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FOREWORD

This report is No..8 of a series written for the Diffusion
Project presentiy being conducted at Colorado Agricultural and
Mechanical College for the Office of Naval Research under
Contract N 9 onr 82401. The experimental phase of this project
is being carried out in a wind-tunnel at the Fluid Mechanics
Laboratory of the College. The project is under the general
supervision of Dr, M. L, Albertson, Head of Fluid Mechanics
Research of the Civil Engineering Department.

To Dr, M. L, Albertson, and to Dr. D. F. Peterson, Head of
the Civil Engineering Department and Chief of thé Civil Engineer-
ing Section of the Experiment Station, as well as to Professor
T. H. Evans, Dean of the Engineering School and Chairman of the
Engineering Division of the Experiment Station, the writer wants
to express his appreciation for their‘kind interest in the ore-
sent work,

The writer also wishes to thank the Multigraph Office of

the College for the able service it has rendered.



On the Asymptotic Behavior of any Fundamental Solution of
the Equation of Atmospheric Diffusion and on a
Particular Diffusion Problem?
oy
Chia~Shun Yih

Lbstract
In this paper; the asympotic behavior of any fundamental
solution of the differentaal equation of atmospheric diffusion
is studied, It is found that if the wind velocity and the
diffusivity increases monotonically with height; then the
"amplitude" and the spacing of the zeros of the fundamental
solution will decrease asymptotically in certain definite
ways. AS an application a particular problem in atmospheric
diffusion is solved at the end,
1. Introduction
If one neglects the longitudinal diffusivity in comparison
with the vertical dipfusivity; the enruation of diffusion can be

written as X !
i o AL Lo { v ’.': C \
PRY, B re Sl
. v i & ] J = > ) .
where ¢, U, and K are respectively the concentration, the

wind velocity and the vertical diffusivity. 9

7 and K Dbeing
functions of y; only, and Xy and ¥y being measured
respectively in the horizontal and the vertical directions,
With ¢, denoting the ambient concentration; and h
denoting a reference length, the last equation can be written

in the dimensionless form:
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where
‘ba & X 3(1 y=# u(y)g....._., D(Y)=-—5-

06 being a certain reference velocity. In atmospherlc dlf-

fusion, u and D are usually assumed to be monotonically
increasing functions of vy .

To solve the differential system consisting of (1) and
various boundary conditions; the method of separation of vari-
ables will be used. Assuming

‘P’j XX Y (2)
and substituting in (1), one has
/ kd
&y o (3)
X uY

where the primes denote differentiation )\ is a real constant

- -

which can be taken to be positive, and the negative sign on
the right is necessitated by the boundary condition at X = 0.

For convenience of discussion one writes (3) as

X'=*x (4)
(DY)+N*uY =0 (5)

The solution of (4) being obviously
X = e NX (6)

it is that of (5) which is of primary interest. In the follow-
ing, one will endeavor to study‘the asymptotic properties of
any non-trivial solution Y (X, y) of {5) where » will

be assumed to be different from zero, As an ap»nlication of
the results obtained in the course of this study; a particular

problem in atmospheric diffusion will be solved at the end,



(3)

2, The Asymptotic Behavior of Y (A, y)

Multiplying (5) by D , and defining the new variable r} by

> S
V]:L D 'c'{y (7)
h /
one has Yl+>\2gY=O (8)
where
g("](Y)):u(y)D(-y) (9)

In reality, D is different from zero at y = O , since
molecular diffusivity is always present, and it must remain
everywhere finite, Consequently the integral in (7) exists for
any finite y ; but increases indefinitely as y-3 w0+ Thus,
D Dbeing a positive quantity; r) is a monotonically increasing
function of y mapping the interval O<€y< co into OS')<°D .
Sometimes for convenience a simple functional form is assumed
for D ; for instance D~y" , But; n being usually less
than l; the interval QO;oo ) is still manped into itself by
the transforma?ion from y to q . One will notice in addition
that since u , ‘D ; and r7 are all monotonically increasing
functions of y , g (Y]) must be monotonically incressing
function of n With this in mind, one will consider (8) in
the interval O 5_-7”< o0 ,

Making the transformations

Y=GNF&), &=8wm (10)

and using primes to denote differentiation (with respect to

T‘\ and § ), one has



so that (8) becomes

G{;'é’Fl’r(Z’C’é"*‘Ggﬂ‘F -+ (’\gﬁﬁ-/\ " F-—Q(ll)
One demands that
2GE'+~GE"=0

integration of which gives

El=G" (12)
) '7 -2
g f N (13)
as the simplest results. Thus
/ 3
GE'E = =% (1s)
and (11) becomes
, o L
F +(XgG*+G"G*)=0 (15)
Taking
e & (16)
one has
2wy o>~ - o
F (\+!2é:%g 3""21‘.535”8 2/b=(i (17)
From (13) and (16) one notices that
M)
S gtan T
o

so that £ is a monotonic increasing function of I becoming
oC as h becomes O,

It will now be proved that the two terms involving g in
the parenthesis of (17) vanish asymptotically. One considers

first the term g’g’g“3 . It is sufficient to show that

> & < i ) 2.8 "} —> OO



Letting é/g ~% o

PR
g =] s(n)dn
oo
where the lower limit is og since g-%.e,o as ?]-4>D é

one has

Since g 'is different from zero for all values of V] different

from zero, g“% is finite for such values of t7 , So that

the intesral is convergent and s(r?) must vanish at ©oC ,

Indeed; the same argument can be applied to prove that
g'é'm-eo as N=»

if my1l . Now, taking the term g’g~% and differentiating,

one has

-2y &
(6™ =g"g 2-2g/g'g™

The term on the left vanishes asymptotically since

€8 “s0 2 WHn o
and since g is a smooth function. The second term on the
right has just been shown to vanish asymptotically. Consequently,
£ "t  as n-—oe :
Remembering that ng/ <oois mapped into P=é<e?,
instead of (17) one can study the equation
F/'+ (22+3 &N F =0 (19)
where q(§)-—>0 as & —3o0. It will be assumed that q is
monotonic asymptotically. After Courant and Hilbert (1931);

one takes

F =asin(\é+§) F= X cos(AE+8) Lo



(6)

where o and ¢ are functions of @'; the asymptotic behaviors of
which are to be investigated. Calculating F" in two ways
from (19) and the second equation of (20), one has

Fle (324 q) L sin (ONE+E) SN[/ cas (N E+8) - KA +ED Bin (A £+E)]

ok ol dE TE R (21)

Obtaining F' in two ways from (21), one has
F’=°'>c.os(,\&- $)= K sin( NE+8) + KN+ E) - o (RE+E)
g0 that

tan ( L %o
m (ANE+§) = e (22)
Multiplying (21) by (22), one has
&
ton® (>§+5)""‘ : e (23)
from which it is easily seen tha€
f-—i"u}_ ()\é_r 5) (24)
Then (22) gives
=/ a
RURE o el (25)
o 35 gin 2(N&+6)
which gives
: . S
ing-InxX,. = J( Qg (26)
F

One now seeks to establish the convergence of the integral

e \/ o 9]
j,;? Lae 3-5':?J( qsn2(AE+5)dE

PN (27)
£
Putting
1 =2 (x{g_"é)
one can write the integral as
-~ O 5 . R
Q 1 9 il JER
g X 2in Jdp = J s=rsinVdy
4 Yy 4) AOrqen®L)

D(B) (@)
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Rembering that, with q vanishing monotonically for suf.‘-
ficiently large values of & and with X being positive, the

cuantity q
A+ sin?_z?,)

is unique in sign for large F_; , but vanishes as g —»C0, it is

sufficient to show that

~ N7 E (-’N*-I}?C
_j 'ﬁh-rqmr{z—g)“nl‘a}) >qj§1 X N +gsin® _2)"‘&])&1)
(N-1) 77
It is then sufficient to show that
q(NTC= 4) qNT+21)

NOwaw 70
A(N+q N7+ aD) sin® XLV X ot i) 32 NT_aD)

where q (NJ{+AV) are the values of q evaluated at Nt Ta7D

respectively. But, observing that

nn 2 NE=4 D\ ;. 2/ NTL+4V
$9171 FRR . ., T .y ——— e st
Si11 ( 2 -sin( -

=Cos(NTT+AV)=ces(INH-8V)=C

_—

the left side of the inequality is equal to

GUNTT-2V)- A(NT +aV)
Fav

r, -
?‘+qf N7 - Al/)'alf N7 - au}l A+ (N7T+aP) gin= _‘L_\.rﬂ.__\_._... )
“_-
whlch is greater than zero asymptotically since asymptotically
q is monotonically decreasing. For q monotonically vanish-

ing asymptotically one can therefore write
)

Inel =Inx A
e b -
Thus for such a function q the quantity { _exists and the
"amplitude" of a solution of (19) is asymptotically constant, -
Going back to the original variable y and remembering

(16) and (19), one concludes that the amplitude of Y decreases



(8)

asymptotically as

U(y) D(y)
One will next consider the "phase function" R 1 ¢
{
1=0(xr) (M>1)

or if q is of even smaller order, then from (24) it can be
seen that SCn exists and the distribution of the zeros of F
will have the even spacing }1 with respect to § asymptotically,
in such a way that after a sdfficiently large zero of ° @ A

all subsecuent zeros can be approximately located from it by

using the asymptotic spacing., If q does not satisfy the

recuirement stated, then the accumulation of the difference
7T

between Ao and the actual spacing of zeros will become infinite,
so that even if the spacing may be approaching %%1 asymptotically,

it is impossible to locate from this asymptotic spacing all the
zeros subsequent to a sufficiently large one, without encounter-
ing grave errors after sufficiently many locations. What is
true of the zeros of F 1is of course also true of those of
F-A, where A 1is a fixed number,

3. The Solution of a Particular Problem in Atmospheric

Diffusion

One considers the case where the vertical diffusivity and
the wind velocity vary as power functions of height; and the
ground is impervious to vapor. With the vapor concentration
known to be a certain function of height at x = 0 , it is pro-
posed to calculate the vapor concentration for all positive

values of x .



(9}

Writing 7 =yn
(28)

Ko ,n
Y (29)

is a reference diffusivity, (5) becomes
{ +h .
YY)+ MY =0

where /ng >‘2Ko
U, h (31)

According to (7), (16), (9), and (&)
)ri-r1

1= [Ty dy= st

(30)

where K,

the transformations

Thus, according to (10),
! Qv'_n--n +2 T "‘n
N, - (32)
g pee Yoy % F(&)
will carry (30) into
+(/u + )on (33)
where
1-n
O\':—ﬁl-an (34)
Since m+n 3
+0 — tn
fry TRlomie nlE
and 2.
S cdg¥s3 & g= 1 b (IRl Y hge R
- =Lz \gmsz/ IS

{
The fundamental solutions for F (which for shortness will
F ) have the properties that Q{

is asymptotically periodic with a

1s constant

be called simply

exists, so that F
27, As is well known, these fundamental solutions are

period
A

and 50.



(10)

precisely'(ﬁlg)% Z;Gi/jg) , where j};&ﬁ‘g) are the Bessel
functions of order *+G, Indeed; therrincipal asymptotic
properties of the Bessel functions are deduced from those of
F . The definitions of the Bessel functions are such that X _
for F ib ﬁfgg .

The asymptotic properties of F can be utilized, with the
help of Dirichlet's integral theorem and (33), to furnish in a

purely formal manner the forrmula due to McRobert (1931):

. 0 e e
1) =[ tIate)at [ stes)T4 (o) ds (35)
o o
for ﬁ>-§2 and a f(é) vanishing suffi‘ciently rapidly as J > 5
For a rigorous justification of the derivation, however, a few
delicate points would have to be clarified. With this clarifica-
tion, which will be rather burdensome, one will not be concerned
at the moment, Instead, one will proceed with the solution of
the proposed problem, which will be seen to depend on (35)
Since the ground is impervious to vapor, Y should satisfy

the condition oY
>y
The value of ¢~ being ordinarily positive and J;Gj/Jg) vary as
" R t
é‘“r near &€ = Q0 , a simple calculation will show that the fol-

lowing solution of = (30) should be used:
m+n _insn 1

e T . e A . : O‘—'r'
X=%. % POy TE RIS T nth

Then the general solution of (1) is

¢=f () e FET_Cugrap



(11)

where X and g4 are connected by (31). Let @ = f.(é) at
x =0, The"density function" P(/u) should satisfy

£CE) oo

i XY (36)
g7 TN IR
But, O~ being ordinarily less than % , for such values of o—

one has, by (35):

o0
g 1‘0.' 5 i -~ .
{()(/") -/,4£ g ;(S)J_a_(/"b)ds (37)
so that the final solution is
w. :r’:’:e_z‘:_/‘_{z el

oo
i - R Yt PRSI
¢‘f He  Fe TE T (M AN STTEE T (i 38)
[ o

In order that the solution be valid, however lf(é)‘ should
~“p+a ;
£

be asymptotically of an order not higher than that of "

where p> 2 ,

(280L)=52



