
DISSERTATION

A SEMI-DYNAMIC RESOURCE MANAGEMENT FRAMEWORK FOR MULTICORE

EMBEDDED SYSTEMS WITH ENERGY HARVESTING

Submitted by

Yi Xiang

Department of Electrical and Computing Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2015

Doctoral Committee:

 Advisor: Sudeep Pasricha

 Anura Jayasumana
 H. J. Siegel
 Michelle Mills Strout

Copyright by Yi Xiang 2015

All Rights Reserved

ii

ABSTRACT

A SEMI-DYNAMIC RESOURCE MANAGEMENT FRAMEWORK FOR MULTICORE

EMBEDDED SYSTEMS WITH ENERGY HARVESTING

Semiconductor technology has been evolving rapidly over the past several decades,

introducing a new breed of embedded systems that are tiny, efficient, and pervasive. These

embedded systems are the backbone of the ubiquitous and pervasive computing revolution,

embedded intelligence all around us. Often, such embedded intelligence for pervasive computing

must be deployed at remote locations, for purposes of environment sensing, data processing,

information transmission, etc. Compared to current mobile devices, which are mostly supported

by rechargeable and exchangeable batteries, emerging embedded systems for pervasive computing

favor a self-sustainable energy supply, as their remote and mass deployment makes it impractical

to change or charge their batteries. The ability to sustain systems by scavenging energy from

ambient sources is called energy harvesting, which is gaining monument for its potential to enable

energy autonomy in the era of pervasive computing. Among various energy harvesting techniques,

solar energy harvesting has attracted the most attention due to its high power density and

availability.

Another impact of semiconductor technology scaling into the deep submicron level is the

shifting of design focus from performance to energy efficiency as power dissipation on a chip

cannot increase indefinitely. Due to unacceptable power consumption at high clock rate, it is

desirable for computing systems to distribute workload on multiple cores with reduced execution

frequencies so that overall system energy efficiency improves while meeting performance goals.

iii

Thus it is necessary to adopt the design paradigm of multiprocessing for low-power embedded

systems due to the ever-increasing demands for application performance and stringent limitations

on power dissipation.

In this dissertation we focus on the problem of resource management for multicore

embedded systems powered by solar energy harvesting. We have conducted a substantial amount

of research on this topic, which has led to the design of a semi-dynamic resource management

framework designed with emphasis on efficiency and flexibility that can be applied to energy

harvesting-powered systems with a variety of functionality, performance, energy, and reliability

goals. The capability and flexibility of the proposed semi-dynamic framework are verified by

issues we have addressed with it, including: (i) minimizing miss rate/miss penalty of systems with

energy harvesting, (ii) run-time thermal control, (iii) coping with process variation induced core-

to-core heterogeneity, (iv) management of hybrid energy storage, (v) scheduling of task graphs

with inter-node dependencies, (vi) addressing soft errors during execution, (vii) mitigating aging

effects across the chip over time, and (vii) supporting mixed-criticality scheduling on

heterogeneous processors.

iv

ACKNOWLEDGEMENTS

I would like to thank all the individuals whose encouragement and support have made the

completion of this dissertation possible.

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Sudeep

Pasricha, who has patiently guided me through the entire process of graduate study step by step.

In the last year of my bachelor program in semiconductor physics, I made up my mind to seek

overseas study opportunities in another area to feed my curiosity about the interactions between

computer hardware and software. Although the picture of snowcapped mountains on the ECE

department website was impressive, it was Dr. Pasricha’s description of research on multicore

embedded systems that immediately caught my eye and enlightened me about the field. Since then

I have never looked back as I was fortunate enough to join his research group and to receive his

help, which changed my life. In the first year, the course and research work suggested by Dr.

Pasricha helped prepare me with basic skills for research and reassured me that I had found my

area of interests. After that, it was his vision and wisdom that stimulated me to look at research

problems with more critical and creative thinking, which led to several publications in well-known

conferences and journals. For countless times, I was impressed by his thoroughness and attention

to detail despite his tight schedule, from which I got to know his passion and enthusiasm for

research. On the other hand, he is the type of advisor that is caring enough to suggest his graduate

students to slow down, get some rest, and recharge whenever he senses high pressure on them. Dr.

Pasricha can also give good life advice when required, which helped me to overcome various

difficulties and confusions in life and study during my graduate school years. I really appreciate

v

all the help, guidance, and inspiration I received from Dr. Pasricha, who made it possible for me

to survive the trials of graduate school with unforgettable memories and broadened horizons.

I would like to take this opportunity to thank the respected members of my PhD committee,

Dr. H. J. Siegel, Dr. Anura Jayasumana, and Dr. Michelle Mills Strout. Their feedback helped me

to rediscover my research and refine my work from different perspectives. I am also thankful to

my colleagues in Dr. Pasricha’s MECS lab for their collaboration during my Ph.D. study: Yong

Zou, Nishit Kapadia, and Brad Donohoo. Also this list cannot be complete without mentioning

company and help from Srinivas Desai, Vipin Kumar Kukkala, Ishan Thakkar, Saideep Tiku, C

Sai Vineel Reddy, Shirish Bahirat, Yuhang Li, Tejasi Pimpalkhute, Pramit Rajkrishna, Dalton

Young, Daniel Dauwe, and Shoumik Maiti.

I would like to thank my family, especially my parents, for their support to pursue my Ph.D.

on the other side of the planet. I cannot wait to share more good news with them in the future as I

continue with my work and study. Their kindness shaped my view of this world and made me the

person I am.

Thank you to Yixiao, for all her love and support.

vi

TABLE OF CONTENTS

ABSTRACT .. II

ACKNOWLEDGEMENTS .. IV

TABLE OF CONTENTS .. VI

LIST OF TABLES ... X

LIST OF FIGURES .. XI

LIST OF ALGORITHMS .. XIV

LIST OF ACRONYMS ... XV

1. INTRODUCTION ... 1

1.1. ENERGY HARVESTING ... 1

1.2. REAL-TIME MULTICORE EMBEDDED SYSTEMS ... 5

1.2.1. EMBEDDED SYSTEMS ... 5

1.2.2. REAL-TIME SYSTEMS AND WORKLOAD MODELS ... 6

1.2.3. MULTICORE PROCESSORS IN EMBEDDED SYSTEMS 8

1.3. BACKGROUND AND RELATED WORK ON RESOURCE MANAGEMENT FOR

LOW POWER REAL-TIME EMBEDDED SYSTEMS WITH ENERGY

HARVESTING ... 15

1.4. DISSERTATION OUTLINE .. 19

2. SEMI-DYNAMIC SCHEDULING ALGORITHM FOR INDEPENDENT TASKS 22

2.1. BACKGROUND AND CONTRIBUTION ... 22

2.2. PROBLEM FORMULATION .. 26

2.2.1. ENERGY HARVESTING AND ENERGY STORAGE MODULE 26

2.2.2. PERIODIC REAL-TIME WORKLOAD WITH INDEPENDENT TASKS 27

vii

2.2.3. DPM AND DVFS-ENABLED MULTI-CORE PROCESSOR.................................. 28

2.2.4. RUN-TIME SCHEDULER .. 30

2.2.5. SCHEDULING PROBLEM OBJECTIVE ... 30

2.3. MOTIVATION .. 31

2.3.1. MOTIVATION FOR SEMI-DYNAMIC ALGORITHM .. 31

2.3.2. MOTIVATION FOR HYBRID ENERGY STORAGE ... 34

2.3.3. MOTIVATION FOR HETEROGENEITY-AWARE ALLOCATION 35

2.3.4. MOTIVATION FOR RUN-TIME THERMAL MANAGEMENT............................ 36

2.4. PROPOSED RUN-TIME ENERGY AND WORKLOAD MANAGEMENT

FRAMEWORK ... 37

2.4.1. SEMI-DYNAMIC ALGORITHM OVERVIEW ... 37

2.4.2. HYBRID ENERGY STORAGE SYSTEM AND ENERGY BUDGETING 40

2.4.3. CRITICAL FREQUENCY, CORE HETEROGENEITY AND THERMAL AWARE

WORKLOAD ESTIMATION .. 44

2.4.4. TASK PENALTY AND CORE HETEROGENEITY AWARE TASK REJECTION

AND ALLOCATION .. 49

2.4.5. DVFS SWITCHING-AWARE DUAL-SPEED METHOD 51

2.5. EXPERIMENTAL RESULTS .. 55

2.5.1. EXPERIMENT SETUP .. 55

2.5.2. COMPARISON BETWEEN SDA AND PRIOR WORK .. 57

2.5.3. ANALYSIS OF SDA WITH HYBRID ENERGY STORAGE 60

2.5.4. ANALYSIS OF CORE HETEROGENEITY-AWARE MANAGEMENT 64

2.5.5. ANALYSIS OF RUN-TIME THERMAL MANAGEMENT 65

2.5.6. ANALYSIS OF SCHEDULING OVERHEAD ... 67

2.6. CHAPTER SUMMARY .. 68

viii

3. TEMPLATE-BASED SCHEDULING ALGORITHM FOR TASK GRAPHS 70

3.1. BACKGROUND AND CONTRIBUTION ... 70

3.2. RELATED WORK .. 73

3.3. PROBLEM FORMULATION .. 74

3.3.1. PERIODIC REAL-TIME WORKLOAD WITH TASK GRAPHS 75

3.3.2. SOFT ERROR MODEL ... 77

3.3.3. HARD ERROR MODEL .. 78

3.3.4. RUN-TIME SCHEDULER .. 81

3.3.5. PROBLEM OBJECTIVE ... 81

3.4. HYBRID SCHEDULING FRAMEWORK: MOTIVATION AND OVERVIEW 81

3.5. OFFLINE TEMPLATE GENERATION .. 83

3.5.1. MILP-BASED OFFLINE TEMPLATE GENERATION .. 84

3.5.2. FAST HEURISTIC-BASED OFFLINE TEMPLATE GENERATION 90

3.6. ADAPTIVE ONLINE MANAGEMENT .. 97

3.6.1. RUN-TIME TEMPLATE SELECTION .. 97

3.6.2. AGING-AWARE ALLOCATION OF WORKLOAD PARTITIONS 98

3.6.3. DYNAMIC ADJUSTMENT FOR SLACK RECLAMATION AND SOFT ERROR

HANDLING AT RUN-TIME ... 99

3.7. EXPERIMENTAL RESULTS .. 103

3.7.1. EXPERIMENT SETUP .. 103

3.7.2. TEMPLATE GENERATION ANALYSIS .. 103

3.7.3. EVALUATION OF SYSTEM PERFORMANCE WITHOUT ERROR INJECTION

AND EXECUTION TIME VARIANCE .. 106

3.7.4. EVALUATION OF SYSTEM PERFORMANCE WITH SOFT ERROR INJECTION

AND EXECUTION TIME VARIANCE .. 110

ix

3.7.5. EVALUATION OF SYSTEM HARD RELIABILITY AND MTTF 112

3.8. CHAPTER SUMMARY .. 114

4. MIXED-CRITICALITY SCHEDULING ON HETEROGENEOUS SYSTEMS 115

4.1. BACKGROUND AND CONTRIBUTION ... 115

4.2. RELATED WORK .. 119

4.3. PROBLEM FORMULATION .. 121

4.3.1. MIXED-CRITICALITY WORKLOAD MODEL.. 122

4.3.2. HETEROGENEOUS MULTICORE COMPUTING PLATFORM 123

4.3.3. ENERGY HARVESTING, STORAGE, AND BUDGETING 124

4.3.4. PROBLEM OBJECTIVE ... 125

4.4. SEMI-DYNAMIC FRAMEWORK FOR MIXED-CRITICALITY SCHEDULING..... 126

4.5. RUN-TIME MIXED-CRITICALITY SCHEDULING ... 127

4.5.1. SOFT DEADLINE-AWARE PRIORITY METRIC .. 127

4.5.2. DYNAMIC WORKLOAD FILTERING AND BALANCING 130

4.6. EXPERIMENTAL RESULTS .. 132

4.6.1. EXPERIMENT SETUP .. 132

4.6.2. DESIGN-TIME TEMPLATE GENERATION ANALYSIS 134

4.6.3. TIMING INTENSITY METRIC EVALUATION ... 135

4.6.4. MIXED-CRITICALITY SCHEDULING PERFORMANCE EVALUATION 136

4.6.5. CHAPTER SUMMARY ... 139

5. CONCLUSION AND FUTURE WORK ... 141

5.1. RESEARCH CONCLUSION .. 141

5.2. FUTURE WORK ... 143

BIBLIOGRAPHY ... 146

x

LIST OF TABLES

Table 1 Xscale Processor Power and Frequency Levels [43] ... 28

Table 2 Miss Rate Comparison on MiBench .. 60

Table 3 Comparison between Throttling and Proactive Schemes .. 67

Table 4 Inputs for MILP Formulation .. 84

Table 5 Decision Variables in MILP Formulation ... 85

Table 6 Results of MILP Based Schedule Template Generation for A 4-core Homogeneous

Embedded System ... 104

Table 7 Computation Resource Requirement of MILP and ATG .. 106

Table 8 System MTTF and Performance Comparison with Different Failure Thresholds 113

Table 9 Characteristics of Mixed-Criticality Workloads .. 123

Table 10 Configuration of Heterogeneous Multicore Processor .. 133

xi

LIST OF FIGURES

Figure 1 Normalized Search Frequency of “Energy Harvesting” over Time [6] 2

Figure 2 TE-Power PROBE Thermal Harvester by Micropelt [8] ... 3

Figure 3 Photovoltaic Panels at Various Scales .. 4

Figure 4 Example of Tiny Embedded Computer with Wi-Fi and Bluetooth 5

Figure 5 Workload Models Considered in this Dissertation ... 8

Figure 6 Increasing Processor-Memory Performance Gap [19] ... 9

Figure 7 Approaching Power Wall with Dennard Scaling [21] .. 10

Figure 8 Diagram of Tile64 processor by Tilera [25] ... 11

Figure 9 A Typical big.LITTLE System by ARM [23] .. 12

Figure 10 AMD Fusion APU: “LLANO” [27] ... 14

Figure 11 Preview of Contributions of this Dissertation .. 19

Figure 12 Real-Time Embedded Processing with Solar Energy Harvesting 26

Figure 13 Real-Time Scheduling with Energy Harvesting ... 31

Figure 14 Motivation for Proposed Semi-Dynamic Approach ... 32

Figure 15 An Example of Solar Intensity vs. Ambient Temperature ... 37

Figure 16 Illustration of Semi-Dynamic Algorithm ... 38

Figure 17 Design Flow of Our Proposed SDA-Based Framework ... 40

Figure 18 Proposed Hybrid Energy Storage System .. 42

Figure 19 Hybrid Storage Management Policy .. 43

Figure 20 Energy Efficiency of XScale Processor ... 46

Figure 21 Energy Efficiency and Switching Proportion for the XScale Processor 51

xii

Figure 22 Comparison of Frequency Selection Methods ... 55

Figure 23 Miss Rates for Different Schedule Window Sizes ... 56

Figure 24 Miss Rate Comparison with Light Workload ... 58

Figure 25 Miss Rate Comparison with Heavy Workload ... 59

Figure 26 Overall Miss Penalty Comparison .. 61

Figure 27 Overall Miss Rate Comparison .. 62

Figure 28 Miss Rate Reduction for HY-SDA Compared to UTB .. 63

Figure 29 Overall Miss Rate Comparison with Core Heterogeneity .. 65

Figure 30 Peak Temperature of Various Thermal Management Techniques 66

Figure 31 Comparison of Scheduling Overhead ... 68

Figure 32 DAG Scheduling on Multicore Embedded System Platform with Solar Energy 75

Figure 33 Example of Applications Modeled as DAGs ... 76

Figure 34 Overview of Hybrid Workload Management Framework ... 82

Figure 35 Timing Constraints for Periodic Task Graph Set ... 87

Figure 36 Analysis-Based Schedule Template Generation Heuristic ... 90

Figure 37 An Illustration Example of Implicit Deadline Calculation ... 93

Figure 38 Residual Energy Availability over Time .. 97

Figure 39 Illustrative Example of Slack Time Reclamation ... 100

Figure 40 Frequency Level Occurrence Distribution for All Task Nodes 105

Figure 41 Task Nodes Comparison in Terms of Overall System Task Graph Miss Rate 108

Figure 42 Comparison of Overall System Task Graph Miss Rate on Synthetic Task Graph Set

with Higher DoP ... 109

Figure 43 Miss Rate Comparison with Run-Time Techniques Enabled Progressively 111

xiii

Figure 44 Comparison of reliability and MTTF for different workload allocation schemes 112

Figure 45 Overview of the Proposed Harvesting-Aware McSF Framework with A Mixed-

Criticality Workload and A Single-ISA Heterogeneous Multicore Embedded System 121

Figure 46 Illustration of Energy Budgeting and Execution Scheduling Across Schedule Windows

over Time .. 125

Figure 47 Illustration of Timing Intensity for (2, 5)-soft Deadline Case 129

Figure 48 Miss Penalties for Generated Schedule Templates .. 134

Figure 49 System Miss Penalties under Different Intensity Scale Factors 135

Figure 50 Miss Penalties and Instance Miss Rates across Configurations 138

xiv

LIST OF ALGORITHMS

Algorithm 1 Energy Budgeting with Hybrid Energy Storage ... 43

Algorithm 2a Active Core Selection and Workload Estimation ... 46

Algorithm 2b Heterogeneity-Aware Workload Estimation .. 48

Algorithm 3 Heterogeneity Aware Task Rejection and Assignment .. 49

Algorithm 4 Dual-Speed Method with Inter-Task Switching... 54

Algorithm 5 Initializing of Tentative Schedule Template .. 91

Algorithm 6 List Scheduling Based Approach for Task Scheduling .. 94

Algorithm 7 Checkpoint-Based Iterative Analysis ... 96

Algorithm 8 Dynamic Workload Distribution in Awareness of Core Aging 98

Algorithm 9 Dynamic Slack Reclamation and Soft Error Handling .. 101

Algorithm 10 Dynamic Workload Filtering and Scheduling .. 130

xv

LIST OF ACRONYMS

APU → accelerated processing unit

CMOS → complementary metal-oxide semiconductor

DTS → digital thermal sensor

DoP → degree of parallelism

DVFS → dynamic voltage and frequency scaling

EDF → earliest deadline first scheduling algorithm

EM → electromigration

ILP → instruction level parallelism

ISA → instruction set architecture

MILP → mixed integer linear programming

MPPT → maximum power point tracking

MTTF → mean-time-to-failure

NBTI → negative bias temperature instability

NOC → network-on-chip

NTC → near-threshold computing

RTOS → real-time operating system

SA → simulated annealing

SMP → symmetric multiprocessor

STC → super-threshold computing

TDDB → time dependent dielectric breakdown

TDP → thermal design power

xvi

LIST OF PUBLICATIONS

  Y. Xiang, S. Pasricha, "Mixed-Criticality Scheduling on Heterogeneous Multicore Systems

Powered by Energy Harvesting", ACM Transaction on Embedded Computing (TECS), under

review.

 Y. Xiang, S. Pasricha, "Soft and Hard Reliability-Aware Scheduling for Multicore Embedded

Systems with Energy Harvesting", IEEE Transactions on Multi-Scale Computing Systems

(TMSCS), under review.

 Y. Xiang, S. Pasricha, "Run-Time Management for Multi-Core Embedded Systems with

Energy Harvesting", IEEE Transactions on Very Large Scale Integration Systems (TVLSI),

March 2015.

 Y. Xiang, S. Pasricha, "Fault-Aware Application Scheduling in Low Power Embedded

Systems with Energy Harvesting", ACM/IEEE International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), October 2014.

 Y. Xiang, S. Pasricha, "A Hybrid Framework for Application Allocation and Scheduling in

Multicore Systems with Energy Harvesting", ACM Great Lakes Symposium on VLSI

(GLSVLSI), May 2014.

xvii

 B. Donohoo, C. Ohlsen, S. Pasricha, C. Anderson, Y. Xiang, "Context-Aware Energy

Enhancements for Smart Mobile Devices", IEEE Transactions on Mobile Computing, July

2013.

 Y. Xiang, S. Pasricha, "Harvesting-Aware Energy Management for Multicore Platforms with

Hybrid Energy Storage", ACM Great Lakes Symposium on VLSI (GLSVLSI), May 2013.

 Y. Xiang, S. Pasricha, "Thermal-Aware Semi-Dynamic Power Management for Multicore

Systems with Energy Harvesting", IEEE International Symposium on Quality Electronic

Design (ISQED), March 2013.

 Y. Zou, Y. Xiang, S. Pasricha, "Characterizing Vulnerability of Network Interfaces in

Embedded Chip Multiprocessors", IEEE Embedded System Letters, June 2012.

 Y. Zou, Y. Xiang, S. Pasricha, "Analysis of On-chip Interconnection Network Interface

Reliability in Multicore Systems", IEEE International Conference on Computer Design

(ICCD), October 2011.

1

1. INTRODUCTION

Energy constraints remain the major factor that limits the availability and versatility of

embedded systems in the era of pervasive computing [1]. Despite tremendous efforts in academia

and industry to improve the energy efficiency of current embedded devices, there is still need for

an effective solution that can be applied to energy-constrained embedded systems deployed in

remote locations around the world [2]. This chapter contains an introduction to the basic concepts

of energy harvesting, which has emerged recently as an attractive alternative to supply energy for

embedded systems when other energy sources are limited or unavailable. Also, we introduce real-

time multicore embedded systems as the target platform type in this dissertation. Lastly, this

chapter discusses the need for an intelligent resource management framework to exploit the full

potential of multicore embedded systems powered by energy harvesting.

1.1. ENERGY HARVESTING

Energy harvesting, also known as power harvesting or energy scavenging, is the process of

deriving energy from external sources, such as wind energy, thermal energy, kinetic energy, and

solar energy [3]. With its history tracing back to the invention of windmills and waterwheels, in

recent years energy harvesting has attracted ever-increasing interest and investments from the

industrial sector, the research community, and individual prospectors due to its positive effects on

both the environment and the economy, two of the major concerns for modern society. The energy

harvesting technologies market was worth $131.4 million in 2012 and is projected to increase to

$4.2 billion in 2019 [4]. Figure 1 shows change in web search frequency for the term “energy

2

harvesting” over time, which is broadly in line with the rising interest in this topic. In this

dissertation, we focus on energy harvesting technologies used for electronic devices [5].

Figure 1 Normalized Search Frequency of “Energy Harvesting” over Time [6]

Although energy exists everywhere in the physical universe in multiple forms, only some

forms can be effectively converted into electric energy to power electronic systems, including

piezoelectric energy, thermal energy, wind energy, and solar energy. Listed below are some of the

most common forms of energy available for energy harvesting:

 Piezoelectric energy: Piezoelectric effect is the phenomenon of accumulating electric

charge in certain solid materials when mechanical stress is applied. This effect can be

utilized to convert subtle energy sources, such as seismic vibration, acoustic noise, and

ambient object motion, into electric energy, which becomes available in the form of a

voltage difference between material surfaces [7]. As piezoelectric energy harvesting

techniques usually generate electric power in the order of a microwatt, they are normally

employed only in micro-scale electronic devices. A common example of piezoelectric

energy harvesting is in step detection sensors deployed in sports shoes.

3

Figure 2 TE-Power PROBE Thermal Harvester by Micropelt [8]

 Thermal energy: Heat flow due to thermal gradient in a conducting material can also

produce a voltage difference and thus provides the possibility of converting thermal energy

into electric energy. [9] The major drawback of this form of energy harvesting is the fact

that long-term stable thermal gradients are only available in particular places, limiting the

location flexibility in deployment. Therefore, systems powered by thermal gradients are

usually seen attached to the surface of other heating objects as parasitic devices. For

example, Figure 2 shows the TE-Power PROBE thermal harvester manufactured by

Micropelt, which can be attached to hot surfaces, such as a pipe with warm water flowing

through it, to enable thermal harvesting by dissipating heat through its heat sink into

ambient air [8].

 Wind energy: Wind energy has been demonstrated to be both technically and economically

viable [10]. The most common exploitation of wind energy is with the help of large-scale

wind turbines deployed at geographically windy locations around the world, which provide

4

an auxiliary clean energy source to power grids for utility providers. On the other hand,

small-scale wind turbines also exist for specific applications such as auxiliary power supply

for boats. The major issue facing the harvesting of wind energy lies in its strict location

requirement and unstable wind conditions over time.

Figure 3 Photovoltaic Panels at Various Scales

 Solar energy: Solar energy [11], which is widely considered as a possible replacement for

the more costly fossil energy in the future, is probably the most discussed source of

renewable energy in recent years. Solar energy is derived from sunlight which is the most

plentiful and widely distributed renewable energy source on earth. The most common

method of harvesting solar energy is to convert solar radiation into electricity using

photovoltaic panels (solar panels) [12]. As a result of technological advancements, there

have been significant reductions in manufacturing cost and improvements in conversion

efficiency of photovoltaic panels. In addition, photovoltaic panels are available at various

scales, making it practical for applications in different areas ranging from industrial utility

energy production to consumer level electronics, as examples shown in Figure 3. Therefore,

5

solar energy is widely recognized as the most promising source of energy harvesting for

electronic systems.

In this dissertation, we consider solar energy as the source of energy harvesting to power

real-time embedded multicore systems for best-effort execution due to its advantages in power

density, availability, and scalability.

1.2. REAL-TIME MULTICORE EMBEDDED SYSTEMS

This section introduces and motivates the use of the primary category of platforms

considered in this dissertation: real-time multicore embedded systems powered by solar energy

harvesting.

Figure 4 Example of Tiny Embedded Computer with Wi-Fi and Bluetooth

1.2.1. EMBEDDED SYSTEMS

An embedded system is a computer system with dedicated functions that is integrated within

a larger mechanical or electrical system, often with real-time computing constraints [13].

6

Embedded systems are involved in a large portion of our daily life and have been ubiquitously

deployed all over the world. We can find their existence for numerous applications, from space

stations to microwave ovens, usually in small but powerful forms. Figure 4 shows an example of

an embedded computing system with Wi-Fi and Bluetooth support. In the upcoming era of

pervasive computing, embedded systems can play an even more important role with the help of

energy harvesting technologies to achieve energy autonomy.

1.2.2. REAL-TIME SYSTEMS AND WORKLOAD MODELS

Computing systems with timing behavior as part of their performance or correctness

criterion are called real-time computing systems [14]. While logical correctness is necessary for

all types of computing systems, real-time systems are also subject to certain timing constraints

usually characterized as deadlines to finish real-time jobs. These deadlines for the system and

workload can further be classified into hard, soft, and firm deadlines:

 Hard deadline: Missing of a hard deadline is considered total system failure that in practice

may lead to undesirable or even catastrophic consequences [15]. Therefore, hard real-time

systems should have zero tolerance to a hard deadline miss. Such a strong guarantee in

timing is only necessary for real-time systems where delayed response would actually

cause great loss in profit, damage in physical surroundings, or even harm to human beings.

For example, aircraft engine control systems must be designed to deal with hard deadlines

in a robust manner as any delayed action may result in a dangerous flight state. Since hard-

deadlines define very strict timing constraints, hard real-time embedded systems usually

require abundant on-board resource to guarantee high robustness.

7

 Soft deadline: Unlike hard deadlines, soft deadlines can be missed without any immediate

impact on system performance and functionality. Soft real-time systems are typically

designed for non-critical, less timing-sensitive applications [16]. An example can be a data

sensing hub trying to update a remote server with data samples stored in its on-board buffer

queue, for which a single transmission task can miss its deadline without significant impact

to the system’s effectiveness, as another transmission can be scheduled in the next interval.

However, the system may still face a performance impact if there are too many soft

deadline misses in a short period of time because its on-board buffer queue will then fill

up. In such a case, the sensing hub will drop less important data points to make room for

new ones so that the system continues execution without total failure. Compared to hard

deadlines, soft deadline constraints provide more flexibility in system design, enabling

more effective trade-offs between the deadline miss rate and other criteria such as energy

efficiency.

 Firm deadline: A deadline is firm if missing it results in immediate system performance

degradation [17]. As with soft deadlines, missing a firm deadline does not lead to total

system failure. However, missing any firm deadlines leads to immediate performance

penalty and the task with the missed firm deadline is dropped as delayed output is

considered invalid. A good example of firm real-time systems is a security camera system

that always tries to provide the latest captured frames to its client. When a system fails to

deliver a frame by its deadline, this missed frame should be dropped immediately in order

to avoid accumulation of delay for the upcoming frames.

As solar energy harvesting is unable to guarantee a stable and continuous energy supply,

hard real-time systems are not suitable candidates to work with energy harvesting, thus these

8

systems are beyond the scope of this dissertation. Our contribution focuses on embedded systems

with firm deadlines, the miss rate of which is the main criteria to improve given a limited energy

supply. Our work also considers soft deadlines in certain parts of this dissertation to form a more

flexible workload model.

Figure 5 Workload Models Considered in this Dissertation

To model real-time applications with varying structures and requirements, this dissertation

considers three types of workload models (see Figure 5): independent tasks, task graphs with

dependencies, and multithread applications, which are described in more detail in Section 2.2, 3.3,

and 4.3, respectively. Our work also mainly focuses on optimizations for periodic arrivals [18] of

these different types of workloads.

1.2.3. MULTICORE PROCESSORS IN EMBEDDED SYSTEMS

Multicore processors are computing units with more than one processing core manufactured

on a single chip, which are used across many application domains including supercomputing,

mobile computing, and embedded processing. Although the concept of multiprocessing has for

long been implemented using multiple discrete CPUs for supercomputers and servers, multicore

processors have not been commonly used until recent years, when it became clear that it was no

9

longer viable to improve performance of processors by merely increasing their operating frequency

or architectural complexity. The reasons for the paradigm shift towards multicore computing can

be characterized by the “three walls” of computing [19]:

Figure 6 Increasing Processor-Memory Performance Gap [19]

 Memory wall: Due to the increasing performance gap between processors and memory, as

shown in Figure 6, memory access delay has become a main obstacle hindering computing

performance improvement. Thus merely increasing clock speed of emerging processors

does not yield performance gain anymore because the processors spend significant amount

of time waiting for data to arrive from memory. Even worse, higher frequency usually

means much higher power consumption and reduced energy efficiency.

 ILP wall: It is hard to find enough instruction level parallelism (ILP) in a single application

to maintain high utilization of components on a high-performance single-core processor.

Besides, attempts to extract high ILP from processors often results in low energy efficiency.

10

For example, an out-of-order processor design compared in [20] against an in-order design

resulted in 2.4x performance improvement at the cost of 4.3x more power consumption,

indicating a substantial energy efficiency reduction of 45%.

Figure 7 Approaching Power Wall with Dennard Scaling [21]

 Power wall: It is not possible to increase processor power dissipation indefinitely no matter

how much performance we may gain. Figure 7 shows that the rising clock speed of

processors had already approached the power wall in the early 2000s, which represents the

limit on thermal design power (TDP) for a single chip due to problems in technology

scaling and thermal dissipation. Thus, the processing capability we can extract from a

processor does not depend on its peak performance anymore. Maintaining execution at

maximum clock speed leads to core overheating because of the exponential increase in

power dissipation with factorial increase in operating frequency. Instead, the design focus

11

for today’s processors has shifted to energy efficiency because performance per watt

decides how much processing power can be utilized for a given power budget.

Due to stringent power/energy constraints, energy efficiency is even more crucial for

embedded systems in terms of performance as well as service availability (% time that a system

can be functioning). For this reason, recent years have led to increasing popularity of multicore

processors in high-end embedded systems, especially for mobile devices [22] [23] [24].

The introduction of multicore processing has also ushered in a variety of processor

architecture compositions. Based on the types of cores integrated, multicore processors can be

classified into three categories:

Figure 8 Diagram of Tile64 processor by Tilera [25]

12

 Homogeneous: By reusing the same design for all cores across the chip, homogeneous

multicore processors provide a symmetric architecture that simplifies the programming

model and on-board resource management. For example, Figure 8 shows the Tile64

processor designed by Tilera, a homogenous many core chip with 64 identical processors

arranged in an 8x8 array and connected through a 2D mesh network [25]. However, this

approach overlooks the opportunity to provide diversity in hardware to better support

diverse execution patterns of different types of applications.

Figure 9 A Typical big.LITTLE System by ARM [23]

 Single-ISA heterogeneous: A single-ISA heterogeneous multicore processor [26] is

composed of processing cores with the same instruction set architecture but diverse core

implementations with respect to parameters such as clock speed, cache configuration, out-

of-order execution support, etc. ARM’s big.LITTLE architecture [23], an example of

13

typical single-ISA multicore system, can be seen in Figure 9. Compared to a homogeneous

system, such heterogeneous design can provide a greater ability to adapt to specific

demands of different applications/tasks for improvement in both performance and energy

efficiency. Additionally, there is no need to rewrite software for specific core types and

workload can be migrated freely among cores as all cores execute the same instruction set.

However, such processors require an intelligent system resource management scheme to

evaluate workload and choose the right execution strategy to attain its full capability.

 Heterogeneous-ISA: This is the most aggressive heterogeneous design pattern for multicore

processors. Usually a heterogeneous-ISA multicore processor consists of one cluster of

cores for general purpose processing, while the other cluster consists of application-

specific processing units that provide hardware acceleration to heavy-weight tasks with

improved speed and efficiency. This design paradigm is common in embedded systems

with one or more cores for general-purpose computing and accelerator cores for data-

intense computation. It also finds a place in personal computers, workstations, and data

centers in the form of general-purpose computing on graphics processing units (GPGPUs)

on a single chip. Figure 10 shows the accelerated processing unit (APU) processor

developed at AMD, which is a typical example of a heterogeneous-ISA multicore processor

with built-in general-purpose cores and graphics processing cores. While it possesses

significant potential, the main obstacle to widespread implementation of this design

paradigm is its demand for increased efforts in hardware/software co-design to best match

a given workload to its highly customized architecture. Additionally, the workload must

be partitioned to different core types at design-time, as it is almost impossible to migrate

workload between cores with different ISAs on-the-fly.

14

Figure 10 AMD Fusion APU: “LLANO” [27]

In this dissertation, we explore the problem of resource management for multicore embedded

systems under energy constraints from solar energy harvesting. For most of this dissertation, we

assume homogenous multicore processors as the target platform. However, we also consider

single-ISA heterogeneous multicore processors to tackle the problem of mixed-criticality

workload scheduling with energy harvesting. Even for homogenous multicore processors, our

framework still considers core-heterogeneity caused by non-ideal factors such as process

variations [28] and aging effects [29]. Principally, we consider multicore processors as the

inevitable choice for systems powered by energy harvesting because of the benefits they provide

in energy efficiency.

15

1.3. BACKGROUND AND RELATED WORK ON RESOURCE MANAGEMENT FOR LOW

POWER REAL-TIME EMBEDDED SYSTEMS WITH ENERGY HARVESTING

Limitation in the energy budget is one of the major constraints facing embedded systems

which can impact their availability, performance, or even correctness during execution.

Traditionally, the operating duration of embedded systems with no external energy supply was

limited by the energy budget provided by batteries. On the other hand, embedded systems powered

by energy harvesting have a dynamically changing energy budget due to variations in the energy

replenish rate from harvesting sources. For both cases, it is necessary to manage on-board

resources intelligently to trade-off between timing performance and energy efficiency so that

systems can operate more effectively. In this dissertation, we will focus on addressing this problem

of energy optimization for multicore processors in real-time embedded systems.

Dynamic voltage/frequency scaling (DVFS) has been proven to be one of the most effective

ways to make trade-offs between energy efficiency and computation performance for computing

systems at run-time [30]. With this technique, processors can scale down supply voltage (VDD) and

operation frequency (f) on-the-fly to reduce dynamic power consumption [31]. The main reasons

for its effectiveness are twofold:

 Processors cannot or do not need to always execute at peak performance: Processors can

find slack in computation to slow down for energy savings whenever the system workload

is not fully utilizing a processor. In most cases, processors are just not designed with the

expectations to keep running at their full capability, especially with modern multicore

processors hitting the power wall and facing thermal dissipation limits (See power wall

discussion in Section 1.2.3). Additionally, embedded processors powered by energy

harvesting may be forced to reduce energy consumption by lowering their voltage and/or

16

frequency at any time as there is no guarantee of a stable and sufficient energy budget to

support a high operating voltage and frequency level at all times.

 Processors are based on CMOS logic, which usually has much higher energy efficiency

with lower clock speed: at most operation (VDD, f) points, the dominant power consumption

for microprocessors is the dynamic component, which originates from the switching

activity of CMOS logic gates. Dynamic power consumption of a processor is

approximately proportional to its frequency, and to the square of its supply voltage, as

shown in Equation (1), where C is the collective capacitive load of processor [32]:

 ܲ ௗ௬௡௔௠௜௖ = ܥ × ஽ܸ஽ଶ × ݂ (1)

In addition, higher frequency requires higher supply voltage to avoid timing violations in

synchronized CMOS logic. Thus, boosting execution frequency of a processor can lead to

significant increase in power consumption (which typically increases energy consumption)

and it is usually desirable to minimize execution frequency of processors whenever

possible.

In this dissertation, we utilize the DVFS technique to control performance and energy

consumption of real-time embedded systems powered by energy harvesting. Apart from DVFS,

dynamic power management (DPM) is another approach for run-time energy optimization, which

selectively turns off components or changes power states of electronic systems for energy saving

[33]. In this dissertation, DPM is considered as a secondary mechanism for energy saving that is

utilized under special scenarios, as turning off a component for some time with DPM can sub-

optimally impact the over system, e.g., requiring higher execution frequency for other components

or at later times to meet deadlines.

17

Many prior research projects have utilized DVFS techniques to optimize energy

consumption of real-time processors dynamically. An early work [34] addressed the problem of

power aware scheduling of periodic hard real-time tasks using DVFS. This study proved that an

optimal execution frequency meant for energy minimization and meeting all task deadlines can be

deduced for any periodic hard real-time policy that can fully utilize the processor (e.g. Earliest

Deadline First, Least Laxity First). Another early work integrated DVFS scheduling algorithms

with a real-time operating system (RTOS) to provide significant energy savings while maintaining

real-time deadline guarantees [30]. In [35] algorithms were proposed to optimize energy

consumption of homogeneous multiprocessors with DVFS support. They also considered co-

optimization methods for the minimizing of energy consumption and task rejection penalty.

However, none of these papers consider the challenges arising from utilizing energy harvesting in

real-time embedded systems.

Solar energy harvesting is increasingly becoming an attractive solution in the quest to obtain

clean sustainable energy for emerging embedded systems. Recently, a few papers have explored

improvements in the efficiency and reliability of such systems ([36] [37] [38]). Some of these

works focused on the implementation of energy harvesting systems and their energy conversion

circuits (e.g., [38]). We are more concerned in this dissertation about related work on run-time

management and scheduling for real-time embedded systems with energy harvesting. An early

work [39] proposed the lazy scheduling algorithm (LSA) that executed tasks as late as possible,

reducing deadline miss rates when compared to the classical earliest deadline first (EDF)

algorithm. However, LSA does not consider DVFS and always executes tasks at full speed.

Because a processor’s dynamic power is generally a convex function of its operating frequency,

running the processor at a frequency lower than the maximum frequency often results in higher

18

energy efficiency. In [40], the proposed energy-aware DVFS technique (EA-DVFS) takes

processor DVFS into consideration for energy harvesting-aware scheduling. EA-DVFS utilized

task slack to slow down execution speed, thereby achieving more energy savings than LSA,

especially when total task utilization is low. Later the same authors proposed a more intelligent

technique called harvesting-aware DVFS (HA-DVFS) [41], which improved energy efficiency by

distributing multiple arriving tasks as evenly as possible over time and executing them with more

uniform frequency. Recently, Chetto [42] proposed a semi-online EDF-based scheduling

algorithm that is theoretically optimal. However, these research efforts are only limited to

uniprocessor systems and have not considered execution on multi-core platforms.

There are a few notable research efforts that have considered multiprocessing with energy

harvesting. In [36], a run-time framework is proposed for intelligently adjusting run-time system

workload on multi-core platforms that use photovoltaic array for energy harvesting, so that the

array works at its maximum operation points, producing more power for the computation system.

However, the proposed work assumes grid utility as a backup energy source which may not be

viable for many types of embedded systems. Also their approach is not applicable to real-time

embedded systems with deadlines and operating constraints, which is the focus of this dissertation.

A utilization-based technique (UTB) was proposed in [43] to better address periodic task

scheduling in energy-harvesting embedded systems. UTB takes advantage of the predictability

provided by the periodic task information for more efficient task allocation than in prior work.

Moreover, UTB was extended to support multi-core platforms by allocating a subset of tasks to

each core and executing the single-core UTB algorithm separately on each core. Zhang et al. [44]

introduced a deadline-aware scheduling algorithm with energy migration strategies specifically

designed to manage distributed supercapacitors in sensor networks.

19

In this dissertation, we propose a novel semi-dynamic approach for resource management of

real-time multicore embedded systems that leads to significant improvement in energy efficiency

while providing flexibility to simultaneously address other concerns such as thermal management,

hybrid energy storage, allocation for heterogeneous multicore systems, task dependencies,

transient faults, and processor aging effects.

1.4. DISSERTATION OUTLINE

In this dissertation, we propose a semi-dynamic resource management framework for multicore

embedded systems powered by energy harvesting. A high level overview of the contributions we

make is shown in Figure 11. The rest of this dissertation is organized as follows:

Figure 11 Preview of Contributions of this Dissertation

20

In Chapter 2, we present a semi-dynamic scheduling algorithm (SDA) for scheduling

independent tasks on energy harvesting capable multicore embedded systems. The fundamental

idea of our proposed semi-dynamic framework is to delay utilization of harvested energy by a

certain amount of time, which is the length of all schedule windows, so that instantaneous

harvesting power variations will not impact system execution immediately, allowing semi-

dynamic adjustments of system strategies to utilize recently harvested energy intelligently with

low scheduling overhead. We study the benefits of a semi-dynamic framework on stabilizing

execution frequencies of processors even with power variations due to energy harvesting, which

helps to reduce total energy consumption over time. Besides, the flexibility of the proposed semi-

dynamic scheme allows further exploration and optimization for a number of related topics, such

as hybrid energy storage system, core heterogeneity due to process variations, and overheating.

Additionally, a dual-speed method is also introduced to overcome the performance impact of

discrete frequency levels.

In Chapter 3, we apply our proposed semi-dynamic framework to the scheduling problem

for task graphs with dependencies between tasks, resulting in a template-based scheduling

algorithm. Compared to the previous contribution, here we address the even more difficult problem

of scheduling task graphs with inter-node dependencies on systems that rely entirely on limited

and fluctuating solar energy harvesting. As the limited energy supply prevents the deployment of

complex scheduling algorithms at run-time, we propose a template-based algorithm in which

scheduling complexity can be offloaded to design-time to pre-compute an execution strategy for

task graphs. Note that our template-based algorithm still allows run-time execution adjustments so

that a system can still address the problems of soft errors and aging effects on-the-fly. For design-

time template generation, we propose two methods: one is a mixed integer linear programming

21

(MILP) optimization method and the other one is a novel analysis-based template generation

(ATG) method.

In Chapter 4, we apply our semi-dynamic framework and template-based scheduling method

to the problem of mixed-criticality scheduling on single-ISA heterogeneous multicore processors

powered by energy harvesting. We considered a mixed-criticality workload set characterized by

varying parallelism models, miss penalties, and deadline constraint types for tasks. A novel timing

intensity-aware penalty density metric is introduced to estimate the importance of each task

instance. With this metric, our proposed algorithm can find a balanced resource allocation

dynamically for different mixed-criticality workload types so as to maximize overall system

performance.

Lastly, Chapter 5 summarizes our research contributions and concludes this dissertation,

with a discussion on future research directions.

22

2. SEMI-DYNAMIC SCHEDULING ALGORITHM FOR INDEPENDENT TASKS

In this chapter, we propose a novel framework for real-time energy and workload

management in multi-core embedded systems with solar energy harvesting and a period real-time

independent task set as the workload. Compared to prior work, our framework makes several novel

contributions and possesses several advantages, including (i) a semi-dynamic scheduling heuristic

that dynamically adapts to run-time harvested power variations without losing the consistency of

periodic tasks, (ii) a battery-supercapacitor hybrid energy storage module for more efficient system

energy management, (iii) a coarse-grained core shutdown heuristic for additional energy saving,

(iv) energy budget planning and task allocation heuristics with process variation tolerance, (v) a

novel dual-speed method specifically designed for periodic tasks to address discrete frequency

levels and DVFS switching overhead at the core level, and (vi) an extension to prepare the system

for thermal issues arising at run-time during extreme environmental conditions.

2.1. BACKGROUND AND CONTRIBUTION

Power and energy constraints have led to significant changes in the design of contemporary

computing systems. In the last decade, thread-level parallelism (TLP) to improve performance

within a power budget has seen widespread adoption across various computing platforms, ranging

from high-end servers to desktops, as well as embedded devices. Recent years have also witnessed

an increase in the use of multi-core processors in low-power embedded devices. With advances in

parallel programming and power management techniques, embedded devices with multi-core

processors and TLP support are outperforming single-core platforms in performance and energy

efficiency [24].

23

As core counts continue to increase to keep up with rising application complexity, techniques

for run-time workload distribution and energy management are the key to achieving energy savings

in emerging multi-core embedded systems. Moreover, advances in parallel programming and

increasing performance demands from embedded computing have forced implementations of high-

end embedded processors composed of many cores running at the GHz level. Unfortunately, such

increased performance levels in multi-core processors result in much higher power density than

ever before, creating the risk of overheating when core utilization is high. Moreover, as CMOS

technology scales down to integrate more cores on the same die area, process variations have

become prominent, significantly impacting the system-level design and management of multi-core

chips [28]. As the impact of time-varying power density and variations is hard to predict at design-

time, it becomes critical to employ intelligent run-time techniques in emerging multi-core

platforms that can adapt to these challenging system requirements.

For some embedded applications, we may require energy autonomous devices that utilize

ambient energy to perform computations without relying entirely on an external power supply or

frequent battery charges. Because it is the most widely available energy source, solar energy and

its harvesting for embedded systems has attracted a lot of attention in recent years [36] [37] [45].

Due to the variable nature of solar energy harvesting, deployment of an intelligent run-time energy

management scheme is not only beneficial but also essential for meeting system performance,

robustness, and energy goals. To exploit the capabilities of energy harvesting systems, several

prior efforts have explored workload scheduling for embedded systems with real-time tasks [39]

[40] [41] [43]. An early work [39] proposed the lazy scheduling algorithm (LSA) that executed

tasks as late as possible, reducing deadline miss rates when compared to the EDF algorithm.

However, LSA does not consider DVFS and always executes tasks at full speed. Because a

24

processor’s dynamic power is generally a convex function of frequency, operating the processor

at a frequency lower than the maximum frequency often results in higher energy efficiency. A

utilization-based technique (UTB) was proposed in [43] to better address periodic task scheduling

in energy-harvesting embedded systems. UTB takes advantage of the predictability provided by

the periodic task information for more efficient task allocation than in prior work. Moreover, UTB

was extended to support multi-core platforms by allocating a subset of tasks to each core and

executing the single-core UTB algorithm separately on each core. More discussion on related work

in the field of scheduling with solar energy harvesting can be seen in Section 1.3. Besides, there

are many relevant research projects in the field of energy optimization for embedded systems that

do not consider energy harvesting. A Li-Ion battery-supercapacitor hybrid storage system that

supports a long lifetime, wireless sensor network was described in [46], presenting a good example

of hybrid energy system design, from which we derives a customized hybrid storage system in this

chapter. In [47] the HypoEnergy framework was proposed to extend power supply life-time of

hybrid battery-supercapacitor systems. An algorithm for application scheduling and power

management of chip multiprocessors with awareness of within-die processor variations was

proposed in [48]. In [49], a thermal-aware task allocation and scheduling algorithm was proposed

which was used as a subroutine for hardware/software co-synthesis.

In this chapter, we propose a novel semi-dynamic algorithm (SDA) based framework with

energy budgeting that manages energy and workload allocation at run-time for multi-core

embedded systems with solar energy harvesting capability. Our framework aims to minimize

deadline miss rate and penalty of periodic tasks in the presence of variant and insufficient energy

harvesting conditions. In addition, our framework possesses the flexibility to be able to

25

accommodate other goals, such as run-time thermal management and process variation aware

workload distribution. The novelty and main contributions of this work are summarized as follows:

 Unlike prior work, SDA reacts to run-time energy shortages and fluctuations proactively

to find significantly greater scope for energy savings, especially in multi-core platforms.

 A hybrid energy storage system is designed to decouple the run-time management scheme

from variations in energy harvesting, as well as to enhance charging/discharging efficiency.

 The energy and task distribution heuristics in SDA take system heterogeneity into

consideration by assigning workloads with awareness of variations due to within-die

process variations.

 At the core level, a novel dual-speed frequency selection method is deployed to combine

two neighboring discrete frequency levels for superior energy efficiency with awareness

of dynamic voltage/frequency switching overhead.

 Our framework cooperates with basic throttling mechanisms to tackle processor

overheating. Additionally, it dynamically re-allocates workload or shuts down cores for

more proactive multi-level throttling to reduce the occurrences and overhead of system

overheating.

Our experimental studies show that our framework is able to outperform the best known

prior work (UTB [43]) on run-time management of periodic tasks for real-time systems with

energy harvesting, achieving superior task drop penalty/rate reduction and energy efficiency.

Additionally, our framework also provides the flexibility to adapt to run-time thermal variations

and supports core heterogeneity-aware workload distribution.

26

2.2. PROBLEM FORMULATION

Our focus of this chapter is on the problem of effective workload and energy management

for real-time multi-core embedded systems running periodic tasks, and powered by solar energy,

as shown in Figure 12. The following sections describe the key components of our system model.

Figure 12 Real-Time Embedded Processing with Solar Energy Harvesting

2.2.1. ENERGY HARVESTING AND ENERGY STORAGE MODULE

A photovoltaic (PV) array is used as a power source for our embedded system, converting

ambient solar energy into electric power. Naturally, the amount of harvested power varies over

time due to changing environmental conditions, like angle of sunlight incidence, cloud density,

temperature, humidity, etc. To cope with the unstable nature of the solar energy source,

rechargeable batteries and supercapacitors can be used to buffer solar energy collected by

photovoltaic cells. In our study, the converted solar power at time t is denoted as PH(t). The energy

EH charged into the energy storage system between time instances t1 and t2 is given by:

27

ଶሻݐ ~ ଵݐሺ�ܧ = ηୡ୦r୥ ∫ �ܲሺݐሻ௧ଶ
௧ଵ (2) ݐ݀

where ηchrg is a coefficient between 0 and 1 to represent charging efficiency of the energy

storage system. The capacity of the energy storage device is limited and clearly harvested energy

will be wasted if the energy storage device is already fully charged. We assume that task execution

must be halted when the remaining energy in the system goes below a specified threshold. This

step is essential to maintaining the system state and ensure graceful shutdown.

2.2.2. PERIODIC REAL-TIME WORKLOAD WITH INDEPENDENT TASKS

In many real-world applications, an energy autonomous embedded system powered by solar

energy harvesting is deployed to execute certain types of repetitive lightweight real-time tasks,

such as sensing, controlling, and data preprocessing. We assume a task set of N independent

periodic real-time tasks ψ: {τ1, … , τN} for such use cases, in which each periodic task τi has a

characteristic triplet (Ci, Di, Ti), i∈{1, …, N}. Ci is the maximum number of CPU clock cycles

needed to finish a job instance of task τi, referred to as the worst-case execution cycles (WCEC).

The relative deadline of the task, Di, is the time interval between a job’s arrival time and its firm

deadline (see Section 1.2.2). A job instance is missed if it is not finished before its deadline. Ti is

the period of the task. At the beginning of each period, a new job instance of that task will be

dispatched to the system. Like most recent works on periodic task scheduling (e.g., [43]) we

assume that Di equals Ti, with all jobs expected to finish before the arrival of the next job instance

of the same task. We also define an attribute Xi, which is the miss penalty associated with each

task. Each time that a task’s job misses its deadline, the job will be aborted and the penalty applied

to the system. Thus, we can refine the triplet for task τi as (Ci, Ti, Xi). The relative importance of a

28

task can be characterized by a penalty density parameter, defined as the ratio of the task miss

penalty and WCEC (ܺ௜ ⁄௜ܥ) [35]. In this chapter, we assume the system is designed to execute one

set of periodic real-time tasks consistently and information of tasks such as execution time and

miss penalty is profiled at design-time and thus is available to the run-time scheduler.

Table 1 Xscale Processor Power and Frequency Levels [43]
Level 0 1 2 3 4 5

Voltage(V) - 0.75 1.0 1.3 1.6 1.8
Power(mW) 40 80 170 400 900 1600

Frequency(MHz) idle 150 400 600 800 1000
Energy Efficiency 0 1.875 2.353 1.5 0.889 0.625

2.2.3. DPM AND DVFS-ENABLED MULTI-CORE PROCESSOR

We consider an embedded system with a low power multi-core processor that has support

for task preemption. We assume that the frequency of each core can be adjusted individually (i.e.,

the processor possesses per-core DVFS capability) as observed in recent implementations with

this capability enabled in industry and academia [50] [51]. Each core has M discrete voltage and

frequency levels: φ: {δ0, ... , LM}. Each level is characterized by Lj: (vj, pj, fj), j∈{1, …, ε}, which

represents voltage, average power, and frequency respectively. We consider power-frequency

levels of the Xscale processor as shown in Table 1. Here, level 0 represents the idle power of the

processor when no task is executed while the system stays in active state. Typically, the dynamic

power-frequency function is convex. Thus, a processor running at lower frequency can be expected

to execute the same number of cycles with lower energy consumption. However, this is not always

the case due to the increasing prominence of leakage power in recent CMOS technologies. To find

an energy optimal frequency, we represent energy efficiency of a v-f level Li by � i = cycles

executed/energy consumed = fi/pi. From Table 1 we can conclude that level 2 is the most energy

29

efficient because executing at this level consumes the least energy for a given number of cycles.

The most energy efficient level is often called critical level in the literature and thus fcrt = f2 [52].

Although it is desirable to execute tasks at this critical frequency level for energy-efficiency,

executing tasks at fcrt may end up being insufficient to finish all task instances by their deadlines,

due to the unique timing constraints of each task. As we also consider inter-core heterogeneity

caused by within-die process variations, some cores have lower maximum frequency and higher

static power values than for the ideal case. For each core, unsupported v-f levels are blocked to

ensure system stability.

The utilization of a periodic task (U) is defined with respect to the full speed (maximum

frequency) provided by the processor. A task’s utilization is its execution time under the maximum

frequency divided by its period:

 ௜ܷ = ௜ܥ ௠݂௔௫⁄ܶ ௜ (3)

The utilization for an entire task set is simply the accumulation of the utilization for all the

tasks in the set. In preemptive real-time systems, a task set is schedulable by the earliest deadline

first (EDF) algorithm for a frequency j if it meets the following condition:

 ௧ܷ௢௧௔௟ ൑ ௝݂௠݂௔௫ (4)

When total task set utilization is known, the most energy efficient frequency can be deduced

from this equation, assuming ௝݂ ൒ ௖݂௥௧ [34].

Also, unlike any prior work, we consider thermal management in an energy harvesting multi-

core processing environment. We assume that each core in the multi-core processor has a digital

thermal sensor (DTS) implemented to monitor run-time temperature independently [53]. We set

85°C as the thermal setpoint at which throttling is initiated to halt all processor execution (i.e.,

30

throttling threshold = 85°C) [54]. When throttling is triggered, a core must halt execution and shift

to idle state until its temperature drops to 80°C.

2.2.4. RUN-TIME SCHEDULER

This module is an important component of the system for information gathering and

execution control. The scheduler dynamically gathers information by monitoring the energy

storage medium and multi-core processor state (Figure 12). The gathered data, together with

offline-profiled information about task execution times and energy consumption on cores informs

a management algorithm in our scheduler that coordinates operation of the multi-core platform at

run-time. Each core is eventually assigned a strategy by the scheduler to guide intra-core task

execution.

2.2.5. SCHEDULING PROBLEM OBJECTIVE

Our primary optimization objective is to perform task allocation and scheduling at run-time

such that total task miss rate (or penalty) is minimized. Our technique must react to changing

harvested energy dynamics to complete as much (critical) work as possible, thus maximizing

overall system utility and cost effectiveness. Further, our task allocation should be cognizant of

processor thermal behavior and frequency limits of each core (due to process variations) to ensure

system stability.

31

2.3. MOTIVATION

2.3.1. MOTIVATION FOR SEMI-DYNAMIC ALGORITHM

In this section, we present the motivation for applying our semi-dynamic algorithm to the

problem of workload and energy management in energy harvesting multi-core systems.

Figure 13 Real-Time Scheduling with Energy Harvesting

2.3.1.1. IMPORTANCE OF BALANCED WORKLOAD EXECUTION

As dynamic power consumption in processors is typically a convex function of frequency,

increasing the processor frequency level can lead to significantly higher power consumption and

much lower energy efficiency, as shown in Table 1. Imbalances in workload allocation require

sub-optimally changing voltage-frequency levels that can result in higher power consumption than

for a balanced workload allocation case. To illustrate this point, we compare average power

consumption for two different schedules in Figure 13, both of which execute a workload for 4.8

billion cycles within 8 seconds. The schedule in Figure 13(a) executes with non-uniform speeds

(800MHz and 400MHz) while the one in Figure 13(b) has uniform execution speed fixed at

600MHz. A simple analysis based on Table 1 shows that the schedule in Figure 13(b) is more

energy efficient with average power consumption of 400 mW compared to 535 mW for the

32

schedule in Figure 13(a). This example highlights how maintaining a uniform execution speed is

critical for energy efficiency, which in turn motivates the need for an intelligent run-time

management approach that minimizes instances of workload imbalance across cores over time.

2.3.1.2. SDA FRAMEWORK FOR RUN-TIME WORKLOAD DISTRIBUTION

In this section, we provide a motivational example to illustrate the benefits of our SDA

framework that integrates energy budgeting to achieve better workload distribution at run-time

than in existing approaches, under varying solar energy harvesting scenarios.

Figure 14 Motivation for Proposed Semi-Dynamic Approach

Most prior work deals with dynamic solar energy variations by halting, dropping, or

speeding up the execution of a current task, changing instantly from an initial schedule deduced

offline. For energy harvesting aware periodic task set scheduling, the best known prior work, UTB

[43], also follows this strategy. Although UTB deduces an optimal initial schedule offline

assuming sufficient energy, it does not cope well with run-time energy variations, and there is

scope for notable improvements as discussed below:

33

 The task dropping mechanism in UTB reacts to run-time energy shortages passively, only

when the current task lacks sufficient energy to finish in time. In the motivational example

shown in Figure 14, we assume a task set with four periodic tasks (τ1 ~ τ4), where each task

has WCEC of 2.4 million CPU cycles and a task period of 12ms. According to Table 1,

Equation (3) and Equation (4), UTB initially sets execution frequency to 800MHz so that

all tasks can finish with the best efficiency if energy is sufficient, as shown in Figure 14(a).

However, the real challenge arises when the run-time energy budget is insufficient. Let us

assume that the remaining energy in the energy storage is 7200μJ and harvested power in

the next 36ms (3 periods) is 200mW, i.e., 200μJ of incoming energy per microsecond.

After finishing three jobs, the energy storage is depleted, and UTB has to drop jobs due to

insufficient energy, as shown in Figure 14(b). Only 6 out of 12 job instances are finished

with UTB, resulting in a high 50% miss rate. With the same energy budget, our proposed

SDA technique copes with energy shortage by proactively dropping tasks. It drops one

task, τ4, based on the energy budget which helps to execute the remaining tasks steadily at

a lower frequency of 600 MHz. According to Table 1, executing at 600MHz corresponds

to a power consumption of 400mW, which is dramatically lower than 900mW at 800MHz

due to the nonlinear relation between frequency and power consumption. As can be seen

in Figure 14(c), all accepted job instances for τ1 ~ τ3 are finished and the overall miss rate

is 25%, which is significantly lower than the 50% miss rate achieved by UTB.

 UTB encourages dropping tasks with longer execution time, because finishing them

requires more energy than other tasks. This biased dropping may be undesirable for real-

time applications, as tasks with longer execution time may represent complex applications

of high priority. Moreover, it is nontrivial to add priority awareness into UTB due to its

34

passive task dropping scheme mentioned above. Our SDA framework allocates tasks and

performs task dropping with the awareness of the miss penalty corresponding to each task.

 On multi-core platforms, UTB partitions tasks into separate sets and then executes each set

on a core using a single-core scheduling algorithm. However, as all cores are dependent on

the same energy source, such isolated run-time adjustment is not amenable to learning

upcoming energy requirements of other cores, leading to sub-optimal schedules. SDA

avoids inter-core energy resource contention by allocating tasks based on energy budgets

assigned to each core. In addition, static task partitioning in UTB wastes the flexibility

provided by a multi-core platform. In contrast, SDA triggers task reallocation dynamically

for improved results.

In summary, we found several limitations with the best known prior work on energy

harvesting-aware energy and workload management. Our SDA scheme is designed to address

these limitations and improve upon prior work. In the following sections, we discuss other issues

related to multi-core embedded systems powered by solar energy harvesting. To cope with these

issues, we exploit the flexibility of SDA to integrate hybrid energy storage, heterogeneity-aware

task allocation, and run-time thermal management, forming a cross-layer design that improves

performance, stability, and adaptivity of target systems.

2.3.2. MOTIVATION FOR HYBRID ENERGY STORAGE

Most prior efforts on harvesting-aware task scheduling assume a near-ideal battery as the

energy storage medium that is limited merely by its capacity, ignoring other factors such as

nonlinear efficiency, slow charge rate, and limited lifetime in terms of recharge cycles [55]. When

applied to real-world platforms, overlooking these factors can result in suboptimal or even

35

unrealistic design and scheduling techniques that diminish system efficiency, stability, and

lifespan. For example, the rate capacity effect leads to decreasing battery capacity when

discharging current increases [47]. Supercapacitors present an interesting alternative to batteries

for energy storage with benefits over electro-chemical batteries, such as orders of magnitude

higher recharge cycles, ease of charging, and significantly higher energy efficiency. However, high

capacity supercapacitors are not practical for small-package low-power embedded systems due to

their significantly lower energy density and higher leakage overhead than an electro-chemical

battery, even with the state-of-art supercapacitor technology [56]. Recent work has shown that a

battery-supercapacitor hybrid system can overcome the limitations of both types of energy storage

mediums [47] [46]. Therefore we employ a hybrid energy storage system for our work.

2.3.3. MOTIVATION FOR HETEROGENEITY-AWARE ALLOCATION

As CMOS feature sizes continue to scale, process variations in manufacturing are becoming

more and more prevalent, causing performance asymmetry within a chip. For multi-core

processors, within-die process variations differentiate critical path delays among cores such that

the maximum frequencies supported by cores may diverge from their nominal specification [28].

Without awareness of this undesirable inter-core heterogeneity, a run-time management scheme

may distribute excessive workload to slower cores. Even worse, faulty schedules that try to finish

these excessive workloads will be deployed, ending up with a high miss rate due to energy and

CPU time being wasted on tasks that cannot be finished in time. Overclocking slower cores is a

possibility, but is often not a viable option due its high likelihood of causing timing violations on

the critical path. Thus an appropriate run-time energy management framework must consider inter-

core frequency variations; otherwise it may lower system performance by causing task overloading

36

on certain cores, which can create workload imbalances that also additionally reduce the energy

efficiency of the entire system.

2.3.4. MOTIVATION FOR RUN-TIME THERMAL MANAGEMENT

The motivations for considering run-time thermal management for energy harvesting based

multi-core embedded systems are:

 Limited power budgets and form factors of embedded systems make it uneconomical, if

not inapplicable, to apply aggressive cooling techniques used on desktop and server

systems, such as cooling fans and large heat sinks. With increasing power density and

absence of active cooling, high performance multi-core embedded processors can easily

end up causing thermal emergencies during their long operation periods. Such overheating

of processors is known to harm system reliability and stability. A throughput-focused run-

time management scheme that ignores this risk may fail to maintain system stability and

end up with thermal runaway. Perhaps most importantly, frequent thermal throttling that is

initiated in processors to cope with thermal emergencies may end up disrupting balanced

scheduling strategies, reducing system performance and overall energy efficiency.

 Due to the inherent nature of solar energy, solar energy harvesting systems tend to receive

abundant energy to run at full speed around the middle of the day. However, continuously

executing at full-speed creates excessive heat in the processor package and can lead to

overheating issues. Around the same time, the ambient temperature is also usually the

highest in the day (Figure 15), making it even more difficult for the processor to cool down

around those hours without intervention.

37

 Thus there is a critical need to consider run-time thermal management strategies for energy

harvesting based embedded systems as thermal issues can have a notable impact on the

performance, energy efficiency, and reliability of such systems.

Figure 15 An Example of Solar Intensity vs. Ambient Temperature

2.4. PROPOSED RUN-TIME ENERGY AND WORKLOAD MANAGEMENT FRAMEWORK

2.4.1. SEMI-DYNAMIC ALGORITHM OVERVIEW

In this section, we present a holistic overview of our novel energy and workload management

framework based on a semi-dynamic algorithm (SDA). Subsequent sections present more details

of each major component in our SDA-based framework.

One of the underlying ideas behind SDA is to exploit time-segmentation during energy

management, as illustrated in Figure 16. At each specified time interval (epoch), there is a

reschedule point, where the execution strategy can be adjusted based on the energy budget

provided by the energy storage system. A time frame between two reschedule points is called a

38

schedule window, within which the strategy specified at the prior reschedule point is in effect until

the next reschedule point. Thus reschedule points provide dynamic adaptivity needed by the energy

harvesting aware system to adjust the task execution strategy, while the schedule window enables

stable execution that utilizes periodic task information for better energy efficiency, as illustrated

in Figure 14(c). For example, from schedule window 1 to 4 in Figure 16, it can be seen that under

low energy conditions, SDA maintains execution at optimal low (critical) frequency with different

number of cores activated. Cores only execute at higher frequency when the energy harvested is

abundant as in schedule windows 6 and 7. In this manner, SDA can provide better execution

efficiency to improve performance under variable solar radiance conditions.

At each reschedule point, we update the execution strategy for the upcoming schedule

window with a rescheduling scheme composed of three stages:

Figure 16 Illustration of Semi-Dynamic Algorithm

39

 Energy budgeting: This stage estimates the energy budget available for the upcoming

schedule window based on the status of the hybrid energy storage system. Estimating the

energy budget decouples run-time system management from energy variations in the

environment, making it possible to deduce a stable balanced execution strategy that

maximizes energy efficiency.

 Workload estimation: This second stage evaluates the amount of workload that can be

supported by the energy budget, and forks into two separate paths. When energy budget is

below a threshold, Eth, the first path is chosen with a focus on active-core selection to

improve energy efficiency under a low energy budget. When energy budget is above Eth,

the second path is chosen with a focus on variation-aware workload assignment to ensure

that no core is required to run at a frequency higher than its maximum limit. Note that there

is no need to consider active core selection and variation-aware assignment at the same

time, as maximum frequency variation only matters when the energy budget is high and

active core selection only helps when energy budget is very low (Section 2.4.3.1 and

2.4.3.2). Additionally, this stage can proactively reduce workload when thermal issues

arise at run-time.

 Task rejection and allocation: Based on the amount of workload estimated by the previous

stage, this stage takes the periodic task set and filters out the subset of tasks that are less

important. The remaining tasks are accepted for execution and are allocated to cores with

awareness of core heterogeneity.

40

Figure 17 Design Flow of Our Proposed SDA-Based Framework

These three stages are organized in an order such that successor stages make use of efforts

made by previous stages, rather than diminishing them, and are described in the following sections

(Sections 2.4.2, 2.4.3, and 2.4.4). After the execution strategy is fixed for a schedule window, cores

apply a dual-speed switching method to improve energy efficiency in the presence of discrete

frequency levels, which is discussed in Section 2.4.5. The complete design flow of our proposed

SDA framework is shown in Figure 17.

2.4.2. HYBRID ENERGY STORAGE SYSTEM AND ENERGY BUDGETING

In this section, we describe our hybrid energy storage system and its management policy that

determines the energy budget for the upcoming schedule window, thereby isolating run-time task

scheduling from fluctuations in solar energy harvesting.

41

2.4.2.1. BATTERY-SUPERCAPACITOR HYBRID ENERGY STORAGE

Inspired by [46], we propose a hybrid energy storage system with one Li-Ion battery and

two separate supercapacitors connected by a dc bus, as shown in Figure 18. During each schedule

window, one capacitor is used to collect energy extracted from the PV array, while the other one

is used as a power source for system operation or battery charging. At each reschedule point, the

two supercapacitors switch their roles. Supercapacitors charge the battery only when their saved

energy exceeds peak requirements of processors running at full speed. The PV array, battery, and

supercapacitors are coupled with bidirectional dc-dc converters to serve the purpose of voltage

conversions between components with maximum power point tracking (MPPT) [38] and voltage

level compatibility. This hybrid battery and dual-supercapacitor design has several advantages

over a non-hybrid system:

 The supercapacitors can support embedded processors directly, taking advantage of a much

lower charging/discharging overhead compared to a battery.

 The electro-chemical battery offers high capacity to preserve energy especially in scenarios

with excessive harvested energy. On the other hand, the capacity requirement of

supercapacitors is much smaller.

 The supercapacitor with energy buffered during the last schedule window acts as a known

stable energy source for the system in the upcoming schedule window. Thus our energy

budgeting does not require energy harvesting power predication. Besides, the stable energy

source makes it possible to charge the battery with a steady constant current for more

effective charging [55].

42

Figure 18 Proposed Hybrid Energy Storage System

2.4.2.2. HYBRID ENERGY STORAGE BASED ENERGY BUDGET

We propose an energy budgeting heuristic that selects among energy sources

(supercapacitors and battery), sets the amount of energy to charge the battery for (Echrg), and

assigns the energy budget for system execution in the upcoming schedule window (Ebudget), as

shown in Algorithm 1. The heuristic is based on storage levels of the battery (LVB) and

supercapacitor (LVC) with range 1, 2, and 3, representing respectively charge level of low, medium,

and high. LVC is classified into three levels (lines 1-3) based on two thresholds: i) energy budget

to execute a single core at critical frequency (Ecrt) and ii) energy budget to execute all cores at

maximum frequency (Emax× NUε_CORE). As we want to avoid battery charging/ discharging

overhead, there are only two scenarios where the battery is selected as a power source: i) when

energy harvested in the supercapacitor is below a critical level (LVC = 1); and ii) when battery

storage level is high (LVB = 3) such that battery overflow becomes a possibility (line 4). The battery

is charged only when energy in the supercapacitor exceeds peak requirements of the processor

(lines 12-14). This hybrid storage management and energy budgeting policy is shown in Figure 19.

43

Algorithm 1 Energy Budgeting with Hybrid Energy Storage
Input:
(i) Ecap, harvested energy in charged capacitor
(ii) δVB, battery energy storage level
(iii) Ecrt, energy budget to execute one core at critical frequency
(iv) Emax, energy budget to execute one core at maximum frequency
(v) NUε_CORE, number of cores in embedded processor
Output: Ebudget, assigned energy budget for next schedule window

 1. if Ecap < Ecrt : LVC ← 1
 2. else if Ecap > Emax × NUM_CORE : LVC ← 3
 3. else : LVC ← 2
 4. if LVB > LVC :
 5. set to discharge battery
 6. if LVB = 2 : Ebudget ← Ecrt × NUM_CORE
 7. if LVB = 3 : Ebudget ← Emax × NUM_CORE
 8. else :
 9. set to discharge supercapacitor
10. if LVC = 1 : Ebudget ← 0
11. if LVC = 2 : Ebudget ← Ecap
12. if LVC = 3 :
13. Ebudget ← Emax × NUM_CORE
14. Echrg ← Ecap - Ebudget

The resulting energy budget, Ebudget, reflects the amount of energy dynamically collected

from the energy harvesting system at run-time and can be considered as a stable energy supply for

the next schedule window so that a uniform execution strategy can be enabled for energy efficiency.

Figure 19 Hybrid Storage Management Policy

44

2.4.3. CRITICAL FREQUENCY, CORE HETEROGENEITY AND THERMAL AWARE

WORKLOAD ESTIMATION

This section describes our approach for energy budget-based workload estimation at the

beginning of each schedule window, which intelligently estimates the optimal workload to be

allocated for each core while considering energy efficiency, core heterogeneity, and temperature

distributions.

At each reschedule point, our scheme first estimates the amount of workload that can be

supported in the upcoming schedule window using the energy budget provided by the hybrid

energy storage system. As shown in Figure 17 earlier, this stage forks into two paths based on the

energy budget threshold, Eth. As discussed in Section 2.2.3, multi-core processors may have cores

that have a lower maximum frequency due to within-die process variations. We assume that

within-die variations are measured after manufacturing by variation acquisition methods, such as

vMeter, proposed in [57], and maximum frequency of each core is considered as known to the run-

time manager. The energy budget threshold, Eth, is defined as the energy budget required for the

slowest core to run at its maximum frequency. As we assume even the slowest core is able to run

above critical level, it is always true that Eth > Ecrt. When the average budget per core is below

Eth, uniform workload distribution is sufficient to ensure that every core runs below its maximum

frequency and the run-time manager focuses on active core count selection for energy savings. On

the other hand, when the average energy budget for each core is higher than Eth, the core

heterogeneity cannot be ignored and the run-time manager switches to a heuristic that activates all

cores and estimates workload based on each core’s achievable frequency. Apart from workload

estimation, this stage also takes core temperatures into consideration for proactive run-time

thermal management. The final outputs of this stage are the cores to activate and the workload to

45

support in the upcoming schedule window. The following subsections describe the three main

components of this stage.

2.4.3.1. CRITICAL FREQUENCY-AWARE ACTIVE CORE SELECTION

We propose a heuristic that selects the number of cores to activate and workload to allocate

on each core, assuming uniform workload distribution among activated cores. The motivation for

this active core selection heuristic (that is executed only for low energy budget scenarios) is that

running a processor below its critical frequency decreases energy efficiency, as can be seen from

Table 1. This situation can occur when the energy budget is so low that only a small subset of tasks

can be accepted for execution, i.e., after evenly distributing these tasks to all cores, utilization on

each core is smaller than maximum utilization supported by the critical frequency. With our active

core selection heuristic, we can shut down some cores at each reschedule point based on the

estimated energy budget. The power dissipated by inactive cores is negligible and the remaining

cores can then receive enough workload to run at critical frequency. Also the associated power

state switching overhead is minimal as we only trigger core shutdown at reschedule points.

However, arbitrarily shutting down cores to reach a frequency higher than critical is not always

optimal. Figure 20 shows the maximum energy-efficiency for different frequencies on the XScale

processor. Suppose cores execute at point A without shutdown. After shutdown of one core, the

extra power budget allows us to run the remaining core(s) at higher frequencies such as B, C, or

D. But not every higher frequency is viable, e.g., frequency D leads to even lower energy efficiency

than A, before shutdown! Thus it is important to compare resulting energy efficiencies before

making a core shutdown decision.

46

Figure 20 Energy Efficiency of XScale Processor

The pseudo code of the active core selection heuristic is given in Algorithm 2a. The core

shutdown procedure is triggered when the energy budget is unable to support all active cores to

execute at their critical frequency (line 2). Subsequently (lines 3-10) if one less active core results

in a better efficiency, į(Unum_core-1) > į(Unum_core), then the scheduler shuts down one core. If the

energy budget for the current schedule window is extremely low, eventually all cores in the system

will be shut down to save harvested energy for future execution. Recursively, these steps set the

number of cores to keep active. Finally, the objective task-set utilization (i.e., the amount of

workload that the system can support) is obtained by aggregating the supported utilization of each

core (line 11). As a result of this selection heuristic, the number of cores activated is tightly related

to the energy budget available.

Algorithm 2a Active Core Selection and Workload Estimation
Input:
(i) Ebudget, energy budget for coming schedule window
(ii) į(U), dual-speed method energy efficiency profile (see Section 2.4.5)
 for task utilizations from 0 to 1
Output: Uobj, objective utilization for next schedule window

47

 1. num_active ← NUM_CORE, Eper_core = Ebudget/num_active
 2. while Eper_core < Ecrt and num_active > 0 :
 3. Enum_core ← Ebudget / num_active
 4. Enum_core-1 ← Ebudget / (num_active-1)
 5. calculate fnum_core-1 and fnum_core, maximum frequencies supported by
 Enum_core-1 and Enum_core

 6. based on Inequation (4), calculate Unum_core-1 and Unum_core, maximum utilization
 supported by fnum_core-1 and fnum_core
 7. look up profile for δ (Unum_core) and δ (Unum_core-1)
 8. if δ(Unum_core-1) > δ(Unum_core) :
 9. num_active ← num_active – 1
10. update Eper_core , Uper_core
11. Uobj ← Uper_core × num_active

2.4.3.2. CORE HETEROGENEITY-AWARE WORKLOAD ESTIMATION

When per-core average energy budget for the next schedule window, Ebudget/NUM_CORE,

is above the energy threshold, Eth, we have sufficient energy budget to activate all cores and the

main concern shifts to assigning workload in a heterogeneity-aware manner (Algorithm 2b). The

key idea is to recursively assign workload and energy budget to the slowest unassigned core based

on its frequency limit until energy budget per core is below a threshold for the remaining

unassigned cores. The inputs of this heuristic are the energy budget for the upcoming schedule

window, Ebudget, number of cores on the chip, NUM_CORE, and, peak frequency supported by

each cores, fpeak(core_id). Initially, all cores will be activated for the next schedule window (line

1) as the energy budget is capable of executing all cores above critical level, i.e.,

Ebudget/NUM_CORE > Eth > Ecrt. In the main loop, we first find the slowest core and calculate Ulow

which is the maximum workload utilization that the core can support (lines 4-5). This utilization

is accumulated into the objective workload utilization of the system, Uobj, and the corresponding

energy consumption, Elow, is deduced from the energy budget (line 6). Then the heuristic updates

48

(line 7, 8) and compares (line 3) per-core average budget and threshold energy again for the rest

of cores. After the main loop, the remaining energy budget will be evenly distributed to the

unassigned cores and the final utilization is calculated (lines 9-11).

Algorithm 2b Heterogeneity-Aware Workload Estimation
Input: fpeak(core_id), peak frequency supported by each cores
Output: Uobj, objective workload utilization of system for next window

 1. num_active ← NUM_CORE
 2. num_unassigned ← NUM_CORE
 3. while Eper_core > Eth and num_unassigned > 0 :
 4. low_id ← core_id of unassigned core with lowest peak frequency
 5. Ulow ← fpeak(cur_id)/fmax

 6. Uobj ← Uobj + Ulow, Ebudget ← Ebudget – Elow

 7. num_unassigned ← num_unassigned – 1
 8. update Eper_core, Eth for unassigned cores
 9. calculate fper_core, maximum frequencies supported by Eper_core
10. based on Inequation (4), calculate Uper_core, maximum utilization supported by fper_core
11. Uobj ← Uobj + Uper_core × num_unassigned

2.4.3.3. PROACTIVE RUN-TIME THERMAL MANAGEMENT

As discussed in Section 2.2.3, processors typically enforce throttling mechanisms to avoid

thermal run-away. However, when a throttling decision is enforced, a processor has to drop all

executing tasks and halt the system until temperature drops below a certain value. A system that

encounters throttling often has frequent and dramatic changes in execution speed, which will

hamper system energy efficiency. For this reason, in addition to the baseline enforced throttling

mechanisms in processors, we propose to integrate a proactive reaction threshold, Tpro, at a slightly

lower temperature than the baseline throttling threshold, Tth, to trigger measures that reduce system

workload proactively with the goal of minimizing overheating and balancing workload over time.

The details of our proposed scheme are summarized as follows:

49

 Cores with higher temperature than others are always given priority when there is a chance

of core shutdown in Algorithm 2a;

 Cores with temperature above a proactive reaction threshold, Tpro, only run at critical

frequency, so as to finish their limited workload with the highest energy efficiency and low

power dissipation;

 When system peak temperature exceeds Tpro, the core which is operating at the peak

temperature will be shut down to address the thermal hotspot in the system.

Thus, our run-time thermal management approach proactively manages workload to limit

processor overheating so that occurrences of enforced throttling can be reduced for more stable

execution, compared to traditionally used reactive throttling solutions.

2.4.4. TASK PENALTY AND CORE HETEROGENEITY AWARE TASK REJECTION AND

ALLOCATION

This section describes how periodic tasks are allocated to cores or dropped, based on the

awareness of individual task penalties and available core heterogeneity.

Algorithm 3 Heterogeneity Aware Task Rejection and Assignment
Input:
(i) Uobj, objective utilization from Algorithm 2 (a or b)
(ii) ψ, full task set assigned to system for scheduling
(iii) Uψ, total utilization of task set ψ

Output: fopt(core_id), optimal execution frequency of each core for upcoming schedule window

 1. sort task set ψ in non-decreasing order of tasks’ penalty densities
 2. ψaccepted ← ψ, Uaccepted ← Uψ
 3. for n = 1 to N :
 4. if Uaccepted > Uobj :
 5. reject nth task
 6. Uaccepted ← Uaccepted – U(nth task)
 7. else

50

 8. done with task rejection, break
 9. sort accepted task set ψaccepted in non-increasing order of task utilization
10. for n = 1 to Naccepted :
11. filter out cores that has Un + Ucore > Ucore_max
12. assign nth task to active core with the lowest utilization
13. get assigned task utilization for each active core, U(core_id)
14. based on Inequation (4), calculate fopt(core_id)
15. execute assigned tasks on each core with dual-speed heuristic

To add task priority control in SDA, we distinguish a task’s importance by assigning a miss

penalty to each task [35]. In this stage, our framework rejects tasks with lower penalty density

(Section 2.2.2) first, rather than simply drop tasks with longer execution time, to allocate the

limited energy budget to more important tasks for miss penalty reduction. In particular, for the

case when all tasks are assigned an identical miss penalty, this scheme reduces miss penalty

equivalent to miss rate. We describe our task rejection heuristic below in Algorithm 3.

In lines 1-8, we sort all tasks in non-decreasing order of the tasks’ penalty densities so that

we can then reject tasks iteratively until the remaining tasks’ total utilization is lower than the

objective utilization given by Algorithm 2 (described earlier). The remaining tasks form the

accepted task set and are assigned to all active cores using a simple but effective approach in lines

9-12. This approach not only enables priority control among tasks, but also distributes workload

to each core as evenly as possible for balanced execution under a stable frequency. Also it ensures

that the assigned workload will not exceed a core’s maximum capability. After all accepted tasks

are assigned, we obtain the actual utilization and optimal frequency of each core for the next

schedule window.

51

2.4.5. DVFS SWITCHING-AWARE DUAL-SPEED METHOD

The previous section showed how we distribute accepted tasks among cores and deduce the

theoretical optimum execution frequency for each core, which, however, is unlikely to be

supported directly by processors with discrete frequency levels. To address this problem this

section introduces a dual-speed method, which approximates the objective optimal frequency by

switching between its two adjacent discrete frequencies [58]. For convenience, we denote the

adjacent higher frequency as fhigh, the lower one as flow, and the objective optimal frequency as fobj.

Figure 21 Energy Efficiency and Switching Proportion for the XScale Processor

52

Firstly, to guide the switching between two adjacent discrete frequencies, we need to

calculate the proportion of cycles to execute with fhigh, denoted as αhigh. Assume that the total

number of cycles to be executed is C. Emulating fobj with a combination of flow and fhigh implies

finishing C within the same amount of time, which is:

௢݂௕௝ܥ = αℎ௜௚ℎܥℎ݂௜௚ℎ + ሺͳ − αℎ௜௚ℎሻܥ௟݂௢௪ (5)

From this equation, we can deduce the proportion αhigh for each objective frequency, fobj, as

 αℎ௜௚ℎሺ o݂ୠ୨ሻ = ͳ o݂ୠ୨ −⁄ ͳ l݂ow ⁄ͳ ୦݂୧୥୦ −⁄ ͳ l݂ow ⁄ (6)

As flow and fhigh are determined by fobj, there is a one-to-one correspondence between αhigh and fobj,

and the values of αhigh(fobj) can be calculated offline for a given task set. Based on the definition of

energy efficiency in Section 2.2.3, the theoretical efficiency of the dual-speed method įdual(fobj)

can also be obtained offline as the objective frequency divide by the average power consumption.

Based on the processor power-frequency model given in Table 1, the calculated αhigh(fobj) and

įdual(fobj) is shown in Figure 21. We can see that even with dual-speed switching, the efficiency

will decrease when fobj drop below critical frequency, fcrt = 400 MHz. Thus for fobj < fcrt, we should

disable dual-speed switching and fix execution speed at fcrt.

However, it is non-trivial to get close to theoretical efficiency in a dual-speed method

implementation, due to the following difficulties:

 Excessive DVFS switching results in massive switching overhead that considerably

reduces energy efficiency [59];

 Executing at flow for too long can cause task timing violations;

 Executing at fhigh for too long results in timing slack before the arrival of new job instances

of periodic tasks, which is wasted as idle cycles, thus reducing energy efficiency.

53

To address these issues, we implement a simple and intuitive dual-speed mechanism with

inter-task switching, which aims to execute as many tasks as possible before switching to another

frequency. This mechanism is described below:

 In order to prevent unnecessary DVFS switching, we denote number of cycles continuously

executed at fhigh to be Chigh and set a threshold Cthresh. When Chigh = Cthresh, whether

switching to flow or staying at fhigh brings about the same energy consumption, i.e.,

ℎ௜௚ℎ݌ × ௧ℎ௥௘௦ℎܥ αℎ௜௚ℎ⁄ℎ݂௜௚ℎ = ௢௣௧݌ × ௧ℎ௥௘௦ℎܥ αℎ௜௚ℎ⁄௢݂௣௧ + ʹ × ௦௪௜௧௖ℎ (7)ܧ

where popt is the average power consumption of executing with two frequencies to emulate

fopt and Eswitch is DVFS switching overhead. The value of Cthresh(fobj), can be easily

calculated offline. From Equation (7), when Chigh < Cthresh, the system forbids switching to

flow, as it leads to higher energy cost.

 To avoid task timing violation at flow, our dual-speed method always sets execution speed

to fhigh initially. After finding a proper chance to switch to flow, execution frequency jumps

back to fhigh as soon as a certain number of cycles have been executed at flow such that

Chigh/(Chigh+Clow) = αhigh, according to the specified proportion.

 To avoid undesirable idle cycles at fhigh, our dual-speed method switches to flow if number

of unfinished job instances is not greater than 1, indicating possible shortage of workload.

On the other hand, this step also helps to reduce number of switches as it halts switching

to flow when job instances in the queue are sufficient.

The steps above are summarized in Algorithm 4. Note that in line 3, frequency switching

will not be triggered if fobj < fcrt, as executing below critical frequency must be avoided.

54

Algorithm 4 Dual-Speed Method with Inter-Task Switching
Input:
(i) fobj, objective optimal frequency
(ii) αhigh(fobj) and Cthresh(fobj), switching proportion and threshold profile
 for fobj from 400 to 1000 MHz

 1. fcur ← fhigh
 2. while true :
 3. if fobj > fcrt :
 4. if fcur = fhigh :
 5. Chigh ← Chigh + 1
 6. if jobpool.size ≤ 1 and Chigh > Cthresh :
 7. fcur ← flow

 8. if fcur = flow :
 9. Clow ← Clow + 1

10. if Clow > Chigh × (1- α)/ α :
11. fcur ← fhigh

12. Clow←0, Chigh←0
13. if at reschedule point :
14. update fobj based on Inequation (3)
15. find adjacent frequencies such that flow < fopt < fhigh
16. fetch ߙℎ௜௚ℎ(fobj) and Cthresh(fobj) from profile

To illustrate the advantage of our dual-speed method with inter-task switching, we compare

it to three alternatives: (i) single-speed method which finds a higher than optimal frequency

directly supported by the processor and does not switch frequency at all; (ii) intra-task method that

aggressively toggles speed during executions for every task while considering switching overhead;

and (iii) ideal case where intra-task method is applied, with switching overhead set to 0 to achieve

theoretical best case efficiency. The comparison study calculates task miss rate and sets per core

utilization to 100%. As can be seen in Figure 22, the single-speed scheme shows the worst result

as it always executes at fhigh when energy is available. The intra-task method works better by

switching between two DVFS levels. However, its miss rate is still significantly higher than the

ideal case due to excessive DVFS switching overhead. By presetting switching threshold and

monitoring available workloads in the job pool, our inter-task switching scheme finds appropriate

switching points and results in a miss rate that is close to the ideal case.

55

Figure 22 Comparison of Frequency Selection Methods

2.5. EXPERIMENTAL RESULTS

2.5.1. EXPERIMENT SETUP

We developed a simulator in C++ to implement and evaluate the effectiveness of our

proposed SDA framework for run-time energy and workload management. The processor’s power

model was described in Table 1. Additionally, we ignore the timing delay to wake up cores from

sleep state (~order of milliseconds) once per schedule window as it has a negligible impact on

overall performance due to the much larger window size (~order of minutes). The energy

harvesting profile is obtained from historical weather data from Golden, Colorado, USA, provided

by the Measurement and Instrumentation Data Center (MIDC) at the National Renewable Energy

Laboratory (NREL) [60]. Our harvesting-based embedded system only executes during daytime

over a span of 750 minutes, from 6:00 AM to 6:30 PM and shuts down when solar radiation is

unavailable.

In most experiments, we use synthetic task sets so than we can explore corner cases and have

control over the spectrum of workload characteristics during testing. We generated 50 random

56

tasks for each test set configuration in our experiments. Each task set has an average task execution

time randomly selected from 5 to 10 seconds. We vary the periods of all tasks in a task set based

on the desired level of utilization required from the entire task set. We also ran experiments with

the MiBench benchmark suite of embedded applications [61].

Figure 23 Miss Rates for Different Schedule Window Sizes

To determine the appropriate schedule window size for the SDA algorithm we ran several

experiments with different window sizes. Figure 23 shows a set of results (miss rates) for our

random task with 100% utilization on a core. We found that when window size increases from 1

to 5 minutes, there is a notable decrease in task miss rate. The reason behind this trend is that

smaller schedule window sizes cause more task instances to span across the boundary of two

different schedule windows, disrupting the newly assigned execution schedules of the next

window. On the other hand, when we continue increasing window size beyond 5 minutes, the

performance benefits become negligible while the demand on supercapacitor capacity to buffer

energy harvested during a schedule window increases linearly. We found this trend to be consistent

57

for simulations with multiple cores as well. Thus we set 5 minutes as the size of schedule window

in SDA for our experiments, to balance system performance and supercapacitor capacity

requirements.

2.5.2. COMPARISON BETWEEN SDA AND PRIOR WORK

In this first set of experiments, we compare overall miss rates between HA-DVFS [41], UTB

[43] and our proposed SDA framework for different number of homogeneous cores ranging from

1 to 32 with insufficient energy harvesting, for which the energy storage system is not stressed

with surplus energy, so that the comparison in this subsection is focused on scheduling

performance of SDA compared to prior work, without considering the advantages from our

improved energy storage system design. We modeled the state-of-the-art utilization-based

algorithm (UTB) in our environment. In addition, we also extended the energy harvesting-aware

DVFS technique (HA-DVFS) for multi-core systems with balanced task partitioning across

multiple cores, to enable another comparison point. With increasing number of cores, we scale

harvesting power, number of tasks, and total task utilization linearly so as to keep a consistent and

reasonable per core workload and energy budget.

First, we experiment on a workload with per core utilization set to 40%, which has moderate

energy requirements such that the system can execute at critical frequency for highest efficiency

when energy is sufficient. The results are shown in Figure 24. HA-DVFS can be seen to have a

much higher miss rate as it does not make use of periodic task information and thus underestimates

future workload. For the other two techniques, the advantage of SDA over UTB is small for the

single-core setup because task utilization is not very high. However, with increasing number of

cores, SDA’s advantage expands considerably even though per-core workload and energy budget

58

stays the same. One reason for this trend is that UTB uses an isolated task dropping scheme on

each core, which is based on energy availability prediction for one upcoming task, ignoring

workload on other cores that compete for the same energy source. In contrast, SDA performs task

rejection before assigning accepted tasks to different cores; thus the workload is adapted to a

system-wide energy budget that has been predicted. Furthermore, SDA actually benefits from

increasing number of cores as it exploits the flexibility to shut down some cores for higher

efficiency.

Figure 24 Miss Rate Comparison with Light Workload

We also compare UTB and SDA under a much heavier workload, with per core utilization

set to 100%, results for which are shown in Figure 25. Not surprisingly, the heavier workload

expands the performance gap between UTB and SDA. The reason for the increasing performance

gap is that the higher workload implies more stringent timing and energy constraints, under which

SDA’s balanced run-time adjustment becomes more effective, as discussed in Section 2.3.1.2. As

59

a result, the most significant difference between these two techniques can be seen for the 32-core

platform scenario, where SDA achieves approximately 70% miss rate reduction compared to UTB.

Additionally, the results of SDA have less variation on multiple task sets compared to UTB, which

indicates that task set randomness has less impact on SDA as its dynamic adjustment is based on

the scope of the entire task set, and not just individual tasks.

Figure 25 Miss Rate Comparison with Heavy Workload

Additionally, we compare performance of HA-DVFS, UTB, and SDA by scheduling a 4-

core system running a set of applications (jpeg, qsort, dijkstra, patricia, blowfish, susan, tiff)

extracted from MiBench, a benchmark suite of embedded applications [61], with total utilization

of 160%, where every application executes recursively based on its assigned period with each

application execution request considered as an independent task instance. The result in Table 2

shows higher miss rates compared to average values with a similar 4-core configuration in Figure

24. The reason lies in the application set’s higher average length of task instances compared to

60

most of the randomly generated tasks, making it harder to balance workload among cores and

leading to higher overhead when a task instance’s life cycle spans across two schedule windows,

as discussed earlier in Section 2.5.1.

Table 2 Miss Rate Comparison on MiBench
Scheduling Technique HA-DVFS UTB SDA

Total Miss Rate 58.5% 33.8% 25.8%

2.5.3. ANALYSIS OF SDA WITH HYBRID ENERGY STORAGE

This set of experiments explores the performance benefits of our proposed SDA algorithm

together with the proposed hybrid energy storage system. Compared to the previous section that

focuses on scenarios with insufficient energy harvesting, experiments in this section assume per-

core nominal harvested energy scaled up by a factor of two, so that the system receives more than

sufficient energy occasionally and surplus energy needs to be stored to support execution when

harvesting power drops. We use the approach from [47] to model rate capacity effect of batteries

by scaling efficiency based on discharge current. Also we implemented four variants of SDA,

namely (i) BA-SDA: SDA for battery-only system with doubled battery capacity; (ii) CA-SDA:

SDA for supercapacitor-only system with doubled supercapacitor capacity; (iii) MISS-SDA: SDA

with hybrid storage and focus on miss rate reduction; (iv) HY-SDA: SDA with hybrid storage and

focus on miss penalty reduction. These variants of our approach were compared against UTB.

Additionally, UTB, BA-SDA and CA-SDA rely on a moving average algorithm for energy

harvesting prediction [41] as they do not have dual-supercapacitor design to buffer harvested

energy for upcoming schedule windows. All task sets have utilization of 100% for this set of

experiments. Additionally, tasks are assigned a miss penalty ranging from 1 to 100 with a uniform

distribution. We compared average overall miss penalty and miss rate for these various techniques,

61

with increasing multi-core platform complexity (from 1 to 16 cores). Capacities of batteries and

supercapacitors, and nominal harvested energy for the entire system scale linearly with number of

cores in the processors.

Figure 26 Overall Miss Penalty Comparison

The results for this experiment are shown in Figure 26 and Figure 27. Similar to the

conclusion in the previous section, both BA-SDA and CA-SDA have lower miss penalty (Figure

26) and miss rate (Figure 27) than UTB, and their advantage expands with increasing number of

cores. However, their advantage over UTB is less significant compared to what we see in the

previous section (Figure 25). The reason is two-fold: firstly, with doubling of per-core nominal

harvested energy in this set of experiments, the stringent energy constraint, which highlights the

difference between UTB and SDA, is relaxed significantly; secondly, with more than sufficient

energy harvesting, management of surplus energy becomes the new bottleneck that partially

diminishes the advantage of SDA. Respectively, the performances of BA-SDA and CA-SDA

mainly suffer from lower charging/discharging efficiency of the battery and limited capacity of the

62

supercapacitor. Also, CA-SDA has advantage over BA-SDA with increasing number of cores in

the system as systems with more cores have higher demands on discharging current; and

supercapacitors, with their high power density, serve high current load more efficiently than

batteries [47].

Figure 27 Overall Miss Rate Comparison

For MISS-SDA and HY-SDA, integration with our hybrid storage system managed by the

SDA-based policy results in a much lower miss penalty and miss rate compared to UTB, BA-SDA

and CA-SDA. Even though this significant performance improvement is due to the introduction of

a hybrid storage system in MISS-SDA and HY-SDA, the efficient management of such a hybrid

storage system is made possible by the semi-dynamic scheme of SDA, which offers flexibility at

reschedule points to select the appropriate energy source and deduce optimal energy budgets at the

start of each schedule window. Additionally, the difference between MISS-SDA and HY-SDA is

in how they prioritize minimization of miss rate and miss penalty. The HY-SDA scheme leads to

63

the lowest task miss penalty, with up to 65% reduction compared to UTB, while MISS-SDA results

in a slightly higher miss penalty than HY-SDA as it focuses on miss rate reduction. As expected,

the miss rate for MISS-SDA is the lowest and has less variation compared to HY-SDA (Figure

27).

Figure 28 Miss Rate Reduction for HY-SDA Compared to UTB

We also further explored the results for miss rate reduction obtained with HY-SDA

compared to UTB for each schedule window. These results on a 16-core system are shown in

Figure 28. We can see that the HY-SDA results in a higher miss rate than UTB initially, because

it shuts down all cores until the supercapacitor is sufficiently charged to avoid executing with

inefficient frequencies under the critical level. Subsequently, higher miss rate reduction for HY-

SDA is achieved when harvesting power is low or changes dramatically, reflecting the advantage

that HY-SDA has over UTB to cope with stringent energy budgets and its ability to filter out solar

64

harvesting variations. Moreover, HY-SDA results in a more significant miss rate reduction after

12 PM. The reason for this is that HY-SDA’s high energy efficiency leads to more energy savings

in the battery, which enables more tasks to be executed and meet their deadlines.

2.5.4. ANALYSIS OF CORE HETEROGENEITY-AWARE MANAGEMENT

Next, we study the performance impact of core heterogeneity caused by within-die process

variations. Based on results from [48] we set core frequency variation within a die as 33% and

static power variation as 50% with normal distribution. When a frequency level cannot be reached

by a core, the system always conservatively sets frequency to the next lower discrete frequency

level. We tested three different setups, namely (i) Variation-Unaware: SDA with core

heterogeneity-aware techniques disabled. Also we assume that the system will force cores to

execute at frequencies no higher than their maximum capability to ensure stability; (ii) Variation-

Aware: SDA with our core heterogeneity-aware techniques; and (iii) Homogeneous: an ideal case

assuming no heterogeneity.

The results for this study are shown in Figure 29. It can be seen that without awareness of

within-die process variation, the system suffers from a very high miss rate, as the assigned

workload exceeds the actual execution capabilities of slower cores on the die, resulting in a faulty

schedule which wastes energy and CPU time on tasks that cannot be finished in time. In

comparison, with core heterogeneity-aware workload distribution, the system avoids faulty

scheduling and alleviates the impact of process variation. However, as expected, the results are

inferior to that obtained for the ideal case which has homogeneous cores unaffected by process

variation, because of the degradation in maximum throughput supported and non-uniform

workload distribution forced by inter-core heterogeneity.

65

Figure 29 Overall Miss Rate Comparison with Core Heterogeneity

2.5.5. ANALYSIS OF RUN-TIME THERMAL MANAGEMENT

In this section, we explore the impact of run-time thermal management in an energy

harvesting environment. While prior work [36] has considered the effect of temperature on

maximum power point tracking in energy harvesting systems, it has not considered the impact of

thermal-induced overheating on task execution throttling and slowdown in energy harvesting

embedded systems. To simulate a scenario with high overheating risk (as discussed in Section

2.3.4), we evaluate our approach for a very heavy workload with per core utilization set to 100%.

Our environmental profile considers high solar intensity and ambient temperatures from 9AM to

3PM. For thermal analysis, we integrated our simulator with HotSpot, a thermal modeling and

analysis tool [62]. We set package parameters of the Hotspot tool to model a 16-core processor

with no power-hungry cooling system (only a heat spreader and heat sink is assumed). We assume

die area of our chip to be a 16mm × 16mm, with cores placed in a mesh topology. Then we set

processor package size as 60mm × 60mm, which is also the size of heat spreader and heat sink. In

66

our tests, we compare the performance of three schemes: (i) Non-Throttling: A basic SDA scheme

with no run-time thermal management scheme. This is representative of current state of the art

scheduling techniques for energy harvesting systems that ignore thermal issues; (ii) Throttling: We

again consider our SDA scheme without thermal-awareness, but here system hardware can

measure temperature and reactively enforce throttling when temperature exceeds the throttling

threshold; (iii) Proactive: This is our SDA approach that integrates proactive core slowdown and

task redistribution from Section 2.4.3.3 to proactively address hotspots in the systems.

Figure 30 Peak Temperature of Various Thermal Management Techniques

The results for the three schemes are shown in Figure 30. It can be seen that the Non-

Throttling scheme suffers from high peak temperatures for extended periods of time. Such high

temperatures will significantly impact the system stability and reliability. In contrast, the reactive

Throttling scheme is able to control temperature to stay below the throttling threshold for a

majority of the time. In Figure 30 the red dashed line indicates the throttling threshold at 85°C and

67

the green dashed line shows the threshold at 80°C at which throttling terminates. Note that peak

temperature seldom drops to 80°C in simulation. This is due to the fact that other un-throttled cores

take over the role of thermal hotspots in the system from the throttled cores. Our TA-SDA

Proactive scheme proactively performs core slowdown when temperature exceeds a proactive

reaction threshold (set to 82°C, and shown with the blue dashed line shown in Figure 30). This

scheme helps to increase energy efficiency by avoiding unbalanced frequencies created by thermal

throttling. Table 3 shows how our proactive approach not only reduces peak temperature, but also

reduces the number of throttling instances, which allows more efficient scheduling management,

culminating in an overall improved task miss rate. The results highlight the benefits of proactive

run-time thermal management.

Table 3 Comparison between Throttling and Proactive Schemes

Thermal management scheme average peak
temperature

number of
throttlings

overall task miss
rate

Throttling 79.60°C 94 35.92%
Proactive 78.53°C 74 35.33%

2.5.6. ANALYSIS OF SCHEDULING OVERHEAD

To compare scheduling overhead between UTB, HA-DVFS and our proposed SDA

framework, we executed the scheduling procedures of these schemes on the gem5 simulator [63]

with a single thread at 1GHz to observe average execution time overhead averaged over all task

instances when managing a 16-core system running 160 periodic tasks with a scheduling

granularity of 1ms. The results of this study are shown in Figure 31, in which we can see that

SDA+DUAL has less scheduling overhead (with respect to performance and energy) compared to

UTB while providing more features such as hybrid storage-based energy budgeting, thermal

68

management, and dual-speed switching. The main reason for the lower overhead with

SDA+DUAL is that it is designed to reuse intermediate information computed at the beginning of

each schedule window, avoiding frequent on-the-fly scheduling procedure invocations during task

execution, with dual-speed method as the exception. The HA-DVFS also has much lower overhead

than UTB’s, as well as SDA+DUAL, as most of its features are triggered only when a new task

instance is available. We were also interested in quantifying the overhead of our dual-speed

method, which is perhaps the most complex run-time component in our scheduling framework.

We therefore also present the scheduling overhead for SDA-DUAL, which disabled the dual-speed

feature. It can be seen that without the dual-speed method, our scheduler execution time and energy

overheads become lower than overheads for UTB and HA-DVFS.

Figure 31 Comparison of Scheduling Overhead

2.6. CHAPTER SUMMARY

In this chapter, we proposed a novel framework for run-time energy and workload

management based on a semi-dynamic algorithm (SDA), for real-time multi-core embedded

69

systems with solar energy harvesting. Compared to the best known previous work, our approach

is promising for energy-harvesting based multicore embedded systems: 1) up to 70 % miss rate

reduction and 65% miss penalty reduction for SDA compared to the best know prior work, UTB;

2) Analysis with system overheating considerations establishes the need for combing proactive

thermal management during scheduling, as done in our SDA approach, to reduce both miss rate

and average peak temperature among cores; 3) SDA with core-heterogeneity awareness presents

miss rate reduction of 49% compared to SDA without such awareness when process variation

effects on maximum frequency and power are considered. Overall, SDA provides a holistic

solution with many novel components, integrating a new hybrid energy storage system, task drop

penalty awareness, run-time thermal management, and core heterogeneity awareness. Moreover,

the design methodology of a semi-dynamic framework for resource management is the core idea

of our research, which will be applied to address further issues in the rest of this dissertation.

70

3. TEMPLATE-BASED SCHEDULING ALGORITHM FOR TASK GRAPHS

The problem of scheduling weighted directed acyclic graphs (DAGs) on a set of

homogeneous cores under optimization goals and constraints is known to be NP-complete [64]. In

this chapter, we address the even more difficult problem of scheduling on systems that rely entirely

on limited and fluctuating solar energy harvesting. The limited energy supply prevents the

deployment of complex scheduling algorithms at run-time. Moreover, execution of applications

that will not have enough energy or computation resources to complete due to shortages in

harvested solar energy can lead to significant wasted energy with no beneficial outcome.

Fortunately our concept of semi-dynamic scheduling proposed in last chapter can be applied to

address these challenges. Thus in this chapter, we propose a hybrid workload management

framework (HyWM) that combines template-based hybrid scheduling with our energy budget

window-shifting strategy derived from semi-dynamic framework in last chapter to decouple run-

time application execution from the complexity of DAG scheduling in the presence of fluctuations

in energy harvesting. Basically, our framework generates schedule templates at design-time with

an emphasis on energy efficiency and uses lightweight online management schemes to react to

run-time system dynamics. Moreover, our framework also considers varying aspect of issues like

stochastic task execution time, random transient faults, and progressive aging effects.

3.1. BACKGROUND AND CONTRIBUTION

Due to the variable nature of solar radiation intensity, the most suitable role of embedded

systems with limited-scale solar energy harvesting as the only energy source is to host non-critical

applications that allow for imperfect operation. Thus it may not be desirable to consider such

71

systems for real-time applications with hard deadlines, such as life-support mechanisms and

powertrain controllers, for which any deadline miss is a critical system failure that may have

catastrophic consequences. Instead, it is more practical to deploy such systems without energy

guarantees for best-effort execution of soft or firm real-time applications where a deadline miss is

not considered a failure of the entire system but a degradation of performance.

Consider an example of such a best-effort embedded system powered by energy harvesting

that is deployed for continuous structural integrity sensing at a remote location on a bridge. For

each operation interval, a usable raw data point can be collected from sensor modules by executing

certain real-time control tasks such as data accessing, data post-processing and data-transmission.

In the event of an energy shortage, the system stays operational with certain data collection

intervals ignored such that overall sensing quality is sacrificed in favor of ensuring system

continuity.

To achieve best-effort operation with limited resources, the deployment of an intelligent run-

time resource management strategy is not only beneficial but also essential. Such a strategy must

possess low overhead, so as to not stress the limited energy resources at run-time. As shown in

section 1.3, several prior efforts have explored workload scheduling for such real-time embedded

systems with energy harvesting. However, all of these efforts are aimed at independent task

execution models, and cannot be easily extended to more complex application sets that possess

inter-node data dependencies, such as workloads represented by direct acyclic graphs (DAGs).

Due to aggressive scaling in CMOS technology, emerging multicore processors are also

facing ever-increasing likelihoods of transient faults (i.e., soft errors) and permanent faults (i.e.,

hard errors). Co-optimization of reliability and energy-efficiency have thus become a critical

design concern in recent work on task scheduling [65] [66] [67] [68] [69] [70] [71] [72] [73].

72

However none of these efforts focus on energy harvesting based systems. For low-power

embedded systems that scale down voltage and frequency for energy savings, the rate of transient

fault occurrences, caused by a variety of factors, e.g., high-energy cosmic neutron or alpha particle

strikes, and capacitive and inductive crosstalk [74], is more severe as lower supply voltage leads

to drastically increased susceptibility to transient faults [75]. Additionally, embedded systems with

energy harvesting must also consider the impact of hard errors because a major incentive of

deploying such systems is long-term system autonomy, which requires an extended system

lifetime. For these reasons, we believe it is necessary to study workload management schemes that

consider both transient errors and aging effects to enhance system reliability and lifetime for low-

power systems with energy harvesting.

In this chapter, we propose a low-overhead soft and hard reliability-aware hybrid workload

management framework (HyWM) to address the problem of allocating and scheduling multiple

applications on multicore embedded systems powered by energy harvesting, and in the presence

of transient and aging faults. Compared to prior work, the novelty of our work can be summarized

as follows:

 A hybrid application mapping and scheduling framework is proposed that integrates a

rigorous design-time analysis methodology with lightweight run-time components for low-

overhead energy management in solar energy harvesting based multicore embedded

systems for the first time.

 We propose two different approaches to solve the DAG scheduling problem at design-time,

generating schedule templates composed of energy-efficient application execution

schedules for various energy budgets that can be encountered at run-time.

73

 Our allocation scheme for workload partitions considers different wear-out profiles of

cores and adjusts workload distribution accordingly to maximize lifetime of the entire

system.

 Our run-time scheduler utilizes a novel lightweight run-time heuristic that co-manages run-

time slack reclamation and soft/hard error handling in a multicore computing environment

without diminishing the benefits of schedule templates generated at design-time.

3.2. RELATED WORK

Many prior research projects have focused on the problem of run-time management and

scheduling for embedded systems with energy harvesting, as we discussed in section 1.3. However,

none of them take inter-task dependency into consideration.

Several other efforts have explored mapping and scheduling for task-graph based workloads.

Luo et al. proposed a hybrid technique to find a static schedule for known periodic task graphs at

design-time with the flexibility to accommodate aperiodic tasks dynamically at run-time [76].

Sakellariou et al. proposed hybrid heuristics for DAG scheduling on heterogeneous processor

platforms [77]. Coskun et al. proposed a hybrid scheduling framework that adjusts the task

execution schedule dynamically to reduce thermal hotspots and gradients for MPSoCs [54].

However, all of these prior efforts cannot maintain performance when applied to energy

harvesting systems that possess a fluctuating energy supply at run-time. Some of these efforts also

do not focus on energy as a design constraint. Our work specifically targets the problem of energy-

aware scheduling of multiple co-executing task graphs in energy harvesting based multicore

platforms.

74

A few efforts have addressed the problem of reliability and energy co-optimization during

scheduling. For soft-error reliability, Zhu et al. proposed an approach to insert a recovery task

during slack time obtained from executing multiple tasks [65]. To address the conservative nature

of individual-recovery based approaches, Zhao et al. proposed a shared recovery technique that

shares a small number of recovery nodes among all nodes executing tasks, to meet a system wide

reliability target [66]. This SHR technique also has been applied to address reliability during

scheduling of DAG-based workloads [67]. For hard failures, prior work has studied aging effects

that lead to permanent system failure, such as electro migration (EM), negative bias temperature

instability (NBTI), and time dependent dielectric breakdown (TDDB). Coskun et al. proposed a

framework to evaluate architecture-level effects of task scheduling and power management on

lifetime of multi-processors [71]. An analytical model to estimate lifetime reliability of multi-

processors with a periodic workload was proposed in [72]. Basoglu et al. quantitatively evaluated

the long-term impact of NBTI-aware task-to-core mapping for multi-processors [73]. None of these

works target systems with unstable supply from energy harvesting. In our work, unlike prior efforts

on integrating reliability during scheduling, we do not aim to satisfy a target reliability. Instead,

our focus is on alleviating the impact of soft and hard errors to finish as many applications correctly

as possible and extending expected lifetime for a system with a time varying and stringent energy

budget from energy harvesting.

3.3. PROBLEM FORMULATION

This section focuses on hybrid allocation and scheduling of multiple task-graph applications

with real-time deadlines on multicore embedded systems with solar energy harvesting, in the

presence of soft and hard errors, as shown in Figure 32. Although key components and assumptions

75

of system platform, like energy harvesting system and processor model, are similar to those in

Chapter 2, problem formulated in this chapter is more complex with emphasis on several new

design considerations such as task dependencies, soft errors, and system lifetime.

Figure 32 DAG Scheduling on Multicore Embedded System Platform with Solar Energy

3.3.1. PERIODIC REAL-TIME WORKLOAD WITH TASK GRAPHS

The main change in problem formulation of this chapter is the introduction of workload

model with dependencies. We consider multicore systems hosting multiple recursive real-time

applications modeled as periodic task graphs, ψ: {G1, … , GNg}, such as the examples shown in

Figure 33. Each of the Ng applications is represented by a weighted directed acyclic graph (DAG),

denoted as Gi: (ti, ei, Ti, Di,j), i∈{1, …, Ng}, which contains a set of task nodes, ti: {τ1, …, τj} with

worst-case execution cycles, WCECi, (number of CPU clock cycles needed to finish a task i in the

worst case); and a set of directed edges, ei: {İ1, …, İj}, used to represent inter-task dependences

with communication (inter-core data transfer) delay from source to destination nodes represented

as COMMsrc,dst. A task node can have multiple dependences to/from other nodes, forking/rejoining

76

execution paths in the task graph. We assume that every task graph’s execution paths rejoin at its

last task node, which accumulates results and concludes execution.

Figure 33 Example of Applications Modeled as DAGs

Every periodic task graph has a unique period, Ti and nodes in the graph are assigned relative

deadlines, Di,j. At the beginning of each period, a new instance of a task graph will be dispatched

to the system for execution. A task node’s relative deadline, Di,j, is the time interval between the

task graph instance’s arrival time and node firm deadline (see Section 1.2.2). A task graph instance

misses its deadline if it cannot finish executing any nodes before their deadlines. In this work, we

assume that the deadline of each task graph’s last node Di,-1 equals Ti, i.e., for a periodic task graph,

its instance has to finish execution or be dropped before the arrival of the next instance.

In this chapter, we assume the actual time (clock cycles) required to execute a task node may

vary at run-time due to variations in memory system behavior and randomness in application

procedures. We therefore use probability distributions to model variations in task node execution

time [78] and assume that clock cycles consumed by a task node never exceed its WCEC.

Similarly, to assess the computation intensity of an application relative to a processor’s full

capability, the computation utilization of a periodic task graph (Ucomp) is defined as the sum of

execution times of all its task nodes for the highest processor clock frequency divided by its period:

77

௖ܷ௢௠௣ ௜ = ∑ ௝ܥܧܥܹ ௜,௝ ௠݂௔௫⁄
௜ܶ , ݅ ∈ {ͳ, … , ௚ܰ} (8)

Also we define communication utilization of a periodic task graph (Ucomm) as the sum of the

communication times for all of its edges divided by the task graph’s period:

௖ܷ௢௠௠ ௜ = ∑ COMM௞௜௞ ௜ܶ , ݅ ∈ {ͳ, … , ௚ܰ} (9)

The computation/communication utilization of the entire multi-application workload is simply the

accumulation of utilizations for all task graphs, which provides an indication of the overall

workload intensity of a DAG application set.

3.3.2. SOFT ERROR MODEL

A system is said to be real-time if the total correctness of an operation depends not only upon

its logical correctness, but also upon the time in which it is performed [14]. In most part of this

dissertation, we focused on timing constraints of task instances by counting miss rate in regard to

firm deadlines. In this chapter, we also look into logical correctness when counting miss rate and

assume that task nodes can produce incorrect output due to soft errors occurring during execution

and such incorrect outputs can be detected by verification logic executed at the end of regular task

execution. To recover from a soft error, the task node with a faulty output must be re-executed,

otherwise the output of the entire task graph will become invalid, which is counted as a task graph

miss. We apply the exponential model proposed in [75] to simulate soft error rates, as shown in

Equation (10):

λሺ݂ሻ = λ଴ͳͲௗሺଵ−௙ሻଵ−௙೘�೙
(10)

where λ0 is the average error rate corresponding to the maximum frequency, d is a constant that

indicates the sensitivity of error rate to voltage scaling, fmin is the normalized minimum core

78

frequency, and f is the normalized core frequency. It can be observed that lower power execution

at lower supply voltage (and thus frequency) to save energy can result in an exponential increase

in soft error rate [67].

3.3.3. HARD ERROR MODEL

In addition to soft errors, we also consider aging effects that eventually lead to hard errors

(permanent failure) in electronic systems. We adapt an analytical method to capture system-level

lifetime reliability in embedded systems with multiple cores. In the rest of this section we first

introduce how aging effects are modeled in our work and then describe a method to calculate

reliability of a multicore embedded system according to a specified level of failure tolerance.

Many prior research efforts model hard reliability characteristics of systems using mean-

time-to-failure (MTTF) prediction [71]. However, for aging effects, it is more intuitive to model

the changing of reliability over time due to progressive wear-out [79]. In our work, we estimate

instantaneous hard reliability of a core, which reflects the possibility of core’s avoidance of

permanent failure within a time epoch. We utilize a Weibull distribution, which is one of the most

widely used and versatile lifetime distributions in reliability engineering, to characterize per-core

wear-out over time [80]. The instantaneous hard reliability of a single core at time t, R(t), can be

expressed as:

�ሺݐሻ = ݁−ሺ௧�ሻ�
 (11)

where α and β represent the scale parameter and slope parameter in the Weibull distribution,

respectively. While β is a constant that reflects architectural characteristics of core, α is highly

dependent on the operating history of the core. Thus in our reliability model we need to deduce

79

the relationship between the scale parameter α and operating history of the processing core. Firstly,

by the definition of a Weibull distribution, MTTF of a core can be calculated as

ܨܶܶܯ = ߙ × �ሺͳ + ͳߚሻ (12)

Then we can represent the scale parameter α as:

ߙ = ሺͳ�ܨܶܶܯ + ͳߚሻ (13)

This representation makes it possible to calculate the scale parameter for a core’s instantaneous

hard reliability model by adapting various MTTF-based hard error models, such as electro

migration (EM), time dependent dielectric breakdown (TDDB), and negative bias temperature

instability (NBTI) [71] [72] [73]. In this work we focus on EM-based aging, the MTTF model for

which can be expressed as:

ܨܶܶܯ = ܬ଴ሺܣ − ௖௥௜௧ሻ−௡݁ா�௞� (14)ܬ

where A0 is a material-related constant, J = Vdd × f × pi [71], and Jcrit is the critical current density.

Then we have

ߙ = ଴ሺܣ ௗܸௗ × ݂ × ௜݌ − ௖௥௜௧ሻ−௡݁ா�௞��ሺͳܬ + ͳߚሻ (15)

where Vdd, f, and T can be controlled by our workload management framework.

To approximate aging effects over time, we use a fixed time epoch of length ∆ݐ as the basic

time unit, for which averaged core frequency, supply voltage and temperature are applied to the

above model for hard reliability calculation. According to [72], the reliability of a core at time

epoch tw, as the result of accumulated wear-out effects in previous time epochs from t0 to tw-1, can

be approximately calculated as:

80

�ሺݐ௪ሻ = ݁−ሺ∑ ∆௧�ሺ௧�ሻ�−భ�=బ ሻ�
 (16)

Also, MTTF of a core can then be represented as

ܨܶܶܯ = ∑ × ݐ∆ �ሺݐ௜ሻ∞௜=଴ (17)

For multicore systems, it is essential to consider not just reliability of each core individually,

but rather the impact of aging on the entire system. We define a system-level failure threshold (h)

as the maximum number of core failures allowed before the entire system is considered to have

failed. For example, if h=0, the system fails as soon as one core fails, i.e., all cores must maintain

their functionality to keep system up. The hard reliability of a system for this case is:

�௦௬௦ሺݐ௪ሻℎ=଴ = ∏ �௞ሺݐ௪ሻ�௞=ଵ (18)

where N is number of cores in a system. For general cases, where failure threshold h has a non-

zero value, the hard reliability of system can be calculated as shown below:

�௦௬௦ሺݐ௪ሻℎ = �௦௬௦ሺݐ௪ሻℎ−ଵ + ∑ (∏ ሺͳ − �௞ሺݐ௪ሻሻ ×௞∈ி ∏ �௞ሺݐ௪ሻ௞∈{ଵ,…,௡}∖ி) ி ⊂{ଵ,…,௡}|ி|=ℎ ℎ ∈ [ͳ, ܰ − ͳ] (19)

In the above equation, hard reliability of the system is calculated recursively, such that reliability

of the system with failure threshold h equals reliability of the system with threshold of h-1 plus

the probability of the system to have exactly h cores failed. Different cores usually have different

hard reliabilities due to uneven workload distribution among them, therefore when calculating

probability of a certain number of cores failed, it is essential to enumerate all cases in combination

and sum up their probabilities.

81

3.3.4. RUN-TIME SCHEDULER

This module is an important component of the system for run-time information gathering

and dynamic application execution control. The online scheduler gathers information by

monitoring the energy storage medium and the multicore processor (Figure 32). The gathered

information, together with preloaded schedule template library generated by the offline scheduler

for the given workload (discussed further in Section 3.5), allows the run-time scheduler to

coordinate operation of the multicore platform at run-time.

3.3.5. PROBLEM OBJECTIVE

The primary objective of our workload management framework is to allocate and schedule

the execution of a workload composed of multiple application task graphs (DAGs) arriving

periodically and running in parallel simultaneously at run-time, such that total task graph miss rate

is minimized. Our framework must react to changing run-time scenarios, such as varying harvested

energy budgets, variations in task execution time, and random transient faults, to schedule as many

of the task graph instances as possible without overloading the system with complex re-scheduling

calculations at run-time. The framework must also consider slack reclamation to aggressively save

energy and support soft-error handling to avoid finishing task graphs with incorrect output (which

is counted as a task graph miss). As a secondary objective, the framework must take aging effects

into consideration to maximize overall system lifetime.

3.4. HYBRID SCHEDULING FRAMEWORK: MOTIVATION AND OVERVIEW

The problem of scheduling weighted directed acyclic graphs (DAGs) on a set of

homogeneous cores under some optimization goals and constraints is known to be NP-complete

82

[64]. This paper addresses the even more difficult problem of scheduling on systems that rely

entirely on limited and fluctuating harvested energy. The limited energy supply prevents the

deployment of complex scheduling algorithms at run-time. Moreover, execution of applications

that will not have enough energy or computation resources to complete due to shortages in

harvested solar energy can lead to significant wasted energy with no beneficial outcome.

Figure 34 Overview of Hybrid Workload Management Framework

To address these challenges, we propose a hybrid workload management framework

(HyWM) that combines template-based hybrid scheduling with an energy budget window-shifting

strategy derived from semi-dynamic framework proposed in Chapter 2 to decouple run-time

application execution from the complexity of DAG scheduling in the presence of fluctuations in

solar energy harvesting. An important underlying idea in this framework, as shown in Figure 34,

is time-segmentation during run-time workload control that creates an independent stable energy

83

environment for run-time scheduling within each segment. The time of system execution is

partitioned into schedule windows of identical length, which is referred to as the hyper-period of

the DAG workload. An energy budget is assigned to a schedule window at its beginning, based on

the amount of harvested and unused energy from the previous window. This conservative budget

assignment scheme, called energy budget window-shifting, can delay utilization of harvested

energy slightly to ensure that dynamic variations in energy harvesting do not halt the execution of

applications in subsequent windows. The run-time scheduler knows the amount of energy that is

available at the beginning of each window, and selects the best-fit schedule template generated at

design-time based on this energy budget.

In the following sections, we describe our proposed framework in detail. Section 3.5

describes two design-time scheduling template generation approaches. Section 3.6 presents a run-

time scheduler with aging-aware allocation of workload partitions, lightweight slack reclamation,

and integrated soft error handling heuristics. Experimental results to validate our framework are

presented in Section 3.7.

3.5. OFFLINE TEMPLATE GENERATION

In this section, we propose and discuss two different approaches to solve the DAG

scheduling problem at design-time. Both approaches generate schedule templates composed of

energy-efficient execution schedules for various energy budgets. The first approach is based on

mixed integer linear programming (MILP) that ensures schedule optimality for maximum

performance. The second approach is an analysis-based template generation (ATG) heuristic that

is faster and more scalable than MILP, to accommodate larger problem sizes with acceptable

compromise in schedule optimality.

84

3.5.1. MILP-BASED OFFLINE TEMPLATE GENERATION

We formulated an MILP problem to aid with the generation of optimal task scheduling

templates at design-time. The MILP formulation aims to minimize miss rate for DAG instances in

a schedule window under a given energy budget constraint. The constructed formulation is solved

multiple times offline with different energy budget constraints to generate a set of schedule

templates for the run-time scheduler to select. As our formulation focuses on workload

management within an independent schedule window, in this section we assume periodic task

graphs in set ψ are unrolled into a set of all task graph instances that arrive within a schedule

window, ψ+: {GI1,…,GINi}. Our target processor has Nc cores, each with Nl discrete frequency

levels.

3.5.1.1. INPUTS AND DECISION VARIABLES

For our MILP formulation, we provide several inputs that represent the energy budget and

characteristics of the target workload and platform, as shown in Table 4. The energy budget

parameter (ENGY_BGT) allows different schedule template outcomes, such that each of them can

best match the available energy budget. The WCETj,l and ENGYj,l parameters are calculated based

on worst case execution cycles (WCEC) of every task node for every frequency level supported by

the processing cores (see Table 1).

Table 4 Inputs for MILP Formulation

Inputs Description
EGY_BGT energy budget of the schedule template to generate
ARRIVALi arrival time of task graph instance i
DDLINEi,j deadline of task graph instance i node j
WCETj,l worst-cast execution time of task node j at frequency level l , l ≠ 0

ENGYj,l
energy consumption of task node j at frequency level l, when l =
0, ENGYj,0 = 0

85

COMMsrc,dst
communication delay when preceding node src and descendent
node dst are allocated to separate cores

Ni, Nt, Nl,
and Nc

number of task graph instances, number of task nodes, number of
frequency levels, and number of cores

 † In our formulation, task nodes can be indexed in two different ways:
 1) Local ID: tuple (i, j) for task node j of task graph i
 2) Global ID: single variable j for task node j in the entire set

Table 5 Decision Variables in MILP Formulation

Variables Description
missi binary variable to indicate if task graph instance i is missed

start(i,j)

Execution start time of task graph i on node j. Note that we
also use variable endi,j as the end time of execution. Our
schedule does not consider task preemption so that endi,j =
starti,j + WCETi,j

freqj,l
binary variable which indicates if task node j is assigned
with frequency level l

allocj,k
binary variable which indicates if task node j is mapped to
core k, k ≠ 0

decj,j’
binary variable which indicates if task nodes j and j’ are
NOT mapped to the same core (decoupled)

befj,j’
binary variable which indicates if task node j is scheduled
before j’

There are two major requirements for decision variables in our MILP problem: (i) they must

form a complete representation of a feasible execution schedule; and (ii) they should make it

possible to represent all constraints and objectives as linear formulations. Table 5 shows decision

variables used in our formulation. The binary indicators of task graph miss, missi , are used to

construct the major part of the objective function. For freqj,l , when l = 0, it indicates that task node

j is not scheduled for execution and is thus to be dropped. The indicators decj,j’ and befj,j’ are used

to construct constraints that arrange timings of task nodes without direct dependencies.

86

3.5.1.2. OPTIMIZATION OBJECTIVE

The major objective of the MILP formulation is to minimize the number of misses of task

graph instances in a schedule window. Additionally, we include an auxiliary objective: the

percentage of energy budget used, so that the MILP optimization also searches for a schedule with

the least energy consumption possible. Note that this auxiliary objective does not sacrifice

minimization of number of task graph misses for less energy consumption, as the energy usage

percentage, with value no greater than 1, always has less impact on the objective function value

than any single task graph instance miss. The objective formulation is shown below:

Min: ∑ + ௜ݏݏ݅݉ ∑ ∑ ሺܩܰܧ ௝ܻ,௟ × ௝,௟ሻ�௟௟=଴�௧௝=ଵݍ݁ݎ݂ ⁄ܶܩܤ_ܻܩܧ �௜
௜= ଵ (20)

3.5.1.3. CONSTRAINTS

The constraints in our formulation guarantee the satisfaction of the energy budget and

correctness of the execution schedule for the target workload and platform. The key constraints

are described as follows:

 Energy constraint for a schedule window: Total energy consumption of all task nodes at

their assigned frequency levels should be less or equal to the energy budget:

∑ ∑ሺܩܰܧ ௝ܻ,௟ × ௝,௟ሻ�௟ݍ݁ݎ݂
௟=଴

�௧
௝=ଵ ൑ (21) ܶܩܤ_ܻܩܧ

 Timing constraints for task graph scheduling: We formulate multiple constraints, which

when combined together form a complete timing constraint for all task graph instances and

their task nodes, as illustrated in Figure 35.

87

Figure 35 Timing Constraints for Periodic Task Graph Set

o Timing constraints for graph instances: The two constraints below confine start time

of the first task node and end times of task nodes with deadlines to ensure that timing

requirements of their corresponding task graph instances are satisfied, as illustrated in

Figure 35 (a.1, a.2). ݐݎܽݐݏሺ௜,ଵሻ ൒ ௜ܮܣܸܫ��ܣ − ܯ × ݅ ௜ݏݏ݅݉ ∈ [ͳ, ௜ܰ] (22)
 ݁݊݀ሺ௜,௝ሻ = ሺ௜,௝ሻݐݎܽݐݏ + ∑ሺܹܧܥ ሺܶ௜,௝ሻ,௟ × ሺ௜,௝ሻ,௟ሻ�௟ݍ݁ݎ݂

௟=ଵ (23)

 ݁݊݀ሺ௜,௝ሻ ൑ ௜,௝ܧܰܫܮܦܦ + ܯ × ݅ ௜ݏݏ݅݉ ∈ [ͳ, ௜ܰ], ݆ ∈ [ͳ, [ݐܰ

(24)

We use a sufficiently large constant, M, in the formulation to equivalently represent

“if” statements that cancel out constraints when missi = 1 (graph instance dropped). The

constraints can be canceled out when missi = 1 because large values of M ensure that

the inequality is satisfied for any variable values in range. In the rest of this paper, we

use the same approach for “if” statements. However, for the purpose of intuitive

representation, the following sections show “if” statements explicitly.

88

o Timing constraints for task nodes with dependencies: The type of constraints shown

below model dependencies by forcing destination task nodes to start only after their

predecessor nodes have finished. Also the constraints take communication cost into

consideration when two dependent nodes are decoupled (not allocated to the same

core), as illustrated in Figure 35 (b.1, b.2): �� ݉݅ݏݏ௜ = Ͳ: ݁݊݀ሺ௜,௦௥௖ሻ + ௦௥௖,ௗ௦௧ܯܯܱܥ × ݀݁ܿ௦௥௖,ௗ௦௧ ൑ ሺ௜,ௗ௦௧ሻݐݎܽݐݏ
 ݅ ∈ [ͳ, ௜ܰ], ሺܿݎݏ, dstሻ ∈ , ௜ ܩ ݂݋ ݏ݁݃݀݁ ௜ܩ ∈ ψ+

(25)

o Timing constraints for task nodes without dependencies: The type of constraints shown

below address the fact that task nodes allocated to the same core cannot overlap their

execution times, as each core executes only one task at a time without preemption, as

shown in Figure 35 (c). ݀݁ ௝ܿ,௝′ ൑ ʹ − ௝,௞ݏܿ݋݈݈ܽ − ௝′,௞ (26)ݏܿ݋݈݈ܽ
 ݆ ∈ [ͳ, ,[ݐܰ ݆′ ∈ [ͳ, ,[ݐܰ ݆ ≠ ݆′, ݇ ∈ [ͳ, ܰܿ]

 ݀݁ ௝ܿ,௝′ ൒ ௝,௞ݏܿ݋݈݈ܽ + ′௝′,௞ݏܿ݋݈݈ܽ − ͳ (27)
 ݆ ∈ [ͳ, ,[ݐܰ ݆′ ∈ [ͳ, ,[ݐܰ ݆ ≠ ݆′

 ݇ ∈ [Ͳ, ܰܿ], ݇ ∈ [ͳ, ܰܿ], ݇ ≠ ݇′

These constraints represent relations between task node allocation variables, alloci,k,

and node pair decoupling variables, decj,j’. The constraint in (26) ensures that the pair

decoupling variable is equal to 0 when task nodes are on the same core. The constraint

in (27) forces the decoupling variable to be 1 when two task nodes are found to be

allocated to different cores.

89

With the value of decj,j’ available, the following constraints are used to avoid timing

conflicts for every pair of task nodes: ܾ݁ ௝݂,௝′ + ܾ݁ ௝݂′,௝ − ݀݁ ௝ܿ,௝′ = ͳ (28)
 �� ܾ݁ ௝݂,௝′ = Ͳ: ݁݊݀௝′ < ௝ (29)ݐݎܽݐݏ

 �� ܾ݁ ௝݂′,௝ = Ͳ: ݁݊݀௝ < ′௝ݐݎܽݐݏ (30)

 ݆ ∈ [ͳ, ,[ݐܰ ݆′ ∈ [ͳ, ,[ݐܰ ݆ ≠ ݆′ for (28-30)

The constraint in (28) implies that the task node j should be scheduled either before or

after task node j’ when they are allocated on the same core. Based on the scheduled

order of these two tasks, the constraint in (29 and 30) ensures that the task node only

starts when earlier scheduled task nodes are finished. When two task nodes are

decoupled to two different cores, the constraints in (29 and 30) cancel out [81].

 Constraints for target platform: The type of constraints shown below guarantee that only

one frequency level and at most one core are selected for execution of each task node:

∑ ௝,௟ݍ݁ݎ݂ = ͳ,�௟
௟=଴ ݆ ∈ [ͳ, ௧ܰ] (31)

∑ ݋݈݈ܽ ௝ܿ,௞ ൑ ͳ,�௖
௞=ଵ ݆ ∈ [ͳ, ௧ܰ] (32)

௝,଴ݍ݁ݎ݂ �� = Ͳ: ∑ ݋݈݈ܽ ௝ܿ,௞ = ͳ, ݆ ∈ [ͳ, ௧ܰ]�௖
௞=ଵ

(33)

A task is indicated as dropped in the generated schedule when its frequency level is set

to 0. The constraint in (33) ensures that all tasks that are not dropped will be allocated

to a core; otherwise they may end up being executed on a “ghost core” to escape timing

constraints with other tasks.

90

All of the above constraints are necessary to create a correct, feasible and optimal set of

schedule templates, for a set of chosen energy budgets. We also establish additional constraints

(not shown for brevity) to eliminate obviously sub-optimal solutions and reduce the search space

for the MILP solver.

Figure 36 Analysis-Based Schedule Template Generation Heuristic

3.5.2. FAST HEURISTIC-BASED OFFLINE TEMPLATE GENERATION

The MILP optimization approach can provide optimal static schedule templates when online

performance is the primary goal and the complexity of the workload is not excessive. For problems

with larger sizes, however, the complexity of MILP optimization will increase dramatically such

that the execution time of the MILP solver becomes impractical, even for design-time exploration.

91

Thus we propose another novel analysis-based template generation (ATG) heuristic that

emphasizes scalability and fast solution generation with an acceptable compromise on the

optimality of generated schedule templates.

The outline of our proposed ATG method is illustrated in Figure 36. The main idea in ATG

is to iteratively analyze and improve performance of tentative execution schedules based on

feedback from step-by-step simulation, which detects energy inefficient events to help make

informed updates to the tentative schedule that is evaluated in another round of analysis. ATG also

has an in-built checkpoint mechanism to save system status so that a new round of analysis after a

rewind event (discussed later) saves time before a modification on a tentative schedule takes effect.

The three main components of ATG are outlined below:

Firstly, Algorithm 5 shows the steps to generate an initial tentative schedule for ATG based

on a specified energy budget level. The algorithm starts out by finding the workload utilization

that can be supported by a given energy budget level (step 1~3). Then the schedule accepts a subset

of task graphs for execution and drops the remaining task graphs (step 4~11), while ensuring that

task graphs with lower WCECs are more likely to be accepted and the total utilization of the task

graphs satisfies the supportable workload utilization for the given energy budget. The generated

initial schedule conservatively rules out some obviously sub-optimal portions of the solution space

during scheduling and reserves enough headroom for upcoming iterative analysis and scheduling.

The resulting initial schedule does not include core allocation and priority assignment of task nodes

yet, which will be decided by the list scheduling algorithm used in a later stage.

Algorithm 5 Initializing of Tentative Schedule Template
Input:
(i) ψ, task graph set to be scheduled
(ii) EGY_BGT, specified energy budget for one schedule window
(iii) Twin, duration of a schedule window
(iv) num_cores, number of cores in system

92

(v) fmax, maximum frequency of processors
(vi) UGi, utilization of periodic task graph Gi
Output:

(i) missi, binary variables to indicate is task graph Gi is missed/dropped in schedule
(ii) freqj, assigned frequency level of task node τj, value range [0, Nl]

 1. avg_power ← (EGY_BGT/Twin)/num_cores
 2. find fref, the highest frequency that can be supported by avg_power
 3. Uref ← fref / fmax
 4. Uaccepted ← 0
 5. sort ψ according to WCEC of each task graph
 6. while Uaccepted < Uref :
 7. find the task graph with lowest WCEC, Gi
 8. missi ← FALSE †
 9. for τj in all task nodes of Gi :
10. freqj ← fref
11. Uaccepted ← Uaccepted + UGi
† Default values of all elements in missi for all task graphs is TRUE

Secondly, a list scheduling based algorithm is adapted to our problem and applied during

iterative analysis, as shown in Algorithm 6. The algorithm is divided into two parts: Part I is

concerned with task priority assignment, while Part II deals with allocation and execution order

scheduling of task nodes.

First, we discuss the priority assignment in Part I. In our application model, not all task nodes

in a task graph will have deadlines assigned to represent timing requirements of the corresponding

real-time application (see section 3.3.1). For task nodes with deadlines assigned, we refer to their

associated deadlines as explicit deadlines. On the other hand, for tasks nodes without explicitly

assigned deadlines, there still exists a latest-time-to-finish for each of them to allow all remaining

task nodes with explicit deadlines to finish. Thus tasks without explicitly assigned deadlines can

be said to have implicit deadlines. We use implicit or explicit deadline to represent priority of a

task node, as the earlier the deadline is, the more urgent it is to finish the task node to avoid a

deadline miss for the entire task graph.

93

Algorithm 6 shows the heuristic in Part I that calculates implicit deadlines of all task nodes

by using a nested function to traverse the entire task graph starting from task nodes with explicit

deadlines assigned (step 1~4). Then in step 5~9, the nested function is called to back-traverse from

nodes with explicit deadlines to predecessor nodes, calculating implicit deadlines of other task

nodes in a depth-first manner. As a task node can have multiple successor nodes in a task graph,

multiple values of implicit deadline can be derived from different calculation paths or different

explicit deadlines of nodes. To address this issue, steps 7 and 8 ensure that only the earliest value

among all derived ones is kept as a task node’s implicit deadline. An illustrative example of this

priority (implicit deadline) assignment heuristic is shown in Figure 37.

Figure 37 An Illustration Example of Implicit Deadline Calculation

Part II of Algorithm 6 shows the steps for allocating and scheduling task nodes during each

simulation step. For task node allocation, a task pool is used to collect task nodes that are ready to

be allocated and each core has a record of WCET required to finish all task nodes already assigned

to it. A good allocation scheme should distribute task nodes to cores so that their workloads are as

94

evenly balanced as possible. In steps 10~15, we use a heuristic that is similar to a first-fit

decreasing algorithm for the bin-packing problem [82], which sorts task nodes in decreasing order

based on their WCETs and then iteratively allocates the task node with highest WCETs to cores

with lowest WCETs accumulated for execution. The scheduling of task nodes on each core is

performed based on the earliest implicit dead line first (EiDF) algorithm (steps 16~18), which is

essentially EDF that uses implicit deadlines generated in part I. With multiple task graphs to be

scheduled at the same time, EiDF gives priority to task nodes in the critical path of different task

graphs, after comparing their implicit deadlines.

Algorithm 6 List Scheduling Based Approach for Task Scheduling
Part I Task node priority (implicit deadline) assignment
 (Called every time tentative schedule is changed)
Input:
(i) ψ, task graph set to be scheduled
(ii) DD_LINEi,j, deadline of task graph instance i node j
(iii) WCETj, worst cast execution time of each task node in task graph
(iv) COMMsrc,dst, communication delay between node src and node dst
Output: implicit_priorityj, implicit deadlines as priority indicators of task node τj

 priority_assign():
 1. for Gi in ψ :
 2. for τj in task nodes of Gi with deadline constraints :
 3. dead_priorityj ← DD_LINEi,j
 4. call nested_priority(τj)

 nested_priority(τj):

 5. for τj’ in all predecessor nodes of τj :
 6. implicit_deadline ← implicit_priorityj –WCETj – COMMj’, j
 7. if implicit_priorityj’ > implicit_deadline :
 8. implicit_priorityj’ ← implicit_deadline
 9. call nested_priority(τj’)

Part II List scheduling method
 (Called in every simulation step)
Input:
(i) sys_pool, system task pool, containing task nodes that are ready to allocate
(ii) core_poolk, task pool for core k, containing allocated task nodes that are ready to execute
(iii) CORE_WCETk, remaining WCET of all task nodes assigned to core k

95

(iv) implicit_priorityj, implicit deadlines as priority indicators of task node τj
Output:
(i) allocj, allocation results of task node τj, value range [0, num_cores]
(ii) selected task node to execute in current simulation step

 list_schedule():
10. sort sys_pool according to WCET of each node
11. for all task nodes in sys_pool :
12. find τj in sys_pool with highest WCETj
13. find core k, with lowest CORE_WCETk
14. allocate τj to core k, allocj ← k †
15. CORE_WCETk ← CORE_WCETk + WCETτj
16. for all cores in system :
17. sort core_poolk according to implicit deadline of each tasks
18. select task node with earliest implicit deadline to execute
† Allocated task is not ready to execute until preceding dependencies are resolved

Lastly, at the core of the ATG heuristic is a checkpoint-based iterative analysis method, as

shown in Algorithm 7. At the beginning of each simulation step, the ATG heuristic saves the

current system status as a checkpoint for newly arriving task graphs, so that the simulation can

rewind to this checkpoint saved before the schedule for the new task graph takes effect (step 2~3).

Subsequently, a list scheduler is invoked and the system executed for one simulation step with the

tentative schedule (step 4~5). When energy inefficient events are detected during execution, the

ATG heuristic will update the execution schedule accordingly and rewind to a previous checkpoint

for another round of evaluation with an updated schedule (step 6~16). If ATG detects depletion of

the energy budget before finishing all accepted task graphs in the current schedule (energy

violation event), one accepted task graph with highest WCEC will be dropped in the updated

schedule and simulation rewinds for re-analysis (step 6~9). If ATG detects a task node that missed

its implicit or explicit deadline (timing violation event), which implies that a deadline miss for the

task graph it belongs to is inevitable, the tentative schedule will be updated to boost execution

frequency of related task nodes: the task node in the critical path with the lowest frequency

assigned will get a frequency boost (step 11~13); and if there exists a task node from another task

96

graph allocated to the same core that finished just before the nodes with timing violation, it will

also get a frequency boost (step 14~15).

Note that WCETs of selected task nodes change with their boosted frequencies, thus we call

a nested priority assignment function starting from these nodes to recalculate implicit deadlines of

their predecessors. Then simulation rewinds for re-analysis with the new schedule (step 16). If the

current simulation step detects no energy inefficient events, the simulation continues to the next

step (step 17~18). When the entire schedule window is analyzed without energy inefficient events,

the analysis process ends and the updated schedule is saved as a schedule template for the specified

energy budget (step 19).

Algorithm 7 Checkpoint-Based Iterative Analysis
Input:
(i) EGY_BGT, specified energy budget for one schedule window
(ii) Twin, duration of a schedule window
(iii) implicit_priorityj, implicit deadlines as priority indicators of task node τj
(iv) initial tentative schedule from Algorithm 5
Output: static schedule template for energy budget of EGY_BGT

 1. while Tcur < Twin :
 2. if new task graph Gi arrives :
 3. checkpointi ← all system status (include Tcur)
 4. alloc ← list_schedule()
 5. execute for one step using tentative schedule
 6. if EGY_BGT depleted during execution :
 7. find arrived task graph with highest WCEC, Gi
 8. missi ← TRUE
 9. all system status ← checkpointi
10. else if node τj of task graph Gi missed its implicit deadline :
11. find the critical path in Gi that ends at τj
12. find τj’ , the task node with lowest frequency assigned
13. freqj’ ← freqj’ + 1, nested_priority(τj’)
14. find τj’’, the task finished just before τj on the same core
15. freqj’’ ← freqj’’ + 1, nested_priority(τj’’)
16. all system status ← checkpointi
17. else :
18. Tcur = Tcur + Tstep
19. save final tentative schedule as schedule template

97

At design-time, the ATG heuristic is executed multiple times for different energy budget

levels (similar to the MILP approach) to generate a set of schedule templates for the run-time

scheduler to select from, based on the harvested and available energy in the target multicore

computing platform.

3.6. ADAPTIVE ONLINE MANAGEMENT

3.6.1. RUN-TIME TEMPLATE SELECTION

Figure 38 Residual Energy Availability over Time

The main goal of our run-time scheduler is to monitor harvested solar energy and select the

best-fit template for an upcoming schedule. With schedule templates generated at design-time and

energy budgets provided at the beginning of each schedule window, this is a low-overhead

operation, done by selecting the schedule template that finishes the most task graph instances,

contingent on the energy budget. Each selected template provides a schedule with task-to-core

allocation, execution order, and frequency assignment for every task node. As the offline schedule

98

template assumes all cores to be identical, each task node is actually only assigned to a virtual core

id. We call a set of task nodes assigned offline to a core id as a workload partition, each of which

should be allocated to a dedicated physical core for execution in the upcoming schedule window.

This partition-to-core allocation can be adjusted dynamically to mitigate aging effect that leads to

hard failures (see section 3.6.2). On the other hand, the amount of residual energy that exceeds the

energy requirement of the selected schedule template is used as backup energy (Figure 38) for

possible task re-execution to recover from detected faults caused by soft errors during execution

(see section 3.6.3).

3.6.2. AGING-AWARE ALLOCATION OF WORKLOAD PARTITIONS

After a schedule template is selected based on the energy budget for a schedule window, our

framework can trigger a scheme to allocate workload to cores with awareness of core aging to

enhance system lifetime. Although schedule templates set fixed execution strategies for all task

nodes, there still exists some flexibility as the allocation of workload partitions to cores can still

be altered from the default provided by the schedule template, for a homogeneous multicore

platform.

Algorithm 8 Dynamic Workload Distribution in Awareness of Core Aging
Input:
(i) work_partition_set, set of workload chunks in schedule template, each chunk should be
executed on an individual core
(ii) R_set, reliability of cores
Output: Allocation of workload partitions to cores

 1. for each reliability detection interval :
 2. update R_set
 3. sort cores in non_decreasing order of hard reliabilities
 4. for each schedule window :
 5. get work_partition_set from selected schedule template
 6. sort work_partition_set in non-decreasing order of workload

99

 partitions’ total task execution cycles
 7. for all cores in system :
 8. allocate workload partition with lowest execution cycles to
 unassigned core with lowest hard reliability

The outline of our aging-aware dynamic workload allocations scheme is shown in Algorithm

8. We assume that our scheduler can fetch hard reliability information of cores from aging

detection circuitry [83] or execution history tracking mechanisms at certain interval (much longer

interval than schedule windows) [75] (steps 1~3). Besides, at the beginning of each schedule

window, workload partitions are fetched from the selected schedule template (step 4~6). Then

recursively our heuristic allocates unassigned workload partitions with the lowest workload

intensity to idle cores with the lowest hard reliability. As a result, cores with faster wear-out during

previous system operation are more likely to receive less workload than others so that aging

processing on the entire multicore system can be rebalanced. Otherwise, some cores may be

utilized more intensively than others and detrimentally impact system lifetime of the multicore

chip.

3.6.3. DYNAMIC ADJUSTMENT FOR SLACK RECLAMATION AND SOFT ERROR

HANDLING AT RUN-TIME

Utilizing static schedule templates for run-time workload management shifts the burden

associated with the complex task graph scheduling problem to design-time. However, embedded

systems can encounter unpredictable variations at run-time such as those due to fluctuations in

harvested solar energy, slight variations in task execution time on the same core, and randomness

of soft error occurrences. Among these factors, the fluctuations in harvested solar energy are

already dealt with in our framework by using the energy budget window-shifting technique and

100

the schedule template set prepared for different energy budget levels. In this section, we introduce

a lightweight run-time management scheme that provides an integrated solution to address slack

reclamation and soft error handling without diminishing the benefits of schedule templates

generated at design-time. This scheme is described in Algorithm 9.

Figure 39 Illustrative Example of Slack Time Reclamation

Our run-time management scheme can reclaim slack time that becomes available when a

task node finishes before its worst case finishing time. This slack time can be used to slow down

execution of upcoming task nodes, to save energy. The offline generated schedule templates have

a designated start time recorded for all task nodes, to help identify any instances of slack time.

Whenever a new task node is about to start execution, the amount of slack time is calculated by

subtracting the node’s designated start time with the current time (steps 4~5). If the amount of

101

slack time is usable, slower execution frequency is assigned to the task node for the purpose of

saving energy (step 6~7). Even if the amount is not sufficient to step down a frequency level, the

task node will start execution earlier than the designated time and thus the slack time can be passed

on to upcoming tasks, as shown in Figure 39. The estimated amount of energy saved is added to

the backup energy for use during possible task re-execution in the presence of soft errors (step 8).

Algorithm 9 Dynamic Slack Reclamation and Soft Error Handling
Input:
(i) Twin, duration of a schedule window
(ii) ψ, task graph set to be scheduled
(iii) startj, designated time to start execution of τj in selected schedule template
(iv) bkup_energyj, amount backup energy for a schedule window
Output: static schedule template for energy budget of EGY_BGT

 1. while Tcur < Twin :
 2. load schedule in template
 3. for τj in taskpool :
 4. if τj is about to start execution and Tcur < startj :
 5. slack_time ← startj – Tcur
 6. while slack_time > WCET increased at freqj – 1:
 7. freqj ← freqj – 1
 8. bkup_energy ← bkup_energy + energy saved
 9. execute task nodes based on schedule template
10. for τj in just finished tasks :
11. if error detected on τj :
12. if Tcur ≤ startj :
13. schedule another instance of τj to re-execute
14. else if ∃ a freq that has reduced WCET > Tcur - startj :
 and can be supported by bkup_energy:
15. freqj ← freq,
16. bkup_energy ← bkup_energy – energy_used
17. schedule another instance of τj to re-execute
18. else :
19. find next node to execute on the same core, τj’
20. if τj ∈ Gi, τj’ ∈ Gi’ and Gi ≠ Gi’ :
21. update remain WCEC of both graphs
22. if Gj’ has more WCEC :
23. drop Gj’
24. schedule τj to re-execute
25. else :
26. drop Gj

102

27. else :
28. drop Gj

Our run-time management scheme is also capable of reacting to soft errors with node-to-

node soft error detection. Whenever a task node finishes execution, the correctness of the result is

verified to trigger an error handling heuristic if errors are detected during task node execution

(steps 10~11). If there is slack time directly available, the system reclaims it to execute a new

instance of the faulty task node (step 12~13). If sufficient slack time is not available, the error

handling heuristic checks to determine if there exists a higher frequency supportable by the

available backup energy to finish re-execution of the fault-affected task node before its implicit

deadline (steps 14~17). If both options are not viable for the faulty task node, the heuristic will

attempt to drop other task graphs with higher WCEC so that the faulty node can be rescheduled.

This process involves checking if the next node scheduled to execute on the same core is from

another task graph (step 18~20). If true, both task nodes have the WCEC of their unfinished nodes

updated and the task graph with the higher WCEC is dropped (step 21~26).

The three error handling stages described above attempt to exploit slack time, backup energy

and relatively less important task graphs to save the computation efforts invested into all

predecessor nodes of the faulty task node, for better overall energy efficiency. During slack

reclamation and error handling, all task nodes that do not belong to faulty or dropped task graphs

will not have their template-designated finish time compromised, thus a chosen schedule template

remains effective during run-time workload management.

103

3.7. EXPERIMENTAL RESULTS

3.7.1. EXPERIMENT SETUP

We developed a simulator in C++ to evaluate our proposed soft and hard reliability-aware

hybrid workload management framework (HyWM). For offline schedule template generation, we

wrote a python script that constructs the data structure of task graphs using the NetworkX package.

We formulated the MILP problem using a GNU linear programming kit (GLPK) [84]. We chose

the Gurobi Optimizer [85] as our MILP solver to generate the optimal schedule templates. We

generated task graph sets based on the networking, telecom, and auto-industry applications from

the Embedded System Synthesis Benchmark Suite (E3S) [86] and the distribution of actual

execution times of task nodes is obtained from [78]. We also used synthetic task graph sets from

TGFF [87]. In the rest of this section, we first analyze characteristics of the generated schedule

templates and then study system performance for our proposed hybrid workload management

scheme compared to prior work.

3.7.2. TEMPLATE GENERATION ANALYSIS

In the first set of experiments, we check the quality and optimality of the schedule templates

generated using our MILP approach on a 4-core system. We scale task node execution time of four

periodic task graphs from E3S with computation utilization set to 0.8×4 and communication

utilization set to 0.15×4, i.e., a total workload utilization of 0.95×4, which sets a stringent timing

requirement for a system with 4 cores. The resulting periodic task graphs with targeted utilization

have periods ranging from 20 to 60 seconds and execution times at 1000MHz operating frequency

ranging approximately from 16 to 48 seconds with maximum per-graph parallelism of 4. Besides,

apart from the deadlines at task-graph termination nodes, we randomly select few task nodes in

104

each task graph to assign explicit deadlines that result in even more stringent timing requirements

(Note: utilization of the entire task graph stays the same as it is calculated based on maximum

frequency; see section 3.3.1). Based on the periods of the generated task graphs, we set the length

of schedule window to be 1 minute, within which 9 task graph instances arrive in the system for

execution. We generated 11 schedule templates with energy budgets evenly distributed from 0 to

Epeak, where Epeak is the assumed peak energy budget (240 Joules) available from our solar energy

harvesting system.

Table 6 Results of MILP Based Schedule Template Generation for A 4-core Homogeneous
Embedded System

Schedule
template ID

Energy budget
Objective

value
Energy budget usage

Energy
usage

Number of
misses

0 0J 9.000 0.0% 0J 9
1 24J 7.846 84.6% 20.3J 7
2 48J 5.920 92.0% 44.2J 5
3 72J 4.968 96.8% 69.7J 4
4 96J 4.726 72.6% 69.7J 4
5 120J 3.808 80.8% 97.0J 3
6 144J 2.904 90.4% 130.2J 2
7 168J 2.775 77.5% 130.2J 2
8 192J 1.923 92.3% 177.2J 1
9 216J 1.820 82.0% 177.2J 1
10 240J 0.965 96.5% 231.6J 0

The results of the schedule template generation for a system with four cores are shown in

Table 6. We can observe that schedule template 10, with a peak energy budget can finish all task

instances in time, showing the competence of our MILP optimization to deal with stringent timing

constraints even for heavy workloads with per-core utilization as high as 0.95. Note that while

96.5% of Epeak is required to finish all task instances, template 3 with energy budget less than 1/3rd

of Epeak managed to successfully schedule more than half of the instances. The results demonstrate

how our approach can create efficient schedules even under highly constrained energy budget

105

requirements. The schedule performance is a reflection of our MILP optimization approach that

finds the optimal schedule by sacrificing more energy-hungry task graph instances, reserving

energy for less energy-hungry ones, and scaling down execution frequency whenever possible for

optimal energy efficiency, thereby minimizing the miss rate of task graphs. Note that there are

three pairs of templates in Table 6 that are identical to each other with the same extent of energy

usage and instance misses. Thus it is unnecessary to increase number of budget levels indefinitely

(much beyond number of application task graph instances in a window) as the resulting smaller

energy budget difference between levels will lead to identical and redundant schedule templates

that increase storage overheads.

Figure 40 Frequency Level Occurrence Distribution for All Task Nodes

To study the quality of schedule templates from another perspective, we show how our MILP

optimization approach selects frequencies for task nodes under different energy budget constraints,

as shown in Figure 40. We can observe from the figure that templates with higher energy budgets

106

utilize higher frequency levels more frequently than templates with lower budgets. Templates with

lower energy budget end up dropping more tasks and slow down execution for better energy

efficiency. Note that the 150MHz frequency is never used by any schedule; this is due to the fact

that the frequency level of 150MHz has lower efficiency and lower speed than the 400MHz level

(see Table 1 in Chapter 2). Therefore our MILP optimization approach rules out this sub-optimal

frequency choice as it is always better to schedule at 400MHz instead.

While the MILP approach generates optimized schedule templates, we found that the

approach is not scalable for larger problem sizes. Table 7 shows a comparison between the MILP

and ATG heuristics, in terms of execution time and memory footprint, for two problem instances

of different sizes. It can be observed that the MILP approach requires significant computation

resources for large problem sizes, which may not be practical even at design-time. The ATG

heuristic is much faster, but this speedup comes at the cost of lower performance due to sub-

optimal schedule templates generated (see next section).

Table 7 Computation Resource Requirement of MILP and ATG

Method
Complexity Memory

footprint
Execution

time Number of nodes Number of edges
ATG

36 44
42 MB 0.1hour

MILP 257 MB 6.5hour
ATG

150 193
61 MB 1hour

MILP 7693 MB 492hour

3.7.3. EVALUATION OF SYSTEM PERFORMANCE WITHOUT ERROR INJECTION AND

EXECUTION TIME VARIANCE

In this section, we compare overall system task graph miss rate for the two variants of our

hybrid workload management framework: HyWM-LP and HyWM-ATG, against workload

management approaches proposed in prior work. Our simulation uses realistic energy harvesting

107

profiles based on historical weather data from Golden, Colorado, USA, provided by the

Measurement and Instrumentation Data Center (MIDC) of the National Renewable Energy

Laboratory (NREL) [60]. As we assume that our system only operates in daylight, system

performance is evaluated over a span of 750 minutes from 6:00 AM to 6:30 PM, when solar

radiation is available.

To compare our approach with state-of-the-art approaches, we implemented two additional

schemes: 1) SDA from Chapter 2, which divides system execution time into segments and selects

a stable frequency to execute a subset of the workload that can be supported by the assigned energy

budget; and 2) LP+SA [88], which finds a feasible but non-optimal schedule using MILP, and uses

this schedule as an initial solution to a simulated annealing (SA) based heuristic that finds a near-

optimal solution. To compare HyWM with these approaches, we adapt the techniques to our

environment and problem formulation. As SDA is designed for energy-constrained scheduling of

independent periodic tasks while our workload in this section consists of multiple task graphs, we

enhance these techniques so that our scheduler module analyzes inter-task dependency and

provides ready task nodes for the techniques to schedule. In LP+SA, the original approach focuses

on task graph scheduling while minimizing energy but without awareness of energy harvesting

and not considering task dropping. We enhanced LP+SA by dropping tasks iteratively till the

remaining task sets meet the energy budget, and these task sets are then sent as inputs to LP+SA.

The results of our comparison study on task graph sets extracted from E3S are shown in

Figure 41. The figure shows the total task graph miss rate for three different platform complexities

(with 4, 8, and 16 cores). For the platform with 4 cores, it can be observed that SDA has the highest

miss rate. This is because SDA, with no awareness of task node dependencies, cannot arrange

specific execution schedules for task nodes along critical paths of task graphs and thus all nodes

108

in a task graph are assigned the same frequencies, resulting in a less efficient schedule. LP+SA

outperforms SDA as it can generate task dependency-aware offline schedules after comprehensive

design space exploration unlike in SDA. However, the superior offline schedules obtained using

our MILP formulation in the HyWM framework coupled with its intelligent run-time template

selection and slack reclamation techniques allow HyWM to outperform both of these efforts.

HyWM-LP reduces absolute miss rate by 5.6% and 9.0% over LP+SA and SDA, respectively. In

terms of relative performance improvement, HyWM-LP accomplishes an improvement of 12.9%

and 20.1% over LP+SA and SDA, respectively. HyWM-ATG ends up with higher miss rates than

HyWM-LP, however it still outperforms the other two techniques from prior work. HyWM-ATG

can however serve as an alternative approach when scalability is an issue, e.g., for larger problem

sets.

Figure 41 Task Nodes Comparison in Terms of Overall System Task Graph Miss Rate

109

Figure 42 Comparison of Overall System Task Graph Miss Rate on Synthetic Task Graph
Set with Higher DoP

Figure 41 also shows the scheduling performance of these frameworks for platforms with a

greater number of available cores while keeping the workload and energy budget the same. When

the core count doubles from 4 to 8, our two HyWM methods achieve lower miss rates (up to 23.2%

reduction relatively) compared to other techniques, as they can better distribute the workload

across more cores, directing these cores to operate at a lower execution frequency and with better

energy efficiency. However, the system with 16 cores shows no further improvements because

there is no additional parallelism available in the E3S task graph set, which has maximum per-

graph parallelism of 4, to make use of the 16 cores. Note that LP+SA shows a slightly deteriorated

result on 16 cores because even though there is no more parallelism to exploit, the search space of

its SA heuristic enlarges, leading to slightly worse near-optimal solutions. Figure 42 shows another

110

group of results based on a synthetic task graph set generated using TGFF [87], with the same

targeted utilization as E3S but maximum per-graph parallelism increased to 8. We can observe in

Figure 42 that while performance differences among techniques are similar to the results shown in

Figure 41, all techniques continue to get miss rate reduction on a 16-core system, as there is

additional parallelism to exploit in the synthetic task graphs set (in contrast, miss rate

improvements for E3S saturate for the 16-core system as shown in Figure 41).

3.7.4. EVALUATION OF SYSTEM PERFORMANCE WITH SOFT ERROR INJECTION AND

EXECUTION TIME VARIANCE

In this section, we show the performance improvements due to our proposed run-time slack

reclamation and error handling heuristics. In the experiment, we assume an average error rate of

10-5 soft errors per second per core at maximum frequency [70]. As there is no prior work on soft

error handling for systems with energy harvesting, we conduct multiple tests with run-time

management features enabled progressively on a 4-core system to show each feature’s

effectiveness, with results shown in Figure 43. Each of the configurations shown in the figure are

described below:

 None: This base case uses HyWM-LP with soft error injection and no run-time adjustment

technique enabled, and has a miss rate of 45.4%.

 +slack reclamation: System miss rate drops to 34.4% when the slack reclamation

capability in run-time heuristic is activated.

 +drop: With the addition of basic soft error-awareness that causes faulty task graphs to be

dropped as soon as an error is detected (to avoid unnecessary energy consumption), the

miss rate reduces further to 31.9%.

111

 +compare before drop: When the heuristic adds support for dropping other task graphs

with high WCET to allow re-execution of the faulty task node, the system sees a drop in

miss rate to 30.2%.

 +backup energy: Finally, when the fully-enabled heuristic is utilized that adds further

support for utilizing backup energy to speed up faulty node re-execution, we end up with

the lowest miss rate of 25.6%.

Figure 43 Miss Rate Comparison with Run-Time Techniques Enabled Progressively

The results in Figure 43 highlight the significance of slack reclamation and soft error

handling in our run-time framework with a relative 43.6% miss rate reduction for the best

configuration compared to the baseline case.

112

3.7.5. EVALUATION OF SYSTEM HARD RELIABILITY AND MTTF

In this section, we explore the impact of aging on multicore embedded systems with energy

harvesting. For our experiments, we implemented the aging model proposed in section 3.3.3,

considering electromigration (EM) as the primary hard failure mechanism. In the model, we set

the critical currently density J0 = 1.5×106 A/cm2, the activation energy Ea = 0.48eV, and assume a

slope parameter in the Weibull distribution β = 2 [72]. We simulated execution of systems over a

long period of time with solar harvesting profiles randomly selected from a preset pool. At the

beginning of each schedule window, the aging progress is estimated based on average core

frequencies, supply voltages, and core temperatures of previous schedule windows. All

experiments in this section target 8-core systems executing the same workload as in experiments

of previous sections.

Figure 44 Comparison of reliability and MTTF for different workload allocation schemes

113

The first set of experiments is designed to evaluate the benefit of our aging-aware workload

allocation scheme, which is compared with Biased, an allocation scheme that always allocates

workload partitions with low to high workload intensities on to cores with low to high core id

respectively, and Random, the original partition-to-core allocation randomly generated during

schedule template generation. All experiments have failure thresholds set to 0 and the results on

hard reliability and MTTF of system are shown in Figure 44. We can observe that our Aging-

Aware scheme (which is used in our HyWM framework) results in better hard reliability over time

as it can reallocate workload partitions to balance aging progress among cores, ending up with

14.8% and 24.5% MTTF improvements compared to Biased and Random without diminishing

system performance.

The last set of experiments performs sensitivity analysis for our aging-aware workload

allocation scheme, focusing on system MTTF and performance analysis when different failure

thresholds are considered. The results of this experiment are shown in Table 8. As we can see,

increasing failure threshold allows the system to operate for longer periods of time (higher MTTF),

however, this comes at the cost of a decrease in peak processing capability before failure and

average system processing capability over time.

Table 8 System MTTF and Performance Comparison with Different Failure Thresholds

Failure Threshold* 0 1 2 3 4 5 6 7

MTTF (years) 10.06 15.58 20.22 24.66 29.27 34.44 40.94 51.35
Processing Capability Before System
Failure (%)

100 92.3 80.1 68.8 52.4 34.9 18.4 7.0

Average Processing Capability during
System Lifetime (%)

100 96.5 92.5 87.7 81.7 75.0 67.3 60.3

 *Failure threshold: number of cores that must fail before a chip is considered unusable

114

3.8. CHAPTER SUMMARY

In this chapter, we proposed a hybrid design-time and run-time framework for reliable

resource allocation in multicore embedded systems with solar energy harvesting. Our framework

was shown to cope with the complexity of an application model with data dependencies and run-

time variations in solar radiance, execution time, and transient faults. Our experimental results

indicated improvements in performance and adaptivity using our framework, with up to 23.2%

miss rate reduction compared to prior work, 43.6% performance benefits from adaptive run-time

workload management compared to a baseline framework with no soft error and slack time

handling, and up to 24.5 % expected system lifetime improvement with aging-aware workload

allocation compared to aging-agnostic schemes, under stringent energy constraints and varying

system conditions at run-time. With the increasing prevalence of energy-constrained computing,

energy scavenging, execution time variability, and the rise in soft errors and hard failures with

technology scaling, our proposed framework provides a comprehensive and practical solution that

considers all of these factors to perform efficient resource management that improves upon prior

efforts in both scope and performance, for emerging multicore embedded computing platforms.

115

4. MIXED-CRITICALITY SCHEDULING ON HETEROGENEOUS SYSTEMS

In this chapter, we utilize the semi-dynamic approach proposed and utilized in previous

chapters to address the scheduling problem for single-ISA heterogeneous multicore processors

running hybrid mixed-criticality workloads with a limited and fluctuating energy budget provided

by solar energy harvesting. The hybrid workloads consist of a set of firm-deadline timing-centric

task graphs and a set of soft-deadline throughput-centric multithreaded applications. Our

framework exploits traits of the different types of cores in heterogeneous multicore systems to

service timing-centric workloads with a few big out-of-order cores, while servicing throughput-

centric workloads with many smaller in-order cores clocked in the energy-efficient near-threshold

computing (NTC) region. Guided by a novel timing intensity-aware penalty density metric, our

proposed mixed-criticality scheduling framework creates an optimized schedule that minimizes

overall miss penalty for a time-varying energy budget. Experimental results indicate that our

framework achieves a 9.5% miss penalty reduction with the proposed timing intensity metric

compared to metrics from prior work, a 13.6% performance improvement over a state-of-the-art

scheduling approach for single-ISA heterogeneous platforms, and a 23.2% performance benefit

from exploiting platform heterogeneity.

4.1. BACKGROUND AND CONTRIBUTION

Recent years have seen billions of embedded systems deployed around the world to support

a variety of different applications domains. For an increasing number of embedded applications,

there is a critical need for energy autonomous devices that can utilize ambient energy from the

environment to perform computations without relying on an external power supply or frequent

116

battery charges. As the most widely available energy source, solar energy has become an important

source of ambient energy for several harvesting-aware embedded systems.

As discussed in Section 1.2.2, embedded computing systems that include timing behavior as

part of their performance or correctness criteria are called real-time embedded systems. In such

real-time systems, a deadline is called firm if missing it results in an immediate performance

penalty, otherwise the deadline is considered to be soft. If critical system failure can happen after

a deadline miss, the deadline is considered to be a hard deadline [89]. Due to the variable nature

of solar radiation intensity, the most suitable role of embedded systems with solar energy

harvesting as the only energy source is to host applications without strict real-time requirements.

Thus it may not be desirable to consider such systems for real-time applications with hard

deadlines, such as life-support mechanism, automotive system control, aircraft navigation, etc., for

which any deadline miss is consider a critical system failure that may have catastrophic

consequences. Instead, it is more practical to deploy such systems without energy guarantees for

best-effort execution of applications where a firm or soft deadline miss is not considered a failure

of the entire system.

Consider an example of such a best-effort embedded system powered by energy harvesting,

which is deployed for continuous data collection, data post-processing, and data transmission at a

remote location. For each operation interval, a raw data point can be recorded from sensor modules

by executing certain control tasks, for which each miss immediately results in inaccuracy in the

averaged values of data features. Such tasks can be considered to be timing-centric with firm

deadlines. On the other hand, post-processing of raw data and data transmission tasks can be

delayed somewhat as the system can buffer a certain amount of raw data or clients can accept

lower rate of transmitted data. Such tasks are generally throughput-centric with soft deadlines. In

117

this chapter, we represent such applications with different levels of real-time constraints as mixed-

criticality workloads that consist of a mix of timing-centric tasks with firm deadlines and

throughput-centric tasks with soft deadlines [90] [91].

Recent years have also seen the rise of multicore processing and heterogeneous computing

in low-power embedded devices [23] [24]. Multicore processors with heterogeneous cores have

been shown to provide substantial improvements in energy-efficiency and performance for energy-

constrained systems [92]. With the rise in computing capabilities of emerging heterogeneous

multicore processors, run-time workload distribution and energy-management in these

architectures are becoming crucial steps towards minimizing the overall system energy

consumption while maximizing achievable application performance. Heterogeneous computing

platforms are particularly well-suited to execute mixed-criticality workloads as different types of

cores can be utilized to better match specific criticality requirements of different type of tasks.

 In addition to multiprocessing and heterogeneous computing, a new design paradigm has

emerged to further help minimize energy in contemporary chip designs, called near-threshold

computing (NTC) [93] [94] [95] [96] [97] [98]. In NTC, the supply voltage is set just slightly

higher than threshold voltage, and execution at this NTC mode achieves several times better

energy-efficiency than conventional super-threshold computing (STC) [96] operation modes.

NTC is thus a very effective strategy to minimize energy for energy-constrained embedded

systems. However, as NTC mode operation typically sacrifices performance in favor of energy-

efficiency, it is not straightforward to use it for mixed criticality real-time embedded systems with

timing constraints.

Based on the above observations, there is clearly a critical need to explore the design and

management of STC/NTC capable heterogeneous multicore platforms powered by solar energy

118

harvesting and running mixed-criticality workloads, to optimize cost, performance and energy

efficiency of such systems. In this chapter, we propose a novel mixed-criticality scheduling

framework (McSF), that for the first time addresses the problem of allocating and scheduling

workloads with different degrees of criticality on a heterogeneous multicore embedded system

powered by energy harvesting and supporting NTC operation. Our framework employs NTC for

throughput-centric tasks with loose timing constraints and a high degree of parallelism (DoP),

maintaining their computation throughput by executing their threads concurrently on many cores

in an energy-efficient manner. By improving the energy-efficiency for throughput-centric tasks,

more energy budget becomes available for timing-centric tasks, which are allocated with

awareness of harvested energy fluctuations. The novel contributions of our work can be

summarized as follows:

 Unlike any prior work, we formulate and solve the challenging problem of scheduling

mixed-criticality, real-time applications on heterogeneous energy-harvesting embedded

system platforms;

 The hybrid mapping and scheduling framework from last chapter is adopted to offload

scheduling complexity of timing-centric task graphs to a comprehensive design-time

methodology so that only lightweight adjustments are required at run-time (e.g., selecting

among a small set of schedule templates, core operation modes, and task DoPs) to cope

with changing energy harvesting scenarios over time;

 For efficient execution of throughput-centric tasks, we utilize near-threshold computing

(NTC) on several small cores to maintain high throughput levels without sacrificing energy

efficiency of the computation;

119

 A new energy-aware priority metric, timing intensity-aware penalty density, is proposed to

dynamically measure the importance of instances of different task criticality types within

a mixed-criticality workload.

4.2. RELATED WORK

Several prior efforts have explored workload scheduling for embedded systems with solar

energy harvesting, as discussed in Section 1.3. However, none of those prior studies on scheduling

for embedded systems with solar energy harvesting consider the scheduling problem for

heterogeneous multicore systems, utilize the NTC execution paradigm, or support mixed-criticality

workloads, as done in this chapter.

The high energy-efficiency achievable with near-threshold computing (NTC) and its design

challenges are discussed in [94]. Fick et al. [94] applied NTC to address the power density problem

that is crucial for 3D-stacked chips. As NTC systems tend to be more sensitive to process variations

with their lower supply voltage, a few recent works propose novel management techniques for

NTC to alleviate the performance impact of process variations [96] [95] [97]. More recently,

Karpuzcu et al. proposed Accordion, a framework that executes workloads with adjustable

problem sizes and fault resilience on NTC-enabled cores [98]. Chen et al. [99] studied the impact

of NTC on architectural design of processors by analyzing resulting shifts in performance

bottlenecks. But to the best of our knowledge, no prior work has addressed the scheduling problem

for NTC-enabled cores powered by energy harvesting. Moreover prior work has also not

considered allocation of mixed criticality workloads on heterogeneous NTC-capable platforms.

Mixed-criticality workloads are becoming pervasive in many embedded systems today.

These workloads consist of applications with different timing or reliability requirements. Systems

120

designed to support such workloads are often referred to as mixed-criticality platforms. The

problem of managing mixed-criticality workload on a single physical platform has attracted a lot

of attention in recent years. An early work by Vestal studied schedulability analysis and

preemptive fixed priority scheduling for tasks with different criticalities [100]. Mollison et al.

brought this problem to multicore systems by proposing a global mixed-criticality scheduling

algorithm that can redistribute slack among tasks while maintain isolation for tasks of different

criticality levels [101]. Giannopoulou et al. proposed a time-triggered mixed-criticality scheduling

approach with barrier synchronization to resolve resource sharing conflict between applications

with different criticality levels [102]. Saraswat et al. studied the topic of fault-tolerance for mixed-

critical systems [103]. Their proposed framework tackles soft errors using checkpointing-based

rollback recovery and tolerates permanent core failures by task migration. Huang et al. studied

fault-tolerant mixed-criticality scheduling in the presence of transient faults in the system to

provide safety guarantees to tasks with different criticality levels according to established safety

standards [104]. The applicability of the proposed scheduling technique was verified for a flight

management system (FMS) application. Huang et al. also suggested a "run and be safe" strategy

that boosts processor frequency temporarily to satisfy timing requirements of critical tasks without

degrading service for other tasks. [105] Recently several works have also focused on

mapping/partitioning of mixed-criticality applications on multi-core architectures [106] [107]

[108]. However, none of these works consider heterogeneous multicore processors as the target

platform for mixed-criticality scheduling. Tamas-Selicean and Pop [109] explored optimization

for mixed-criticality real-time applications on a distributed heterogeneous node architecture, but

not for heterogeneous multicores integrated on a single processor chip. In [110], although

heterogeneous multicore processors are initially considered as the hardware platform, the platform

121

is virtualized to behave as a symmetric multi-processor (SMP). Craeynest et al. proposed the

performance impact estimation (PIE) scheduling and allocation framework for thread scheduling

in single-ISA heterogeneous systems [111]. However, it did not consider applications with mixed-

criticality constraints. Unlike any of these research efforts, this paper is the first to specifically

address the mixed-criticality scheduling problem for a unique platform that consists of a

heterogeneous multiprocessor powered by solar energy harvesting.

Figure 45 Overview of the Proposed Harvesting-Aware McSF Framework with A Mixed-
Criticality Workload and A Single-ISA Heterogeneous Multicore Embedded System

4.3. PROBLEM FORMULATION

Figure 45 shows an overview of our system model that consists of a mixed-criticality

workload, single-ISA heterogeneous multicore processor with NTC operation mode capability, an

energy harvesting/storage/conversion module, and our mixed-criticality scheduling framework

(McSF). In the following subsections we describe components and assumptions of our system

model before presenting our problem objective.

122

4.3.1. MIXED-CRITICALITY WORKLOAD MODEL

We differentiate the criticalities of real-time tasks based on the widely applied (m,k) model

proposed by Hamdaoui et al. [91] and the task miss penalty for each task. A task in a system with

an (m,k) deadline needs to finish at least m task instances out of each k consecutive instances to

avoid system performance degradation. Every task has a user-defined miss penalty that is applied

to the system whenever an (m,k) deadline miss is detected. Our mixed-criticality workload is

composed of tasks classified into two categories: the first is timing-centric real-time tasks with

(1,1)-firm deadline constraints; the other is a set of throughput-centric tasks with (m,k)-soft

deadline constraints. The criticalities of tasks of both types can be compared based on

combinations of their miss penalties and (m,k) constraints.

Timing-centric workloads represent lightweight real-time tasks in the application domain of

control, sensing, communication, etc., that require a response before a specified deadline. We

assume that these workloads come with highly customized and fixed degree of parallelism (DoP)

adapted for efficient scheduling and, thus, can be best modeled as periodic task graphs [86].

Throughput-centric workloads represent applications in the domain of image processing, data

mining, etc., that can tolerate some delay between samples. We model these workloads as barrier-

synchronized multithreaded applications [112] [113] with flexible DoP. Even though timing

constraints for these workloads are less stringent, they require more computing resources and

support high degrees of parallelism, making it essential to exploit parallelism in order to achieve

high throughput.

123

In the rest of this chapter, we refer to these two types of workloads as timing-centric task

graphs and throughput-centric multithreaded applications, respectively. Table 9 summarizes the

differences between these two types of workloads.

Table 9 Characteristics of Mixed-Criticality Workloads

Criticality Type Timing-Centric Throughput-Centric
Structure Model task graphs multithreaded applications
Parallelism highly customized barrier-synchronized
Execution Time few seconds few minutes
Period tens of seconds tens of minutes
Deadline Model (1,1)-firm (m, k)-soft
Execution Rate related to period relate to (m, k) and period

4.3.2. HETEROGENEOUS MULTICORE COMPUTING PLATFORM

We consider a single-ISA heterogeneous multicore platform to service mixed-criticality

workloads. Similar to ARM’s big.LITTLE [23], our platform combines one cluster of big cores

and one cluster of small cores. In our work, both types of cores (big, small) are based on the x86

instruction set architecture. The big-core-cluster has several high-performance out-of-order cores

with per-core DVFS capability [114] that allows execution at several discrete frequency-voltage

levels. The small-core-cluster has several power-efficient in-order cores, all of which are clocked

with uniform frequency in the NTC region to maximize energy-efficiency. The high performance

big-core-cluster is mainly, but not exclusively, utilized to execute timing-centric tasks graphs,

while the small-core-cluster executes parallel phases for throughput-centric multithreaded

applications.

124

4.3.3. ENERGY HARVESTING, STORAGE, AND BUDGETING

Similar to pervious chapters, a photovoltaic (PV) system is used as the power source for our

multicore embedded system, converting ambient solar energy into electric power. Naturally, the

amount of harvested power varies over time due to changing environmental conditions. To cope

with the unstable nature of the solar energy source, we assume an energy harvesting subsystem

with maximum power point tracking (MPPT) to extract the maximum amount of energy possible

from the PV system [12] and a hybrid supercapacitor-battery storage to bridge the PV system with

our embedded system efficiently [47]. We adopted the hybrid supercapacitor-battery storage design

proposed in Chapter 2 that combines supercapacitors and batteries to support both higher-capacity

energy storage and lower-overhead energy conversion than a battery-only or a supercapacitor-only

solution. We assume that our run-time scheduler can cooperate with this subsystem to inquire

about the energy available in storage.

As solar harvesting power can vary dramatically within a very short period of time, it is

important to filter out the noise from incoming power so that scheduling decisions can be made

and executed based on a stable and reliable energy supply. Thus, we use the semi-dynamic energy

budget assignment scheme from Chapter 3 (see Figure 46), which partitions time into schedule

windows of identical length, the least common multiple of all timing-centric task graphs’ periods.

Then the energy harvested within each schedule window is used as the energy budget for the next

schedule window. Although utilization of harvested energy is delayed for a short period of time in

this scheme, it provides the run-time scheduler with a known and stable energy budget at the

beginning of each window, making it easier to split the energy budget between timing-centric and

throughput-centric workloads.

125

4.3.4. PROBLEM OBJECTIVE

As solar energy harvesting does not guarantee energy sufficiency, our system is positioned

as a soft real-time system that ensures best-effort operation adapted to a given level of energy

supply available at run-time. The main objective is to allocate and schedule mixed-criticality

workloads composed of multiple timing-centric task graphs and throughput-centric multithreaded

applications running simultaneously at run-time, such that total miss penalty for the entire system

is minimized, under a varying and unpredictable harvested energy budget over time.

Figure 46 Illustration of Energy Budgeting and Execution Scheduling Across Schedule
Windows over Time

126

4.4. SEMI-DYNAMIC FRAMEWORK FOR MIXED-CRITICALITY SCHEDULING

In this section, we give a brief overview of our semi-dynamic mixed-criticality scheduling

framework (McSF), which consists of both design-time and run-time components.

As illustrated in Figure 46, for each schedule window, our run-time scheduler dispatches a

mix of timing-centric and throughput-centric workloads for execution, given the available energy

budget and computing resources. At the top level, our scheduler intelligently sets a balanced

distribution of energy budget between the two types of workloads while aiming to minimize overall

system miss penalty. Due to the different characteristics and needs of these two types of workloads,

each type of workload is scheduled with a specifically designed approach, as discussed next.

Timing-centric task graph workloads in a schedule window can be executed without

considering other schedule windows, as the length of a schedule window is the least common

multiple of their periods. The general problem of scheduling a task graph under optimization goals

and constraints is known to be NP-complete [64]. Thus our scheduling scheme for timing-centric

task graphs is designed to offload their scheduling complexity to design-time by offline generation

of schedule templates that can be quickly selected for each schedule window at run-time based on

the energy budget and cores made available for them after top-level resource distribution. In

contrast, instances of throughput-centric multithreaded applications require execution times that

can span multiple schedule windows, and thus their execution has to be scheduled dynamically.

However, as the execution phases of throughput-centric multithread applications are barrier-

synchronized, their scheduling complexity is much lower than that of timing-centric task graphs.

The following describes our run-time heuristic for penalty-aware workload filtering and

scheduling for mixed-criticality workloads in detail.

127

4.5. RUN-TIME MIXED-CRITICALITY SCHEDULING

In this section we describe our run-time mixed-criticality scheduling heuristic for scheduling

timing-centric task graphs and throughput-centric multithreaded applications to minimize total

miss penalty in the system. First, we define a priority metric to represent the impact of each task

instance on system miss penalty with consideration of (m,k) soft deadline constraints. Then we

propose a heuristic to dynamically select and schedule high-priority instances of timing-centric

and throughput-centric workloads.

4.5.1. SOFT DEADLINE-AWARE PRIORITY METRIC

As we consider best-effort execution under insufficient solar energy harvesting conditions,

it is necessary to dynamically rank priorities of instances of both timing-centric task graphs and

throughput-centric multithreaded applications to compare their impact on system miss penalty per

unit energy. Based on this guideline, we define a penalty density metric based on miss penalty,

energy requirement, and timing intensity of a task instance, as shown below:

�ݐ݅ݏ݊݁݀ �ݐ݈ܽ݊݁݌ = �ݐ݈ܽ݊݁݌ ݏݏ݅݉ × ݐ݊݁݉݁ݎ݅ݑݍ݁ݎ �݃ݎ݁݊݁�ݐ݅ݏ݊݁ݐ݊݅ ݃݊݅݉݅ݐ

(34)

Among the three components, miss penalty of each instance is user defined and assumed to be

known at design-time and energy requirement can be obtained by profiling applications under

different frequency levels. However the timing intensity of an instance can change dynamically at

run-time based on its (m,k) constraint and finish/miss history of previous instances. Hamdaoui et

al. have previously proposed a distance-to-failure metric to characterize timing intensity of task

instances [91]. However, that metric only considers the next nearest instance failure in the worst

case while we want to consider all upcoming instances affected by recent execution history to

128

enable minimization of overall system miss penalty. Thus in this chapter we propose a more

comprehensive way to characterize timing intensity of a task instance:

�ݐ݅ݏ݊݁ݐ݊݅ ݃݊݅݉݅ݐ = ∑ ݉ − ݉௣′ሺ݇ − ሻଶ௞−ଵ݌
௣=଴ , ݉ ൒ ͳ, ݇ ൒ ͳ ܽ݊݀ ݉ < ݇

(35)

where, mp’ is the total number of deadlines met (instances finished) in the last p periods, and the

values of m and k are based on the user-defined (m,k) constraint of the task instance. We refer to

every k instances as an evaluation window. A finish or miss of an upcoming task instance affects

the results for the k upcoming evaluation windows. The timing intensity of an upcoming instance

is essentially the accumulation of its importance factors to these k evaluation windows. For an

evaluation window consisting of p previous instances and k – p future instances, as mp’ instances

have already finished, m – mp’ out of k – p upcoming task instances should be finished to avoid

miss penalty, resulting in a finish rate requirement of ሺ݉ − ݉௣′ ሻ ሺ݇ − ⁄݌ ሻ . As the upcoming

instance is only one of the future k – p instances to contribute to this finish rate, we divide finish

rate by k – p to get ሺ݉ − ݉௣′ ሻ ሺ݇ − ⁄ሻଶ݌ as the importance factor. This definition also applies to

task graphs with (1, 1)-firm deadlines, which is a special case with m= 1, k=1, p=0, mp
’=0 that

always results in instance timing intensity of 1.

Figure 47 shows an example of a (2,5)-soft constraint workload execution under three

different scenarios. To calculate timing intensity of the upcoming instance in case (a), 5 (k=5)

evaluation windows are involved. For the first evaluation window, as 2 instances have already

finished, 0 out of 1 instances in the future are require to finish, resulting in an importance factor

of 0/12. For the fourth evaluation window, only 1 instance has already finished. Thus 1 additional

instance should be finished in put of 4 future instances, resulting in an importance factor of 1/42.

In all, the upcoming instance in case (a) has timing intensity of 0.143, which is calculated by

129

accumulating importance factors of all involved evaluation windows. Case (b) also has 2 out of 4

previous instances finished, as in case (a). However, the first finished instance only affects the

importance factor for the first evaluation window. Consequently, the other 4 evaluation windows

all have higher importance factors compared to case (a), causing the timing intensity of the

upcoming instance to be much higher (0.504). Thus, for previously finished instances, not only

their number but also their distribution affects timing intensity of the upcoming instance. Case (c)

shows that the instance with soft-deadline constraint can have intensity greater than 1, as it not

only must be finished to avoid miss penalty in the current period, similar to (1,1)-firm instances,

but it also affects timing intensities of future instances.

Figure 47 Illustration of Timing Intensity for (2, 5)-soft Deadline Case

130

4.5.2. DYNAMIC WORKLOAD FILTERING AND BALANCING

Guided by our proposed timing intensity-aware penalty density metric, our workload

filtering and scheduling heuristic perform resource allocation for both timing-centric task graphs

and throughput-centric multithreaded applications based on the energy budget assigned or

predicted in the current and future schedule windows, with the goal of minimizing overall system

miss penalty. The heuristic is shown in Algorithm 10.

Algorithm 10 Dynamic Workload Filtering and Scheduling
Input:
(i) app_pool, multithreaded application instances arrived or in execution
(ii) EGY_BGT, energy harvested and unused during last schedule window
(iii) EGY_PRDw, harvesting energy prediction for next w schedule windows
(iv) Set of offline-generated task graph scheduling templates optimized for
 different number of big cores and energy budget levels (see Section 4.6)
Output:
(i) Execution schedule for multithreaded applications
(ii) Selected schedule template for task graphs

Triggered at the beginning of each schedule window:
 1. update priorities (penalty densities) of all instances in app_pool
 2. while there are unscheduled instances and remaining energy budget:
 3. in app_pool, select instance, app, with highest priority, densityapp
 4. find task graph schedule template with more workload, next_temp

 5. densitytg ← ∆penalty/∆energy †
 6. if densityapp<densitytg and ENG_BGT is sufficient:
 7. use next_temp as the selected schedule template for task graphs
 8. else if densityapp<densitytg and EGY_BGT, EGY_PRDw are sufficient:
 9. start/resume execution of app with as even as possible schedule
10. remove app from app_pool
11. if sequential phase detected in this schedule window:
12. steal one big core from timing-centric task graphs
13. re-select task graph schedule template for one less core
14. for app remaining in app_pool:
15. drop and record instance miss
† ∆ values are based on comparison between current and found template from step 4

The heuristic progressively compares and accepts instances of timing-centric task graph

applications and throughput-centric multithreaded applications at the beginning of each schedule

131

window. Dynamic instance priorities (penalty densities) of these two types of applications are

assigned in different manners: (i) For throughput-centric multithreaded application instances,

priorities are updated individually at the beginning of each schedule window (step 1). The priority

of a new task instance will typically be different from previous ones as timing intensity keeps

changing with respect to the (m,k) constraint (Section 4.5.1). For an instance already in execution,

priority will increase because the more energy it has already consumed, the less energy it requires

to finish. This mechanism encourages the heuristic to resume application instances in progress so

that the effort already invested in execution can be preserved; (ii) For timing-centric task graph

instances, as their (m,k) timing intensity is always equal to 1, their dynamic priorities only change

with varying energy requirements for different frequencies assigned in different schedule templates.

Unlike the case of multithreaded applications, here our heuristic considers total priority of extra

instances accepted when considering the use of another schedule template, which is deduced by

comparing the new template’s miss penalty and energy requirements to those of the current one

(steps 4, 5). In each iteration of the while loop, priorities of candidate instances from timing-centric

task graphs and throughput-centric multithreaded applications are compared to decide which ones

to accept for execution (steps 6 – 13).

During workload filtering, the execution schedule of accepted task graph and multithreaded

application instances are also decided. For accepted multithreaded application instances, the

execution is dynamically deduced by a scheduling method called as-even-as-possible, which

attempts to evenly distribute execution effort over time by starting execution of an instance on

arrival and finishing it before its deadline (step 9). In this schedule, parallelizable phases of an

application instance are executed on the small-core-cluster clocked at an energy-efficient

frequency level in the NTC region, while sequential phases are executed by stealing big cores from

132

task graph instances (steps 11-13), leaving more time to spread execution effort of parallelizable

phases. As-even-as-possible execution scheduling improves energy-efficiency of the system in two

ways: (i) an even execution scheduling minimizes the number of small cores required for each

parallel phase, reducing multithreading energy-overhead which increases with thread count [115];

(ii) as this scheduling method distributes energy consumption of multithreaded applications more

evenly across multiple schedule windows, timing-centric task graphs in these windows also tend

to get more even energy budgets among them, resulting in better overall energy-efficiency. An

even execution schedule has been shown to result in high energy efficiency for systems with DVFS

capability [116]. For the same reason, our scheduler does not consider shutting down cores as

energy saved will not justify the efficiency loss of the resulting uneven schedule. When a

sequential phase of a multithreaded application steals a big core, a new schedule template for

timing-centric task graphs is selected to execute with one less core available. Lastly, an instance

miss is recorded for application instances that remain unaccepted (steps 14, 15).

4.6. EXPERIMENTAL RESULTS

4.6.1. EXPERIMENT SETUP

Our experiments use real-world energy harvesting profiles based on historical weather data

provided by the Measurement and Instrumentation Data Center (MIDC) of the National

Renewable Energy Laboratory (NREL) [60]. Again, we evaluate system performance over a span

of 750 minutes, from 6:00AM to 6:30PM in a day. We assume peak energy harvesting power to be

equal to maximum power required by system to execute all workload instances.

For timing-centric task graph applications, we select examples in the domain of networking,

telecom, and auto-industry from the Embedded System Synthesis Benchmark Suite (E3S) [86].

133

Task graphs are assigned with periods ranging from 10 to 60 seconds. For throughput-centric

multithreaded applications, we select a set of barrier-synchronized parallel applications, including

fft, cholesky, bodytrack, vips, and blackscholes, from SPLASH-2 [112] and PARSEC [113]

benchmark suites, which have different periods and (m, k)-soft constraints assigned.

Table 10 Configuration of Heterogeneous Multicore Processor

Architectural Parameters
Core Types Big Cores Small Cores
Execution Out-of-Order In-Order
Issue Width 4 2
Reorder Buffer
Size

128 N/A

Cache 64KB, 4-way 16KB, direct
Core Area 15.7 mm2 4 mm2

Cluster Parameters
Cluster Type Big-Core-Cluster Small-Core-Cluster
Core Count 8 32
Frequency
Control Per-Core DVFS Uniform Frequency

f , Vdd Range 0.5~1.2GHz, 0.4~1 V f nth, Vdd
nth

Technology Parameters
Technology Node 22 nm
Vth 0.289 V
Vddnth, f nth

 0.4 V, 500 MHz

To acquire power and performance metrics for mixed-criticality workloads on different types

of cores, we use Sniper [117], an x86 multicore simulator, and the McPAT [118] power model

extended to support Vdd in the NTC region for the 22 nm node. Table 10 shows the configuration

of our platform with big-core-clusters and small-core-clusters. For intra-cluster transfers, a 2D-

mesh network-on-chip (NoC) and XY routing over conflict-free TDMA virtual channels is

assumed. For inter-cluster communication, we assume delay in the range of hundreds of

milliseconds to cross clusters.

134

We assume threshold voltage, Vth, of 0.289V for the 22nm technology node [119]. Based on

power simulation results over multiple runs, we set the NTC supply voltage, Vdd
nth to be 0.4V,

which not only achieves high energy-efficiency but also keeps a safe margin with Vth to avoid

errors due to the impact of process variations [95]. According to architectural level delay analysis

result for CMOS processors in [120] with assumption of slightly shorter critical path for our small

cores compared to Intel Atom processors [121], we set NTC operation frequency, fnth, to be

500MHz.

Figure 48 Miss Penalties for Generated Schedule Templates

4.6.2. DESIGN-TIME TEMPLATE GENERATION ANALYSIS

Our mixed-criticality scheduling framework (McSF) executes timing-centric task graphs

based on schedule templates generated at design-time using the analysis-based template

generation method (ATG) proposed in Chapter 3. The per-schedule-window miss penalties of the

135

generated template set are shown in Figure 48, which shows decreasing penalty when more energy

budget and cores are made available for an execution schedule. It should be noted that some

templates are ignored in our scheduling, e.g., those highlighted in the upper-left and bottom-right

regions of Figure 48 enclosed by blue lines. For example, for the 2 core case, looking at the

highlighted region on the bottom-right, increasing the energy budget level beyond 3 does not

reduce miss penalty. Similarly, for energy budget level 2, increasing the number of cores beyond

5 does not improve miss penalty. Thus templates in these two regions can be safely ignored.

Figure 49 System Miss Penalties under Different Intensity Scale Factors

4.6.3. TIMING INTENSITY METRIC EVALUATION

We tested if our proposed timing intensity metric (see Equation (35) of Section 4.5.1)

accurately characterizes the importance of application instances with respect to the (m,k) constraint

in a mixed-criticality workload. For this purpose, we offset timing intensity calculated for instances

136

of throughput-centric multithreaded applications by multiplying them with a factor ranging from

1/10 to 10, while the timing intensity for timing-centric task graph instances was fixed to 1.

The results in Figure 49 show that keeping the original calculated timing intensity minimizes

overall system miss penalty, while offsetting timing intensity to higher or lower values leads to

more miss penalties. Thus our defined timing intensity metric can accurately evaluate importance

of instances to achieve the best balance between throughput-centric and timing-centric tasks to

minimize miss penalty of the entire mixed-criticality workload. We also compared our timing

intensity metric with the distance-to-failure metric proposed in [91], which also finds its peak

when no offset is applied (Figure 49). We found that the distance-to-failure metric results in up to

9.5% higher miss penalties, compared to our timing intensity-based priority assignment method,

as the distance-to-failure metric only considers the next nearest timing failure in the worst case.

Besides, both metric evaluation methods outperform the (m,k)-unaware scheduling method that

assumes firm deadlines for all application instances (see black dash line in Figure 49).

4.6.4. MIXED-CRITICALITY SCHEDULING PERFORMANCE EVALUATION

As ours is the first framework to address the scheduling and allocation problem for mixed-

criticality heterogeneous systems powered by energy harvesting, there is no prior work to directly

compare the overall system performance against. However, we did adapt the performance impact

estimation (PIE) methodology as an exemplar state-of-art thread scheduling technique for single-

ISA heterogeneous systems from [111] (even though it does not support energy harvesting). To fit

into the experimental setup of this paper, our version of PIE estimates the performance benefit of

mapping each phase in throughput-centric applications to big cores and the scheduler dynamically

137

selects one phase with the most benefit to share bigger cores with timing-centric task graphs for

each schedule window.

We additionally compare the performance of our proposed mixed-criticality scheduling

framework (McSF) across four different setups: 1) B8-S32, the default configuration with 8 big

cores and 32 small cores, which adapts the moving average solar energy prediction method used

in [41]; 2) Perfect-Pred, a setup with identical core configuration as the default one, but with the

assumption of perfect energy harvesting prediction; 3) B8-B32, a configuration that replaces the

default 32 small cores with 32 big ones; and 4) B8-B8, a configuration that replaces the default 32

small cores with 8 big cores, to keep overall area footprint the same as B8-S32 (Table 10).

Figure 50 shows the results of our comparison study. For throughput-centric applications the

total miss rate (throughput-centric: all) represents all the instances that are dropped. However,

because of the (m,k)-soft deadline constraint in these applications, some dropped instances do not

violate the constraint. Therefore the effective miss rate (throughput-centric: (m, k)-only) is much

lower.

The default B8-S32 configuration only suffers slight increase in system miss penalty

compared to Perfect-Pred that has ideal energy prediction, showing the ability of McSF to mitigate

the performance impact of energy harvesting mispredictions. Compared to Perfect-Pred, B8-S32

has higher miss rate for timing-centric tasks graph instances and lower miss rate for multithreaded

application instances. This is because B8-S32 accepts higher than optimal multithreaded

application instances, without awareness of hard-to-predict instantaneous drops in harvesting

power. Then our dynamic workload filtering framework in Section 4.5.2 allocates fewer resources

to timing-centric task graphs to sustain the energy supply for those extra throughput-centric

instances already in execution to minimize energy wasted due to misprediction. As a result, miss

138

penalty increases slightly because the balance between the two types of workloads is affected

during this process.

Figure 50 Miss Penalties and Instance Miss Rates across Configurations

For the (m, k)-Unaware setup, which utilizes the same core-configuration as B8-S32 but has

no awareness of (m, k) constraints, the result shows much lower total miss rate for throughput-

centric instances as it considers all instances as necessary for penalty avoidance. However, the

actual (m, k)-miss rate increases as (m, k)-Unaware allocates energy to instances that are less

important for (m, k) constraints. Besides, it also leads to higher miss rate for timing-centric task

139

graphs as the balance between the two types of workload is notably affected. Thus (m, k)-Unaware

has higher overall system miss penalty compared to B8-S32.

Comparing B8-S32 with B8-B32, it can be seen that although B8-B32 provides better

computing capability, it leads to much higher overall miss penalty due to a decrease in energy

efficiency. On average, big cores bring performance speedup of approximately 3×, with an average

jump of 7× in power consumption, ending up with a 2× degradation in energy efficiency. Moreover

B8-B32 also has a much higher area footprint than B8-S32, given that the area of big cores is close

to 4× that of small cores. B8-B8 is a multicore configuration with the same chip area footprint as

B8-S32. But B8-B8 suffers even higher miss penalty than B8-B32, as it not only has lower energy

efficiency than B8-B32 but also possesses lower computation throughput than B8-B32. B8-S32

outperforms B8-B8 by 23.2% miss penalty reduction, highlighting the importance of core

heterogeneity to improve energy-efficiency and performance in multicore computing platforms.

Lastly, Figure 50 also shows a comparison with the performance impact estimation (PIE)

scheduling and allocation framework from [111] for thread scheduling in single-ISA

heterogeneous systems, It can be seen that PIE has 13.6% higher miss rate and penalty compared

to B8-S32, as it does not focus on energy efficiency but throughput performance, causing more

workload to be allocated to big cores for less overall efficiency.

4.6.5. CHAPTER SUMMARY

In this chapter, we addressed the scheduling problem for single-ISA heterogeneous

multicore processors running hybrid mixed-criticality workloads with a limited and fluctuating

energy budget provided by solar energy harvesting. We modeled a mixed-criticality workload by

combining timing-centric real-time task graphs with firm deadlines and throughput-centric

140

multithreaded phases with soft deadlines, with different associated miss penalties. We utilized a

single-ISA heterogeneous platform design to fulfil requirements for this mixed-criticality

workload. To achieve a balance that minimizes overall system miss penalty, we proposed a novel

timing intensity estimation method, based on which we can allocate resources dynamically to

different types of workload according to energy harvesting conditions. In experiments, our

proposed mixed-criticality scheduling framework achieves a 9.5% miss penalty reduction with the

proposed timing intensity metric compared to metrics from prior work, a 13.6% performance

improvement over a state-of-the-art scheduling approach for single-ISA heterogeneous platforms,

and a 23.2% performance benefit from exploiting platform heterogeneity.

141

5. CONCLUSION AND FUTURE WORK

5.1. RESEARCH CONCLUSION

In this dissertation, we addressed important challenges faced by real-time embedded

multicore systems with energy harvesting, by proposing a novel semi-dynamic resource

management framework. This framework is designed to cope with run-time variations in

harvesting power with optimal low-overhead task scheduling to maximize system throughput and

high functionality flexibility to adapt to the changing run-time dynamics. As presented in previous

chapters, our proposed semi-dynamic framework utilizes various optimization algorithms such as

graph algorithms, linear programming, and custom heuristics to optimize system performance,

efficiency, and reliability at run-time and/or design-time. Experimental results for our proposed

semi-dynamic framework validate and motivate its deployment in future embedded systems

powered by energy harvesting, because this framework demonstrates significant improvement in

energy efficiency with extensibility to adapt emerging and increasingly relevant design concerns,

such as overheating, transient errors, and aging effect. Therefore, our proposed semi-dynamic

framework has the potential to be applied as a general strategy for resource management on

systems powered by time-varying energy harvesting.

Our first contribution is SDA (Chapter 2), a novel semi-dynamic scheduling algorithm aimed

at scheduling periodic independent real-time tasks with awareness of energy harvesting. Its

fundamental idea is time-segmentation, which guarantees uniform execution frequency within

each scheduling window for higher energy efficiency. Experimental results indicate a significant

(up to 70%) improvement in system performance, compared to state-of-the-art algorithms under

an identical system setup. We extended SDA to consider support for task drop penalty awareness,

142

run-time thermal management, core-heterogeneity mitigation, and hybrid energy storage

utilization. Moreover, from SDA we derive the design methodology of semi-dynamic resource

management, which is the core idea of this dissertation to effectively tackle various problems for

managing systems with energy harvesting.

Based on the concept of semi-dynamic resource management, we proposed HyWM (Chapter

3), a hybrid design-time and run-time workload management framework to cope with the

complexity of scheduling task graphs with data dependencies and run-time variations in solar

radiance, execution time, transient faults, and aging progress. Our experimental results indicated

improvements in performance and adaptivity of target systems due to the efficiency and flexibility

of our semi-dynamic framework, with up to 23.2% miss rate reduction compared to prior work,

43.6% performance benefits from adaptive run-time workload management compared to a baseline

framework with no soft error and slack time handling, and up to 24.5 % expected system lifetime

improvement with aging-aware workload allocation compared to aging-agnostic schemes, under

stringent energy constraints and varying system conditions at run-time. Therefore, our semi-

dynamic framework proves to be a promising and practical solution to transform the future of

energy-autonomous embedded computing with boosted scope and efficiency.

Finally, we applied the semi-dynamic framework to address the scheduling of mixed-

criticality workloads on single-ISA heterogeneous multicore platform powered by solar energy

harvesting (Chapter 4). To achieve a balance between different types of workload that minimizes

overall system miss penalty, we proposed a novel timing intensity metric for mixed-criticality

tasks, which are utilized to guide resource allocation in the semi-dynamic framework. In

experiments, our proposed mixed-criticality scheduling framework achieves a 9.5% miss penalty

reduction with the proposed timing intensity metric compared to metrics from prior work, a 13.6%

143

performance improvement over a state-of-the-art scheduling approach for single-ISA

heterogeneous platforms, and a 23.2% performance benefit from exploiting platform heterogeneity.

5.2. FUTURE WORK

Embedded computing powered by solar energy harvesting will continue to face new

challenges and opportunities on the path towards a future with pervasive computing, as

applications and platforms evolve rapidly. Thus we further envision the following future work

directions:

 Mobile Computing: Limited battery lifetime is the major factor that affects daily user

experience in today’s smartphones [122]. With miniaturization of high-efficiency PV cells

[123], solar energy harvesting could become the auxiliary or even standalone energy source

for future smartphones. The major difference between smart mobile devices and other

embedded computing platforms lies in their unique interface between apps and operating

systems and their emphasis on user experience such as input delay or interface transition

lag. Therefore, for such smart mobile devices, it is necessary to implement a framework

seamlessly integrated with the OS [30] to co-optimize energy efficiency and user

experience with awareness of energy harvesting. We can also view mobile computing

platforms as a type of mixed-criticality system that hosts tasks with very different timing

requirements, including user-centric interface rendering tasks, user-centric foreground

threads, background system/user level services, and real-time communications tasks. It will

be interesting to study the interaction between energy harvesting and these tasks with

different timing requirements to optimize user experience and energy efficiency.

144

 Nonvolatile Computing: By adopting nonvolatile registers and nonvolatile SRAM, the

emerging nonvolatile processors support in place system recovery to enable the seamless

transition between different power states of systems with energy harvesting [124]. Besides,

as nonvolatile processors do not need a power supply to sustain the memory state, leakage

power can be reduced significantly by turning off memory system when possible. However,

nonvolatile computing also comes with overheads in terms of energy, area, and

performance. Thus comprehensive research from the circuit to the system level for

nonvolatile processors is required before we can exploit their full potential for systems

powered by energy harvesting [125]. For example, we may develop an efficient

sleep/recover scheme that only preserves information necessary for the resumption of

system execution, minimizing required footprint of nonvolatile memory for lower

overhead in chip area and recovery energy.

 Approximate Computing: Approximate computing has recently emerged as a promising

approach that relies on systems and applications’ tolerance on loss of quality and optimality

in the computing results to achieve substantial improvements in energy efficiency [126].

As solar energy harvesting offers no guarantees related to the sufficiency of the energy

supply, it is usually used for applications with lax requirements on systems output. Thus,

the combination of approximate computing and energy harvesting can be a promising

research direction as they share similar design concerns. However, most recent efforts on

approximate computing focus on hardware design methodologies for approximate

computing platforms [127], which have enabled energy efficiency improvements in

general but have failed to provide an approach to trade-off between result accuracy and

energy efficiency on-the-fly. For approximate computing systems with energy harvesting,

145

we believe that in addition to applying approximate hardware platforms, considerations of

the software stack and resource management infrastructure are also important. It would be

interesting to explore the possibility of dynamic trade-offs between result accuracy and

energy efficiency by utilizing the inherent fault-tolerance of certain probabilistic

applications such as stochastic optimization algorithms and machine learning procedures,

where we can adjust computation load and accuracy without failure of entire applications.

146

BIBLIOGRAPHY

[1] M. Satyanarayanan, "Pervasive computing: Vision and Challenges," the IEEE Personal

Communications (PC), vol. 8, no. 4, pp. 10-17, 2001.

[2] T. Simunic, L. Benini and G. De Micheli, "Energy-Efficient Design of Battery-Powered

Embedded Systems," the IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), vol. 9, no. 1, pp. 15-28, 2002.

[3] Wikipedia, "Energy Harvesting," [Online]. Available:

https://en.wikipedia.org/wiki/Energy_harvesting. [Accessed June 2015].

[4] Winter Green Research, "Energy Harvesters: Market Shares, Strategies, and Forecasts,

Worldwide, 2013 to 2019," 2013.

[5] S. P. Beeby, M. J. Tudor and N. M. White, "Energy Harvesting Vibration Sources for

Microsystems Applications," Measurement Science and Technology, vol. 17, no. 12, pp.

175-195, 2006.

[6] Google, "Google Trends," [Online]. Available: https://www.google.com/trends/. [Accessed

July 2015].

[7] G. Ottman, H. Hofmann, A. Bhatt and G. Lesieutre, "Adaptive Piezoelectric Energy

Harvesting Circuit for Wireless Remote Power Supply," the IEEE Transactions on Power

Electronics (TPE), vol. 17, no. 5, pp. 669-676, 2002.

[8] Micropelt, "TE-Power PROBE," [Online]. Available:

http://www.micropelt.com/applications/te_power_probe.php. [Accessed August 2015].

147

[9] X. Lu and S. H. Yang, "Thermal Energy Harvesting for WSNs," in the IEEE International

Conference on Systems Man and Cybernetics (SMC), Istanbul, Turkey, 2010.

[10] J. Carrasco, L. Franquelo, J. Bialasiewicz, E. Galvan, R. Guisado, M. Prats, J. Leon and N.

Moreno-Alfonso, "Power-Electronic Systems for the Grid Integration of Renewable Energy

Sources: A Survey," the IEEE Transactions on Industrial Electronics (TIE), vol. 53, no. 4,

pp. 1002-1016, 2006.

[11] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman and M. Srivastava, "Design Considerations

for Solar Energy Harvesting Wireless Embedded Systems," in the International Symposium

on Information Processing in Sensor Networks (IPSN), Los Angeles, CA, USA, 2014.

[12] M. S. T. Veerachary and K. Uezato, "Maximum Power Point Tracking of Coupled Inductor

Interleaved Boost Converter Supplied PV System," the IEE Proceedings on Electric Power

Applications (EPA), vol. 150, no. 1, pp. 71 - 80, 2003.

[13] Wikipedia, "Embedded system," [Online]. Available:

https://en.wikipedia.org/wiki/Embedded_system. [Accessed July 2015].

[14] Wikipedia, "Real-Time Computing," [Online]. Available:

https://en.wikipedia.org/wiki/Real-time_computing. [Accessed July 2015].

[15] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in A Hard-

Real-Time Environment," the Journal of the ACM (JACM), vol. 20, no. 1, pp. 46-61, 1973.

[16] W. Yuan and K. Nahrstedt, "Energy-Efficient Soft Real-Time CPU Scheduling for Mobile

Multimedia Systems," the ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 149-

163, 2003.

148

[17] B. Srinivasan, S. Pather, R. Hill, F. Ansari and D. Niehaus, "A Firm Real-Time System

Implementation using Commercial Off-the-Shelf Hardware and Free Software," in the

Real-Time Technology and Applications Symposium (RTTAS), Denver, CO, USA, 1998.

[18] S. Baruah, J. Gehrke and C. Plaxton, "Fast Scheduling of Periodic Tasks on Multiple

Resources," in the International Parallel Processing Symposium (IPPS), Santa Barbara,

CA, USA, 1995.

[19] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fifth Edition,

Morgan Kaufmann, 2013.

[20] K. Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson and Y. N. Patt, "MorphCore: An

Energy-Efficient Microarchitecture for High Performance ILP and High Throughput TLP,"

in The IEEE/ACM International Symposium on Microarchitecture (MICRO), Vancouver,

BC, Canada, 2012.

[21] R. Fish, "Future of Computers - Part 2: The Power Wall," [Online]. Available:

http://www.edn.com/design/systems-design/4368858/Future-of-computers--Part-2-The-

Power-Wall. [Accessed August 2015].

[22] ARM, "ARM Cortex-A9 Processor.," [Online]. Available:

http://www.arm.com/products/processors/cortex-a/cortex-a9.php. [Accessed November

2014].

[23] P. Greenhalgh, "Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7," ARM,

2011.

149

[24] Nvidia, "The Benefits of Multiple CPU Cores in Mobile Devices," [Online]. Available:

http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-

in-Mobile-Devices_Ver1.2.pdf. [Accessed June 2015].

[25] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. B.,

J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N.

Fairbanks, D. Khan, F. Montenegro, J. Stickney and J. Zook, "TILE64 - Processor: A 64-

Core SoC with Mesh Interconnect," in the International Solid-State Circuits Conference

(ISSCC), San Francisco, CA, USA, 2008.

[26] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan and D. Tullsen, "Single-ISA

Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction,"

in the IEEE/ACM International Symposium on Microarchitecture (MICRO), San Diego,

CA, USA, 2003.

[27] AMD, "The Programmer's Guide to the APU Galaxy," [Online]. Available:

http://developer.amd.com/wordpress/media/2013/06/Phil-Rogers-Keynote-FINAL.pdf.

[Accessed July 2015].

[28] E. Humenay, D. Tarjan and K. Skadron, "Impact of Process Variations on Multicore

Performance Symmetry," in the Conference on Design, Automation and Test in Europe

(DATE), San Jose, CA, USA, 2007.

[29] A. Tiwari and J. Torrellas, "Facelift: Hiding and Slowing Down Aging in Multicores," in

The IEEE/ACM International Symposium on Microarchitecture (MICRO), Lake Como,

Italy, 2008.

150

[30] P. Pillai and K. G. Shin, "Real-time Dynamic Voltage Scaling for Low-Power Embedded

Operating Systems," in the ACM Symposium on Operating Systems Principles (SOSP),

Chateau Lake Louise, Banff, Canada, 2001.

[31] T. D. Burd and R. W. Brodersen, "Design Issues for Dynamic Voltage Scaling," in the

International Symposium on Low Power Electronics and Design (ISLPED), New York,

NY, USA, 2000.

[32] J. Pouwelse, K. Langendoen and H. Sips, "Dynamic Voltage Scaling on A Low-Power

Microprocessor," in the International Conference on Mobile Computing and Networking

(MobiCom), Rome, Italy, 2001.

[33] L. Benini, A. Bogliolo and G. D. Micheli, "A Survey of Design Techniques for System-

Level Dynamic Power Management," the IEEE Transactions on Very Large Scale

Integration Systems (TVLSI), vol. 8, no. 3, pp. 299-316, 2000.

[34] H. Aydin, P. M. Alvarez, D. Mossé and R. Melhem, "Dynamic and Aggressive Scheduling

Techniques for Power-Aware Real-Time Systems," in the IEEE Real-Time Systems

Symposium (RTSS), Washington, DC, USA, 2001.

[35] J. J. Chen, T. W. Kuo, C. L. Yang and K. J. King, "Energy-Efficient Real-Time Task

Scheduling with Task Rejection," in the Conference on Design, Automation and Test in

Europe (DATE), San Jose, CA, USA, 2007.

[36] C. Li, W. Zhang, C. B. Cho and T. Li, "SolarCore: Solar Energy Driven Multi-Core

Architecture Power Management," in the International Symposium On High Performance

Computer Architecture (HPCA), San Antonio, TX, USA, 2011.

151

[37] X. Lin, Y. Wang, D. Zhu, N. Chang and M. Pedram, "Online Fault Detection and Tolerance

for Photovoltaic Energy Harvesting Systems," in the International Conference on

Computer-Aided Design (ICCAD), San Jose, CA, USA, 2012.

[38] M. Veerachary, T. Senjyu and K. Uezato, "Voltage-Based Maximum Power Point Tracking

Control of PV System," the IEEE Transactions on Aerospace and Electronic Systems

(TAES), vol. 38, no. 1, pp. 262-270, 2002.

[39] C. Moser, D. Brunelli, L. Thiele and L. Benini, "Lazy Scheduling for Energy Harvesting

Sensor Nodes," in the Conference on Distributed and Parallel Embedded Systems (DIPES),

Braga, Portugal, 2006.

[40] S. Liu, Q. Qiu and Q. Wu, "Energy Aware Dynamic Voltage and Frequency Selection for

Real-time Systems with Energy Harvesting," in the Conference on Design, Automation and

Test in Europe (DATE), Munich, Germany, 2008.

[41] S. Liu, J. Lu, Q. Wu and Q. Qiu, "Harvesting-Aware Power Management for Real-Time

Systems with Renewable Energy," the IEEE Transactions on Very Large Scale Integration

Systems (TVLSI), vol. 20, no. 8, pp. 1473-1486, 2012.

[42] M. Chetto, "Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing

Systems," The IEEE Transactions on Emerging Topics in Computing (TETC), vol. 2, no. 2,

pp. 122-133, 2014.

[43] J. Lu and Q. Qiu, "Scheduling and Mapping of Periodic Tasks on Multi-Core Embedded

Systems with Energy Harvesting," in the International Green Computing Conference

(IGCC), Los Alamitos, CA, USA, 2011.

152

[44] D. Zhang, Y. Liu, X. Sheng, J. W. T. Li, C. J. Xue and H. Yang, "Deadline-Aware Task

Scheduling for Solar-Powered Nonvolatile Sensor Nodes with Global Energy Migration,"

in the Design Automation Conference (DAC), San Francisco, CA, USA, 2015.

[45] Y. Zhang, Y. Ge and Q. Qiu, "Improving Charging Efficiency with Workload Scheduling

in Energy Harvesting Embedded Systems," in the Design Automation Conference (DAC),

Austin, TX, USA, 2013.

[46] F. Ongaro, S. Saggini and P. Mattavelli, "Li-Ion Battery-Supercapacitor Hybrid Storage

System for A Long Lifetime, Photovoltaic-Based Wireless Sensor Network," the IEEE

Transactions on Power Electronics (TPE), vol. 27, no. 9, pp. 3944-3952, 2012.

[47] A. Mirhoseini and F. Koushanfar, "HypoEnergy: Hybrid Supercapacitor-Battery Power-

Supply Optimization for Energy Efficiency," in the Conference on Design, Automation and

Test in Europe (DATE), Los Alamitos, CA, USA, 2011.

[48] R. Teodorescu and J. Torrellas, "Variation-Aware Application Scheduling and Power

Management for Chip Multiprocessors," in the International Symposium on Computer

Architecture (ISCA), Beijing, China, 2008.

[49] W. L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, "Thermal-Aware

Task Allocation and Scheduling for Embedded Systems," in the Conference on Design,

Automation and Test in Europe (DATE), Washington, DC, USA, 2005.

[50] E. L. Sueur and G. Heiser, "Dynamic Voltage and Frequency Scaling: The Laws of

Diminishing Returns," in the International Conference on Power Aware Computing and

Systems (HotPower), Berkeley, CA, USA, 2010.

153

[51] W. Kim, M. S. Gupta, G. Y. Wei and D. Brooks, "System Level Analysis of Fast, Per-Core

DVFS Using On-Chip Switching Regulators," in the International Symposium On High

Performance Computer Architecture (HPCA), Salt Lake City, UT, USA, 2008.

[52] R. Jejurikar, C. Pereira and R. Gupta, "Leakage Aware Dynamic Voltage Scaling for Real-

Time Embedded Systems," in the Design Automation Conference (DAC), San Diego, CA,

USA, 2004.

[53] I. Yeo, C. C. Liu and E. J. Kim, "Predictive Dynamic Thermal Management for Multicore

Systems," in the Design Automation Conference (DAC), Anaheim, CA, USA, 2008.

[54] A. K. Coskun, T. T. Rosing, K. A. Whisnant and K. C. Gross, "Static and Dynamic

Temperature-Aware Scheduling for Multiprocessor SoCs," the IEEE Transactions on Very

Large Scale Integration Systems (TVLSI), vol. 16, no. 9, pp. 1127-1140, 2008.

[55] B. Carter, J. Matsumoto, A. Prater and D. Smith, "Lithium Ion Battery Performance and

Charge Control," in the International Energy Conversion Engineering Conference

(IECEC), Washington, DC, USA, 1996.

[56] Z. Xu, Z. Li, C. M. B. Holt, X. Tan, H. Wang, B. S. Amirkhiz, T. Stephenson and D. Mitlin,

"Electrochemical Supercapacitor Electrodes from Sponge-Like Graphene

Nanoarchitectures with Ultrahigh Power Density," the Journal of Physical Chemistry

Letters (JPCL), vol. 3, no. 20, pp. 2928-2933, 2012.

[57] B. Hargreaves, H. Hult and S. Reda, "Within-Die Process Variations: How Accurately Can

They Be Statistically Modeled," in the Asia and South Pacific Design Automation

Conference (ASPDAC), Seoul, South Korea, 2008.

154

[58] D. Rajan, R. Zuck and C. Poellabauer, "Workload-Aware Dual-Speed Dynamic Voltage

Scaling," in the International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA), Sydney, Qld., Australia, 2006.

[59] J. Park, S. D., C. N. and M. Pedram, "Accurate Modeling and Calculation of Delay and

Energy Overheads of Dynamic Voltage Scaling in Modern High-Performance

Microprocessors," in the International Symposium on Low Power Electronics and Design

(ISLPED), Austin, TX, USA, 2010.

[60] "Measurement and Instrumentation Data Center," National Renewable Energy Laboratory,

[Online]. Available: http://www.nrel.gov/midc/. [Accessed June 2015].

[61] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,

"MiBench: A Free, Commercially Representative Embedded Benchmark Suite," in the

International Workshop on Workload Characterization (WWC), Washington, DC, USA,

2001.

[62] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron and M. R. Stan,

"Hotspot: A Compact Thermal Modeling Methodology for Early-Stage VLSI Design," the

IEEE Transactions on Very Large Scale Integration Systems (TVLSI), vol. 14, no. 5, pp.

501-513, 2006.

[63] "The Gem5 Simulator," [Online]. Available: http://www.m5sim.org/. [Accessed June

2015].

[64] Y. K. Kwok and I. Ahmad, "Benchmarking the Task Graph Scheduling Algorithms," in the

International Parallel Processing Symposium (IPPS), Orlando, FL, USA, 1998.

155

[65] D. Zhu and H. Aydin, "Energy Management for Real-Time Embedded Systems with

Reliability Requirements," in the International Conference on Computer-Aided Design

(ICCAD), San Jose, CA, USA, 2006.

[66] B. Zhao, H. Aydin and D. Zhu, "Generalized Reliability-Oriented Energy Management for

Real-Time Embedded Applications," in the Design Automation Conference (DAC), San

Diego, CA, USA, 2011.

[67] B. Zhao, H. Aydin and D. Zhu, "Shared Recovery for Energy Efficiency and Reliability

Enhancements in Real-Time Applications with Precedence Constraints," ACM

Transactions on Design Automation of Electronic Systems (TODAES), vol. 18, no. 2, p. 21,

2013.

[68] Y. Zou and S. Pasricha, "Reliability-Aware and Energy-Efficient Synthesis of NoC Based

MPSoCs," in the International Symposium on Quality Electronic Design (ISQED), Santa

Clara, CA, USA, 2013.

[69] Y. Zou, Y. Xiang and S. Pasricha, "Analysis of On-Chip Interconnection Network Interface

Reliability in Multicore Systems," in the International Conference on Computer Design

(ICCD), Amherst, MA, USA, 2011.

[70] Y. Zou, Y. Xiang and P. S., "Characterizing Vulnerability of Network Interfaces in

Embedded Chip Multiprocessors," the IEEE Embedded Systems Letters, vol. 4, no. 2, pp.

41-44, 2012.

[71] A. K. Coskun, R. Strong, D. M. Tullsen and T. S. Rosing, "Evaluating the Impact of Job

Scheduling and Power Management on Processor Lifetime for Chip Multiprocessors," in

156

the International Joint Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS), Seattle, WA, USA, 2009.

[72] L. Huang, F. Yuan and Q. Xu, "Lifetime Reliability-Aware Task Allocation and Scheduling

for MPSoC Platforms," in the Conference on Design, Automation and Test in Europe

(DATE), Nice, France, 2009.

[73] M. Basoglu, M. Orshansky and E. M., "NBTI-Aware DVFS: A New Approach to Saving

Energy and Increasing Processor Lifetime," in the International Symposium on Low Power

Electronics and Design (ISLPED), Austin, TX, USA, 2010.

[74] S. S. Mukherjee, J. Emer and S. K. Reinhardt, "The Soft Error Problem: An Architectural

Perspective," in the International Symposium On High Performance Computer

Architecture (HPCA), Hudson, MA, USA, 2005.

[75] D. Zhu, R. Melhem and D. Mosse, "The Effects of Energy Management on Reliability in

Real-Time Embedded Systems," in the International Conference on Computer-Aided

Design (ICCAD), San Jose, CA, USA, 2004.

[76] J. Luo and N. K. Jha, "Power-Conscious Joint Scheduling of Periodic Task Graphs and

Aperiodic Tasks in Distributed Real-Time Embedded Systems," in the International

Conference on Computer-Aided Design (ICCAD), San Jose, California, USA, 2000.

[77] R. Sakellariou and H. Zhao, "A Hybrid Heuristic for DAG Scheduling on Heterogeneous

Systems," in the International Parallel and Distributed Processing Symposium (IPDPS),

Santa Fe, NM, USA, 2004.

157

[78] H. F. Sheikh and I. Ahmad, "Dynamic Task Graph Scheduling on Multicore Processors for

Performance, Energy, and Temperature Optimization," in the International Green

Computing Conference (IGCC), Arlington, VA, USA, 2013.

[79] ReliaSoft, "The Limitations of Using the MTTF as a Reliability Specification," [Online].

Available: http://www.weibull.com/hotwire/issue32/hottopics32.htm. [Accessed

November 2014].

[80] ReliaSoft, "The Weibull Distribution," [Online]. Available:

http://reliawiki.org/index.php/The_Weibull_Distribution . [Accessed July 2015].

[81] V. Suhendra, C. Raghavan and T. Mitra, "Integrated Scratchpad Memory Optimization and

Task Scheduling for MPSoC Architectures," in the International Conference on Compilers,

Architecture and Synthesis for Embedded Systems (CASES), Seoul, Republic of Korea,

2006.

[82] B. Xia and Z. Tan, "Tighter Bounds of the First Fit Algorithm for the Bin-Packing

Problem," the Discrete Applied Mathematics, vol. 158, no. 15, pp. 1668-1675, 2010.

[83] X. Wang, M. Tehranipoor, S. George, D. Tran and L. Winemberg, "Design and Analysis

of A Delay Sensor Applicable to Process/Environmental Variations and Aging

Measurements," the IEEE Transactions on Very Large Scale Integration Systems (TVLSI),

vol. 20, no. 8, pp. 1405-1418, 2011.

[84] A. Makhorin, "GNU Linear Programming Kit," [Online]. Available:

http://www.gnu.org/software/glpk/. [Accessed March 2015].

[85] Gurobi, "Gurobi Optimizer Reference Manual," 2014. [Online]. Available:

http://www.gurobi.com/documentation/6.0/refman.pdf. [Accessed March 2014].

158

[86] R. Dick, "Embedded System Synthesis Benchmarks Suites (E3S)," [Online]. Available:

http://ziyang.eecs.umich.edu/~dickrp/e3s/. [Accessed May 2014].

[87] R. P. Dick, D. L. Rhodes and W. Wolf, "TGFF: Task Graphs for Free," in the International

Workshop on Hardware/Software Codesign (CODES/CASHE), Seattle, WA, USA, 1998.

[88] R. Watanabe, M. Kondo, M. Imai, H. Nakamura and T. Nanya, "Task Scheduling under

Performance Constraints for Reducing the Energy Consumption of the GALS Multi-

Processor SoC," in the Conference on Design, Automation and Test in Europe (DATE),

Nice, France, 2007.

[89] R. Kirner, "Ingredients for the Specification of Mixed-Criticality Real-Time Systems," in

the International Symposium on Object/Component-Oriented Real-Time Distributed

Computing (ISORC), Reno, NV, USA, 2014.

[90] L. Sha, "Resilient Mixed-Criticality Systems," CrossTalk: the Journal of Defense Software

(JDS), 2009.

[91] M. Hamdaoui and P. Ramanathan, "A Dynamic Priority Assignment Technique for Streams

with (m, k)-Firm Deadlines," the IEEE Transactions on Computers (TC), vol. 44, no. 12,

pp. 1443-1451, 2012.

[92] Nvidia, "Variable SMP – A Multicore CPU Architecture for Low Power and High

Performance," [Online]. Available: http://www.nvidia.com/content/PDF/

tegra_white_papers/tegra-whitepaper-0911b.pdf. [Accessed June 2015].

[93] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester and T. Mudge, "Near-Threshold

Computing: Reclaiming Moore’s Law through Energy Efficient Integrated Circuits," the

Proceedings of IEEE (IEEE), vol. 98, no. 2, pp. 253-266, 2010.

159

[94] D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy, Y. Lee, D.

Kim, N. Liu, M. Wieckowski, G. Chen, T. Mudge, D. Blaauw and S. D., "Centip3De: A

3930DMIPS/W Configurable Near-Threshold 3D System with 64 ARM Cortex-M3

Cores," in the IEEE International Solid-State Circuits Conference Digest of Technical

Papers (ISSCC), San Francisco, CA, USA, 2012.

[95] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim and J. Torrellas, "VARIUS-NTV: A

Microarchitectural Model to Capture the Increased Sensitivity of Manycores to Process

Variations at Near-Threshold Voltages," in the l IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Boston, MA, USA, 2012.

[96] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati and R. Teodorescu, "Booster: Reactive Core

Acceleration for Mitigating the Effects of Process Variation and Application Imbalance in

Low-Voltage Chips," in the International Symposium on High Performance Computer

Architecture (HPCA), New Orleans, LA, USA, 2012.

[97] U. R. Karpuzcu, A. Sinkar, N. S. Kim and J. Torrellas, "EnergySmart: Toward Energy-

Efficient Manycores for Near-Threshold Computing," in the International Symposium on

High Performance Computer Architecture (HPCA), Shenzhen, China, 2013.

[98] U. R. Karpuzcu, I. Akturk and N. S. Kim, "Accordion: Toward Soft Near-Threshold

Voltage Computing," in the International Symposium on High Performance Computer

Architecture (HPCA), Orlando, FL, USA, 2014.

[99] H. Chen, D. Manzi, R. Sanghamitra and K. Chakraborty, "NTC: Exploiting the Paradigm

Shift in Performance Bottlenecks," in the Design Automation Conference (DAC), New

York, NY, USA, 2015.

160

[100] S. Vestal, "Preemptive Scheduling of Multi-Criticality Systems with Varying Degrees of

Execution Time Tssurance," in the IEEE International Real-Time Systems Symposium

(RTSS), Tucson, AZ, USA, 2007.

[101] M. S. Mollison, J. P. Erickson, J. H. Anderson and S. K. S. J. A. Baruah, "Mixed-Criticality

Real-Time Scheduling for Multicore Systems," in the IEEE International Conference on

Computer and Information Technology (CIT), Bradford, UK, 2010.

[102] G. Giannopoulou, N. Stoimenov, P. Huang and T. L., "Scheduling of Mixed-Criticality

Applications on Resource-Sharing Multicore Systems," in the ACM International

Conference on Embedded Software (EMSOFT), Montreal, QC, Canada, 2013.

[103] P. K. Saraswat, P. Pop and J. Madsen, "Task Migration for Fault-Tolerance in Mixed-

Criticality Embedded Systems," ACM SIGBED Review - Special Issue on the 2nd

International Workshop on Adaptive and Reconfigurable Embedded Systems (APRES), vol.

6, no. 3, p. 5, 2009.

[104] P. Huang, H. Yang and L. Thiele, "On the Scheduling of Fault-Tolerant Mixed-Criticality

Systems," in the Design Automation Conference (DAC), San Francisco, CA, USA, 2014.

[105] P. Huang, P. Kumar, G. Giannopoulou and L. Thiele, "Run and be Safe: Mixed-Criticality

Scheduling with Temporary Processor Speedup," in the Conference on Design, Automation

and Test in Europe (DATE), Grenoble, France, 2015.

[106] G. Giannopoulou, N. Stoimenov, P. Huang and L. Thiele, "Mapping Mixed-Criticality

Applications on Multi -Core Architectures," in the Conference on Design, Automation &

Test in Europe (DATE) , Dresden, Germany, 2014.

161

[107] C. Gu, N. Guan, Q. Deng and W. Yi, "Partitioned Mixed-criticality Scheduling on

Multiprocessor Platforms," in the Conference on Design, Automation & Test in Europe

(DATE), Dresden, Germany, 2014.

[108] S. H. Kang, H. Yang, S. Kim, I. Bacivarov, S. Ha and L. Thiele, "Reliability-Aware

Mapping Optimization of Multi-Core Systems with Mixed-Criticality," in the Conference

on Design, Automation & Test in Europe (DATE), Dresden, Germany, 2014.

[109] D. Tamas-Selicean and P. Pop, "Design Optimization of Mixed-Criticality Real-Time

Applications on Cost-Constrained Partitioned Architecture," in the IEEE Real-Time

Systems Symposium (RTSS) , Vienna, Austria, 2011.

[110] S. Trujillo, A. Crespo and A. Alonso, "MultiPARTES: Multicore Virtualization for Mixed-

Criticality Systems," in the Conference on Digital System Design (DSD), Los Alamitos,

CA, USA, 2013.

[111] K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez and J. Emer, "Scheduling

Heterogeneous Multi-Cores through Performance Impact Estimation (PIE)," in the

International Symposium on Computer Architecture (ISCA), Portland, OR, USA, 2012.

[112] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta, "The SPLASH-2 Programs:

Characterization and Methodological Considerations," in the International Symposium on

Computer architecture (ISCA) , Santa Margherita Ligure, Italy, 1995.

[113] C. Bienia, "Benchmarking Modern Multiprocessors," Ph.D. Dissertation. Princeton

University, Princeton, NJ, USA, 2011.

162

[114] W. Kim, M. S. Gupta, G. Y. Wei and D. Brooks, "System Level Analysis of Fast, Per-Core

DVFS Using On-Chip Switching Regulators," in the International Symposium on High

Performance Computer Architecture (HPCA), Salt Lake City, UT, USA, 2008.

[115] M. Bhadauria, V. Weaver and S. A. McKee, "A Characterization of the PARSEC

Benchmark Suite for CMP Design," Cornell University, 2008.

[116] C. Xian, Y. H. Lu and Z. Li, "Energy-Aware Scheduling for Real-Time Multiprocessor

Systems with Uncertain Task Execution Time," in the Design Automation Conference

(DAC), San Diego, CA, USA, 2007.

[117] T. E. Carlson, W. Heirman and E. L., "Sniper: Exploring the Level of Abstraction for

Scalable and Accurate Parallel Multi-Core Simulation," in the International Conference for

High Performance Computing, Networking, Storage and Analysis (SC), Seatle, WA, USA,

2011.

[118] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P. Jouppi, "McPAT:

An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore

Architectures," in the IEEE/ACM International Symposium on Microarchitecture

(MICRO), New York, NY, USA, 2009.

[119] A. H. Maheran, P. Menon, I. Ahmad and Z. Yusoff, "Threshold Voltage Optimization in A

22nm High-k/Silicide PMOS Device," in the IEEE Regional Symposium on Micro and

Nanoelectronics (RSM), Langkawi, Malaysia, 2013.

[120] V. Saripalli, "Device and Architecture Co-Design for Ultra-Low Power Logic Using

Emerging Tunneling-Based Devices," Ph.D. Dissertation. Pennsylvania State University.,

2011.

163

[121] Intel, "Intel Atom Processor," [Online]. Available: www.intel.com/technology/atom.

[Accessed June 2015].

[122] B. Donohoo, O. C., S. Pasricha, C. Anderson and Y. Xiang, "Context-Aware Energy

Enhancements for Smart Mobile Devices," the IEEE Transactions on Mobile Computing

(TMC), vol. 13, no. 8, pp. 1720-1732, 2014.

[123] R. Prabha, G. Rincon-Mora and S. Kim, "Harvesting Circuits for Miniaturized Photovoltaic

Cells," in the IEEE International Symposium on Circuits and Systems (ISCAS), Rio de

Janeiro, Brazil, 2011.

[124] H. G. Lee and N. Chang, "Energy-Aware Memory Allocation in Heterogeneous Non-

Volatile Memory Systems," in the International Symposium on Low Power Electronics and

Design (ISLPED), Seoul, Korea, 2003.

[125] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M. F. Chang, S. John, Y. Xie, J. Shu and

Y. H., "Ambient Energy Harvesting Nonvolatile Processors: From Circuit to System," in

the Design Automation Conference (DAC), San Francisco, CA, USA, 2015.

[126] J. Han and M. Orshansky, "Approximate Computing: An Emerging Paradigm for Energy-

Efficient Design," in the IEEE European Test Symposium (ETC), Avignon, France, 2013.

[127] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan and K. Roy, "IMPACT: Imprecise

Adders for Low-Power Approximate Computing," in the IEEE/ACM International

Symposium on Low-Power Electronics and Design (ISLPED), Fukuoka, Japan, 2011.

[128] Y. Xiang and S. Pasricha, "Thermal-Aware Semi-Dynamic Power Management for

Multicore Systems with Energy Harvesting," in the International Symposium on Quality

Electronic Design (ISQED), Santa Clara, CA, USA, 2013.

164

[129] Y. Xiang and S. Pasricha, "Harvesting-Aware Energy Management for Multicore Platforms

with Hybrid Energy Storage," in the Great Lakes Symposium on VLSI (GLSVLSI), Paris,

France, 2013.

[130] Y. Xiang and S. Pasricha, "A Hybrid Framework for Application Allocation and Scheduling

in Multicore Systems with Energy Harvesting," in the Great Lakes Symposium on VLSI

(GLSVLSI), Houston, TX, USA, 2014.

[131] Y. Xiang and S. Pasricha, "Fault-Aware Application Scheduling in Low Power Embedded

Systems with Energy Harvesting," in the International Conference on Hardware/Software

Codesign and System Synthesis (CODES), New Delhi, India, 2014.

[132] Y. Xiang and S. Pasricha, "Run-Time Management for Multi-Core Embedded Systems with

Energy Harvesting," the IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), 2014.

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ACRONYMS
	1. INTRODUCTION
	1.1. Energy Harvesting
	1.2. Real-Time Multicore Embedded Systems
	1.2.1. Embedded Systems
	1.2.2. Real-Time Systems and Workload ModelS
	1.2.3. Multicore Processors in Embedded Systems

	1.3. Background and Related Work on Resource Management for Low Power Real-Time Embedded Systems with Energy Harvesting
	1.4. Dissertation Outline

	2. SEMI-DYNAMIC SCHEDULING ALGORITHM FOR INDEPENDENT TASKS
	2.1. Background and Contribution
	2.2. Problem Formulation
	2.2.1. Energy Harvesting and Energy Storage Module
	2.2.2. Periodic Real-Time Workload with Independent Tasks
	2.2.3. DPM and DVFS-Enabled Multi-Core Processor
	2.2.4. Run-Time Scheduler
	2.2.5. Scheduling Problem Objective

	2.3. Motivation
	2.3.1. Motivation for Semi-Dynamic Algorithm
	2.3.1.1. Importance of Balanced Workload Execution
	2.3.1.2. SDA Framework for Run-Time Workload Distribution

	2.3.2. Motivation for Hybrid Energy Storage
	2.3.3. Motivation for Heterogeneity-Aware Allocation
	2.3.4. Motivation for Run-Time Thermal Management

	2.4. Proposed Run-Time Energy and Workload Management Framework
	2.4.1. Semi-Dynamic Algorithm Overview
	2.4.2. Hybrid Energy Storage System and Energy Budgeting
	2.4.2.1. Battery-Supercapacitor Hybrid Energy Storage
	2.4.2.2. Hybrid Energy Storage Based Energy Budget

	2.4.3. Critical Frequency, Core Heterogeneity and Thermal Aware Workload Estimation
	2.4.3.1. Critical Frequency-Aware Active Core Selection
	2.4.3.2. Core Heterogeneity-Aware Workload Estimation
	2.4.3.3. Proactive Run-Time Thermal Management

	2.4.4. Task Penalty and Core Heterogeneity Aware Task Rejection and Allocation
	2.4.5. DVFS Switching-Aware Dual-Speed Method

	2.5. Experimental Results
	2.5.1. Experiment Setup
	2.5.2. Comparison between SDA and Prior Work
	2.5.3. Analysis of SDA with Hybrid Energy Storage
	2.5.4. Analysis of Core Heterogeneity-Aware Management
	2.5.5. Analysis of Run-Time Thermal Management
	2.5.6. Analysis of Scheduling Overhead

	2.6. Chapter Summary

	3. TEMPLATE-BASED SCHEDULING ALGORITHM FOR TASK GRAPHS
	3.1. Background and Contribution
	3.2. Related Work
	3.3. Problem Formulation
	3.3.1. Periodic Real-Time Workload with Task Graphs
	3.3.2. Soft Error Model
	3.3.3. Hard Error Model
	3.3.4. Run-Time Scheduler
	3.3.5. Problem Objective

	3.4. Hybrid Scheduling Framework: Motivation and Overview
	3.5. Offline Template Generation
	3.5.1. MILP-Based Offline Template Generation
	3.5.1.1. Inputs and Decision Variables
	3.5.1.2. Optimization Objective
	3.5.1.3. Constraints

	3.5.2. Fast Heuristic-Based Offline Template Generation

	3.6. Adaptive Online Management
	3.6.1. Run-Time Template Selection
	3.6.2. Aging-Aware Allocation of Workload Partitions
	3.6.3. Dynamic Adjustment for Slack Reclamation and Soft Error Handling at Run-Time

	3.7. Experimental Results
	3.7.1. Experiment Setup
	3.7.2. Template Generation Analysis
	3.7.3. Evaluation of System Performance without Error Injection and Execution Time Variance
	3.7.4. Evaluation of System Performance with Soft Error Injection and Execution Time Variance
	3.7.5. Evaluation of System Hard Reliability and MTTF

	3.8. Chapter Summary

	4. MIXED-CRITICALITY SCHEDULING ON HETEROGENEOUS SYSTEMS
	4.1. Background and Contribution
	4.2. Related Work
	4.3. Problem Formulation
	4.3.1. Mixed-Criticality Workload Model
	4.3.2. Heterogeneous Multicore Computing Platform
	4.3.3. Energy Harvesting, Storage, and Budgeting
	4.3.4. Problem Objective

	4.4. Semi-Dynamic Framework for Mixed-Criticality SCHEDULING
	4.5. Run-Time Mixed-Criticality Scheduling
	4.5.1. Soft Deadline-Aware Priority Metric
	4.5.2. Dynamic Workload Filtering and Balancing

	4.6. Experimental Results
	4.6.1. Experiment Setup
	4.6.2. Design-Time Template Generation Analysis
	4.6.3. Timing Intensity Metric Evaluation
	4.6.4. Mixed-Criticality Scheduling Performance Evaluation
	4.6.5. Chapter Summary

	5. CONCLUSION AND FUTURE WORK
	5.1. Research Conclusion
	5.2. Future Work

	BIBLIOGRAPHY

