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ABSTRACT 

 
 

A SEMI-DYNAMIC RESOURCE MANAGEMENT FRAMEWORK FOR MULTICORE 

EMBEDDED SYSTEMS WITH ENERGY HARVESTING 

 
 

Semiconductor technology has been evolving rapidly over the past several decades, 

introducing a new breed of embedded systems that are tiny, efficient, and pervasive. These 

embedded systems are the backbone of the ubiquitous and pervasive computing revolution, 

embedded intelligence all around us. Often, such embedded intelligence for pervasive computing 

must be deployed at remote locations, for purposes of environment sensing, data processing, 

information transmission, etc. Compared to current mobile devices, which are mostly supported 

by rechargeable and exchangeable batteries, emerging embedded systems for pervasive computing 

favor a self-sustainable energy supply, as their remote and mass deployment makes it impractical 

to change or charge their batteries. The ability to sustain systems by scavenging energy from 

ambient sources is called energy harvesting, which is gaining monument for its potential to enable 

energy autonomy in the era of pervasive computing. Among various energy harvesting techniques, 

solar energy harvesting has attracted the most attention due to its high power density and 

availability.  

Another impact of semiconductor technology scaling into the deep submicron level is the 

shifting of design focus from performance to energy efficiency as power dissipation on a chip 

cannot increase indefinitely. Due to unacceptable power consumption at high clock rate, it is 

desirable for computing systems to distribute workload on multiple cores with reduced execution 

frequencies so that overall system energy efficiency improves while meeting performance goals. 
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Thus it is necessary to adopt the design paradigm of multiprocessing for low-power embedded 

systems due to the ever-increasing demands for application performance and stringent limitations 

on power dissipation. 

In this dissertation we focus on the problem of resource management for multicore 

embedded systems powered by solar energy harvesting. We have conducted a substantial amount 

of research on this topic, which has led to the design of a semi-dynamic resource management 

framework designed with emphasis on efficiency and flexibility that can be applied to energy 

harvesting-powered systems with a variety of functionality, performance, energy, and reliability 

goals. The capability and flexibility of the proposed semi-dynamic framework are verified by 

issues we have addressed with it, including: (i) minimizing miss rate/miss penalty of systems with 

energy harvesting, (ii) run-time thermal control, (iii) coping with process variation induced core-

to-core heterogeneity, (iv) management of hybrid energy storage, (v) scheduling of task graphs 

with inter-node dependencies, (vi) addressing soft errors during execution, (vii) mitigating aging 

effects across the chip over time, and (vii) supporting mixed-criticality scheduling on 

heterogeneous processors.  
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1. INTRODUCTION 

 
 

Energy constraints remain the major factor that limits the availability and versatility of 

embedded systems in the era of pervasive computing [1]. Despite tremendous efforts in academia 

and industry to improve the energy efficiency of current embedded devices, there is still need for 

an effective solution that can be applied to energy-constrained embedded systems deployed in 

remote locations around the world [2]. This chapter contains an introduction to the basic concepts 

of energy harvesting, which has emerged recently as an attractive alternative to supply energy for 

embedded systems when other energy sources are limited or unavailable. Also, we introduce real-

time multicore embedded systems as the target platform type in this dissertation. Lastly, this 

chapter discusses the need for an intelligent resource management framework to exploit the full 

potential of multicore embedded systems powered by energy harvesting.  

 
 

1.1. ENERGY HARVESTING 

Energy harvesting, also known as power harvesting or energy scavenging, is the process of 

deriving energy from external sources, such as wind energy, thermal energy, kinetic energy, and 

solar energy [3]. With its history tracing back to the invention of windmills and waterwheels, in 

recent years energy harvesting has attracted ever-increasing interest and investments from the 

industrial sector, the research community, and individual prospectors due to its positive effects on 

both the environment and the economy, two of the major concerns for modern society. The energy 

harvesting technologies market was worth $131.4 million in 2012 and is projected to increase to 

$4.2 billion in 2019 [4]. Figure 1 shows change in web search frequency for the term “energy 
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harvesting” over time, which is broadly in line with the rising interest in this topic. In this 

dissertation, we focus on energy harvesting technologies used for electronic devices [5]. 

 

Figure 1 Normalized Search Frequency of “Energy Harvesting” over Time [6] 

Although energy exists everywhere in the physical universe in multiple forms, only some 

forms can be effectively converted into electric energy to power electronic systems, including 

piezoelectric energy, thermal energy, wind energy, and solar energy. Listed below are some of the 

most common forms of energy available for energy harvesting: 

 Piezoelectric energy: Piezoelectric effect is the phenomenon of accumulating electric 

charge in certain solid materials when mechanical stress is applied. This effect can be 

utilized to convert subtle energy sources, such as seismic vibration, acoustic noise, and 

ambient object motion, into electric energy, which becomes available in the form of a 

voltage difference between material surfaces [7]. As piezoelectric energy harvesting 

techniques usually generate electric power in the order of a microwatt, they are normally 

employed only in micro-scale electronic devices. A common example of piezoelectric 

energy harvesting is in step detection sensors deployed in sports shoes.  
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Figure 2 TE-Power PROBE Thermal Harvester by Micropelt [8] 

 Thermal energy: Heat flow due to thermal gradient in a conducting material can also 

produce a voltage difference and thus provides the possibility of converting thermal energy 

into electric energy. [9] The major drawback of this form of energy harvesting is the fact 

that long-term stable thermal gradients are only available in particular places, limiting the 

location flexibility in deployment. Therefore, systems powered by thermal gradients are 

usually seen attached to the surface of other heating objects as parasitic devices. For 

example, Figure 2 shows the TE-Power PROBE thermal harvester manufactured by 

Micropelt, which can be attached to hot surfaces, such as a pipe with warm water flowing 

through it, to enable thermal harvesting by dissipating heat through its heat sink into 

ambient air [8]. 

 Wind energy: Wind energy has been demonstrated to be both technically and economically 

viable [10]. The most common exploitation of wind energy is with the help of large-scale 

wind turbines deployed at geographically windy locations around the world, which provide 



4 
 

an auxiliary clean energy source to power grids for utility providers. On the other hand, 

small-scale wind turbines also exist for specific applications such as auxiliary power supply 

for boats. The major issue facing the harvesting of wind energy lies in its strict location 

requirement and unstable wind conditions over time.  

 

Figure 3 Photovoltaic Panels at Various Scales 

 Solar energy: Solar energy [11], which is widely considered as a possible replacement for 

the more costly fossil energy in the future, is probably the most discussed source of 

renewable energy in recent years. Solar energy is derived from sunlight which is the most 

plentiful and widely distributed renewable energy source on earth. The most common 

method of harvesting solar energy is to convert solar radiation into electricity using 

photovoltaic panels (solar panels) [12]. As a result of technological advancements, there 

have been significant reductions in manufacturing cost and improvements in conversion 

efficiency of photovoltaic panels. In addition, photovoltaic panels are available at various 

scales, making it practical for applications in different areas ranging from industrial utility 

energy production to consumer level electronics, as examples shown in Figure 3.  Therefore, 
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solar energy is widely recognized as the most promising source of energy harvesting for 

electronic systems. 

In this dissertation, we consider solar energy as the source of energy harvesting to power 

real-time embedded multicore systems for best-effort execution due to its advantages in power 

density, availability, and scalability.  

 

1.2. REAL-TIME MULTICORE EMBEDDED SYSTEMS 

This section introduces and motivates the use of the primary category of platforms 

considered in this dissertation: real-time multicore embedded systems powered by solar energy 

harvesting.  

 

Figure 4 Example of Tiny Embedded Computer with Wi-Fi and Bluetooth 

1.2.1. EMBEDDED SYSTEMS 

An embedded system is a computer system with dedicated functions that is integrated within 

a larger mechanical or electrical system, often with real-time computing constraints [13]. 
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Embedded systems are involved in a large portion of our daily life and have been ubiquitously 

deployed all over the world. We can find their existence for numerous applications, from space 

stations to microwave ovens, usually in small but powerful forms. Figure 4 shows an example of 

an embedded computing system with Wi-Fi and Bluetooth support. In the upcoming era of 

pervasive computing, embedded systems can play an even more important role with the help of 

energy harvesting technologies to achieve energy autonomy. 

 

1.2.2. REAL-TIME SYSTEMS AND WORKLOAD MODELS 

Computing systems with timing behavior as part of their performance or correctness 

criterion are called real-time computing systems [14]. While logical correctness is necessary for 

all types of computing systems, real-time systems are also subject to certain timing constraints 

usually characterized as deadlines to finish real-time jobs. These deadlines for the system and 

workload can further be classified into hard, soft, and firm deadlines: 

 Hard deadline: Missing of a hard deadline is considered total system failure that in practice 

may lead to undesirable or even catastrophic consequences [15]. Therefore, hard real-time 

systems should have zero tolerance to a hard deadline miss. Such a strong guarantee in 

timing is only necessary for real-time systems where delayed response would actually 

cause great loss in profit, damage in physical surroundings, or even harm to human beings. 

For example, aircraft engine control systems must be designed to deal with hard deadlines 

in a robust manner as any delayed action may result in a dangerous flight state. Since hard-

deadlines define very strict timing constraints, hard real-time embedded systems usually 

require abundant on-board resource to guarantee high robustness.  
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 Soft deadline: Unlike hard deadlines, soft deadlines can be missed without any immediate 

impact on system performance and functionality. Soft real-time systems are typically 

designed for non-critical, less timing-sensitive applications [16]. An example can be a data 

sensing hub trying to update a remote server with data samples stored in its on-board buffer 

queue, for which a single transmission task can miss its deadline without significant impact 

to the system’s effectiveness, as another transmission can be scheduled in the next interval. 

However, the system may still face a performance impact if there are too many soft 

deadline misses in a short period of time because its on-board buffer queue will then fill 

up. In such a case, the sensing hub will drop less important data points to make room for 

new ones so that the system continues execution without total failure. Compared to hard 

deadlines, soft deadline constraints provide more flexibility in system design, enabling 

more effective trade-offs between the deadline miss rate and other criteria such as energy 

efficiency. 

 Firm deadline: A deadline is firm if missing it results in immediate system performance 

degradation [17]. As with soft deadlines, missing a firm deadline does not lead to total 

system failure. However, missing any firm deadlines leads to immediate performance 

penalty and the task with the missed firm deadline is dropped as delayed output is 

considered invalid. A good example of firm real-time systems is a security camera system 

that always tries to provide the latest captured frames to its client. When a system fails to 

deliver a frame by its deadline, this missed frame should be dropped immediately in order 

to avoid accumulation of delay for the upcoming frames. 

As solar energy harvesting is unable to guarantee a stable and continuous energy supply, 

hard real-time systems are not suitable candidates to work with energy harvesting, thus these 
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systems are beyond the scope of this dissertation. Our contribution focuses on embedded systems 

with firm deadlines, the miss rate of which is the main criteria to improve given a limited energy 

supply. Our work also considers soft deadlines in certain parts of this dissertation to form a more 

flexible workload model. 

 

Figure 5 Workload Models Considered in this Dissertation 

To model real-time applications with varying structures and requirements, this dissertation 

considers three types of workload models (see Figure 5): independent tasks, task graphs with 

dependencies, and multithread applications, which are described in more detail in Section 2.2, 3.3, 

and 4.3, respectively. Our work also mainly focuses on optimizations for periodic arrivals [18] of 

these different types of workloads.  

   

1.2.3. MULTICORE PROCESSORS IN EMBEDDED SYSTEMS 

Multicore processors are computing units with more than one processing core manufactured 

on a single chip, which are used across many application domains including supercomputing, 

mobile computing, and embedded processing. Although the concept of multiprocessing has for 

long been implemented using multiple discrete CPUs for supercomputers and servers, multicore 

processors have not been commonly used until recent years, when it became clear that it was no 
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longer viable to improve performance of processors by merely increasing their operating frequency 

or architectural complexity. The reasons for the paradigm shift towards multicore computing can 

be characterized by the “three walls” of computing [19]: 

 

Figure 6 Increasing Processor-Memory Performance Gap [19] 

 Memory wall: Due to the increasing performance gap between processors and memory, as 

shown in Figure 6, memory access delay has become a main obstacle hindering computing 

performance improvement. Thus merely increasing clock speed of emerging processors 

does not yield performance gain anymore because the processors spend significant amount 

of time waiting for data to arrive from memory. Even worse, higher frequency usually 

means much higher power consumption and reduced energy efficiency.  

 ILP wall: It is hard to find enough instruction level parallelism (ILP) in a single application 

to maintain high utilization of components on a high-performance single-core processor. 

Besides, attempts to extract high ILP from processors often results in low energy efficiency. 
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For example, an out-of-order processor design compared in [20] against an in-order design 

resulted in 2.4x performance improvement at the cost of 4.3x more power consumption, 

indicating a substantial energy efficiency reduction of 45%. 

 

Figure 7 Approaching Power Wall with Dennard Scaling [21] 

 Power wall: It is not possible to increase processor power dissipation indefinitely no matter 

how much performance we may gain. Figure 7 shows that the rising clock speed of 

processors had already approached the power wall in the early 2000s, which represents the 

limit on thermal design power (TDP) for a single chip due to problems in technology 

scaling and thermal dissipation. Thus, the processing capability we can extract from a 

processor does not depend on its peak performance anymore. Maintaining execution at 

maximum clock speed leads to core overheating because of the exponential increase in 

power dissipation with factorial increase in operating frequency. Instead, the design focus 
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for today’s processors has shifted to energy efficiency because performance per watt 

decides how much processing power can be utilized for a given power budget. 

Due to stringent power/energy constraints, energy efficiency is even more crucial for 

embedded systems in terms of performance as well as service availability (% time that a system 

can be functioning). For this reason, recent years have led to increasing popularity of multicore 

processors in high-end embedded systems, especially for mobile devices [22] [23] [24].  

The introduction of multicore processing has also ushered in a variety of processor 

architecture compositions. Based on the types of cores integrated, multicore processors can be 

classified into three categories: 

 

Figure 8 Diagram of Tile64 processor by Tilera [25] 
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 Homogeneous: By reusing the same design for all cores across the chip, homogeneous 

multicore processors provide a symmetric architecture that simplifies the programming 

model and on-board resource management. For example, Figure 8 shows the Tile64 

processor designed by Tilera, a homogenous many core chip with 64 identical processors 

arranged in an 8x8 array and connected through a 2D mesh network [25]. However, this 

approach overlooks the opportunity to provide diversity in hardware to better support 

diverse execution patterns of different types of applications.   

 

Figure 9 A Typical big.LITTLE System by ARM [23] 

 Single-ISA heterogeneous: A single-ISA heterogeneous multicore processor [26] is 

composed of processing cores with the same instruction set architecture but diverse core 

implementations with respect to parameters such as clock speed, cache configuration, out-

of-order execution support, etc. ARM’s big.LITTLE architecture [23], an example of 
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typical single-ISA multicore system, can be seen in Figure 9. Compared to a homogeneous 

system, such heterogeneous design can provide a greater ability to adapt to specific 

demands of different applications/tasks for improvement in both performance and energy 

efficiency. Additionally, there is no need to rewrite software for specific core types and 

workload can be migrated freely among cores as all cores execute the same instruction set. 

However, such processors require an intelligent system resource management scheme to 

evaluate workload and choose the right execution strategy to attain its full capability.  

 Heterogeneous-ISA: This is the most aggressive heterogeneous design pattern for multicore 

processors. Usually a heterogeneous-ISA multicore processor consists of one cluster of 

cores for general purpose processing, while the other cluster consists of application-

specific processing units that provide hardware acceleration to heavy-weight tasks with 

improved speed and efficiency. This design paradigm is common in embedded systems 

with one or more cores for general-purpose computing and accelerator cores for data-

intense computation. It also finds a place in personal computers, workstations, and data 

centers in the form of general-purpose computing on graphics processing units (GPGPUs) 

on a single chip. Figure 10 shows the accelerated processing unit (APU) processor 

developed at AMD, which is a typical example of a heterogeneous-ISA multicore processor 

with built-in general-purpose cores and graphics processing cores. While it possesses 

significant potential, the main obstacle to widespread implementation of this design 

paradigm is its demand for increased efforts in hardware/software co-design to best match 

a given workload to its highly customized architecture. Additionally, the workload must 

be partitioned to different core types at design-time, as it is almost impossible to migrate 

workload between cores with different ISAs on-the-fly.  
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Figure 10 AMD Fusion APU: “LLANO” [27] 

In this dissertation, we explore the problem of resource management for multicore embedded 

systems under energy constraints from solar energy harvesting. For most of this dissertation, we 

assume homogenous multicore processors as the target platform. However, we also consider 

single-ISA heterogeneous multicore processors to tackle the problem of mixed-criticality 

workload scheduling with energy harvesting. Even for homogenous multicore processors, our 

framework still considers core-heterogeneity caused by non-ideal factors such as process 

variations [28] and aging effects [29].  Principally, we consider multicore processors as the 

inevitable choice for systems powered by energy harvesting because of the benefits they provide 

in energy efficiency. 
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1.3. BACKGROUND AND RELATED WORK ON RESOURCE MANAGEMENT FOR LOW 

POWER REAL-TIME EMBEDDED SYSTEMS WITH ENERGY HARVESTING 

Limitation in the energy budget is one of the major constraints facing embedded systems 

which can impact their availability, performance, or even correctness during execution. 

Traditionally, the operating duration of embedded systems with no external energy supply was 

limited by the energy budget provided by batteries. On the other hand, embedded systems powered 

by energy harvesting have a dynamically changing energy budget due to variations in the energy 

replenish rate from harvesting sources. For both cases, it is necessary to manage on-board 

resources intelligently to trade-off between timing performance and energy efficiency so that 

systems can operate more effectively. In this dissertation, we will focus on addressing this problem 

of energy optimization for multicore processors in real-time embedded systems.  

Dynamic voltage/frequency scaling (DVFS) has been proven to be one of the most effective 

ways to make trade-offs between energy efficiency and computation performance for computing 

systems at run-time [30]. With this technique, processors can scale down supply voltage (VDD) and 

operation frequency (f) on-the-fly to reduce dynamic power consumption [31]. The main reasons 

for its effectiveness are twofold:  

 Processors cannot or do not need to always execute at peak performance: Processors can 

find slack in computation to slow down for energy savings whenever the system workload 

is not fully utilizing a processor. In most cases, processors are just not designed with the 

expectations to keep running at their full capability, especially with modern multicore 

processors hitting the power wall and facing thermal dissipation limits (See power wall 

discussion in Section 1.2.3). Additionally, embedded processors powered by energy 

harvesting may be forced to reduce energy consumption by lowering their voltage and/or 
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frequency at any time as there is no guarantee of a stable and sufficient energy budget to 

support a high operating voltage and frequency level at all times. 

 Processors are based on CMOS logic, which usually has much higher energy efficiency 

with lower clock speed: at most operation (VDD, f) points, the dominant power consumption 

for microprocessors is the dynamic component, which originates from the switching 

activity of CMOS logic gates. Dynamic power consumption of a processor is 

approximately proportional to its frequency, and to the square of its supply voltage, as 

shown in Equation (1), where C is the collective capacitive load of processor [32]: 

          ܲ ௗ௬௡௔௠௜௖ = ܥ × ஽ܸ஽ଶ × ݂ (1) 

In addition, higher frequency requires higher supply voltage to avoid timing violations in 

synchronized CMOS logic. Thus, boosting execution frequency of a processor can lead to 

significant increase in power consumption (which typically increases energy consumption) 

and it is usually desirable to minimize execution frequency of processors whenever 

possible.  

In this dissertation, we utilize the DVFS technique to control performance and energy 

consumption of real-time embedded systems powered by energy harvesting. Apart from DVFS, 

dynamic power management (DPM) is another approach for run-time energy optimization, which 

selectively turns off components or changes power states of electronic systems for energy saving 

[33]. In this dissertation, DPM is considered as a secondary mechanism for energy saving that is 

utilized under special scenarios, as turning off a component for some time with DPM can sub-

optimally impact the over system, e.g., requiring higher execution frequency for other components 

or at later times to meet deadlines.  
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Many prior research projects have utilized DVFS techniques to optimize energy 

consumption of real-time processors dynamically. An early work [34] addressed the problem of 

power aware scheduling of periodic hard real-time tasks using DVFS. This study proved that an 

optimal execution frequency meant for energy minimization and meeting all task deadlines can be 

deduced for any periodic hard real-time policy that can fully utilize the processor (e.g. Earliest 

Deadline First, Least Laxity First). Another early work integrated DVFS scheduling algorithms 

with a real-time operating system (RTOS) to provide significant energy savings while maintaining 

real-time deadline guarantees [30]. In [35] algorithms were proposed to optimize energy 

consumption of homogeneous multiprocessors with DVFS support. They also considered co-

optimization methods for the minimizing of energy consumption and task rejection penalty. 

However, none of these papers consider the challenges arising from utilizing energy harvesting in 

real-time embedded systems. 

Solar energy harvesting is increasingly becoming an attractive solution in the quest to obtain 

clean sustainable energy for emerging embedded systems. Recently, a few papers have explored 

improvements in the efficiency and reliability of such systems ( [36] [37] [38]). Some of these 

works focused on the implementation of energy harvesting systems and their energy conversion 

circuits (e.g., [38]). We are more concerned in this dissertation about related work on run-time 

management and scheduling for real-time embedded systems with energy harvesting. An early 

work [39] proposed the lazy scheduling algorithm (LSA) that executed tasks as late as possible, 

reducing deadline miss rates when compared to the classical earliest deadline first (EDF) 

algorithm. However, LSA does not consider DVFS and always executes tasks at full speed. 

Because a processor’s dynamic power is generally a convex function of its operating frequency, 

running the processor at a frequency lower than the maximum frequency often results in higher 
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energy efficiency. In [40], the proposed energy-aware DVFS technique (EA-DVFS) takes 

processor DVFS into consideration for energy harvesting-aware scheduling. EA-DVFS utilized 

task slack to slow down execution speed, thereby achieving more energy savings than LSA, 

especially when total task utilization is low. Later the same authors proposed a more intelligent 

technique called harvesting-aware DVFS (HA-DVFS) [41], which improved energy efficiency by 

distributing multiple arriving tasks as evenly as possible over time and executing them with more 

uniform frequency. Recently, Chetto [42] proposed a semi-online EDF-based scheduling 

algorithm that is theoretically optimal. However, these research efforts are only limited to 

uniprocessor systems and have not considered execution on multi-core platforms.  

There are a few notable research efforts that have considered multiprocessing with energy 

harvesting. In [36], a run-time framework is proposed for intelligently adjusting run-time system 

workload on multi-core platforms that use photovoltaic array for energy harvesting, so that the 

array works at its maximum operation points, producing more power for the computation system. 

However, the proposed work assumes grid utility as a backup energy source which may not be 

viable for many types of embedded systems. Also their approach is not applicable to real-time 

embedded systems with deadlines and operating constraints, which is the focus of this dissertation. 

A utilization-based technique (UTB) was proposed in [43] to better address periodic task 

scheduling in energy-harvesting embedded systems. UTB takes advantage of the predictability 

provided by the periodic task information for more efficient task allocation than in prior work. 

Moreover, UTB was extended to support multi-core platforms by allocating a subset of tasks to 

each core and executing the single-core UTB algorithm separately on each core. Zhang et al. [44] 

introduced a deadline-aware scheduling algorithm with energy migration strategies specifically 

designed to manage distributed supercapacitors in sensor networks.   
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In this dissertation, we propose a novel semi-dynamic approach for resource management of 

real-time multicore embedded systems that leads to significant improvement in energy efficiency 

while providing flexibility to simultaneously address other concerns such as thermal management, 

hybrid energy storage, allocation for heterogeneous multicore systems, task dependencies, 

transient faults, and processor aging effects.  

 

1.4. DISSERTATION OUTLINE 

In this dissertation, we propose a semi-dynamic resource management framework for multicore 

embedded systems powered by energy harvesting. A high level overview of the contributions we 

make is shown in Figure 11.  The rest of this dissertation is organized as follows: 

 

Figure 11 Preview of Contributions of this Dissertation 
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In Chapter 2, we present a semi-dynamic scheduling algorithm (SDA) for scheduling 

independent tasks on energy harvesting capable multicore embedded systems. The fundamental 

idea of our proposed semi-dynamic framework is to delay utilization of harvested energy by a 

certain amount of time, which is the length of all schedule windows, so that instantaneous 

harvesting power variations will not impact system execution immediately, allowing semi-

dynamic adjustments of system strategies to utilize recently harvested energy intelligently with 

low scheduling overhead. We study the benefits of a semi-dynamic framework on stabilizing 

execution frequencies of processors even with power variations due to energy harvesting, which 

helps to reduce total energy consumption over time. Besides, the flexibility of the proposed semi-

dynamic scheme allows further exploration and optimization for a number of related topics, such 

as hybrid energy storage system, core heterogeneity due to process variations, and overheating. 

Additionally, a dual-speed method is also introduced to overcome the performance impact of 

discrete frequency levels.  

In Chapter 3, we apply our proposed semi-dynamic framework to the scheduling problem 

for task graphs with dependencies between tasks, resulting in a template-based scheduling 

algorithm. Compared to the previous contribution, here we address the even more difficult problem 

of scheduling task graphs with inter-node dependencies on systems that rely entirely on limited 

and fluctuating solar energy harvesting. As the limited energy supply prevents the deployment of 

complex scheduling algorithms at run-time, we propose a template-based algorithm in which 

scheduling complexity can be offloaded to design-time to pre-compute an execution strategy for 

task graphs. Note that our template-based algorithm still allows run-time execution adjustments so 

that a system can still address the problems of soft errors and aging effects on-the-fly. For design-

time template generation, we propose two methods: one is a mixed integer linear programming 
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(MILP) optimization method and the other one is a novel analysis-based template generation 

(ATG) method. 

In Chapter 4, we apply our semi-dynamic framework and template-based scheduling method 

to the problem of mixed-criticality scheduling on single-ISA heterogeneous multicore processors 

powered by energy harvesting. We considered a mixed-criticality workload set characterized by 

varying parallelism models, miss penalties, and deadline constraint types for tasks. A novel timing 

intensity-aware penalty density metric is introduced to estimate the importance of each task 

instance. With this metric, our proposed algorithm can find a balanced resource allocation 

dynamically for different mixed-criticality workload types so as to maximize overall system 

performance.  

Lastly, Chapter 5 summarizes our research contributions and concludes this dissertation, 

with a discussion on future research directions. 



22 
 

2. SEMI-DYNAMIC SCHEDULING ALGORITHM FOR INDEPENDENT TASKS 

 

In this chapter, we propose a novel framework for real-time energy and workload 

management in multi-core embedded systems with solar energy harvesting and a period real-time 

independent task set as the workload. Compared to prior work, our framework makes several novel 

contributions and possesses several advantages, including (i) a semi-dynamic scheduling heuristic 

that dynamically adapts to run-time harvested power variations without losing the consistency of 

periodic tasks, (ii) a battery-supercapacitor hybrid energy storage module for more efficient system 

energy management, (iii) a coarse-grained core shutdown heuristic for additional energy saving, 

(iv) energy budget planning and task allocation heuristics with process variation tolerance, (v) a 

novel dual-speed method specifically designed for periodic tasks to address discrete frequency 

levels and DVFS switching overhead at the core level, and (vi) an extension to prepare the system 

for thermal issues arising at run-time during extreme environmental conditions. 

 

2.1. BACKGROUND AND CONTRIBUTION 

Power and energy constraints have led to significant changes in the design of contemporary 

computing systems. In the last decade, thread-level parallelism (TLP) to improve performance 

within a power budget has seen widespread adoption across various computing platforms, ranging 

from high-end servers to desktops, as well as embedded devices. Recent years have also witnessed 

an increase in the use of multi-core processors in low-power embedded devices. With advances in 

parallel programming and power management techniques, embedded devices with multi-core 

processors and TLP support are outperforming single-core platforms in performance and energy 

efficiency [24].  
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As core counts continue to increase to keep up with rising application complexity, techniques 

for run-time workload distribution and energy management are the key to achieving energy savings 

in emerging multi-core embedded systems. Moreover, advances in parallel programming and 

increasing performance demands from embedded computing have forced implementations of high-

end embedded processors composed of many cores running at the GHz level. Unfortunately, such 

increased performance levels in multi-core processors result in much higher power density than 

ever before, creating the risk of overheating when core utilization is high. Moreover, as CMOS 

technology scales down to integrate more cores on the same die area, process variations have 

become prominent, significantly impacting the system-level design and management of multi-core 

chips [28]. As the impact of time-varying power density and variations is hard to predict at design-

time, it becomes critical to employ intelligent run-time techniques in emerging multi-core 

platforms that can adapt to these challenging system requirements. 

For some embedded applications, we may require energy autonomous devices that utilize 

ambient energy to perform computations without relying entirely on an external power supply or 

frequent battery charges. Because it is the most widely available energy source, solar energy and 

its harvesting for embedded systems has attracted a lot of attention in recent years [36] [37] [45]. 

Due to the variable nature of solar energy harvesting, deployment of an intelligent run-time energy 

management scheme is not only beneficial but also essential for meeting system performance, 

robustness, and energy goals. To exploit the capabilities of energy harvesting systems, several 

prior efforts have explored workload scheduling for embedded systems with real-time tasks [39] 

[40] [41] [43].  An early work [39] proposed the lazy scheduling algorithm (LSA) that executed 

tasks as late as possible, reducing deadline miss rates when compared to the EDF algorithm. 

However, LSA does not consider DVFS and always executes tasks at full speed. Because a 
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processor’s dynamic power is generally a convex function of frequency, operating the processor 

at a frequency lower than the maximum frequency often results in higher energy efficiency. A 

utilization-based technique (UTB) was proposed in [43] to better address periodic task scheduling 

in energy-harvesting embedded systems. UTB takes advantage of the predictability provided by 

the periodic task information for more efficient task allocation than in prior work. Moreover, UTB 

was extended to support multi-core platforms by allocating a subset of tasks to each core and 

executing the single-core UTB algorithm separately on each core. More discussion on related work 

in the field of scheduling with solar energy harvesting can be seen in Section 1.3. Besides, there 

are many relevant research projects in the field of energy optimization for embedded systems that 

do not consider energy harvesting. A Li-Ion battery-supercapacitor hybrid storage system that 

supports a long lifetime, wireless sensor network was described in [46], presenting a good example 

of hybrid energy system design, from which we derives a customized hybrid storage system in this 

chapter. In [47] the HypoEnergy framework was proposed to extend power supply life-time of 

hybrid battery-supercapacitor systems. An algorithm for application scheduling and power 

management of chip multiprocessors with awareness of within-die processor variations was 

proposed in [48]. In [49], a thermal-aware task allocation and scheduling algorithm was proposed 

which was used as a subroutine for hardware/software co-synthesis. 

In this chapter, we propose a novel semi-dynamic algorithm (SDA) based framework with 

energy budgeting that manages energy and workload allocation at run-time for multi-core 

embedded systems with solar energy harvesting capability. Our framework aims to minimize 

deadline miss rate and penalty of periodic tasks in the presence of variant and insufficient energy 

harvesting conditions. In addition, our framework possesses the flexibility to be able to 
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accommodate other goals, such as run-time thermal management and process variation aware 

workload distribution. The novelty and main contributions of this work are summarized as follows: 

 Unlike prior work, SDA reacts to run-time energy shortages and fluctuations proactively 

to find significantly greater scope for energy savings, especially in multi-core platforms. 

 A hybrid energy storage system is designed to decouple the run-time management scheme 

from variations in energy harvesting, as well as to enhance charging/discharging efficiency. 

 The energy and task distribution heuristics in SDA take system heterogeneity into 

consideration by assigning workloads with awareness of variations due to within-die 

process variations. 

 At the core level, a novel dual-speed frequency selection method is deployed to combine 

two neighboring discrete frequency levels for superior energy efficiency with awareness 

of dynamic voltage/frequency switching overhead. 

 Our framework cooperates with basic throttling mechanisms to tackle processor 

overheating. Additionally, it dynamically re-allocates workload or shuts down cores for 

more proactive multi-level throttling to reduce the occurrences and overhead of system 

overheating.      

Our experimental studies show that our framework is able to outperform the best known 

prior work (UTB [43]) on run-time management of periodic tasks for real-time systems with 

energy harvesting, achieving superior task drop penalty/rate reduction and energy efficiency. 

Additionally, our framework also provides the flexibility to adapt to run-time thermal variations 

and supports core heterogeneity-aware workload distribution.   
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2.2. PROBLEM FORMULATION 

Our focus of this chapter is on the problem of effective workload and energy management 

for real-time multi-core embedded systems running periodic tasks, and powered by solar energy, 

as shown in Figure 12. The following sections describe the key components of our system model. 

 

Figure 12 Real-Time Embedded Processing with Solar Energy Harvesting 

2.2.1. ENERGY HARVESTING AND ENERGY STORAGE MODULE 

A photovoltaic (PV) array is used as a power source for our embedded system, converting 

ambient solar energy into electric power. Naturally, the amount of harvested power varies over 

time due to changing environmental conditions, like angle of sunlight incidence, cloud density, 

temperature, humidity, etc. To cope with the unstable nature of the solar energy source, 

rechargeable batteries and supercapacitors can be used to buffer solar energy collected by 

photovoltaic cells. In our study, the converted solar power at time t is denoted as PH(t). The energy 

EH charged into the energy storage system between time instances t1 and t2 is given by: 
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ଶሻݐ ~ ଵݐሺ�ܧ  =  ηୡ୦r୥ ∫ �ܲሺݐሻ௧ଶ
௧ଵ  (2) ݐ݀

where ηchrg is a coefficient between 0 and 1 to represent charging efficiency of the energy 

storage system. The capacity of the energy storage device is limited and clearly harvested energy 

will be wasted if the energy storage device is already fully charged. We assume that task execution 

must be halted when the remaining energy in the system goes below a specified threshold. This 

step is essential to maintaining the system state and ensure graceful shutdown. 

 

 

2.2.2. PERIODIC REAL-TIME WORKLOAD WITH INDEPENDENT TASKS 

In many real-world applications, an energy autonomous embedded system powered by solar 

energy harvesting is deployed to execute certain types of repetitive lightweight real-time tasks, 

such as sensing, controlling, and data preprocessing. We assume a task set of N independent 

periodic real-time tasks ψ: {τ1, … , τN} for such use cases, in which each periodic task τi has a 

characteristic triplet (Ci, Di, Ti), i∈{1, …, N}. Ci is the maximum number of CPU clock cycles 

needed to finish a job instance of task τi, referred to as the worst-case execution cycles (WCEC). 

The relative deadline of the task, Di, is the time interval between a job’s arrival time and its firm 

deadline (see Section 1.2.2). A job instance is missed if it is not finished before its deadline. Ti is 

the period of the task. At the beginning of each period, a new job instance of that task will be 

dispatched to the system. Like most recent works on periodic task scheduling (e.g., [43]) we 

assume that Di equals Ti, with all jobs expected to finish before the arrival of the next job instance 

of the same task. We also define an attribute Xi, which is the miss penalty associated with each 

task. Each time that a task’s job misses its deadline, the job will be aborted and the penalty applied 

to the system. Thus, we can refine the triplet for task τi as (Ci, Ti, Xi). The relative importance of a 
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task can be characterized by a penalty density parameter, defined as the ratio of the task miss 

penalty and WCEC (ܺ௜ ⁄௜ܥ ) [35]. In this chapter, we assume the system is designed to execute one 

set of periodic real-time tasks consistently and information of tasks such as execution time and 

miss penalty is profiled at design-time and thus is available to the run-time scheduler.  

Table 1 Xscale Processor Power and Frequency Levels [43] 
Level 0 1 2 3 4 5 

Voltage(V) - 0.75 1.0 1.3 1.6 1.8 
Power(mW) 40 80 170 400 900 1600 

Frequency(MHz) idle 150 400 600 800 1000 
Energy Efficiency 0 1.875 2.353 1.5 0.889 0.625 

 

 
2.2.3. DPM AND DVFS-ENABLED MULTI-CORE PROCESSOR 

We consider an embedded system with a low power multi-core processor that has support 

for task preemption. We assume that the frequency of each core can be adjusted individually (i.e., 

the processor possesses per-core DVFS capability) as observed in recent implementations with 

this capability enabled in industry and academia [50] [51]. Each core has M discrete voltage and 

frequency levels: φ: {δ0, ... , LM}. Each level is characterized by Lj: (vj, pj, fj), j∈{1, …, ε}, which 

represents voltage, average power, and frequency respectively. We consider power-frequency 

levels of the Xscale processor as shown in Table 1. Here, level 0 represents the idle power of the 

processor when no task is executed while the system stays in active state. Typically, the dynamic 

power-frequency function is convex. Thus, a processor running at lower frequency can be expected 

to execute the same number of cycles with lower energy consumption. However, this is not always 

the case due to the increasing prominence of leakage power in recent CMOS technologies. To find 

an energy optimal frequency, we represent energy efficiency of a v-f level Li by � i = cycles 

executed/energy consumed = fi/pi. From Table 1 we can conclude that level 2 is the most energy 
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efficient because executing at this level consumes the least energy for a given number of cycles. 

The most energy efficient level is often called critical level in the literature and thus fcrt = f2 [52]. 

Although it is desirable to execute tasks at this critical frequency level for energy-efficiency, 

executing tasks at fcrt may end up being insufficient to finish all task instances by their deadlines, 

due to the unique timing constraints of each task. As we also consider inter-core heterogeneity 

caused by within-die process variations, some cores have lower maximum frequency and higher 

static power values than for the ideal case. For each core, unsupported v-f levels are blocked to 

ensure system stability. 

The utilization of a periodic task (U) is defined with respect to the full speed (maximum 

frequency) provided by the processor. A task’s utilization is its execution time under the maximum 

frequency divided by its period: 

 ௜ܷ = ௜ܥ   ௠݂௔௫⁄ܶ ௜  (3) 

The utilization for an entire task set is simply the accumulation of the utilization for all the 

tasks in the set. In preemptive real-time systems, a task set is schedulable by the earliest deadline 

first (EDF) algorithm for a frequency j if it meets the following condition: 

 ௧ܷ௢௧௔௟ ൑   ௝݂௠݂௔௫ (4) 

When total task set utilization is known, the most energy efficient frequency can be deduced 

from this equation, assuming ௝݂  ൒ ௖݂௥௧ [34].  

Also, unlike any prior work, we consider thermal management in an energy harvesting multi-

core processing environment. We assume that each core in the multi-core processor has a digital 

thermal sensor (DTS) implemented to monitor run-time temperature independently [53]. We set 

85°C as the thermal setpoint at which throttling is initiated to halt all processor execution (i.e., 
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throttling threshold = 85°C) [54]. When throttling is triggered, a core must halt execution and shift 

to idle state until its temperature drops to 80°C. 

 

2.2.4. RUN-TIME SCHEDULER 

This module is an important component of the system for information gathering and 

execution control. The scheduler dynamically gathers information by monitoring the energy 

storage medium and multi-core processor state (Figure 12). The gathered data, together with 

offline-profiled information about task execution times and energy consumption on cores informs 

a management algorithm in our scheduler that coordinates operation of the multi-core platform at 

run-time. Each core is eventually assigned a strategy by the scheduler to guide intra-core task 

execution. 

 

2.2.5. SCHEDULING PROBLEM OBJECTIVE 

Our primary optimization objective is to perform task allocation and scheduling at run-time 

such that total task miss rate (or penalty) is minimized. Our technique must react to changing 

harvested energy dynamics to complete as much (critical) work as possible, thus maximizing 

overall system utility and cost effectiveness. Further, our task allocation should be cognizant of 

processor thermal behavior and frequency limits of each core (due to process variations) to ensure 

system stability.  
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2.3. MOTIVATION 

2.3.1. MOTIVATION FOR SEMI-DYNAMIC ALGORITHM 

In this section, we present the motivation for applying our semi-dynamic algorithm to the 

problem of workload and energy management in energy harvesting multi-core systems. 

 

Figure 13 Real-Time Scheduling with Energy Harvesting 

2.3.1.1. IMPORTANCE OF BALANCED WORKLOAD EXECUTION 

As dynamic power consumption in processors is typically a convex function of frequency, 

increasing the processor frequency level can lead to significantly higher power consumption and 

much lower energy efficiency, as shown in Table 1. Imbalances in workload allocation require 

sub-optimally changing voltage-frequency levels that can result in higher power consumption than 

for a balanced workload allocation case. To illustrate this point, we compare average power 

consumption for two different schedules in Figure 13, both of which execute a workload for 4.8 

billion cycles within 8 seconds. The schedule in Figure 13(a) executes with non-uniform speeds 

(800MHz and 400MHz) while the one in Figure 13(b) has uniform execution speed fixed at 

600MHz. A simple analysis based on Table 1 shows that the schedule in Figure 13(b) is more 

energy efficient with average power consumption of 400 mW compared to 535 mW for the 
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schedule in Figure 13(a). This example highlights how maintaining a uniform execution speed is 

critical for energy efficiency, which in turn motivates the need for an intelligent run-time 

management approach that minimizes instances of workload imbalance across cores over time. 

 

2.3.1.2. SDA FRAMEWORK FOR RUN-TIME WORKLOAD DISTRIBUTION 

In this section, we provide a motivational example to illustrate the benefits of our SDA 

framework that integrates energy budgeting to achieve better workload distribution at run-time 

than in existing approaches, under varying solar energy harvesting scenarios.  

 

Figure 14 Motivation for Proposed Semi-Dynamic Approach 

Most prior work deals with dynamic solar energy variations by halting, dropping, or 

speeding up the execution of a current task, changing instantly from an initial schedule deduced 

offline. For energy harvesting aware periodic task set scheduling, the best known prior work, UTB 

[43], also follows this strategy. Although UTB deduces an optimal initial schedule offline 

assuming sufficient energy, it does not cope well with run-time energy variations, and there is 

scope for notable improvements as discussed below:  
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 The task dropping mechanism in UTB reacts to run-time energy shortages passively, only 

when the current task lacks sufficient energy to finish in time. In the motivational example 

shown in Figure 14, we assume a task set with four periodic tasks (τ1 ~ τ4), where each task 

has WCEC of 2.4 million CPU cycles and a task period of 12ms. According to Table 1, 

Equation (3) and Equation (4), UTB initially sets execution frequency to 800MHz so that 

all tasks can finish with the best efficiency if energy is sufficient, as shown in Figure 14(a). 

However, the real challenge arises when the run-time energy budget is insufficient. Let us 

assume that the remaining energy in the energy storage is 7200μJ and harvested power in 

the next 36ms (3 periods) is 200mW, i.e., 200μJ of incoming energy per microsecond. 

After finishing three jobs, the energy storage is depleted, and UTB has to drop jobs due to 

insufficient energy, as shown in Figure 14(b). Only 6 out of 12 job instances are finished 

with UTB, resulting in a high 50% miss rate. With the same energy budget, our proposed 

SDA technique copes with energy shortage by proactively dropping tasks. It drops one 

task, τ4, based on the energy budget which helps to execute the remaining tasks steadily at 

a lower frequency of 600 MHz. According to Table 1, executing at 600MHz corresponds 

to a power consumption of 400mW, which is dramatically lower than 900mW at 800MHz 

due to the nonlinear relation between frequency and power consumption. As can be seen 

in Figure 14(c), all accepted job instances for τ1 ~ τ3 are finished and the overall miss rate 

is 25%, which is significantly lower than the 50% miss rate achieved by UTB. 

 UTB encourages dropping tasks with longer execution time, because finishing them 

requires more energy than other tasks. This biased dropping may be undesirable for real-

time applications, as tasks with longer execution time may represent complex applications 

of high priority. Moreover, it is nontrivial to add priority awareness into UTB due to its 
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passive task dropping scheme mentioned above. Our SDA framework allocates tasks and 

performs task dropping with the awareness of the miss penalty corresponding to each task. 

 On multi-core platforms, UTB partitions tasks into separate sets and then executes each set 

on a core using a single-core scheduling algorithm. However, as all cores are dependent on 

the same energy source, such isolated run-time adjustment is not amenable to learning 

upcoming energy requirements of other cores, leading to sub-optimal schedules. SDA 

avoids inter-core energy resource contention by allocating tasks based on energy budgets 

assigned to each core. In addition, static task partitioning in UTB wastes the flexibility 

provided by a multi-core platform. In contrast, SDA triggers task reallocation dynamically 

for improved results. 

In summary, we found several limitations with the best known prior work on energy 

harvesting-aware energy and workload management. Our SDA scheme is designed to address 

these limitations and improve upon prior work. In the following sections, we discuss other issues 

related to multi-core embedded systems powered by solar energy harvesting. To cope with these 

issues, we exploit the flexibility of SDA to integrate hybrid energy storage, heterogeneity-aware 

task allocation, and run-time thermal management, forming a cross-layer design that improves 

performance, stability, and adaptivity of target systems. 

 

2.3.2. MOTIVATION FOR HYBRID ENERGY STORAGE 

Most prior efforts on harvesting-aware task scheduling assume a near-ideal battery as the 

energy storage medium that is limited merely by its capacity, ignoring other factors such as 

nonlinear efficiency, slow charge rate, and limited lifetime in terms of recharge cycles [55]. When 

applied to real-world platforms, overlooking these factors can result in suboptimal or even 
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unrealistic design and scheduling techniques that diminish system efficiency, stability, and 

lifespan. For example, the rate capacity effect leads to decreasing battery capacity when 

discharging current increases [47]. Supercapacitors present an interesting alternative to batteries 

for energy storage with benefits over electro-chemical batteries, such as orders of magnitude 

higher recharge cycles, ease of charging, and significantly higher energy efficiency. However, high 

capacity supercapacitors are not practical for small-package low-power embedded systems due to 

their significantly lower energy density and higher leakage overhead than an electro-chemical 

battery, even with the state-of-art supercapacitor technology [56]. Recent work has shown that a 

battery-supercapacitor hybrid system can overcome the limitations of both types of energy storage 

mediums [47] [46]. Therefore we employ a hybrid energy storage system for our work. 

 

2.3.3. MOTIVATION FOR HETEROGENEITY-AWARE ALLOCATION 

As CMOS feature sizes continue to scale, process variations in manufacturing are becoming 

more and more prevalent, causing performance asymmetry within a chip. For multi-core 

processors, within-die process variations differentiate critical path delays among cores such that 

the maximum frequencies supported by cores may diverge from their nominal specification [28]. 

Without awareness of this undesirable inter-core heterogeneity, a run-time management scheme 

may distribute excessive workload to slower cores. Even worse, faulty schedules that try to finish 

these excessive workloads will be deployed, ending up with a high miss rate due to energy and 

CPU time being wasted on tasks that cannot be finished in time. Overclocking slower cores is a 

possibility, but is often not a viable option due its high likelihood of causing timing violations on 

the critical path. Thus an appropriate run-time energy management framework must consider inter-

core frequency variations; otherwise it may lower system performance by causing task overloading 
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on certain cores, which can create workload imbalances that also additionally reduce the energy 

efficiency of the entire system. 

 

2.3.4. MOTIVATION FOR RUN-TIME THERMAL MANAGEMENT 

The motivations for considering run-time thermal management for energy harvesting based 

multi-core embedded systems are: 

 Limited power budgets and form factors of embedded systems make it uneconomical, if 

not inapplicable, to apply aggressive cooling techniques used on desktop and server 

systems, such as cooling fans and large heat sinks. With increasing power density and 

absence of active cooling, high performance multi-core embedded processors can easily 

end up causing thermal emergencies during their long operation periods. Such overheating 

of processors is known to harm system reliability and stability. A throughput-focused run-

time management scheme that ignores this risk may fail to maintain system stability and 

end up with thermal runaway. Perhaps most importantly, frequent thermal throttling that is 

initiated in processors to cope with thermal emergencies may end up disrupting balanced 

scheduling strategies, reducing system performance and overall energy efficiency.    

 Due to the inherent nature of solar energy, solar energy harvesting systems tend to receive 

abundant energy to run at full speed around the middle of the day. However, continuously 

executing at full-speed creates excessive heat in the processor package and can lead to 

overheating issues. Around the same time, the ambient temperature is also usually the 

highest in the day (Figure 15), making it even more difficult for the processor to cool down 

around those hours without intervention.  
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 Thus there is a critical need to consider run-time thermal management strategies for energy 

harvesting based embedded systems as thermal issues can have a notable impact on the 

performance, energy efficiency, and reliability of such systems. 

 

Figure 15 An Example of Solar Intensity vs. Ambient Temperature 

 

2.4. PROPOSED RUN-TIME ENERGY AND WORKLOAD MANAGEMENT FRAMEWORK  

2.4.1. SEMI-DYNAMIC ALGORITHM OVERVIEW 

In this section, we present a holistic overview of our novel energy and workload management 

framework based on a semi-dynamic algorithm (SDA). Subsequent sections present more details 

of each major component in our SDA-based framework. 

One of the underlying ideas behind SDA is to exploit time-segmentation during energy 

management, as illustrated in Figure 16. At each specified time interval (epoch), there is a 

reschedule point, where the execution strategy can be adjusted based on the energy budget 

provided by the energy storage system. A time frame between two reschedule points is called a 
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schedule window, within which the strategy specified at the prior reschedule point is in effect until 

the next reschedule point. Thus reschedule points provide dynamic adaptivity needed by the energy 

harvesting aware system to adjust the task execution strategy, while the schedule window enables 

stable execution that utilizes periodic task information for better energy efficiency, as illustrated 

in Figure 14(c). For example, from schedule window 1 to 4 in Figure 16, it can be seen that under 

low energy conditions, SDA maintains execution at optimal low (critical) frequency with different 

number of cores activated. Cores only execute at higher frequency when the energy harvested is 

abundant as in schedule windows 6 and 7. In this manner, SDA can provide better execution 

efficiency to improve performance under variable solar radiance conditions. 

At each reschedule point, we update the execution strategy for the upcoming schedule 

window with a rescheduling scheme composed of three stages:  

 

Figure 16 Illustration of Semi-Dynamic Algorithm 
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 Energy budgeting: This stage estimates the energy budget available for the upcoming 

schedule window based on the status of the hybrid energy storage system. Estimating the 

energy budget decouples run-time system management from energy variations in the 

environment, making it possible to deduce a stable balanced execution strategy that 

maximizes energy efficiency.      

 Workload estimation: This second stage evaluates the amount of workload that can be 

supported by the energy budget, and forks into two separate paths. When energy budget is 

below a threshold, Eth, the first path is chosen with a focus on active-core selection to 

improve energy efficiency under a low energy budget. When energy budget is above Eth, 

the second path is chosen with a focus on variation-aware workload assignment to ensure 

that no core is required to run at a frequency higher than its maximum limit. Note that there 

is no need to consider active core selection and variation-aware assignment at the same 

time, as maximum frequency variation only matters when the energy budget is high and 

active core selection only helps when energy budget is very low (Section 2.4.3.1 and 

2.4.3.2). Additionally, this stage can proactively reduce workload when thermal issues 

arise at run-time.      

 Task rejection and allocation: Based on the amount of workload estimated by the previous 

stage, this stage takes the periodic task set and filters out the subset of tasks that are less 

important. The remaining tasks are accepted for execution and are allocated to cores with 

awareness of core heterogeneity. 
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Figure 17 Design Flow of Our Proposed SDA-Based Framework 

These three stages are organized in an order such that successor stages make use of efforts 

made by previous stages, rather than diminishing them, and are described in the following sections 

(Sections 2.4.2, 2.4.3, and 2.4.4). After the execution strategy is fixed for a schedule window, cores 

apply a dual-speed switching method to improve energy efficiency in the presence of discrete 

frequency levels, which is discussed in Section 2.4.5.  The complete design flow of our proposed 

SDA framework is shown in Figure 17. 

 

2.4.2. HYBRID ENERGY STORAGE SYSTEM AND ENERGY BUDGETING 

In this section, we describe our hybrid energy storage system and its management policy that 

determines the energy budget for the upcoming schedule window, thereby isolating run-time task 

scheduling from fluctuations in solar energy harvesting.  
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2.4.2.1. BATTERY-SUPERCAPACITOR HYBRID ENERGY STORAGE 

Inspired by [46], we propose a hybrid energy storage system with one Li-Ion battery and 

two separate supercapacitors connected by a dc bus, as shown in Figure 18. During each schedule 

window, one capacitor is used to collect energy extracted from the PV array, while the other one 

is used as a power source for system operation or battery charging. At each reschedule point, the 

two supercapacitors switch their roles. Supercapacitors charge the battery only when their saved 

energy exceeds peak requirements of processors running at full speed. The PV array, battery, and 

supercapacitors are coupled with bidirectional dc-dc converters to serve the purpose of voltage 

conversions between components with maximum power point tracking (MPPT) [38] and voltage 

level compatibility. This hybrid battery and dual-supercapacitor design has several advantages 

over a non-hybrid system: 

 The supercapacitors can support embedded processors directly, taking advantage of a much 

lower charging/discharging overhead compared to a battery. 

 The electro-chemical battery offers high capacity to preserve energy especially in scenarios 

with excessive harvested energy. On the other hand, the capacity requirement of 

supercapacitors is much smaller.  

 The supercapacitor with energy buffered during the last schedule window acts as a known 

stable energy source for the system in the upcoming schedule window. Thus our energy 

budgeting does not require energy harvesting power predication. Besides, the stable energy 

source makes it possible to charge the battery with a steady constant current for more 

effective charging [55]. 
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Figure 18 Proposed Hybrid Energy Storage System 

2.4.2.2. HYBRID ENERGY STORAGE BASED ENERGY BUDGET 

We propose an energy budgeting heuristic that selects among energy sources 

(supercapacitors and battery), sets the amount of energy to charge the battery for (Echrg), and 

assigns the energy budget for system execution in the upcoming schedule window (Ebudget), as 

shown in Algorithm 1. The heuristic is based on storage levels of the battery (LVB) and 

supercapacitor (LVC) with range 1, 2, and 3, representing respectively charge level of low, medium, 

and high. LVC is classified into three levels (lines 1-3) based on two thresholds: i) energy budget 

to execute a single core at critical frequency (Ecrt) and ii) energy budget to execute all cores at 

maximum frequency (Emax× NUε_CORE). As we want to avoid battery charging/ discharging 

overhead, there are only two scenarios where the battery is selected as a power source: i) when 

energy harvested in the supercapacitor is below a critical level (LVC = 1); and ii) when battery 

storage level is high (LVB = 3) such that battery overflow becomes a possibility (line 4). The battery 

is charged only when energy in the supercapacitor exceeds peak requirements of the processor 

(lines 12-14). This hybrid storage management and energy budgeting policy is shown in Figure 19.  
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Algorithm 1 Energy Budgeting with Hybrid Energy Storage 
Input:  
(i) Ecap, harvested energy in charged capacitor 
(ii) δVB, battery energy storage level 
(iii) Ecrt, energy budget to execute one core at critical frequency 
(iv) Emax, energy budget to execute one core at maximum frequency 
(v) NUε_CORE, number of cores in embedded processor 
Output: Ebudget, assigned energy budget for next schedule window 
 
  1. if Ecap < Ecrt :      LVC ← 1 
  2. else if Ecap > Emax × NUM_CORE :      LVC ← 3 
  3. else :      LVC ← 2  
  4. if LVB > LVC : 
  5.       set to discharge battery  
  6.       if LVB = 2 :      Ebudget ← Ecrt × NUM_CORE 
  7.       if LVB = 3 :      Ebudget ← Emax × NUM_CORE 
  8. else :  
  9.       set to discharge supercapacitor      
10.       if LVC = 1 :      Ebudget ← 0 
11.       if LVC = 2 :      Ebudget ← Ecap 
12.       if LVC = 3 :  
13.             Ebudget ← Emax × NUM_CORE 
14.             Echrg ← Ecap - Ebudget  

 

 

The resulting energy budget, Ebudget, reflects the amount of energy dynamically collected 

from the energy harvesting system at run-time and can be considered as a stable energy supply for 

the next schedule window so that a uniform execution strategy can be enabled for energy efficiency.   

 

Figure 19 Hybrid Storage Management Policy 
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2.4.3. CRITICAL FREQUENCY, CORE HETEROGENEITY AND THERMAL AWARE 

WORKLOAD ESTIMATION 

This section describes our approach for energy budget-based workload estimation at the 

beginning of each schedule window, which intelligently estimates the optimal workload to be 

allocated for each core while considering energy efficiency, core heterogeneity, and temperature 

distributions. 

At each reschedule point, our scheme first estimates the amount of workload that can be 

supported in the upcoming schedule window using the energy budget provided by the hybrid 

energy storage system. As shown in Figure 17 earlier, this stage forks into two paths based on the 

energy budget threshold, Eth. As discussed in Section 2.2.3, multi-core processors may have cores 

that have a lower maximum frequency due to within-die process variations. We assume that 

within-die variations are measured after manufacturing by variation acquisition methods, such as 

vMeter, proposed in [57], and maximum frequency of each core is considered as known to the run-

time manager. The energy budget threshold, Eth, is defined as the energy budget required for the 

slowest core to run at its maximum frequency. As we assume even the slowest core is able to run 

above critical level, it is always true that Eth > Ecrt.  When the average budget per core is below 

Eth, uniform workload distribution is sufficient to ensure that every core runs below its maximum 

frequency and the run-time manager focuses on active core count selection for energy savings. On 

the other hand, when the average energy budget for each core is higher than Eth, the core 

heterogeneity cannot be ignored and the run-time manager switches to a heuristic that activates all 

cores and estimates workload based on each core’s achievable frequency. Apart from workload 

estimation, this stage also takes core temperatures into consideration for proactive run-time 

thermal management. The final outputs of this stage are the cores to activate and the workload to 
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support in the upcoming schedule window. The following subsections describe the three main 

components of this stage. 

 

2.4.3.1. CRITICAL FREQUENCY-AWARE ACTIVE CORE SELECTION 

We propose a heuristic that selects the number of cores to activate and workload to allocate 

on each core, assuming uniform workload distribution among activated cores. The motivation for 

this active core selection heuristic (that is executed only for low energy budget scenarios) is that 

running a processor below its critical frequency decreases energy efficiency, as can be seen from 

Table 1. This situation can occur when the energy budget is so low that only a small subset of tasks 

can be accepted for execution, i.e., after evenly distributing these tasks to all cores, utilization on 

each core is smaller than maximum utilization supported by the critical frequency. With our active 

core selection heuristic, we can shut down some cores at each reschedule point based on the 

estimated energy budget. The power dissipated by inactive cores is negligible and the remaining 

cores can then receive enough workload to run at critical frequency. Also the associated power 

state switching overhead is minimal as we only trigger core shutdown at reschedule points. 

However, arbitrarily shutting down cores to reach a frequency higher than critical is not always 

optimal. Figure 20 shows the maximum energy-efficiency for different frequencies on the XScale 

processor. Suppose cores execute at point A without shutdown. After shutdown of one core, the 

extra power budget allows us to run the remaining core(s) at higher frequencies such as B, C, or 

D. But not every higher frequency is viable, e.g., frequency D leads to even lower energy efficiency 

than A, before shutdown! Thus it is important to compare resulting energy efficiencies before 

making a core shutdown decision.  
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Figure 20 Energy Efficiency of XScale Processor 

The pseudo code of the active core selection heuristic is given in Algorithm 2a. The core 

shutdown procedure is triggered when the energy budget is unable to support all active cores to 

execute at their critical frequency (line 2). Subsequently (lines 3-10) if one less active core results 

in a better efficiency, į(Unum_core-1) > į(Unum_core), then the scheduler shuts down one core. If the 

energy budget for the current schedule window is extremely low, eventually all cores in the system 

will be shut down to save harvested energy for future execution. Recursively, these steps set the 

number of cores to keep active. Finally, the objective task-set utilization (i.e., the amount of 

workload that the system can support) is obtained by aggregating the supported utilization of each 

core (line 11). As a result of this selection heuristic, the number of cores activated is tightly related 

to the energy budget available.  

Algorithm 2a Active Core Selection and Workload Estimation 
Input:  
(i) Ebudget, energy budget for coming schedule window 
(ii) į(U), dual-speed method energy efficiency profile (see Section 2.4.5)  
      for task utilizations from 0 to 1  
Output: Uobj, objective utilization for next schedule window 
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  1. num_active ← NUM_CORE, Eper_core = Ebudget/num_active 
  2. while Eper_core < Ecrt and num_active > 0 : 
  3.       Enum_core ← Ebudget / num_active 
  4.       Enum_core-1 ← Ebudget / (num_active-1) 
  5.       calculate fnum_core-1 and fnum_core, maximum frequencies supported by  
            Enum_core-1 and Enum_core 

  6.       based on Inequation (4), calculate Unum_core-1 and Unum_core, maximum utilization 
           supported by fnum_core-1 and fnum_core 
  7.       look up profile for δ (Unum_core) and δ (Unum_core-1)  
  8.       if δ(Unum_core-1) > δ(Unum_core) : 
  9.             num_active ← num_active – 1 
10.             update Eper_core , Uper_core  
11. Uobj ← Uper_core × num_active 

 

 

 

2.4.3.2. CORE HETEROGENEITY-AWARE WORKLOAD ESTIMATION 

When per-core average energy budget for the next schedule window, Ebudget/NUM_CORE, 

is above the energy threshold, Eth, we have sufficient energy budget to activate all cores and the 

main concern shifts to assigning workload in a heterogeneity-aware manner (Algorithm 2b). The 

key idea is to recursively assign workload and energy budget to the slowest unassigned core based 

on its frequency limit until energy budget per core is below a threshold for the remaining 

unassigned cores. The inputs of this heuristic are the energy budget for the upcoming schedule 

window, Ebudget, number of cores on the chip, NUM_CORE, and, peak frequency supported by 

each cores, fpeak(core_id). Initially, all cores will be activated for the next schedule window (line 

1) as the energy budget is capable of executing all cores above critical level, i.e., 

Ebudget/NUM_CORE > Eth > Ecrt. In the main loop, we first find the slowest core and calculate Ulow 

which is the maximum workload utilization that the core can support (lines 4-5). This utilization 

is accumulated into the objective workload utilization of the system, Uobj, and the corresponding 

energy consumption, Elow, is deduced from the energy budget (line 6). Then the heuristic updates 
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(line 7, 8) and compares (line 3) per-core average budget and threshold energy again for the rest 

of cores. After the main loop, the remaining energy budget will be evenly distributed to the 

unassigned cores and the final utilization is calculated (lines 9-11). 

Algorithm 2b Heterogeneity-Aware Workload Estimation 
Input: fpeak(core_id), peak frequency supported by each cores 
Output: Uobj, objective workload utilization of system for next window 
 
  1. num_active ← NUM_CORE 
  2. num_unassigned ← NUM_CORE 
  3. while Eper_core > Eth and num_unassigned > 0 : 
  4.       low_id ← core_id of unassigned core with lowest peak frequency 
  5.       Ulow ← fpeak(cur_id)/fmax 

  6.       Uobj ← Uobj + Ulow, Ebudget ← Ebudget – Elow 

  7.       num_unassigned ← num_unassigned – 1 
  8.       update Eper_core, Eth for unassigned cores 
  9. calculate fper_core, maximum frequencies supported by Eper_core 
10. based on Inequation (4), calculate Uper_core, maximum utilization supported by fper_core 
11. Uobj ← Uobj + Uper_core × num_unassigned        

 

 

2.4.3.3. PROACTIVE RUN-TIME THERMAL MANAGEMENT  

As discussed in Section 2.2.3, processors typically enforce throttling mechanisms to avoid 

thermal run-away. However, when a throttling decision is enforced, a processor has to drop all 

executing tasks and halt the system until temperature drops below a certain value. A system that 

encounters throttling often has frequent and dramatic changes in execution speed, which will 

hamper system energy efficiency. For this reason, in addition to the baseline enforced throttling 

mechanisms in processors, we propose to integrate a proactive reaction threshold, Tpro, at a slightly 

lower temperature than the baseline throttling threshold, Tth, to trigger measures that reduce system 

workload proactively with the goal of minimizing overheating and balancing workload over time. 

The details of our proposed scheme are summarized as follows: 
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 Cores with higher temperature than others are always given priority when there is a chance 

of core shutdown in Algorithm 2a;  

 Cores with temperature above a proactive reaction threshold, Tpro, only run at critical 

frequency, so as to finish their limited workload with the highest energy efficiency and low 

power dissipation;   

 When system peak temperature exceeds Tpro, the core which is operating at the peak 

temperature will be shut down to address the thermal hotspot in the system. 

Thus, our run-time thermal management approach proactively manages workload to limit 

processor overheating so that occurrences of enforced throttling can be reduced for more stable 

execution, compared to traditionally used reactive throttling solutions.  

 

2.4.4. TASK PENALTY AND CORE HETEROGENEITY AWARE TASK REJECTION AND 

ALLOCATION 

This section describes how periodic tasks are allocated to cores or dropped, based on the 

awareness of individual task penalties and available core heterogeneity. 

Algorithm 3 Heterogeneity Aware Task Rejection and Assignment 
Input:  
(i) Uobj, objective utilization from Algorithm 2 (a or b) 
(ii) ψ, full task set assigned to system for scheduling 
(iii) Uψ, total utilization of task set ψ 

Output: fopt(core_id), optimal execution frequency of each core for upcoming schedule window  

 
  1. sort task set ψ in non-decreasing order of tasks’ penalty densities 
  2. ψaccepted ← ψ, Uaccepted ← Uψ 
  3. for n = 1 to N : 
  4.       if Uaccepted > Uobj : 
  5.             reject nth task 
  6.             Uaccepted ← Uaccepted – U(nth task)  
  7.       else  
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  8.             done with task rejection, break 
  9. sort accepted task set ψaccepted in non-increasing order of task utilization 
10. for n = 1 to Naccepted : 
11.       filter out cores that has Un + Ucore > Ucore_max 
12.       assign nth task to active core with the lowest utilization 
13. get assigned task utilization for each active core, U(core_id) 
14. based on Inequation (4), calculate fopt(core_id) 
15. execute assigned tasks on each core with dual-speed heuristic 
 

To add task priority control in SDA, we distinguish a task’s importance by assigning a miss 

penalty to each task [35]. In this stage, our framework rejects tasks with lower penalty density 

(Section 2.2.2) first, rather than simply drop tasks with longer execution time, to allocate the 

limited energy budget to more important tasks for miss penalty reduction. In particular, for the 

case when all tasks are assigned an identical miss penalty, this scheme reduces miss penalty 

equivalent to miss rate. We describe our task rejection heuristic below in Algorithm 3.   

In lines 1-8, we sort all tasks in non-decreasing order of the tasks’ penalty densities so that 

we can then reject tasks iteratively until the remaining tasks’ total utilization is lower than the 

objective utilization given by Algorithm 2 (described earlier). The remaining tasks form the 

accepted task set and are assigned to all active cores using a simple but effective approach in lines 

9-12. This approach not only enables priority control among tasks, but also distributes workload 

to each core as evenly as possible for balanced execution under a stable frequency. Also it ensures 

that the assigned workload will not exceed a core’s maximum capability. After all accepted tasks 

are assigned, we obtain the actual utilization and optimal frequency of each core for the next 

schedule window. 
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2.4.5. DVFS SWITCHING-AWARE DUAL-SPEED METHOD 

The previous section showed how we distribute accepted tasks among cores and deduce the 

theoretical optimum execution frequency for each core, which, however, is unlikely to be 

supported directly by processors with discrete frequency levels. To address this problem this 

section introduces a dual-speed method, which approximates the objective optimal frequency by 

switching between its two adjacent discrete frequencies [58]. For convenience, we denote the 

adjacent higher frequency as fhigh, the lower one as flow, and the objective optimal frequency as fobj.  

 

Figure 21 Energy Efficiency and Switching Proportion for the XScale Processor 
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Firstly, to guide the switching between two adjacent discrete frequencies, we need to 

calculate the proportion of cycles to execute with fhigh, denoted as αhigh. Assume that the total 

number of cycles to be executed is C. Emulating fobj with a combination of flow and fhigh implies 

finishing C within the same amount of time, which is: 

௢݂௕௝ܥ  =  αℎ௜௚ℎܥℎ݂௜௚ℎ +  ሺͳ − αℎ௜௚ℎሻܥ௟݂௢௪  (5) 

From this equation, we can deduce the proportion αhigh for each objective frequency, fobj, as 

 αℎ௜௚ℎሺ o݂ୠ୨ሻ = ͳ o݂ୠ୨ −⁄ ͳ l݂ow ⁄ͳ ୦݂୧୥୦ −⁄ ͳ l݂ow ⁄  (6) 

As flow and fhigh are determined by fobj, there is a one-to-one correspondence between αhigh and fobj, 

and the values of αhigh(fobj) can be calculated offline for a given task set. Based on the definition of 

energy efficiency in Section 2.2.3, the theoretical efficiency of the dual-speed method įdual(fobj) 

can also be obtained offline as the objective frequency divide by the average power consumption. 

Based on the processor power-frequency model given in Table 1, the calculated αhigh(fobj) and 

įdual(fobj) is shown in Figure 21. We can see that even with dual-speed switching, the efficiency 

will decrease when fobj drop below critical frequency, fcrt = 400 MHz. Thus for fobj < fcrt, we should 

disable dual-speed switching and fix execution speed at fcrt.  

However, it is non-trivial to get close to theoretical efficiency in a dual-speed method 

implementation, due to the following difficulties:  

 Excessive DVFS switching results in massive switching overhead that considerably 

reduces energy efficiency [59];  

 Executing at flow for too long can cause task timing violations; 

 Executing at fhigh for too long results in timing slack before the arrival of new job instances 

of periodic tasks, which is wasted as idle cycles, thus reducing energy efficiency. 
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To address these issues, we implement a simple and intuitive dual-speed mechanism with 

inter-task switching, which aims to execute as many tasks as possible before switching to another 

frequency. This mechanism is described below:  

 In order to prevent unnecessary DVFS switching, we denote number of cycles continuously 

executed at fhigh to be Chigh and set a threshold Cthresh. When Chigh = Cthresh, whether 

switching to flow or staying at fhigh brings about the same energy consumption, i.e., 

ℎ௜௚ℎ݌  × ௧ℎ௥௘௦ℎܥ αℎ௜௚ℎ⁄ℎ݂௜௚ℎ = ௢௣௧݌ × ௧ℎ௥௘௦ℎܥ αℎ௜௚ℎ⁄௢݂௣௧ + ʹ ×  ௦௪௜௧௖ℎ (7)ܧ

where popt is the average power consumption of executing with two frequencies to emulate 

fopt and Eswitch is DVFS switching overhead. The value of Cthresh(fobj), can be easily 

calculated offline. From Equation (7), when Chigh < Cthresh, the system forbids switching to 

flow, as it leads to higher energy cost.  

 To avoid task timing violation at flow, our dual-speed method always sets execution speed 

to fhigh initially. After finding a proper chance to switch to flow, execution frequency jumps 

back to fhigh as soon as a certain number of cycles have been executed at flow such that 

Chigh/(Chigh+Clow) = αhigh, according to the specified proportion.   

 To avoid undesirable idle cycles at fhigh, our dual-speed method switches to flow if number 

of unfinished job instances is not greater than 1, indicating possible shortage of workload. 

On the other hand, this step also helps to reduce number of switches as it halts switching 

to flow when job instances in the queue are sufficient. 

The steps above are summarized in Algorithm 4. Note that in line 3, frequency switching 

will not be triggered if fobj < fcrt, as executing below critical frequency must be avoided.    
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Algorithm 4 Dual-Speed Method with Inter-Task Switching 
Input:  
(i) fobj, objective optimal frequency 
(ii) αhigh(fobj) and Cthresh(fobj), switching proportion and threshold profile  
                                              for fobj from 400 to 1000 MHz 
 
 1. fcur ← fhigh 
 2. while true : 
 3.       if fobj > fcrt : 
 4.             if fcur = fhigh : 
 5.                   Chigh ← Chigh + 1          
 6.                   if jobpool.size ≤ 1 and Chigh > Cthresh : 
 7.                         fcur ← flow 

 8.            if fcur = flow : 
 9.                  Clow ← Clow + 1 

10.                  if Clow > Chigh × (1- α)/ α : 
11.                        fcur ← fhigh 

12.                       Clow←0, Chigh←0 
13.       if at reschedule point : 
14.             update fobj based on Inequation (3) 
15.             find adjacent frequencies such that flow < fopt < fhigh 
16.             fetch ߙℎ௜௚ℎ(fobj) and Cthresh(fobj) from profile 

 

To illustrate the advantage of our dual-speed method with inter-task switching, we compare 

it to three alternatives: (i) single-speed method which finds a higher than optimal frequency 

directly supported by the processor and does not switch frequency at all; (ii) intra-task method that 

aggressively toggles speed during executions for every task while considering switching overhead; 

and (iii) ideal case where intra-task method is applied, with switching overhead set to 0 to achieve 

theoretical best case efficiency. The comparison study calculates task miss rate and sets per core 

utilization to 100%. As can be seen in Figure 22, the single-speed scheme shows the worst result 

as it always executes at fhigh when energy is available. The intra-task method works better by 

switching between two DVFS levels. However, its miss rate is still significantly higher than the 

ideal case due to excessive DVFS switching overhead. By presetting switching threshold and 

monitoring available workloads in the job pool, our inter-task switching scheme finds appropriate 

switching points and results in a miss rate that is close to the ideal case. 
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Figure 22 Comparison of Frequency Selection Methods 

2.5. EXPERIMENTAL RESULTS 

2.5.1. EXPERIMENT SETUP 

We developed a simulator in C++ to implement and evaluate the effectiveness of our 

proposed SDA framework for run-time energy and workload management. The processor’s power 

model was described in Table 1. Additionally, we ignore the timing delay to wake up cores from 

sleep state (~order of milliseconds) once per schedule window as it has a negligible impact on 

overall performance due to the much larger window size (~order of minutes). The energy 

harvesting profile is obtained from historical weather data from Golden, Colorado, USA, provided 

by the Measurement and Instrumentation Data Center (MIDC) at the National Renewable Energy 

Laboratory (NREL) [60]. Our harvesting-based embedded system only executes during daytime 

over a span of 750 minutes, from 6:00 AM to 6:30 PM and shuts down when solar radiation is 

unavailable.  

In most experiments, we use synthetic task sets so than we can explore corner cases and have 

control over the spectrum of workload characteristics during testing. We generated 50 random 
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tasks for each test set configuration in our experiments. Each task set has an average task execution 

time randomly selected from 5 to 10 seconds. We vary the periods of all tasks in a task set based 

on the desired level of utilization required from the entire task set. We also ran experiments with 

the MiBench benchmark suite of embedded applications [61].  

 

Figure 23 Miss Rates for Different Schedule Window Sizes 

To determine the appropriate schedule window size for the SDA algorithm we ran several 

experiments with different window sizes. Figure 23 shows a set of results (miss rates) for our 

random task with 100% utilization on a core. We found that when window size increases from 1 

to 5 minutes, there is a notable decrease in task miss rate. The reason behind this trend is that 

smaller schedule window sizes cause more task instances to span across the boundary of two 

different schedule windows, disrupting the newly assigned execution schedules of the next 

window. On the other hand, when we continue increasing window size beyond 5 minutes, the 

performance benefits become negligible while the demand on supercapacitor capacity to buffer 

energy harvested during a schedule window increases linearly. We found this trend to be consistent 
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for simulations with multiple cores as well. Thus we set 5 minutes as the size of schedule window 

in SDA for our experiments, to balance system performance and supercapacitor capacity 

requirements. 

 

2.5.2. COMPARISON BETWEEN SDA AND PRIOR WORK 

In this first set of experiments, we compare overall miss rates between HA-DVFS [41], UTB 

[43] and our proposed SDA framework for different number of homogeneous cores ranging from 

1 to 32 with insufficient energy harvesting, for which the energy storage system is not stressed 

with surplus energy, so that the comparison in this subsection is focused on scheduling 

performance of SDA compared to prior work, without considering the advantages from our 

improved energy storage system design. We modeled the state-of-the-art utilization-based 

algorithm (UTB) in our environment. In addition, we also extended the energy harvesting-aware 

DVFS technique (HA-DVFS) for multi-core systems with balanced task partitioning across 

multiple cores, to enable another comparison point. With increasing number of cores, we scale 

harvesting power, number of tasks, and total task utilization linearly so as to keep a consistent and 

reasonable per core workload and energy budget. 

First, we experiment on a workload with per core utilization set to 40%, which has moderate 

energy requirements such that the system can execute at critical frequency for highest efficiency 

when energy is sufficient. The results are shown in Figure 24. HA-DVFS can be seen to have a 

much higher miss rate as it does not make use of periodic task information and thus underestimates 

future workload. For the other two techniques, the advantage of SDA over UTB is small for the 

single-core setup because task utilization is not very high. However, with increasing number of 

cores, SDA’s advantage expands considerably even though per-core workload and energy budget 
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stays the same. One reason for this trend is that UTB uses an isolated task dropping scheme on 

each core, which is based on energy availability prediction for one upcoming task, ignoring 

workload on other cores that compete for the same energy source. In contrast, SDA performs task 

rejection before assigning accepted tasks to different cores; thus the workload is adapted to a 

system-wide energy budget that has been predicted. Furthermore, SDA actually benefits from 

increasing number of cores as it exploits the flexibility to shut down some cores for higher 

efficiency. 

 

Figure 24 Miss Rate Comparison with Light Workload 

We also compare UTB and SDA under a much heavier workload, with per core utilization 

set to 100%, results for which are shown in Figure 25. Not surprisingly, the heavier workload 

expands the performance gap between UTB and SDA. The reason for the increasing performance 

gap is that the higher workload implies more stringent timing and energy constraints, under which 

SDA’s balanced run-time adjustment becomes more effective, as discussed in Section 2.3.1.2. As 
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a result, the most significant difference between these two techniques can be seen for the 32-core 

platform scenario, where SDA achieves approximately 70% miss rate reduction compared to UTB. 

Additionally, the results of SDA have less variation on multiple task sets compared to UTB, which 

indicates that task set randomness has less impact on SDA as its dynamic adjustment is based on 

the scope of the entire task set, and not just individual tasks. 

 

Figure 25 Miss Rate Comparison with Heavy Workload 

Additionally, we compare performance of HA-DVFS, UTB, and SDA by scheduling a 4-

core system running a set of applications (jpeg, qsort, dijkstra, patricia, blowfish, susan, tiff) 

extracted from MiBench, a benchmark suite of embedded applications [61], with total utilization 

of 160%, where every application executes recursively based on its assigned period with each 

application execution request considered as an independent task instance. The result in Table 2 

shows higher miss rates compared to average values with a similar 4-core configuration in Figure 

24. The reason lies in the application set’s higher average length of task instances compared to 
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most of the randomly generated tasks, making it harder to balance workload among cores and 

leading to higher overhead when a task instance’s life cycle spans across two schedule windows, 

as discussed earlier in Section 2.5.1. 

Table 2 Miss Rate Comparison on MiBench 
Scheduling Technique HA-DVFS UTB SDA 

Total Miss Rate 58.5% 33.8% 25.8% 
 

 
2.5.3. ANALYSIS OF SDA WITH HYBRID ENERGY STORAGE 

This set of experiments explores the performance benefits of our proposed SDA algorithm 

together with the proposed hybrid energy storage system. Compared to the previous section that 

focuses on scenarios with insufficient energy harvesting, experiments in this section assume per-

core nominal harvested energy scaled up by a factor of two, so that the system receives more than 

sufficient energy occasionally and surplus energy needs to be stored to support execution when 

harvesting power drops. We use the approach from [47] to model rate capacity effect of batteries 

by scaling efficiency based on discharge current. Also we implemented four variants of SDA, 

namely (i) BA-SDA: SDA for battery-only system with doubled battery capacity; (ii) CA-SDA: 

SDA for supercapacitor-only system with doubled supercapacitor capacity; (iii) MISS-SDA: SDA 

with hybrid storage and focus on miss rate reduction; (iv) HY-SDA: SDA with hybrid storage and 

focus on miss penalty reduction. These variants of our approach were compared against UTB. 

Additionally, UTB, BA-SDA and CA-SDA rely on a moving average algorithm for energy 

harvesting prediction [41] as they do not have dual-supercapacitor design to buffer harvested 

energy for upcoming schedule windows. All task sets have utilization of 100% for this set of 

experiments. Additionally, tasks are assigned a miss penalty ranging from 1 to 100 with a uniform 

distribution. We compared average overall miss penalty and miss rate for these various techniques, 
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with increasing multi-core platform complexity (from 1 to 16 cores). Capacities of batteries and 

supercapacitors, and nominal harvested energy for the entire system scale linearly with number of 

cores in the processors. 

 

Figure 26 Overall Miss Penalty Comparison 

The results for this experiment are shown in Figure 26 and Figure 27. Similar to the 

conclusion in the previous section, both BA-SDA and CA-SDA have lower miss penalty (Figure 

26) and miss rate (Figure 27) than UTB, and their advantage expands with increasing number of 

cores.  However, their advantage over UTB is less significant compared to what we see in the 

previous section (Figure 25). The reason is two-fold: firstly, with doubling of per-core nominal 

harvested energy in this set of experiments, the stringent energy constraint, which highlights the 

difference between UTB and SDA, is relaxed significantly; secondly, with more than sufficient 

energy harvesting, management of surplus energy becomes the new bottleneck that partially 

diminishes the advantage of SDA. Respectively, the performances of BA-SDA and CA-SDA 

mainly suffer from lower charging/discharging efficiency of the battery and limited capacity of the 
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supercapacitor. Also, CA-SDA has advantage over BA-SDA with increasing number of cores in 

the system as systems with more cores have higher demands on discharging current; and 

supercapacitors, with their high power density, serve high current load more efficiently than 

batteries [47]. 

 

Figure 27 Overall Miss Rate Comparison 

For MISS-SDA and HY-SDA, integration with our hybrid storage system managed by the 

SDA-based policy results in a much lower miss penalty and miss rate compared to UTB, BA-SDA 

and CA-SDA. Even though this significant performance improvement is due to the introduction of 

a hybrid storage system in MISS-SDA and HY-SDA, the efficient management of such a hybrid 

storage system is made possible by the semi-dynamic scheme of SDA, which offers flexibility at 

reschedule points to select the appropriate energy source and deduce optimal energy budgets at the 

start of each schedule window. Additionally, the difference between MISS-SDA and HY-SDA is 

in how they prioritize minimization of miss rate and miss penalty. The HY-SDA scheme leads to 
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the lowest task miss penalty, with up to 65% reduction compared to UTB, while MISS-SDA results 

in a slightly higher miss penalty than HY-SDA as it focuses on miss rate reduction. As expected, 

the miss rate for MISS-SDA is the lowest and has less variation compared to HY-SDA (Figure 

27).  

 

Figure 28 Miss Rate Reduction for HY-SDA Compared to UTB 

We also further explored the results for miss rate reduction obtained with HY-SDA 

compared to UTB for each schedule window. These results on a 16-core system are shown in 

Figure 28. We can see that the HY-SDA results in a higher miss rate than UTB initially, because 

it shuts down all cores until the supercapacitor is sufficiently charged to avoid executing with 

inefficient frequencies under the critical level. Subsequently, higher miss rate reduction for HY-

SDA is achieved when harvesting power is low or changes dramatically, reflecting the advantage 

that HY-SDA has over UTB to cope with stringent energy budgets and its ability to filter out solar 
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harvesting variations. Moreover, HY-SDA results in a more significant miss rate reduction after 

12 PM. The reason for this is that HY-SDA’s high energy efficiency leads to more energy savings 

in the battery, which enables more tasks to be executed and meet their deadlines. 

 

2.5.4. ANALYSIS OF CORE HETEROGENEITY-AWARE MANAGEMENT 

Next, we study the performance impact of core heterogeneity caused by within-die process 

variations. Based on results from [48] we set core frequency variation within a die as 33% and 

static power variation as 50% with normal distribution. When a frequency level cannot be reached 

by a core, the system always conservatively sets frequency to the next lower discrete frequency 

level. We tested three different setups, namely (i) Variation-Unaware: SDA with core 

heterogeneity-aware techniques disabled. Also we assume that the system will force cores to 

execute at frequencies no higher than their maximum capability to ensure stability; (ii) Variation-

Aware: SDA with our core heterogeneity-aware techniques; and (iii) Homogeneous: an ideal case 

assuming no heterogeneity. 

The results for this study are shown in Figure 29. It can be seen that without awareness of 

within-die process variation, the system suffers from a very high miss rate, as the assigned 

workload exceeds the actual execution capabilities of slower cores on the die, resulting in a faulty 

schedule which wastes energy and CPU time on tasks that cannot be finished in time. In 

comparison, with core heterogeneity-aware workload distribution, the system avoids faulty 

scheduling and alleviates the impact of process variation. However, as expected, the results are 

inferior to that obtained for the ideal case which has homogeneous cores unaffected by process 

variation, because of the degradation in maximum throughput supported and non-uniform 

workload distribution forced by inter-core heterogeneity. 
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Figure 29 Overall Miss Rate Comparison with Core Heterogeneity 

2.5.5. ANALYSIS OF RUN-TIME THERMAL MANAGEMENT  

In this section, we explore the impact of run-time thermal management in an energy 

harvesting environment. While prior work [36] has considered the effect of temperature on 

maximum power point tracking in energy harvesting systems, it has not considered the impact of 

thermal-induced overheating on task execution throttling and slowdown in energy harvesting 

embedded systems. To simulate a scenario with high overheating risk (as discussed in Section 

2.3.4), we evaluate our approach for a very heavy workload with per core utilization set to 100%. 

Our environmental profile considers high solar intensity and ambient temperatures from 9AM to 

3PM. For thermal analysis, we integrated our simulator with HotSpot, a thermal modeling and 

analysis tool [62]. We set package parameters of the Hotspot tool to model a 16-core processor 

with no power-hungry cooling system (only a heat spreader and heat sink is assumed). We assume 

die area of our chip to be a 16mm × 16mm, with cores placed in a mesh topology. Then we set 

processor package size as 60mm × 60mm, which is also the size of heat spreader and heat sink. In 
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our tests, we compare the performance of three schemes: (i) Non-Throttling: A basic SDA scheme 

with no run-time thermal management scheme. This is representative of current state of the art 

scheduling techniques for energy harvesting systems that ignore thermal issues; (ii) Throttling: We 

again consider our SDA scheme without thermal-awareness, but here system hardware can 

measure temperature and reactively enforce throttling when temperature exceeds the throttling 

threshold; (iii) Proactive: This is our SDA approach that integrates proactive core slowdown and 

task redistribution from Section 2.4.3.3 to proactively address hotspots in the systems.  

 

Figure 30 Peak Temperature of Various Thermal Management Techniques 

The results for the three schemes are shown in Figure 30. It can be seen that the Non-

Throttling scheme suffers from high peak temperatures for extended periods of time. Such high 

temperatures will significantly impact the system stability and reliability. In contrast, the reactive 

Throttling scheme is able to control temperature to stay below the throttling threshold for a 

majority of the time. In Figure 30 the red dashed line indicates the throttling threshold at 85°C and 
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the green dashed line shows the threshold at 80°C at which throttling terminates. Note that peak 

temperature seldom drops to 80°C in simulation. This is due to the fact that other un-throttled cores 

take over the role of thermal hotspots in the system from the throttled cores. Our TA-SDA 

Proactive scheme proactively performs core slowdown when temperature exceeds a proactive 

reaction threshold (set to 82°C, and shown with the blue dashed line shown in Figure 30). This 

scheme helps to increase energy efficiency by avoiding unbalanced frequencies created by thermal 

throttling. Table 3 shows how our proactive approach not only reduces peak temperature, but also 

reduces the number of throttling instances, which allows more efficient scheduling management, 

culminating in an overall improved task miss rate. The results highlight the benefits of proactive 

run-time thermal management. 

Table 3 Comparison between Throttling and Proactive Schemes 

Thermal management scheme average peak 
temperature 

number of 
throttlings 

overall task miss 
rate 

Throttling 79.60°C 94 35.92% 
Proactive 78.53°C 74 35.33% 

 

 
2.5.6. ANALYSIS OF SCHEDULING OVERHEAD 

To compare scheduling overhead between UTB, HA-DVFS and our proposed SDA 

framework, we executed the scheduling procedures of these schemes on the gem5 simulator [63] 

with a single thread at 1GHz to observe average execution time overhead averaged over all task 

instances when managing a 16-core system running 160 periodic tasks with a scheduling 

granularity of 1ms. The results of this study are shown in Figure 31, in which we can see that 

SDA+DUAL has less scheduling overhead (with respect to performance and energy) compared to 

UTB while providing more features such as hybrid storage-based energy budgeting, thermal 
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management, and dual-speed switching. The main reason for the lower overhead with 

SDA+DUAL is that it is designed to reuse intermediate information computed at the beginning of 

each schedule window, avoiding frequent on-the-fly scheduling procedure invocations during task 

execution, with dual-speed method as the exception. The HA-DVFS also has much lower overhead 

than UTB’s, as well as SDA+DUAL, as most of its features are triggered only when a new task 

instance is available. We were also interested in quantifying the overhead of our dual-speed 

method, which is perhaps the most complex run-time component in our scheduling framework. 

We therefore also present the scheduling overhead for SDA-DUAL, which disabled the dual-speed 

feature. It can be seen that without the dual-speed method, our scheduler execution time and energy 

overheads become lower than overheads for UTB and HA-DVFS.  

 

Figure 31 Comparison of Scheduling Overhead 

2.6. CHAPTER SUMMARY 

In this chapter, we proposed a novel framework for run-time energy and workload 

management based on a semi-dynamic algorithm (SDA), for real-time multi-core embedded 
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systems with solar energy harvesting. Compared to the best known previous work, our approach 

is promising for energy-harvesting based multicore embedded systems: 1) up to 70 % miss rate 

reduction and 65% miss penalty reduction for SDA compared to the best know prior work, UTB; 

2) Analysis with system overheating considerations establishes the need for combing proactive 

thermal management during scheduling, as done in our SDA approach, to reduce both miss rate 

and average peak temperature among cores; 3) SDA with core-heterogeneity awareness presents 

miss rate reduction of 49% compared to SDA without such awareness when process variation 

effects on maximum frequency and power are considered. Overall, SDA provides a holistic 

solution with many novel components, integrating a new hybrid energy storage system, task drop 

penalty awareness, run-time thermal management, and core heterogeneity awareness. Moreover, 

the design methodology of a semi-dynamic framework for resource management is the core idea 

of our research, which will be applied to address further issues in the rest of this dissertation. 
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3. TEMPLATE-BASED SCHEDULING ALGORITHM FOR TASK GRAPHS 

 

The problem of scheduling weighted directed acyclic graphs (DAGs) on a set of 

homogeneous cores under optimization goals and constraints is known to be NP-complete [64]. In 

this chapter, we address the even more difficult problem of scheduling on systems that rely entirely 

on limited and fluctuating solar energy harvesting. The limited energy supply prevents the 

deployment of complex scheduling algorithms at run-time. Moreover, execution of applications 

that will not have enough energy or computation resources to complete due to shortages in 

harvested solar energy can lead to significant wasted energy with no beneficial outcome. 

Fortunately our concept of semi-dynamic scheduling proposed in last chapter can be applied to 

address these challenges. Thus in this chapter, we propose a hybrid workload management 

framework (HyWM) that combines template-based hybrid scheduling with our energy budget 

window-shifting strategy derived from semi-dynamic framework in last chapter to decouple run-

time application execution from the complexity of DAG scheduling in the presence of fluctuations 

in energy harvesting. Basically, our framework generates schedule templates at design-time with 

an emphasis on energy efficiency and uses lightweight online management schemes to react to 

run-time system dynamics. Moreover, our framework also considers varying aspect of issues like 

stochastic task execution time, random transient faults, and progressive aging effects.  

 

3.1. BACKGROUND AND CONTRIBUTION 

Due to the variable nature of solar radiation intensity, the most suitable role of embedded 

systems with limited-scale solar energy harvesting as the only energy source is to host non-critical 

applications that allow for imperfect operation. Thus it may not be desirable to consider such 
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systems for real-time applications with hard deadlines, such as life-support mechanisms and 

powertrain controllers, for which any deadline miss is a critical system failure that may have 

catastrophic consequences. Instead, it is more practical to deploy such systems without energy 

guarantees for best-effort execution of soft or firm real-time applications where a deadline miss is 

not considered a failure of the entire system but a degradation of performance.  

Consider an example of such a best-effort embedded system powered by energy harvesting 

that is deployed for continuous structural integrity sensing at a remote location on a bridge. For 

each operation interval, a usable raw data point can be collected from sensor modules by executing 

certain real-time control tasks such as data accessing, data post-processing and data-transmission. 

In the event of an energy shortage, the system stays operational with certain data collection 

intervals ignored such that overall sensing quality is sacrificed in favor of ensuring system 

continuity.  

To achieve best-effort operation with limited resources, the deployment of an intelligent run-

time resource management strategy is not only beneficial but also essential. Such a strategy must 

possess low overhead, so as to not stress the limited energy resources at run-time. As shown in 

section 1.3, several prior efforts have explored workload scheduling for such real-time embedded 

systems with energy harvesting. However, all of these efforts are aimed at independent task 

execution models, and cannot be easily extended to more complex application sets that possess 

inter-node data dependencies, such as workloads represented by direct acyclic graphs (DAGs). 

Due to aggressive scaling in CMOS technology, emerging multicore processors are also 

facing ever-increasing likelihoods of transient faults (i.e., soft errors) and permanent faults (i.e., 

hard errors). Co-optimization of reliability and energy-efficiency have thus become a critical 

design concern in recent work on task scheduling [65] [66] [67] [68] [69] [70] [71] [72] [73]. 
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However none of these efforts focus on energy harvesting based systems. For low-power 

embedded systems that scale down voltage and frequency for energy savings, the rate of transient 

fault occurrences, caused by a variety of factors, e.g., high-energy cosmic neutron or alpha particle 

strikes, and capacitive and inductive crosstalk [74], is more severe as lower supply voltage leads 

to drastically increased susceptibility to transient faults [75]. Additionally, embedded systems with 

energy harvesting must also consider the impact of hard errors because a major incentive of 

deploying such systems is long-term system autonomy, which requires an extended system 

lifetime. For these reasons, we believe it is necessary to study workload management schemes that 

consider both transient errors and aging effects to enhance system reliability and lifetime for low-

power systems with energy harvesting.  

In this chapter, we propose a low-overhead soft and hard reliability-aware hybrid workload 

management framework (HyWM) to address the problem of allocating and scheduling multiple 

applications on multicore embedded systems powered by energy harvesting, and in the presence 

of transient and aging faults. Compared to prior work, the novelty of our work can be summarized 

as follows:  

 A hybrid application mapping and scheduling framework is proposed that integrates a 

rigorous design-time analysis methodology with lightweight run-time components for low-

overhead energy management in solar energy harvesting based multicore embedded 

systems for the first time. 

 We propose two different approaches to solve the DAG scheduling problem at design-time, 

generating schedule templates composed of energy-efficient application execution 

schedules for various energy budgets that can be encountered at run-time. 
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 Our allocation scheme for workload partitions considers different wear-out profiles of 

cores and adjusts workload distribution accordingly to maximize lifetime of the entire 

system. 

 Our run-time scheduler utilizes a novel lightweight run-time heuristic that co-manages run-

time slack reclamation and soft/hard error handling in a multicore computing environment 

without diminishing the benefits of schedule templates generated at design-time. 

 

3.2. RELATED WORK  

Many prior research projects have focused on the problem of run-time management and 

scheduling for embedded systems with energy harvesting, as we discussed in section 1.3. However, 

none of them take inter-task dependency into consideration. 

Several other efforts have explored mapping and scheduling for task-graph based workloads. 

Luo et al. proposed a hybrid technique to find a static schedule for known periodic task graphs at 

design-time with the flexibility to accommodate aperiodic tasks dynamically at run-time [76]. 

Sakellariou et al. proposed hybrid heuristics for DAG scheduling on heterogeneous processor 

platforms [77]. Coskun et al. proposed a hybrid scheduling framework that adjusts the task 

execution schedule dynamically to reduce thermal hotspots and gradients for MPSoCs [54]. 

However, all of these prior efforts cannot maintain performance when applied to energy 

harvesting systems that possess a fluctuating energy supply at run-time. Some of these efforts also 

do not focus on energy as a design constraint. Our work specifically targets the problem of energy-

aware scheduling of multiple co-executing task graphs in energy harvesting based multicore 

platforms. 
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A few efforts have addressed the problem of reliability and energy co-optimization during 

scheduling. For soft-error reliability, Zhu et al. proposed an approach to insert a recovery task 

during slack time obtained from executing multiple tasks [65]. To address the conservative nature 

of individual-recovery based approaches, Zhao et al. proposed a shared recovery technique that 

shares a small number of recovery nodes among all nodes executing tasks, to meet a system wide 

reliability target [66]. This SHR technique also has been applied to address reliability during 

scheduling of DAG-based workloads [67]. For hard failures, prior work has studied aging effects 

that lead to permanent system failure, such as electro migration (EM), negative bias temperature 

instability (NBTI), and time dependent dielectric breakdown (TDDB). Coskun et al. proposed a 

framework to evaluate architecture-level effects of task scheduling and power management on 

lifetime of multi-processors [71]. An analytical model to estimate lifetime reliability of multi-

processors with a periodic workload was proposed in [72]. Basoglu et al. quantitatively evaluated 

the long-term impact of NBTI-aware task-to-core mapping for multi-processors [73]. None of these 

works target systems with unstable supply from energy harvesting. In our work, unlike prior efforts 

on integrating reliability during scheduling, we do not aim to satisfy a target reliability. Instead, 

our focus is on alleviating the impact of soft and hard errors to finish as many applications correctly 

as possible and extending expected lifetime for a system with a time varying and stringent energy 

budget from energy harvesting. 

 

3.3. PROBLEM FORMULATION  

This section focuses on hybrid allocation and scheduling of multiple task-graph applications 

with real-time deadlines on multicore embedded systems with solar energy harvesting, in the 

presence of soft and hard errors, as shown in Figure 32. Although key components and assumptions 
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of system platform, like energy harvesting system and processor model, are similar to those in 

Chapter 2, problem formulated in this chapter is more complex with emphasis on several new 

design considerations such as task dependencies, soft errors, and system lifetime. 

 

Figure 32 DAG Scheduling on Multicore Embedded System Platform with Solar Energy 

3.3.1. PERIODIC REAL-TIME WORKLOAD WITH TASK GRAPHS 

The main change in problem formulation of this chapter is the introduction of workload 

model with dependencies. We consider multicore systems hosting multiple recursive real-time 

applications modeled as periodic task graphs, ψ: {G1, … , GNg}, such as the examples shown in 

Figure 33. Each of the Ng applications is represented by a weighted directed acyclic graph (DAG), 

denoted as Gi: (ti, ei, Ti, Di,j), i∈{1, …, Ng}, which contains a set of task nodes, ti: {τ1, …, τj} with 

worst-case execution cycles, WCECi, (number of CPU clock cycles needed to finish a task i in the 

worst case); and a set of directed edges, ei: {İ1, …, İj}, used to represent inter-task dependences 

with communication (inter-core data transfer) delay from source to destination nodes represented 

as COMMsrc,dst. A task node can have multiple dependences to/from other nodes, forking/rejoining 
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execution paths in the task graph. We assume that every task graph’s execution paths rejoin at its 

last task node, which accumulates results and concludes execution. 

 

Figure 33 Example of Applications Modeled as DAGs 

Every periodic task graph has a unique period, Ti and nodes in the graph are assigned relative 

deadlines, Di,j. At the beginning of each period, a new instance of a task graph will be dispatched 

to the system for execution. A task node’s relative deadline, Di,j, is the time interval between the 

task graph instance’s arrival time and node firm deadline (see Section 1.2.2). A task graph instance 

misses its deadline if it cannot finish executing any nodes before their deadlines. In this work, we 

assume that the deadline of each task graph’s last node Di,-1 equals Ti, i.e., for a periodic task graph, 

its instance has to finish execution or be dropped before the arrival of the next instance. 

In this chapter, we assume the actual time (clock cycles) required to execute a task node may 

vary at run-time due to variations in memory system behavior and randomness in application 

procedures. We therefore use probability distributions to model variations in task node execution 

time [78] and assume that clock cycles consumed by a task node never exceed its WCEC.  

Similarly, to assess the computation intensity of an application relative to a processor’s full 

capability, the computation utilization of a periodic task graph (Ucomp) is defined as the sum of 

execution times of all its task nodes for the highest processor clock frequency divided by its period: 
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௖ܷ௢௠௣ ௜ =   ∑ ௝ܥܧܥܹ ௜,௝ ௠݂௔௫⁄
௜ܶ , ݅ ∈ {ͳ, … , ௚ܰ} (8) 

Also we define communication utilization of a periodic task graph (Ucomm) as the sum of the 

communication times for all of its edges divided by the task graph’s period: 

௖ܷ௢௠௠ ௜ =   ∑ COMM௞௜௞ ௜ܶ , ݅ ∈ {ͳ, … , ௚ܰ} (9) 

The computation/communication utilization of the entire multi-application workload is simply the 

accumulation of utilizations for all task graphs, which provides an indication of the overall 

workload intensity of a DAG application set. 

 

3.3.2. SOFT ERROR MODEL 

A system is said to be real-time if the total correctness of an operation depends not only upon 

its logical correctness, but also upon the time in which it is performed [14]. In most part of this 

dissertation, we focused on timing constraints of task instances by counting miss rate in regard to 

firm deadlines. In this chapter, we also look into logical correctness when counting miss rate and 

assume that task nodes can produce incorrect output due to soft errors occurring during execution 

and such incorrect outputs can be detected by verification logic executed at the end of regular task 

execution. To recover from a soft error, the task node with a faulty output must be re-executed, 

otherwise the output of the entire task graph will become invalid, which is counted as a task graph 

miss. We apply the exponential model proposed in [75] to simulate soft error rates, as shown in 

Equation (10): 

λሺ݂ሻ =  λ଴ͳͲௗሺଵ−௙ሻଵ−௙೘�೙ 
(10) 

where λ0 is the average error rate corresponding to the maximum frequency, d is a constant that 

indicates the sensitivity of error rate to voltage scaling, fmin is the normalized minimum core 
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frequency, and f is the normalized core frequency. It can be observed that lower power execution 

at lower supply voltage (and thus frequency) to save energy can result in an exponential increase 

in soft error rate [67].   

 

3.3.3. HARD ERROR MODEL 

In addition to soft errors, we also consider aging effects that eventually lead to hard errors 

(permanent failure) in electronic systems. We adapt an analytical method to capture system-level 

lifetime reliability in embedded systems with multiple cores. In the rest of this section we first 

introduce how aging effects are modeled in our work and then describe a method to calculate 

reliability of a multicore embedded system according to a specified level of failure tolerance. 

Many prior research efforts model hard reliability characteristics of systems using mean-

time-to-failure (MTTF) prediction [71]. However, for aging effects, it is more intuitive to model 

the changing of reliability over time due to progressive wear-out [79]. In our work, we estimate 

instantaneous hard reliability of a core, which reflects the possibility of core’s avoidance of 

permanent failure within a time epoch. We utilize a Weibull distribution, which is one of the most 

widely used and versatile lifetime distributions in reliability engineering, to characterize per-core 

wear-out over time [80]. The instantaneous hard reliability of a single core at time t, R(t), can be 

expressed as:                                                           

�ሺݐሻ = ݁−ሺ௧�ሻ�
 (11) 

where α and β represent the scale parameter and slope parameter in the Weibull distribution, 

respectively. While β is a constant that reflects architectural characteristics of core, α is highly 

dependent on the operating history of the core. Thus in our reliability model we need to deduce 
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the relationship between the scale parameter α and operating history of the processing core. Firstly, 

by the definition of a Weibull distribution, MTTF of a core can be calculated as 

ܨܶܶܯ = ߙ × �ሺͳ + ͳߚሻ (12) 

Then we can represent the scale parameter α as: 

ߙ = ሺͳ�ܨܶܶܯ + ͳߚሻ (13) 

This representation makes it possible to calculate the scale parameter for a core’s instantaneous 

hard reliability model by adapting various MTTF-based hard error models, such as electro 

migration (EM), time dependent dielectric breakdown (TDDB), and negative bias temperature 

instability (NBTI) [71] [72] [73]. In this work we focus on EM-based aging, the MTTF model for 

which can be expressed as:  

ܨܶܶܯ = ܬ଴ሺܣ  −  ௖௥௜௧ሻ−௡݁ா�௞� (14)ܬ

where A0 is a material-related constant, J = Vdd × f × pi [71], and Jcrit is the critical current density. 

Then we have 

ߙ = ଴ሺܣ ௗܸௗ × ݂ × ௜݌ − ௖௥௜௧ሻ−௡݁ா�௞��ሺͳܬ + ͳߚሻ  (15) 

where Vdd, f, and T can be controlled by our workload management framework. 

To approximate aging effects over time, we use a fixed time epoch of length ∆ݐ as the basic 

time unit, for which averaged core frequency, supply voltage and temperature are applied to the 

above model for hard reliability calculation. According to [72], the reliability of a core at time 

epoch tw, as the result of accumulated wear-out effects in previous time epochs from t0 to tw-1, can 

be approximately calculated as: 
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�ሺݐ௪ሻ = ݁−ሺ∑ ∆௧�ሺ௧�ሻ�−భ�=బ ሻ�
 (16) 

Also, MTTF of a core can then be represented as 

ܨܶܶܯ = ∑ × ݐ∆  �ሺݐ௜ሻ∞௜=଴     (17) 

For multicore systems, it is essential to consider not just reliability of each core individually, 

but rather the impact of aging on the entire system. We define a system-level failure threshold (h) 

as the maximum number of core failures allowed before the entire system is considered to have 

failed. For example, if h=0, the system fails as soon as one core fails, i.e., all cores must maintain 

their functionality to keep system up. The hard reliability of a system for this case is: 

�௦௬௦ሺݐ௪ሻℎ=଴ = ∏ �௞ሺݐ௪ሻ�௞=ଵ    (18) 

where N is number of cores in a system. For general cases, where failure threshold h has a non-

zero value, the hard reliability of system can be calculated as shown below: 

�௦௬௦ሺݐ௪ሻℎ =  �௦௬௦ሺݐ௪ሻℎ−ଵ + ∑ (∏ ሺͳ − �௞ሺݐ௪ሻሻ  ×௞∈ி ∏ �௞ሺݐ௪ሻ௞∈{ଵ,…,௡}∖ி )   ி ⊂{ଵ,…,௡}|ி|=ℎ                          ℎ ∈ [ͳ, ܰ − ͳ]          (19) 

In the above equation, hard reliability of the system is calculated recursively, such that reliability 

of the system with failure threshold h equals reliability of the system with threshold of h-1 plus 

the probability of the system to have exactly h cores failed. Different cores usually have different 

hard reliabilities due to uneven workload distribution among them, therefore when calculating 

probability of a certain number of cores failed, it is essential to enumerate all cases in combination 

and sum up their probabilities. 
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3.3.4. RUN-TIME SCHEDULER 

This module is an important component of the system for run-time information gathering 

and dynamic application execution control. The online scheduler gathers information by 

monitoring the energy storage medium and the multicore processor (Figure 32). The gathered 

information, together with preloaded schedule template library generated by the offline scheduler 

for the given workload (discussed further in Section 3.5), allows the run-time scheduler to 

coordinate operation of the multicore platform at run-time.  

 

3.3.5. PROBLEM OBJECTIVE 

The primary objective of our workload management framework is to allocate and schedule 

the execution of a workload composed of multiple application task graphs (DAGs) arriving 

periodically and running in parallel simultaneously at run-time, such that total task graph miss rate 

is minimized. Our framework must react to changing run-time scenarios, such as varying harvested 

energy budgets, variations in task execution time, and random transient faults, to schedule as many 

of the task graph instances as possible without overloading the system with complex re-scheduling 

calculations at run-time. The framework must also consider slack reclamation to aggressively save 

energy and support soft-error handling to avoid finishing task graphs with incorrect output (which 

is counted as a task graph miss). As a secondary objective, the framework must take aging effects 

into consideration to maximize overall system lifetime. 

 

3.4. HYBRID SCHEDULING FRAMEWORK: MOTIVATION AND OVERVIEW 

The problem of scheduling weighted directed acyclic graphs (DAGs) on a set of 

homogeneous cores under some optimization goals and constraints is known to be NP-complete 
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[64]. This paper addresses the even more difficult problem of scheduling on systems that rely 

entirely on limited and fluctuating harvested energy. The limited energy supply prevents the 

deployment of complex scheduling algorithms at run-time. Moreover, execution of applications 

that will not have enough energy or computation resources to complete due to shortages in 

harvested solar energy can lead to significant wasted energy with no beneficial outcome.  

 

Figure 34 Overview of Hybrid Workload Management Framework 

To address these challenges, we propose a hybrid workload management framework 

(HyWM) that combines template-based hybrid scheduling with an energy budget window-shifting 

strategy derived from semi-dynamic framework proposed in Chapter 2 to decouple run-time 

application execution from the complexity of DAG scheduling in the presence of fluctuations in 

solar energy harvesting. An important underlying idea in this framework, as shown in Figure 34, 

is time-segmentation during run-time workload control that creates an independent stable energy 
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environment for run-time scheduling within each segment. The time of system execution is 

partitioned into schedule windows of identical length, which is referred to as the hyper-period of 

the DAG workload. An energy budget is assigned to a schedule window at its beginning, based on 

the amount of harvested and unused energy from the previous window. This conservative budget 

assignment scheme, called energy budget window-shifting, can delay utilization of harvested 

energy slightly to ensure that dynamic variations in energy harvesting do not halt the execution of 

applications in subsequent windows. The run-time scheduler knows the amount of energy that is 

available at the beginning of each window, and selects the best-fit schedule template generated at 

design-time based on this energy budget. 

In the following sections, we describe our proposed framework in detail. Section 3.5 

describes two design-time scheduling template generation approaches. Section 3.6 presents a run-

time scheduler with aging-aware allocation of workload partitions, lightweight slack reclamation, 

and integrated soft error handling heuristics. Experimental results to validate our framework are 

presented in Section 3.7. 

 

3.5. OFFLINE TEMPLATE GENERATION  

In this section, we propose and discuss two different approaches to solve the DAG 

scheduling problem at design-time. Both approaches generate schedule templates composed of 

energy-efficient execution schedules for various energy budgets. The first approach is based on 

mixed integer linear programming (MILP) that ensures schedule optimality for maximum 

performance. The second approach is an analysis-based template generation (ATG) heuristic that 

is faster and more scalable than MILP, to accommodate larger problem sizes with acceptable 

compromise in schedule optimality. 
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3.5.1. MILP-BASED OFFLINE TEMPLATE GENERATION 

We formulated an MILP problem to aid with the generation of optimal task scheduling 

templates at design-time. The MILP formulation aims to minimize miss rate for DAG instances in 

a schedule window under a given energy budget constraint. The constructed formulation is solved 

multiple times offline with different energy budget constraints to generate a set of schedule 

templates for the run-time scheduler to select. As our formulation focuses on workload 

management within an independent schedule window, in this section we assume periodic task 

graphs in set ψ are unrolled into a set of all task graph instances that arrive within a schedule 

window, ψ+: {GI1,…,GINi}. Our target processor has Nc cores, each with Nl discrete frequency 

levels.  

 

3.5.1.1. INPUTS AND DECISION VARIABLES 

For our MILP formulation, we provide several inputs that represent the energy budget and 

characteristics of the target workload and platform, as shown in Table 4. The energy budget 

parameter (ENGY_BGT) allows different schedule template outcomes, such that each of them can 

best match the available energy budget. The WCETj,l and ENGYj,l parameters are calculated based 

on worst case execution cycles (WCEC) of every task node for every frequency level supported by 

the processing cores (see Table 1). 

Table 4 Inputs for MILP Formulation 

Inputs Description 
EGY_BGT energy budget of the schedule template to generate 
ARRIVALi arrival time of task graph instance i 
DDLINEi,j deadline of task graph instance i node j  
WCETj,l worst-cast execution time of task node j at frequency level l , l ≠ 0  

ENGYj,l  
energy consumption of task node j at frequency level l, when l = 
0, ENGYj,0 = 0 
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COMMsrc,dst 
communication delay when preceding node src and descendent 
node dst are allocated to separate cores 

Ni, Nt, Nl, 
and Nc 

number of task graph instances, number of task nodes, number of 
frequency levels, and number of cores 

            † In our formulation, task nodes can be indexed in two different ways: 
               1) Local ID: tuple (i, j) for task node j of task graph i 
               2) Global ID: single variable j for task node j in the entire set 
 

Table 5 Decision Variables in MILP Formulation 

Variables Description 
missi binary variable to indicate if task graph instance i is missed 

start(i,j) 

Execution start time of task graph i on node j. Note that we 
also use variable endi,j as the end time of execution. Our 
schedule does not consider task preemption so that  endi,j = 
starti,j + WCETi,j  

freqj,l 
binary variable which indicates if task node j is assigned 
with frequency level l  

allocj,k 
binary variable which indicates if task node j is mapped to 
core k, k ≠ 0 

decj,j’ 
binary variable which indicates if task nodes j and j’ are 
NOT mapped to the same core (decoupled) 

befj,j’ 
binary variable which indicates if task node j is scheduled 
before j’ 

 

There are two major requirements for decision variables in our MILP problem: (i) they must 

form a complete representation of a feasible execution schedule; and (ii)  they should make it 

possible to represent all constraints and objectives as linear formulations. Table 5 shows decision 

variables used in our formulation. The binary indicators of task graph miss, missi , are used to 

construct the major part of the objective function. For freqj,l , when l = 0, it indicates that task node 

j is not scheduled for execution and is thus to be dropped. The indicators decj,j’ and befj,j’ are used 

to construct constraints that arrange timings of task nodes without direct dependencies.  
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3.5.1.2. OPTIMIZATION OBJECTIVE 

The major objective of the MILP formulation is to minimize the number of misses of task 

graph instances in a schedule window. Additionally, we include an auxiliary objective: the 

percentage of energy budget used, so that the MILP optimization also searches for a schedule with 

the least energy consumption possible. Note that this auxiliary objective does not sacrifice 

minimization of number of task graph misses for less energy consumption, as the energy usage 

percentage, with value no greater than 1, always has less impact on the objective function value 

than any single task graph instance miss. The objective formulation is shown below: 

Min:    ∑ + ௜ݏݏ݅݉ ∑ ∑ ሺܩܰܧ ௝ܻ,௟ × ௝,௟ሻ�௟௟=଴�௧௝=ଵݍ݁ݎ݂ ⁄ܶܩܤ_ܻܩܧ  �௜
௜= ଵ  (20) 

 

3.5.1.3. CONSTRAINTS 

The constraints in our formulation guarantee the satisfaction of the energy budget and 

correctness of the execution schedule for the target workload and platform. The key constraints 

are described as follows: 

 Energy constraint for a schedule window: Total energy consumption of all task nodes at 

their assigned frequency levels should be less or equal to the energy budget: 

∑ ∑ሺܩܰܧ ௝ܻ,௟ × ௝,௟ሻ�௟ݍ݁ݎ݂
௟=଴

�௧
௝=ଵ  ൑  (21) ܶܩܤ_ܻܩܧ

 Timing constraints for task graph scheduling: We formulate multiple constraints, which 

when combined together form a complete timing constraint for all task graph instances and 

their task nodes, as illustrated in Figure 35. 
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Figure 35 Timing Constraints for Periodic Task Graph Set 

o Timing constraints for graph instances: The two constraints below confine start time 

of the first task node and end times of task nodes with deadlines to ensure that timing 

requirements of their corresponding task graph instances are satisfied, as illustrated in 

Figure 35 (a.1, a.2). ݐݎܽݐݏሺ௜,ଵሻ ൒ ௜ܮܣܸܫ��ܣ − ܯ × ݅        ௜ݏݏ݅݉ ∈ [ͳ, ௜ܰ] (22) 
  ݁݊݀ሺ௜,௝ሻ = ሺ௜,௝ሻݐݎܽݐݏ  + ∑ሺܹܧܥ ሺܶ௜,௝ሻ,௟ × ሺ௜,௝ሻ,௟ሻ�௟ݍ݁ݎ݂

௟=ଵ  (23) 

  ݁݊݀ሺ௜,௝ሻ ൑ ௜,௝ܧܰܫܮܦܦ + ܯ × ݅        ௜ݏݏ݅݉ ∈ [ͳ, ௜ܰ], ݆ ∈ [ͳ,  [ݐܰ
 

(24) 

We use a sufficiently large constant, M, in the formulation to equivalently represent 

“if” statements that cancel out constraints when missi = 1 (graph instance dropped). The 

constraints can be canceled out when missi = 1 because large values of M ensure that 

the inequality is satisfied for any variable values in range. In the rest of this paper, we 

use the same approach for “if” statements. However, for the purpose of intuitive 

representation, the following sections show “if” statements explicitly.  
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o Timing constraints for task nodes with dependencies: The type of constraints shown 

below model dependencies by forcing destination task nodes to start only after their 

predecessor nodes have finished. Also the constraints take communication cost into 

consideration when two dependent nodes are decoupled (not allocated to the same 

core), as illustrated in Figure 35 (b.1, b.2): �� ݉݅ݏݏ௜ = Ͳ: ݁݊݀ሺ௜,௦௥௖ሻ + ௦௥௖,ௗ௦௧ܯܯܱܥ × ݀݁ܿ௦௥௖,ௗ௦௧ ൑  ሺ௜,ௗ௦௧ሻݐݎܽݐݏ
  ݅ ∈ [ͳ, ௜ܰ], ሺܿݎݏ, dstሻ ∈ ,  ௜ ܩ ݂݋ ݏ݁݃݀݁  ௜ܩ ∈ ψ+ 

(25) 

 

o Timing constraints for task nodes without dependencies: The type of constraints shown 

below address the fact that task nodes allocated to the same core cannot overlap their 

execution times, as each core executes only one task at a time without preemption, as 

shown in Figure 35 (c). ݀݁ ௝ܿ,௝′ ൑ ʹ − ௝,௞ݏܿ݋݈݈ܽ −  ௝′,௞ (26)ݏܿ݋݈݈ܽ
                                            ݆ ∈ [ͳ, ,[ݐܰ ݆′ ∈ [ͳ, ,[ݐܰ ݆ ≠ ݆′, ݇ ∈ [ͳ, ܰܿ] 

 ݀݁ ௝ܿ,௝′ ൒ ௝,௞ݏܿ݋݈݈ܽ + ′௝′,௞ݏܿ݋݈݈ܽ − ͳ (27) 
                 ݆ ∈ [ͳ, ,[ݐܰ ݆′ ∈ [ͳ, ,[ݐܰ ݆ ≠ ݆′ 

                                                         ݇ ∈ [Ͳ, ܰܿ], ݇ ∈ [ͳ, ܰܿ], ݇ ≠ ݇′ 
 

These constraints represent relations between task node allocation variables, alloci,k, 

and node pair decoupling variables, decj,j’. The constraint in (26) ensures that the pair 

decoupling variable is equal to 0 when task nodes are on the same core. The constraint 

in (27) forces the decoupling variable to be 1 when two task nodes are found to be 

allocated to different cores. 
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With the value of decj,j’ available, the following constraints are used to avoid timing 

conflicts for every pair of task nodes:  ܾ݁ ௝݂,௝′ + ܾ݁ ௝݂′,௝ − ݀݁ ௝ܿ,௝′ = ͳ (28) 
  �� ܾ݁ ௝݂,௝′ = Ͳ:        ݁݊݀௝′ <  ௝ (29)ݐݎܽݐݏ

  �� ܾ݁ ௝݂′,௝ = Ͳ:        ݁݊݀௝ < ′௝ݐݎܽݐݏ  (30) 
  

                                  ݆ ∈ [ͳ, ,[ݐܰ ݆′ ∈ [ͳ, ,[ݐܰ ݆ ≠ ݆′         for (28-30) 
 

The constraint in (28) implies that the task node j should be scheduled either before or 

after task node j’ when they are allocated on the same core. Based on the scheduled 

order of these two tasks, the constraint in (29 and 30) ensures that the task node only 

starts when earlier scheduled task nodes are finished. When two task nodes are 

decoupled to two different cores, the constraints in (29 and 30) cancel out [81]. 

 

 Constraints for target platform: The type of constraints shown below guarantee that only 

one frequency level and at most one core are selected for execution of each task node: 

∑ ௝,௟ݍ݁ݎ݂ = ͳ,�௟
௟=଴         ݆ ∈ [ͳ, ௧ܰ] (31) 

∑ ݋݈݈ܽ ௝ܿ,௞ ൑ ͳ,�௖
௞=ଵ         ݆ ∈ [ͳ, ௧ܰ] (32) 

௝,଴ݍ݁ݎ݂ �� = Ͳ:     ∑ ݋݈݈ܽ ௝ܿ,௞ = ͳ,     ݆ ∈ [ͳ, ௧ܰ]�௖
௞=ଵ  

 

(33) 

A task is indicated as dropped in the generated schedule when its frequency level is set 

to 0. The constraint in (33) ensures that all tasks that are not dropped will be allocated 

to a core; otherwise they may end up being executed on a “ghost core” to escape timing 

constraints with other tasks. 
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All of the above constraints are necessary to create a correct, feasible and optimal set of 

schedule templates, for a set of chosen energy budgets. We also establish additional constraints 

(not shown for brevity) to eliminate obviously sub-optimal solutions and reduce the search space 

for the MILP solver. 

 

Figure 36 Analysis-Based Schedule Template Generation Heuristic 

3.5.2. FAST HEURISTIC-BASED OFFLINE TEMPLATE GENERATION 

The MILP optimization approach can provide optimal static schedule templates when online 

performance is the primary goal and the complexity of the workload is not excessive. For problems 

with larger sizes, however, the complexity of MILP optimization will increase dramatically such 

that the execution time of the MILP solver becomes impractical, even for design-time exploration. 
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Thus we propose another novel analysis-based template generation (ATG) heuristic that 

emphasizes scalability and fast solution generation with an acceptable compromise on the 

optimality of generated schedule templates. 

The outline of our proposed ATG method is illustrated in Figure 36. The main idea in ATG 

is to iteratively analyze and improve performance of tentative execution schedules based on 

feedback from step-by-step simulation, which detects energy inefficient events to help make 

informed updates to the tentative schedule that is evaluated in another round of analysis. ATG also 

has an in-built checkpoint mechanism to save system status so that a new round of analysis after a 

rewind event (discussed later) saves time before a modification on a tentative schedule takes effect. 

The three main components of ATG are outlined below: 

Firstly, Algorithm 5 shows the steps to generate an initial tentative schedule for ATG based 

on a specified energy budget level. The algorithm starts out by finding the workload utilization 

that can be supported by a given energy budget level (step 1~3). Then the schedule accepts a subset 

of task graphs for execution and drops the remaining task graphs (step 4~11), while ensuring that 

task graphs with lower WCECs are more likely to be accepted and the total utilization of the task 

graphs satisfies the supportable workload utilization for the given energy budget. The generated 

initial schedule conservatively rules out some obviously sub-optimal portions of the solution space 

during scheduling and reserves enough headroom for upcoming iterative analysis and scheduling. 

The resulting initial schedule does not include core allocation and priority assignment of task nodes 

yet, which will be decided by the list scheduling algorithm used in a later stage.  

Algorithm 5 Initializing of Tentative Schedule Template 
Input:  
(i) ψ, task graph set to be scheduled 
(ii) EGY_BGT, specified energy budget for one schedule window  
(iii) Twin, duration of a schedule window 
(iv) num_cores, number of cores in system 
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(v) fmax, maximum frequency of processors 
(vi) UGi, utilization of periodic task graph Gi 
Output: 

(i) missi, binary variables to indicate is task graph Gi is missed/dropped in schedule   
(ii) freqj, assigned frequency level of task node τj, value range [0, Nl] 
 
  1. avg_power ← (EGY_BGT/Twin)/num_cores 
  2. find fref, the highest frequency that can be supported by avg_power   
  3. Uref ← fref / fmax 
  4. Uaccepted ← 0 
  5. sort ψ according to WCEC of each task graph 
  6. while Uaccepted < Uref : 
  7.       find the task graph with lowest WCEC, Gi 
  8.       missi ← FALSE †     
  9.       for τj in all task nodes of Gi : 
10.             freqj ← fref 
11.       Uaccepted ← Uaccepted + UGi 
† Default values of all elements in missi for all task graphs is TRUE  

 

Secondly, a list scheduling based algorithm is adapted to our problem and applied during 

iterative analysis, as shown in Algorithm 6. The algorithm is divided into two parts: Part I is 

concerned with task priority assignment, while Part II deals with allocation and execution order 

scheduling of task nodes.  

First, we discuss the priority assignment in Part I. In our application model, not all task nodes 

in a task graph will have deadlines assigned to represent timing requirements of the corresponding 

real-time application (see section 3.3.1). For task nodes with deadlines assigned, we refer to their 

associated deadlines as explicit deadlines. On the other hand, for tasks nodes without explicitly 

assigned deadlines, there still exists a latest-time-to-finish for each of them to allow all remaining 

task nodes with explicit deadlines to finish. Thus tasks without explicitly assigned deadlines can 

be said to have implicit deadlines. We use implicit or explicit deadline to represent priority of a 

task node, as the earlier the deadline is, the more urgent it is to finish the task node to avoid a 

deadline miss for the entire task graph.  
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Algorithm 6 shows the heuristic in Part I that calculates implicit deadlines of all task nodes 

by using a nested function to traverse the entire task graph starting from task nodes with explicit 

deadlines assigned (step 1~4). Then in step 5~9, the nested function is called to back-traverse from 

nodes with explicit deadlines to predecessor nodes, calculating implicit deadlines of other task 

nodes in a depth-first manner. As a task node can have multiple successor nodes in a task graph, 

multiple values of implicit deadline can be derived from different calculation paths or different 

explicit deadlines of nodes. To address this issue, steps 7 and 8 ensure that only the earliest value 

among all derived ones is kept as a task node’s implicit deadline. An illustrative example of this 

priority (implicit deadline) assignment heuristic is shown in Figure 37.  

 

Figure 37 An Illustration Example of Implicit Deadline Calculation 

Part II of Algorithm 6 shows the steps for allocating and scheduling task nodes during each 

simulation step. For task node allocation, a task pool is used to collect task nodes that are ready to 

be allocated and each core has a record of WCET required to finish all task nodes already assigned 

to it. A good allocation scheme should distribute task nodes to cores so that their workloads are as 



94 
 

evenly balanced as possible. In steps 10~15, we use a heuristic that is similar to a first-fit 

decreasing algorithm for the bin-packing problem [82], which sorts task nodes in decreasing order 

based on their WCETs and then iteratively allocates the task node with highest WCETs to cores 

with lowest WCETs accumulated for execution. The scheduling of task nodes on each core is 

performed based on the earliest implicit dead line first (EiDF) algorithm (steps 16~18), which is 

essentially EDF that uses implicit deadlines generated in part I. With multiple task graphs to be 

scheduled at the same time, EiDF gives priority to task nodes in the critical path of different task 

graphs, after comparing their implicit deadlines. 

Algorithm 6 List Scheduling Based Approach for Task Scheduling 
Part I Task node priority (implicit deadline) assignment 
           (Called every time tentative schedule is changed)  
Input:  
(i) ψ, task graph set to be scheduled 
(ii) DD_LINEi,j, deadline of task graph instance i node j 
(iii) WCETj, worst cast execution time of each task node in task graph 
(iv) COMMsrc,dst, communication delay between node src and node dst 
Output: implicit_priorityj, implicit deadlines as priority indicators of task node τj  
 
      priority_assign(): 
  1. for Gi in ψ :    
  2.       for τj in task nodes of Gi with deadline constraints :    
  3.             dead_priorityj ← DD_LINEi,j 
  4.             call nested_priority(τj) 
   
     nested_priority(τj):   

  5. for τj’ in all predecessor nodes of τj : 
  6.       implicit_deadline ← implicit_priorityj –WCETj – COMMj’, j 
  7.       if implicit_priorityj’ > implicit_deadline : 
  8.             implicit_priorityj’ ← implicit_deadline 
  9.       call nested_priority(τj’) 
 
 
Part II List scheduling method 
             (Called in every simulation step)  
Input:  
(i) sys_pool, system task pool, containing task nodes that are ready to allocate 
(ii) core_poolk, task pool for core k, containing allocated task nodes that are ready to execute 
(iii) CORE_WCETk, remaining WCET of all task nodes assigned to core k 
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(iv) implicit_priorityj, implicit deadlines as priority indicators of task node τj 
Output:  
(i) allocj, allocation results of task node τj, value range [0, num_cores] 
(ii) selected task node to execute in current simulation step 
 
      list_schedule(): 
10. sort sys_pool according to WCET of each node    
11. for all task nodes in sys_pool : 
12.       find τj in sys_pool with highest WCETj 
13.       find core k, with lowest CORE_WCETk 
14.       allocate τj to core k, allocj ← k † 
15.       CORE_WCETk ← CORE_WCETk + WCETτj 
16. for all cores in system : 
17.       sort core_poolk according to implicit deadline of each tasks 
18.       select task node with earliest implicit deadline to execute 
† Allocated task is not ready to execute until preceding dependencies are resolved 

Lastly, at the core of the ATG heuristic is a checkpoint-based iterative analysis method, as 

shown in Algorithm 7. At the beginning of each simulation step, the ATG heuristic saves the 

current system status as a checkpoint for newly arriving task graphs, so that the simulation can 

rewind to this checkpoint saved before the schedule for the new task graph takes effect (step 2~3). 

Subsequently, a list scheduler is invoked and the system executed for one simulation step with the 

tentative schedule (step 4~5). When energy inefficient events are detected during execution, the 

ATG heuristic will update the execution schedule accordingly and rewind to a previous checkpoint 

for another round of evaluation with an updated schedule (step 6~16). If ATG detects depletion of 

the energy budget before finishing all accepted task graphs in the current schedule (energy 

violation event), one accepted task graph with highest WCEC will be dropped in the updated 

schedule and simulation rewinds for re-analysis (step 6~9). If ATG detects a task node that missed 

its implicit or explicit deadline (timing violation event), which implies that a deadline miss for the 

task graph it belongs to is inevitable, the tentative schedule will be updated to boost execution 

frequency of related task nodes: the task node in the critical path with the lowest frequency 

assigned will get a frequency boost (step 11~13); and if there exists a task node from another task 
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graph allocated to the same core that finished just before the nodes with timing violation, it will 

also get a frequency boost (step 14~15).  

Note that WCETs of selected task nodes change with their boosted frequencies, thus we call 

a nested priority assignment function starting from these nodes to recalculate implicit deadlines of 

their predecessors. Then simulation rewinds for re-analysis with the new schedule (step 16). If the 

current simulation step detects no energy inefficient events, the simulation continues to the next 

step (step 17~18). When the entire schedule window is analyzed without energy inefficient events, 

the analysis process ends and the updated schedule is saved as a schedule template for the specified 

energy budget (step 19).  

Algorithm 7 Checkpoint-Based Iterative Analysis 
Input:  
(i) EGY_BGT, specified energy budget for one schedule window  
(ii) Twin, duration of a schedule window 
(iii) implicit_priorityj, implicit deadlines as priority indicators of task node τj  
(iv) initial tentative schedule from Algorithm 5 
Output: static schedule template for energy budget of EGY_BGT 
 
  1. while Tcur < Twin :  
  2.       if new task graph Gi arrives : 
  3.             checkpointi ← all system status (include Tcur)  
  4.       alloc ← list_schedule() 
  5.       execute for one step using tentative schedule  
  6.       if EGY_BGT depleted during execution : 
  7.             find arrived task graph with highest WCEC, Gi 
  8.             missi ← TRUE 
  9.             all system status ← checkpointi 
10.       else if node τj of task graph Gi missed its implicit deadline : 
11.             find the critical path in Gi that ends at τj  
12.             find τj’ , the task node with lowest frequency assigned 
13.             freqj’ ← freqj’ + 1,   nested_priority(τj’)  
14.             find τj’’, the task finished just before τj on the same core 
15.             freqj’’ ← freqj’’ + 1,  nested_priority(τj’’)          
16.             all system status ← checkpointi 
17.       else : 
18.             Tcur = Tcur + Tstep 
19. save final tentative schedule as schedule template 
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At design-time, the ATG heuristic is executed multiple times for different energy budget 

levels (similar to the MILP approach) to generate a set of schedule templates for the run-time 

scheduler to select from, based on the harvested and available energy in the target multicore 

computing platform. 

 

3.6. ADAPTIVE ONLINE MANAGEMENT 

3.6.1. RUN-TIME TEMPLATE SELECTION 

 

Figure 38 Residual Energy Availability over Time 

The main goal of our run-time scheduler is to monitor harvested solar energy and select the 

best-fit template for an upcoming schedule. With schedule templates generated at design-time and 

energy budgets provided at the beginning of each schedule window, this is a low-overhead 

operation, done by selecting the schedule template that finishes the most task graph instances, 

contingent on the energy budget. Each selected template provides a schedule with task-to-core 

allocation, execution order, and frequency assignment for every task node. As the offline schedule 
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template assumes all cores to be identical, each task node is actually only assigned to a virtual core 

id. We call a set of task nodes assigned offline to a core id as a workload partition, each of which 

should be allocated to a dedicated physical core for execution in the upcoming schedule window. 

This partition-to-core allocation can be adjusted dynamically to mitigate aging effect that leads to 

hard failures (see section 3.6.2). On the other hand, the amount of residual energy that exceeds the 

energy requirement of the selected schedule template is used as backup energy (Figure 38) for 

possible task re-execution to recover from detected faults caused by soft errors during execution 

(see section 3.6.3).  

 

3.6.2. AGING-AWARE ALLOCATION OF WORKLOAD PARTITIONS 

After a schedule template is selected based on the energy budget for a schedule window, our 

framework can trigger a scheme to allocate workload to cores with awareness of core aging to 

enhance system lifetime. Although schedule templates set fixed execution strategies for all task 

nodes, there still exists some flexibility as the allocation of workload partitions to cores can still 

be altered from the default provided by the schedule template, for a homogeneous multicore 

platform.  

Algorithm 8 Dynamic Workload Distribution in Awareness of Core Aging 
Input:  
(i) work_partition_set, set of workload chunks in schedule template, each chunk should be 
executed on an individual core 
(ii) R_set, reliability of cores 
Output: Allocation of workload partitions to cores 
 
  1. for each reliability detection interval : 
  2.       update R_set 
  3.       sort cores in non_decreasing order of hard reliabilities 
  4. for each schedule window : 
  5.       get work_partition_set from selected schedule template 
  6.       sort work_partition_set in non-decreasing order of workload     
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            partitions’ total task execution cycles 
  7.       for all cores in system :  
  8.             allocate workload partition with lowest execution cycles to  
                  unassigned core with lowest hard reliability 
 

The outline of our aging-aware dynamic workload allocations scheme is shown in Algorithm 

8. We assume that our scheduler can fetch hard reliability information of cores from aging 

detection circuitry [83] or execution history tracking mechanisms at certain interval (much longer 

interval than schedule windows) [75] (steps 1~3). Besides, at the beginning of each schedule 

window, workload partitions are fetched from the selected schedule template (step 4~6). Then 

recursively our heuristic allocates unassigned workload partitions with the lowest workload 

intensity to idle cores with the lowest hard reliability. As a result, cores with faster wear-out during 

previous system operation are more likely to receive less workload than others so that aging 

processing on the entire multicore system can be rebalanced. Otherwise, some cores may be 

utilized more intensively than others and detrimentally impact system lifetime of the multicore 

chip. 

 

3.6.3. DYNAMIC ADJUSTMENT FOR SLACK RECLAMATION AND SOFT ERROR 

HANDLING AT RUN-TIME 

Utilizing static schedule templates for run-time workload management shifts the burden 

associated with the complex task graph scheduling problem to design-time. However, embedded 

systems can encounter unpredictable variations at run-time such as those due to fluctuations in 

harvested solar energy, slight variations in task execution time on the same core, and randomness 

of soft error occurrences. Among these factors, the fluctuations in harvested solar energy are 

already dealt with in our framework by using the energy budget window-shifting technique and 
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the schedule template set prepared for different energy budget levels. In this section, we introduce 

a lightweight run-time management scheme that provides an integrated solution to address slack 

reclamation and soft error handling without diminishing the benefits of schedule templates 

generated at design-time. This scheme is described in Algorithm 9. 

 

Figure 39 Illustrative Example of Slack Time Reclamation 

Our run-time management scheme can reclaim slack time that becomes available when a 

task node finishes before its worst case finishing time. This slack time can be used to slow down 

execution of upcoming task nodes, to save energy. The offline generated schedule templates have 

a designated start time recorded for all task nodes, to help identify any instances of slack time. 

Whenever a new task node is about to start execution, the amount of slack time is calculated by 

subtracting the node’s designated start time with the current time (steps 4~5). If the amount of 
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slack time is usable, slower execution frequency is assigned to the task node for the purpose of 

saving energy (step 6~7). Even if the amount is not sufficient to step down a frequency level, the 

task node will start execution earlier than the designated time and thus the slack time can be passed 

on to upcoming tasks, as shown in Figure 39. The estimated amount of energy saved is added to 

the backup energy for use during possible task re-execution in the presence of soft errors (step 8).  

Algorithm 9 Dynamic Slack Reclamation and Soft Error Handling 
Input:  
(i) Twin, duration of a schedule window 
(ii) ψ, task graph set to be scheduled 
(iii) startj, designated time to start execution of τj in selected schedule template 
(iv) bkup_energyj, amount backup energy for a schedule window  
Output: static schedule template for energy budget of EGY_BGT 
 
  1. while Tcur < Twin : 
  2.       load schedule in template  
  3.       for τj in taskpool : 
  4.             if τj is about to start execution and Tcur < startj : 
  5.                   slack_time ← startj – Tcur 
  6.                   while slack_time > WCET increased at freqj – 1: 
  7.                         freqj ← freqj – 1 
  8.                         bkup_energy ← bkup_energy + energy saved  
  9.       execute task nodes based on schedule template                   
10.       for τj in just finished tasks : 
11.             if error detected on τj : 
12.                   if Tcur ≤ startj : 
13.                         schedule another instance of τj to re-execute 
14.                   else if ∃ a freq that has reduced WCET > Tcur - startj : 
                                      and can be supported by bkup_energy: 
15.                         freqj ← freq,  
16.                         bkup_energy ← bkup_energy – energy_used             
17.                         schedule another instance of τj to re-execute 
18.                   else : 
19.                         find next node to execute on the same core, τj’ 
20.                         if τj ∈ Gi, τj’ ∈ Gi’ and Gi ≠ Gi’ :  
21.                               update remain WCEC of both graphs 
22.                               if Gj’ has more WCEC :  
23.                                     drop Gj’ 
24.                                     schedule τj to re-execute 
25.                               else : 
26.                                     drop Gj 
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27.                         else : 
28.                               drop Gj 

Our run-time management scheme is also capable of reacting to soft errors with node-to-

node soft error detection. Whenever a task node finishes execution, the correctness of the result is 

verified to trigger an error handling heuristic if errors are detected during task node execution 

(steps 10~11). If there is slack time directly available, the system reclaims it to execute a new 

instance of the faulty task node (step 12~13). If sufficient slack time is not available, the error 

handling heuristic checks to determine if there exists a higher frequency supportable by the 

available backup energy to finish re-execution of the fault-affected task node before its implicit 

deadline (steps 14~17). If both options are not viable for the faulty task node, the heuristic will 

attempt to drop other task graphs with higher WCEC so that the faulty node can be rescheduled. 

This process involves checking if the next node scheduled to execute on the same core is from 

another task graph (step 18~20). If true, both task nodes have the WCEC of their unfinished nodes 

updated and the task graph with the higher WCEC is dropped (step 21~26).  

The three error handling stages described above attempt to exploit slack time, backup energy 

and relatively less important task graphs to save the computation efforts invested into all 

predecessor nodes of the faulty task node, for better overall energy efficiency. During slack 

reclamation and error handling, all task nodes that do not belong to faulty or dropped task graphs 

will not have their template-designated finish time compromised, thus a chosen schedule template 

remains effective during run-time workload management.  
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3.7. EXPERIMENTAL RESULTS 

3.7.1. EXPERIMENT SETUP 

We developed a simulator in C++ to evaluate our proposed soft and hard reliability-aware 

hybrid workload management framework (HyWM). For offline schedule template generation, we 

wrote a python script that constructs the data structure of task graphs using the NetworkX package. 

We formulated the MILP problem using a GNU linear programming kit (GLPK) [84]. We chose 

the Gurobi Optimizer [85] as our MILP solver to generate the optimal schedule templates. We 

generated task graph sets based on the networking, telecom, and auto-industry applications from 

the Embedded System Synthesis Benchmark Suite (E3S) [86] and the distribution of actual 

execution times of task nodes is obtained from [78]. We also used synthetic task graph sets from 

TGFF [87]. In the rest of this section, we first analyze characteristics of the generated schedule 

templates and then study system performance for our proposed hybrid workload management 

scheme compared to prior work. 

 

3.7.2. TEMPLATE GENERATION ANALYSIS 

In the first set of experiments, we check the quality and optimality of the schedule templates 

generated using our MILP approach on a 4-core system. We scale task node execution time of four 

periodic task graphs from E3S with computation utilization set to 0.8×4 and communication 

utilization set to 0.15×4, i.e., a total workload utilization of 0.95×4, which sets a stringent timing 

requirement for a system with 4 cores. The resulting periodic task graphs with targeted utilization 

have periods ranging from 20 to 60 seconds and execution times at 1000MHz operating frequency 

ranging approximately from 16 to 48 seconds with maximum per-graph parallelism of 4. Besides, 

apart from the deadlines at task-graph termination nodes, we randomly select few task nodes in 
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each task graph to assign explicit deadlines that result in even more stringent timing requirements 

(Note: utilization of the entire task graph stays the same as it is calculated based on maximum 

frequency; see section 3.3.1). Based on the periods of the generated task graphs, we set the length 

of schedule window to be 1 minute, within which 9 task graph instances arrive in the system for 

execution. We generated 11 schedule templates with energy budgets evenly distributed from 0 to 

Epeak, where Epeak is the assumed peak energy budget (240 Joules) available from our solar energy 

harvesting system. 

Table 6 Results of MILP Based Schedule Template Generation for A 4-core Homogeneous 
Embedded System 

Schedule 
template ID 

Energy budget 
Objective 

value 
Energy budget usage 

Energy 
usage 

Number of 
misses 

0 0J 9.000 0.0% 0J 9 
1 24J 7.846 84.6% 20.3J 7 
2 48J 5.920 92.0% 44.2J 5 
3 72J 4.968 96.8% 69.7J 4 
4 96J 4.726 72.6% 69.7J 4 
5 120J 3.808 80.8% 97.0J 3 
6 144J 2.904 90.4% 130.2J 2 
7 168J 2.775 77.5% 130.2J 2 
8 192J 1.923 92.3% 177.2J 1 
9 216J 1.820 82.0% 177.2J 1 
10 240J 0.965 96.5% 231.6J 0 

 

The results of the schedule template generation for a system with four cores are shown in 

Table 6. We can observe that schedule template 10, with a peak energy budget can finish all task 

instances in time, showing the competence of our MILP optimization to deal with stringent timing 

constraints even for heavy workloads with per-core utilization as high as 0.95. Note that while 

96.5% of Epeak is required to finish all task instances, template 3 with energy budget less than 1/3rd 

of Epeak managed to successfully schedule more than half of the instances. The results demonstrate 

how our approach can create efficient schedules even under highly constrained energy budget 
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requirements. The schedule performance is a reflection of our MILP optimization approach that 

finds the optimal schedule by sacrificing more energy-hungry task graph instances, reserving 

energy for less energy-hungry ones, and scaling down execution frequency whenever possible for 

optimal energy efficiency, thereby minimizing the miss rate of task graphs. Note that there are 

three pairs of templates in Table 6 that are identical to each other with the same extent of energy 

usage and instance misses. Thus it is unnecessary to increase number of budget levels indefinitely 

(much beyond number of application task graph instances in a window) as the resulting smaller 

energy budget difference between levels will lead to identical and redundant schedule templates 

that increase storage overheads. 

 

Figure 40 Frequency Level Occurrence Distribution for All Task Nodes 

To study the quality of schedule templates from another perspective, we show how our MILP 

optimization approach selects frequencies for task nodes under different energy budget constraints, 

as shown in Figure 40. We can observe from the figure that templates with higher energy budgets 
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utilize higher frequency levels more frequently than templates with lower budgets. Templates with 

lower energy budget end up dropping more tasks and slow down execution for better energy 

efficiency. Note that the 150MHz frequency is never used by any schedule; this is due to the fact 

that the frequency level of 150MHz has lower efficiency and lower speed than the 400MHz level 

(see Table 1 in Chapter 2). Therefore our MILP optimization approach rules out this sub-optimal 

frequency choice as it is always better to schedule at 400MHz instead. 

While the MILP approach generates optimized schedule templates, we found that the 

approach is not scalable for larger problem sizes. Table 7 shows a comparison between the MILP 

and ATG heuristics, in terms of execution time and memory footprint, for two problem instances 

of different sizes. It can be observed that the MILP approach requires significant computation 

resources for large problem sizes, which may not be practical even at design-time. The ATG 

heuristic is much faster, but this speedup comes at the cost of lower performance due to sub-

optimal schedule templates generated (see next section).  

Table 7 Computation Resource Requirement of MILP and ATG 

Method 
Complexity Memory 

footprint 
Execution 

time Number of nodes Number of edges 
ATG 

36 44 
42 MB 0.1hour 

MILP 257 MB 6.5hour 
ATG 

150 193 
61 MB 1hour 

MILP 7693 MB 492hour 
 

3.7.3. EVALUATION OF SYSTEM PERFORMANCE WITHOUT ERROR INJECTION AND 

EXECUTION TIME VARIANCE  

In this section, we compare overall system task graph miss rate for the two variants of our 

hybrid workload management framework: HyWM-LP and HyWM-ATG, against workload 

management approaches proposed in prior work. Our simulation uses realistic energy harvesting 
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profiles based on historical weather data from Golden, Colorado, USA, provided by the 

Measurement and Instrumentation Data Center (MIDC) of the National Renewable Energy 

Laboratory (NREL) [60]. As we assume that our system only operates in daylight, system 

performance is evaluated over a span of 750 minutes from 6:00 AM to 6:30 PM, when solar 

radiation is available.  

To compare our approach with state-of-the-art approaches, we implemented two additional 

schemes: 1) SDA from Chapter 2, which divides system execution time into segments and selects 

a stable frequency to execute a subset of the workload that can be supported by the assigned energy 

budget; and 2) LP+SA [88], which finds a feasible but non-optimal schedule using MILP, and uses 

this schedule as an initial solution to a simulated annealing (SA) based heuristic that finds a near-

optimal solution. To compare HyWM with these approaches, we adapt the techniques to our 

environment and problem formulation. As SDA is designed for energy-constrained scheduling of 

independent periodic tasks while our workload in this section consists of multiple task graphs, we 

enhance these techniques so that our scheduler module analyzes inter-task dependency and 

provides ready task nodes for the techniques to schedule. In LP+SA, the original approach focuses 

on task graph scheduling while minimizing energy but without awareness of energy harvesting 

and not considering task dropping. We enhanced LP+SA by dropping tasks iteratively till the 

remaining task sets meet the energy budget, and these task sets are then sent as inputs to LP+SA. 

The results of our comparison study on task graph sets extracted from E3S are shown in 

Figure 41. The figure shows the total task graph miss rate for three different platform complexities 

(with 4, 8, and 16 cores). For the platform with 4 cores, it can be observed that SDA has the highest 

miss rate. This is because SDA, with no awareness of task node dependencies, cannot arrange 

specific execution schedules for task nodes along critical paths of task graphs and thus all nodes 
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in a task graph are assigned the same frequencies, resulting in a less efficient schedule. LP+SA 

outperforms SDA as it can generate task dependency-aware offline schedules after comprehensive 

design space exploration unlike in SDA. However, the superior offline schedules obtained using 

our MILP formulation in the HyWM framework coupled with its intelligent run-time template 

selection and slack reclamation techniques allow HyWM to outperform both of these efforts. 

HyWM-LP reduces absolute miss rate by 5.6% and 9.0% over LP+SA and SDA, respectively. In 

terms of relative performance improvement, HyWM-LP accomplishes an improvement of 12.9% 

and 20.1% over LP+SA and SDA, respectively. HyWM-ATG ends up with higher miss rates than 

HyWM-LP, however it still outperforms the other two techniques from prior work. HyWM-ATG 

can however serve as an alternative approach when scalability is an issue, e.g., for larger problem 

sets.  

 

Figure 41 Task Nodes Comparison in Terms of Overall System Task Graph Miss Rate 
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Figure 42 Comparison of Overall System Task Graph Miss Rate on Synthetic Task Graph 
Set with Higher DoP 

Figure 41 also shows the scheduling performance of these frameworks for platforms with a 

greater number of available cores while keeping the workload and energy budget the same. When 

the core count doubles from 4 to 8, our two HyWM methods achieve lower miss rates (up to 23.2% 

reduction relatively) compared to other techniques, as they can better distribute the workload 

across more cores, directing these cores to operate at a lower execution frequency and with better 

energy efficiency. However, the system with 16 cores shows no further improvements because 

there is no additional parallelism available in the E3S task graph set, which has maximum per-

graph parallelism of 4, to make use of the 16 cores. Note that LP+SA shows a slightly deteriorated 

result on 16 cores because even though there is no more parallelism to exploit, the search space of 

its SA heuristic enlarges, leading to slightly worse near-optimal solutions. Figure 42 shows another 
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group of results based on a synthetic task graph set generated using TGFF [87], with the same 

targeted utilization as E3S but maximum per-graph parallelism increased to 8. We can observe in 

Figure 42 that while performance differences among techniques are similar to the results shown in 

Figure 41, all techniques continue to get miss rate reduction on a 16-core system, as there is 

additional parallelism to exploit in the synthetic task graphs set (in contrast, miss rate 

improvements for E3S saturate for the 16-core system as shown in Figure 41).  

 

3.7.4. EVALUATION OF SYSTEM PERFORMANCE WITH SOFT ERROR INJECTION AND 

EXECUTION TIME VARIANCE  

In this section, we show the performance improvements due to our proposed run-time slack 

reclamation and error handling heuristics. In the experiment, we assume an average error rate of 

10-5 soft errors per second per core at maximum frequency [70]. As there is no prior work on soft 

error handling for systems with energy harvesting, we conduct multiple tests with run-time 

management features enabled progressively on a 4-core system to show each feature’s 

effectiveness, with results shown in Figure 43. Each of the configurations shown in the figure are 

described below: 

 None: This base case uses HyWM-LP with soft error injection and no run-time adjustment 

technique enabled, and has a miss rate of 45.4%.  

 +slack reclamation: System miss rate drops to 34.4% when the slack reclamation 

capability in run-time heuristic is activated. 

 +drop: With the addition of basic soft error-awareness that causes faulty task graphs to be 

dropped as soon as an error is detected (to avoid unnecessary energy consumption), the 

miss rate reduces further to 31.9%.  



111 
 

 +compare before drop: When the heuristic adds support for dropping other task graphs 

with high WCET to allow re-execution of the faulty task node, the system sees a drop in 

miss rate to 30.2%.  

 +backup energy: Finally, when the fully-enabled heuristic is utilized that adds further 

support for utilizing backup energy to speed up faulty node re-execution, we end up with 

the lowest miss rate of 25.6%.  

 

Figure 43 Miss Rate Comparison with Run-Time Techniques Enabled Progressively 

The results in Figure 43 highlight the significance of slack reclamation and soft error 

handling in our run-time framework with a relative 43.6% miss rate reduction for the best 

configuration compared to the baseline case. 
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3.7.5. EVALUATION OF SYSTEM HARD RELIABILITY AND MTTF 

In this section, we explore the impact of aging on multicore embedded systems with energy 

harvesting. For our experiments, we implemented the aging model proposed in section 3.3.3, 

considering electromigration (EM) as the primary hard failure mechanism. In the model, we set 

the critical currently density J0 = 1.5×106 A/cm2, the activation energy Ea = 0.48eV, and assume a 

slope parameter in the Weibull distribution β = 2 [72]. We simulated execution of systems over a 

long period of time with solar harvesting profiles randomly selected from a preset pool. At the 

beginning of each schedule window, the aging progress is estimated based on average core 

frequencies, supply voltages, and core temperatures of previous schedule windows. All 

experiments in this section target 8-core systems executing the same workload as in experiments 

of previous sections. 

 

Figure 44 Comparison of reliability and MTTF for different workload allocation schemes 
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The first set of experiments is designed to evaluate the benefit of our aging-aware workload 

allocation scheme, which is compared with Biased, an allocation scheme that always allocates 

workload partitions with low to high workload intensities on to cores with low to high core id 

respectively, and Random, the original partition-to-core allocation randomly generated during 

schedule template generation. All experiments have failure thresholds set to 0 and the results on 

hard reliability and MTTF of system are shown in Figure 44. We can observe that our Aging-

Aware scheme (which is used in our HyWM framework) results in better hard reliability over time 

as it can reallocate workload partitions to balance aging progress among cores, ending up with 

14.8% and 24.5% MTTF improvements compared to Biased and Random without diminishing 

system performance. 

The last set of experiments performs sensitivity analysis for our aging-aware workload 

allocation scheme, focusing on system MTTF and performance analysis when different failure 

thresholds are considered. The results of this experiment are shown in Table 8. As we can see, 

increasing failure threshold allows the system to operate for longer periods of time (higher MTTF), 

however, this comes at the cost of a decrease in peak processing capability before failure and 

average system processing capability over time. 

Table 8 System MTTF and Performance Comparison with Different Failure Thresholds 

Failure Threshold* 0 1 2 3 4 5 6 7 

MTTF (years) 10.06 15.58 20.22 24.66 29.27 34.44 40.94 51.35 
Processing Capability Before System 
Failure (%) 

100 92.3 80.1 68.8 52.4 34.9 18.4 7.0 

Average Processing Capability during 
System Lifetime (%) 

100 96.5 92.5 87.7 81.7 75.0 67.3 60.3 

   *Failure threshold: number of cores that must fail before a chip is considered unusable  
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3.8. CHAPTER SUMMARY 

In this chapter, we proposed a hybrid design-time and run-time framework for reliable 

resource allocation in multicore embedded systems with solar energy harvesting. Our framework 

was shown to cope with the complexity of an application model with data dependencies and run-

time variations in solar radiance, execution time, and transient faults. Our experimental results 

indicated improvements in performance and adaptivity using our framework, with up to 23.2% 

miss rate reduction compared to prior work, 43.6% performance benefits from adaptive run-time 

workload management compared to a baseline framework with no soft error and slack time 

handling, and up to 24.5 % expected system lifetime improvement with aging-aware workload 

allocation compared to aging-agnostic schemes, under stringent energy constraints and varying 

system conditions at run-time. With the increasing prevalence of energy-constrained computing, 

energy scavenging, execution time variability, and the rise in soft errors and hard failures with 

technology scaling, our proposed framework provides a comprehensive and practical solution that 

considers all of these factors to perform efficient resource management that improves upon prior 

efforts in both scope and performance, for emerging multicore embedded computing platforms. 
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4. MIXED-CRITICALITY SCHEDULING ON HETEROGENEOUS SYSTEMS  

 

In this chapter, we utilize the semi-dynamic approach proposed and utilized in previous 

chapters to address the scheduling problem for single-ISA heterogeneous multicore processors 

running hybrid mixed-criticality workloads with a limited and fluctuating energy budget provided 

by solar energy harvesting. The hybrid workloads consist of a set of firm-deadline timing-centric 

task graphs and a set of soft-deadline throughput-centric multithreaded applications. Our 

framework exploits traits of the different types of cores in heterogeneous multicore systems to 

service timing-centric workloads with a few big out-of-order cores, while servicing throughput-

centric workloads with many smaller in-order cores clocked in the energy-efficient near-threshold 

computing (NTC) region. Guided by a novel timing intensity-aware penalty density metric, our 

proposed mixed-criticality scheduling framework creates an optimized schedule that minimizes 

overall miss penalty for a time-varying energy budget. Experimental results indicate that our 

framework achieves a 9.5% miss penalty reduction with the proposed timing intensity metric 

compared to metrics from prior work, a 13.6% performance improvement over a state-of-the-art 

scheduling approach for single-ISA heterogeneous platforms, and a 23.2% performance benefit 

from exploiting platform heterogeneity.   

 

4.1. BACKGROUND AND CONTRIBUTION 

Recent years have seen billions of embedded systems deployed around the world to support 

a variety of different applications domains. For an increasing number of embedded applications, 

there is a critical need for energy autonomous devices that can utilize ambient energy from the 

environment to perform computations without relying on an external power supply or frequent 
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battery charges. As the most widely available energy source, solar energy has become an important 

source of ambient energy for several harvesting-aware embedded systems. 

As discussed in Section 1.2.2, embedded computing systems that include timing behavior as 

part of their performance or correctness criteria are called real-time embedded systems. In such 

real-time systems, a deadline is called firm if missing it results in an immediate performance 

penalty, otherwise the deadline is considered to be soft. If critical system failure can happen after 

a deadline miss, the deadline is considered to be a hard deadline [89]. Due to the variable nature 

of solar radiation intensity, the most suitable role of embedded systems with solar energy 

harvesting as the only energy source is to host applications without strict real-time requirements. 

Thus it may not be desirable to consider such systems for real-time applications with hard 

deadlines, such as life-support mechanism, automotive system control, aircraft navigation, etc., for 

which any deadline miss is consider a critical system failure that may have catastrophic 

consequences. Instead, it is more practical to deploy such systems without energy guarantees for 

best-effort execution of applications where a firm or soft deadline miss is not considered a failure 

of the entire system.  

Consider an example of such a best-effort embedded system powered by energy harvesting, 

which is deployed for continuous data collection, data post-processing, and data transmission at a 

remote location. For each operation interval, a raw data point can be recorded from sensor modules 

by executing certain control tasks, for which each miss immediately results in inaccuracy in the 

averaged values of data features. Such tasks can be considered to be timing-centric with firm 

deadlines. On the other hand, post-processing of raw data and data transmission tasks can be 

delayed somewhat as the system can buffer a certain amount of raw data or clients can accept 

lower rate of transmitted data. Such tasks are generally throughput-centric with soft deadlines. In 
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this chapter, we represent such applications with different levels of real-time constraints as mixed-

criticality workloads that consist of a mix of timing-centric tasks with firm deadlines and 

throughput-centric tasks with soft deadlines [90] [91].  

Recent years have also seen the rise of multicore processing and heterogeneous computing 

in low-power embedded devices [23] [24]. Multicore processors with heterogeneous cores have 

been shown to provide substantial improvements in energy-efficiency and performance for energy-

constrained systems [92]. With the rise in computing capabilities of emerging heterogeneous 

multicore processors, run-time workload distribution and energy-management in these 

architectures are becoming crucial steps towards minimizing the overall system energy 

consumption while maximizing achievable application performance. Heterogeneous computing 

platforms are particularly well-suited to execute mixed-criticality workloads as different types of 

cores can be utilized to better match specific criticality requirements of different type of tasks. 

 In addition to multiprocessing and heterogeneous computing, a new design paradigm has 

emerged to further help minimize energy in contemporary chip designs, called near-threshold 

computing (NTC) [93] [94] [95] [96] [97] [98]. In NTC, the supply voltage is set just slightly 

higher than threshold voltage, and execution at this NTC mode achieves several times better 

energy-efficiency than conventional super-threshold computing (STC) [96] operation modes. 

NTC is thus a very effective strategy to minimize energy for energy-constrained embedded 

systems. However, as NTC mode operation typically sacrifices performance in favor of energy-

efficiency, it is not straightforward to use it for mixed criticality real-time embedded systems with 

timing constraints.  

Based on the above observations, there is clearly a critical need to explore the design and 

management of STC/NTC capable heterogeneous multicore platforms powered by solar energy 
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harvesting and running mixed-criticality workloads, to optimize cost, performance and energy 

efficiency of such systems. In this chapter, we propose a novel mixed-criticality scheduling 

framework (McSF), that for the first time addresses the problem of allocating and scheduling 

workloads with different degrees of criticality on a heterogeneous multicore embedded system 

powered by energy harvesting and supporting NTC operation. Our framework employs NTC for 

throughput-centric tasks with loose timing constraints and a high degree of parallelism (DoP), 

maintaining their computation throughput by executing their threads concurrently on many cores 

in an energy-efficient manner. By improving the energy-efficiency for throughput-centric tasks, 

more energy budget becomes available for timing-centric tasks, which are allocated with 

awareness of harvested energy fluctuations. The novel contributions of our work can be 

summarized as follows: 

 Unlike any prior work, we formulate and solve the challenging problem of scheduling 

mixed-criticality, real-time applications on heterogeneous energy-harvesting embedded 

system platforms; 

 The hybrid mapping and scheduling framework from last chapter is adopted to offload 

scheduling complexity of timing-centric task graphs to a comprehensive design-time 

methodology so that only lightweight adjustments are required at run-time (e.g., selecting 

among a small set of schedule templates, core operation modes, and task DoPs) to cope 

with changing energy harvesting scenarios over time; 

 For efficient execution of throughput-centric tasks, we utilize near-threshold computing 

(NTC) on several small cores to maintain high throughput levels without sacrificing energy 

efficiency of the computation; 
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 A new energy-aware priority metric, timing intensity-aware penalty density, is proposed to 

dynamically measure the importance of instances of different task criticality types within 

a mixed-criticality workload. 

 

4.2. RELATED WORK 

Several prior efforts have explored workload scheduling for embedded systems with solar 

energy harvesting, as discussed in Section 1.3. However, none of those prior studies on scheduling 

for embedded systems with solar energy harvesting consider the scheduling problem for 

heterogeneous multicore systems, utilize the NTC execution paradigm, or support mixed-criticality 

workloads, as done in this chapter. 

The high energy-efficiency achievable with near-threshold computing (NTC) and its design 

challenges are discussed in [94]. Fick et al. [94] applied NTC to address the power density problem 

that is crucial for 3D-stacked chips. As NTC systems tend to be more sensitive to process variations 

with their lower supply voltage, a few recent works propose novel management techniques for 

NTC to alleviate the performance impact of process variations [96] [95] [97]. More recently, 

Karpuzcu et al. proposed Accordion, a framework that executes workloads with adjustable 

problem sizes and fault resilience on NTC-enabled cores [98]. Chen et al. [99] studied the impact 

of NTC on architectural design of processors by analyzing resulting shifts in performance 

bottlenecks. But to the best of our knowledge, no prior work has addressed the scheduling problem 

for NTC-enabled cores powered by energy harvesting. Moreover prior work has also not 

considered allocation of mixed criticality workloads on heterogeneous NTC-capable platforms.  

Mixed-criticality workloads are becoming pervasive in many embedded systems today. 

These workloads consist of applications with different timing or reliability requirements. Systems 



120 
 

designed to support such workloads are often referred to as mixed-criticality platforms. The 

problem of managing mixed-criticality workload on a single physical platform has attracted a lot 

of attention in recent years. An early work by Vestal studied schedulability analysis and 

preemptive fixed priority scheduling for tasks with different criticalities [100]. Mollison et al. 

brought this problem to multicore systems by proposing a global mixed-criticality scheduling 

algorithm that can redistribute slack among tasks while maintain isolation for tasks of different 

criticality levels [101]. Giannopoulou et al. proposed a time-triggered mixed-criticality scheduling 

approach with barrier synchronization to resolve resource sharing conflict between applications 

with different criticality levels [102]. Saraswat et al. studied the topic of fault-tolerance for mixed-

critical systems [103]. Their proposed framework tackles soft errors using checkpointing-based 

rollback recovery and tolerates permanent core failures by task migration. Huang et al. studied 

fault-tolerant mixed-criticality scheduling in the presence of transient faults in the system to 

provide safety guarantees to tasks with different criticality levels according to established safety 

standards [104]. The applicability of the proposed scheduling technique was verified for a flight 

management system (FMS) application. Huang et al. also suggested a "run and be safe" strategy 

that boosts processor frequency temporarily to satisfy timing requirements of critical tasks without 

degrading service for other tasks. [105] Recently several works have also focused on 

mapping/partitioning of mixed-criticality applications on multi-core architectures [106] [107] 

[108]. However, none of these works consider heterogeneous multicore processors as the target 

platform for mixed-criticality scheduling. Tamas-Selicean and Pop [109] explored optimization 

for mixed-criticality real-time applications on a distributed heterogeneous node architecture, but 

not for heterogeneous multicores integrated on a single processor chip. In [110], although 

heterogeneous multicore processors are initially considered as the hardware platform, the platform 
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is virtualized to behave as a symmetric multi-processor (SMP). Craeynest et al. proposed the 

performance impact estimation (PIE) scheduling and allocation framework for thread scheduling 

in single-ISA heterogeneous systems [111]. However, it did not consider applications with mixed-

criticality constraints. Unlike any of these research efforts, this paper is the first to specifically 

address the mixed-criticality scheduling problem for a unique platform that consists of a 

heterogeneous multiprocessor powered by solar energy harvesting. 

 

Figure 45 Overview of the Proposed Harvesting-Aware McSF Framework with A Mixed-
Criticality Workload and A Single-ISA Heterogeneous Multicore Embedded System  

 
4.3. PROBLEM FORMULATION  

Figure 45 shows an overview of our system model that consists of a mixed-criticality 

workload, single-ISA heterogeneous multicore processor with NTC operation mode capability, an 

energy harvesting/storage/conversion module, and our mixed-criticality scheduling framework 

(McSF). In the following subsections we describe components and assumptions of our system 

model before presenting our problem objective.  
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4.3.1. MIXED-CRITICALITY WORKLOAD MODEL  

We differentiate the criticalities of real-time tasks based on the widely applied (m,k) model 

proposed by Hamdaoui et al. [91] and the task miss penalty for each task. A task in a system with 

an (m,k) deadline needs to finish at least m task instances out of each k consecutive instances to 

avoid system performance degradation. Every task has a user-defined miss penalty that is applied 

to the system whenever an (m,k) deadline miss is detected. Our mixed-criticality workload is 

composed of tasks classified into two categories: the first is timing-centric real-time tasks with 

(1,1)-firm deadline constraints; the other is a set of throughput-centric tasks with (m,k)-soft 

deadline constraints. The criticalities of tasks of both types can be compared based on 

combinations of their miss penalties and (m,k) constraints. 

Timing-centric workloads represent lightweight real-time tasks in the application domain of 

control, sensing, communication, etc., that require a response before a specified deadline. We 

assume that these workloads come with highly customized and fixed degree of parallelism (DoP) 

adapted for efficient scheduling and, thus, can be best modeled as periodic task graphs [86]. 

Throughput-centric workloads represent applications in the domain of image processing, data 

mining, etc., that can tolerate some delay between samples. We model these workloads as barrier-

synchronized multithreaded applications [112] [113] with flexible DoP. Even though timing 

constraints for these workloads are less stringent, they require more computing resources and 

support high degrees of parallelism, making it essential to exploit parallelism in order to achieve 

high throughput.  
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In the rest of this chapter, we refer to these two types of workloads as timing-centric task 

graphs and throughput-centric multithreaded applications, respectively. Table 9 summarizes the 

differences between these two types of workloads.  

Table 9 Characteristics of Mixed-Criticality Workloads 

Criticality Type Timing-Centric Throughput-Centric 
Structure Model task graphs multithreaded applications 
Parallelism highly customized barrier-synchronized 
Execution Time few seconds few minutes 
Period tens of seconds tens of minutes 
Deadline Model (1,1)-firm (m, k)-soft 
Execution Rate related to period relate to (m, k) and period 

 

 

4.3.2. HETEROGENEOUS MULTICORE COMPUTING PLATFORM 

We consider a single-ISA heterogeneous multicore platform to service mixed-criticality 

workloads. Similar to ARM’s big.LITTLE [23], our platform combines one cluster of big cores 

and one cluster of small cores. In our work, both types of cores (big, small) are based on the x86 

instruction set architecture. The big-core-cluster has several high-performance out-of-order cores 

with per-core DVFS capability [114] that allows execution at several discrete frequency-voltage 

levels. The small-core-cluster has several power-efficient in-order cores, all of which are clocked 

with uniform frequency in the NTC region to maximize energy-efficiency. The high performance 

big-core-cluster is mainly, but not exclusively, utilized to execute timing-centric tasks graphs, 

while the small-core-cluster executes parallel phases for throughput-centric multithreaded 

applications. 
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4.3.3. ENERGY HARVESTING, STORAGE, AND BUDGETING 

Similar to pervious chapters, a photovoltaic (PV) system is used as the power source for our 

multicore embedded system, converting ambient solar energy into electric power. Naturally, the 

amount of harvested power varies over time due to changing environmental conditions. To cope 

with the unstable nature of the solar energy source, we assume an energy harvesting subsystem 

with maximum power point tracking (MPPT) to extract the maximum amount of energy possible 

from the PV system [12] and a hybrid supercapacitor-battery storage to bridge the PV system with 

our embedded system efficiently [47]. We adopted the hybrid supercapacitor-battery storage design 

proposed in Chapter 2 that combines supercapacitors and batteries to support both higher-capacity 

energy storage and lower-overhead energy conversion than a battery-only or a supercapacitor-only 

solution. We assume that our run-time scheduler can cooperate with this subsystem to inquire 

about the energy available in storage.  

As solar harvesting power can vary dramatically within a very short period of time, it is 

important to filter out the noise from incoming power so that scheduling decisions can be made 

and executed based on a stable and reliable energy supply. Thus, we use the semi-dynamic energy 

budget assignment scheme from Chapter 3 (see Figure 46), which partitions time into schedule 

windows of identical length, the least common multiple of all timing-centric task graphs’ periods. 

Then the energy harvested within each schedule window is used as the energy budget for the next 

schedule window. Although utilization of harvested energy is delayed for a short period of time in 

this scheme, it provides the run-time scheduler with a known and stable energy budget at the 

beginning of each window, making it easier to split the energy budget between timing-centric and 

throughput-centric workloads.  
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4.3.4. PROBLEM OBJECTIVE 

As solar energy harvesting does not guarantee energy sufficiency, our system is positioned 

as a soft real-time system that ensures best-effort operation adapted to a given level of energy 

supply available at run-time. The main objective is to allocate and schedule mixed-criticality 

workloads composed of multiple timing-centric task graphs and throughput-centric multithreaded 

applications running simultaneously at run-time, such that total miss penalty for the entire system 

is minimized, under a varying and unpredictable harvested energy budget over time. 

 

Figure 46 Illustration of Energy Budgeting and Execution Scheduling Across Schedule 
Windows over Time 
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4.4. SEMI-DYNAMIC FRAMEWORK FOR MIXED-CRITICALITY SCHEDULING 

In this section, we give a brief overview of our semi-dynamic mixed-criticality scheduling 

framework (McSF), which consists of both design-time and run-time components.  

As illustrated in Figure 46, for each schedule window, our run-time scheduler dispatches a 

mix of timing-centric and throughput-centric workloads for execution, given the available energy 

budget and computing resources. At the top level, our scheduler intelligently sets a balanced 

distribution of energy budget between the two types of workloads while aiming to minimize overall 

system miss penalty. Due to the different characteristics and needs of these two types of workloads, 

each type of workload is scheduled with a specifically designed approach, as discussed next.  

Timing-centric task graph workloads in a schedule window can be executed without 

considering other schedule windows, as the length of a schedule window is the least common 

multiple of their periods. The general problem of scheduling a task graph under optimization goals 

and constraints is known to be NP-complete [64]. Thus our scheduling scheme for timing-centric 

task graphs is designed to offload their scheduling complexity to design-time by offline generation 

of schedule templates that can be quickly selected for each schedule window at run-time based on 

the energy budget and cores made available for them after top-level resource distribution. In 

contrast, instances of throughput-centric multithreaded applications require execution times that 

can span multiple schedule windows, and thus their execution has to be scheduled dynamically. 

However, as the execution phases of throughput-centric multithread applications are barrier-

synchronized, their scheduling complexity is much lower than that of timing-centric task graphs.  

The following describes our run-time heuristic for penalty-aware workload filtering and 

scheduling for mixed-criticality workloads in detail. 

 



127 
 

4.5. RUN-TIME MIXED-CRITICALITY SCHEDULING 

In this section we describe our run-time mixed-criticality scheduling heuristic for scheduling 

timing-centric task graphs and throughput-centric multithreaded applications to minimize total 

miss penalty in the system. First, we define a priority metric to represent the impact of each task 

instance on system miss penalty with consideration of (m,k) soft deadline constraints. Then we 

propose a heuristic to dynamically select and schedule high-priority instances of timing-centric 

and throughput-centric workloads.  

4.5.1. SOFT DEADLINE-AWARE PRIORITY METRIC  

As we consider best-effort execution under insufficient solar energy harvesting conditions, 

it is necessary to dynamically rank priorities of instances of both timing-centric task graphs and 

throughput-centric multithreaded applications to compare their impact on system miss penalty per 

unit energy. Based on this guideline, we define a penalty density metric based on miss penalty, 

energy requirement, and timing intensity of a task instance, as shown below: 

�ݐ݅ݏ݊݁݀ �ݐ݈ܽ݊݁݌  = �ݐ݈ܽ݊݁݌ ݏݏ݅݉ × ݐ݊݁݉݁ݎ݅ݑݍ݁ݎ �݃ݎ݁݊݁�ݐ݅ݏ݊݁ݐ݊݅ ݃݊݅݉݅ݐ  

 

(34) 

Among the three components, miss penalty of each instance is user defined and assumed to be 

known at design-time and energy requirement can be obtained by profiling applications under 

different frequency levels. However the timing intensity of an instance can change dynamically at 

run-time based on its (m,k) constraint and finish/miss history of previous instances. Hamdaoui et 

al. have previously proposed a distance-to-failure metric to characterize timing intensity of task 

instances [91]. However, that metric only considers the next nearest instance failure in the worst 

case while we want to consider all upcoming instances affected by recent execution history to 
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enable minimization of overall system miss penalty. Thus in this chapter we propose a more 

comprehensive way to characterize timing intensity of a task instance: 

�ݐ݅ݏ݊݁ݐ݊݅ ݃݊݅݉݅ݐ  = ∑ ݉ − ݉௣′ሺ݇ − ሻଶ௞−ଵ݌
௣=଴  , ݉ ൒ ͳ, ݇ ൒ ͳ ܽ݊݀ ݉ < ݇ 

 

(35) 

where, mp’ is the total number of deadlines met (instances finished) in the last p periods, and the 

values of m and k are based on the user-defined (m,k) constraint of the task instance. We refer to 

every k instances as an evaluation window. A finish or miss of an upcoming task instance affects 

the results for the k upcoming evaluation windows. The timing intensity of an upcoming instance 

is essentially the accumulation of its importance factors to these k evaluation windows. For an 

evaluation window consisting of p previous instances and k – p future instances, as mp’ instances 

have already finished, m – mp’ out of k – p upcoming task instances should be finished to avoid 

miss penalty, resulting in a finish rate requirement of ሺ݉ − ݉௣′ ሻ ሺ݇ − ⁄݌ ሻ . As the upcoming 

instance is only one of the future k – p instances to contribute to this finish rate, we divide finish 

rate by k – p to get ሺ݉ − ݉௣′ ሻ ሺ݇ − ⁄ሻଶ݌  as the importance factor. This definition also applies to 

task graphs with (1, 1)-firm deadlines, which is a special case with m= 1, k=1, p=0, mp
’=0 that 

always results in instance timing intensity of 1.  

Figure 47 shows an example of a (2,5)-soft constraint workload execution under three 

different scenarios. To calculate timing intensity of the upcoming instance in case (a), 5 (k=5) 

evaluation windows are involved. For the first evaluation window, as 2 instances have already 

finished, 0 out of 1 instances in the future are require to finish, resulting in an importance factor 

of 0/12. For the fourth evaluation window, only 1 instance has already finished. Thus 1 additional 

instance should be finished in put of 4 future instances, resulting in an importance factor of 1/42. 

In all, the upcoming instance in case (a) has timing intensity of 0.143, which is calculated by 
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accumulating importance factors of all involved evaluation windows. Case (b) also has 2 out of 4 

previous instances finished, as in case (a). However, the first finished instance only affects the 

importance factor for the first evaluation window. Consequently, the other 4 evaluation windows 

all have higher importance factors compared to case (a), causing the timing intensity of the 

upcoming instance to be much higher (0.504). Thus, for previously finished instances, not only 

their number but also their distribution affects timing intensity of the upcoming instance. Case (c) 

shows that the instance with soft-deadline constraint can have intensity greater than 1, as it not 

only must be finished to avoid miss penalty in the current period, similar to (1,1)-firm instances, 

but it also affects timing intensities of future instances.   

 

Figure 47 Illustration of Timing Intensity for (2, 5)-soft Deadline Case 
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4.5.2. DYNAMIC WORKLOAD FILTERING AND BALANCING  

Guided by our proposed timing intensity-aware penalty density metric, our workload 

filtering and scheduling heuristic perform resource allocation for both timing-centric task graphs 

and throughput-centric multithreaded applications based on the energy budget assigned or 

predicted in the current and future schedule windows, with the goal of minimizing overall system 

miss penalty. The heuristic is shown in Algorithm 10.  

Algorithm 10 Dynamic Workload Filtering and Scheduling 
Input:  
(i) app_pool, multithreaded application instances arrived or in execution 
(ii) EGY_BGT, energy harvested and unused during last schedule window 
(iii) EGY_PRDw, harvesting energy prediction for next w schedule windows 
(iv) Set of offline-generated task graph scheduling templates optimized for   
       different number of big cores and energy budget levels (see Section 4.6) 
Output:  
(i) Execution schedule for multithreaded applications 
(ii) Selected schedule template for task graphs  
 
Triggered at the beginning of each schedule window: 
  1. update priorities (penalty densities) of all instances in app_pool 
  2. while there are unscheduled instances and remaining energy budget: 
  3.       in app_pool, select instance, app, with highest priority, densityapp  
  4.       find task graph schedule template with more workload, next_temp 

  5.       densitytg ← ∆penalty/∆energy † 
  6.       if densityapp<densitytg and ENG_BGT is sufficient: 
  7.             use next_temp as the selected schedule template for task graphs 
  8.       else if densityapp<densitytg and EGY_BGT, EGY_PRDw are sufficient: 
  9.             start/resume execution of app with as even as possible schedule 
10.             remove app from app_pool 
11.             if sequential phase detected in this schedule window:  
12.                   steal one big core from timing-centric task graphs 
13.                   re-select task graph schedule template for one less core  
14. for app remaining in app_pool: 
15.       drop and record instance miss 
† ∆ values are based on comparison between current and found template from step 4  

 

The heuristic progressively compares and accepts instances of timing-centric task graph 

applications and throughput-centric multithreaded applications at the beginning of each schedule 
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window. Dynamic instance priorities (penalty densities) of these two types of applications are 

assigned in different manners: (i) For throughput-centric multithreaded application instances, 

priorities are updated individually at the beginning of each schedule window (step 1). The priority 

of a new task instance will typically be different from previous ones as timing intensity keeps 

changing with respect to the (m,k) constraint (Section 4.5.1). For an instance already in execution, 

priority will increase because the more energy it has already consumed, the less energy it requires 

to finish. This mechanism encourages the heuristic to resume application instances in progress so 

that the effort already invested in execution can be preserved; (ii) For timing-centric task graph 

instances, as their (m,k) timing intensity is always equal to 1, their dynamic priorities only change 

with varying energy requirements for different frequencies assigned in different schedule templates. 

Unlike the case of multithreaded applications, here our heuristic considers total priority of extra 

instances accepted when considering the use of another schedule template, which is deduced by 

comparing the new template’s miss penalty and energy requirements to those of the current one 

(steps 4, 5). In each iteration of the while loop, priorities of candidate instances from timing-centric 

task graphs and throughput-centric multithreaded applications are compared to decide which ones 

to accept for execution (steps 6 – 13).  

During workload filtering, the execution schedule of accepted task graph and multithreaded 

application instances are also decided. For accepted multithreaded application instances, the 

execution is dynamically deduced by a scheduling method called as-even-as-possible, which 

attempts to evenly distribute execution effort over time by starting execution of an instance on 

arrival and finishing it before its deadline (step 9). In this schedule, parallelizable phases of an 

application instance are executed on the small-core-cluster clocked at an energy-efficient 

frequency level in the NTC region, while sequential phases are executed by stealing big cores from 
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task graph instances (steps 11-13), leaving more time to spread execution effort of parallelizable 

phases. As-even-as-possible execution scheduling improves energy-efficiency of the system in two 

ways: (i) an even execution scheduling minimizes the number of small cores required for each 

parallel phase, reducing multithreading energy-overhead which increases with thread count [115]; 

(ii) as this scheduling method distributes energy consumption of multithreaded applications more 

evenly across multiple schedule windows, timing-centric task graphs in these windows also tend 

to get more even energy budgets among them, resulting in better overall energy-efficiency. An 

even execution schedule has been shown to result in high energy efficiency for systems with DVFS 

capability [116]. For the same reason, our scheduler does not consider shutting down cores as 

energy saved will not justify the efficiency loss of the resulting uneven schedule. When a 

sequential phase of a multithreaded application steals a big core, a new schedule template for 

timing-centric task graphs is selected to execute with one less core available. Lastly, an instance 

miss is recorded for application instances that remain unaccepted (steps 14, 15). 

 

4.6. EXPERIMENTAL RESULTS 

4.6.1. EXPERIMENT SETUP 

Our experiments use real-world energy harvesting profiles based on historical weather data 

provided by the Measurement and Instrumentation Data Center (MIDC) of the National 

Renewable Energy Laboratory (NREL) [60]. Again, we evaluate system performance over a span 

of 750 minutes, from 6:00AM to 6:30PM in a day. We assume peak energy harvesting power to be 

equal to maximum power required by system to execute all workload instances.  

For timing-centric task graph applications, we select examples in the domain of networking, 

telecom, and auto-industry from the Embedded System Synthesis Benchmark Suite (E3S) [86]. 
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Task graphs are assigned with periods ranging from 10 to 60 seconds. For throughput-centric 

multithreaded applications, we select a set of barrier-synchronized parallel applications, including 

fft, cholesky, bodytrack, vips, and blackscholes, from SPLASH-2 [112] and PARSEC [113] 

benchmark suites, which have different periods and (m, k)-soft constraints assigned.  

Table 10 Configuration of Heterogeneous Multicore Processor 

Architectural Parameters 
Core Types Big Cores Small Cores 
Execution Out-of-Order In-Order 
Issue Width 4 2 
Reorder Buffer 
Size 

128 N/A 

Cache 64KB, 4-way 16KB, direct 
Core Area 15.7 mm2 4 mm2 

Cluster Parameters 
Cluster Type Big-Core-Cluster Small-Core-Cluster 
Core Count 8 32 
Frequency 
Control  Per-Core DVFS Uniform Frequency 

f , Vdd Range 0.5~1.2GHz, 0.4~1 V f nth, Vdd
nth 

Technology Parameters 
Technology Node 22 nm 
Vth 0.289 V  
Vddnth, f nth

 0.4 V, 500 MHz 
 

To acquire power and performance metrics for mixed-criticality workloads on different types 

of cores, we use Sniper [117], an x86 multicore simulator, and the McPAT [118] power model 

extended to support Vdd in the NTC region for the 22 nm node. Table 10 shows the configuration 

of our platform with big-core-clusters and small-core-clusters. For intra-cluster transfers, a 2D-

mesh network-on-chip (NoC) and XY routing over conflict-free TDMA virtual channels is 

assumed. For inter-cluster communication, we assume delay in the range of hundreds of 

milliseconds to cross clusters. 
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We assume threshold voltage, Vth, of 0.289V for the 22nm technology node [119]. Based on 

power simulation results over multiple runs, we set the NTC supply voltage, Vdd
nth to be 0.4V, 

which not only achieves high energy-efficiency but also keeps a safe margin with Vth to avoid 

errors due to the impact of process variations [95]. According to architectural level delay analysis 

result for CMOS processors in [120] with assumption of slightly shorter critical path for our small 

cores compared to Intel Atom processors [121], we set NTC operation frequency, fnth, to be 

500MHz. 

 

Figure 48 Miss Penalties for Generated Schedule Templates 

4.6.2. DESIGN-TIME TEMPLATE GENERATION ANALYSIS  

Our mixed-criticality scheduling framework (McSF) executes timing-centric task graphs 

based on schedule templates generated at design-time using the analysis-based template 

generation method (ATG) proposed in Chapter 3. The per-schedule-window miss penalties of the 
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generated template set are shown in Figure 48, which shows decreasing penalty when more energy 

budget and cores are made available for an execution schedule. It should be noted that some 

templates are ignored in our scheduling, e.g., those highlighted in the upper-left and bottom-right 

regions of Figure 48 enclosed by blue lines. For example, for the 2 core case, looking at the 

highlighted region on the bottom-right, increasing the energy budget level beyond 3 does not 

reduce miss penalty. Similarly, for energy budget level 2, increasing the number of cores beyond 

5 does not improve miss penalty. Thus templates in these two regions can be safely ignored. 

 

Figure 49 System Miss Penalties under Different Intensity Scale Factors 

4.6.3. TIMING INTENSITY METRIC EVALUATION  

We tested if our proposed timing intensity metric (see Equation (35) of Section 4.5.1) 

accurately characterizes the importance of application instances with respect to the (m,k) constraint 

in a mixed-criticality workload. For this purpose, we offset timing intensity calculated for instances 
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of throughput-centric multithreaded applications by multiplying them with a factor ranging from 

1/10 to 10, while the timing intensity for timing-centric task graph instances was fixed to 1.  

The results in Figure 49 show that keeping the original calculated timing intensity minimizes 

overall system miss penalty, while offsetting timing intensity to higher or lower values leads to 

more miss penalties. Thus our defined timing intensity metric can accurately evaluate importance 

of instances to achieve the best balance between throughput-centric and timing-centric tasks to 

minimize miss penalty of the entire mixed-criticality workload. We also compared our timing 

intensity metric with the distance-to-failure metric proposed in [91], which also finds its peak 

when no offset is applied (Figure 49). We found that the distance-to-failure metric results in up to 

9.5% higher miss penalties, compared to our timing intensity-based priority assignment method, 

as the distance-to-failure metric only considers the next nearest timing failure in the worst case. 

Besides, both metric evaluation methods outperform the (m,k)-unaware scheduling method that 

assumes firm deadlines for all application instances (see black dash line in Figure 49). 

 

4.6.4. MIXED-CRITICALITY SCHEDULING PERFORMANCE EVALUATION  

As ours is the first framework to address the scheduling and allocation problem for mixed-

criticality heterogeneous systems powered by energy harvesting, there is no prior work to directly 

compare the overall system performance against. However, we did adapt the performance impact 

estimation (PIE) methodology as an exemplar state-of-art thread scheduling technique for single-

ISA heterogeneous systems from [111] (even though it does not support energy harvesting). To fit 

into the experimental setup of this paper, our version of PIE estimates the performance benefit of 

mapping each phase in throughput-centric applications to big cores and the scheduler dynamically 
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selects one phase with the most benefit to share bigger cores with timing-centric task graphs for 

each schedule window.  

We additionally compare the performance of our proposed mixed-criticality scheduling 

framework (McSF) across four different setups: 1) B8-S32, the default configuration with 8 big 

cores and 32 small cores, which adapts the moving average solar energy prediction method used 

in [41]; 2) Perfect-Pred, a setup with identical core configuration as the default one, but with the 

assumption of perfect energy harvesting prediction; 3) B8-B32, a configuration that replaces the 

default 32 small cores with 32 big ones; and 4) B8-B8, a configuration that replaces the default 32 

small cores with 8 big cores, to keep overall area footprint the same as B8-S32 (Table 10).  

Figure 50 shows the results of our comparison study. For throughput-centric applications the 

total miss rate (throughput-centric: all) represents all the instances that are dropped. However, 

because of the (m,k)-soft deadline constraint in these applications, some dropped instances do not 

violate the constraint. Therefore the effective miss rate (throughput-centric: (m, k)-only) is much 

lower. 

The default B8-S32 configuration only suffers slight increase in system miss penalty 

compared to Perfect-Pred that has ideal energy prediction, showing the ability of McSF to mitigate 

the performance impact of energy harvesting mispredictions. Compared to Perfect-Pred, B8-S32 

has higher miss rate for timing-centric tasks graph instances and lower miss rate for multithreaded 

application instances. This is because B8-S32 accepts higher than optimal multithreaded 

application instances, without awareness of hard-to-predict instantaneous drops in harvesting 

power. Then our dynamic workload filtering framework in Section 4.5.2 allocates fewer resources 

to timing-centric task graphs to sustain the energy supply for those extra throughput-centric 

instances already in execution to minimize energy wasted due to misprediction. As a result, miss 
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penalty increases slightly because the balance between the two types of workloads is affected 

during this process.  

 

Figure 50 Miss Penalties and Instance Miss Rates across Configurations 

For the (m, k)-Unaware setup, which utilizes the same core-configuration as B8-S32 but has 

no awareness of (m, k) constraints, the result shows much lower total miss rate for throughput-

centric instances as it considers all instances as necessary for penalty avoidance. However, the 

actual (m, k)-miss rate increases as (m, k)-Unaware allocates energy to instances that are less 

important for (m, k) constraints. Besides, it also leads to higher miss rate for timing-centric task 
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graphs as the balance between the two types of workload is notably affected. Thus (m, k)-Unaware 

has higher overall system miss penalty compared to B8-S32. 

Comparing B8-S32 with B8-B32, it can be seen that although B8-B32 provides better 

computing capability, it leads to much higher overall miss penalty due to a decrease in energy 

efficiency. On average, big cores bring performance speedup of approximately 3×, with an average 

jump of 7× in power consumption, ending up with a 2× degradation in energy efficiency. Moreover 

B8-B32 also has a much higher area footprint than B8-S32, given that the area of big cores is close 

to 4× that of small cores. B8-B8 is a multicore configuration with the same chip area footprint as 

B8-S32. But B8-B8 suffers even higher miss penalty than B8-B32, as it not only has lower energy 

efficiency than B8-B32 but also possesses lower computation throughput than B8-B32. B8-S32 

outperforms B8-B8 by 23.2% miss penalty reduction, highlighting the importance of core 

heterogeneity to improve energy-efficiency and performance in multicore computing platforms.  

Lastly, Figure 50 also shows a comparison with the performance impact estimation (PIE) 

scheduling and allocation framework from [111] for thread scheduling in single-ISA 

heterogeneous systems, It can be seen that PIE has 13.6% higher miss rate and penalty compared 

to B8-S32, as it does not focus on energy efficiency but throughput performance, causing more 

workload to be allocated to big cores for less overall efficiency. 

 

4.6.5. CHAPTER SUMMARY 

In this chapter, we addressed the scheduling problem for single-ISA heterogeneous 

multicore processors running hybrid mixed-criticality workloads with a limited and fluctuating 

energy budget provided by solar energy harvesting. We modeled a mixed-criticality workload by 

combining timing-centric real-time task graphs with firm deadlines and throughput-centric 
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multithreaded phases with soft deadlines, with different associated miss penalties. We utilized a 

single-ISA heterogeneous platform design to fulfil requirements for this mixed-criticality 

workload.  To achieve a balance that minimizes overall system miss penalty, we proposed a novel 

timing intensity estimation method, based on which we can allocate resources dynamically to 

different types of workload according to energy harvesting conditions. In experiments, our 

proposed mixed-criticality scheduling framework achieves a 9.5% miss penalty reduction with the 

proposed timing intensity metric compared to metrics from prior work, a 13.6% performance 

improvement over a state-of-the-art scheduling approach for single-ISA heterogeneous platforms, 

and a 23.2% performance benefit from exploiting platform heterogeneity.  
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5. CONCLUSION AND FUTURE WORK 

 

5.1. RESEARCH CONCLUSION 

In this dissertation, we addressed important challenges faced by real-time embedded 

multicore systems with energy harvesting, by proposing a novel semi-dynamic resource 

management framework. This framework is designed to cope with run-time variations in 

harvesting power with optimal low-overhead task scheduling to maximize system throughput and 

high functionality flexibility to adapt to the changing run-time dynamics. As presented in previous 

chapters, our proposed semi-dynamic framework utilizes various optimization algorithms such as 

graph algorithms, linear programming, and custom heuristics to optimize system performance, 

efficiency, and reliability at run-time and/or design-time. Experimental results for our proposed 

semi-dynamic framework validate and motivate its deployment in future embedded systems 

powered by energy harvesting, because this framework demonstrates significant improvement in 

energy efficiency with extensibility to adapt emerging and increasingly relevant design concerns, 

such as overheating, transient errors,  and aging effect. Therefore, our proposed semi-dynamic 

framework has the potential to be applied as a general strategy for resource management on 

systems powered by time-varying energy harvesting.  

Our first contribution is SDA (Chapter 2), a novel semi-dynamic scheduling algorithm aimed 

at scheduling periodic independent real-time tasks with awareness of energy harvesting. Its 

fundamental idea is time-segmentation, which guarantees uniform execution frequency within 

each scheduling window for higher energy efficiency. Experimental results indicate a significant 

(up to 70%) improvement in system performance, compared to state-of-the-art algorithms under 

an identical system setup. We extended SDA to consider support for task drop penalty awareness, 
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run-time thermal management, core-heterogeneity mitigation, and hybrid energy storage 

utilization. Moreover, from SDA we derive the design methodology of semi-dynamic resource 

management, which is the core idea of this dissertation to effectively tackle various problems for 

managing systems with energy harvesting. 

Based on the concept of semi-dynamic resource management, we proposed HyWM (Chapter 

3), a hybrid design-time and run-time workload management framework to cope with the 

complexity of scheduling task graphs with data dependencies and run-time variations in solar 

radiance, execution time, transient faults, and aging progress. Our experimental results indicated 

improvements in performance and adaptivity of target systems due to the efficiency and flexibility 

of our semi-dynamic framework, with up to 23.2% miss rate reduction compared to prior work, 

43.6% performance benefits from adaptive run-time workload management compared to a baseline 

framework with no soft error and slack time handling, and up to 24.5 % expected system lifetime 

improvement with aging-aware workload allocation compared to aging-agnostic schemes, under 

stringent energy constraints and varying system conditions at run-time. Therefore, our semi-

dynamic framework proves to be a promising and practical solution to transform the future of 

energy-autonomous embedded computing with boosted scope and efficiency. 

Finally, we applied the semi-dynamic framework to address the scheduling of mixed-

criticality workloads on single-ISA heterogeneous multicore platform powered by solar energy 

harvesting (Chapter 4). To achieve a balance between different types of workload that minimizes 

overall system miss penalty, we proposed a novel timing intensity metric for mixed-criticality 

tasks, which are utilized to guide resource allocation in the semi-dynamic framework. In 

experiments, our proposed mixed-criticality scheduling framework achieves a 9.5% miss penalty 

reduction with the proposed timing intensity metric compared to metrics from prior work, a 13.6% 
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performance improvement over a state-of-the-art scheduling approach for single-ISA 

heterogeneous platforms, and a 23.2% performance benefit from exploiting platform heterogeneity. 

 

5.2. FUTURE WORK 

Embedded computing powered by solar energy harvesting will continue to face new 

challenges and opportunities on the path towards a future with pervasive computing, as 

applications and platforms evolve rapidly. Thus we further envision the following future work 

directions: 

 Mobile Computing: Limited battery lifetime is the major factor that affects daily user 

experience in today’s smartphones [122]. With miniaturization of high-efficiency PV cells 

[123], solar energy harvesting could become the auxiliary or even standalone energy source 

for future smartphones. The major difference between smart mobile devices and other 

embedded computing platforms lies in their unique interface between apps and operating 

systems and their emphasis on user experience such as input delay or interface transition 

lag. Therefore, for such smart mobile devices, it is necessary to implement a framework 

seamlessly integrated with the OS [30] to co-optimize energy efficiency and user 

experience with awareness of energy harvesting. We can also view mobile computing 

platforms as a type of mixed-criticality system that hosts tasks with very different timing 

requirements, including user-centric interface rendering tasks, user-centric foreground 

threads, background system/user level services, and real-time communications tasks. It will 

be interesting to study the interaction between energy harvesting and these tasks with 

different timing requirements to optimize user experience and energy efficiency. 



144 
 

 Nonvolatile Computing: By adopting nonvolatile registers and nonvolatile SRAM, the 

emerging nonvolatile processors support in place system recovery to enable the seamless 

transition between different power states of systems with energy harvesting [124]. Besides, 

as nonvolatile processors do not need a power supply to sustain the memory state, leakage 

power can be reduced significantly by turning off memory system when possible. However, 

nonvolatile computing also comes with overheads in terms of energy, area, and 

performance. Thus comprehensive research from the circuit to the system level for 

nonvolatile processors is required before we can exploit their full potential for systems 

powered by energy harvesting [125]. For example, we may develop an efficient 

sleep/recover scheme that only preserves information necessary for the resumption of 

system execution, minimizing required footprint of nonvolatile memory for lower 

overhead in chip area and recovery energy. 

 Approximate Computing: Approximate computing has recently emerged as a promising 

approach that relies on systems and applications’ tolerance on loss of quality and optimality 

in the computing results to achieve substantial improvements in energy efficiency [126]. 

As solar energy harvesting offers no guarantees related to the sufficiency of the energy 

supply, it is usually used for applications with lax requirements on systems output. Thus, 

the combination of approximate computing and energy harvesting can be a promising 

research direction as they share similar design concerns. However, most recent efforts on 

approximate computing focus on hardware design methodologies for approximate 

computing platforms [127], which have enabled energy efficiency improvements in 

general but have failed to provide an approach to trade-off between result accuracy and 

energy efficiency on-the-fly. For approximate computing systems with energy harvesting, 
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we believe that in addition to applying approximate hardware platforms, considerations of 

the software stack and resource management infrastructure are also important. It would be 

interesting to explore the possibility of dynamic trade-offs between result accuracy and 

energy efficiency by utilizing the inherent fault-tolerance of certain probabilistic 

applications such as stochastic optimization algorithms and machine learning procedures, 

where we can adjust computation load and accuracy without failure of entire applications. 
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