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Development of a Neural Network Based Algorithm
for Rainfall Estimation from Radar Observations

Rongrui Xiao,Member, IEEE, and V. Chandrasekar,Member, IEEE

Abstract—Rainfall estimation based on radar measurements
has been an important topic in radar meteorology for more
than four decades. This research problem has been addressed
using two approaches, namely a) parametric estimates using
reflectivity-rainfall relation ( Z-R relation) or equations using
multiparameter radar measurements such as reflectivity, differ-
ential reflectivity, and specific propagation phase, and b) relations
obtained by matching probability distribution functions of radar
based estimates and ground observations of rainfall. In this paper
we introduce a neural network based approach to address this
problem by taking into account the three-dimensional (3-D) struc-
ture of precipitation. A three-layer perceptron neural network
is developed for rainfall estimation from radar measurements.
The neural network is trained using the radar measurements
as the input and the ground raingage measurements as the
target output. The neural network based estimates are evaluated
using data collected during the Convection and Precipitation
Electrification (CaPE) experiment conducted over central Florida
in 1991. The results of the evaluation show that the neural
network can be successfully applied to obtain rainfall estimates
on the ground based on radar observations. The rainfall estimates
obtained from neural network are shown to be better than
those obtained from several existing techniques. The neural
network based rainfall estimate offers an alternate approach to
the rainfall estimation problem, and it can be implemented easily
in operational weather radar systems.

Index Terms—Multiparameter radar, neural networks, radar
rainfall estimation.

I. INTRODUCTION

A CCURATE estimation of ground rainfall from radar
measurements is an important topic of current interest.

Traditionally, radar rainfall estimates were computed from a
parametric reflectivity–rainfall relation that was allowed to
vary from place to place and season to season. Such an
approach has not been very successful because of the extensive
variability observed with - relations with rainfall types and
climatic regions [1]. Multiparameter radar estimates of rainfall
were introduced by Seliga and Bringi [2], [3] using differential
reflectivity and specific differential propagation phase

to address the problem of rainfall estimation by obtain-
ing better characterization of the drop size distribution. Sachi-
dananda and Zrnic [4] used measurement to estimate
rainfall. In spite of advances made by multiparameter radar
estimates of rainfall, only few experiments done in a controlled
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manner were able to demonstrate significant improvements
using multiparameter radar based rainfall estimates [5], [6].
Zawadzki [7] suggested that significant problems exist in
experiments conducted to compare rainfall estimates from
radar and raingage due to the observation process and other
physical mechanisms. Radar observation at one elevation
angle is nearly an instantaneous snap shot of the horizontal
reflectivity structure, whereas the raingage has to accumulate
or count sufficient number of raindrops to obtain an accurate
estimate of rainfall accumulation. The various mechanisms
involved in the rainfall observation process by radar and
ground based instrumentation are complex and exhibit wide
variability. Both radar and surface observations may depend
on the three dimensional (3-D) structure of the drop size
distribution (DSD).

In this paper a totally different approach, namely, a neural
network based technique, is introduced to address the rainfall
estimation problem using radar data. Without assuming any
parametric relation, this technique maps the three dimensional
radar measurements such as to the ground raingage
measurements directly. Using raingage measurements as the
target set of observations on the ground, the neural network
approximates the relation between the radar measurements and
ground rainfall observations based on a training data set. When
the neural network is trained appropriately, it generalizes the
relations so that it can be applied to other new data sets. The
theoretical basis of this technique is the universal approxima-
tion theorem which states that a multilayer feed-forward neural
network (MFNN) such as a multilayer perceptron (MLP) is
capable of performing any nonlinear input-output mapping [8],
[9]. Due to the dense interconnections and adaptive nature, the
neural network algorithm is also robust or error tolerant [10]
which implies that error at a few input nodes or links will not
damage the overall performance very much.

We have developed three-layer perceptron neural networks
to provide rainfall estimates on the ground from radar obser-
vations. Two such networks have been developed, one using
reflectivity alone as the input, the other using both and
differential reflectivity as the input. The neural networks
were trained by using a subset of the data collected by the
CP-2 multiparameter radar and a few raingages from the
Kennedy Space Center (KSC) raingage network during the
CaPE experiment [11]. The neural networks were subsequently
applied to estimate rainfall for four days during the months of
July and August 1991.

The organization of this paper is as follows: Section II
describes the development of neural network using multilayer
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perceptron for the rainfall estimation problem. Section III
describes the the training and testing data sets used in the
development of neural network based rainfall estimation. Sec-
tion IV presents the results of multiparameter radar rainfall
estimation using neural network. Section V summarizes the
important results of this paper.

II. THE NEURAL NETWORK FOR

RADAR RAINFALL ESTIMATION

A. Three-Layer Perceptron Network for
Function Approximation

Rainfall rate obtained on the ground can be potentially
dependent on the 3-D structure of precipitation aloft. In
principle one can try to obtain a functional approximation
between rainfall on the ground and the 3-D radar observation
above the observation point. Therefore, the rainfall estimation
problem can be viewed as a complex function approximation
problem. The universal approximation theorem for neural
network states that a two-layer feed forward perceptron net-
work with nonconstant, bounded, and monotone-increasing
continuous activation function can perform arbitrary nonlinear
input-output relationship mapping [12]. Therefore, a two-layer
perceptron network can be used for the rainfall estimation
problem. The above universal approximation theorem gives
the theoretical justification for the approximation of an arbi-
trary continuous function by a two-layer (one hidden-layer)
perceptron network. In practice, however, a three-layer (two
hidden-layer) perceptron network works better than a two-
layer perceptron for the function approximation problem. This
is because the interaction between neurons in a single hidden-
layer network makes it difficult to obtain a globally good
approximation, while a two-hidden layer network isolates and
thus reduces the interaction effects by solving the problem in
two steps, i.e., the first hidden-layer extracts the local features
of the input data whereas the second hidden-layer extracts
the global feature, to make the approximations in different
regions of the input space individually adjusted [12]. Due to
above reasons, three-layer perceptron networks are chosen in
this paper for the rainfall estimation problem. The structure of
a three-layer perceptron is shown in Fig. 1.

B. The Recursive Least Square Learning Algorithm

A neural network learns the input–output relationship
through the training process. The learning process in a
neural network is an interactive procedure in which its
connection weights are adapted through the presentation
of a set of input–output training example pairs. Learning
algorithms dictate the changes of the weights. The gradient
descent based back-propagation algorithm is the most popular
learning algorithm for multilayer perceptrons [13]. However,
the convergence rate of the training error in these algorithms is
very slow. Several fast learning methods using recursive least
square (RLS) method to speed up the learning precess of MLP
have been proposed [14], [15]. The RLS learning algorithm
based on Azimi and Liou [14] is implemented in this paper for

Fig. 1. The structureof the three-layer perceptron neural network.

training three-layer rainfall estimation perceptron networks.
The details of the algorithm are described in the Appendix.

C. Training and Testing Data Generation

A representative training data set consisting of the radar
data and corresponding ground raingage data are needed to
develop a multilayer perceptron for the rainfall estimation
problem. Radar data and other related information are applied
to the network as the input and the corresponding raingage
data are used as the target or desired output [Fig. 2(a)]. The
training procedure for a multilayer perceptron includes two
steps, namely forward propagation and backward propagation.
The connectional weights are updated during the backward
error propagation according to the learning algorithm. This
process is repeated until the error between the network output
and desired output (raingage measurement) meets the pre-
scribed requirement. When the training process is complete,
the network is ready for application. Rainfall estimates can be
obtained if radar data are applied to the network at this stage
[Fig. 2(b)].

The neural network developed here accepts radar data as
input to provide an estimate of rainfall on the ground. Radar
data over a storm are typically collected in a sequence of plan
position indicators (PPI) or range height indicators (RHI). The
sequence is usually extended in space to obtain full coverage
over the storm cell. In order to provide a consistent format
for the input data to the neural network, we generate constant
altitude PPI’s (CAPPI) at different altitudes. These CAPPI’s
can be generated from both PPI and RHI volume scans. Fig. 3
shows the schematic of the input data generation for the neural
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(a)

(b)

Fig. 2. Development of the multilayer perceptron (MLP) for rainfall estima-
tion: (a) Training of a MLP for rainfall estimation. (b) Application of MLP
for rainfall estimation.

Fig. 3. Data structure that forms the input to the neural network.

network. Let the point marked “Location of Rainfall Estimate”
on Fig. 3 be the target point where rainfall estimate is desired.
This estimate may be influenced by the precipitation above,
over a much wider area extending to several kilometers in all
directions. However, it is also reasonable to assume that the
storm cells far away from the observation point are less likely
to influence precipitation observed at a point. The input data
set to the neural network is as follows (see Fig. 3):

1. Radar measurements at every kilometer over a 33 km
square grid at the lowest elevation CAPPI (Fig. 3 shows
the lowest elevation CAPPI for the data set used in this
paper as 1.0 km).

Fig. 4. KSC raingage locations relative to the CP-2 radar (located at the
origin). Twenty raingages were used in the experiment. Data from six
raingages are used to form the training data set for the neural network.

2. Mean radar observations averaged over 33 km grids
for four levels such as 1.0 km, 2.0 km, 3.0 km, and
4.0 km (1 km apart). By utilizing mean vertical profile
above the lowest level we reduce the size of the input
and therefore the size of the network. Note that the radar
measurements referred in item 1 and item 2 above can be
either reflectivity , differential reflectivity ,
or any other measurement from a multiparameter radar.
In this paper, we have restricted our analysis to and

measurements.
3. Spatial information is used to form the other part of

the input data as an attempt to provide the spatial
information of the data points with respect to the target
point where rainfall estimate is made. The distances
from the center of each four neighboring grids at the
lowest elevation are provided as part of the input data.
The heights of the four levels corresponding to the four
averaged values representing the vertical profile are
also provided as part of the input data set. In this paper
these distances are represented by.

Therefore, each input vector includes (and ) values,
and distance information . The target output of the neural
network corresponding to each input vector is the average
rainfall rate during the period of a radar volume scan. The
resolution of raingage data used in this paper is one minute. It
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(a)

(b)

Fig. 5. CAPPI scans of CP-2 radar during a rainstorm on July 26, 1991. (a) Horizontal reflectivityZH , and (b) differential reflectivityZDR.

typically takes several minutes to complete a volume scan over
a storm cell with current weather radar systems. Therefore the
accumulating time period should be of the same order of radar
volume scan times. During the CaPE experiment, CP-2 radar
took approximately 5 min to finish a PPI volume scan. We have
used mean rainfall rate based on 5 min gage accumulation as
the target output.

III. D ATA SOURCES AND PROCESSING

A. Radar and Raingage Data Sources

Radar and raingage observations collected during CaPE
experiment are used to demonstrate the neural network based
rainfall estimation procedure. CaPE experiment was conducted
in the central Florida region during the summer of 1991 [11].



164 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 1, JANUARY 1997

TABLE I
THE CHARACTERISTICS OF THECP-2 MULTIPARAMETER RADAR

One of the objectives of CaPE program was remote estimation
of rainfall. The radar data were collected by the NCAR CP-2
radar and the raingage data were collected by 20 tipping bucket
raingages with a recording resolution of 1 min. The gage data
were maintained by the NASA Tropical Rainfall Measurement
Mission (TRMM) program. The gages were located in the
vicinity of the Merrit Island area at the KSC. Fig. 4 shows
the locations of CP-2 radar and the raingages. The gages will
be referred hereforth as KSC raingages. The radar parameters
of interest to this paper are the reflectivity factor at horizontal
polarization and the differential reflectivity both
measured at S-band frequency by the CP-2 multiparameter
radar. Table I lists the main features of the CP-2 radar that are
relevant to this paper. Data used in this paper were collected
by integrating 64 sample pairs with 1 ms PRT (pulse repetition
time). CP-2 radar performed sequences of PPI volume scans
over the KSC raingage area during four storm events on days
July 26, July 30, August 9, and August 19, 1991. Constant
Altitude PPI (CAPPI) data containing and values at
four levels (1 km, 2 km, 3 km, and 4 km) were generated from
the radar data. Fig. 5(a) and (b) show examples of radar
and CAPPI scans at 1 km level.

Fig. 6 shows the raingage measurements over all 20 KSC
gage sites on July 26, 1991. Five-minute integration is per-
formed on the raingage data to obtain the corresponding mean
rainfall rate measurement in the period of a radar PPI volume
scan. This mean rainfall rate obtained over 5 min over raingage
measurements is used as the target output for the training
data set and as the ground truth for the network performance
evaluation.

B. Preprocessing of the Training and Testing Data

The input vector is scaled such that elements in the input
vector are of similar magnitude, in order to ensure that no pa-
rameter is dominant over other parameters and the importance
of each parameter is equally presented to the network. For
example, the value of reflectivity is normalized with the
possible maximum reflectivity value such as 60 (this maximum

Fig. 6. Raingage measurements over 20 the KSC gage sites during a storm
on July 26, 1991, Florida.

Fig. 7. Training error of the 3-layer perceptron neural network withZH as
the input.

value can be easily changed), i.e.,

(1)

No scaling is applied to values. For distance as
mentioned in Section II, a Gaussian weighting function is
applied as follows

(2)

A function transformation is applied to the 5-minute
mean rainfall rate values to provide a target output between
0 to 1, to make the output layer of the perceptron network
work in a linear region. Let be the maximum possible
rainfall rate to be encountered in the observation. Then the
transformation applied to rainfall rate is

(3)

Where .
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(a) (b)

(c) (d)

Fig. 8. Performance of a three-layer perceptron network usingZH as input during training and testing, shown as a function of the training epoch. The
evaluation parameters in (a)–(d) are the bias, root mean square error (rmse), correlation coefficient (corr coef), and fractional standard error (FSE), respectively.

In the case when only reflectivity factor is used to
obtain rainfall estimates, a vector of normalized reflectivities

and corresponding scaled distancesare used as the input
to the multilayer perceptron, and the length of input vector is
26 plus . In the case when both and
values are used to obtain rainfall estimates, and are
combined to form the input vector and the size of input vector
is 39 plus plus . The value of normalized
mean rainfall rate is the desired output for both cases. An
inverse function is applied to the network output to retrieve
the rainfall estimate given by

(4)

We choose data from six out of 20 gages to train the
neural network. The location of the six training gages are

shown in Fig. 4 with the symbol of “o.” The trained network
was subsequently utilized to estimate the rainfall at the other
14 gage locations to evaluate the performance. The neural
network sizes are determined after several trial and error
experiments. The size of the input layer is decided by the size
of the input vector, which is 26 or 39 depending on the data
used. The size of the output layer is decided by the size of the
target output vector, which is 1 for this application. The size
of the two hidden layers are decided by observing the training
convergence error and generalization performance of the trial
network. The size of the first hidden layer should be larger than
the input layer to ensure the network handle the complexity
of the input properly, whereas the size of the second hidden
layer should not be too large to avoid poor generalization
performance. For the case when only is used for rainfall
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Fig. 9. Comparison of accumulated rainfall at six training gage sites.

estimation, the size of the three-layer perceptron is chosen as
26 : 27 : 17 : 1 representing the number of nodes (neurons) in
the input layer, first hidden layer, second hidden layer and
the output layer, respectively. When both and are
used, the size of the network is chosen as 39 : 47 : 21 : 1. Note
that these network sizes are not necessary the optimal for
the rainfall estimation problem. Rigorous evaluation of the
optimum network size is beyond the scope of this paper.

IV. NEURAL NETWORK RAINFALL ESTIMATION RESULTS

A. Performance Evaluation Criteria

Several statistical measures, namely, the bias, the root mean
squared error, the correlation coefficient and the fractional
standard error between the raingage measurements and the
neural networks estimates were computed to evaluate the
performance of the network. Let be the total number
of raingages involved, and be the raingage
accumulations and the corresponding neural network rainfall
estimates at theth gage location, then the definitions of above
statistical quantities are as follows:

1) Bias

(5)

2) Root mean squared error (rmse)

(6)

3) Correlation coefficient (coef)

(7)
where is the mean of and is the mean
of . and are standard deviations.

They are expressed as follows

(8)

(9)

(10)

(11)

4) Fractional standard error (FSE)

(12)

B. The Cross-Validation Scheme

The performance of the network can be evaluated at every
stage of the training process. This evaluation is done by com-
paring the network outputs with actual raingage measurements
at the gage locations that are used in the training process
as well as at the gage locations that are not part of the
training data set. This procedure is called cross-validation,
which is designed to check the generalization performance
of the neural network. Fig. 7 shows the training error (the
mean-squared error between the desired output and the actual
network output) versus training epoch for the neural network
that uses reflectivity only. The term epoch represents the
training cycle during which the whole training data set is
applied to the neural network once.

Fig. 8 shows the cross-validation results based on four-day
rainfall accumulations obtained from the raingages and from
the three-layer perceptron neural network that usesas input
for both the training and the testing data sets. Fig. 8(a)–(d)
show the performance evaluation parameters, namely, bias,
root mean-squared error (rmse), correlation coefficient (coef),
and fractional standard error (FSE) as a function of training
epoch, respectively. The solid lines in Fig. 8 are results for
training data whereas dotted lines are results for testing data.
We can see that the bias, rmse and FSE all have a decreasing
trend but the correlation coefficient has an increasing trend,
indicating that the neural network learns and generalizes the
radar measurement-rainfall relations as the training proceeds.
We can also see from Fig. 8 that the bias and the errors
increase after epoch 23, indicating that “overtraining’’ is
occurring after this point and training process should be
stopped here. The cross-validation results for the case when
both and are used as input are similar to the results
shown in Fig. 8.

C. Rainfall Estimation Results and Performance Evaluation

1) Comparison of Daily Rainfall Estimation:Rainfall ac-
cumulations obtained from raingage measurements and neural
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(a)

(b)

(c)

Fig. 10. Comparison of one-day, two-day, and four-day rainfall accumulations obtained from raingages measurements and neural network based estimates
usingZH : (a) one-day rainfall accumulations at 19 gage sites on 07/26, (b) two-day rainfall accumulations at 17 gage sites, 07/26 and 08/19, (c) four-day
rainfall accumulations at 20 gage sites, 07/26, 07/30, 08/09, 08/19.

networks are compared in this section. Fig. 9 shows the
comparisons of four-day rainfall accumulations at the six
training gage sites. Fig. 10(a) shows the comparison of
one-day (July 26) accumulations observed by raingages
and inferred by neural network estimates obtained using

. Fig. 10(b) and (c) show similar results except two-
day accumulations and four-day accumulations are compared.
Note again that data from six of the twenty gages were used in

training the network. The results of Fig. 10 show that the gage
and neural network based estimates of rainfall accumulations
agree well at all gage sites including those that were not part of
the training data set. Fig. 11(a)–(c) show comparison of one-
day, two-day and four-day rainfall accumulations obtained
by the neural network using and as well as by
raingages, respectively. We can see from Fig. 11 that radar
rainfall accumulations and gage measurements compare very
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(a)

(b)

(c)

Fig. 11. Comparison of one-day, two-day, and four-day rainfall accumulations obtained from raingages measurements and neural network based estimates
usingZH andZDR: (a) one-day rainfall accumulations at 19 gage sites on 07/26, (b) two-day rainfall accumulations at 17 gage sites, 07/26 and 08/19,
(c) four-day rainfall accumulations at 20 gage sites, 07/26, 07/30, 08/09, and 08/19.

well. The statistics of the comparison shown by Figs. 10 and
11 are summarized later in Table II to Table IV.

Comparison With Parametric Rainfall Algorithms:Rainfall
algorithms in the past have been obtained as parametric
equations based on or and . Numerous -
algorithms are available in the literature. We have chosen the
Marshall–Palmer [16] - relation for comparison here. The

Marshall–Palmer - algorithm is given by

(13)

This choice is fairly arbitary and it should not be seen as
evaluating the performance of Marshall–Palmer- relation.
The based parametric algorithm given by Gorgucci
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TABLE II
PERFORMANCE EVALUATION OF Z-R RELATION AND NEURAL NETWORK BASED RAINFALL ALGORITHM

USING ZH . VALUES OFRF g; RF zr ; RFn, BIAS, AND RMSE ARE IN MILLIMETERS

TABLE III
PERFORMANCE EVALUATION OF ZH ; ZDR-R RELATION AND NEURAL NETWORK BASED RAINFALL ALGORITHM

USING ZH andZDR. VALUES OFRF g ; RF dr; RFn, BIAS, AND RMSE ARE IN MILLIMETERS

TABLE IV
STATISTICAL COMPARISON OF FOUR RAINFALL ALGORITHMS BASED ON TWO-DAY AND FOUR-DAY

ACCUMULATIONS. VALUES OFRF 2d; RF 4d, BIAS AND RMSE ARE IN MILLIMETERS

[6] as

(14)

is used for making comparison with neural network rainfall
estimates based on and .

The four algorithms, namely a) - relation given by
(13), b) , based rainfall algorithm given by (14),
c) neural network based algorithm using , and d) neural
network based algorithm using and , are evaluated
on common data set in this section. The comparison is done
by evaluating the performance for rainfall estimation on four
different days. In addition, two-day and four-day accumulation
results obtained by the various algorithms are computed. The
comparison is made in terms of bias, RMS error, correlation
coefficient and FSE.

Table II shows the statistical performance comparison
of one-day rainfall accumulation obtained from the Mar-
shall–Palmer - relation and neural network based algorithm
using as input, whereas in Table III the based
estimates are compared with neural network estimates. Note
that in Table II and Table III is defined as the daily

average raingage measurement over all gage sites, is
defined as the daily average rainfall accumulation estimate
over all gage sites, and and are similar to

except they are computed using- and -
relations, respectively. The results of Table II show that the
neural network based rainfall estimates usingperforms in a
fairly consistent manner over the four different days, providing
rainfall estimation to an average FSE (over four days) of about
25%. Similarly, the results of Table III show that the neural
network based algorithm using produced rainfall
estimates to an average FSE (over four days) of about 22%. In
addition, neural network based rainfall estimates have smaller
biases than those obtained from- or - relation.
From Table II the average bias over four days for the-
relation estimates is 6.09 mm, whereas the average bias for
the neural network based estimates is 0.27 mm. Similarly, in
Table III the average bias for the - estimates is
1.26 mm, however the corresponding bias for neural network
based estimates is only 0.18 mm.

Table IV summarizes the statistical comparison of the
four different algorithms based on two-day and four-day
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rainfall accumulations. Note that and are defined
as the average two-day and four-day rainfall accumulation
estimates over all gage sites, respectively. The neural network
based algorithm using estimates two-day accumulation of
rainfall to an accuracy of 20% and four-day accumulation
to an accuracy of 16%. The corresponding values for the
Marshall–Palmer - relation are 53% and 52%. Similarly,
the neural network based rainfall algorithm using and

, estimates two-day accumulations to an accuracy of 17%
and four-day accumulations to an accuracy of 12%, whereas
the corresponding accuracies for the , - relation are
26% and 17%. The bias values for neural network based
estimates are significantly lower than those for- or

- estimates.
It can be observed from Table II to Table IV that the neu-

ral network based rainfall algorithms produce more accurate
rainfall estimates than the corresponding parametric rainfall
algorithms. In summary, neural network based rainfall algo-
rithms perform very well, providing accurate and consistent
rainfall estimates. In addition, the estimates have low bias, and
are highly correlated with raingage measurements of rainfall.
One more observation that can be made from above studies is
that utilizing as an input of neural network improves the
accuracy of rainfall estimates. However, a rigorous evaluation
of the utility of in neural network formulation for rainfall
estimates is beyond the scope of this paper.

V. SUMMARY AND CONCLUSION

A neural network technique to estimate rainfall based on
multiparameter radar measurements is introduced in this paper.
The neural network directly maps the radar observations to
rainfall on the ground. The training and testing of multilayer
perceptrons based on radar and raingage data from four
different days during the CaPE experiment demonstrate that
the neural network has the ability to generate potentially more
accurate and robust rainfall estimates than the existing-
or - relations. In addition, the neural network
estimates of rainfall using both and are better than
the neural network estimates based on alone, thereby
indicating the contribution of measurement for rainfall
estimation in a neural network context.

In this paper we have presented a framework to develop
neural network estimates of rainfall. The input data set to
our development involved surface distribution of radar ob-
servations as well as limited vertical profile. This format is
not necessarily the only possibility of inputs to the neural
network for rainfall estimation. Potentially several other input
data/structures can be used as input for the network. For
example, the range to the radar has significant effect on
the rainfall estimation process and can be used as an input
parameter. Advection of the storm cell can also be accounted
for by using radar scans at earlier time intervals. Thus,
in principle, the neural network based rainfall estimation
provides an easy basis to include a large number of physical
factors that affect remote estimation of precipitation using
radar, and these issues are currently being investigated by the
authors.

APPENDIX

RECURSIVE LEAST SQUARE LEARNING ALGORITHM [14]

Forward Propagation: For th neuron in layer, at iteration
, the input is

(15)

where is the number of neurons in layer , and
is the output of the th neuron in layer , is

the connection weight between theth neuron in layer
and the th neuron in layer . Note represents the
first hidden layer, second hidden layer and the output layer,
respectively.

Using the threshold-logic (raising ramp) as the activation
function, the output of this neuron is

(16)

where , are the slopes of activation function of
each layer.

Backward Error Propagation and Weight Updating:

(17)

(18)

(19)

(20)

(21)

where is the backward propagated error at theth neuron
of layer from layer is the desired output of this
neuron. , is the output

vector of layer . is a matrix of size .
is the gain vector of size .

, are the weight vectors
between layer and layer .

Initialization:

Choose , the “forgetting factor,” close to but less than 1.0.
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