduling of
independent periodic tasks while our workload in this section consists of multiple task graphs, we
enhance these techniques so that our scheduler module analyzes inter-task dependency and
provides ready task nodes for the techniques to schedule. In LP+SA, the original approach focuses
on task graph scheduling while minimizing energy but without awareness of energy harvesting
and not considering task dropping. We enhanced LP+SA by dropping tasks iteratively till the
remaining task sets meet the energy budget, and these task sets are then sent as inputs to LP+SA.

The results of our comparison study on task graph sets extracted from E3S are shown in
Figure 41. The figure shows the total task graph miss rate for three different platform complexities
(with 4, 8, and 16 cores). For the platform with 4 cores, it can be observed that SDA has the highest
miss rate. This is because SDA, with no awareness of task node dependencies, cannot arrange

specific execution schedules for task nodes along critical paths of task graphs and thus all nodes

107

in a task graph are assigned the same frequencies, resulting in a less efficient schedule. LP+SA
outperforms SDA as it can generate task dependency-aware offline schedules after cwmprehe
design space exploration unlike in SDA. However, the superior offline schedules obtained using
our MILP formulation in the HyWM framework coupled with its intelligent run-time template
selection and slack reclamation techniques allow HyWM to outperform both of these efforts.
HyWM-LP reduces absolute miss rate by 5.6% and 9.0% over LP+SA and SDA, respectively. In
terms of relative performance improvement, HyWM-LP accomplishes an improvement of 12.9%
and 20.1% over LP+SA and SDA, respectively. HYWM-ATG ends up with higher miss rates than
HyWM-LP, however it still outperforms the other two techniques from prior work. HYWM-ATG

can however serve as an alternative approach when scalability is an issue, e.g., for larger problem

sets.
- Evaluation of Overall Miss Rate for E3S Task Graph Set
Task Graph Set Utilization = {0.80 + 0.15) X Number of Cores SDA
46.7 BN LP+SA
B HyWM-ATG
35 44.9 44.9 | mmm HyWM-LP
43,3

41.9

B
L]

Total Task Graph Miss Rate (%)

30

3 16
Number of Cores

Figure 41 Task Nodes Comparison in Terms of Overall System Task Graph Miss Rate

108

. Evaluation of Overall Miss Rate for Synthetic Task Graph Set
Task Graph Set Utilization = {0.80 + 0.15) X Number of Cores SDA

BN [P+5A
. HyWM-ATG
 HyWM-LP

B
W

43.9

42.6
41.4 41.9

8

35

Total Task Graph Miss Rate (%)

)
(=]

25

3 16
Number of Cores

Figure 42 Comparison of Overall System Task Graph Miss Rate on Synthetic Task Graph
Set with Higher DoP

Figure 41 also shows the scheduling performance of these frameworks for platforms with a
greater number of available cores while keeping the workload and energy budget the same. When
the core count doubles from 4 to 8, our VM methods achieve lower miss rates (up to 23.2%
reduction relatively) compared to other techniques, as they can better distribute the workload
across more cores, directing these cores to operate at a lower execution frequency and with better
energy efficiency. However, the system with 16 cores shows no further improvements because
there is no additional parallelism available in the E3S task graph set, which has maximum per-
graph parallelism of 4, to make use of the 16 cores. Note that LP+SA shows a slightly deteriorated
result on 16 cores because even though there is no more parallelism to exploit, the search space of

its SA heuristic enlarges, leading to slightly worse near-optimal solutions. Figure 42 shows another

109

group of results based on a synthetic task graph set generated using TGFF [87], with the same
targeted utilization as E3S but maximum per-graph parallelism increased to 8. We caniobserve
Figure 42 that while performance differences among techniques are similar to the results shown in
Figure 41, all techniques continue to get miss rate reduction on a 16-core system, as there is
additional parallelism to exploit in the synthetic task graphs set (in contrast, miss rate

improvements for E3S saturate for the 16-core system as shown in #lyure

3.7.4.EVALUATION OF SYSTEM PERFORMANCE WITH SOFT ERROR INJECTION AN
EXECUTION TIME VARIANCE

In this section, we show the performance improvements due to our proposed run-time slack
reclamation and error handling heuristics. In the experiment, we assume an average @fror rate
10° soft errors per second per core at maximum frequency [70]. As there is no prior work on soft
error handling for systems with energy harvesting, we conduct multiple tests with run-time
management features enabled progressively on caredsystem to show each feature’s
effectivenesswith results shown in Figure 43. Each of the configurations shown in the figure are

described below:

e None: This base case uses HYWM-LP with soft error injection and no run-time adjustment
technique enabled, and has a miss rate of 45.4%.

e +dack reclamation: System miss rate drops to 34.4% when the slack reclamation
capability in run-time heuristic is activated.

e +drop: With the addition of basic soft error-awareness that causes faulty task graphs to be
dropped as soon as an error is detected (to avoid unnecessary energy consumption), the

miss rate reduces further to 31.9%.

110

e +compare before drop: When the heuristic adds support for dropping other task graphs
with high WCET to allow re-execution of the faulty task node, the system sees a drop in
miss rate to 30.2%.

e +backup energy: Finally, when the fully-enabled heuristic is utilized that adds further

support for utilizing backup energy to speed up faulty node re-execution, we end up with

the lowest miss rate of 25.6%.

50 Task Graph Miss Rates with Run-Time Technigues Enabled Progressively
Task Graph Set Utilization = (0.8 + 0.15) X 4

g5 354%

i
=]

93]
9]

=Y
o

Total Task Graph Miss Rate {%)

B
L

25.6%

20 Nulne +slack reclaimation +drop + compare before drop+backup energy

Enabled Feature

Figure 43 Miss Rate Comparison with Run-Time Techniques Enabled Progressively
The results in Figuré3 highlight the significance of slack reclamation and soft error

handling in our run-time framework with a relative 43.6% miss rate reduction for the best

configuration compared to the baseline case.

111

3.7.5.EVALUATION OF SYSTEM HARD RELIABILITY AND MTTF

In this section, we explore the impact of aging on multicore embedded systems with energy
harvesting. For our experiments, we implemented the aging model proposed in section 3.3.3
consideringelectromigration (EM) as the primary hard failure mechanism. In the model, we set
the critical currently densityy = 1.5x16 A/cn?, the activation energga = 0.48eV, and assume a
slope parameter in the Weibull distributifr 2 [72]. We simulated execution of systems over a
long period of time with solar harvesting profiles randomly selected from a preset pool. At the
beginning of each schedule window, the aging progress is estimated based on average core
frequencies, supply voltages, and core temperatures of previous schedule windows. All
experiments in this section target 8-core systems executing the same workload as in experiments

of previous sections.

1.0
— Biased
MTTF=10.06 _ R'aa:jom
0.8 . | = Aging-Aware
. 'MTTF=8.76
s |
E[}.G
&
=
004
53]
=
w
0.2
0.0 5 1o 15 20 25 30

Operation Time (Year)

Figure 44 Comparison of reliability and MTTF for different workload allocation schemes

112

The first set of experiments is designed to evaluate the benefit of our aging-aware workload
allocation scheme, which is compared wlased an allocation scheme that always allocates
workload partitions with low to high workload intensities on to cores with low to high core id
respectively, andRandom the original partitiorto-core allocation randomly generated during
schedule template generation. All experiments have failure thresholds set to O and the results on
hard reliability and MTTF of system are shown in Figure 44. We can observe thagiogr
Awarescheme (which is used in our HyWM framework) results in better hard reliability over time
as it can reallocate workload partitions to balance aging progress among cores, ending up with
14.8% and 24.5% MTTF improvements compared@ismsedand Randomwithout diminishing
system performance.

The last set of experiments performs sensitivity analysis for our aging-aware workload
allocation scheme, focusing on system MTTF and performance analysis when different failure
thresholds are considered. The results of this experiment are shdwhlén8. As we can see,
increasing failure threshold allows the system to operate for longer periods of time (higher MTTF),
however, this comes at the cost of a decrease in peak processing capability before failure and

average system processing capability over time.

Table 8 System MTTF and Performance Comparison with Different Failure Thresholds

Failure Threshold* 0 1 2 3 4 5 6 7

MTTF (years) 10.0615.5820.2224.6629.2734.4440.9451.35

Processing Capability Before Syst ., | o, 3| g0 1| 68.8| 52.4| 34.9| 18.4| 7.0
Failure (%)

Average Processing Capability dun ;. | ¢ 5| 92 5| 87.7| 81.7| 75.0| 67.3| 60.3
System Lifetime (%)

*Failure threshold: number of cores that must fail before a chip is considersabilau

113

3.8.CHAPTER SUMMARY

In this chapter, we proposed a hybrid design-time and run-time framework for reliable
resource allocation in multicore embedded systems with solar energy harvesting. Our framework
was shown to cope with the complexity of an application model with data dependencies and run-
time variations in solar radiance, execution time, and transient faults. Our experimental results
indicated improvements in performance and adaptivity using our framework, with up to 23.2%
miss rate reduction compared to prior work, 43.6% performance benefits from adaptive run-time
workload management compared to a baseline framework with no soft error and slack time
handling, and up to 24.5 % expected system lifetime improvement with aging-aware workload
allocation compared to aging-agnostic schemes, under stringent energy constraints and varying
system conditions at run-time. With the increasing prevalence of energy-constrained computing,
energy scavenging, execution time variability, and the rise in soft errors and hard faitbres
technology scaling, our proposed framework provides a comprehensive and practical solution that
considers all of these factors to perform efficient resource management that improves upon prior

efforts in both scope and performance, for emerging multicore embedded computing platforms.

114

4. MIXED-CRITICALITY SCHEDULING ON HETEROGENEOUS SYSTEMS

In this chapter, we utilize the semi-dynamic approach proposed and utilized in previous
chapters to address the scheduling problem for single-ISA heterogeneous multicore processors
running hybrid mixed-criticality workloads with a limited and fluctuating energy budget provided
by solar energy harvesting. The hybrid workloads consist of a fietnefleadline timing-centric
task graphsand a set ofsoft-deadline throughput-centric multithreaded applicatio@ur
framework exploits traits of the different types of cores in heterogeneous multicore systems to
service timing-centric workloads with a few big out-of-order cores, while servicing throughput-
centric workloads with many smaller in-order cores clocked in the energy-effiei@nthreshold
computing(NTC) region. Guided by a novel timing intensity-aware penalty density metric, our
proposed mixed-criticality scheduling framework creates an optimized schedule that minimizes
overall miss penalty for a time-varying energy budget. Experimental results indicate that our
framework achieves a 9.5% miss penalty reduction with the proposed timing intensity metric
compared to metrics from prior work, a 13.6% performance improvement over a state-of-the-art
scheduling approach for single-ISA heterogeneous platforms, and a 23.2% performance benefit

from exploiting platform heterogeneity.

4.1. BACKGROUND AND CONTRIBUTION

Recent years have seen billions of embedded systems deployed around the world to support
a variety of different applications domains. For an increasing number of embedded applications,
there is a critical need for energy autonomous devices that can utilize ambient energy from the

environment to perform computations without relying on an external power supply or frequent

115

battery charges. As the most widely available energy source, solar energy has become an important
source of ambient energy for several harvesting-aware embedded systems.

As discussed in Section 1.2.2, embedded computing systems that include timing behavior as
part of their performance or correctness criteria are called real-time embedded systems. In such
real-time systems, a deadline is called firm if missing it results in an immediate performance
penalty, otherwise the deadline is considered to be soft. If critical system failure can happen after
a deadline miss, the deadline is considered to be a hard deadline [89]. Due to the variable nature
of solar radiation intensity, the most suitable role of embedded systems with solar energy
harvesting as the only energy source is to host applications without strict real-time requirements.
Thus it may not be desirable to consider such systems for real-time applications with hard
deadlines, such as life-support mechanism, automotive system control, aircraft navigation, etc., for
which any deadline miss is consider a critical system failure that may have catastrophic
consequences. Instead, it is more practical to deploy such systems without energy guarantees for
best-effort execution of applications where a firm or soft deadline miss is not considered a failure
of the entire system.

Consider an example of such a best-effort embedded system powered by energy harvesting,
which is deployed for continuous data collection, data post-processing, and data transmission at a
remote location. For each operation interval, a raw data point can be recorded from sensor modules
by executing certain control tasks, for which each miss immediately results in inaccuracy in the
averaged values of data features. Such tasks can be considered to be timing-centric with firm
deadlines. On the other hand, post-processing of raw data and data transmission tasks can be
delayed somewhat as the system can buffer a certain amount of raw data or clients can accept

lower rate of transmitted data. Such tasks are generally throughput-centric with soft deadlines. In

116

this chapter, we represent such applications with different levels of real-time constraints as mixed-
criticality workloads that consist of a mix of timing-centric tasks with firm deadlines and
throughput-centric tasks with soft deadlines [90] [91].

Recent years have also seen the rise of multicore processing and heterogeneous computing
in low-power embedded devices [23] [24]. Multicore processors with heterogeneous cores have
been shown to provide substantial improvements in energy-efficiency and performance for energy-
constrained systems [92]. With the rise in computing capabilities of emerging heterogeneous
multicore processors, run-time workload distribution and energy-management in these
architectures are becoming crucial steps towards minimizing the overall system energy
consumption while maximizing achievable application performance. Heterogeneous computing
platforms are particularly well-suited to execute mixed-criticality workloads as different types of
cores can be utilized to better match specific criticality requirements of different type of tasks.

In addition to multiprocessing and heterogeneous computing, a new design paradigm has
emerged to further help minimize energy in contemporary chip designs, called near-threshold
computing (NTC) [93] [94] [95] [96] [97] [98]. In NTC, the supply voltage is set just slightly
higher than threshold voltage, and execution at this NTC mode achieves several times better
energy-efficiency than conventional super-threshold computing (STC) [96] operation modes.
NTC 1is thus a very effective strategy to minimize energy for energy-constrained embedded
systems. However, as NTC mode operation typically sacrifices performance in favor of energy-
efficiency, it is not straightforward to use it for mixed criticality real-time embedded systems with
timing constraints.

Based on the above observations, there is clearly a critical need to explore the design and

management of STC/NTC capable heterogeneous multicore platforms powered by solar energy

117

harvesting and running mixed-criticality workloads, to optimize cost, performance and energy
efficiency of such systems. In this chapter, we propose a novel mixed-criticality scheduling
framework (McSF), that for the first time addresses the problem of allocating and scheduling
workloads with different degrees of criticality on a heterogeneous multicore embedded system
powered by energy harvesting and supporting NTC operation. Our framework employs NTC for
throughput-centric tasks with loose timing constraints and a high degree of parallelism (DoP),
maintaining their computation throughput by executing their threads concurrently on many cores
in an energy-efficient manner. By improving the energy-efficiency for throughput-centric tasks,
more energy budget becomes available for timing-centric tasks, which are allocated with
awareness of harvested energy fluctuations. The novel contributions of our work can be

summarized as follows:

e Unlike any prior work, we formulate and solve the challenging problem of scheduling
mixed-criticality, real-time applications on heterogeneous energy-harvesting embedded
system platforms;

e The hybrid mapping and scheduling framework from last chapter is adopted to offload
scheduling complexity of timing-centric task graphs to a comprehensive design-time
methodology so that only lightweight adjustments are required at run-time (e.g., selecting
among a small set of schedule templates, core operation modes, and task DoPs) to cope
with changing energy harvesting scenarios over time;

e For efficient execution of throughput-centric tasks, we utilize near-threshold computing
(NTC) on several small cores to maintain high throughput levels without sacrificing energy

efficiency of the computation;

118

e A new energy-aware priority metric, timing intensity-aware penalty density, is proposed to
dynamically measure the importance of instances of different task criticality types within

a mixed-criticality workload.

4.2. RELATED WORK

Several prior efforts have explored workload scheduling for embedded systems with solar
energy harvesting, as discussed in Section 1.3. However, none of those prior studies on scheduling
for embedded systems with solar energy harvesting consider the scheduling problem for
heterogeneous multicore systems, utilize the NTC execution paradigm, or support mixed-criticality
workloads, as done in this chapter.

The high energy-efficiency achievable witbarthresholdcomputing(NTC) and its design
challenges are discussed in [94]. Fick et al. [94] applied NTC to address the power density proble
that is crucial for 3D-stacked chips. As NTC systems tend to be more sensitive to process variations
with their lower supply voltage, a few recent works propose novel management techniques for
NTC to alleviate the performance impact of process variations [96] [95] [97]. More recently,
Karpuzcu et al. proposed Accordion,famework that executes workloads with adjustable
problem sizes and fault resilience on NTC-enabled cores [98]. Chen et al. [99] studied the impact
of NTC on architectural design of processors by analyzing resulting shifts in performance
bottlenecks. But to the best of our knowledge, no prior work has addressed the scheduling problem
for NTC-enabled cores powered by energy harvesting. Moreover prior work has also not
considered allocation of mixed criticality workloads on heterogeneous NTC-capable platforms.

Mixed-criticality workloads are becoming pervasive in many embedded systems today.

These workloads consist of applications with different timing or reliability requirements. Systems

119

designed to support such workloads are often referred to as mixed-criticality platforms. The
problem of managing mixed-criticality workload on a single physical platform has attracted a lot
of attention in recent years. An early work by Vestal studied schedulability analysis and
preemptive fixed priority scheduling for tasks with different criticalities [100]. Mollison et al.
brought this problem to multicore systems by proposing a global mixed-criticality scheduling
algorithm that can redistribute slack among tasks while maintain isolation for tasks of different
criticality levels [101]. Giannopoulou et al. proposed a time-triggered mixed-criticality scheduling
approach with barrier synchronization to resolve resource sharing conflict between applications
with different criticality levels [102]. Saraswat et al. studied the topic of fault-tolerano@xXed-

critical systems [103]. Their proposed framework tackles soft errors using checkpointing-based
rollback recovery and tolerates permanent core failures by task migration. Hudngtediad
fault-tolerant mixed-criticality scheduling in the presence of transient faults in the system to
provide safety guarantees to tasks with different criticality levels according to established safety
standards [104]. The applicability of the proposed scheduling technique was verifieitigot a
managemensystem(FM S) application. Huang et al. also suggested a "run and be safe" strategy
that boosts processor frequency temporarily to satisfy timing requirements of critical tasks without
degrading service for other tasks. [105] Recently several works have also focused on
mapping/partitioning of mixed-criticality applications on multi-core architectures [106] [107]
[108]. However, none of these works consider heterogeneous multicore processors as the target
platform for mixed-criticality scheduling. Tamas-Selicean and Pop [109] explored optimization
for mixed-criticality real-time applications on a distributed heterogeneous node archjtbature

not for heterogeneous multicores integrated on a single processor chip. In [110], although

heterogeneous multicore processors are initially considered as the hardware platform, the platform

120

is virtualized to behave assgmmetricmulti-processor(SMP). Craeynest et al. proposed the
performancampactestimation(PI E) scheduling and allocation framework for thread scheduling

in single-ISA heterogeneous systems [111]. However, it did not consider applications with mixed-
criticality constraintsUnlike any of these research efforts, this paper is the first to specifically
address the mixed-criticality scheduling problem for a unique platform that consists of a

heterogeneous multiprocessor powered by solar energy harvesting.

Energy

Conversion & Storage
L Module \

Mixed-Criticality
Photovoltaic Cells Scheduling Framework

(MCcSF)
E g Thruhput-Centric

Timing-Centric Task Graph Set\\ytithreaded Application Set

|
1
1
1

| On-Chip Interconnection]

/7

| 191sn|) a10)-31g I | 1a1sn[) a10)-[|ews I

Single-ISA Heterogeneous Multicore
Mixed-Criticality Workload Embedded Processor

Figure 45 Overview of the Proposed Har vesting-Awar e M cSF Framework with A Mixed-
Criticality Workload and A Single-I SA Heter ogeneous Multicore Embedded System

4.3.PROBLEM FORMULATION

Figure 45shows an overview of our system model that consists of a mixed-criticality
workload, single-ISA heterogeneous multicore processor with NTC operation mode capability, an
energy harvesting/storage/conversion module, and our mixed-criticality scheduling framework
(McSF). In the following subsections we describe components and assumptions of our system

model before presenting our problem objective.

121

4.3.1.MIXED-CRITICALITY WORKLOAD MODEL

We differentiate the criticalities of real-time tasks based on the widely applied (m,k) model
proposed by Hamdaoui et al. [91] and the task miss penalty for each task. A task in a system with
an (m,k) deadline needs to finish at least m task instances out of each k consecutive instances to
avoid system performance degradation. Every task has a user-defined miss penalty that is applied
to the system whenever an (m,k) deadline miss is detected. Our mixed-criticality workload is
composed of tasks classified into two categories: the first is timing-centric real-time tasks with
(1,1)-firm deadline constraints; the other is a set of throughput-centric tasks with (m,k)-soft
deadline constraints. The criticalities of tasks of both types can be compared based on
combinations of their miss penalties and (m,k) constraints.

Timing-centric workloads represent lightweight real-time tasks in the application domain of
control, sensing, communication, etc., that require a response before a specified deadline. We
assume that these workloads come with highly customized and fixed degree of parallelism (DoP)
adapted for efficient scheduling and, thus, can be best modeled as periodic task graphs [86].
Throughput-centric workloads represent applications in the domain of image processing, data
mining, etc., that can tolerate some delay between samples. We model these workloads as barrier-
synchronized multithreaded applications [112] [113] with flexible DoP. Even though timing
constraints for these workloads are less stringent, they require more computing resources and
support high degrees of parallelism, making it essential to exploit parallelism in order to achieve

high throughput.

122

In the rest of this chapter, we refer to these two types of workloads as timing-centric task
graphs and throughput-centric multithreaded applications, respectively. Table 9summarizes the

differences between these two types of workloads.

Table 9 Characteristics of Mixed-Criticality Workloads

Criticality Type Timing-Centric Throughput-Centric
Structure Model task graphs multithreaded applications
Parallelism highly customized barrier-synchronized
Execution Time few seconds few minutes
Period tens of seconds tens of minutes
Deadline Model (1,1)-firm (m, k)-soft
Execution Rate related to period relate to (m, k) and period

4.3.2.HETEROGENEOUS MULTICORE COMPUTING PLATFORM

We consider a single-ISA heterogeneous multicore platform to service mixed-criticality
workloads. Similar to ARM’s big. LITTLE [23], our platform combines one cluster of big cores
and one cluster of small cores. In our work, both types of cores (big, small) are based on the x86
instruction set architecture. The big-core-cluster has several high-performance out-of-order cores
with per-core DVFS capability [114] that allows execution at several discrete frequency-voltage
levels. The small-core-cluster has several power-efficient in-order cores, all of which are clocked
with uniform frequency in the NTC region to maximize energy-efticiency. The high performance
big-core-cluster is mainly, but not exclusively, utilized to execute timing-centric tasks graphs,
while the small-core-cluster executes parallel phases for throughput-centric multithreaded

applications.

123

4.3.3.ENERGY HARVESTING, STORAGE, AND BUDGETING

Similar to pervious chapters, a photovoltaic (PV) system is used as the power source for our
multicore embedded system, converting ambient solar energy into electric power. Naturally, the
amount of harvested power varies over time due to changing environmental conditions. To cope
with the unstable nature of the solar energy source, we assume an energy harvesting subsystem
with maximum power point tracking (MPPT) to extract the maximum amount of energy possible
from the PV system [12] and a hybrid supercapacitor-battery storage to bridge the PV system with
our embedded system efficiently [47]. We adopted the hybrid supercapacitor-battery storage design
proposed in Chapter 2 that combines supercapacitors and batteries to support both higher-capacity
energy storage and lower-overhead energy conversion than a battery-only or a supercapacitor-only
solution. We assume that our run-time scheduler can cooperate with this subsystem to inquire
about the energy available in storage.

As solar harvesting power can vary dramatically within a very short period of time, it is
important to filter out the noise from incoming power so that scheduling decisions can be made
and executed based on a stable and reliable energy supply. Thus, we use the semi-dynamic energy
budget assignment scheme from Chapter 3 (see Figure 46, which partitions time into schedule
windows of identical length, the least common multiple of all timing-centric task graphs’ periods.
Then the energy harvested within each schedule window is used as the energy budget for the next
schedule window. Although utilization of harvested energy is delayed for a short period of time in
this scheme, it provides the run-time scheduler with a known and stable energy budget at the
beginning of each window, making it easier to split the energy budget between timing-centric and

throughput-centric workloads.

124

4.3.4.PROBLEM OBJECTIVE

As solar energy harvesting does not guarantee energy sufficiency, our system is positioned
as a soft real-time system that ensures best-effort operation adapted to a given level of energy
supply available at run-time. The main objective is to allocate and schedule mixed-criticality
workloads composed of multiple timing-centric task graphs and throughput-centric multithreaded
applications running simultaneously at run-time, such that total miss penalty for the entire system

is minimized, under a varying and unpredictable harvested energy budget over time.

_ Timing-Centric Workload

A Schedule Window _ Throughput-Centric Workload

>

Harvesting Power

Run-time

) time

Delayed Energy
Budgeting

Scheduled
Workload

1 2 3 4 5 6 7 8 g B

Figure 46 Illustration of Energy Budgeting and Execution Scheduling Across Schedule
Windowsover Time

125

4.4. SEMI-DYNAMIC FRAMEWORK FOR MIXED-CRITICALITY SCHEDULING

In this section, we give a brief overview of our semi-dynamic mixed-criticality scheduling
Sframework (McSF), which consists of both design-time and run-time components.

As illustrated in Figure46, for each schedule window, our run-time scheduler dispatches a
mix of timing-centric and throughput-centric workloads for execution, given the available energy
budget and computing resources. At the top level, our scheduler intelligently sets a balanced
distribution of energy budget between the two types of workloads while aiming to minimize overall
system miss penalty. Due to the different characteristics and needs of these two types of workloads,
each type of workload is scheduled with a specifically designed approach, as discussed next.

Timing-centric task graph workloads in a schedule window can be executed without
considering other schedule windows, as the length of a schedule window is the least common
multiple of their periods. The general problem of scheduling a task graph under optimization goals
and constraints is known to be NP-complete [64]. Thus our scheduling scheme for timing-centric
task graphs is designed to oftload their scheduling complexity to design-time by offline generation
of schedule templates that can be quickly selected for each schedule window at run-time based on
the energy budget and cores made available for them after top-level resource distribution. In
contrast, instances of throughput-centric multithreaded applications require execution times that
can span multiple schedule windows, and thus their execution has to be scheduled dynamically.
However, as the execution phases of throughput-centric multithread applications are barrier-
synchronized, their scheduling complexity is much lower than that of timing-centric task graphs.

The following describes our run-time heuristic for penalty-aware workload filtering and

scheduling for mixed-criticality workloads in detail.

126

4.5.RUN-TIME MIXED-CRITICALITY SCHEDULING

In this section we describe our run-time mixed-criticality scheduling heuristic for scheduling
timing-centric task graphs and throughput-centric multithreaded applications to minimize total
miss penalty in the system. First, we define a priority metric to represent the impact of each task
instance on system miss penalty with consideration of (m,k) soft deadline constraints. Then we
propose a heuristic to dynamically select and schedule high-priority instances of timing-centric
and throughput-centric workloads.
4.5.1.SOFT DEADLINE-AWARE PRIORITY METRC

As we consider best-effort execution under insufficient solar energy harvesting conditions,
it is necessary to dynamically rank priorities of instances of both timing-centric task graphs and
throughput-centric multithreaded applications to compare their impact on system miss penalty per
unit energy. Based on this guideline, we define a penalty density metric based on miss penalty,

energy requirement, and timing intensity of a task instance, as shown below:

) miss penalty X timing intensity
penalty density = - (34)
energy requirement

Among the three components, miss penalty of each instance is user defined and assumed to be
known at design-time and energy requirement can be obtained by profiling applications under
different frequency levels. However the timing intensity of an instance can change dynamically at
run-time based on its (m,k) constraint and finish/miss history of previous instances. Hamdaoui et
al. have previously proposed a distance-to-failure metric to characterize timing intensity of task
instances [91]. However, that metric only considers the next nearest instance failure in the worst

case while we want to consider all upcoming instances affected by recent execution history to

127

enable minimization of overall system miss penalty. Thus in this chapter we propose a more

comprehensive way to characterize timing intensity of a task instance:

k-1 -

timing intensity = Z k=)2 m=21,k=>1landm<k (35)
where, m),” is the total number of deadlines met (instances finished) in the last p periods, and the
values of m and k are based on the user-defined (m,k) constraint of the task instance. We refer to
every k instances as an evaluation window. A finish or miss of an upcoming task instance affects
the results for the k£ upcoming evaluation windows. The timing intensity of an upcoming instance
is essentially the accumulation of its importance factors to these £ evaluation windows. For an
evaluation window consisting of p previous instances and k — p future instances, as m,’ instances
have already finished, m — m,’ out of k£ — p upcoming task instances should be finished to avoid
miss penalty, resulting in a finish rate requirement of (m —m;,)/(k —p). As the upcoming
instance is only one of the future k — p instances to contribute to this finish rate, we divide finish
rate by k — p to get (m —my,)/(k — p)? as the importance factor. This definition also applies to
task graphs with (1, 1)-firm deadlines, which is a special case with m= 1, k=1, p=0, m, =0 that
always results in instance timing intensity of 1.

Figure 47shows an example of a (2,5)-soft constraint workload execution under three
different scenarios. To calculate timing intensity of the upcoming instance in case (a), 5 (k=5)
evaluation windows are involved. For the first evaluation window, as 2 instances have already
finished, 0 out of 1 instances in the future are require to finish, resulting in an importance factor
of 0/12. For the fourth evaluation window, only 1 instance has already finished. Thus 1 additional
instance should be finished in put of 4 future instances, resulting in an importance factor of 1/42.

In all, the upcoming instance in case (a) has timing intensity of 0.143, which is calculated by

128

accumulating importance factors of all involved evaluation windows. Case (b) also has 2 out of 4
previous instances finished, as in case (a). However, the first finished instance only affects the
importance factor for the first evaluation window. Consequently, the other 4 evaluation windows
all have higher importance factors compared to case (a), causing the timing intensity of the
upcoming instance to be much higher (0.504). Thus, for previously finished instances, not only
their number but also their distribution affects timing intensity of the upcoming instance. Case (c)
shows that the instance with soft-deadline constraint can have intensity greater than 1, as it not
only must be finished to avoid miss penalty in the current period, similar to (7,1)-firm instances,

but it also affects timing intensities of future instances.

1/42

| J.Ufzz 1 . Finished Instance
[|

- . Missed Instance
timé’
L 10/12 | 7

| /| Upcoming Instance

| Future Instance

(b)

> (m, k)-soft deadline,
time m=2 k=5

Case (a):
Timing Intensity = 0.143

Case (b):
(Cl i Timing Intensity = 0.504

mY

} -
L 11/12 | am Case (c):
L2/3° | Timing Intensity = 1.927
12/5%

Figure 47 Illustration of Timing Intensity for (2, 5)-soft Deadline Case

129

4.5.2.DYNAMIC WORKLOAD FILTERING AND BALANCING

Guided by our proposed timing infensity-aware penalty density metric, our workload
filtering and scheduling heuristic perform resource allocation for both timing-centric task graphs
and throughput-centric multithreaded applications based on the energy budget assigned or
predicted in the current and future schedule windows, with the goal of minimizing overall system

miss penalty. The heuristic is shown in Algorithm 10.

Algorithm 10 Dynamic Workload Filtering and Scheduling

Input:

(i) app_poo) multithreaded application instances arrived or in execution

(i) EGY_BGTenergy harvested and unused during last schedule window

(i) EGY_PRIY, harvesting energy prediction for next w schedule windows

(iv) Set of offline-generated task graph scheduling templates optimized for
different number of big cores and energy budget levels (see Section 4.6)

Output:

(1) Execution schedule for multithreaded applications

(i1) Selected schedule template for task graphs

Triggered at the beginning of each schedule window:
1. update priorities (penalty densities) of all instances in app_pool
2. while there are unscheduled instances and remaining energy budget:
3. in app_pool, select instance, app, with highest priority, densityapp

4. find task graph schedule template with more workload, next temp
5. densityi; < Apenalty/Aenergy
6. if densityapp<densityy and ENG_BGT is sufficient:
7. use next_temp as the selected schedule template for task graphs
8. else if densityapp<densityy, and EGY BGT, EGY_ PRDy, are sufficient:
9. start/resume execution of app with as even as possible schedule
10. remove app from app pool
I1. if sequential phase detected in this schedule window:
12. steal one big core from timing-centric task graphs
13. re-select task graph schedule template for one less core

14. for app remaining in app_pool:
15. drop and record instance miss

T A values are based on comparison between current and found template from step 4

The heuristic progressively compares and accepts instances of timing-centric task graph

applications and throughput-centric multithreaded applications at the beginning of each schedule

130

window. Dynamic instance priorities (penalty densities) of these two types of applications are
assigned in different manners: (i) For throughput-centric multithreaded application instances,
priorities are updated individually at the beginning of each schedule window (step 1). The priority
of a new task instance will typically be different from previous ones as timing intensity keeps
changing with respect to the (m,k) constraint (Section 4.5.1). For an instance already in execution,
priority will increase because the more energy it has already consumed, the less energy it requires
to finish. This mechanism encourages the heuristic to resume application instances in progress so
that the effort already invested in execution can be preserved; (ii) For timing-centric task graph
instances, as their (m,k) timing intensity is always equal to 1, their dynamic priorities only change
with varying energy requirements for different frequencies assigned in different schedule templates.
Unlike the case of multithreaded applications, here our heuristic considers total priority of extra
instances accepted when considering the use of another schedule template, which is deduced by
comparing the new template’s miss penalty and energy requirements to those of the current one
(steps 4, 5). In each iteration of the while loop, priorities of candidate instances from timing-centric
task graphs and throughput-centric multithreaded applications are compared to decide which ones
to accept for execution (steps 6 — 13).

During workload filtering, the execution schedule of accepted task graph and multithreaded
application instances are also decided. For accepted multithreaded application instances, the
execution is dynamically deduced by a scheduling method called as-even-as-possible, which
attempts to evenly distribute execution effort over time by starting execution of an instance on
arrival and finishing it before its deadline (step 9). In this schedule, parallelizable phases of an
application instance are executed on the small-core-cluster clocked at an energy-efficient

frequency level in the NTC region, while sequential phases are executed by stealing big cores from

131

task graph instances (steps 11-13), leaving more time to spread execution effort of parallelizable
phases. As-even-as-possible execution scheduling improves energy-efficiency of the system in two
ways: (i) an even execution scheduling minimizes the number of small cores required for each
parallel phase, reducing multithreading energy-overhead which increases with thread count [115];
(ii) as this scheduling method distributes energy consumption of multithreaded applications more
evenly across multiple schedule windows, timing-centric task graphs in these windows also tend
to get more even energy budgets among them, resulting in better overall energy-efficiency. An
even execution schedule has been shown to result in high energy efficiency for systems with DVFS
capability [116]. For the same reason, our scheduler does not consider shutting down cores as
energy saved will not justify the efficiency loss of the resulting uneven schedule. When a
sequential phase of a multithreaded application steals a big core, a new schedule template for
timing-centric task graphs is selected to execute with one less core available. Lastly, an instance

miss is recorded for application instances that remain unaccepted (steps 14, 15).

4.6.EXPERIMENTAL RESULTS
4.6.1. EXPERIMENT SETUP

Our experiments use real-world energy harvesting profiles based on historical weather data
provided by the Measurement and Instrumentation Data Center (MIDC) of the National
Renewable Energy Laboratory (NREL) [60]. Again, we evaluate system performance over a span
of 750 minutes, from 6:00AM to 6:30PM in a day. We assume peak energy harvesting power to be
equal to maximum power required by system to execute all workload instances.

For timing-centric task graph applications, we select examples in the domain of networking,

telecom, and auto-industry from the Embedded System Synthesis Benchmark Suite (E3S) [86].

132

Task graphs are assigned with periods ranging from 10 to 60 seconds. For throughput-centric
multithreaded applications, we select a set of barrier-synchronized parallel applications, including
fft, cholesky, bodytrack, vips, and blackscholes, from SPLASH-2 [112] and PARSEC [113]
benchmark suites, which have different periods and (m, k)-soft constraints assigned.

Table 10 Configuration of Heter ogeneous M ulticor e Processor

Architectural Parameters

Core Types Big Cores Small Cores
Execution Out-of-Order In-Order
Issue Width 4 2

R.eorder Buffer 128 N/A

Size

Cache 64KB, 4-way 16KB, direct
Core Area 15.7 mm? 4 mm?

Cluster Parameters

Cluster Type Big-Core-Cluster Small-Core-Cluster

Core Count 8 32
Frequency .
Control Per-Core DVFS Uniform Frequency

f, Vaa Range 0.5~1.2GHz, 0.4~1V [foth ygqh
Technology Parameters

Technology Node|22 nm
Vin 0.289 V
Vaq"th, fnth 0.4V, 500 MHz

To acquire power and performance metrics for mixed-criticality workloads on different types
of cores, we use Sniper [117], an x86 multicore simulator, and the McPAT [118] power model
extended to support ¥z in the NTC region for the 22 nm node. Table 10shows the configuration
of our platform with big-core-clusters and small-core-clusters. For intra-cluster transfers, a 2D-
mesh network-on-chip (NoC) and XY routing over conflict-free TDMA virtual channels is
assumed. For inter-cluster communication, we assume delay in the range of hundreds of

milliseconds to cross clusters.

133

We assume threshold voltage, Vi, of 0.289V for the 22nm technology node [119]. Based on
power simulation results over multiple runs, we set the NTC supply voltage, Vaa"" to be 0.4V,
which not only achieves high energy-efficiency but also keeps a safe margin with V% to avoid
errors due to the impact of process variations [95]. According to architectural level delay analysis
result for CMOS processors in [120] with assumption of slightly shorter critical path for our small
cores compared to Intel Atom processors [121], we set NTC operation frequency, /™, to be

500MHz.

High

(o))

i

3

Number of Cores
=Y

N

—Low

Energy Budget Level

Figure 48 Miss Penaltiesfor Generated Schedule Templates

4.6.2.DESIGN-TIME TEMPLATE GENERATION ANALYSIS
Our mixed-criticality scheduling framework (McSF) executes timing-centric task graphs
based on schedule templates generated at design-time using the analysis-based template

generation method (ATG) proposed in Chapter 3. The per-schedule-window miss penalties of the

134

generated template set are shown in Figure 48, which shows decreasing penalty when nyore energ
budget and cores are made available for an execution schedule. It should be noted that some
templates are ignored in our scheduling, e.g., those highlighted in the upper-left and bottom-right
regions of Figure 48 enclosed by blue lines. For example, for the 2 core case, looking at the
highlighted region on the bottom-right, increasing the energy budget level beyond 3 does not
reduce miss penalty. Similarly, for energy budget level 2, increasing the number of cores beyond

5 does not improve miss penalty. Thus templates in these two regions can be safely ignored.

7000 e \ \
A=A mixed-criticality scheduling using timing-intensity metric
=—a mixed-criticality scheduling using distance-to-failure metric

~ — (M, k)—untaware scheduling

fan :

© 6500
Q
o
0
2
=
6000
=
()
4
wn

>

)

© 5500

0

=

50019101/9 1/81/71/61/51/4 1312 1 2 3 4 5 6 7 8 9 10
Timing Intensity Offset Factor

Figure 49 System Miss Penaltiesunder Different Intensity Scale Factors

4.6.3.TIMING INTENSITY METRIC EVALUATION
We tested if our proposed timing intensity metric (see Equation (35) of Section 4.5.1)
accurately characterizes the importance of application instances with respect to the (m, k) constraint

in a mixed-criticality workload. For this purpose, we offset timing intensity calculated for instances

135

of throughput-centric multithreaded applications by multiplying them with a factor ranging from
1/10 to 10, while the timing intensity for timing-centric task graph instances was fixed to 1.

The results in Figure 4%how that keeping the original calculated timing intensity minimizes
overall system miss penalty, while offsetting timing intensity to higher or lower values leads to
more miss penalties. Thus our defined timing intensity metric can accurately evaluate importance
of instances to achieve the best balance between throughput-centric and timing-centric tasks to
minimize miss penalty of the entire mixed-criticality workload. We also compared our timing
intensity metric with the distance-to-failure metric proposed in [91], which also finds its peak
when no offset is applied (Figure 49. We found that the distance-to-failure metric results in up to
9.5% higher miss penalties, compared to our timing intensity-based priority assignment method,
as the distance-to-failure metric only considers the next nearest timing failure in the worst case.
Besides, both metric evaluation methods outperform the (m,k)-unaware scheduling method that

assumes firm deadlines for all application instances (see black dash line in Figure 49.

4.6.4. MIXED-CRITICALITY SCHEDULING PERFORMANCE EVALUATION

As ours is the first framework to address the scheduling and allocation problem for mixed-
criticality heterogeneous systems powered by energy harvesting, there is no prior work to directly
compare the overall system performance against. However, we did adapt the performance impact
estimation (PIE) methodology as an exemplar state-of-art thread scheduling technique for single-
ISA heterogeneous systems from [111] (even though it does not support energy harvesting). To fit
into the experimental setup of this paper, our version of P/E estimates the performance benefit of

mapping each phase in throughput-centric applications to big cores and the scheduler dynamically

136

selects one phase with the most benefit to share bigger cores with timing-centric task graphs for
each schedule window.

We additionally compare the performance of our proposed mixed-criticality scheduling
framework (McSF) across four different setups: 1) B8-S32, the default configuration with 8 big
cores and 32 small cores, which adapts the moving average solar energy prediction method used
in [41]; 2) Perfect-Pred, a setup with identical core configuration as the default one, but with the
assumption of perfect energy harvesting prediction; 3) B8-B32, a configuration that replaces the
default 32 small cores with 32 big ones; and 4) B§-B8, a configuration that replaces the default 32
small cores with 8 big cores, to keep overall area footprint the same as B8-S32 (Table 10.

Figure 50shows the results of our comparison study. For throughput-centric applications the
total miss rate (throughput-centric: all) represents all the instances that are dropped. However,
because of the (m,k)-soft deadline constraint in these applications, some dropped instances do not
violate the constraint. Therefore the effective miss rate (throughput-centric: (m, k)-only) is much
lower.

The default BS§-S32 configuration only suffers slight increase in system miss penalty
compared to Perfect-Pred that has ideal energy prediction, showing the ability of McSF to mitigate
the performance impact of energy harvesting mispredictions. Compared to Perfect-Pred, B8-S32
has higher miss rate for timing-centric tasks graph instances and lower miss rate for multithreaded
application instances. This is because BS8-S32 accepts higher than optimal multithreaded
application instances, without awareness of hard-to-predict instantaneous drops in harvesting
power. Then our dynamic workload filtering framework in Section 4.5.2 allocates fewer resources
to timing-centric task graphs to sustain the energy supply for those extra throughput-centric

instances already in execution to minimize energy wasted due to misprediction. As a result, miss

137

penalty increases slightly because the balance between the two types of workloads is affected

during this process.

&+#— total system miss penalty

instance miss rate: throughput-centric: all misses
Hll timing-critical B throughput-centric: (m, k)-only
7K - - - - - 100
6854
- 6589 e
> 6093 -
® 5563 =
B g » 5535 s
= ' <2 61.3 B
4K % 56.3 57.3 8 60
= 50.6 ”
E -E
3K =
% o 40
= | @]
2K » =
© @
i c 20
1K =
e & e 7 & .
D ~Q

Figure 50 Miss Penalties and | nstance Miss Rates acr oss Configurations

For the (m, k)-Unaware setup, which utilizes the same core-configuration as B§-S32 but has
no awareness of (m, k) constraints, the result shows much lower total miss rate for throughput-
centric instances as it considers all instances as necessary for penalty avoidance. However, the
actual (m, k)-miss rate increases as (m, k)-Unaware allocates energy to instances that are less

important for (m, k) constraints. Besides, it also leads to higher miss rate for timing-centric task

138

graphs as the balance between the two types of workload is notably affected. Thus (m, k)-Unaware
has higher overall system miss penalty compared to B§-S32.

Comparing BS8-S32 with BS8-B32, it can be seen that although BS§-B32 provides better
computing capability, it leads to much higher overall miss penalty due to a decrease in energy
efficiency. On average, big cores bring performance speedup of approximately 3%, with an average
jump of 7% in power consumption, ending up with a 2x degradation in energy efficiency. Moreover
B&-B32 also has a much higher area footprint than B8-S32, given that the area of big cores is close
to 4% that of small cores. B§-BS is a multicore configuration with the same chip area footprint as
B8-532. But BS-BS suffers even higher miss penalty than BS-B32, as it not only has lower energy
efficiency than B§-B32 but also possesses lower computation throughput than B§-B32. BS8-S32
outperforms B8-B8 by 23.2% miss penalty reduction, highlighting the importance of core
heterogeneity to improve energy-efficiency and performance in multicore computing platforms.

Lastly, Figure 50also shows a comparison with the performance impact estimation (PIE)
scheduling and allocation framework from [111] for thread scheduling in single-ISA
heterogeneous systems, It can be seen that P/E has 13.6% higher miss rate and penalty compared
to B8-S32, as it does not focus on energy efficiency but throughput performance, causing more

workload to be allocated to big cores for less overall efficiency.

4.6.5.CHAPTER SUMMARY

In this chapter, we addressed the scheduling problem for single-ISA heterogeneous
multicore processors running hybrid mixed-criticality workloads with a limited and fluctuating
energy budget provided by solar energy harvesting. We modeled a mixed-criticality wdikloa

combining timing-centric real-time task graphs with firm deadlines and throughput-centric

139

multithreaded phases with soft deadlines, with different associated miss penalties. We utilized a
single-ISA heterogeneous platform design to fulfil requirements for thisedariticality
workload. To achieve a balance that minimizes overall system miss penalty, we proposed a novel
timing intensity estimation method, based on which we can allocate resources dynamically to
different types of workload according to energy harvesting conditibngxperiments, our
proposed mixed-criticalitycheduling framework achieves a 9.5% miss penalty reduction with the
proposed timing intensity metric compared to metrics from prior work, a 13.6% performance
improvement over a state-of-the-art scheduling approach for single-ISA heterogeneous platforms,

and a 23.2% performance benefit from exploiting platform heterogeneity.

140

5. CONCLUSION AND FUTURE WORK

5.1.RESEARCH CONCLUSION

In this dissertation, we addressed important challenges faced by real-time embedded
multicore systems with energy harvesting, by proposing a novel semi-dynamic resource
management framework. This framework is designed to cope with run-time variations in
harvesting power with optimal low-overhead task scheduling to maximize system throughput and
high functionality flexibility to adapt to the changing run-time dynamics. As presented in previous
chapters, our proposed semi-dynamic framework utilizes various optimization algorithms such as
graph algorithms, linear programming, and custom heuristics to optimize system performance,
efficiency, and reliability at run-time and/or design-time. Experialamsults for our proposed
semi-dynamic framework validate and motivate its deployment in future embedded systems
powered by energy harvesting, because this framework demonstrates significant improvement in
energy efficiency with extensibility to adapt emerging and increasingly relevant desicgris,
such as overheating, transient errors, and aging effect. Therefore, our proposed semi-dynamic
framework has the potential to be applied as a general strategy for resource management on
systems powered by time-varying energy harvesting.

Ouir first contribution iSDA(Chapter 2), a novel semi-dynamic scheduling algorithm aimed
at scheduling periodic independent real-time tasks with awareness of energy harvesting. Its
fundamental idea is time-segmentation, which guarantees uniform execution frequency within
each scheduling window for higher energy efficiency. Experimental results indicate a significant
(up to 70%) improvement in system performance, compared to state-of-the-art algorithms under

an identical system setup. We extended SDA to consider support for task drop penalty awareness

141

run-time thermal management, core-heterogeneity mitigation, and hybrid energy storage
utilization. Moreover, from SDA we derive the design methodology of semi-dynamic resource
management, which is the core idea of this dissertation to effectively tackle various problems for
managing systems with energy harvesting.

Based on the concept of semi-dynamic resource management, we proposed HyWM (Chapter
3), a hybrid design-time and rdime workload management framewotk cope with the
complexity of scheduling task graphs with data dependencies and run-time variations in solar
radiance, execution time, transient faults, and aging progress. Our experimental results indicated
improvements in performance and adaptivity of target systems due to the efficiency andtyiexibili
of our semi-dynamic framework, with up to 23.2% miss rate reduction compared to prior work,
43.6% performance benefits from adaptive run-time workload management compared to a baseline
framework with no soft error and slack time handling, and up to 24.5 % expected system lifetime
improvement with aging-aware workload allocation compared to aging-agnostic schemes, under
stringent energy constraints and varying system conditions at run-time. Therefore, our semi-
dynamic framework proves to l@epromising and practical solution to transform the future of
energy-autonomous embedded computing with leoksstope and efficiency.

Finally, we applied the semi-dynamic framework to address the scheduling of mixed-
criticality workloads on single-ISA heterogeneous multicore platform powered by solar energy
harvesting (Chapter 4). To achieve a balance between different types of workload thatesinimiz
overall system miss penalty, we proposed a novel timing intensity metric for mixed-criticality
tasks, which are utilized to guide resource allocation in the semi-dynamic framedwork.
experiments, our proposed mixed-criticalitycheduling framework achieves a 9.5% miss penalty

reduction with the proposed timing intensity metric compared to metrics from prior work, a 13.6%

142

performance improvement over a state-of-the-art scheduling approach for single-ISA

heterogeneous platforms, and a 23.2% performance benefit from exploiting platform heterogeneity.

5.2.FUTURE WORK

Embedded computing powered by solar energy harvesting will continue to face new

challenges and opportunities on the pabhvards a future with pervasive computing, as

applications and platforms evolve rapidly. Thus we further envision the following future work

directions:

Mobile Computing Limited battery lifetime is the major factor that affects daily user
experienein today’s smartphones [122]. With miniaturization of high-efficiency PV cells

[123], solar energy harvesting could become the auxiliary or even standalone energy source
for future smartphones’he major difference between smart mobile devices and other
embedded computing platforms lies in their unique interface between apps and operating
systems and their emphasis on user experience such as input delay or interface transition
lag. Therefore, for such smart mobile devices, it is necessary to implement a framework
seamlessly integrated with th@S [30] to co-optimize energy efficiency and user
experience with awareness of energy harvesting. We can also view mobile computing
platforms as a type of mixed-criticality system that hosts tasks with very different timing
requirements, including user-centric interface rendering tasks, user-centric foreground
threads, background system/user level services, and real-time communications tasks. It will
be interesting to study the interaction between energy harvesting and these tasks with

different timing requirements to optimize user experience and energy efficiency.

143

Nonvolatile ComputingBy adopting nonvolatile registers and nonvolatile SRAM, the
emerging nonvolatile process@gportin place system recovetyg enable the seamless
transition between different power states of systems with energy harvesting [124]. Besides,
as nonvolatile processors do not need a power supply to sustain the memory state, leakage
power can be reduced significantly by turning off memory system when possible. However,
nonvolatile computing also comes with overheads in terms of energy, area, and
performance. Thus comprehensive research from the circuit to the system level for
nonvolatile processors is required before we can exploit their full potential for systems
powered by energy harvesting [125]. For example, we may develop an efficient
sleep/recover scheme that only preserves information necessary for the resumption of
system execution, minimizing required footprint of nonvolatile memory for lower
overhead in chip area and recovery energy.

Approximate ComputingApproximate computing has recently emerged as a promising
approach that relies on systems and applications’ tolerance on loss of quality and optimality

in the computing results to achieve substantial improvements in energy efficiency [126]
As solar energy harvesting offers no guarantees related to the sufficiency of the energy
supply, it is usually used for applications with lax requirements on systems output. Thus,
the combination of approximate computing and energy harvesting can be a promising
research direction as they share similar design concerns. However, most recent efforts on
approximate computing focus on hardware design methodologies for approximate
computing platforms [127], which have enabled energy efficiency improvements in
general but have failed to provide an approach to trade-off between result accutacy a

energy efficiency on-the-fly. For approximate computing systems with energy harvesting,

144

we believe that in addition to applying approximate hardware platforms, considerations of
the software stack and resource management infrastructure are also important. It would be
interesting to explore the possibility of dynamic trade-offs between result accuracy and
energy efficiency by utilizing the inherent fault-tolerance of certain probabilistic
applications such as stochastic optimization algorithms and machine learning procedures,

where we can adjust computation load and accuracy without failure of entire applications.

145

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

BIBLIOGRAPHY

M. Satyanarayanan, "Pervasive computing: Vision and ChallentjesJEEE Person:
Communications (PCyl. 8, no. 4, pp. 10-17, 2001.

T. Simunic, L. Benini and G. De Micheli, "Energy-Efficient Design of Battery-Pow
Embedded Systemsthe IEEE Transactions on Very Large Scale Integration Sy

(TVLSI),vol. 9, no. 1, pp. 15-28, 2002.

Wikipedia, "Energy Harvesting," [Online]. Availab

https://en.wikipedia.org/wiki/Energy harvesting. [Accessed June 2015].

Winter Green Research, "Energy Harvesters: Market Shares, Strategies, and F

Worldwide, 2013 to 2019," 2013.

S. P. Beeby, M. J. Tudor and N. M. White, "Energy Harvesting Vibration Sourc
Microsystems Applications,Measurement Science and Technology, 17, no. 12, pj

175-195, 2006.

Google, "Google Trends," [Online]. Available: https://www.google.com/trends/. [Acc

July 2015].

G. Ottman, H. Hofmann, A. Bhatt and G. Lesieutre, "Adaptive Piezoelectric E
Harvesting Circuit for Wireless Remote Power Supplye' IEEE Transactions on Pow

Electronics (TPE)yol. 17, no. 5, pp. 669-676, 2002.

Micropelt, "TE-Power PROBE," [Online]. Availabl

http://www.micropelt.com/applications/te_power_probe.php. [Accessed August 20:

146

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

X. Lu and S. H. Yang, "Thermal Energy Harvesting for WSNsthelEEE Internatione

Conference on Systems Man and Cybernetics (Sii@hbul, Turkey, 2010.

J. Carrasco, L. Franquelo, J. Bialasiewicz, E. Galvan, R. Guisado, M. Prats, J. Leo
Moreno-Alfonso, "Power-Electronic Systems for the Grid Integration of Renewable |
Sources: A Surveythe IEEE Transactions on Industrial Electronics (Th&)l. 53, no. 4

pp. 1002-1016, 2006.

V. Raghunathan, A. Kansal, J. Hsu, J. Friedman and M. Srivastava, "Design Consic
for Solar Energy Harvesting Wireless Embedded Systemth&imternational Symposit

on Information Processing in Sensor Networks (IR&N3 Angeles, CA, USA, 2014.

M. S. T. Veerachary and K. Uezato, "Maximum Power Point Tracking of Coupled In
Interleaved Boost Converter Supplied PV Systahg"IEE Proceedings on Electric Pov

Applications (EPA)yol. 150, no. 1, pp. 71 - 80, 2003.

Wikipedia, "Embedded system,” [Online]. Availal
https://en.wikipedia.org/wiki/Embedded_system. [Accessed July 2015].

Wikipedia, "Real-Time Computing," [Online]. Availab
https://en.wikipedia.org/wiki/Real-time_computing. [Accessed July 2015].

C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in A H
Real-Time Environmentthe Journal of the ACM (JACWol. 20, no. 1, pp. 46-61, 19;
W. Yuan and K. Nahrstedt, "Energy-Efficient Soft Real-Time CPU Scheduling for N
Multimedia Systemsthe ACM SIGOPS Operating Systems Rewelw37, no. 5, pp. 14!

163, 2003.

147

[17]

[18]

[19]

[20]

[21]

[22]

[23]

B. Srinivasan, S. Pather, R. Hill, F. Ansari and D. Niehaus, "A Firm Real-Time &
Implementation using Commercial Off-the-Shelf Hardware and Free Softwaré)é

Real-Time Technology and Applications Symposium (RTD&8yer, CO, USA, 1998.

S. Baruah, J. Gehrke and C. Plaxton, "Fast Scheduling of Periodic Tasks on |
Resources," irthe International Parallel Processing Symposium (IEF®nta Barbar
CA, USA, 1995.

D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fifth |
Morgan Kaufmann, 2013.

K. Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson and Y. N. Patt, "MorphCor
Energy-Efficient Microarchitecture for High Performance ILP and High Throughput
in The IEEE/ACM International Symposium on Microarchitecture (MIGR@couvel
BC, Canada, 2012.

R. Fish, "Future of Computers - Part 2: The Power Wall," [Online]. Avail
http://www.edn.com/design/systems-design/4368858/Futftioemputers-Part-2-The-
Power-Wall. [Accessed August 2015].

ARM, "ARM Cortex-A9 Processor.," [Online]. Availab
http://www.arm.com/products/processors/cortex-a/cortex-a9.php. [Accessed No
2014].

P. Greenhalgh, "Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7," Al

2011.

148

[24]

[25]

[26]

[27]

[28]

[29]

Nvidia, "The Benefits of Multiple CPU Cores in Mobile Devices," [Online]. Availe
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CP!

in-Mobile-Devices_Verl.2.pdf. [Accessed June 2015].

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berg
Fairbanks, D. Khan, F. Montenegro, J. Stickney and J. Zook, "TILE64 - Processol
Core SoC with Mesh Interconnect," tine International Solid-State Circuits Confere

(ISSCC) San Francisco, CA, USA, 2008.

R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan and D. Tullsen, "Sing
Heterogeneous Multi-Core Architectures: The Potential for Processor Power Red
in the IEEE/ACM International Symposium on Microarchitecture (MICR&)n Diegc

CA, USA, 2003.

AMD, "The Programmer's Guide to the APU Galaxy," [Online]. Availe
http://developer.amd.com/wordpress/media/2013/06/Phil-Rogers-Keynote-FINAL.|

[Accessed July 2015].

E. Humenay, D. Tarjan and K. Skadron, "Impact of Process Variations on Mt
Performance Symmetry," ithe Conference on Design, Automation and Test in Ei

(DATE) San Jose, CA, USA, 2007.

A. Tiwari and J. Torrellas, "Facelift: Hiding and Slowing Down Aging in Multicores
The IEEE/ACM International Symposium on Microarchitecture (MIGR@ke Comc

Italy, 2008.

149

[30]

[31]

[32]

[33]

[34]

[35]

[36]

P. Pillai and K. G. Shin, "Real-time Dynamic Voltage Scaling for Low-Power Emb
Operating Systems," ithe ACM Symposium on Operating Systems Principles (S

Chateau Lake Louise, Banff, Canada, 2001.

T. D. Burd and R. W. Brodersen, "Design Issues for Dynamic Voltage Scalinthé
International Symposium on Low Power Electronics and Design (ISLPE&y York,

NY, USA, 2000.

J. Pouwelse, K. Langendoen and H. Sips, "Dynamic Voltage Scaling on A Low:-
Microprocessor," irthe International Conference on Mobile Computing and Netwo

(MobiCom) Rome, Italy, 2001.

L. Benini, A. Bogliolo and G. D. Micheli, "A Survey of Design Techniques for Sys
Level Dynamic Power Managementthe IEEE Transactions on Very Large Sq
Integration Systems (TVLSVpl. 8, no. 3, pp. 299-316, 2000.

H. Aydin, P. M. Alvarez, D. Mossé and R. Melhem, "Dynamic and Aggressive Sche
Techniques for Power-Aware Real-Time Systems,"the IEEE Real-Time Syste
Symposium (RTSS)ashington, DC, USA, 2001.

J. J. Chen, T. W. Kuo, C. L. Yang and K. J. King, "Energy-Efficient Real-Time
Scheduling with Task Rejection," ihe Conference on Design, Automation and Te

Europe (DATE)San Jose, CA, USA, 2007.

C. Li, W. Zhang, C. B. Cho and T. Li, "SolarCore: Solar Energy Driven Multi-
Architecture Power Management,"time International Symposium On High Performe

Computer Architecture (HPCA¥pan Antonio, TX, USA, 2011.

150

[37]

[38]

[39]

[40]

[41]

[42]

[43]

X. Lin, Y. Wang, D. Zhu, N. Chang and M. Pedram, "Online Fault Detection and Tol
for Photovoltaic Energy Harvesting Systems," time International Conference

Computer-Aided Design (ICCAP$an Jose, CA, USA, 2012.

M. Veerachary, T. Senjyu and K. Uezato, "Voltage-Based Maximum Power Point Ti
Control of PV System,the IEEE Transactions on Aerospace and Electronic Sy

(TAES)yol. 38, no. 1, pp. 262-270, 2002.

C. Moser, D. Brunelli, L. Thiele and L. Benini, "Lazy Scheduling for Energy Harve
Sensor Nodes," ithe Conference on Distributed and Parallel Embedded Systems (D

Braga, Portugal, 2006.

S. Liu, Q. Qiu and Q. Wu, "Energy Aware Dynamic Voltage and Frequency Select
Real-time Systems with Energy Harvesting,thie Conference on Design, Automation

Test in Europe (DATEMunich, Germany, 2008.

S. Liu, J. Lu, Q. Wu and Q. Qiu, "Harvesting-Aware Power Management for Rea
Systems with Renewable Energihé IEEE Transactions on Very Large Scale Integr:

Systems (TVLSKol. 20, no. 8, pp. 1473-1486, 2012.

M. Chetto, "Optimal Scheduling for Real-Time Jobs in Energy Harvesting Com
Systems,The IEEE Transactions on Emerging Topics in Computing (TBEDGC)2, no. 2

pp. 122-133, 2014.

J. Lu and Q. Qiu, "Scheduling and Mapping of Periodic Tasks on Multi-Core Emt
Systems with Energy Harvesting,” the International Green Computing Confere

(IGCC), Los Alamitos, CA, USA, 2011.

151

[44]

[45]

[46]

[47]

[48]

[49]

[50]

D. Zhang, Y. Liu, X. Sheng, J. W. T. Li, C. J. Xue and H. Yang, "Deadline-Aware
Scheduling for Solar-Powered Nonvolatile Sensor Nodes with Global Energy Migr

in the Design Automation Conference (DASan Francisco, CA, USA, 2015.

Y. Zhang, Y. Ge and Q. Qiu, "Improving Charging Efficiency with Workload Schec
in Energy Harvesting Embedded Systems thim Design Automation Conference (D4

Austin, TX, USA, 2013.

F. Ongaro, S. Saggini and P. Mattavelli, "Li-lon Battery-Supercapacitor Hybrid &
System for A Long Lifetime, Photovoltaic-Based Wireless Sensor Netwth&, |[EEE

Transactions on Power Electronics (TPE)]. 27, no. 9, pp. 3944-3952, 2012.

A. Mirhoseini and F. Koushanfar, "HypoEnergy: Hybrid Supercapacitor-Battery F
Supply Optimization for Energy Efficiency," the Conference on Design, Automation
Test in Europe (DATE)Los Alamitos, CA, USA, 2011.

R. Teodorescu and J. Torrellas, "Variation-Aware Application Scheduling and
Management for Chip Multiprocessors," tihe International Symposium on Comp
Architecture (ISCA)Beijing, China, 2008.

W. L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, "Thermal-Av
Task Allocation and Scheduling for Embedded SystemsthenConference on Desic
Automation and Test in Europe (DATEYashington, DC, USA, 2005.

E. L. Sueur and G. Heiser, "Dynamic Voltage and Frequency Scaling: The L.
Diminishing Returns,"” irthe International Conference on Power Aware Computing

Systems (HotPowerBerkeley, CA, USA, 2010.

152

[51]

[52]

[53]

[54]

[55]

[56]

[57]

W. Kim, M. S. Gupta, G. Y. Wei and D. Brooks, "System Level Analysis of Fast, Pe
DVFS Using On-Chip Switching Regulators," time International Symposium On H

Performance Computer Architecture (HPCARplt Lake City, UT, USA, 2008.

R. Jejurikar, C. Pereira and R. Gupta, "Leakage Aware Dynamic Voltage Scaling fc
Time Embedded Systems,"time Design Automation Conference (DAGan Diego, C#

USA, 2004.

l. Yeo, C. C. Liu and E. J. Kim, "Predictive Dynamic Thermal Management for Mul

Systems," irthe Design Automation Conference (DABhaheim, CA, USA, 2008.

A. K. Coskun, T. T. Rosing, K. A. Whisnant and K. C. Gross, "Static and Dy
Temperature-Aware Scheduling for Multiprocessor Sotb®,'|EEE Transactions on Ve

Large Scale Integration Systems (TVL8d), 16, no. 9, pp. 1127-1140, 2008.

B. Carter, J. Matsumoto, A. Prater and D. Smith, "Lithium lon Battery Performans
Charge Control," inthe International Energy Conversion Engineering Confer
(IECEC), Washington, DC, USA, 1996.

Z. Xu, Z. Li, C. M. B. Holt, X. Tan, H. Wang, B. S. Amirkhiz, T. Stephenson and D. N
"Electrochemical = Supercapacitor Electrodes from Sponge-Like Gra
Nanoarchitectures with Ultrahigh Power Densitthe Journal of Physical Chemis
Letters (JPCL)yol. 3, no. 20, pp. 2928-2933, 2012.

B. Hargreaves, H. Hult and S. Reda, "Within-Die Process Variations: How Accurate
They Be Statistically Modeled,” ithe Asia and South Pacific Design Automa

Conference (ASPDACYeoul, South Korea, 2008.

153

[58]

[59]

[60]

[61]

[62]

[63]

[64]

D. Rajan, R. Zuck and C. Poellabauer, "Workload-Aware Dual-Speed Dynamic \
Scaling," inthe International Conference on Embedded and Real-Time Computing ¢

and Applications (RTCSA$ydney, Qld., Australia, 2006.

J. Park, S. D., C. N. and M. Pedram, "Accurate Modeling and Calculation of Del
Energy Overheads of Dynamic Voltage Scaling in Modern High-Perforr
Microprocessors," ithe International Symposium on Low Power Electronics and D

(ISLPED) Austin, TX, USA, 2010.

"Measurement and Instrumentation Data Center," National Renewable Energy Lab

[Online]. Available: http://www.nrel.gov/midc/. [Accessed June 2015].

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. [
"MiBench: A Free, Commercially Representative Embedded Benchmark Suittng
International Workshop on Workload Characterization (WWWashington, DC, US¢#

2001.

W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron and M.
"Hotspot: A Compact Thermal Modeling Methodology for Early-Stage VLSI Desibe
IEEE Transactions on Very Large Scale Integration Systems (T\WdbIY4, no. 5, py

501-513, 2006.

"The Gem5 Simulator,” [Online]. Available: http://www.m5sim.org/. [Accessed
2015].
Y. K. Kwok and I. Ahmad, "Benchmarking the Task Graph Scheduling Algorithmihe

International Parallel Processing Symposium (IPRSjlando, FL, USA, 1998.

154

[65]

[66]

[67]

[68]

[69]

[70]

[71]

D. Zhu and H. Aydin, "Energy Management for Real-Time Embedded System
Reliability Requirements,” inhe International Conference on Computer-Aided De

(ICCAD), San Jose, CA, USA, 2006.

B. Zhao, H. Aydin and D. Zhu, "Generalized Reliability-Oriented Energy Managem:
Real-Time Embedded Applications,” the Design Automation Conference (DAGar
Diego, CA, USA, 2011.

B. Zhao, H. Aydin and D. Zhu, "Shared Recovery for Energy Efficiency and Relj
Enhancements in Real-Time Applications with Precedence ConstraiAGM
Transactions on Design Automation of Electronic Systems (TOD#&S)3, no. 2, p. 2.

2013.

Y. Zou and S. Pasricha, "Reliability-Aware and Energy-Efficient Synthesis of NoC
MPSoCs," inthe International Symposium on Quality Electronic Design (ISQBSRint:

Clara, CA, USA, 2013.

Y. Zou, Y. Xiang and S. Pasricha, "Analysis of On-Chip Interconnection Network Int
Reliability in Multicore Systems," ithe International Conference on Computer De

(ICCD), Amherst, MA, USA, 2011.

Y. Zou, Y. Xiang and P. S., "Characterizing Vulnerability of Network Interfact
Embedded Chip Multiprocessordtie IEEE Embedded Systems Letteds, 4, no. 2, py

41-44, 2012.

A. K. Coskun, R. Strong, D. M. Tullsen and T. S. Rosing, "Evaluating the Impact

Scheduling and Power Management on Processor Lifetime for Chip Multiprocess

155

[72]

[73]

[74]

[75]

[76]

[77]

the International Joint Conference on Measurement and Modeling of Computer ¢

(SIGMETRICS)Seattle, WA, USA, 2009.

L. Huang, F. Yuan and Q. Xu, "Lifetime Reliability-Aware Task Allocation and Schec
for MPSoC Platforms,” irthe Conference on Design, Automation and Test in El

(DATE) Nice, France, 2009.

M. Basoglu, M. Orshansky and E. M., "NBTI-Aware DVFS: A New Approach to Si
Energy and Increasing Processor Lifetime thi& International Symposium on Low Po

Electronics and Design (ISLPEDAwustin, TX, USA, 2010.

S. S. Mukherjee, J. Emer and S. K. Reinhardt, "The Soft Error Problem: An Archit
Perspective,” inthe International Symposium On High Performance Com

Architecture (HPCA)Hudson, MA, USA, 2005.

D. Zhu, R. Melhem and D. Mosse, "The Effects of Energy Management on Reliak
Real-Time Embedded Systems,” ihe International Conference on Computer-Ai

Design (ICCAD) San Jose, CA, USA, 2004.

J. Luo and N. K. Jha, "Power-Conscious Joint Scheduling of Periodic Task Graj
Aperiodic Tasks in Distributed Real-Time Embedded Systemsthén Internationa

Conference on Computer-Aided Design (ICCAEYNn Jose, California, USA, 2000.

R. Sakellariou and H. Zhao, "A Hybrid Heuristic for DAG Scheduling on Heteroge
Systems," irthe International Parallel and Distributed Processing Symposium (IP[

Santa Fe, NM, USA, 2004.

156

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

H. F. Sheikh and I. Ahmad, "Dynamic Task Graph Scheduling on Multicore Proces:
Performance, Energy, and Temperature Optimization,"th@ International Gree

Computing Conference (IGCCArlington, VA, USA, 2013.

ReliaSoft, "The Limitations of Using the MTTF as a Reliability Specification,” [Onl

Available: http://www.weibull.com/hotwire/issue32/hottopics32.htm. [Acce
November 2014].
ReliaSoft, "The Weibull Distribution," [Online]. Availabl

http://reliawiki.org/index.php/The_Weibull_Distribution . [Accessed July 2015].

V. Suhendra, C. Raghavan and T. Mitra, "Integrated Scratchpad Memory Optimizal
Task Scheduling for MPSoC Architectures, thie International Conference on Compile
Architecture and Synthesis for Embedded Systems (CAS&&)I, Republic of Kore

2006.

B. Xia and Z. Tan, "Tighter Bounds of the First Fit Algorithm for the Bin-Pac

Problem,"the Discrete Applied Mathematiogl. 158, no. 15, pp. 1668-1675, 2010.

X. Wang, M. Tehranipoor, S. George, D. Tran and L. Winemberg, "Design and A
of A Delay Sensor Applicable to Process/Environmental Variations and
Measurementsthe IEEE Transactions on Very Large Scale Integration Systems (T

vol. 20, no. 8, pp. 1405-1418, 2011.

A. Makhorin, "GNU Linear Programming Kit,” [Online]. Availab

http://lwww.gnu.org/software/glpk/. [Accessed March 2015].

Gurobi, "Gurobi Optimizer Reference Manual,” 2014. [Online]. Auvaile

http://www.gurobi.com/documentation/6.0/refman.pdf. [Accessed March 2014].

157

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

R. Dick, "Embedded System Synthesis Benchmarks Suites (E3S)," [Online]. Avi

http://ziyang.eecs.umich.edu/~dickrp/e3s/. [Accessed May]2014

R. P. Dick, D. L. Rhodes and W. Wolf, "TGFF: Task Graphs for Freéheitnternationa

Workshop on Hardware/Software Codesign (CODES/CASE#gttle, WA, USA, 1998

R. Watanabe, M. Kondo, M. Imai, H. Nakamura and T. Nanya, "Task Scheduling
Performance Constraints for Reducing the Energy Consumption of the GALS
Processor SoC," ithe Conference on Design, Automation and Test in Europe (D

Nice, France, 2007.

R. Kirner, "Ingredients for the Specification of Mix&iiticality Real-Time Systems,"
the International Symposium on Object/Component-Oriented Real-Time Dist

Computing (ISORC)Reno, NV, USA, 2014.
L. Sha, "Resilient Mixed-Criticality SystemsZrossTalk: the Journal of Defense Softw

(JDS),20009.

M. Hamdaoui and P. Ramanathan, "A Dynamic Priority Assignment Technique for £
with (m, k)-Firm Deadlines,the IEEE Transactions on Computers (T@)I. 44, no. 1z

pp. 1443-1451, 2012.

Nvidia, "Variable SMP— A Multicore CPU Architecture for Low Power and H
Performance,” [Online]. Available: http://www.nvidia.com/content/F

tegra_white_papers/tegra-whitepaper-0911b.pdf. [Accessed June 2015].

R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester and T. Mudge, "Near-Thre
Computing: Reclaiming Moore’s Law through Energy Efficient Integrated Circuits," the

Proceedings of IEEE (IEEEYpl. 98, no. 2, pp. 253-266, 2010.

158

[94]

[95]

[96]

[97]

[98]

[99]

D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy, Y. Le
Kim, N. Liu, M. Wieckowski, G. Chen, T. Mudge, D. Blaauw and S. D., "Centip3L
3930DMIPS/W Configurable Near-Threshold 3D System with 64 ARM Corte
Cores," inthe IEEE International Solid-State Circuits Conference Digest of Tecl

Papers (ISSCC)San Francisco, CA, USA, 2012.

U. R. Karpuzcu, K. B. Kolluru, N. S. Kim and J. Torrellas, "VARIUS-NTV:
Microarchitectural Model to Capture the Increased Sensitivity of Manycores to F
Variations at Near-Threshold Voltages,"tire | IEEE/IFIP International Conference

Dependable Systems and Networks (D84d¥ton, MA, USA, 2012.

T. N. Miller, X. Pan, R. Thomas, N. Sedaghati and R. Teodorescu, "Booster: Reacti
Acceleration for Mitigating the Effects of Process Variation and Application Imbala
Low-Voltage Chips,” inthe International Symposium on High Performance Com
Architecture (HPCA)New Orleans, LA, USA, 2012.

U. R. Karpuzcu, A. Sinkar, N. S. Kim and J. Torrellas, "EnergySmart: Toward E
Efficient Manycores for Near-Threshold Computing,'the International Symposium
High Performance Computer Architecture (HPC8henzhen, China, 2013.

U. R. Karpuzcu, I. Akturk and N. S. Kim, "Accordion: Toward Soft Near-Thre:
Voltage Computing,” irthe International Symposium on High Performance Com
Architecture (HPCA)Orlando, FL, USA, 2014.

H. Chen, D. Manzi, R. Sanghamitra and K. Chakraborty, "NTC: Exploiting the Par
Shift in Performance Bottlenecks," the Design Automation Conference (DAGew

York, NY, USA, 2015.

159

[100] S. Vestal, "Preemptive Scheduling of Multi-Criticality Systems with Varying Degre
Execution Time Tssurance," ithe IEEE International Real-Time Systems Sympc

(RTSS)Tucson, AZ, USA, 2007.

[101] M. S. Mollison, J. P. Erickson, J. H. Anderson and S. K. S. J. A. Baruah, "Mixed-Cri
Real-Time Scheduling for Multicore Systems,"the IEEE International Conference

Computer and Information Technology (GIByadford, UK, 2010.

[102] G. Giannopoulou, N. Stoimenov, P. Huang and T. L., "Scheduling of Mixed-Crit
Applications on Resource-Sharing Multicore Systems,"the ACM Internatione
Conference on Embedded Software (EMSOQWNDnNtreal, QC, Canada, 2013.

[103] P. K. Saraswat, P. Pop and J. Madsen, "Task Migration for Fault-Tolerance in
Criticality Embedded SystemsACM SIGBED Review - Special Issue on the
International Workshop on Adaptive and Reconfigurable Embedded Systems (ARR
6, no. 3, p. 5, 20009.

[104] P. Huang, H. Yang and L. Thiele, "On the Scheduling of Fault-Tolerant Mixed-Crit
Systems," irthe Design Automation Conference (DAS&n Francisco, CA, USA, 201+

[105] P. Huang, P. Kumar, G. Giannopoulou and L. Thiele, "Run and be Safe: Kiitedlity
Scheduling with Temporary Processor SpeeduphierConference on Design, Automa
and Test in Europe (DATEEGrenoble, France, 2015.

[106] G. Giannopoulou, N. Stoimenov, P. Huang and L. Thiele, "Mapping Mixed-Criti
Applications on Miti-Core Architectures,” ithe Conference on Design, Automatiol

Test in Europe (DATE)Dresden, Germany, 2014.

160

[107]C. Gu, N. Guan, Q. Deng and W. Yi, "Partitioned Mixed-criticality Schedulin
Multiprocessor Platforms,” ithe Conference on Design, Automation & Test in Eu
(DATE) Dresden, Germany, 2014.

[108] S. H. Kang, H. Yang, S. Kim, I. Bacivarov, S. Ha and L. Thiele, "Reliability-A
Mapping Optimization of Multi-Core Systems with Mixed-Criticality,"time Conferenc
on Design, Automation & Test in Europe (DATBjesden, Germany, 2014.

[109] D. Tamas-Selicean and P. Pop, "Design Optimization of Mixed-Criticality Real
Applications on Cost-Constrained Partitioned Architecture,"the IEEE Real-Tir
Systems Symposium (RTS®enna, Austria, 2011.

[110] S. Truijillo, A. Crespo and A. Alonso, "MultiPARTES: Multicore Virtualization for Mix
Criticality Systems," inthe Conference on Digital System Design (DSs Alamitos
CA, USA, 2013.

[111]K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez and J. Emer, "Sche
Heterogeneous Multi-Cores through Performance Impact Estimation (PIE)the
International Symposium on Computer Architecture (IS@Ajtland, OR, USA, 2012.

[112] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta, "The SPLASH-2 Prc
Characterization and Methodological Considerationsthénlnternational Symposium
Computer architecture (ISCA)Santa Margherita Ligure, Italy, 1995.

[113]C. Bienia, "Benchmarking Modern Multiprocessors,” Ph.D. Dissertation. Prir

University, Princeton, NJ, USA, 2011.

161

[114] W. Kim, M. S. Gupta, G. Y. Wei and D. Brooks, "System Level Analysis of Fast, Pe
DVFS Using On-Chip Switching Regulators," tine International Symposium on H

Performance Computer Architecture (HPCARplt Lake City, UT, USA, 2008.

[115] M. Bhadauria, V. Weaver and S. A. McKee, "A Characterization of the PAI

Benchmark Suite for CMP Design," Cornell University, 2008.

[116]C. Xian, Y. H. Lu and Z. Li, "Energy-Aware Scheduling for Real-Time Multiproce
Systems with Uncertain Task Execution Time,"tlne Design Automation Conferel
(DAC), San Diego, CA, USA, 2007.

[117]T. E. Carlson, W. Heirman and E. L., "Sniper: Exploring the Level of Abstractic
Scalable and Accurate Parallel Multi-Core SimulationthaInternational Conference 1

High Performance Computing, Networking, Storage and Analysis &@jle, WA, US#

2011.

[118]S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P. Jouppi, "M
An Integrated Power, Area, and Timing Modeling Framework for Multicore and Mar
Architectures,” in the IEEE/ACM International Symposium on Microarchitec

(MICRO), New York, NY, USA, 2009.

[119] A. H. Maheran, P. Menon, I. Ahmad and Z. Yusoff, "Threshold Voltage Optimizatio
22nm High-k/Silicide PMOS Device," ithe IEEE Regional Symposium on Micro

Nanoelectronics (RSM)angkawi, Malaysia, 2013.

[120]V. Saripalli, "Device and Architecture Co-Design for Ultra-Low Power Logic L
Emerging Tunneling-Based Devices," Ph.D. Dissertation. Pennsylvania State Uni

2011.

162

[121] Intel, "Intel Atom Processor,” [Online]. Available: www.intel.com/technology/a

[Accessed June 2015].

[122] B. Donohoo, O. C., S. Pasricha, C. Anderson and Y. Xiang, "Context-Aware |
Enhancements for Smart Mobile Deviceth& IEEE Transactions on Mobile Comput

(TMC),vol. 13, no. 8, pp. 1720-1732, 2014.

[123] R. Prabha, G. Rincon-Mora and S. Kim, "Harvesting Circuits for Miniaturized Photo
Cells," inthe IEEE International Symposium on Circuits and Systems (ISGA&G e

Janeiro, Brazil, 2011.

[124]H. G. Lee and N. Chang, "Energy-Aware Memory Allocation in Heterogeneous
Volatile Memory Systems," ithe International Symposium on Low Power Electronics
Design (ISLPED)Seoul, Korea, 2003.

[125]Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M. F. Chang, S. John, Y. Xie, J. Sht
Y. H., "Ambient Energy Harvesting Nonvolatile Processors: From Circuit to Syste

the Design Automation Conference (DASan Francisco, CA, USA, 2015.

[126] J. Han and M. Orshansky, "Approximate Computing: An Emerging Paradigm for E

Efficient Design," inthe IEEE European Test Symposium (ETA¥jgnon, France, 2013

[127]V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan and K. Roy, "IMPACT: Imy
Adders for Low-Power Approximate Computing,” ithe IEEE/ACM Internation:

Symposium on Low-Power Electronics and Design (ISLPEIKuoka, Japan, 2011.

[128] Y. Xiang and S. Pasricha, "Thermal-Aware Semi-Dynamic Power Manageme
Multicore Systems with Energy Harvesting,"time International Symposium on Qua

Electronic Design (ISQEDBanta Clara, CA, USA, 2013.

163

[129] Y. Xiang and S. Pasricha, "Harvesting-Aware Energy Management for Multicore Ple
with Hybrid Energy Storage," ithe Great Lakes Symposium on VLSI (GLSVLEjis

France, 2013.

[130] Y. Xiang and S. Pasricha, "A Hybrid Framework for Application Allocation and Sche
in Multicore Systems with Energy Harvesting,"the Great Lakes Symposium on Vv
(GLSVLSI)Houston, TX, USA, 2014.

[131]Y. Xiang and S. Pasricha, "Fault-Aware Application Scheduling in Low Power EmLt
Systems with Energy Harvesting,"time International Conference on Hardware/Softw

Codesign and System Synthesis (CODES8)v Delhi, India, 2014.

[132] Y. Xiang and S. Pasricha, "Run-Time Management for Multi-Core Embedded Systel
Energy Harvesting,'the IEEE Transactions on Very Large Scale Integration Sy

(TVLSI),2014.

164

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ACRONYMS
	1. INTRODUCTION
	1.1. Energy Harvesting
	1.2. Real-Time Multicore Embedded Systems
	1.2.1. Embedded Systems
	1.2.2. Real-Time Systems and Workload ModelS
	1.2.3. Multicore Processors in Embedded Systems

	1.3. Background and Related Work on Resource Management for Low Power Real-Time Embedded Systems with Energy Harvesting
	1.4. Dissertation Outline

	2. SEMI-DYNAMIC SCHEDULING ALGORITHM FOR INDEPENDENT TASKS
	2.1. Background and Contribution
	2.2. Problem Formulation
	2.2.1. Energy Harvesting and Energy Storage Module
	2.2.2. Periodic Real-Time Workload with Independent Tasks
	2.2.3. DPM and DVFS-Enabled Multi-Core Processor
	2.2.4. Run-Time Scheduler
	2.2.5. Scheduling Problem Objective

	2.3. Motivation
	2.3.1. Motivation for Semi-Dynamic Algorithm
	2.3.1.1. Importance of Balanced Workload Execution
	2.3.1.2. SDA Framework for Run-Time Workload Distribution

	2.3.2. Motivation for Hybrid Energy Storage
	2.3.3. Motivation for Heterogeneity-Aware Allocation
	2.3.4. Motivation for Run-Time Thermal Management

	2.4. Proposed Run-Time Energy and Workload Management Framework
	2.4.1. Semi-Dynamic Algorithm Overview
	2.4.2. Hybrid Energy Storage System and Energy Budgeting
	2.4.2.1. Battery-Supercapacitor Hybrid Energy Storage
	2.4.2.2. Hybrid Energy Storage Based Energy Budget

	2.4.3. Critical Frequency, Core Heterogeneity and Thermal Aware Workload Estimation
	2.4.3.1. Critical Frequency-Aware Active Core Selection
	2.4.3.2. Core Heterogeneity-Aware Workload Estimation
	2.4.3.3. Proactive Run-Time Thermal Management

	2.4.4. Task Penalty and Core Heterogeneity Aware Task Rejection and Allocation
	2.4.5. DVFS Switching-Aware Dual-Speed Method

	2.5. Experimental Results
	2.5.1. Experiment Setup
	2.5.2. Comparison between SDA and Prior Work
	2.5.3. Analysis of SDA with Hybrid Energy Storage
	2.5.4. Analysis of Core Heterogeneity-Aware Management
	2.5.5. Analysis of Run-Time Thermal Management
	2.5.6. Analysis of Scheduling Overhead

	2.6. Chapter Summary

	3. TEMPLATE-BASED SCHEDULING ALGORITHM FOR TASK GRAPHS
	3.1. Background and Contribution
	3.2. Related Work
	3.3. Problem Formulation
	3.3.1. Periodic Real-Time Workload with Task Graphs
	3.3.2. Soft Error Model
	3.3.3. Hard Error Model
	3.3.4. Run-Time Scheduler
	3.3.5. Problem Objective

	3.4. Hybrid Scheduling Framework: Motivation and Overview
	3.5. Offline Template Generation
	3.5.1. MILP-Based Offline Template Generation
	3.5.1.1. Inputs and Decision Variables
	3.5.1.2. Optimization Objective
	3.5.1.3. Constraints

	3.5.2. Fast Heuristic-Based Offline Template Generation

	3.6. Adaptive Online Management
	3.6.1. Run-Time Template Selection
	3.6.2. Aging-Aware Allocation of Workload Partitions
	3.6.3. Dynamic Adjustment for Slack Reclamation and Soft Error Handling at Run-Time

	3.7. Experimental Results
	3.7.1. Experiment Setup
	3.7.2. Template Generation Analysis
	3.7.3. Evaluation of System Performance without Error Injection and Execution Time Variance
	3.7.4. Evaluation of System Performance with Soft Error Injection and Execution Time Variance
	3.7.5. Evaluation of System Hard Reliability and MTTF

	3.8. Chapter Summary

	4. MIXED-CRITICALITY SCHEDULING ON HETEROGENEOUS SYSTEMS
	4.1. Background and Contribution
	4.2. Related Work
	4.3. Problem Formulation
	4.3.1. Mixed-Criticality Workload Model
	4.3.2. Heterogeneous Multicore Computing Platform
	4.3.3. Energy Harvesting, Storage, and Budgeting
	4.3.4. Problem Objective

	4.4. Semi-Dynamic Framework for Mixed-Criticality SCHEDULING
	4.5. Run-Time Mixed-Criticality Scheduling
	4.5.1. Soft Deadline-Aware Priority Metric
	4.5.2. Dynamic Workload Filtering and Balancing

	4.6. Experimental Results
	4.6.1. Experiment Setup
	4.6.2. Design-Time Template Generation Analysis
	4.6.3. Timing Intensity Metric Evaluation
	4.6.4. Mixed-Criticality Scheduling Performance Evaluation
	4.6.5. Chapter Summary

	5. CONCLUSION AND FUTURE WORK
	5.1. Research Conclusion
	5.2. Future Work

	BIBLIOGRAPHY

