
Civil Engineering Department 
Colorado Agricultural and Mechanical College 

Fort Collins, Colorado 

ON THE ASYMPTOTIC BBHAVIOR OF AN Y FUNDAivIENTAL SOLUTION 
OF THE EQUATION OF ATMOSPHEh IC DIFFUSION AND ON A 

PARTICULAR DIFFUS ION PROBLE M 

September; 1952 

by 
Cc:, s. Yih 

Associate Professor 

Prepared for the 
Office of Naval Research 

Navy Department 
Washington, D. C. 

Under ONR Contract No. N9onr-82401 
NR 063-071/1-19-49 

CER No. 53-4 Report No . ., 8 



FOREWORD 

This report is No. 8 of a series written for the Diffusion 

Project presently being conducted at Colorado Agricultural and 

Mechanical Colle ge for t he Office of Naval Research under 

Contract N 9 onr 82401. The experimental phase of this project 

is being carried out in a wind-tunnel at the Fluid Mechanics 

Laboratory of the College. The project is under the general 

supervision of Dr. M. Lo Albertson, Head of Fluid Mechanics 

Research of the Civil Engineering Department. 

To Dr. M. L. Albertson, and to Dr. D. F. Peterson, Head of 

the Civil Engineering Department and Chief of the Civil Engineer-

ing Section of the Experiment Station, as well as to Professor 

T. H. Evans, Dean of the Engineering School and Chairman of the 

Engineering Division of the Ex-periment Station, the writer wants 

to expr ess h is appreciation for their kind interest in the pre-

sent work. 

The writer also wishes to t hank the Multigr aph Office of 

the College for the able service it has rendered. 



On the Asympt·otic ·Behavior of any Fund amentAl Solution of 

the Equati6n of At mospheric Diffusion and on a 

Particule.r Diffusion Probleml 

by 

Chia-Shun Yih 

Abstract 

In this pape r , the asympo~ic behavior of any fundamental 

solution of the differential equation of atmospheric diffusion 

is studied. It is found tha t if the wind velocity and the 

diffusivity increases monotonically with height, then the 

"amplitude" and t he spacing of the zeros of the fundamental 

solution will decrease asymptotically in certain definite 

ways. As an application a particular problem in atmospheric 

diffusion is solved at the end. 

1. Introduction 

If one ne ~lects the longitudinal diffusivity in compa rison 

wit h the vertical diffusivity , the e nuation of diffu sion can be 

writt en as 

where c , U, and K are respec~i vely the concentration, t he 

wind velocity and the vertical diffusivi ty. -:- ·; and K being 

functions of y1 only, and x1 and y1 being measured 

respectively in the horizontal and the vertical directions 0 

With c0 denoting the ambient concentration, and h 

denoting a reference length, the last equation can be written 

in the dimensionless form: 
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... 2 ... 

where 
c--c <'P* · ... o, 

Co 
X Yi u K .x =T

1
t, Y=~, U(Y) =- 7 l)(y)~-

n Uo 4,h 
being a certain reference velocity. In atmospheric dif-

fusion, u and D are usually assumed to be monotonically 

increasing functions of y. 

(1) 

'l'o solve the differential system consisting of ( 1) and 

various boundary conditions, the method of separation of vari-

ables will be used. Assuming 

f ~ X(x) YcY) ( 2) 

and substituting in (1), one has 

X I ( Y' I -=- p ) , ,., - -::: -;; X uY 
(3) 

where the primes denote differentiation A is a real constant 

which can be taken to be positive, and the negative sign on 

the right is necessitated by the boundary condition at x"" o0. 

For convenience of discussion one writes (3) as 

x'- -\~x (4) 

( D ' [ 1 
)' + 'A z u. Y 2 o ( 5 ) 

The solution of (4) being obviously 

X: P,-A'X (6) 
~ 

it is that of (5) which is of primary interest. In the follow-

ing, one will endeavor to study the asymptotic properties of 

any non-trivial solution Y ( ). , y) of ( 5) where '>-, will 

be assumed to be different from zero. As an ap~lication of 

the results obtained in the course of this study, a particular 

problem in atmospheric diffusion will be solved at the end. 



( J} 

The Asymptotic Behavior of Y ( ' y) A, 

Multi pl ying (5) by D, and defining t he new variable 
y 

~-= £ n·-'ay 
one has 

YI/ \.2 
+J\ gY=O 

where 
g ( rJ (Y>) = U (Y)D(-Y) 

~ by 

( 7) 

( 8) 

( 9) 

In reality, D is different fro rn zero at y : 0 , since 

molecular diffusivity is always present, and it must remain 

everywhere finite. Conse quently the integr al in (7) exists for 

any finite y , but incre ases indefinitely as y-..::., r::e. Thus, 

D being a positive quantity, 0 is a monotonic ally increas ing 

function of y mapping the interval O ~ y < oo into O ~ 1 ~ <:::,,() • 

Sometimes for convenience a simple functi onal form is assumed 

for D , for instance Druy n • But, n being usually le s s 

than 1, the interval G,O:) co ) is still mapped into it self by 

the trans f ormation fro m y to ~. One will notice in addition 

tha t s ince u D 

functions of y, 

and ry are all. monotonic ally increasing 

g (~) must be monotonically i ncreDs ing 

f unction of ~ , With t hi s in mind , one will consider (8) in 

the i nte r va l O ~ Y) < oO • 

Making the trans formations 

and using prime$ to denote differentiation (with respect to 

'f\ and ~ ) , one ha s 

(10) 



{ 4) 

..-,T' · '-ri . . I 
.1 .:::: G .c ...... c..,- F e , .., 

so that (8) becomes 
~. f- I _k / I/ · ( 1 , ) 
\.J :., ::> F + ( 2 C:: '~' -r G; '' J F ' ,. ( ) , g G ..,.. cj ''YF ·==-o .... .J. 

One demands that 

integration of which gives 
t / = G "C 
.J 

t = J '1 G -2. -3. Y/ 
(;, 

as the siraplest results. Thus 

GE:'t.' i 
_, J = G".3 

and (11) becomes 

Taking 

one has 

From ( 13) 

F 1.t 
· + r ', .-t r 4 4- G 11 r 3 ) - ,'"i · , A t=,....:) · ::l \j - v 

! G = r- :-· g ,.,. 

It -F -;- ( >-+ ~ E 'o 'g·-3 __ .-!... ~ 11
0 - 2 1, P 

If Cb 4 E:- b .i.· 

and (16) one notices that 

t; = f ri g·"i·c1n 
0 / 

=0 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

( 18) 

so that f; is a munoto.nic increasing function of 1 , becoming 
,.:,C as ~ becomes ::.l) • 

It will now be proved t hat t he two terms involving g in 

the parenthesis of (17) vanish asymptotically. One considers 

first the term g 1 g1 g-3. It is sufficient to show that 



Letting 

one has 

( 5) 

r{ I 6 -.3/z 
6 B -~ s( rp 

where the lower limit is (X) since 

Since g is different from zero for all va lues of ~ different 

from zero, g-½ is finite for such values of ~, so that 

the integral is convergent and s ( f'l } must vanish at cc • 
f 

Indeed, the same argument can be applied to prove that 

if m > 1 ., Now, taking t he term g'g-2 and differentiat i ng, 

one has 

The term on the left vanishes asymptotically since 
,.r;/6 - 2. os ~o 

and since g is a smooth function. The second term on the 

right has just been shown to vanish asymptotically. Consequently, 
g II d. - 2 Q M 

6 ~ as f ~ oo 
Remembering that O ~ Yj <oo is mapped into ~ ~5 c:::-CO , 

instead of (17) one can study the e quation 

F 11+ ( },2 + q C~ )) F = O (19) 

where q(5) ·~ 0 as S ~ eo • It will be assumed t hat q is 

monotonic asymptotically. After Courant and Hilbert (1931}, 

one takes 
F 1- oC \ COS ( ) __ ~ + ~. ) (20) 



(6) 

where c(_ and S are functions of t , the asymptotic behaviors of 

which are to be investigated. Calculating F" in two ways 

from (19) and the second e quation of (20), one has 

f'":=:-(/\2+q)c{ sin (" ~ f-b) = )..[c(.' ( os (\ €; + o > -d:.. c ). +E; s1n (>., ~+c)J 
so that 

tr"' n ( " ':: ...... ;. ) = A __ o<.:_i __ 
J.. /', .., • ~ o( ( ;\_ ~ ,,_ q ) (21) 

Obtaining F' in two ways from ( 21), one has 

F\= or_) , cos ( >. 5 +- 8) "" o<,_,, sin (A~+ cS ) ;- o(( A+ 6 1
) ·:.:.os ( )°' %; + 6 ) 

so that 

Multiplying (21) by (22)} one has 

t an 2 ( } -" + 8) = - __ >- 61 
"::> >- 8'- a ,. 

from which it is easily seen that 

~ 1 = ;--:; in:- ( A S -t E) 
/ \ 

Then (22) gives 

which gives 
., . i ·4;' 0(/ ln c<. - 1.n. a<.,~· = - Q., ~ ., • - " 0(, ';;, 

p 
One now seeks to establish the convergence of t he 

f oc oJ..1 r ($.) 

- d ~ = -~ , qs1n2CA~-rSJdS f <X ~ 2 1 Jf 
Putting _ 

one can write the integral as 

(22) 

(23) 

(24) 

(25) 

(26) 

integral 

(27) 



Rembering that, with q vanishing monotonically for suf-

ficiently lar8e vAlues of ~ and with A being positive, the 

quantity q_ 

>,..( A -r q sin.2 r) 
is unique in sign for large S , but vanishes as ; ~ Cf:>, it is 
sufficient to show that 

r N "JT' ((].f-t-1) J( 

I q q 
·-· '2. 11-s.:rn Vd V > \ ------sin.1)2. 1) _; _ )....(>---+ q <21n 2) ~..NJ( )\(>._ -rq sh12 -V-) ~ 

~~  ~ 

It is then sufficient to show that 

q1N1l."-::·.ti,J) q(N1t+.6.1J) 
·-,--;----· --·--.. ~ ·-~-----·~~~/ 0 
I\ \ A.+ q cN '7(:+ 4V) sin2.._ N 7<-;4)2) >-(7'\+ q(N" ?t+~:l)) si1i' l'f7[; 1)) · 

where q (NJZt!:'.'.'.d)) are the values of q evaluated at N,t .±61) 

respectively. But, observing that 

... zr-u1:..-Gv, .. 2rN1t-r.6v) __ ,, . 
;;,Hl \. ---,;--;-s1n , ---;L-== c:os ( N 7[ 1--A ':/)  -c (.) s ( J .[ '1(_ -Ll v ) =-O 

the left side of t he ineq~ality is e qual to 

q ( N7C-6V)-q ( J\I'?f + ~ V) 

( I\ +_q_(_N_7f. ____ A_V_')_s_;,f J:! 1r
2
-~ V) ( A + q (N 7[ + "V) sin 2 N 7r; "',z--; 

which is greater than zero asymptotically since asymptotically 

q is monotonically decreasing. For q monotonically vanish-

ing asymptotically one can therefore write 
00 

1n o( == ]n ex.I: +f !1-
1 

d ~ 
oO .3 ~ ) -'-. 

I (3 '--"- _, 
Thus for such a function q the quantity o((f.: exists and the 

"amplitude" of a solution of (19) is asymptotically constant. 

Going back to the original variable y and remembertng 

(16) and (19), one conQludes that the amplitude of Y decreases 



( 8) 

asymptotically as 
[ucy) D<y)J-,½;. 

One will next consider the "phase functionn O o If 

CT=0(-1 \ 
~ xMJ 

or if q is of even smaller order, then from (24) it can be 

seen that & 00 exists a:id the distribution of the zeros of F 

will have the even spacing 7C with respect to s asymptotically, 
/', 

in such a way that after a sufficiently l a rge zero of .... S , 
all subse ouent zeros can be approximately located from it by 

using the asymptotic spacin~. If q does not satisfy the 

re ~uirement stated, then the accumulation of the difference 
7[ between .I\ and the actual spacing of zeros will become infinite, 

so that even if the spacing may be approaching ~ asymptotically, 

it is i mpossible to locate from this asymptotic spacing all the 

zeros subsequent to a sufficiently large one, without encounter-

ing grave errors after sufficiently many locations. What is 

true of the zeros of F is of course also true of those of 

F-, where A is a fixed number. 

3. The Solution of a Particular Problem in Atmospheric 

Diffusion 

One considers the case where the vertical diffusivity and 

the wind velocity vary as power functions of heigh t , and the 

ground is i mpervious to vapo r . With t h e vapor concentration 

known to be a cert ain functi on of height at x. = 0 , it is pro-

posed to calculate the vapor concentration for all positive 

values of x • 



where 

where 

Thus, 

will 

where 

Since 

and 

( 9l · 

Writing 1l = y ·!C .. 
D= Ko y n. 

Uoh 
K0 is a re f erence dif fusivity, (5) becomes 

( y ny/) ~,;u2yrri.y == 0 

~2.== ~2 Ko 
Joh 

According to (7), (16), (9), and (S) 
y yi-1·1 

~= r y-ndy::: -
'"'o .. 1-n 

_ _!_ _rn.'i"n 
G•g 4=Y 4 

rn-n+2. 
n f Y -ro.-n 2y 2 t; ~Jr t G-zdn - y ~ dy = 

o ·' o n1.-n+2 
according to ( 10) , the t ransformations 

t ,:_ 2ym-·ri +2 rt, +n 
m-n+2 Y • y 4- F ( ~) 

carry (30) into 

0-= 
1-n. 

~ -n +-2 

l?L+n 
~ ~ m ~n ( I , t-n 6 -= Jl ~ . -n) - 11-n 

5 d 6 2 -~ d 2cr r - _ _ ( ..:::.s.a..) 6 -' _ _L 0 g -L = r l - (~ )'.2 ! j,.:,-2 
16 d~r t;, 4, d1'2 L 4 m-n.+2._ j "-:) 

( 28) 

(29) 

(30) 

(31) 

(32) 

(33) 

( 34) 

The fundamental solutions for F (which for shortness will 

be called simply F) have the properties that ':i,.. is constant 
QC 

and $ 
09 

exists, so that F is asymptotically periodic with a 

period ,'lt. As is well known, these fundamental solutions are 



(10) 

are the Bessel 

functions of order ±a'. Indeed, the · principal asymptotic 

properties of the Bessel functions are deduced from those of 

r. The definitions of the Bessel functions are such that ol-::-:o 

for F is -~ . 
7[" 

The asymptotic propert~es of F can be utilized, with the 

help of Dirichlet's integral theorem and (33)., to furnish in a 

purely formal manner the formula due to McRobert (1931): 

f(g,) ~L'trflct,;Jdt 1 :f(SJJ",s (·h)ds (35) 

for~;;,-~ and a f(;) vanishing suf'.ffciently rapidly as J -~ -~ 

For a rigorous justification of the derivation, however, a few 

delicate points would have to be clarified~ With this clarifica-

tion, which will be rather burdensome, one will not be concerned 

at the moment. Instead, one will proceed with the solution of 

the proposed problem, which will be seen to depend on (35) 
Since the ground is impervious to vapor, Y should satisfy 

the condition dY -=o dy 
c..t y=- 0 

The value of a- . b~ing ordinarily positive and J :l(J"(fi t) · vary as 

i; ±a- near ~ : 9 , a simple calculation will show that the fol-

lowing solution of l30) should be used: 
L1 -t ··""l. JLl n 

y = y - 4 !... F ( tS) =- y -~ ~ "7- F_ cr- (f' ~ ) r-v E; c-_T__ v· . ( .,µ ~ ) 

Then the general solution of (1) is 



( 11) 

where \ and ;U are connected by ( 31) •. Let ¢ : f.( '$) at 

x = 0 o The "density function" f'\J.). ) should satis:y 
f(~) ,00 

t tr - { f' (,;,) "Za-yt ~) d.,µ (36) 

But, er being ordinarily less than ½, for such values of c,-

one has, by (35): 

(37) 

i I 

In order that the solution be valid, however / f ( 5 ) \ should 
r... -p...,..a-be asymptotically of an order not higher than that of r , 
~ 

where p-;;,, 2 • 
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