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Technical Report 

APPROXIMATE JOINT PROBABILITY DISTRIBUTIONS OF THE TURBULENCE 
ALONG A HYPOTHETICAL MISSILE TRAJECTORY 
DOWNWIND OF A SINUSOIDAL KlDEL RIDGE* 

by 

Erich J. Plate*, F. F. Yeh 

and 

R. Kung 

ABSTRACT 

The wind field is investigated which is encountered by a missile 
traveling along a hypothetical trajectory downwind of a two-dimensional 
ridge. Reasons are given for studying this situation in a wind tunnel. 
The problem is reduced to the determination of turbulence spectra _and of 
joint probabilities for the joint occurrence of two velocities simultane­
ously along the trajectory which corresponds to mean flow conditions. 

In the theoretical part an attempt is made to obtain approximations 
to the joint probability density distributions which yield to experimental 
evaluation. · The experimental part is concerned with measurements of pro­
files of mean velocities and turbulent intensities and with the determin­
ation of turbulence data for evaluating spectra and joint probability 
distributions. 

* A preliminary version of this report has been presented at the Unguided 
Ballistic Missile Meteorology Conference, Las Cruces, Oct. 31 - Nov. 2, 
1967. 
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1.1 The Problem 

Chapter I 

INTRODUCTION 

One of the major problems in predicting the target hitting capabilities 
of unguided rocket propelled missiles flying in the atmospheric boundary 
layer is the interaction between the missile and the turbulent wind field 
along its flight path. In the analysis of missile weapon systems, es­
pecially those used in short range (0-1 km) applications, predicting 
target hit probability caused by gust winds, involves prior knowledge 
of the wind field along the missile's trajectory. We can formulate 
this problem as follows: if the trajectory of a missile is given by a 
deterministic curve determined by mean-wind conditions, we must find the 
probability distribution of the perturbations of the trajectory end point 
if the missile encounters random velocity fluctuations during its travel 
along the trajectory. The fluctuations influence the flight path in two 
ways. Vibrations, caused by the gust spectrum might occur, and the missile 
might be deflected from its course by large velocity fluctuations. For 
obtaining instantaneous wind measurements to calculate trajectories in a 
turbulent wind field, the present experimental study was undertaken. 

We chose the wind field which exists in the wake downwind of a two­
dimensional obstruction with air flow separation at the downwind slope, 
as shown in Fig. 1. The sinusoidal obstruction used in this study repre­
sents the model of a ridge. The wind field which exists in the wake of 
a ridge is of interest in 'military combat applications since ridges have 
been used as part of a defensive line against an attacking force. If 
missile launchers are emplaced along a ridge, the target impact dis­
persion of missiles caused by the turbulent winds on the lee side of the 
ridge will play a considerable role in battlefield strategy. 

A full account of this wind field is difficult to obtain in the 
field. The number of data points at which wind speed information is 
required is large, and the variability of wind speeds in natural envi­
ronments would require elaborate and costly experimental equipment. 
Therefore, it was suggested to study the wind fields that might be 
encountered downwind of a sinusoidally shaped hill in the controlled 
environment of a laboratory where many needed data can be taken one 
after another instead of simultaneously, and where the reliability of 
measuring instruments and data analysis equipment has reached a high 
level. 

In this report, we shal 1 concentrate only on the problem of ob­
taining an approximation to the joint probability distribution for 
a sequence of instantaneous velocity vectors along some hypothetical 
trajectories. The analytical considerations are based on assuming cer­
tain models for joint probability distributions. The validity of these 
distributions for the disturbed flow field downstream of a ridge is 
demonstrated by means of experimental data oqtained in the wind tunnel. 
The observations were made for a steady mean velocity field obtained by 



2 

blowing air par allel to a f lat plate perpendicularl y onto a model ridge 
of sinusoi dal shape. 

1.2 Conside rati ons on Modeling 

The crucial problem in applying laboratory results for practical 
applications i n a natural environment is the question of scaling labora­
tory conditions up to field dimensions. For flows of undisturbed bounda­
ry layers, such as the wind along a boundary of constant roughness over 
a long fetch, the modelin g has been achieved beyond reasonable doubt by 
scaling according to the ratio of the roughness heights, and by keeping 
the shear velocities cons tant. With these conditions met, both the mean 
velocity conditions and the turbulence structure are approximately scaled. 
For a boundary layer flow which is disturbed by a sharp edged obstacle, 
Plate and Lin (1965) have presented an argument, based on the boundary 
layer integral momentum equation, that the same parameters together with 
the drag coefficient of the obstacle (as referred to some convenient 
velocity, such as the geostrophic wind velocity), suffice to model the 
mean velocity field. As far as the turbulence structure is concerned, 
no equivalent conclusions are as yet forthcoming, but some .work by 
Plate and Lin (1966) has pointed at the possibility that the modeling 
of the dissipation number is an additional requirement. Moreover, no 
conclusions have yet been reached on how the turbulence structure would 
be affected if this number is not modeled accurately. Work is in progress 
on this point at Colorado State University. It is reasonable to suspect 
that modeling requirements will result in a scale factor for the dissi­
pation rates which does not differ very much from that for the mean 
velocity. 

With this assumption made, translation of laboratory data to field 
data is a simple problem, provided that the drag coefficient of the 
obstruction can be estimated. The procedure would be to determine the 
roughness length and the geometrical pattern of the natural situation, 
and then to prepare a scale model of it in the laboratory, setting the 
roughness length in the laboratory at a convenient level by artificial 
roughening of the wind tunnel boundary. As long as the dimensions of 
the obstruction are such that it lies well within _the lowest 1000 to 
2000 ft of the atmosphere, and as long as the wind velocity is such 
that the gross Richardson number of the prototype is not essentially 
different from zero, and as long as the model is sharp edged, so that 
the separation line is fixed, the condition in the laboratory should be 
similar to that in the field if: 

( ~) 
z 

0 model 

= 

In this equation, 
roughness height. 

( ~) 
z 

0 field 

h is the height of the obstruction and 

(1) 

z is the 
0 

For an obstacle which is not sharp edged, such that the separation 
line moves with change in velocity, the Reynolds number affects the drag 
coefficient, and compensations will have to be made for this effect. A 
possibility exists in artificially tripping the boundary layer on the 
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obstruction so as to induce turbulence locally and fix the boundary 
layer separation line. However, such refinements have not been used in 
this study, which is intended to furnish qualitative information rather 
than quantitative design data and, in that case, it is unnecessary to 
substantiate the small improvements in similarity which can be had by 
artificially inducing separation on the model hill. Thus, the problem 
of scaling need not concern us in this study, especially since a com­
parison with field data is not possible at this time. We shall, there­
fore, formulate our problem in more detail without regard to scaling. 

I 
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Chapter II 

THEORETICAL CONSIDERATIONS 

The two essentially different problems which arise in considering 
the interaction of missiles and turbulent wind fields are that of missile 
flight stability, and that of impact dispersion. The difference of these 
two problems can best be illustrated by considering the flight of a missile 
through a homogeneous velocity field of infinite extent. A missile which 
flies at constant speed encounters a spatially random velocity field which 
is, with respect to a coordinate system traveling with the missile, con­
verted into a random and stationary time series of the continuous variable: 
velocity. If the missile has a transfer function H(w) , then the missile 
response velocity spectrum ¢ (w) is related to the impact wind-gust 

m spectrum ¢ (w) by the relation of 
w 

¢m(w) = I H(w) I 2 ¢w(w) (2) 

Thus, since the transfer function [ H(w) I is a deterministic function, 
and since ¢ (w) for an infinitely long stationary record denotes the 
exact averag~ behavior of the wind field, ¢ (w) is also an exact average 
measure of the missile response. If none ofmthe response ampli ½\ldes ex­
ceed the stability limit of the missile, then only some fluctuations of 
the missile occur; if some do exceed the stability limit, the missile 
might change course drastically and miss its target by a wide margin. 
The stability can usually be evaluated on the basis of the average be­
havior expressed by Eq. 2. In this paper, we shall provide experimental 
data on wind spectra, which can be used for missile stability calculation 
purposes. 

In contrast to stability, the dispersion of a missile results from 
an integrated effect of all the velocities which are acting on the missile 
in its course along the missile trajectory. Since these velocities are 
fluctuating from instant to instant, and can be described only in a proba­
bilistic way, the missile dispersion cannot be predicted deterministically. 
Instead, the missile dispersion problem is the problem of determining the 
probability distribution of the missile trajectory end point as a function 
of the sequence of all the velocities which .the missile encountered along 
the trajectory. The distribution of the end point of the missile then 
becomes a function of the joint probability distribution for all the 
velocities along the missile trajectory. 

In this report, we shall disregard the characteristics of the 
missile and shall concentrate on an attempt to describe the joint proba­
bility distribution for the velocities along some hypothetical missile 
trajectories in a simplified manner. The theoretical ideas will be 
developed in this chapter. They lead to a program of measurements of 
probability distributions which was performed in the Fluid Mechanics 
Laboratory of Colorado State University. 
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Since i t is impossible to obtain the true joint probability dis­
tribution for all velocity vectors along any trajectory, a simplifying 
procedure has to be adopted. We proceed by introducin g some simplifying 
assumptions which represent the turbulence encountered by the missile 
by the instantaneous turbulence existing along the mean trajectory. 
Furthermore, the trajectory is subdivided into sections and it is assumed 
that the turbulence in each section can be represented by the turbulence 
at the end points of the sections. For the ensuing sequence of velocities 
at the section end joints, the joint probability density function is then 
construc ted and broken down into a product of functions which can be 
determined by means of available experimental techniques. No attempt 
will be made to apply the ensuing functions to the missile dispersion 
problem. 

2.1 Basic Assumptions 

The problem of evaluating the instantaneous missile trajectory is 
approached in the following way. Let the mean trajectory of a missile be 
given, and use the reference coordinate system as shown in Fig. 1 for our 
problem. Then on its travel along the trajectory the missile encounters 
mean velocities and a sequence of gusts, both described by a velocity 

➔➔ ➔ 

vector v(s;t) , where t is the time of flight, and s is the position 
vector of the trajectory. The velocity vector consists of a mean velocity 
➔ + ➔ ➔ 
v(s) and a fluctuation in veloci_ty v' (s;t) . . , The position vector con-
sists of a mean position vector s corresponding to an absence of all 
velocity fluctuations (i.e., the trajectory due to mean wind only) and 
a small deviation t -i due to the sequence of fluctuating velocities 
which the missile has encountered during the time t 

Now, let the travel time until impact be equal to t. and the end 
point of the · mean wind trajectory be located at x . Tfien due to the 
sequence of wind fluctuations encountered during i~s flight, the missile 
is deflected i~ the impact area by a total deviation r' from the target 
distance x . Due to the random nature of the fluctuitions encountered, 
the r' wiil also be randomly distributed. The probability distribution 
of theequantity r; is the desired quantity to which the results of this 
study must be applied. 

The meteorological problem associated with finding the probability 
distribution of r' is to make available knowledge of the instantaneous 
velocity field whi~h the missile might encounter on its course. Clearly, 
this problem cannot be solved by presently available techniques. In­
stead, it is proposed to obtain joint probability distributions for the 
simultaneous occurrence of a sequence of velocity vectors along the 
missile trajectory. In general, this requires specifying joint proba­
bility distributions of the joint occurrence of velocities at infinitely 
many different points in space and time. In order to reduce this problem 
to tractable dimensions, a number of assumptions have to be made. 

The first assumption is that the distance of any instantaneous 
trajectory from the mean trajectory calculated on the basis of the 
mean wind distribution is small, so that 

➔ ➔ ➔ ➔ 

v'(s;t) ~ v'(s;t) (2) 
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In this manner, it is no longer necessary to consider the whole space 
but one can concentrate on the single trajectory. Obviously, the validity 
of this assu.!}!Ption depends both on the relative magnitude of v' with 
respect to v, and on the response characteristics of the missile, and 
will have to be tested each time. 

The second assumption concerns the time distribution. \\le assume 
that the missile travels much faster than the velocity fluctuates, so 
that 

➔ ➔ ➔ 

v' (s·t) ~ v' (s·t ) , , 0 (3) 

where t denotes the start time. This assumption implies that during 
the fligRt time the relation holds: 

or that, in the average for n different starting times 

1 -n 

n 
E 

i=l 

➔ ➔- ➔- ➔- 1 n 
V ' (s ; t) V ' (s ' t . ) :=::, L 

01 n i=l 

t 
0 

If the flow is stationary, and if the ergodic hypothesis is valid, then 
we can restate this requirement as: 

where 

where 

R ;:::; 1 
T 

R is the autocorrelation function defined by: 
T 

R = R(t -t ) 
T X 0 

1 T 
= f s 

➔- ➔-

V 1 ("S ·t 
, 0 

➔- ➔-

+ ( t -t ) ) . V' ("S . t ) d t 
X O ' 0 0 

0 

T is an observation time taken long enough to ensure a stable 
average, and 

t -t 
X 0 

is the time during which the missile has traveled from 
x to x* 

0 

(4) 

(4a) 

* To*convert 
(~) 
z o model 

actufb*travel 
= (-) 

2 o field 

times to model travel times, the scaling law 
must be used, which, for u*model = u*field 

reduces to tm = tfield 
2 o model 
2
o field 
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X 0 

(t -t f ' 
X 0 
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Eq . 4a becomes: 

where A is the microscale of the turbulence. 
g 

replaced to a good approximation by the scale 

of the turbulence 

A -2 
g 

= 
1 

2 ~ t = 0 

(4b) 

The scale A can be 
g 

A of the u-component 
g 

(5) 

Consequently, it follows that 

to be valid. 

t -t << A for the assumption Eq. 3 
X O g 

2.2 Simplifications of the Probabilistic Problem: connecting proba­
bilities along trajectories. 

We base our calculations on assumptions Eq. 2 and Eq. 3, and, thus, 
we have reduced the meteorological aspects of ,the_ problem to finding 
simultaneous instantaneous velocity distributions alo:ng ·.the mean tra­
jectory x To avoid the implied necessity of determining velocities 
simultaneously at infinitely many different points, we adopt the follow­
ing probabilistic specification of the velocity field. The required 
quantity is the joint probability density distribution 

-+ 
f. = f(v' 

J 0 

-+ 
v' 

1 
-+ 
v' 2 

-+ 
..... v~) (6) 

for all n po \ nts along the mean trajectory. The experimental distri­
bution of f . requires simultaneous measurements at all n points of 

J 
the trajectory, i.e., it requires an infinite array of probes placed along 
the trajectory. Evidently, this is an impossible task, so that instead, 
the trajectory is cut into n finite intervals, of length ~x , at 
whose end points turbulent quantities are measured. In each interval 
~x = x. 

1
-x. the instantaneous velocity is assumed constant and equal 

1+ 1 to: 

➔ , 7 -+ -+ 
v. = u!i + v'. j + w'.k 

1 1 1 1 
(7) 

when the components u! , v! and w! are average va1ues of the velocity 
t t h 1 d · 1 F 1 h 1 f h componen s a t e two en points. rom t e va ues o v! , tetra-

1 jectory is calculated. 

The problem to be solved then is to convert probability distri­
butions between adjacent points in such a way that a meaningful approxi­
mation for Eq. 6 is found. We want to investigate three smip le cases 
of possible approximations for Eq. 6. 
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a. Consider first the assumption that f(v! 1) and f(v!) 
are statistically independent. This condition cof}esponds to v~locities 
which vary comparatively rapidly along the trajectory, in the sense that 
R ~ 0 where R is the spatial correlation coefficient obtained from 
tRe definition x 

R = R(x. 
1
-x . ) = 

X 1.+ 1 

xi+l ➔ ➔ 
1 J v'(t ,x-x.) v'(t, x. ) dx 

0 1. 0 1 
tu 

xi Iv ' 2 ( t , x . ) · J:, 2 ( t , x. 
1

) 
0 1 0 1.+ 

( 8) 

However, the assumption of rapidly varying velocities is in contradic­
tion to the assumption of a velocity vector which is constant throughout 
the travel interval 6x , unless 6x is chosen in such a way that a 
meaningful relation between it and the space integral scale ]s exists, 
where: 

00 

J's • f x. Rx dx 
1 

(9) 

Also, in order to be of influence on the flight pattern, J must be 
large compared to the length dimension L of the missile, §uch that a 
condition for the validity of this assumption might be defined as: 

and L 

1s 
<< 1 say <0.1 

Under these circumstances, Eq. 6 reduces to 

(10) 

➔ 

V ') ' n 
➔ ➔ ➔ ➔ 

f(v') f(v
1
1

) ••••• f(v' 
1

) f(v') (lla) = 
o n- n 

or in terms of conditional probability densities: 

f (➔ I I ➔ ' ➔ I ) ( ➔ ') v . v. l , v. 2· .... = f v. 
1 1.- 1.- 1. 

(11b) 

This equation can be evaluated conveniently, if the probability density 
distributions f(~~) are given. These correspond to joint probability 
densities for thos~ variables u~ , vf and w.' , which will be 
discussed below in Section 2.3. 1 1 1 

b. As a second possibility, we considered the condition 

> X -X 
e o 

in which case the correlation coefficient defined by Eq. 
ialue very near to 1. This implies that the velocities 
v' (t , x. 1) are very nearly proportional, so that 

0 1.+ . 

➔ 

v' (t o' 
➔ 

X. 
1

) ~ Av' (t , x. ) 
l.+ 0 1 

8➔assumes a 
v'(t , x.) 

0 1. 

(12) 
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where A is a (vector) constant. Furthermore, the jpdf defined by 
Eq. 6 becomes: 

➔ ➔ 

f(V 1 V 1 
0 , 1 

➔ ➔ -+ 
v' 1 , v') = f(v') 
n- n o 

(13a) 

or in terms of conditional probabi lity densities: 

f(~ ! I ~ ! 
1

, v! 
2 

..... ) = 1 
1 1- 1-

(13b) 

➔ 

Again, the discussion of a method for calculating 
until Section 2 . 3 . 

f(v') is postponed 
0 

c. The assumption of a and b bracket the possibilities for 
simplifying the joint probability density functions of the turbulence 
along the trajectory . An intermediate method, based on the assumption 
that the eddy structure of the turbulence is highly elongated, (as is 
usually the case in turbulent flows) would combine assumptions of in­
dependence of the motions perpendicular to the mean wind direction with 
an assumption of some dependency of the components in the wind direction 
along the trajectory. The simplest way is obtained if a Markoff de­
pendency can be found to relate probability density distributions along 
the trajectory, i.e., if 

-+ 
f(v! 

l. 

when f(\i! I ~ ! 
1

) 
1 1-

-+ occurrence of v! 
l. 

is the conditional probability density for the 

when -+ 
v! 1 

l. -
has already occurred. 

(14) 

The elongated eddy structure leads us to assume that what happens 
at point x. depends on the happenings at x. 1 only through the u!-

1 1.- . 1 component, 1. e., the components v ! and w ! are independent of all 
components at the point xi-l exce~t inasmu!h as they depend on ui , 
which in turn depends only on the component u! 1 and not on vi-l and 
wi-l Write Eq. 14 in the form: 1.-

(15) 

where f(w! I u!, v!) denotes the conditional probability density for 
finding w~ wh!n b6th u! and v ! are assumed to occur also. 

1 l. 1 

We can now summarize the results for the three approximations of 
Eq . 6 as follows: 

Independence (Case a) 

➔ 

f( v! 
1 

so that 

-+ ➔ 
v! 1 , v! 2 , .. .. v) 

1- 1- 0 

➔ 

= f(v'.) 
l. 

➔ 

f(v., v. 1 , v . 2 .... v') 
1 1- 1.- 0 

-+ -+ ➔ 

= f(v!) f(v! 1) . .- .. f(v') 
1 1.- 0 
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Dependence (Case b) 

➔ 

I 
➔ ➔ 

f(v! V ! l' v! 2 ..... ) = 1 
1 1- 1-

so that 

➔ 

f(v., V . 1, V . 2 ..... ) = f(v') 
1 1- 1- 0 

Markoff dependency (Case c) 

➔ 

I 
-• .,. ➔ ➔ 

f(v! V ! l' V. 2, ..... ) = f(v! V ! 1) 
l 1- 1- 1 1-

so that 

➔ ➔ ➔ ➔ I ➔ f(v., v . 
1

, v. 2 ..... v) = f(v') f(v
1
• I v') ..... f(v! v! 

1
) 

1 1- 1- 0 0 0 1 1-

which simplifies further for the elongated eddy case to Eq. 15. 

2.3 Simplification of the Probabilistic Problem: joint probability 
densities at a point 

All three cases discussed above require the ietermination ~f 
probability density distributions of the form: f(v!) . Since v! 
is a vector consisting of three components, f(~!) is actually a 1 

joint probability density function for the joint1occurrence of u! 
1 v! and w! . Such a triple joint probability density function 1s 

difficult to determine experimentally. We, therefore, write 

f(u!, v!, w!) = f(u!) f(v! I u!) f(w! 1 1 1 1 1 1 1 

in the form 

f(u!, v!, w!) = f(u!) f(v! I u!) f(w!) 1 1 1 1 1 1 1 

and Eq. 14 in the form 

u!, v!) 
1 1 

f(v! I v
1
! _

1
) = f(u! I u! 

1
) f(v! I u!) f(w!) 1 1 1- 1 1 1 

which are based on the following assumptions: 

, 
too 

(16) 

(17) 

(18) 

a. The velocity component w! is statistically independent of 
all other velocity compon~nts. 

b. The connection between adjacent points takes place only through 
u! and is at most first order Markovian. 

1 

Assumption a. is partly justified because the homogeneity of the 
turbulence in planes parallel to the gr01.md, in a two-dimensional flow 
field, requires that the time average product u! w! = 0 which is a 
necessary, but not a sufficient condition for stlti!tical independence. 
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The first part of assumption b. is postulated without any firm 
basis except for the motion of an elongated eddy stated previously. 
For the second part, however, we have some support, both from meteor­
ological data as well as for the laboratory case of the present study. 

For a Markoff dependency to exist, it is a necessary and sufficient 
condition that, if the variables u! are stationary with respect to i 
and Gaussian, and are also jointly Gaussian distributed, then the cross 
correlation between u! u! 

1 
u! 2 is an exponential function 

l 1+ 1+ 

in the parameter i (p. 96, Feller (1964) p. 234, Doob (1953 )) i.e., in 
the continuous parameter case 

-Ax R(x) = e R(O) X > 0 (19) 

where A has a non-negative real part, if R(x) is known to be con­
tinuous. Conversely, a sequence with stationary Gaussian distributions 
satisfying Eq. 18 is Markovian and Eq. 14 can thus be used. 

The applicability of a Markoff process to turbulence data is thus 
insured if it can be shown that 

a. the space correlations are homogeneous, i.e., independent 
from where the correlation starts. 

b. the space correlations are exponential. 

c. the probability density distributions for the functions repre-
senting u' are Gaussian. 

Some proof for the validity of these conditions for our laboratory flows 
will be given in the next chapter. For atmospheric turbulence in neu­
trally stratified atmospheric boundary layers over homogeneous terrain, 
these conditions are approximately satisfied. In the older meteorological 
literature (for reference see Pasquill (1961)) the autocorrelation functions 
were usually found to be exponential. Together with Taylor's hypothesis, 
according to which time correlations can be translated into space corre­
lations by means of the substitution t = ~ , (where O is the local 

mean velocity), it can thus be shown that ~pace correlations are expo­
nential. Meteorologists have in recent times (Lumley and Panofsky (1964)) 
preferred to use different analytical representations of the correlation 
functions, for the simple reason that the spectrum corresponding to an 
exponential autocorrelation decreases at large values of angular fre­
quencies w proportional to w- 2 , whereas the spectral shape should 
contain an inertial subrange, with a drop-off proportional to w • 5/ 3 

The difference between 5/3 and 2 is, however, not large enough to 
give a strong reason for discarding the assumption of an exponential 
decay of the autocorrelation function. For our prediction purposes, it 
does, therefore, seem to be justified to assume that an exponential auto­
correlation function exists in neutrally stratified atmospheric boundary 
layers over homogeneous terrain. In a later section we shal 1 show that 
an approximately exponential space correlation function which is homo­
geneous along trajectories parallel to the ground can be found even in 
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the highly disturbed flow fie ld downwind from a model ridge. Since \\'e 
also find that almost all velocity components follow Gaussian distribu­
tions, the Markoff dependency postulated for Eq. 15 is reasonably wel 1 
established experimentally. 

2.4 Some Considerations on Gaussian Two Variable Joint Probability 
Density Functions. 

When the joint probabi lity density functions of the quantities of 
turbulence at one point are Gaussian, then this distribution function is 
fully specified by the means and the turbulence quantities ut2 = a 2 , 
v1 2 = a 2 , w12 = a 2 as we ll as by the cross correlations, for gxample, 
u'v' v These quanti!ies are most important also in describing the dy­
namic conditions of the turbul ent flow, i.e., they represent stresses, 
and it is , therefore, of interest to show the connection between the 
probability density functions and the stresses. 

Theoretically , if all the probability densities of individual 
turbulent components are distributed in a Gaussian form, then: 

-(u'-m ) 2 
u' 

2cr ? 

f(u') 1 u' = e 
n-; O' 

u' 

-(v'-m ) 2 
v' 

2cr 2 
1 v' f(v') = e 

n-; O' 
v' 

-(w'-m ) 2 
w' 

2a 2 
1 w' f(w ') = e 

12n a 
w' 

(20) 

The joint densities of two turbulent components can be expressed by a 
joint Gaussian form, i.e., 

1 
f(u ' ,v') = 

e - Q(u I' VI) 

2 TT Q' I Q' 1 U V 
✓1-p2 

f or some constants Q' > Q Q' I 
U 1 V 

> 0 p < 1 

< +oo _oo < m 
v' numbers u' ' and 

in which the function 
is defined by v' 

Q(u', v') 

(21) 

_ o:, < m < +oo 
u' 

for any two real 
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Q(u', v' ) = 1 

where i s the correlat i on coefficient u'v' 0 2 and p ::: p 
' u' luiT /vt2" 

02 
v' are the var iance s of u' and v i respect i vely , and m u' and 

m v' are the mean values . The curve Q(U I' VI) = constant is an ellipse 

since p < 1 

In order to fi nd the orient ation of the ellipse, the coordinates 
u* and v* of the coordi nat e system parallel to the axes of the 
ellipse: 

u* = u' cos e + v ' s in 8 
(22) 

v* = -u' s in e + v ' cos e 

are introduced. Appl ying the J acobian transformat i on to the probability 
density, Eq. 20, we obtain 

f(u*, v*) ::: 
f(u' ,v') 

jJ(u',v') i (23) 

::: f(u*cos e v* sin e , u* sin e + v* cos 8) 

which follows from the fact that the Jacobian: 

au* au* 
au' ov' 

J(u' ,v') = = 1 ov* ov* 
au' ov' 

For further simplicity, we may assume m = m = 0 
u' v' 

then, 

f(u*,v*) = 
1 

2nou' ov, 

sin
2

e l u*2 

0 2 
v ' 

_2(cos e sine 
0 2 
u' 

+ ( sin
2 

e + 2P 

0 2 
u' 

{ 

1 [( cos 2 e cos 6sin6 exp - --- -2p---- + 
2(1-p2 ) 0 2 0 10 I 

U 1 U V 

(24) 

u*v* 
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because of the symmetry of the ellipse with respect to the ne,,· axes, the 
term involving u* v* should vanish, i.e., 

cos e sin e sin2e- cos 2e cos e sine 
0 - p = 

a 2 a a a 2 
u' u' v' v' 

or 
2pa , a , 

tan 20 U V 
= 

(25) 

a 2 - a 2 
u' v' 

This can be written i n terms of the turbulent stresses by means of the 
relations: 

and 

P = cov (u' ,v') = 

au' av, a ,a , 
U V 

a I u ov, = 

tan 28 = 
2u'v' (26) 

With this relationship, the joint density function of the turbulent com­
ponents can be defined once we have the values of the associated turbu­
lent stresses. For example, the Eq. 18 can be established by measuring 

u•2 u! 2 ' v! 2 ' w!2 ' i-1 1 1 1 
we have, however, to show that 
distributed and that the joint 

u ! v ! and u ! u ! 
1 1 1-l 1 

For its application, 

the individual components are Gaussianly 
probability distributions follow Eq. 19. 

We notice in passing the equality between Eq. 26 and the inclination 
of the plane of zero shear stress in a plane stress state of classical 
mechanics, if u• 2 and v• 2 are the normal stresses and u'v' is the 
shearing stress (due to turbulence). Clearly, then, the angle e denotes 
the orientation of a plane at a point in a fluid when the shear stress is 
zero, so that the joint probability distribution is found to be oriented 
with the long axis of the ellipse of constant correlation parallel to the 
zero shear stress plane. 
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Chapter I II 

EQUI PMENT AND PROCEDURES 

3.1 The Experimental Setup 

The experi ments we r e performed in the U. S . Army Meteorological 
Wind Tw1nel in the Fluid Dynamics and Diffusion Laboratory of Colorado 
State University. This f acility is shown in Fi g . 2. It is a recir­
culating wind tunnel with an 88 ft lon g test section with a 6 x 6 ft 2 

cr oss section. For the experiments of this study, the model hill was 
placed at a di st ance of approximatel y 40 ft downstream from the inlet 
where the undi sturbed boW1dary l ayer, stimulated by large roughness 
elements in the inle t region of the test section, had an undisturbed 
thickness of about 24 inches . The model hill consisted of a plexiglass 
section with a shape n given by 

TT X 1 < X < 1 
y = h cos L · for - 2 - L - 2 (27) 

where the base wi dth L = 20 in. and the height h = 4 in. The velocity 
outside of the Wldisturbed boundary layer was 30 fps. 

3.2 Measurement of Mean Velocity Profiles 

Mean velocity profiles were measured both by hot wire anemometer 
and pi,tot tube, in order to obtain a cross check. In the upper part of 
the flow, continuous traverses of velocity were ta~en. In the lower part 
or in the separation region where the variability ~f velocity was large, 
point by point data were taken in order to determine the velocity pro­
files more precisely. 

The hot wire measurement of mean velocity was made with a 4 x 10- 4 

inch diameter single wire which was held perpendicular to the local mean 
velocity vector O . The hot wire anemometer used was made at CSU, 

By means of the pitot tube, total head readings were obtained for 
calculating mean velocities. If there is no pressure gradient in the 
flow field, the local mean velocity can be calculated by 

(28) 

= pressure difference between the static tap and 
dynamic tap of a pitot static tube. 

But in the neighborhood of the model ridge, large pressure gradients 
exist, not only in y-direction but also in x-direction. Since the 
static tap is one inch downstream from the dynamic tap on the pitot 
tube, a correction must be applied for the pressure gradient between 
the two taps . Since 
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p = density of air at the room temperature 
a 

U = local mean velocity 

~PAB = the measured pressure difference 

PA= the static pressure at dynamic tap's position 

PB= the static pressure at static tap's position 

pressure difference between the static tap and the 
dynamic tap. 

(29) 

-If PA - PB is known, the local mean velocity at one point .can be cal-

culated from Eq. 29. At each point the value of PA - PB can be ob­

tained from Fig. 3. This figure was made by connecting the static tap 
and a reference tap to the pressure transducer (Transonic Type 120 Equibar). 
Since the static tap is one inch downstream from the dynamic tap, at one 
point th~ coord~nates of the dynamic tap is known,. say (x1 , y 

1
) then 

the static tap is (x1 + 1, y 1) . When the coordinates Of two points are 

known the pressure difference PA - PB can be obtained from Fig. 3 and 

the corrected mean velocity at that point can be calculated by applying 
Eq. 29. 

To measure the mean velocity profiles the pitot tube and the hot 
wire were mounted on a 24 inches vertical carriage. The dynamic tap of 
pitot tube and hot wire were held side by side at the same height. The 
velocity profiles were taken every two inches downstream from the crest 
up to x = 18" and also at x = 24", 36", 40" 

The block diagram of set up is shown on Fig. 4. The calculation of 
the mean velocity is listed on Table I and the results are on Fig. 5. 

When a hot wire was used to measure the mean velocity, the cali­
bration curve of this wire was checked from time to time and the wire was 
recalibrated if excessive drift of an anemometer was detected. It was 
found that after a hot wire had aged several hours the drift of the wire 
was negligibly small. 

3.3 Measurement of Turbulent Quantities 

For coordinates of the flow field as shown in Fig. 1, the turbulent 
components at a point in x, y, z directions are u', v', w', respectively. 

The u'-component was calculated from a single hot wire held parallel 
to z axis (Fig. 6). The v'-component was calculated from a crossed 
wire held in the x-y plane (Fig. 6). 
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In the subsequent discussion, we shall use the following notation: 

u = V = 

w = ~ is the 
in the 

( 
UV = covariance 

= /4 , 2 
1 , 

and 

rms value of the fluctuating velocity component 
x, Y, z 

of the 

M 
2 

direction, respectively 

fluctuations u' and v' 

are therms values of the fluctuating 
voltages ei and e2 measured with 

wire No. 1, or 2, respectively. 

a. Calculating of u-component of turbulence. 

To calculate the u-component at one point, say, (x
1

, y
1

) we need 

the following information: 

or 

The 

then 

1. therms value of a single wire at (x, y), 

2. the calibration curve of this wire, 

3 . the local mean velocity iJ at (x, y) 

4. tpe slope of the calibration curve dE diJ at iJ then: 

dE 
e = Nu 

u2 = ( ~~) 2 
e2 

u-component at a point (x, y) was calibrated by Eq. 30. 

b. Calculating v and uv components of turbulence. 

If the 
we find 

el = 

= 

crossed wire is held in the x-y plane 
in general 

1 
cos a 

1 
cos B 

that 
dE

1 ✓cu' cos a + v' sin a) 2 
cill 

dE2 /(u'cos B - v'sin a) 2 
~ 

as shown 

(30) 

in Fig. 7, 

(31) 

where 
dE 2 ctU are the slopes of the calibration curve for wire 1 

and wire 2, respectively, Equation 31 can be written as 
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2 1 
el = 

cos 2a 
a+ au'v' cos a sin a + v 12 sin2 a) 

(32) 

2 1 
e2 = 

cos 2 B 
au'v' cos B sin B + v• 2 sin 2 B) 

In order to account for small deviations of mean velocity vectors from 
the horizontal we write: 

a = 45 ° + ¢ 

B = 45 ° ¢ 

where ¢ is the small deviation of the angle between the mean velocity 
vector and the horizontal, as determined from the streamline pattern. 
Then, for small ¢ , so that rms in ¢2 · can be neglected, and 
cos ¢~ 1 sin¢ :::: ¢ 

(45° E) 
Ii cos a = cos + = 2 (1-¢) 

cos 2a 1 - 2 - ¢ 

12 (33) 
sin a - 2 (1+¢) 

sin2a 1 
¢ - 2+ 

also 

B 
Ii cos 2 B 1 cos - 2 (1+¢) - T+ ¢ 

sin .fi 
sin2 B 1 

B - 2 (1-¢) - 2 - ¢ 

:;:½t~t::(i
2
);·=3:½i:t:)E:.u::,Y:•:::(½ + •J 

u2 (} - ¢) +UV+ v2 (} + ¢) 
(34) 

e/c½ + • J ( ~~2) 2 
= u2

(} + • J + UV + v2
(} -•l (35) 

The 

di::•r:nc½ (~Jq~ ::2;d_E:; 3S½t(i
2
)~•:::c} + • J 

+ E(u2 - v2 ) 

(36) 
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Inserting Eq. 36 into Eq. 34 leads to 

v 2 = ½[•/ ( ~~J 2 

+ •/( ~~
2
)] _ u 2 

-• [•/ ( 1~J 2 

ez' ( 1~
2 
)J 

(37) 

Since, in our experiment both wires were of the same 1 ength, the slope of 
the calibration curves of both wires for the same U were the same, i.e., 

dU dU dU 
at a point -- = -- = - Then Eq. 37 becomes dE 1 dE 2 dE 

v2 
= ½( ~r (e/ + •z'l - u2 

- o ( ~) \e/ - ez'l 
and Eq. 33 yields: 

-- . l dU 2 1 
u'v' = L ctE e/ CL - <P ) 

Substituting Eq. 38 into Eq. 39 

- e 2 
2 

1 2 2 
UV= 4 (el - e2) 

dU 2 

dE - 2 <t>v 2 

(38) 

(39) 

(40) 

If <I> = 0 i.e., the velocity vector is in x-direction, Eq. 38 becomes 

v2 1 dU 2 
(e 2 e 2) - u2 = 2 dE + 

1 2 ( 41) 

and Eq. 40 yields: 

1 2 e 2) dU 2 
UV = - (e - dE 4 1 2 

(42) 

Equation 41 and 42 are the well-known equations on calculating uv and 
v2 when the velocity vector is in the x-direction. But, in our study 
when the wind is flowing over the hill the velocity vector may deviate 
from the x-direction. Therefore, Eqs. 38 and 40 were used to calculate 
the uv and v2 when <I>/= 0 The angle <P at one point was 
estimated from the streamline pattern shown in Fig. 5. How the stream­
lines were determined will be discussed later. 

For crossed wires, when <I> = 0 i.e., when the velocity vector is 
parallel to the x-axis, the angles of inclination between wire 1 and 
wire 2 and the x-axis are the same and equal to 45° (both wires were very 
carefully mounted perpendicular to each other). In order to make sure 
that both wire 1 and wire 2 were held under 45° to x-axis during the 
experiment, first, the wires were held in the free stream, when the 
(ambient) velocity is in x-direction. Then, the crossed wires were 
rotated 180° about the hot wire probe axis. If the outputs of the wires 
were different after this rotation, an adjustment in the angle of the 
probe with flow direction was made until the anemometer readings of both 
wires were invariant to rotation about the longitudinal axis. 
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The block diagram of the set up for measuring the turbulence is 
shown in Fi g . 8. A single wire and a crossed wire were mounted side by 
side at the same height on a 24" vertical carriage. The elevation of 
wires could be read off as a voltage across a potentiometer geared to 
the positioning shaft and was either read out from a digital voltmeter 
(OVi'I) or plotted on an x-y plotter. At each section, data were taken 
at 55 test points shown in Fig. 9. Also, at each station x = constant 
continuous data profile ? lots were obtained on an x-y plotter. The 
test ?Oints were chosen so that they included: 

a. points on the tra j ectory, i.e., points on the trajectories 
at the dist ances x of the measuring stations, 

b. points near where the maximum change of rms value of u' 
occurred in each section. 

At each of the test l)Oints the following data were taken: 

a. The rms values, i.e., the fluctuations in voltage ·of a single 
wire and of two crossed wires. All three rms values were re­
corded by x-y plotters versus time and were also read directly 
from true rms meters as a reference. 

b . 5-minute turbulence recordings for energy spectrum and proba­
bility analysis. A i:lincom (Type ClOO) 7 channel FM tape recorder 
was used to record the turbulence for both single and crossed 
wires (3-channel simultaneous recording). The output of the 
CSU-made hot wire anemometer has a de level of one volt and an 
rms value of the order of 0.05 volt. The de level was too high 
and therms value too low for best operation of the tape recorder. 
Therefore, an ac-amplifier was used to amplify the fluctuating 
voltage and to eliminate the de level. Furthermore, an atten­
uator was connected between the amplifier and the tape recorder 
to adjust the recording voltage to 0.5 volt rms. 

The interconnections of all instruments are shown in Fig. 8. Therms 
values of the wires obtained from therms-meter (RMS II) before the 
amplifier and attenuator (A+A). The recording voltage was read from 
RMS II of Fig. 8 . 

Besides the data which have been taken at each test point, the con­
tinuous rms values for all three wires were also recorded on an x-y plotter. 
Figure 10 is a typical continuous rms profile of e fur a single wire 
at x. = 12" For the same station therms profilis of e

1 
and e

2 
for wire 1 and wire 2, respectively, are shown in Figs. 11 and 12. 

As long as therms values for single wires and corssed wires were 
known, the turbul ence components u!v' and the turbulent shear stress 
uv could be calculated from Eq. 3, Eq. 11 and Eq. 13, respectively. 

The me asured rms values and the calculations of u2 , 
uv are shown in Table II. The profiles of these quantities 
in Fi g . 13. 

v2 and 
are plotted 
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3.4 Determination of Streamline Locations 

Mean streamlines can be drawn so as to be always tangential to the 
vectors of fluid velocity in a flow. Since a separation bubble existed 
near the downstream side of the model, it was found desirable to first 
determine a reference streamline in the outer part of the flow by joining 
the direction of mean velocity vectors from station to station, and to 
obtain lower streamlines by integration, i.e., the integral ju dy = constant 
below the reference streamline defined other streamlines. 

The firs t streamline was found by using a hot wi r e in the following 
arran gement. The heat transfer from hot wire to air depends not onl y on 
the !llagnitude of th e velocity, but also on the flow direction with respect 
to the wire. The heat transfer from the wire is maximum when the flow is 
perpendicul a r to the wire, minimum when the wire is parallel to the flow. 
By rotating the hot wire and p lotting the output of the hot wire anemometer 
versus the rotating angle on an x-y plotter, a well-defined minimum was 
found which could be used to define the flow direction. 

at 
The starting point of the reference streamline was arbitrarily set 

x = 0 y = 9.1" , the height of the second point was estimated by 
0 ' 0 

y
1 

= y - £ sin6a 
0 0 

6a 
0 

£ 
0 

= the direction of local velocity vector to the 
free stream vector at first point 

= the horizontal distance from the first point to 
the second point 

= height of the first point 

In ieneral the height of the point y 
n 

at station x 
n 

( 43) 

can be cal-

culated from the n-lth point when the height yn-l , the angle 6a 
1 n-

and the distance £ 
n-1 

are known. 

Y - y £ sin6a 
1 n - n-1 - n-1 n-

We have 

( 44) 

The first reference streamline was estimated in this manner, with the re­
sult shown on Fig. 5. 

It is evident that this is not too satisfactory a method for deter­
mining the streamline. The method was difficult and time consuming, and 
wrought with error due to the fact that the error in estimating the height 
was cumulative. Therefore, a different method was used, where integration 
starts at the floor. It is clear that outside of the separation region 
the streamlines can be determined from velocity profiles by integrating 
up from the lower boundary. 
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According to continuity the flow rate between two streamlines at any 
section must be the same. It is known th at the lower boundary is a streamline. 
The lower boundary consists of three parts 

(a) before separating the surface of the model hill, upstream 
of separation 

(b) between separation and reattachment, the upper boundary 
of the separation bubble 

(c) aft er reattachment, the floor. 

In our flow field the part (a) and (c) are fixed and are well known. Thus, 
a reference s treamline can be found for regions (a) and (c) at some height 
up, and the streamline above the separation region (which is rather short) 
can be found by fa iring between the t wo curves following the trend of 
the reference streamline measured by the previous method. The remainder 
of the procedure of streamline construction is as was outlined above. 
In this manner two streamlines are obtained, namely, (1) the measured 
streamline starting 5" above the crest, which was constructed from the 
reference streamline by applying the continuity equation, and (2) the 
lower boundary. Between these two streamlines the flow rates are q 
at any section. Some streamlines were interpolated between these two. 
The streamlines and the separation region are shown in Fig. 5. 

3.5 Measurement of Turbulence Spectra 

Spectra of the u'-component of the turbulent signal was obtained 
by means of a Bruel and Kjaer spectrum analyzer (Type B & K 2109), with 
occasional cross checks against results from a Technical Products Wave 
Analyzer (Type TP 62). The former has a proportional band width, 
passive filter system, while the latter works with active constant 
bandwidth filters. Both set-ups for this evaluation are shown in Fig. 14. 

3.6 Measurement of Probability Densities 

The probability density distribution of a single turbulent component 
was measured with a Technical Products probability analyzer (Type TP 647), 
Fig. 15. Joint probability densities were measured with two of the above 
analyzers coupled together so that one provided the gate for the joint 
probability density obtained from the other, Fig. 16. 

Normalization and calibration of probability analyzers were based 
on a known input sine wave, whose rms value is close to that of the hot­
wire turbulent signals. The probability density of a sine wave e=Asin8 
whose phase 8 is a random variable uniformly distributed on the interval 

1T 1T is given by: -2 to 2 

HxJT 
1 

f(e) 1 2 for l el~ A (45) = TIA 

= 0 otherwise 
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Since the normalizing process has made all the amplitudes of different 

sine waves to be A = Ii /;i = Ii in such a way that k2 = 1 

the lowest point of the sine-wave probability density is found to be 
1 f(o) = nA = 0.225 , which was used for calibrating the x-y plotter. 

An example is given in Fig. 17. As for the calculation after the analog 
analysis, the main problem was to convert the measured o values into 
the real turbulent fluctuation units (in feet per second). A graphical 
integration based on the second-moment of the probability density was 
suggested as a proper approach, i. e_. , 

u . 2 
1 

00 

=f 
- oo 

e . 2 f ( e . ) de . 
1 1 1 

( 46) 

where u. 2 is the square of therms value at point i and e . is the 
1 1 

value obtained from the probability analyzer. 

The experimental data for probability densities were plotted, both 
for probability densities of single quantities and for joint probability 
densities. Instead of establishing a 3-dimensional distribution of joint 
probability density, iso-probability density contour maps were plotted. 
Conditional density functions were evaluated according to the definition, 

f (v' /u'') = f(u' ,v') = 
f{u') 

f(u' ,v') 

J f(u' ,v')dv' 
- oo 

and thus, the conditional probability density is given as 

f(v'/u' = u 1 )dv 1 

0 
= 

Prob [ u' < u ' < u' + du' v' <v' <v 1 + dv 1] 
0 - 0 ' 0 - 0 

Prob [ u ~ < u 1 ~ u ~ + du'] 

( 47) 

( 48) 

This equals the ratio of the mass in the differential element of Fig. 18 
to the mass in the strip (u' u' + du') . Thus, for a given u' 

0 0 0 

the density f(v'/u' = u') is the u' - profile of joint density f(u'v') 
0 0 

normalized to make its area equal to 1 
' 

(Fig. 18). 

3.7 Measurement of Space Correlation Coefficients Along the Trajectories 

Space correlations along trajectories were taken by passing the 
outputs of two single hot-wire anemometers through a well-calibrated sum­
and-difference circuit instead of an analog multiplier (Fig. 19). The 
calculations were only based on therms values of inputs and outputs of the 
sum-and-difference circuit. 
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Let u 2 = A 2 e i u 2 = A/. e2 
2 

1 1 1 2 

/4e, s = cs + e I )2 
1 2 D = C /4e 1 

D 1 
e I )2 

2 

where Al A2 , are the calibration constants for hot-wire anemometers, 

1 and 2, respectively, CS 

and difference (D) circuits. 

u1 (x)u2 (x+O 
R(x, EJ = = 

c0 , the calibration constants for sum (S) 

Then 

(S/CS)2 - (D/CD)2 
(49) 

yields a relation for the space correlations when ~ is the distance of 
point 2 from point 1, and x is the location of point 1 in the reference 
coordinate system . 
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Chapter IV 

THE EXPERIMENTAL RESULTS 

The experimental work on this project was conducted in three 
phases. These were: 

1. Measurements of the mean wind vertical velocity profiles and 
turbulent intensities at selected points on the lee side of a sinusoidal 
hill using the Army Wind Tunnel. This work has been reported by Plate 
and Lin (1965). Another more detailed flow pattern will be given in 
this chapter. 

2. Determination of theoretical missile trajectories, corresponding 
to mean wind conditions if the missiles were fired from the lee side of a 
scaled-up version of the two-dimensional ridge. 

3. Determination in the wind tunnel of the characteristics of 
the wind field at selected points along the scaled-down missile· tra­
jectories, in accordance with the theoretical development given in 
Chapter II. 

A fourth phase, not reported here, will be to calculate the response 
of the missile to the experimental wind fields determined in phase 3. 

4 .1 Determination of Mean · Missile Trajectories 

This work was conducted at the USA Ballistic Research Laboratories, 
Aberdeen, Maryland, using the laboratory computing facilities and a six 
degree of freedom multi-stage rocket trajectory program. 

The missile used for the mean trajectory calculation was a hypo­
thetical gun-launched two-stage anti-tank missile. The gun launched 
the missile at 1200 f/s. After a short delay, a booster section ignited, 
the thrust from which accelerated the missile to a velocity of 2100 f/s. 
At that point, a sustainer motor ignited, the thrust from which kept the 
missile at a constant velocity until it reached a position about 1 km 
from the launcher. In computer simulations, this missile was shown to 
have a steady cross wind sensitivity of 0.36 mils angular deflection per 
ft/sec of cross wind. 

For the simulation study, the two-dimensional ridge used in the 
tunnel was scaled up by a factor of 1200 to a ridge 400 ft high by 2000 ft 
long. It was then assumed that missile launchers were emplaced at the 
base of the ridge; halfway up the ridge, and at the top of the ridge. 
All the launchers were pointed at targets on the lee side of the ridge, 
the targets being 1 km from the launcher sites. 
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The trajectories of missiles were simulated first for the no-wind 
case and then for the case of the steady wind flowing over the ridge by 
interpolating in the data from Plate and Lin (1965) . 

The missile trajectory data from these simulations were then sent 
to Colorado State University to be used in further experimental work. 
The characteristics of the wind fields along the trajectories, shown in 
Fig. 3, generated in the above study, is discussed in this report. 

4.2 Mean Velocities and Streamline Pattern 

Mean velocity distributions are shown in Fig. 5. The solid lines 
indicate velocities measured with a pitot static tube, while the dashed 
lines refer to hot-wire measurements. On the whole, the agreement be­
tween the two sets is good, even without any corrections for turbulence. 
The small deviations might just as well be due to drift in the hot-wire 
characteristics, which could never be fully eliminated. 

Characteristic of the flow field is the strongly accelerated flow 
above the crest of the model, which gives rise to the velocity maxinrum, 
and the very sharp velocity gradients in the neighborhood of the separation 
streamline. These velocity gradients interact with the turbulent shear 
stress to cause a large increase in the amount of turbulent energy of 
~he flow. 

-Vertical mean velocities can be determined from the mean streamline 
pattern shown in Fig. 5. The streamline pattern also shows the separation 
region. Under the separation streamline, the velocity gradually decreases, 
reaches zero and reverses direction. This can be inferred from the fact 
that the discharge across any vertical section underneath the separation 
streamline must be zero. The experimental data, however, fail to show 
this behavior due to the fact that the pitot tube cannot measure any 
backflows, while the hot-wire cannot distinguish the flow directions. 

4.3 Turbulent Intensities and Shear Stresses 

The turbulent quantities u 12 and v 12 , and the turbulent shearing 
stress u'v' were plotted against y in Fig. 13. The turbulent quantity 
~ was also determined at a number of points and generally behaved roughly 
like the u-component. The shear stresses u w were calculated and found 
to be negligibly small even in the bubble region. The profiles shown in 
Fig. 13 have a strongly peaked shape in the neighborhood of the separation 
streamline, especially for short distances from the separation point on 
the hill slope. In general, the intensity profiles of u component based 
on values which had not been corrected for the flow direction coincide 
with those obtained by Plate and Lin (1965) and thus the reproductibility 
of the turbulent flow field in the present tunnel is quite satisfactory. 

4.4 Turbulence Spectra and Dissipation Rates 

Turbulence spectra were evaluated for all points indicated in Fig. 9. 
The signal is plotted in the form e8

2/B vs. f (Fig. 20 through Fig. 28). 

Here e8
2 /B is the energy density, per Hz , of the electrical signal 
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from the hot wire as passed through the filter of bandwidth B and of 
center frequency f of the spectrum analyzer. It differs from the 
energy level of the turbulent motion by a calibration factor given by 
the square of the slope of the calibration curve iJ vs. E of the hot­
wire anemometer. 

In the low frequency range, we notice a strikingly different 
spectrum shape close to the hill crest (x = 0) as compared to the 
results at 16 inches downstream. At short vertical distances from the 
wall, the data close to the crest (Fig. 22) indicate a much slower drop­
off with frequency than the set of data shown in Fig. 25. In fact, there 
seems to exist a well-developed region, between 40 and 200 cps, in which 
the energy level decreases almost linearly. This behavior is character­
istic of strong interactions between mean flow and turbulence, i.e., 
of a flow when a large amount of turbulence generation due to large 
velocity gradient takes place. This behavior is not typical for other 
boundary layer flows of the U.S. Army Wind Tunnel. 

Due to strong noise levels of the magnetic tape recorders, the 
part of the spectra corresponding to frequencies above 2000 Hz is not 
~sable. For large frequencies, but below 2000 Hz, the shape of the 
spectrum is the same for all data. In fact, if the spectrum is plotted 
in the similarity form of the universal equilibrium law of Kolmogoroff, 
we find that the shape is identical for all data, and they collapse on 
a single curve. This is illustrated in Figs. 29, 30, 31, 32 and 33, in 
which the data of Figs. 22, 23, 25, 26 and 28 have been replotted in 
dimensionless form: 

k , 
4> ( K ) = N • F ( f) 

s 

4> is the non-dimensional spectral density, 
spectral density at frequency f , and N 

N = 
2 

1/4 5/4 
TT€ \I 

F(f) is the measured 
is a conversion factor: 

(SO) 

(51) 

Furthermore, 
€ 

K is the reference wave number based on the dissipation 
s 

K = (e::v-3) 1/4 (52) 
s 

As an estimate for the dissipation e:: we have used the isotropic 
relationship: 

e = 15 v (;~•)
2 

= 15 v u-2
(;~•)

2 
(53) 

and also, the equivalent form 

e = 15 u• 2J K2 f(K) dK 

0 

(54) 
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where K is the wave number 

K = (55) 

and U' is the mean velocity, as before. Dissipation rates calculated 
from Eqs. (53) and (54) are shown in Fig. 34. 

In Figs. 29, 30, 31, 32 and 33 we have also indicated the -5/3 
law of the inertial subrange and the tmiversal shape of the high fre­
quency and of the turbulence spectrum, in the form given by Sandborn 
and Marshall (1963). It is surprising to see that the high frequency 
end of the spectrum in the highly disturbed boundary layer of our case 
is presented exactly by the high frequency shape of the undisturbed 
turbulence in a boundary layer along a flat plate. Since Sandborn and 
Marshall have demonstrated the perfect agreement of their spectra with 
experimental results obtained in wind over ocean waves 'by Pond et al., 
(1963), it appears that this range of the spectrum is a universal feature 
of all turbulent flows. 

But the same conclusion cannot be drawn for the turbulence spectrum 
in the inertial subrange. Pond et al., report that here a spectrum law 
of the form is valid 

N 
K 

F(f) = k Cr) 
s 

(56) 

where k is a universal constant, about 0.46. For the data of this re­
port, it is found very near the crest of the model hill, this "constant" 
is well enough verified, but at larger distances downstream, in the 
region which derives its turbulence from the initially strong gradients 
in the mean velocity across the separation streamline, the "constant" 
seems to be substantially higher. At 16" (Fig. 31) downstream from the 
hill crest, the best fitting -5/3 law has a constant k of about 0.85. 
It should be noted that in the ve.locity region where this is found the 
turbulence level decreases rapidly with distance, indicating that the 
amount bf energy generated locally is lower than that dissipated, i.e., 
the ratio of dissipation to generation 

D = 
E 

--au u'v' -ay 

(57) 

in this region is greater than one. This result thus is in qualitative 
agreement with a result of Margolis and Lumley (1964). It has as yet, 
however, not been shown that a tmiversal relation exists between k and 
D Experiments are at present underway at Colorado State University 
to investigate this point. That D might also be an important quantity 
in modeling of atmospheric turbulence has been pointed out by Plate and 
Lin (1966). 
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The low frequency end of the spectrum is governed by the process 
of energy extraction from the mean flow and depends on the local velocity 
field. Similarity f orms can, therefore, not be expected f or the whole 
spectrum. But the eddies associated with the l ow frequency end of the 
spectrum input cause the most important dynamic effect on a missile during 
its flight. Work is therefore in progress at CSU on relations between the 
low frequency end of the spectrum and the local mean velocity field. 

4.5 Probability Density Distributions 

Two different sets of probabil i ty densities are given for the 
points along the trajectories. These are probability densities of the 
v', of the w' components (Figs. 35-42), and joint probability densities 
of u' and v' , (Figs. 43-50) . 

The density of each individual turbulent component seems quite 
well represented by a Gaussian (normal) curve except the mean value is 
not exactly zero. This is illustrated by plotting cumulative probability 
densities on probability papers (Figs. 51-54) . The angle e of the joint 
probability density contour as calculated by Eq. (26), which is based on 
the assumption of a zero mean density, is surprisingly close to the 
measured angle e obtained directly from the two-dimensional contour of 
joint probability density (Table III). Most of probability densities 
also show the evidence of skewness. Numerical evaluation of the skewness 
factor is not necessary for this study, but the reason for this skewness 
could always be interpreted as the result of the preferred direction of 
fluctuation of the turbulence component due to the shear stresses. This 
phenomenon could be strongly shown for those points along the separation 
streamline and somewhere within the bubble region because of the complex 
interactions of the three-dimensional turbulence. 

Flatness of the probability density, which was suspected as the 
result of turbulent intermittency, was not obviously seen among our 
measurements which were usually performed in the fully turbulent boundary 
layer. 

In order to check the statistical independence of w' from u' 
joint probability density distributions f(u', w') are measured. As 
mentioned in a previous section, the homogenuity of turbulence in 
plane parallel to the ground requires that u'w' be zero, which was 
confirmed by our experiments. But it is also necessary that for each 
value of u' , f(w'lu') be independent of u' and equal to f(w'). 
To check this criterion (which gives a sufficient condition for sta­
tistical independence) we have plotted into one graph f(w'\u') for 
different values of u' as well as f(w') . Some results are shown in 
Figs. 55-59. They indicate that u' and w' are not exactly jointly 
Gaussian, even though u' w' was found to be zero from hot wire measure­
ments, which is not a sufficient condition to conclude that w' is inde­
pendent of u' for the slightly non-Gaussian curves observed in this 
study. 

We next checked joint probability density distributions f(U I. , 
1 

Different results were obtained depending 
jectory. For a traj ectory of 60° azimuth 

on t he direction of the tra­
these typical meas urements 

U I . 1) • 
1-
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are shown in Figs. 60-62. The results indicate that no correlation exists 
for turbulence components u• 1 and u 1

2 
• This is evident from the co­

incidence of the axes of the elliptical contours with one of the axes. It 
implies that the distance between the two points has been chosen too wide, 
so that the integral length scale is somewhat smaller than the distance 
between adjacent points. 

For the case of 60° azimuth, the assumption of an elongated eddy 
structure with u1

1 related only to u2
1 is not justified. The only 

way of obtaining an impact dispersion probability distribution is found 
by assuming statistical independence between neighboring points along 
the trajectory, with the resulting inconsistency in the averaging pro­
cedure for the average velocity encountered by the missile in traveling 
from x. 1 to x. 

1.- l. 

When joint probability densities for u! 1 and •· u.' lying on a l. - l. 
trajectory in the mean wind direction (0° azinruth) are considered, strong 
correlations are found as is demonstrated in Figs. 63-65. Th~ results 
are even better illustrated by considering directly the space correlation 
functions along different trajectories, which are plotted in Fig. 66. 
Two trajectories were added, trajectory 2 which starts halfway down the 
hill slope, and trajectory 3 which starts at the crest of the ridge. 
For correlation functions which start at the hill directly, correlation 
distances are rather short: already at 1" downstream from the hill the 
correlation between u

0 
and u111 has decreased to a correlation co-

efficient r = 0.2 J where 

u . I u! 1 l. 1.-
(58) r = 

lu. 2 2 
l. ui-1 

For correlations starting at larger values than x = 4" the correlation 
coefficients for both trajectories seem to follow a fairly constant 
correlation curve, with approximately equal shape and furthermore, with 
a shape which is approximately exponential. The exponential curve which 
appears to give the best fit has been sketched into the experimental 
results. It is represented by the equation: 

-ax r = e (59) 

when a is a constant equal to 0.2 in-l This result implies that in 
the outer region (further downstream than 411 from the ridge) the joint 
probability distribution f(u!, u! 1) can be specified by the magnitudes 

2 2 1 1.-

ul.! and u1_1 and by the curve expressed by Eq. (59), If u! and u! 
1 l. . l. -

can be approximately represented by Gaussianity. The latter yields the 
numerator, and the former the denominator of Eq. (26) with u! 

1 
taking 

].-

the place of v' ,while u! takes the place of u'. A difficulty in 
interpretation arises, howeier, if ui happens to be equal, or 
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u+ = u where A 
1-l i-1 
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In that case, we may let u+ = Au. and 
1 1 

is any positive constant factor in order to 

either enlarge or contract the values of u . in such a way that u+ 
1 1 

and u+ 1 are numerically quite different from Eq. (21) and assuming 
1-

again m = m = 0 for simplicity, 
l!i ui-1 

f(u . , u . 
1

) 
1 1 1-

f(u+, UT 1) = ------
1 1-

J (u . , u. 
1

) 
1 1- 2rrAcr cr /2-p2 

u. u. l 
1 1-

e ( I [( ut \
2 

2 (.3__) ( ui-1 )+(ui-1 )
2

] ( 60) 
l2(1-p2) Aolli j p Aolli olli-1 olli-1 

Now, following the same procedure in deriving our Eq. (26), we may obtain 

2A ui ui-l 
Tan 28 = -----

But this angle 8 can only be used to specify f(u+, u+ 1) , and of 
1 1-

course, f(u., u. 1) can also be specified by a little transformation 
1 1-

technique. 

(61) 

For the region between O and 4" along the trajectory, it is 
necessary to know the coefficient a for each length section, which can 
approximately be found by linear interpolation . It is thereby assumed 
that the correlation function is exponential between point x. and 

1 

x. 1 Thus, even though at larger distances the same exponential does 
1-

not fit all the data, it is possible to make the assumption of Markoff 
dependency over a short reach, with at least engineering accuracy. 
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Conclusions 

In the report we have given experimental evidence that the 
turbulence structure in the complicated flow field downstream of a 
model hill can be represented to a good approximation by Gaussian and 
jointly Gaussian probability distributions connected by space correla­
tion functions which appear exponential. The joint probability den­
sities are seen to be fully specified by the variances of the two 
variables and their first order cross correlation. 

The results of this study indicate that it is possible to 
construct a model of the missile dispersion probability distribution 
by simply determining the variance of this distribution. Research 
towards this objective is currently under way at CSU. 
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TABLE I 

Mean Velocity Calculation 

X y 
Ul-IW UP.T 

X y 
UHW UP.T in pt in in pt in 

2" 6 3.89 22 .4 29.4 8" 18 1.35 3.6 
7 3.98 29.0 27.8 19 1.52 4.4 
8 4.09 31. 8 33.3 20 1.9 7.9 10.1 
9 4.22 32.0 33.3 21 2.0 10.6 11. 9 

10 4.68 31.8 32.9 22 2.16 13.6 15.5 
11 5.1 32.0 23 2.51 19.7 20.2 

6.0 31.4 31.3 24 3.12 22.6 23.3 
8.0 31.2 30.8 25 4.86 24.7 25.3 

10.0 31.0 30.7 6. 26.3 27.4 
15.0 31.0 30.3 . 8. 27.2 28.3 
20.0 30.9 30.6 10. 28.5 29.3 
24.0 30. 7 30.2 15. 29.5 30.2 

20. 30,3 30.6 
4" 12 3.35 16.2 19,2 24. 30.3 30.4 

13 3.49 26.5 25 .4 
14 3.60 27.3 28.5 10" 0,05 1.15 1. 707 
15 3.84 29.0 29.8 . 7 5.15 1. 707 
16 4.63 29.0 29.7 1.15 7.96 8.18 
17 5.25 29.8 29.7 1.65 16,8 12. 77 

6.0 29.5 30,1 2.2 22.5 17. 
8.0 30. 3 30. 3.36 24, 23.35 

10.0 30.5 30 .1 5.43 25.8 25. 72 
15.0 30.5 30 .3 8. 27.3 26 .72 
20.0 31. 30.5 10. 28.5 28.2 
24.0 30.7 30.5 15. 29.5 30.06 

20. 30.6 31. 
6" 2.46 10.2 

2.53 16.6 8.18 12 11 26 0. 12 3.8 
2.81 24.1 17.66 27 0.73 5.9 5.12 
3.29 26.2 23.22 28 1.12 8.0 9.2 
4.0 27.4 24.58 29 1.50 11.1 13.3 
6. 28.6 26. 77 30 1. 75 14.4 15. 
8. 29.7 28.26 31 2.66 20.0 20.9 

10. 30.4 29.2 32 5.00 24.0 26.2 
15. 31.0 30.5 7 .14 25.4 25.6 
20. 31.4 31.16 9. 27. 27.4 

12. 28.2 28.5 
15. 28.9 29.5 
23.3 29,9 30.3 
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TABLE I (Continued) 

X y 
UHW UP.T 

X y 
UHW UP.T in pt in in pt in 

14" 0.05 2.7 24 11 41 0.12 12. 12.81 
.18 4.14 44 1.06 15,8 17. 31 
.4 6.0 6.15 45 1.20 16.2 16.85 
,62 7.96 8,86 46 2,73 18,8 20.25 

1.05 11. 12.31 47 6,16 23.9 23. 85 
1.58 16,6 15.55 8, 25.7 25.2 
2.0 19. 17 ,16 10. 26.4 26.24 
2,67 21.35 19.62 12,5 27,55 27. 65 
4. 22,64 22.44 15, 28.20 28,58 
8. 26,8 26.4 20. 29,3 29.4 

10. 27.5 27.64 
15. 28,9 29,58 32 11 48 0.14 14. 14.02 
20. 30,4 30,64 49 .so 16,5 16 ,85 

50 3,58 20.9 21,82 
16" 33 0.12 5,8 9.66 51 6,74 24. 25,55 

34 . 28 8.4 11.32 10 • 26.55 26.8 
35 .69 10.2 13.87 12.5 27.1 27.3 
36 ,96 10,8 15.17 15. 28.1 28.56 
37 1.56 13.8 18.07 20. 29.4 29.48 
38 2.2 18.2 19.62 
39 3.32 20. 22.6 40 11 52 0.1 14.5 15.4 
40 6.5 23.8 25.9 53 ,2 16,5 16.57 

8. 25,8 26.98 54 4.16 22,2 22,4 
10. 27.8 28.5 55 6.32 23,9 24 .44 
15. 28.8 30. 7.5 25.1 24.75 
20. 29,9 30.7 10. 26.2 26.3 

12.5 27.4 27.5 
18 11 . OS 7.4 9,66 15 . 28,0 28,2 

,13 9.55 ll.45 20. 29.4 29 .34 
.37 10.95 12.66 
,95 14.05 13.44 

2. 19.5 17.4 
2.9 20 .85 20.42 
4. 22.3 22.6 
8. 26,3 26.42 

10. 27.7 27.76 
15. 29,5 29.6 
20. 30.2 30.64 
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TABLE II 

Turbulent Calculation 

u'2 = ( :~) 2 e'2 

v'2 = l [~ 2 el + ~] (dU)2 e2 dE 
- [-u'2 - £ . ei2 ~](du)2 e2 dE 

u'v' 1 l-= 4 ei2 _ 1 ( dU)2 
e2 dE - 2e: v' 2 

w'2 = 1 [~ 2 el -1 ( dUr + e2
2 

dE - u'2 

u'w' = t-;, 4 el •22 l (~~)2 
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TABLE II (Continued) 

X pt y u' 2 v' 2 u'v' w' 2 u'w' 

2" 6 3.89 27.7 .227 18.51 -10.06 22.9 -.455 
7 3.98 26.5 .209 28.60 -11. 89 13.9 -.071 
8 4.09 3.37 .175 5.635 - 3.36 5.93 -.0367 
9 4.22 2.46 .14 7.568 - 2.64 6.58 -.0ll 

10 4.68 1.88 .105 1.869 - 0.657 4.92 -.005 
ll 5.10 1. 70 .0872 1.398 - 0.354 4.99 -.014 

10.00 .69 .0349 0.6976 - 0.227 . 230 -.0283 
15.00 .388 .0175 0. ll57 - 0.0574 .076 -.0505 
17.00 . 72 0 .149 - 0.048 .081 +.056 
20 .00 .019 0.0233 - .0095 .0113 +.067 

4" 12 3.35 11.8 .314 19.42 -17.05 24.4 -.002 
13 3.49 8.48 .262 14.57 -12.16 18.62 -.017 
14 3.60 4.96 .244 3.345 - 2 .372 8.95 +.0005 
15 3.84 2. 72 .244 2.542 - 1.405 4.27 -.0017 
16 4.63 2.20 .192 1. 713 - 0.925 3.41 +.050 
17 5.25 1.90 .140 1.488 - 0.699 2.91 +.021 

10.00 1.09 .0175 0.604 - 0.362 .585 +.036 
13.00 0.69 0.29 - 0 .14 7 .302 +.036 
15.00 .337 .331 - 0.088 .077 +.040 
20.00 .028 .041 - .0094 .010 +.042 

8" 18 1.35 1.90 .525 .432 - .611 2.36 -.045 
19 1.52 5.20 .489 1.26 - 1.161 3.28 +.075 
20 1.90 11.85 .14 5.20 - 4. 76 12.80 +.0475 
21 2.00 19.54 .087 6.09 - 6.59 21.9 +.0725 
22 2.16 24.00 . 035 22.0 - 7.86 28.5 +.0775 
23 2.51 12.75 .0175 6.4 - 3.804 17.56 +.12 
24 3.12 4.99 .035 .956 - .467 1.15 +.0378 
25 4.86 2.56 .035 .974 .096 3.55 0 

5.00 1.89 .035 .47 - .057 1.18 -.019 
10.00 .743 .0175 .297 - 0.024 .355 +.021 
15.00 .388 .08 - .074 .098 +.0245 
17.50 .11 .028 - .0669 .012 +.0012 
20.00 .028 .013 - .0087 .003 -.0035 

12" 26 0.12 2.24 .31 - 0.178 1.93 .025 
27 .73 8.78 .14 - .76 10. 72 .08 
28 1.12 16.3 .175 5.61 - 5.74 18.36 .142 
29 1.50 25.3 .262 14.23 -14.96 19.9 .123 
30 1. 75 30.3 .245 14.28 -15.84 31.2 .102 
31 2.66 6.2 .175 12.80 - 7.62 11. 2 .085 
32 7.14 1.42 .07 0.79 - .46 2.0 .008 

10.00 1.04 .035 .23 - .175 .043 .043 
15.00 .38 .0175 .20 - .112 .07 .033 
18.00 .07 .086 - .034 .0209 .005 
20.00 .0186 .005 - .0085 .0136 0 
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TABLE II (Continued) 

X pt y u' 2 £ v'2 u'v' w' 2 u'w' 

16" 33 0.12 7.3 0.39 - 0.19 8.64 +.101 
34 .28 10 .55 15.55 - 2.51 15.7 .ll5 
35 .69 19.0 15.05 - 4.06 18.6 .104 
36 .96 17 .4 16.35 - 7.08 19.5 .061 
37 1.56 16.6 17 . 24 - 6.62 19.5 .037 
38 2.20 12.1 19.65 - 7 .13 17.2 .026 
39 3.32 4.09 5.69 - 1.81 6.6 .021 
40 6.50 1.48 .998 - .423 1.5 .047 

10.0 .84 .551 - .223 .21 .033 
15.0 .242 .186 - .0754 .15 .045 
18.0 .109 .102 - .0462 .022 .008 
20.0 .0275 .000 - .0031 .019 .003 

24" 41 .12 9.12 5.33 - .582 
44 1.06 14.0 4.00 - 2.63 
45 1.20 13.8 4.05 - 2.86 
46 2.73 8.29 5.31 - 3.33 
47 6.16 2.27 .70 - .664 

10.0 .755 .565 - .16 
12.50 .60 .55 - .247 
15.0 .302 .433 - .139 
20.0 .040 O · - .0071 

32" 48 .14 5.26 2.86 - .935 
49 .50 7.33 2.42 - 1. 21 
50 3.58 6.02 5.08 - 3.00 
51 6. 74 2.025 .975 - .528 

10.0 1.221 .159 - .268 
12.5 .735 .025 - .0413 
15.0 .302 .236 - .075 
20.0 .0068 .015 - .00136 

40" 52 .10 4. 72 6.38 - 3.29 
53 . 20 4.94 5.51 - 2.29 
54 4 .16 4.88 3.67 - 2.03 
55 6.32 2.40 1. 76 - .915 

10.0 1.29 .07 - .193 
12.5 . 72 .175 - .044 
15.0 .42 .176 - .0615 
20.0 .057 .019 0 
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TABLE III 

-1 2u'v'° 
8 = 1/2 tan _ 2 _ 2 

u' - v' 

X z y 7 --;f e 
pt (in) (in) (in) IT u V . u'v' (deg) 

12 4 4R 3.35 16.2 11.80 19.42 -17.05 38.7 
14 4 4R 3.60 27.3 4.96 3.35 - 4.74 35.6 
21 8 4R 2.00 10.6 19.54 6.09 - 6.09 : 21. 2 
22 8 4R 2.16 13.6 24.00 22.00 - 7.86 41. 3 
24 8 4R 3.12 22.6 4.99 0.96 - 0.47 2.8 
27 12 4R 0.73 5.9 8.78 0.14 - 0_. 76 5.0 
28 12 4R 1.12 8.0 16.30 5.61 - 5. 74, 23.5 
30 12 4R 1. 75 14.4 30.30 14.28 -15.84 31.5 
31 12 , 4R 2.66 20.0 6.20 12. 80 - 7.62 . ;3'3.3 
33 16 4R 0 .12 5.8 7.30 . 9 .39 - 0 .19 1.0 
36 16 4R 0.96 10.8 17.40 16.35 - 7 .93_ . 41. 7 
37 16 4R 1.56 13.8 12.10 19 .! 65 - ' 7 .. 15, 45.0 
38 16 4R 0.96 10.8 16.60 17.24 - 6.02 31.0 
44 24 4R 1.06 17.9 12.10 19.65 - 7.13 13.9 
48 32 4R 0.14 13.22 5.26 2.86 - 0.94 · 19 .o 
49 32 ' 4R 0.50 17 .08 7.33 2.42 - 1.24 13.4 
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