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ABSTRACT OF DISSERTATION 

R O B U S T R E S O U R C E - A L L O C A T I O N M E T H O D S F O R 

Q O S - C O N S T R A I N E D PARALLEL A N D D I S T R I B U T E D 

C O M P U T I N G S Y S T E M S 

This research investigates the problem of robust resource allocation for distributed com­

puting systems operating under imposed Quality of Service (QoS) constraints. Often, such 

systems are expected to function in a physical environment replete with uncertainty, which 

causes the amount of processing required over time to fluctuate substantially. In the first 

two studies, we show how an effective resource allocation can be achieved in the hetero­

geneous shipboard distributed computing system and IBM cluster based imaging system. 

The general form for a stochastic robustness metric is then presented based on a math­

ematical model where the relationship between uncertainty in system parameters and its 

impact on system performance are described stochastically. The utility of the established 

metric is exploited in the design of optimization techniques based on greedy and iterative 

approaches that address the problem of resource allocation in a large class of distributed 

systems operating on periodically updated data sets. One of the major reasons for possible 

QoS violations in distributed systems is a loss of resources, frequently caused by abnormal 

operating conditions. One aspect that makes a resource allocation problem extremely chal­

lenging in such systems is a random nature of resource failures and recoveries. The last 

study presented in this work describes a solution method that was developed for this case 

based on the concepts of the Derman-Lieberman-Ross theorem. The experimental results 

indicate a significant potential of this approach to generate robust resource allocations in 

unstable distributed systems. 
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Chapter 1 

Introduction 

Often, parallel and distributed computing systems must operate in an environment 

replete with uncertainty while providing a required level of quality of service (QoS). 

The robust design in such systems is becoming an increasingly important issue as it 

is demonstrated in the following examples [7]. The Robust Network Infrastructures 

Group at the Computer Science and Artificial Intelligence Laboratory at MIT takes 

the position that "... a key challenge is to ensure that the network can be robust in 

the face of failures, time-varying load, and various errors." The research at the User-

Centered Robust Mobile Computing Project at Stanford "concerns the hardening of 

the network and software infrastructure to make it highly robust." The Workshop on 

Large-Scale Engineering Networks: Robustness, Verifiability, and Convergence (2002) 

concluded that the "Issues are ... being able to quantify and design for robustness ..." 

There are many other projects of similar nature at other organizations. This thesis 

addresses, for the allocation of computing and communication resources in a parallel 

and distributed system, the problems of developing a generalized stochastic robustness 

metric, deriving robust resource allocations, and maximizing system performance 
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under random resource failures and recoveries. 

The design scheme developed in this research for resource allocations in QoS-

constrained distributed systems operating under uncertainty includes the following 

major steps: 

1. Establish a metric that quantifies system performance with respect to the im­

posed QoS constraints. 

2. Develop a mathematical model that provides a functional dependence between 

the performance metric, input parameters, and uncertainties in the system. 

3. Integrate this model into an adapted or developed optimization technique. Due 

to the typical NP-complete nature of the resource allocation problem in hetero­

geneous systems, an optimization technique is usually a heuristic or a mathe­

matical method that results in a sub-optimal solution. 

4. Evaluate the quality of a sub-optimal solution and compare it against sub-

optimal solutions of other optimization techniques. However, this comparison 

analysis provides only a relative performance evaluation. An absolute evaluation 

can be obtained by comparing a sub-optimal solution against a performance 

bound. 

The work described in Chapter 2 was based on the problem statement for the re­

search supported by the DARPA Information Exploitation Office, under the project 

called ''Adaptive and Reflective Middleware Systems (ARMS)." It involved the design 

and analysis of a heuristic that allocates computation and communication resources 

to the strings of applications in a complex shipboard computing system. The con­

sidered system consists of a set of dedicated machines interconnected by high-speed 
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communication links. A set of sensors (radars, sonars, etc.) sends streams of data 

sets to a set of communicating, continuously running applications organized in strings 

that process these data sets and send their outputs to other applications or actua­

tors. When running, the ARMS system is required to satisfy a set of throughput 

and latency constraints. Any allocation of the resources must enforce these quality 

of service (QoS) constraints, i.e., it must ensure that the computation and commu­

nication times are within certain limits. When the ship leaves a dock, its equipment 

is assumed to be functional and operating under the nominal values of sensor loads 

(i.e., outputs from sensors). However, the system is expected to operate in a dynamic 

environment, where the sensor loads are expected to change unpredictably. Increases 

in sensor loads cause increases in the computation and communication times, which 

in turn may cause throughput and latency violations. Therefore, an initial resource 

allocation designed for the ARMS system must be able to tolerate as much sensor 

load increase as possible before a QoS violation occurs. A two-stage approach was 

designed to solve this problem based on a combination of the evolutionary and greedy 

heuristics in the first stage and a Branch-and-Bound algorithm in the second stage. 

Additional contributions include developing the application and hardware models of 

the considered part of the shipboard environment, quantifying the performance goals 

for different scenarios, evaluating the relative performance of the heuristics developed, 

and deriving mathematical bounds on performance based on a Linear Programming 

relaxation method. 

Chapter 3 in this thesis presents the research done for the InfoPrint Solution 

Company (former IBM Printing Systems Division). This is another example of a 

QoS-constrained distributed system. In this case, image processing is performed under 

uncertainty. Similar to the ARMS example, the system must satisfy a certain level of 
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QoS, i.e., the output generated in the system must be delivered to the raster-based 

displays at regular intervals, effectively establishing a hard deadline for the completion 

of each output image. The challenge in the design of the resource allocation comes 

not only from the uncertain times required to rasterize images, but also from the 

communication and memory sharing issues, as these issues significantly complicate 

the completion time estimation process. Furthermore, the desired resource allocation 

must guarantee a sustainable system performance with a minimum set of hardware 

resources. The primary contributions of this chapter are: (1) a mathematical model of 

a distributed raster image processing system, (2) the derivation of a robustness metric 

for a dynamic distributed computing system with hard deadlines for task completions, 

and (3) the design of the resource allocation heuristics suitable for this type of system. 

We clearly demonstrate the superiority of our heuristic technique (using two different 

optimization criteria) over a technique commonly used in this type of environment. 

The first part of the research presented in Chapter 4 proposes a generalized frame­

work where the performance metric, input parameters, and uncertainties in a system 

are treated as random variables. Consequently, all operations with these variables 

are carried out in the stochastic domain. As it is shown in our experiments, the 

proposed stochastic framework improves the accuracy of the performance metric but 

it comes at an additional computational expense. The utility of the new framework 

was evaluated in the second part of that research that covers the last two items of 

the list above. Four greedy and three global search heuristics were adapted to ad­

dress the problem of a resource allocation in the simulated environment based on two 

algorithms used in the Collaborative Adaptive Sensing of the Atmosphere (CASA) 

system. A performance lower bound was derived analytically by relaxing the Integer 

Linear Programming form. 
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One of the major reasons for possible QoS violations in distributed systems is a 

loss of resources. Quite often, modern systems experience temporal resource failures 

mostly caused by abnormal operating conditions. One aspect that makes a resource 

allocation problem extremely challenging in such systems is a random process of re­

source failures and recoveries. To maximize the performance of a system, a resource 

allocation needs to be generated by considering a system's current and possible fu­

ture states. Although, the fault tolerant aspect of distributed computing systems 

has been extensively explored in the last few years, the available literature in such 

uncertain environments primarily considers reactive techniques, where a node fail­

ure is addressed only after its occurrence. Checkpoint-resume or terminate-restart 

mechanisms are often used to recover unprocessed tasks at the failed nodes. Node 

failure also can be addressed by keeping multiple copies of the workload on different 

nodes. These approaches are coupled in practice with redundancy schemes that du­

plicate system hardware resources entirely or partially. Depending on the implemen­

tation, duplicated resources are either always active or become active dynamically. 

Additionally, most of the existing literature that offers an analytical formulation of 

distributed-computing systems assumes a homogeneity among compute nodes and 

known system parameters. Our solution method presented in Chapter 5, developed 

based on the concepts of the Derman-Lieberman-Ross theorem, utilizes the available 

stochastic information. Mapping decisions are made sequentially: (1) at each time 

when a decision-maker observes a type of the arriving processor, i.e., the realization of 

the random variable, (2) it must select a task, i.e., an action, such that the expected 

cumulative reward is maximized. The experimental results, compared against some 

commonly used policies, indicate a significant potential of this approach to generate 

robust resource allocations in unstable distributed systems. 
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Chapter 2 

A Two-Stage Approach to 

Resource Allocation for Periodic 

Strings of Applications 

2.1 Overview 

Providing efficient workload management is an important issue for a large-scale het­

erogeneous distributed computing environment where a set of periodic applications is 

executed. The considered shipboard distributed system is expected to operate in an 

environment where the input workload is likely to change unpredictably, possibly in­

validating a resource allocation that was based on the initial workload estimate. The 

tasks consist of multiple strings, each made up of an ordered sequence of applications. 

There is a quality of service (QoS) minimum throughput constraint that must be sat­

isfied for each application in a string, and a maximum utilization constraint that must 

be satisfied on each of the hardware resources in the system. The challenge, therefore, 
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is to efficiently and robustly manage both computation and communication resources 

in this unpredictable environment to achieve high performance while satisfying the 

imposed constraints. This work addresses the problem of finding a robust initial 

allocation of resources to strings of applications that is able to absorb some level 

of unknown input workload increase without rescheduling. The proposed two-stage 

method of finding a near-optimal allocation of resources incorporates two specially 

designed mapping techniques: (1) the Permutation Space Genitor-Based heuristic, 

and (2) the follow-up Branch-and-Bound heuristic based on an Integer Linear Pro­

gramming (ILP) problem formulation. The performance of the proposed resource 

allocation method is evaluated under different simulation scenarios and compared to 

an iteratively computed upper bound. 

2.2 Introduction and Problem Statement 

The research described in this chapter investigates the problem of robust static re­

source allocation for shipboard computing resources in the Adaptive and Reflective 

Middleware Systems (ARMS) program supported by the DARPA Information Ex­

ploitation Office [9]. In this chapter, a resource allocation problem is addressed for a 

part (due to undisclosed content) of the proposed shipboard environment, depicted 

schematically in Fig. 2.1, where a limited subset of the ARMS application model is 

considered. As Fig. 2.1 shows, the target system consists of a number of sensors gen­

erating raw data forwarded to the heterogeneous distributed computing system for 

processing. The computing system itself is composed of a set of machines of various 

types, a communication network, and continuously running applications processing 

data corning from the sensors. Data processing in the system must be done by a 
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sequence of applications in a pipeline fashion; this requirement imposes a quality of 

service constraint (QoS) on each application's processing time and each internal data 

transfer's time between applications. 

The system is configured with an initial mapping (i.e., an allocation of computing 

and networking resources to applications) that is used when the system is first put 

into operation. The system is expected to function in an uncertain physical envi­

ronment where the workload, i.e., the load presented by a set of sensors, is likely to 

change unpredictably over time, possibly causing a QoS violation. When this occurs, 

resources in the system need to be reallocated reactively, which results in a tempo­

ral performance degradation and, thus, is highly undesirable. Therefore, the general 

focus of this study is on developing a resource allocation technique to determine a 

robust mapping capable of absorbing the maximum increase in workload without a 

run-time reallocation of resources. Reallocation techniques are outside the scope of 

this chapter, but a variety of them can be found in the literature (e.g., [45,78]). 

Specifically, two resource allocation scenarios are addressed in this chapter that 

differ in their performance goals. A partial resource allocation scenario occurs in 

an oversubscribed system where one or more sequences of applications considered for 

mapping cannot be allocated due to the limited system resources or predicted QoS 

constraint violations. Given such a scenario, the primary performance goal for a map­

per is to find a static (i.e., one found during an off-line planning phase) initial map­

ping maximizing a "total worth" of the workload processed. In contrast, a complete 

resource allocation scenario is relevant for a system that has enough resources to 

accommodate all applications considered without violating any of the imposed QoS 

constraints. In this case, a "system slackness" metric reflecting the system's capacity 

to absorb workload surges is a major optimization criterion for a static mapping. 
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heterogeneous distributed 
processing system 

Figure 2.1: The considered part of the ARMS shipboard environment. Each sen­
sor generates raw data periodically and forwards it to the distributed heterogeneous 
processing system. 

Given that the problem of resource allocation in distributed systems is NP-complete 

(e.g., [21,49]), the development of heuristic techniques to find near-optimal solutions 

became an active area of research (e.g., [5,16,17,37,77,99]). In general, there are 

two major classes of resource allocation approaches widely used in practice: greedy 

heuristics and global optimization algorithms. Unlike rather time-consuming global 

optimization algorithms, greedy heuristics are relatively fast in generating a single 

solution; this feature often makes them an appropriate choice to use in dynamic 

(i.e., on-line mapping) systems. However, the quality of solutions based on greedy 

heuristics is usually lower than that produced by global optimization algorithms that 

progressively iterate through multiple solutions. 

One type of global optimization algorithms is a class of evolutionary techniques. In 

principle, such techniques rely on an "intelligent" randomized search where a solution 

10 



is picked in the solution space, and its fitness is then evaluated. The efficiency of this 

method often suffers when applied to constrained optimization problems because of 

the time wasted generating infeasible solutions. To resolve this issue, the chapter 

proposes an approach in the first stage of finding a resource allocation where the 

search space of the evolutionary algorithm differs from the actual solution space, and 

a specifically constructed greedy heuristic is used to link these two spaces. 

Another drawback of evolutionary algorithms is a lack of structural organization of 

the underlying search process. For problems of realistic size, it is highly unlikely that 

randomized search will find a global optimal solution in a reasonable amount of time. 

Furthermore, even if an algorithm converges to the global optimal solution it has no 

means of proving it. To overcome this problem, a two-stage approach in this study 

proposes that the final solution of the evolutionary algorithm is passed to a Branch-

and-Bound technique based on an Integer Linear Programming formulation of the 

resource allocation problem. The key point is that the well structured tree search in 

the Branch-and-Bound algorithms becomes significantly more efficient when a high-

quality solution is received that can be used for pruning the search tree. Furthermore, 

a backtracking mechanism in our second-stage Branch-and-Bound algorithm allows 

the upper bound on performance metrics to be tightened as the algorithm progresses. 

In addition to the proposed two-stage approach to resource allocation utilizing a 

combination of the evolutionary and greedy heuristics in the first stage and a Branch-

and-Bound algorithm in the second stage, the contributions of this work include de­

veloping the application and hardware models of the considered part of the shipboard 

environment, quantifying the performance goals for different scenarios, evaluating the 

relative performance of the heuristics developed, and deriving mathematical bounds 

on performance based on a Linear Programming relaxation method. 
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The remainder of this chapter is organized in the following manner. Section 2.3 

develops models for the workload and hardware platform. Section 2.4 presents a 

quantitative basis for the performance measure for a given resource allocation. In Sec­

tion 2.5, the Genitor-based evolutionary algorithm is described along with a special-

purpose greedy mapping routine developed to generate solutions for both allocation 

scenarios in the first stage. A mathematical model for finding performance upper 

bounds in different scenarios based on a Linear Programming relaxation is provided 

in Section 2.6. Section 2.7 presents a set of Branch-and-Bound algorithms developed 

to improve on the first stage resource allocations and tighten the upper bounds. The 

simulation setup, results, and performance evaluation of the heuristics are discussed 

in Section 2.8. A sampling of some related work is presented in Section 2.9. Section 

2.10 concludes the chapter. A glossary of notation and acronyms used in the chapter 

are tabulated in Table 2.1 and Table 2.2, respectively. 

2.3 System Model 

The considered distributed system is composed of a number of heterogeneous com­

putational resources distributed across a shipboard environment and connected by a 

communication network. 

The functionality of the communication network is modeled by all possible inde­

pendent virtual point-to-point communication routes, each characterized by a max­

imum available bandwidth. Existing networking technologies can enforce this com­

munication model through resource reservations at system initialization time. Each 

machine in the system is capable of multitasking. Similarly, a given communication 
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Table 2.1: Glossary of Notation 
k string specified by a sequence of n^ applications {akak,...ak

lk} 
worth factor of kth string 
period of time between sequential raw data sets processed 
by kth string 
machine to which application ak is assigned 
estimated computation time for application ak on machine m[i, k] 
estimated time to transfer output Ok[i] from ak to ak

+1 

nominal data set processing time of ak executing on machine j 
average CPU utilization of machine j when ak processes 
a nominal data set 
utilization of machine j 
time to transmit one bit of data from machine j \ to machine j 2 

utilization of the comm. route from machine j \ to machine j'2 
number of heterogeneous machines in the system 
system slackness, i.e., the minimum utilization capacity remaining 
across all computation and communication resources 

average nominal execution time of ak across M machines 
average nominal CPU utilization of ak across M machines 
total number of strings considered for mapping 

route is shared among multiple active data transmissions traversing that communi­

cation route. 

In the given shipboard environment, a string is defined as a continuously executing 

sequence of applications connected in precedence order by specified data transfers. 

Data is received by an application from the preceding application, or from a sensor 

that generates data sets with a fixed period. The output produced by the string 

serves as an input to other applications or to actuators. 

Let S^_ be the kth string, specified by a sequence of n^ applications: Sk = a^a^.-.a^. 

To model the importance of each string in the system, for each k, the kth string is 

preassigned one of three possible worth factors, W[k] G {1,2, 3}. Worth factors play 

a significant role in the partial allocation scenario where a subset of strings with the 

maximum total worth needs to be selected to be deployed in the system. 
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Table 2.2: Acronyms 
Adaptive and Reflective Middleware Systems 
Incremental Mapping Routine 
Permutation Space Genitor-based heuristic 
Integer Linear Programming 
Linear Programming (can be achieved by relaxing 
an integer restriction in the corresponding ILP form) 
Upper Bound 
Branch-and-Bound algorithm 

Let P[k] be the period associated with string Sk, where each ak must execute once 

each period. The minimum throughput QoS constraint requires that the computation 

time of any application or the time of any inter-application data transfer in Sk be no 

larger than P[k]. Such an enforcement allows each string to process data in a pipeline 

fashion resulting in high processing efficiency for the entire system. Assuming that 

a resource allocation for string Sk is made, let m[i, k] denote the machine to which 

application ak is assigned. Let tk
amp[i] be the estimated computation time for appli­

cation a\ for processing a nominal data set (executing on m[t, fc]). A nominal data 

set is a data set of mean complexity which is determined based on past executions. 

Let i[ran[?] be the estimated transfer time required to send the output of nominal size 

Ok[i] from application ak (on m,[i, k)) to application ak
+1 (on m,[i + 1, k]) within string 

Sk. A typical allocation of string Sk in the system is illustrated in Fig. 2.2 below. 

Mathematically, for a given resource allocation for a string, the aforementioned 

minimum throughput QoS constraint is satisfied if: 

lkcomM < P[k], l<i< nk 

ttran[l)<PM, 1 < i < Uk - 1 
(2.1) 

If all conditions in (2.1) hold for a given allocation, the allocation is said to be feasible 
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with respect to the minimum throughput QoS constraint. Because both machines and 

communication routes are assumed to be shared, t^omp[>] and ifran[i] will depend on 

the level of sharing i.e., the number of applications assigned to a computational 

resource and currently active, or the number of current data transfers assigned to a 

communication route. Furthermore, these values will depend on how an application 

or a data transfer is prioritized by a machine's or network's local scheduler with 

respect to all other applications or data transfers that share this computation or 

communication resource. In addition to the minimum throughput QoS constraint 

imposed on strings, the overall utilization of each computation or communication 

resource must not exceed its full capacity when the system is loaded. Evaluating that 

the utilization and minimum throughput QoS constraints are satisfied is integrated 

into the mapping techniques presented in the following sections. 

Two parameters are used in the given shipboard environment to specify the 

workload imposed by each application on a particular machine: the nominal exe-

—k 

cution time and the nominal CPU utilization. The nominal execution time t [i,j] 

is the time required by application ak in string Sk to process a nominal data set 

on machine j running in non-multitasking mode. Due to the multitasking environ­

ment, tk
omp[i} > t [i,m[i,k]]. The nominal CPU utilization uk[i, j] is the average 

coma*- J 

< H*-
'LM com pi- J 

- • H H« -

w[l,l] 

0\\] 

-+H H 

«J[2,1] 

cm o'K-i] 

«?[«,,1] 

Figure 2.2: The string model for string 1. Shaded rectangles denote applications 
in the string while white rectangles represent the machines where these applications 
execute. The arrows represent output data transfers within the string. 
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CPU utilization of machine j when a\ executes its nominal data set. The product 

—k 1 

t [i, j] x u [i, j] can be interpreted as the fixed amount of CPU work required for ap­

plication ak to process a nominal data set on machine j . This fixed amount of CPU 

work can be performed in many different ways. For example, if only half of uk[i, j] is 

allocated, then the execution time required to accomplish the same fixed amount of 

CPU work is twice t '[i,j]-

, 1, if true 
Let the conditional 1 function be defined by: l(condition) 

0, otherwise 

If A strings are allocated in the system then the overall machine utilization jjmachine.yj 

is computed as: 

umachme{j] = ^ E 1 - ^ 1 x u%j] x l(m[i,k]=j)\ (2.2) 

The term t [i,j] x uk[i.j}/P[k] represents the average CPU utilization allocated for 

application a,f over P[k]. It is important to note that this is the minimum required 

average CPU utilization that allows a\ to complete processing without a throughput 

QoS constraint violation. Recall from (2.1) that a data set processing time of each 

application in string Sk must be less or equal to P[k]. 

The sum of such minimum CPU utilizations across all the applications executing 

on j determines the overall machine utilization. 

If b\j\,J2\ denotes the time required to transmit one bit of data over the commu­

nication route from machine j \ to machine j2 then the overall communication route 
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utilization (Jroute[j\, j2] is: 

A nk-l /Qk!,j] \ 

Uroutelji,j2] = b[3l.,32} x E E {-p^ x l(rn[i,k)=j1km[i + l,k]=j2)) (2.3) 

The term Ok[i\jP[k] can be interpreted as the minimum average bandwidth allocated 

to application a\ for output transfer over P[k] that allows it to be completed without 

a minimum throughput QoS constraint violation. 

For a given allocation, if the utilization values computed with (2.2) and (2.3) are 

not greater than one for each machine and communication route then the system is 

considered to be operating in a feasible (not overloaded) mode. 

2.4 Performance Goal 

In the context of the intended system, the performance metric for evaluating an 

application-to-machine mapping generated by the heuristics has two components. The 

primary component is total worth, defined as the sum of the worth factors associated 

with strings in the mapping. The secondary component is system slackness. Assuming 

ill machines in the system, let system slackness A be a measure of the minimum 

utilization capacity remaining across all computation and communication resources: 

A = min ({1 - Umachme[j] : 1 < j < M} U {1 - Uroute[h, j2] : 1 < juj2 < M}) 

(2.4) 

According to [6], a resource allocation is defined to be robust with respect to speci­

fied system performance features against uncertainties in specified system parameters 
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if degradation in these features is limited. In this work, the system is considered ro­

bust if it is able to absorb limited unpredictable changes in input workload which 

increase resource utilizations without revising a given resource allocation. System 

slackness is used as a quantitative measure of robustness. The goal of the mapping 

heuristics developed in this research is to achieve the highest level for the primary 

component, and then maximizing system slackness A at that level. 

With the given "worth" scheme, a high-worth string has the same value as three 

low-worth strings. A different, alternate scheme is possible, where a high-worth string 

has a value of more than the total value of any number of strings of medium or low 

worth. In such a scheme, high-worth strings can be put in a special class. The content 

of this class is allocated first in the system. Such a scheme, described in [55], is outside 

the current requirements of this work. 

2.5 Basic Evolutionary Mapping Algorithm 

2.5.1 Overview 

This section presents an evolutionary mapping algorithm used as a basis for the prob­

lem of finding an initial static mapping in the complete and partial allocation sce­

narios. To explain the main idea used in the algorithm's development, the following 

notation needs to be introduced. Let the permutation space be all possible order-

ings of the strings considered for mapping, and let the solution space be all possible 

application-to-machine assignments. Recall that an allocation is considered feasible 

for deployment if none of the computation or communication hardware resources is 

loaded beyond its maximum utilization capacity. 
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It was observed experimentally that the straightforward implementations of evo­

lutionary algorithms, e.g., a genetic algorithm [99], operating in the solution space, 

failed to find any feasible allocation even for a relatively small set of strings in a 

reasonable amount of time (five hours in our experiments). This phenomenon can 

easily be explained by the random-search-based principle utilized in evolutionary algo­

rithms. Random application-to-machine assignments generated in the solution space 

resulted in too many applications mapped on a single machine or communication 

route eventually violating the QoS constraint. 

Therefore, the Genitor-based evolutionary algorithm presented in this section was 

modified to search over the permutation space instead of directly over the solution 

space. An ordering of strings in the permutation space is translated into a mapping in 

the solution space by repetitively applying the Incremental Mapping Routine (IMR) 

described below. The IMR is designed to map a single string; different allocations are 

achieved when different orderings of strings are sequentially processed by the IMR. 

Our choice of the Genitor-based evolutionary algorithm was based on high per­

formance results that this algorithm evidenced in many problem domains related to 

resource allocation in distributed systems (e.g., [32,97]). Furthermore, based on our 

previous experiments, the convergence rate of Genitor-based algorithms is usually 

higher than that of other modern evolutionary heuristics, e.g., Simulated Anneal­

ing [70], Ant Colony Optimization [33]. 

2.5 .2 I n c r e m e n t a l M a p p i n g R o u t i n e 

The allocation algorithm used in the IMR heuristic is based on a greedy mapping tech­

nique. The IMR handles one string at a time, retrieving applications in the string 

for mapping in a certain order, and having its resource-candidate search guided by 
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impact on the resource utilization. Starting from the most computationally intensive 

application (on average), determined in step 1 of the pseudo code shown below, the 

heuristic maps all the intermediate applications along the string up to the next most 

computationally intensive application (on average). In selecting a mapping, a param­

eter of interest is the maximum value of the resource utilizations (given by equations 

(2.2) and (2.3)) in the machine-route pair affected by an application assignment. The 

selection process determines a machine for mapping by finding the minimum value of 

this parameter, with ties broken arbitrarily. Then, the next unassigned most compu­

tationally intensive application is found, and the same mapping procedure is repeated 

until the allocation for a given string is completed. The IMR approach attempts to 

map computationally intensive applications early, but also maps their neighboring 

applications, so that network utilization is taken into account as the heuristic pro­

gresses. 

To describe the IMR heuristic in detail some additional notation must be in­

troduced. Let Umachme[j,i,k) be the utilization of machine j if application at
fc were 

assigned to machine j (in addition to the applications assigned previously to this ma­

chine). Similarly, let Urouie[jj, j 2 , i, k] be the utilization of the communication route 

if application af were assigned to machine j \ and passed its output to its successor 

mapped on machine j2- Let the average nominal execution time tav[i] for application 

-k M -k 

a\ be given as tav[i] = -k x ^ £ [hj]> a n ( i ^ the average nominal machine CPU 
3 = 1 

M 

utilization, uk
av[i] for application a\ be given as u^v[i] — jj x ^ Iifc[i, j ] . A detailed 

description of the IMR heuristic follows. 
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1. As a starting point, identify application af in the given string Sk as follows: 

W x = argmax{ 
i=l,...,nk 

P[k] 

2. If 1 < min {Umachine{j.imax, k}} 
.7=1, ...,M 

return mapping failed. 

3. Assign application a^ to the machine 'mimax^ found as: 

m[imaX) k] = argmin{[/macWne[j, imax, k}}. 
j=l,...,M 

4. Initialize set D = {eft } . 

5. While set D does not contain all applications in the given string Sk do 

(a) ViffM = max application index in D; iieft = min application index in D; 

(b) identify a new unassigned application af in the given string Sk as follows: 

i - ar^max / S H M J I ^ M \ • ''•max — argmax < —r— > , 
i=l,...,rifc & af^D 

(c) while ?max > i r ^ t do 

* bright bright T" -l; 

• if 

1 < ^nMmax{f/m a c f c i n e [7- , i r i s h t ) fc]C/ r o u t e [m[z r i g W - l,k],j,iright,k}} 
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return mapping failed; 

• assign to the machine found as follows: 

m[hi9ht,k] = argmin 
.7 = 1, - , M 

max 
{umachine[h ^ fc]> y r o u t e ^ ^ _^ ^ ^ ^ ^ fc]}] . 

• insert application a^ in set D; 
1 right 

(d) while imox < ileft do 

• i/e/t = He ft - I', 

• if 

1 < min [max{t/™"*^[j, iUft, fc], Urtnite\j, m[ileft + l,k],ilcfuk]}] 
j=l,...,M 

return mapping failed; 

• assign a*j to the machine m[ijftyt, k] found as follows: 

m[i[eft, k] = argmin 
j=l,...,M 

[max{Umachme[j,iuft,k], UTOUte\j,m[ileft + 1,k],iUft, k}}} ; 

insert application a* in set D. 

2.5.3 Permutat ion Space Genitor-Based Heuristic 

The permutation space Genitor-based heuristic, PSG, was developed by combining 

the IMR heuristic with concepts from the Genitor approach. Genitor is an evolu­

tionary steady-state genetic search algorithm that has been shown to work well for 

several problem domains (e.g., [17,54,102]). Designed for a given resource allocation 
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problem, each chromosome in the heuristic represents an ordered list of strings in the 

permutation space. Genitor-specific operators, such as selection, crossover, and muta­

tion, are applied in that space. Chromosomes differ in their list orders, which results 

in different mappings in the solution space obtained via "projecting" a chromosome 

to the solution space by applying the IMR. 

If the IMR mapping fails for a string due to a utilization violation, then the string 

is skipped, and IMR proceeds with the next string. The two-component performance 

metric is used to measure the fitness of each chromosome. Recall from Section 2.4 that 

the primary component of the performance metric indicates total worth of the strings 

allocated in the system while the secondary component indicates system slackness. 

The PSG heuristic was implemented as follows. First, an initial population is 

generated randomly by reordering the initial set of strings. A population size of 250 

chromosomes was determined experimentally for a given setup; any further increase 

in the size of the population does not improve the performance of the heuristic. Af­

ter a mapping involving the IMR procedure, the entire set of chromosomes is sorted 

(ranked) by their fitness (system slackness for the complete allocation scenario; to­

tal worth for the partial allocation scenario with ties broken by system slackness). 

Next, a special function (described later) is used to select two chromosomes to act 

as parents. These two parents perform a crossover operation, and two offspring are 

generated. Each offspring is then inserted in the ordered population, and the worst 

two chromosomes are dropped. 

In the crossover step, for the selected pair of parent chromosomes a random cut-off 

point is generated that divides the chromosomes into top and bottom parts. Next, 

the strings in each of the top parts are reordered. The new ordering of the strings in 

one top part corresponds to the relative positions of its strings in the other parent 
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chromosome in the pair. It is important to note the choice of the top parts of the 

parent chromosomes for reordering. This allows the offspring to differ from their 

parents in the case of a partial resource allocation. 

After each crossover, the same special function (described below) is applied to se­

lect a chromosome for mutation. The mutation operator generates a single offspring 

by perturbing the original chromosome order via swapping two randomly chosen ap­

plication strings. The resultant offspring is considered for inclusion in the population 

in the same fashion as an offspring generated by crossover. 

The special function for selecting parent chromosome(s) is a bias function, used to 

provide a specific selective pressure [102]. For example a bias of 1.5 implies that the 

top-ranked chromosome in the population is 1.5 times more likely to be selected for a 

crossover or mutation than the median chromosome. Experimentally, by varying the 

bias values across the range [1, 2] in steps of 0.1, the best bias for this system was 

found to be 1.6. 

As the PSG runs, the crossover operator will be iteratively repeated followed 

by the mutation operator until one of the stopping conditions is reached: (1) 120 

minutes to execute, (2) 2000 iterations without a change in the best chromosome, 

or (3) either the mutation or the crossover operator failed to produce a never before 

examined chromosome within 10 minutes. 

The developed PSG heuristic was used in the conducted experiments in the fol­

lowing ways: 

• In each run of the complete resource allocation scenario, the PSG heuristic was 

applied to compute the complete initial allocation while maximizing the sec­

ondary component of the objective metric, i.e., system slackness. This baseline 

solution was then used in the follow-up Branch-and-Bound algorithm (described 

24 



in Section 2.7) to reduce the search space. 

• In the partial resource allocation scenario, PSG was used to find a subset of 

mapped strings that results in the maximized total worth, using system slack­

ness to break ties. The determined subset was then passed to the Branch-

and-Bound heuristic, which aimed to improve an allocation for the subset with 

respect to system slackness. 

2.6 Integer Linear Programming Formulation 

2.6.1 Overview 

An Integer Linear Programming (ILP) form and a corresponding Linear Programming 

(LP) form [24, 73] are derived in this section for each allocation scenario. The ILP 

form fully describes the optimization problem considered in each scenario while its 

relaxation into the LP form: (1) provides the initial upper bound on the performance 

metric, and (2) establishes a basis for a node selection in the Branch-and-Bound 

algorithm presented in the following section. 

Let e e l " and 6 G R*3 be real vectors,and T G M/3xa be a real matrix. If h is 

a vector comprised of a decision variables [20] then the canonical ILP formulation is 

written as: 

maximize ZJIP = c x h; subject to (I) T x h < b, (II) h are integers 

(2.5) 

Constraint (II) makes the ILP problem NP-complete [71]. If this constraint is ignored, 

i.e., h G Ma then the ILP form is relaxed into an LP form. The global optimal solution 

for the LP form, which is the upper bound (UB) for the ILP form, can be found in 
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polynomial time, e.g., by applying one of the interior-points methods [44]. 

Let the binary decision variable x[i,k:j] be equal to one if application a^ is as­

signed to machine j and equal to zero if a\ is not assigned to machine j . Similarly, 

let y[i, k,ji,j2] be equal to one if the output generated by af is transferred over the 

communication route from machine j i to machine j 2 and zero if it is not transferred 

over that communication route. Due to the new variables, equation (2.2) for machine 

utilization and equation (2.3) for communication route utilization need to be restated: 

A nk /jkr. .-, \ 

jjmacHne^ = £ £ / jĴ JJ x ^ j x ^ M \ ( 2 6 ) 

UrouUi\juJ2) = b\jltj2] x £ E [j^ x y[^,h,J2]j (2.7) 

2.6.2 Complete Allocation Scenario 

In the complete resource allocation scenario, the objective is to maximize system 

slackness A given by (2.4), because all mappings would have the same total worth. 

Thus, the objective function for the ILP form is formally stated as: 

maximize A = min ({1 - UmacMne[j] : j e M} U {1 - [ 7 ™ " ^ , j2] : h,j2 G M}) 

(2.8) 

Suppose that Q represents the total number of strings considered for mapping in the 

system. The objective function is subject to set of conditions (a)-(f), explained in 

detail below: 
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x[i, k,j\ E {0,1} for \<i< nk, l<k<Q, 1 < j < M; 

(a) 
M 

J2 x[i, k,j] = 1 for 1 < i < n^, 1 < k < Q] 

(b) 
M 

x [ a , J i ] = E j / M . J b J 2 ] f o r l < i < n f c - l , l<k<Q, 1 < h < M; 

(c) 
M 

£[«,&, J2] = ]C y[^^,j i , j2] for 2 < i < nk, 1 < /c < Q, 1 < j 2 < M; 

(d) 

[/™chme[j] < 1 for 1 < j < M; 

(e) 

t/ rou te[ji,J2] < 1 forl^JL^^M. 

(f) 

Condition (a) explicitly restricts decision variables x[i.k.j] to integer binaries {0,1} 

corresponding to the "assigned/not assigned" allocation choice for application a% on 

machine j . Condition (b) forces each application to be mapped to the system. Condi­

tions (c) and (d) link the communication route assignment of output Ok[i] generated 

by application ak to the allocation of applications a\ and ak
i+l. The enforcement of 

utilization feasibility in the system is represented by the remaining two conditions 

(e) and (f). The objective function (8) and conditions (e) and (f) are based on equa­

tions (6) and (7). The binary restriction on decision variables ?/[?', k,j1,j2\ is imposed 

implicitly by conditions (a), (c), and (d). 

The objective function (2.8) and the set of conditions (a) (f) formulate an opti­

mization problem in the complete allocation scenario in the ILP form. The LP form 
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that provides a UB on system slackness follows from the ILP form as the decision 

variables in condition (a) are relaxed to real numbers, i.e., for 1 < i < n^, 1 < k < 

Q, 1 < j < M, 0 < x[i, k,j] < 1. This implies that each y[i, A;, j i , J2] is also a real 

number. 

2.6.3 Part ial Allocation Scenario 

In the partial resource allocation scenario the primary objective is to maximize the 

total worth of the strings deployed in the system, as defined in Section 2.4. This 

transforms into the formal representation of an objective function in the ILP form: 

Q nk / M \ 

maximize y ^ V ^ I W[k] x V^x[i,fc,j] J (2.9) 
fc=i i=i \ j=i J 

The objective function is subject to conditions (a) -(f), where condition (b) needs 

to be restated due to the limited computation or communication capacity of the re­

sources available in the partial allocation scenario: 

M 
52x[i,k,j] € {0,1} forl<i<nfc, 1 < k < Q. (b') 

The modified condition (b;), along with conditions (a), (c), and (d), requires each 

of Q strings to be either completely mapped or not mapped at all, precluding cases 

where the number of mapped applications in the string is less than n^. An LP form 

that provides an upper bound on total worth in the partial allocation scenario is 

obtained from the derived ILP form when conditions (a) and (b') are relaxed to real 

numbers confined to the interval [0,1]. 
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The LP forms presented above result in the initial upper bounds on system slack­

ness and total worth in the complete and partial allocation scenarios, respectively. 

However, tighter upper bounds were achieved iteratively in both scenarios by applying 

the developed Branch-and-Bound algorithms described in the next section. 

2.7 Branch-and-Bound Heuristics 

Due to the NP-complete nature of the ILP problem, in general its global optimal 

solution cannot be found in polynomial time except for some special cases described 

in the literature (e.g., [19.73,103]). In the complete allocation scenario, the Branch-

and-Bound (BfcB) algorithm, presented in this section, was designed to improve a 

suboptimal solution produced by the PSG algorithm and to tighten the initial UB on 

system slackness. In the partial allocation scenario, the B&B algorithm was developed 

to tighten the UB on total worth. 

2.7.1 Complete Allocation Scenario 

The proposed B&B algorithm is a tree search beginning at a root node that is a null 

solution. In the entire tree, interior nodes represent intermediate solutions (a subset 

of applications are assigned to machines), and leaf nodes represent final solutions (all 

applications are assigned to machines). The intermediate solution of a child node has 

one more application mapped than its parent node. Call this additional application 

a. Each parent node expands into M children, one for each possible mapping of a. 

Nodes are said to be open until they are expanded, whereupon they become closed. 

The intermediate solution at each node is characterized by a value of the secondary 

component of the objective function (system slackness) found by solving the LP form, 
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derived in Section 2.6, for this scenario. When solving this LP form, the decision 

variables that correspond to applications already mapped are set to binary integers 

{0,1} according to application assignments; other decision variables are relaxed to 

real numbers. The LP solutions at nodes are used as bounds to curtail the search. 

Specifically, a node is pruned (closed) if one of the following two conditions holds: 

(I) no solution can be found for the LP form at a given node, i.e., no solution can 

be found that satisfies the set of constraints (a)-(g); (II) the value of the objective 

function found for the LP form is not greater than the highest value of the objective 

function among the known final solutions. 

As it follows from condition (II), a known high-quality final solution helps to 

avoid the explicit examination of many early nodes in the tree and, thus, significantly 

narrows the search space. In the proposed B&B algorithm, the baseline solution gen­

erated by the developed PSG heuristic is used for pruning until B&B determines a 

better final solution from a leaf node. Although pruning helps to limit the search 

space, the problem of finding the global optimal ILP solution in the complete alloca­

tion scenario remains quite time-consuming due to the large solution space comprised 

of numerous application-to-machine assignment combinations. Therefore, the total 

execution time for the B&B heuristic was limited to five hours. 

The B&B algorithm can be summarized by the following procedure. Starting 

from the root node, the B&B heuristic iteratively attempts to reach the bottom level 

of the tree by selecting a new parent from among the open children resultant from 

the previous expansion. The child selected is the one with the maximum objective 

function value. Such a node expansion method is referred in the literature as a 

depth-first search [73]. When the bottom level of the tree is reached, M final solutions 

are generated. If the best of these final solutions has an objective function value higher 
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than that used for pruning before, this new final solution is now the overall best found 

so far, and will be used for future pruning. Furthermore, this final solution is applied 

to evaluate all open intermediate nodes currently included in the tree to close the 

nodes that satisfy condition (II). If none of the nodes considered for picking a parent 

node is open or the bottom level of the tree is reached, a new startup node is selected 

in the tree to continue the B&B search process. The startup node selection, called 

backtracking [73], is based on the highest objective function value among the LP 

solutions associated with all open interior nodes currently included in the tree. It 

is important to note that the LP value of a new startup node is a new UB for the 

considered allocation problem. Thus, every time a new startup node is selected, the 

UB becomes tighter if the new node's LP solution differs from that of the previous 

startup node. The described B&B search process continues until: (1) the execution 

time limit (five hours) is reached; (2) all the nodes in the tree are pruned except 

for a single leaf node, i.e., the global optimal solution is found. Typically, due to 

the NP-complete nature of the algorithm, stopping condition (2) is unlikely to occur 

when the solution space of the problem is relatively large. 

An important issue for the B&B algorithm is the order in which applications 

are considered in the node expansion process. In the conducted experiments, three 

different orderings of applications were tested to identify the one resulting in the 

best performance. An arbitrary ordering implies that applications from Q strings are 

randomly shuffled. As opposed to such a random-based approach, a max-first ordering 

contains applications ranked in descending order of their average load estimate ^4Lfc[i], 

which is associated with each application % in string Sk : 1 < k < Q, and defined as: 

M 
ALk^ = m x 

M - • - " - - m 
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Applications in a min-first ordering are ranked in ascending order of their average 

load estimate. 

2.7.2 Part ial Allocation Scenario 

Three major goals were addressed in the partial allocation scenario by applying the 

Branch-and-Bound technique based on LP formulations derived in Section 2.6: (1) 

finding a tighter bound than the initial UB on total worth achievable in the system 

for a given set of Q strings; (2) finding a tighter bound than the initial UB on system 

slackness achievable for the subset of A strings, A < Q; (3) making an attempt to 

find a better allocation for the subset of A strings to maximize system slackness. The 

subset of A strings, referred to in (2) and (3), is essentially the subset of mapped 

strings in the best chromosome produced as the PSG heuristic terminates, charac­

terized by the highest known total worth value. Goals (2) and (3) with respect to 

the subset of A strings are identical to the goals in the complete allocation scenario 

with respect to the set of Q strings. As such, the B&B algorithm designed for the 

complete allocation scenario can be applied to address (2) and (3) when the set of Q 

strings is replaced with the subset of A strings in the corresponding LP formulation. 

For goal (1), a tighter bound than the initial UB on total worth can be found by 

applying another B&B algorithm to find a solution for the ILP form given by objective 

function (2.9) and conditions (a), (b'), (c)-(f), where condition (a) is relaxed to allow 

for real numbers confined to the interval [0,1]. The node expansion and backtracking 

mechanisms in this B&B remain identical to those designed for the complete alloca­

tion scenario. In contrast, the tree structure considered here is different—nodes are 

associated with strings as opposed to the complete allocation scenario where nodes 
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are associated with applications. Each parent node generates two children when ex­

panded where the children represent the cases when a new string is either loaded or 

not loaded to the system. The term "loaded" is used here as opposed to "mapped" 

to emphasize that no actual application assignments are produced due to relaxed 

condition (a). Call a string from the set of Q strings processed when the two nodes 

corresponding to the loaded/not loaded decisions made for that string are included 

in the tree. In the LP form for a given interior node, the sum in condition (b;) is 

set to 0 or 1 for the processed strings, and relaxed to real numbers confined to the 

interval [0,1] for the others. The total worth value found by the PSG heuristic is used 

for the initial node pruning until B&B finds a better final solution (all strings are 

processed). In contrast to a large solution space in the complete allocation scenario, 
Q 

where the number of leaf nodes could reach Mk=1 , the solution space that needs to 

be explored for the considered ILP form is significantly smaller, comprised of at most 

2^ leaf nodes. Thus, the B&B heuristic is able to converge to the global optimal so­

lution in a reasonable amount of time for a given simulation setup (about one hour). 

Recall that the discussed ILP form does not represent the actual allocation problem 

due to relaxed condition (a). The order in which Q strings are processed in the tree 

search affects the convergence time because early improvement of the best known final 

solution helps to curtail the search space and avoid redundant computations. Three 

different orderings of strings were considered in the experiments. An arbitrary order­

ing is based on a random arrangement of Q strings. A max-first ordering contains 

strings ranked in descending order of their average worth per average load estimate 
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.A WML [A;], defined for each string as: 

AW Am = Jffl_. 

1=1 

Strings in a min-first ordering are ranked in ascending order of their AWAL[k]. 

2.8 Simulation Experiments and Results 

2.8.1 Simulation Setup 

The purpose of the simulation was to evaluate the performance of the developed map­

ping heuristics in two different workload scenarios. For each scenario, the hardware 

part of the intended system was composed of a heterogeneous suite of eight ma­

chines. The bandwidth of each inter-machine communication route was determined 

by sampling a uniform distribution on the interval between 1 and 10 Mb/sec. All 

intra-machine communication routes were assumed to have infinite bandwidth, i.e., 

b\j, j] = 0. In addition, the time-of-flight, i.e., time needed for the first transmitted 

bit of data to reach the destination [46], was assumed to be negligible on each com­

munication route. For all experiments, it also was assumed that an application could 

execute on any machine, and its output could be transferred over any communication 

route. The two workload scenarios were distinguished by a different number of strings 

considered for mapping and different ranges for the periods of the strings. 

Recall that a partial allocation scenario occurs in the oversubscribed system when 

not all the strings in a given set can be successfully allocated because some hardware 

component in the system would exceed its 100% utilization limit. To model this 

situation, a set of 75 strings was generated and the string periods were set to be tight, 
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as explained below. For the complete allocation scenario 45 strings were created with 

more relaxed period values. 

The developed heuristics were tested for operation with strings composed of a 

different number of applications determined randomly within the range from 1 to 10. 

The nominal execution time and nominal machine CPU utilization requirement asso­

ciated with each application in the string were set by sampling a uniform distribution 

in the intervals between 1 and 10 seconds, and between 0.1 and 1, respectively. In 

the same fashion, the size of the output generated by each application in the string 

was chosen in the interval from 10 to 100 Kbytes. 

In addition to average nominal execution time Tav[i], introduced in Section 2.5, let 

the average time to transmit one bit of data in the system, 6^, be calculated as the av-
M M 

erage across all possible communication routes in the system: bav = -^ Yl Yl b[ji; h}-

The random variable jd with a uniform distribution in a particular range that was 

inserted to control the tightness of period P[k] associated with each string. All 

these new variables were combined in the following way to set a period of string Sk: 

P[k] = fi x max{ia„[i] : 1 < i < rife, bav x Ok[z] : 1 < z < n^ — 1}. The range for 

the random variable /i for the complete allocation scenario was set to [3, 4.5], and for 

the partial allocation scenario was set to [2, 3]. 

An interactive software framework has been developed for this study that allows 

for simulation, testing, and result visualization of the designed mapping techniques. 

The optimization package Lingo 9.0 was employed to compute LP solutions in the 

B&B algorithms. For each scenario, 50 simulation runs were performed which allows 

for a 95% confidence interval [29] computation. 
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2.8.2 Experimental Results 

Fig. 2.3(a) demonstrates how the system slackness was gradually improved by the 

PSG heuristic over time for a typical run in the complete allocation scenario. In 87% 

of the rims PSG was able to generate unique offspring while performing mutation 

and crossover operations, and the heuristic was terminated when the second stopping 

criterion, i.e., 2000 iterations without a change in the best chromosome, was reached. 

Additional experiments revealed that an increase in the maximum number of itera­

tions without a change in the best chromosome does not affect the performance of 

the heuristic. In the remaining 13% of the runs, at some point in time PSG failed to 

produce a new unique chromosome within 10 minutes and was terminated. A typical 

run of the PSG heuristic lasted for less than 16 minutes. Fig. 2.3(b) shows an exam­

ple where the final PSG result passed to the follow-up B&B algorithm was improved 

twice. In addition to that, the UB on system slackness was tightened by B&B as 

the algorithm progressed. A tight UB is very important to evaluate the quality of 

the final result—in practice such an evaluation can be used to determine when the 

algorithm needs to be stopped. 

The performance results of 50 runs against the secondary objective metric com­

ponent are shown for the complete allocation scenario in Fig. 2.4. In 34% of the 

cases, the B&B algorithm was able to improve the PSG results, i.e., to find a resource 

allocation with a higher value of system slackness. Fig. 2.4 depicts the best per­

formance achieved when the max-first ordering was used to rank applications while 

constructing a tree in the B&B algorithm. Table 2.3 compares the efficiency of the 

max-first, min-first, and arbitrary orderings for the system slackness improvement 

and UB tightening. The results were averaged across 50 runs for each of the order­

ings. The highest efficiency exhibited by the max-first ordering is based on the fact 
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Figure 2.3: System slackness in the complete allocation scenario achieved over time in 
a single run by applying the two-stage resource allocation method: (a) progress of the 
PSG heuristic; (b) the final PSG result passed to the follow-up B&B algorithm was 
improved twice. The UB on system slackness was tightened by B&B as the algorithm 
progressed. 
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Figure 2.4: The system slackness achieved by PSG with a follow-up improvement 
provided by B&B in the complete allocation scenario. The result per each run is 
plotted along with the UB tightened by B&B. 

that allocations for applications were resolved in the tree in descending order of their 

average load estimate. This ordering corresponds to the well-known bin-packing prin­

ciple [68] implying that allocation is first resolved for the workload components with 

high resource consumption requirements. In contrast, the performance results of UB 

tightening on system slackness revealed the B&B algorithm to be relatively insensi­

tive to application orderings. Averaged across 50 runs, the achieved system slackness 

including any B&B improvements was 0.47 for the complete allocation scenario, and 

0.11 for the partial allocation scenario; the achieved system slackness per run nor­

malized against the corresponding UB was 81% for the complete allocation scenario, 

and 83% for the partial allocation scenario. The much lower absolute system slack­

ness in the partial allocation scenario must be expected: the system is "packed" with 

applications to the point where the remaining slack is not adequate to accommodate 

an extra string. 
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Figure 2.5: Performance in the partial allocation scenario for each run: (a) total 
worth achieved by PSG and UB tightened with B&B; (b) system slackness achieved 
by PSG with a follow-up improvement provided by B&B and UB tightened by B&B. 

39 



Table 2.3: Performance of the B&B algorithm improving system slackness averaged 
across 50 runs in the complete and partial allocation scenarios. 

scenario 

complete 
alloca­

tion 
partial 
alloca­

tion 

ordering 

max-first 
min-first 
arbitrary 
max-first 
min-first 
arbitrary 

system slackness improvement 
successful 
runs (%) 

34 
28 
fO 
40 
30 
8 

improvement 95% conf. 
over PSG interval 

(%) 
4.65 
2.87 
2.54 
6.46 
3.25 
4.42 

[2.92, 6.38] 
[0.52, 5.22] 
[1.32, 3.76] 
[4.12, 7.81] 
[2.36, 4.14] 
[1.78, 7.84] 

UB 

aver. 

0.59 
0.59 
0.59 
0.32 
0.32 
0.34 

95% conf. 
interval 

[0.55, 0.63] 
[0.57, 0.61] 
[0.57, 0.61] 
[0.26, 0.38] 
[0.25, 0.39] 
[0.27, 0.41] 

For the partial allocation scenario, the experimental results obtained with the 

PSG heuristic for the primary component of the performance metric (total worth) 

are shown in Fig 2.5(a). The performance for each run is plotted along with the 

corresponding UB tightened by utilizing the developed B&B algorithm. The conver­

gence to a tighter UB was reached in 4.7 minutes on average across 50 runs when 

strings were arranged in the max-first order, 6.3 minutes when strings were arranged 

in the min-first order, and 7.4 minutes when strings were arranged in an arbitrary 

order. The PSG heuristic performed well in this scenario achieving mappings that 

averaged above 80% of the upper bound. 

Fig. 2.5(b) illustrates the performance of the PSG and the follow-up max-first 

variant of the B&B heuristics maximizing the secondary component of the objective 

metric, i.e., system slackness. As Table 1 shows, compared to the complete alloca­

tion scenario, all three variants of the B&B heuristic succeeded in system slackness 

improvement over the PSG results in approximately the same number of runs, but 

their relative improvement on system slackness was higher. 
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2.9 Related Work 

A number of papers in the literature have studied the issue of finding an initial 

resource allocation that is robust against unpredictable workload increases (e.g., [5, 

6,23,25,31,39,43,48]). These studies are compared below. 

The nature of the problem described in [5] is similar to the presented problem 

in this chapter. Periodically running applications are organized in sequential strings, 

which are subject to the imposed end-to-end latency and throughput constraints. 

In that study it is assumed that the computation time of an application sharing a 

given machine with N — 1 other applications was N times its nominal execution 

time. This results in conservative execution time estimates in a shared environment. 

Furthermore, there is no notion of nominal utilization—i.e., it is assumed that all 

applications utilize 100% of the CPU when executing. Our research does not make 

such assumptions about execution time and CPU utilization; therefore, the approach 

taken is quite different from that in [5]. 

Slack-based techniques explored in this work approach robust resource allocation 

by increasing the amount of unused computation or communication capacity across 

all hardware resources in the system. A similar performance metric was applied 

in [25] and [43] to achieve robust schedules in job-shop and real-time environments, 

respectively. Specifically, an attempt in those works was made to provide each task 

with extra time (defined as slack) to execute so that some level of uncertainty can be 

tolerated without having to reallocate. 

In [6], it was demonstrated that when application execution parameters are known 

as a function of workload then a measure of robustness better than system slackness 

could be used. However, in the given shipboard environment, such a function is 

unknown, and therefore the system slackness is an appropriate measure to use. 
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The research in [23] considers a single-machine scheduling environment where 

the processing times of individual jobs are uncertain. The system performance is 

measured by the total flow time (i.e., the sum of completion times of all jobs). Given 

the probabilistic information about the processing time for each job, the authors 

determine the normal distribution that approximates the flow time associated with 

a given schedule. A given schedule's robustness is then given by one minus the 

risk of achieving substandard flow time performance. The risk value is calculated 

by using the approximate distribution of flow time. It is important to note that, 

in contrast to [23], the workload increases are expected in the ARMS environment 

but not specified stochastically. If this information was known, the accuracy of a 

robustness metric could be improved by using techniques similar to those in [23]. 

Our combination of evolutionary algorithms with the IMR heuristic is conceptu­

ally similar to [31] and [101]. For example, in [31] the goal is to minimize a weighted 

combination of the cost of the system and the execution time of a set of tasks. A 

genetic algorithm manipulates a set of chromosomes, where each chromosome is com­

posed of a subset of resources available in the system, and an ordering of tasks. A 

separate greedy heuristic operates on each chromosome to derive a mapping and the 

associated execution time for the set of tasks. 

As opposed to heuristic scheduling algorithms finding approximate (or subopti-

mal) solutions, exact algorithms for finding optimal solutions are based on Integer 

Linear Programming. Although solving an ILP formulation is NP-hard, significant 

progress has been made in the development of efficient ILP algorithms. For example, 

ILP-schedulers for VLSI architectural synthesis, such as OASIC [39] and ALPS [48], 

have produced better designs than heuristic algorithms for medium-sized problems in 

comparable time. However, with an increase in the problem scale the performance of 
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ILP-schedulers degrades significantly while heuristic approaches are still able to pro­

duce high-quality solutions in a reasonable amount of time. In our work, a specially 

designed first-stage evolutionary heuristic was utilized to find a high-quality baseline 

solution that was used efficiently in the second-stage B&B algorithm to narrow the 

search. As a result, the baseline solutions were improved in at least 34% of cases for 

the considered resource allocation problems. 

2.10 Summary 

This chapter presents methods for efficiently and robustly managing both computa­

tion and communication resources in the intended distributed system. The system 

is expected to operate in an unpredictable environment where the workload might 

increase, possibly invalidating a resource allocation that was based on the initial 

workload estimate. The focus in the design of the allocation heuristics was to achieve 

the highest level of total worth of the strings deployed in the system while maximiz­

ing system slackness at that level. System slackness is a measure that quantitatively 

reflects the system's potential to absorb unpredictable increases in input workload. 

Formed by combining the efficient evolutionary Genitor-based search methods 

with a specially designed string allocation routine IMR, the PSG heuristic was used 

to generate baseline solutions in the complete and partial allocation scenarios. Further 

resource allocation improvement with respect to system slackness, and iterative UB 

tightening for both objective metric components, were based on the developed B&B 

algorithms. To establish the foundation for these algorithms, the considered resource 

allocation problems were formulated in the ILP form. Due to the high-quality of the 
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baseline solutions provided by the PSG, the search spaces explored by the B&B algo­

rithms were significantly reduced. As a result, the B&B algorithm succeeded in 34% 

of the experiment runs with 4.65% improvement over the PSG results in the complete 

allocation scenario, and in 40% of the experiment runs with 6.46% improvement over 

the PSG results in the partial allocation scenario. By demonstrating a performance 

ranging from 81% to 83% of the upper bound, the proposed combinatorial mapping 

approach indicates a significant potential to produce effective resource allocations in 

an environment associated with unpredictable workload increases. 
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Chapter 3 

Resource Allocation in a Cluster 

Based Imaging System * 

3.1 Overview 

Recently there has been an increased demand for imaging systems in support of 

high-speed digital printing. The required increase in performance in support of such 

systems can be accomplished through an effective parallel execution of image process­

ing applications in a distributed cluster computing environment. The output of the 

system must be presented to a raster based display at regular intervals, effectively 

establishing a hard deadline for the production of each output image. Failure to com­

plete a rasterization task before its deadline will result in an interruption of service 

that is unacceptable. The goal of this research was to derive a metric for measuring 

robustness in this environment and to design a resource allocation heuristic capable of 

completing each rasterization task before its assigned deadline, thus, preventing any 

*This entire chapter was done jointly with James Smith and appears in the following paper: [94]. 
A part of this material was filed as a patent to the U.S. Patent Office [90]. 
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service interruptions. We present a mathematical model of such a cluster based raster 

imaging system, derive a robustness metric for evaluating heuristics in this environ­

ment, and demonstrate using the metric to make resource allocation decisions. The 

heuristics are evaluated within a simulation of the studied raster imaging system. We 

clearly demonstrate the effectiveness of the heuristics by comparing their results with 

the results of a resource allocation heuristic commonly used in this type of system. 

3.2 Introduction 

Recently there has been an increased demand for imaging systems in support of high­

speed color digital printing. Increases in print speeds and resolution have necessitated 

a significant increase in the performance of imaging systems in support of digital 

printing systems. This required increase in performance can be acheived through an 

effective parallel execution of image processing applications in a distributed comput­

ing environment. In this paper, we present a mathematical model of a distributed 

raster imaging system, where the output of the system must be presented to a raster 

based display at fixed regular time intervals, effectively establishing a hard deadline 

for the completion of each output image. This mathematical model is used as the 

basis for the design of a resource allocation heuristic applicable to this distributed 

computing environment. We extend the use of our model by deriving a robustness 

metric appropriate to this environment. This robustness metric is used within our 

presented resource allocation heuristic as an alternate optimization criterion for the 

heuristic. 

In this system, an input stream of data, described using a high level language 
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known as a page description language (pdl), e.g., Postscript or the portable docu­

ment format (pdf), arrives at an imaging system for rasterization [42]. Rasterization 

of pdl images converts the images from a pdl description to a bitmap. Requests 

for rasterization of pdl images are processed by a dedicated cluster of workstations, 

where individual pdl image requests, referred to as sheetsides, are distributed to the 

heterogeneous cluster by a centralized image dispatcher. The collection of sheetside 

requests together describe an image stream that is displayed on a raster based device, 

e.g., a printer or computer monitor. The frequency of requests and the magnitude 

of the data required to describe each request pose a considerable challenge for even 

modern workstations. Input streams in this environment routinely consist of over 

100,000 images, where each image typically requires 10-100 megabytes of storage and 

successive image deadlines are on the order of a tenth of a second apart. 

For the studied environment, the images that comprise the input datastream are 

required to be displayed m order on the output device. That is, each pdl image 

has a unique number assigning its place in the overall stream of images and will be 

requested by the raster display in that order. In addition, the system has a finite 

amount of storage capacity (distributed evenly across the cluster of workstations) in 

which to store rasterized images. The bitmaps to be displayed are retrieved at a 

regular interval directly from the workstation output buffers by the display device. 

Bitmaps are displayed for a fixed time interval, thus, the display time of the first 

bitmap establishes a hard deadline for each subsequent bitmap. Missing a deadline 

for a required bitmap results in an interruption of service that is unacceptable. 

The studied rasterization system has some additional special requirements that 

complicate the task of assigning the stream of incoming pdl images to available work­

stations. The computation required to convert a pdl image to a bitmap depends on 
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the content of the pdl file. The system only has an estimate of the time required 

to rasterize each incoming pdl image on each type of processor and this estimate 

may differ subtantially from the actual time required for rasterization. Many of the 

system design decisions are motivated by an attempt to mitigate the impact of this 

uncertainty. 

Second, the overall system has finite input and output storage capacity, thus, there 

is a limit on the number of pdl images that can be buffered in the system, both as 

input pdl images and as output bitmaps. Finally, pdl images continue to arrive for 

rasterization while others are being rasterized, i.e., the resource allocation must be 

produced dynamically [65]. The general problem of assigning tasks to workstations 

in a dynamic environment has been shown to be NP-complete (e.g., [35,49]). Conse­

quently, the design of heuristics for dynamic resource allocation is an active area of 

research [10,37,65,69,93,105]. 

The mathematical model presented in this work builds upon principles addressed 

in our earlier work on robustness. In analyzing this image processing system, we 

identified that rasterization times are a source of uncertainty in the system and that 

the arrival ordering of sheetsides is not known a priori. This uncertainty can impact 

the system by causing sheetsides to miss their deadline, resulting in an interruption 

of service that is unacceptable in this system. Clearly, the area of robust operation 

within this system exists where bitmaps are always available in advance of their 

deadlines. 

The primary contributions of this work are: (1) a mathematical model of a dis­

tributed raster image processing system, (2) the derivation of a robustness metric for 

a dynamic distributed computing system with hard deadlines for task completions, 

and (3) the design of the resource allocation heuristics suitable for this type of system. 
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We clearly demonstrate the superiority of our heuristic technique (using two different 

optimization criteria) over a technique commonly used in this type of environment. 

The details of the system model that motivated this research are given in the next 

section. This system model is used to design a mathematical model of rasterization 

completion times presented in Section 3.4. Section 3.5 describes a new resource alloca­

tion heuristic that incorporates this mathematical model for rasterization completion 

times. We present a discussion of the performance objective for this initial heuristic 

in Section 3.6. This performance metric motivated the derivation of the robustness 

metric in Section 3.7. The details of the simulation setup are described in Section 3.8 

and the results of the heuristics are presented in Section 3.9. A sampling of related 

work is in Section 3.10 and Section 3.11 concludes the paper. 

3.3 System Model 

Figure 3.1 is a conceptual drawing of the system that motivated this research. In this 

environment, two display devices combine to provide a high-speed digital continuous-

form, color duplex (i.e., two-sided) printer. Paper is physically moved through each 

press successively at high speed and cannot be immediately stopped. Consequently, 

if a bitmap is not readily available in the display device when it is needed, then a 

service interruption occurs because the printer must be stopped to accommodate the 

delay and the advanced paper removed from the output of the device. 

The imaging system is composed of a collection of workstations dedicated to im­

age rasterization, controlled by a separate master workstation called the head node. 

Individual sheetsides are transferred to the head node, where they are dispatched by 
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Figure 3.1: A conceptual model of a high performance, cluster-based imaging system. 

the centralized image dispatcher to one of the dedicated workstations for rasteriza­

tion. Each sheetside completely describes an entire display image suitable for the 

output device, and is expressed in a logical page description language (pdl) that must 

be transformed into a bitmap suitable for the display device. 

Input sheetsides are queued for rasterization in the Head Node Input Queue 

(HNIQ). The centralized image dispatcher assigns sheetsides from the HNIQ to work­

stations for rasterization. After assignment, the head node places the sheetside in a 

queue for a transmitter that will then transmit the sheetside to its destination. The 

size of the transmitter queue is limited to only two sheetsides and the transmitter may 

only transfer one sheetside at a time. Further, once a sheetside has been placed into 

the transmitter queue, the destination workstation for the sheetside can no longer be 

modified. Each workstation has a finite capacity input buffer for storing sheetsides 

prior to their rasterization. Therefore, before the incoming sheetside can be placed 

in the transmit queue, the head node must ensure that sufficient capacity exists in 
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the input buffer of the receiving workstation to acquire the file. If there is sufficient 

input buffer capacity, then the sheetside may be queued up for transmission. 

It is assumed that M_ heterogeneous dedicated workstations are available to con­

vert pdl sheetsides to bitmaps. Each workstation is interconnected to the head node 

via a 1 Gbit ethernet network and interconnected to the two output display devices 

using a 4Gbit fiber channel. The memory of each workstation is divided into two 

blocks, where one block is used to store sheetside pdl files (the input to rasterization) 

and the other block is used to store output bitmaps. The sheetsides in the input 

block are accessed in a FIFO fashion. 

When a workstation completes the rasterization of a sheetside, notification of 

the completion is sent to the head node, and the appropriate display device. When 

the display device is ready to display the bitmap, it retrieves the completed bitmap 

directly from the output buffer of the workstation where the rasterization was per­

formed. Each display device has an input buffer with sufficient capacity to store two 

bitmaps, i.e., the bitmap currently being displayed and the next bitmap to be dis­

played. In this system, all bitmap files are assumed to be the same size, and the time 

required to display each bitmap is assumed constant. 

3.4 Model of Rasterization Completion Time 

The mathematical model of this system defines a method for calculating the dead­

line for a given sheetside, and a method for determining the estimated rasterization 

completion time for a sheetside on a given workstation in the system at a specific 

point in time. The completion of every sheetside is subject to a hard deadline. That 

is, to prevent a service interruption, each sheetside must complete rasterization, and 
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be available for consumption in the input buffer of the appropriate display device by 

its given deadline. To calculate the deadline for a sheetside, let to_ be the absolute 

wall-clock start time for both display devices. Starting at to, each display will require 

a new bitmap every tdiSViav seconds, where tdispiay is the time required to display a 

bitmap on the device {tdispiay is a fixed prespecified value). Sheetsides are numbered 

starting with 1. Incoming sheetsides are divided between the two displays such that 

the odd numbered sheetsides go to display 1 and the even numbered sheetsides go to 

display 2 (see 3.1). For the kth actual sheetside of the job, denoted Sfc, the bitmap 

must be available for printing at time tQ + (display {~kf^)^ if k is odd, and at time 

to + tdispiay ( i f ) > if k is even (note: the division by 2 is because two sides are printed 

simultaneously). Let tt^
ap be the bitmap transfer time from any workstation to 

either display device. Then, the deadline for completing Sk, denoted td\Sk], is the 

latest wall-clock time for a workstation to produce the bitmap for Sk-

, tQ + ^display \-M2~) - ttran if S'fc is o d d ; 
td[bk\ = \ (3.1) 

£() + tdispiay ( i f ) ~ ttroTP i f Sk IS 6V6n 

The value of td[Sk] will be used later to determine the availability of output buffer 

space on a workstation. For this purpose, the deadline equation needs to be expressed 

in terms of the ordering of sheetsides on a given workstation. Let BQ\ be the ith 

sheetside to have entered the input queue of workstation j for a given job. We define 

the following operator rmm(BQl) that evaluates to the actual sheetside number of 

sheetside BQ\, i.e., Sk = num(5Qj)- Then Sk in Equation 3.1 can be replaced by 

mim(BQl). Note that Sk and BQ\ represent the same physical sheetside and by using 

the num operator these notations can be used interchangeably. 

The estimated rasterization completion time for a sheetside is composed of the 
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earliest possible time that rasterization can begin and the estimated rasterization 

time. Let tstart\BQJ
i\ be the earliest possible rasterization start time for sheetside 

BQ\, let ERT\BQ{] be the estimated rasterization time for sheetside BQ], and let 

tcomv\BQl] be the estimated rasterization completion time for a given sheetside BQ\ 

on workstation j . Then tcomp[BQl] can be calculated as: 

tcomP[BQl} = tstart[BQH + ERT{BQl\. (3.2) 

The estimated rasterization time, ERT[BQ\\, for each sheetside is assumed known 

based on empirical data. There are many well-known techniques for gathering these 

execution time estimates from empirical data [41,53,60,92,106]. The start time 

for rasterization depends on several factors: when the sheetside was transferred to 

the workstation, when the previous sheetside assigned to the workstation completed, 

and the availability of the output buffer of the workstation. The rasterization for a 

sheetside starts only if the output buffer has enough capacity to accommodate the 

resultant bitmap. During the rasterization process the amount of memory required to 

store a bitmap remains reserved in the output buffer. The memory held by a sheetside 

in the input buffer is released when rasterization for that sheetside is completed. 

To determine when a sheetside was (or will be) transferred to a workstation, we 

have to consider all other sheetsides in the HNIQ that are ahead of it. Let Sk be the 

kth sheetside to enter the HNIQ for a given job, where Sk-i is the sheetside ahead of 

Sk in the HNIQ. To evaluate the estimated departure time for Sk to workstation j , 

the input buffer capacity of workstation j must be determined. Space in the input 

buffer is limited by two factors: the maximum number of sheetsides (Q) allowed in 

the input buffer and the size in bytes of the input buffer. 
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Recall that the estimated rasterization times are known to be only estimates of 

the actual rasterization times. The number of sheetsides that are allowed to queue 

up on any given workstation is limited to a relatively small, fixed number of pending 

sheetsides, to attempt to mitigate the impact of delays caused by under-estimating 

sheetside rasterization times. If the size of the pdl file describing sheetside Sk is less 

than or equal to the available input buffer capacity of workstation j , then, assuming 

there are fewer than Q sheetsides in the input buffer of workstation j , Sk can be 

immediately sent to j following the transmission of Sk-\ out of the head node. Oth­

erwise, Sk will be delayed at the head node (blocking Sz, z > k) for the amount of 

time required for a certain number of sheetsides previously assigned to workstation j 

to be rasterized, thus, creating buffer capacity sufficient to accommodate the pdl file 

of sheetside Sk or for the number of pending sheetsides on workstation j to be less 

than Q. 

To calculate the available input buffer capacity at workstation j , let /C be the 

sequence of sheetsides that are in the input buffer of workstation j when the head 

node transmitter is ready to send sheetside Sk- Note that this will include any sheet-

side currently being rasterized by workstation j . Let the operator size(5i) give the 

size in bytes of the pdl file for sheetside Si, and let C'AP?n describe the total input 

buffer capacity of workstation j . Then, the available capacity of the input buffer for 

workstation j , denoted /lC/ra, is: 

ACl = CAPl - J2 size(^)- (3-3) 
VS;e/C 

Define t* t\Sk-i] as the departure time of Sk-i for HNIQ to workstation x. Let 

t'fTan\Sk-i] be the time required to transfer the sheetside description file describing 
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if ( (size(SA;) < ACl) k {\K\<Q)) 
f'dept[Sk] = ^deptl^k-l] + t-tranl^k-l]', 

end 
else 

BQ\ = first element of K\ 
min_size = ACfn; 
files = |/C|; 
while ((size(Sfc) > min_size) OR (files 

min^size = min_size + size(BQJ
i); 

BQ\ <— next element in /C; 
files = files - 1; 

end while 

^depVpk\ — t'compi^Qii 
end 

>Q)) 

Figure 3.2: Pseudo-code for determining the earliest estimated departure time for 
sheetside Sk assigned to workstation j . 

Sk-i, from HNIQ to workstation x. If size(Sfc) < AC\n and \K\ < Q, Sk can depart 

at time: 

tdeptlSk] = tdept[Sk-l] + ttran[Sk-l]- (3-4) 

Otherwise, sheetside Sk cannot be transmitted until a sufficient number of sheetsides 

have been processed from the input buffer of workstation j , to ensure that these two 

conditions hold. If after processing some sheetside Sm G K, these conditions hold, 

then t3
d t[Sk] = tiamp[Sm\- If & = 1, i-e-> Sk is the first sheetside to be dispatched by 

the centralized image dispatcher, then Sk can depart immediately. Figure 3.2 presents 

a concise pseudo-code form for determining the earliest estimated depature time for 

a given sheetside. 

Prior to rasterization, accurately determining when rasterization can begin for 

some sheetside BQ\, where Sk = num{BQ\), must also account for possible delays 
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incurred due to the limited capacity of the output buffer on each workstation. Con­

sider workstation j with output buffer capacity CAP3
out. Because bitmaps are all 

assumed to be the same size, i.e., require the same number of bytes to store, the 

number of bitmaps that could be stored in the output buffer of any workstation is 

constant and known in advance. Assume that N_ bitmaps can be placed in the output 

buffer of a given workstation. Define the delay to begin processing sheetside BQ\, 

denoted A0KJ.BQf|, as the time that BQ\ must wait after arriving at the head of the 

input queue of workstation j until there is sufficient capacity in the output buffer of 

the workstation to store the output bitmap. To quantitatively determine Aout[BQl], 

there are three cases to consider. First, if fewer than TV sheetsides have entered input 

queue of workstation j , then the output buffer of workstation j cannot be full, i.e., 

^out[BQ\) = 0. In the second case, assume that more than N sheetsides have entered 

the input queue of workstation j , but at the time when sheetside BQ\ completes 

there will be at least one free slot in the output buffer of workstation j , i.e., at least 

sheetside BQ\_N has left the output buffer, then Aout[5(5j] = 0. In the final case, 

if the output buffer of workstation j is full when sheetside BQ\_l completes, then 

BQ\ must wait for an opening in the output buffer before its processing can begin. 

Therefore, sheetside BQ\ will be delayed until the sheetside at the head of the output 

buffer of the workstation completes transmission to the raster device. The three delay 

cases for BQ\ to begin processing can be described succinctly as follows. 

Case 1: if i < N, A^BQl] = 0 (3.5) 

Case 2: if td[BQi.N] + C 7 P < W ^ O i - i l , &out[BQl) = 0 (3.6) 

Case 3: otherwise,Amt[BQi] = td[BQlN] + %TP - tcomp{BQU] (3-7) 
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Using /\ma[BQl\, we can define the estimated rasterization start time of sheetside 

BQ\. That is, tstart[i?(5^] occurs when two conditions are satisfied: BQ\ is present at 

the head of the input queue on workstation j , and the output buffer of workstation 

j has sufficient capacity to accommodate the rasterization result. If these conditions 

are not satisfied, then tstart[BQ{] is defined by one of two cases. First, if there is 

no opening in the output buffer of workstation j when BQ\_X completes and BQ\ is 

available at the head of the input buffer of workstation j , then: 

lstart[BQi] = LcomplBQU] + Aout[BQl). (3.8) 

In the second case, if there is an opening in the output buffer of workstation j when 

BQ\_X completes and BQ\ is not in the input buffer of workstation j , then the 

estimated start time of BQ\ is equal to the arrival time of BQ\ in the input buffer, 

i.e.: 

tstarABQl] = tdept[BQi] + tfan[BQi}. (3.9) 

That is, as soon as BQ\ arrives in the input buffer of workstation j , it will be ras-

terized without further delay. Note that if there is no opening in the output buffer 

on workstation j and BQ\ is not in the input buffer of workstation j , then one of 

the previous two cases will occur some time in the future. The two equations corre­

sponding to the two cases for the earliest rasterization start time can be combined to 

calculate the estimated start time for BQ\ as follows: 

tstanlBQi) = m a x { ( ^ [ B Q ^ ] + Aout[BQl}) , (tdepl\BQl] + &1[BQ>])}. (3.10) 

Note that calculation of tcomv[BQl] is based on a recursion because it depends on 
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tstartlBQ^] which in turn relies on tcomp{BQ\_^\. The recursion basis is formed with 

BQ{, whose tcomp[i3Qj] is found as: 

tComP[BQ{} = ERT[BQ[] + tdept[BQ{) + tfan[BQ{\. (3.11) 

That is, because BQ\ is the first sheetside to be rasterized on workstation j , there 

can be no delays incurred from processing earlier sheetsides on this workstation. 

3.5 Minimum Rasterization Completion Time 

Heuristic (MRCT) 

The resource allocation heuristic described in this section assumes that the system is 

in a steady state of operation, i.e., some sheetsides have already been rasterized and 

the start time to for the display devices is known. In this situation, sheetsides are 

dispatched to the workstation that provides the minimum rasterization completion 

time as defined by our mathematical model of the system. That is, tcomp[Sk] is 

calculated for every workstation as if Sk were assigned to it, and the workstation that 

gives the minimum value is selected. 

Because this is a dynamic environment, updates to the minimum rasterization 

completion time occur when rasterization completes for a given sheetside, i.e., the ac­

tual time required for rasterization becomes known. Immediately following a sheetside 

completion, a control message is sent to the head node informing it of the completion. 

The head node then updates the recurrence equation for calculating the completion 

time of any subsequent sheetsides with this new information, thus, the rasterization 

completion time estimates become more accurate. As a result of these updates, the 
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minimum rasterization completion time workstation for a given sheetside may change 

over time, i.e., the heuristic choice is time dependent. 

MRCT begins by calculating the tJ
co,mp[Sk] values for the sheetside at the head of 

the head node input queue (Sk) for all of the workstations in the system. Workstations 

are then ranked in ascending order according to their tJ
comp[Sk] values and placed 

together in a table in that order. 

After MRCT creates the table for ranking workstations for Sk- If there is room 

in the input buffer of the highest ranked workstation j , i.e., ACjn > size(Sk) and 

\fC\ < Q, and there is a free slot in the transmit queue, then Sk is assigned to 

the selected workstation and placed in the transmit queue. If any of the required 

conditions is not satisfied, then the conditions will be satisfied some time in the 

future. As each workstation completes a sheetside, the table for Sk is updated and 

reordered. 

Because the execution time estimates for rasterization are known to be estimates 

of the actual execution times, the heuristic must account for cases where the estimated 

rasterization completion time for Sk is significantly under-estimated. For an under­

estimated rasterization completion time to be significant, another workstation in the 

system must have a smaller or equivalent completion time for Sk compared to the 

actual rasterization completion time that has been under-estimated. The time at 

which the under-estimate for Sk becomes significant is referred to as the invalidation 

time for workstation j , denoted INVTj. 

To calculate INVTj, the head node uses the rasterization completion notifica­

tions that it receives from each workstation. Because of this feedback, the head 

node can calculate the earliest expected feedback time (EEFTj) for the completion 

of the sheetside currently being rasterized on workstation j , using the start time of 
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the rasterization and the expected rasterization execution time. Using EEFTj and 

the estimated completion time for Sk on workstation (j) that is estimated to com­

plete it soonest and the next best workstation (x), the invalidation time for a given 

workstation j (INVTj) can be calculated as follows: 

INVTj = EEFT, + {rcmnp[Sk) - Vcmnp\Sk)) . (3.12) 

That is, if at time INVTj the current sheetside being rasterized on workstation j has 

not completed, it has exceeded its estimated completion time (EEFTj) by an amount 

(t%mip[Sk] — tcompj[Sk\) that now must make workstation x the best choice for Sk-

Once the ordering of workstations has been established, the INVTj values can be 

calculated for each of the workstations. If any of the INVTj values are in the past, 

then the corresponding workstations are "invalidated." The MRCT heuristic will 

not consider any workstations during allocation that are currently invalidated, i.e., 

while a workstation is marked as invalid no sheetsides will be assigned to it. When 

feedback regarding a sheetside completion on workstation j is received, the EEFTj, 

iiamplSi], and INVTj values for the associated workstation are recalculated and the 

invalidation status of the workstation is reset to valid. 

3.6 Bi tmap Lifetime 

In general, the primary goal of the system is to ensure that all incoming sheetsides are 

rasterized and available by their deadline for display. To assess whether a sheetside 

is available by its deadline, we defined a new measure known as "bitmap lifetime." 

Bitmap lifetime is measured as the time difference between when the rasterized image 

is made available in some workstation's output buffer and when the raster display 
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consumes the image from the system, i.e., the amount of time that a bitmap lives in 

an output buffer of the system before it is displayed. 

When the bitmap lifetime is greater than tt
l
r
t^l

ap, the bitmap will arrive in time to 

be displayed without disrupting the system. If lifetime of a bitmap is not greater than 

^tranV^ then the bitmap will not arrive in time to be displayed by its deadline, and 

the system is disrupted. To represent this in our simulations, we say that whenever a 

bitmap lifetime is not greater than tt
l
r™

p, it is given the value #'0™p and will cause 

a system disruption. 

The MRCT heuristic attempts to minimize the rasterization completion time of 

a sheetside S& based on its most current estimates of the system state. Alternatively, 

we can view this minimization as an attempt to maximize the bitmap lifetime of SV 

Because the deadline for the completion of each sheetside is fixed relative to to, by 

minimizing the estimated completion time for each sheetside we are maximizing the 

difference between the deadline for a sheetside and its completion time. 

3.7 Quantifying Robustness 

3.7.1 Overall Robustness Metric 

To derive a robustness metric suitable for this environment, we follow the FePIA pro­

cedure presented in [6]. In step 1 of the FePIA procedure, we describe quantitatively 

the requirement that makes the system robust. Intuitively, the system is robust if 

no service interruptions occur. That is, the performance measure of interest in this 

system is the completion time of each sheetside. If the completion time for each 

sheetside is less than its deadline, then the system can be considered to be robust. 

In step 2, we identify the uncertainty in system parameters that may impact our 
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performance feature of interest. In this system, there are two sources of uncertainty 

in system parameters that may cause our rasterization completion times to increase 

(possibly violating our robustness requirement). First, we have assumed throughout 

this work that our rasterization execution time estimates may differ substantially 

from actual rasterization execution times. Second, the arrival order of sheetsides to 

the system is unknown. That is, we do not know in advance when complex sheetsides 

will arrive for rasterization. 

Step 3 of the FePIA procedure requires that we identify the impact of uncertainty 

in system parameters on our performance feature of interest. In this case, rasterization 

completion time estimates are created based on a sum of rasterization execution 

estimates that each may contain errors. Consequently, the uncertainty in rasterization 

execution times will directly impact rasterization completion time estimates. 

The last step is to conduct an analysis to determine the smallest collective change 

in assumed values for system uncertainty parameters (from step 2) that would cause 

the performance feature of step 1 to violate the robustness requirement. To determine 

the robustness of an overall resource allocation, we will first quantify the robustness 

of the completion time estimate for a single sheetside BQ\. Let iS[ be the set of 

sheetsides pending on machine j before and including BQ\. The rasterization execu­

tion time estimates for any of the sheetsides in B\ may be a source of uncertainty in 

calculating the rasterization completion time estimate for BQ\. The completion time 

estimates for these sheetsides are coupled because they are executed sequentially on 

the same workstation. That is, if the rasterization time of the first sheetside is longer 

than expected, then this will impact the completion time calculations for each of the 

subsequent sheetsides on that workstation. 

From [6], we can use a geometric interpretation of our robustness requirement 
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where the rasterization completion time estimate is a single point in an ./V-dimensional 

space. Each of the M dimensions in this space corresponds to a member of B{ and we 

wish to find the smallest distance from our rasterization completion time estimate to 

the surface defined by our robustness requirement. This distance defines the smallest 

collective increase in assumed system parameters that would cause our robustness 

requirement to be violated (based on a Euclidean distance). Because the completion 

time estimates for each sheetside are coupled, the true geometric interpretation of 

the robustness requirement must be expressed as an J\f dimensional surface. Without 

knowing the exact shape of this surface, we cannot calculate the shortest distance from 

our known point to the surface. Thus, to calculate this distance in our Robust MRCT 

heuristic (presented in Subsection 3.7.2, we have chosen to approximate this surface 

by a hyperplane. Using the equation for the distance from a point to a hyperplane [6] 

we can find the robustness of the completion time for sheetside BQ\ given a current 

assignment of sheetsides //. at time t, denoted r^BQl, t) as: 

^(^.^iM^M. (3.13) 

To find the overall robustness of a resource allocation at time t, we identify the 

smallest robustness value for each workstation and then compare this smallest value 

across all workstations. We combine the rM (BQ\,i) values for all B\ at time t to 

form the robustness metric for workstation j at time L, denoted ftAt) as follows: 

pP^t) = minV* G B\ {r, {BQ\j)} . (3.14) 

The smallest of the p^(t) values over all workstations defines the local robustness 
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value for the system at time t. That is, 

/>M(i) = minVj{p£(*)}. (3.15) 

Because any service interuption is unacceptable in this environment, we have chosen 

to use the smallest local robustness value encountered throughout a simulation run as 

the overall robustness metric. Formally, we can express the overall robustness metric 

value for a particular resource allocation in this system as: 

Pll = mmVt{Pll(t)} (3.16) 

3.7.2 Robust M R C T 

The robustness of each sheetside completion time estimate can be used during resource 

allocation to aid in selecting the best workstation to process a given sheetside. In 

the MRCT heuristic presented earlier, we can replace the rasterization completion 

estimate determined for each workstation with the robustness metric. 

If we compare the bitmap lifetime metric with robustness, then we can see that the 

numerator in the robustness equation (3.13) is actually an estimate of bitmap lifetime 

at time I. The fundamental difference between the two calculations is the denominator 

of the robustness equation that attempts to account for the multiple uncertainty 

parameters in the bitmap lifetime estimate. However, in this environment, because 

the number of sheetsides that can be buffered in the input queue of each workstation is 

limited, the magnitude of the denominator in the robustness equation is also limited. 
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3.8 Simulation Setup 

To evaluate our heuristics, we created a simulation model of a real printing system 

using the Opnet simulation environment [74]. Each simulation run consisted of a 

rasterization job that included on the order of 100,000 sheetsides. The simulation was 

executed with a head node connected by a gigabit ethernet network to six workstations 

used to process the incoming job. The workstations are connected to the two raster 

display devices by a four gigabit fiber channel. It is assumed that the raster display 

device requires 0.11 seconds to display each output bitmap. 

Each sheetside rasterization time estimate is modeled by sampling one of two 

normal distributions. The first distribution was chosen to have a mean of 0.01 seconds 

and a standard deviation of 20% of the mean. The second distribution was chosen 

to have a mean of 0.85 seconds and a standard deviation of 20% of the mean. In our 

simulations, the ratio of 0.85 second sheetsides to 0.01 second sheetsides was chosen 

such that the average rasterization time was 0.22 seconds. This average rasterization 

time was chosen to match the processing time required to output a single bitmap from 

each display device. Using the chosen ratio of sheetsides, for every rasterization time 

sampled from the 0.85 second mean distribution there are three sheetsides selected 

from the 0.01 second mean distribution. 

For comparison, we implemented a round-robin heuristic that was run on identical 

simulations to that of our MRCT heuristic and Robust MRCT heuristic. Round-robin 

tries to assign the same number of sheetsides to each workstation in the cluster by 

defining an arbitrary fixed ordering of the workstations and repeatedly assigning one 

sheetside to each workstation in the ordering as buffer sizes permit [98]. If there 

is insufficient capacity in the input buffer of any workstation j or there are greater 

than Q sheetsides in the input buffer already, then round-robin waits until both of 
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these conditions are satisfied on workstation j so that the machine ordering is obeyed. 

Consequently, round-robin ignores the current workload on each of the workstations, 

instead relying on a strict "balanced" ordering of sheetside assignments to fairly assign 

the workload among machines. 

Although the simulation study did not attempt to directly evaluate a startup 

strategy for starting the displays, the simulation required some startup to begin exe­

cution. For this simulation study, we chose a simplistic strategy where the sheetsides 

are allocated to workstations in a round-robin fashion, prior to starting the displays, 

until all of the workstation output buffers are full. At this point, the displays are 

turned on and the centralized image dispatcher begins to use one of the three studied 

heuristics to allocate the remaining sheetsides for the remainder of the simulation: 

Round Robin, MRCT, or Robust MRCT. 

3.9 Simulation Results 

Figure 3.3 presents the results of the simulation study in terms of bitmap lifetime. 

The x axis of each plot represents the simulation time in seconds and the y axis 

represents the bitmap lifetime in seconds. The plots show the bitmap lifetime values 

for each bitmap consumed by the system. As described in Section 3.6, if the lifetime 

of a bitmap is not greater than tt
l
r^

ap, then the display device will have to stop to 

wait for the bitmap to become available—which is unacceptable in practice. In a large 

scale production printing environment, the paper where the raster device is displaying 

the images cannot be immediately stopped to wait for bitmaps to become available. 

Attempting to abruptly stop the paper may ruin the result, e.g., by tearing the paper. 

In each of the plots of Figure 3.3, at the beginning of each simulation the bitmap 
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lifetimes are high relative to the mean bitmap lifetime. These artificially high values 

occur before tQ, i.e., during this time the displays have not started to consume bitmaps. 

Thus, the initial bitmap lifetimes are equal to the time required to fill up the output 

buffers on all of the workstations prior to starting the display device. 

The simulation required that each heuristic rasterize the same number of sheetsides 

on the same set of workstations (four in this study), where the output was consumed 

by two displays. The round-robin heuristic is able to complete the entire run in only 

slightly more time than both of the MRCT heuristics, however, it did experience a 

significant number of service interruptions as a result of its allocation decisions. Recall 

that in a high-speed printing environment any interruption is considered catastrophic. 

In contrast, the MRCT heuristic based on bitmap lifetime is able to complete the 

entire run with no interruptions. For the MRCT heuristic, bitmap lifetimes were in 

the range of [1.64s, 16s] throughout the simulation. These results demonstrate the 

utility of the mathematical model to estimate rasterization completion times within 

the context of a resource allocation heuristic. 

Finally, the results of our Robust MRCT heuristic surpass that of the bitmap 

lifetime based MRCT heuristic, as can be seen by comparing the plots of the two 

heuristic results. That is, the mean bitmap lifetime for sheetsides in the Robust 

MRCT heuristic is higher than that of the MRCT heuristic. This implies, that the 

Robust MRCT heuristic is capable of tolerating more additional complex sheetsides 

without interrupting service than the bitmap lifetime based MRCT heuristic. Because 

the Robust MRCT heuristic uses the same rasterization completion time model as 

MRCT, the improvements of Robust MRCT can be soley attributed to the use of 

robustness in the heuristic in place of bitmap lifetime. 
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(a) Round-Robin Result 

(b) MRCT result 

(c) Robust MRCT result 

Figure 3.3: Sample plots of the results for the three heuristics (a) round-robin, (b) 
MRCT, and (c) Robust MRCT. 68 



3.10 Related Work 

According to the literature, the problem of workload distribution considered in our 

research falls into the category of dynamic resource allocation, assuming that mul­

tiple invocations of a resource allocation heuristic are overlapped in time with task 

arrivals. The general problem of dynamically allocating a class of independent tasks 

onto heterogeneous computing systems was studied in [65]. The primary objective 

in [65] was to minimize system makespan, i.e., the total time required to complete 

all tasks sent for mapping. This objective is very different from the primary objec­

tive in our work: complete rasterization of each sheetside in a given job before its 

assigned deadline. Our MRCT heuristic attempts to map each sheetside to its esti­

mated minimum rasterization completion time workstation, which is analogous to the 

MCT heuristic of [65] attempting to map each task to its minimum completion time 

machine. However, the method of computing a completion time in [65] does not take 

into account the impacts of buffering tasks, communication links, etc. Furthermore, 

that study assumes no deviation of the actual time to compute a task from its esti­

mated time to compute (ETC) value, i.e., the performance predicted by a resource 

allocation heuristic is assumed to match the actual performance. In our simulations, 

the heuristics are provided with estimated execution times that can differ from the 

"simulated actual" execution times. In our MRCT approach, rasterization comple­

tion time estimates for a sheetside are continuously updated with the most current 

information regarding the "simulated actual" sheetside completion times. 

In [66], an end-to-end quality of service system is described for a distributed real­

time embedded system. The authors define quality of service within an embedded 

system loosely as, "how well an application performs its function." The authors ad­

vocate an approach where resource allocation decisions are dynamically adapted to 
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changes in the environment based on the coordinated monitoring and control of con­

strained system resources. Our work is an application of this methodology within 

a specific real-time imaging system. In the terminology of [66], the resource man­

agement techniques of our research are appropriate for use in the System Resource 

Manager role of the mulit-layer resource management architecture. 

In [51], a number of resource allocation heuristics for a class of independent tasks 

were tested on a homogeneous cluster of eight DEC Alpha workstations running 

Digital Unix. The set of presented heuristics includes the following five: round-robin; 

round-robin with clustering; minimal adaptive; continual adaptive; and first-come 

first-served. None of these heuristics built a prediction model. 

The robustness requirement in this work differs substantially from our earlier work 

on robustness in a dynamic environemnt [69]. In [69], the robustness requirement was 

expressed in terms of the overall resource allocation, i.e., expressed in terms of the 

entire allocation. In this work, each sheetside has an individual deadline, thus, the 

robustness metric must be expressed in terms of individual sheetsides. In [93], each 

dynamically arriving task is assigned its own deadline relative to its arrival time. 

However, that work assumes that stochastic information is available regarding the 

possible execution times of tasks. In this environment, we are only provided with 

a deterministic estimate of task execution times and this stochastic information is 

unavailable. 

3.11 Summary 

The goal of this research was to rasterize dynamically arriving sheetsides (i.e., execute 

tasks) before an assigned deadline for each sheetside so that service interruptions 
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can be avoided during execution. We presented a mathematical model suitable for 

determining an estimate of rasterization completion times in a dynamic environment 

where task execution times are uncertain. We used the mathematical model to design 

the MRCT resource management heuristics that clearly outperformed a commonly 

used approach, i.e., round robin. Further, this mathematical model was used as the 

basis for deriving a robustness metric suitable for this environment. We presented 

an extension of our MRCT heuristic, Robust MRCT, that successfully utilized this 

robustness metric during resource allocation to surpass the results of our bitmap 

lifetime based approach. 
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Chapter 4 

Stochastic Robustness Metric and 

its Use for Static Resource 

Allocations * 

4.1 Overview 

This research investigates the problem of robust static resource allocation for dis­

tributed computing systems operating under imposed Quality of Service (QoS) con­

straints. Often, such systems are expected to function in a physical environment 

replete with uncertainty, which causes the amount of processing required over time 

to fluctuate substantially. Determining a resource allocation that accounts for this 

uncertainty in a way that can provide a probabilistic guarantee that a given level of 

QoS is achieved is an important research problem. The stochastic robustness metric 

proposed in this research is based on a mathematical model where the relationship 

*This entire chapter was done jointly with James Smith and appears in the following papers: 
[86-89]. 
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between uncertainty in system parameters and its impact on system performance are 

described stochastically. 

The utility of the established metric is then exploited in the design of optimiza­

tion techniques based on greedy and iterative approaches that address the problem 

of resource allocation in a large class of distributed systems operating on periodically 

updated data sets. The performance results are presented for a simulated environ­

ment that replicates a heterogeneous cluster-based radar data processing center. A 

mathematical performance lower bound is presented for comparison analysis of the 

heuristic results. The lower bound is derived based on a relaxation of the Integer 

Linear Programming formulation for a given resource allocation problem. 

4.2 Introduction 

Often, parallel and distributed computing systems must operate in an environment 

replete with uncertainty while providing a required level of QoS. The following are 

two examples . Fig. 4.1 schematically depicts the Collaborative Adaptive Sensing 

(CARA) system, which is a joint effort of many technology developers [18]. The 

CARA example represents a large class of systems that operate on periodically up­

dated data sets, e.g., defense surveillance for homeland security, and monitoring vital 

signs of medical patients. Typically, in such systems, sensors (e.g., radar, sonar, and 

video camera) produce data sets with a constant period of A time units. Periodic 

data updates imply that the total processing time for any given data set must not 

exceed A, i.e., A is an imposed timing QoS constraint for the system. Suppose that 

each input data set must be processed by a collection of jV independent applications 

that can be executed in parallel on the available set of M_ heterogeneous compute 
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nodes. Due to the changing physical world, the periodic data sets produced by the 

system sensors typically vary in such parameters as the number of observed objects 

present in the radar scan and signal-to-noise ratio. Variability in the data sets results 

in variability in the execution times of processing applications. Due to an inability 

to precisely predict application execution times, they can be considered uncertainty 

parameters in the system. 

A time units 

J ^ 
data set data set 

I n/ 

compute nodes 

" : i • • • " . h \ 

machine 1 

machine M 

Figure 4.1: The CARA example: major functional units and data flow for a class of 
systems that operate on periodically updated data sets. The o^-'s denote applications 
executing on machine j . Processing of each data set must be completed within A 
time units. 

Another example of a distributed computing system that must accommodate un­

certainty under tight timing QoS constraints is a web search engine. In the Google 

search engine [11], the user query response time is required to be at most 0.5 seconds— 

including network round trip communication latency. Query execution in this system 

consists of two major phases. The first phase produces an ordered list of document 

identifiers. This list is a result of merging the responses from multiple index servers, 

each searching over a particular subset of the entire index database. The second 

phase uses the list of document identifiers and computes the actual title and uniform 
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resource locator's of these documents, along with any query-specific document sum­

mary information. Document servers perform this job, each processing a certain part 

of the list. 

Consider the first phase of the system where a fork-join job [59] must be performed, 

as shown in Fig. 4.2 (similar analysis can be derived for the second phase). To reduce 

overall execution time, each query is duplicated and processed in parallel by a subset 

of the available index servers- chosen by the cluster manager such that they cover 

the entire index database. Each copy queues to a different index server, and each 

index server has its own input buffer where the requests are serviced in the order 

of their arrival (for simplicity of analysis, sequential query processing at each index 

server is considered in this study). The cluster manager must be able to accommodate 

uncertainty in query processing times because the exact time required to process a 

query is not known a priori. However, it is possible for the cluster manager to use 

the attributes of an incoming query to identify a subset of the past queries that have 

similar attributes and share a common distribution of execution times. These past 

execution times taken from the identified subset of queries can be used to create a 

probability density function (pdf) that describes the possible execution times for the 

incoming query. 

According to [6], any claim of robustness for a given system must answer three 

questions: (a) what behavior of the system makes it robust, (b) what uncertainties is 

the system robust against, (c) quantitatively, exactly how robust is the system? As 

an example, consider the CARA environment shown in Fig. 4.1, where the system 

is robust if it is capable of processing each data set within A time units. A resource 

allocation deployed in this system must be robust against uncertainties in execution 
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index servers 

incoming query 
stream 

query processing « 0.5 sec 

list of document 
identifiers 

Figure 4.2: The Google example: Fork (F) and Join (J) query processing executed 
by index servers in the first phase of the search engine. 

times of the applications processing data sets. In our approach, the degree of robust­

ness is measured as the probability that all the processing required for a given data 

set is completed within A time units. Very similar definitions could be derived for 

the Google example. 

In both examples, an important task for a resource management system is to dis­

tribute applications (or queries) across compute nodes (or index servers) such that 

the produced resource allocation is robust, i.e., it can guarantee (or has a high proba­

bility) that the imposed QoS constraint is satisfied despite uncertainties in processing 

times. Simple load balancing algorithms may be sufficient when a distributed sys­

tem is not over-subscribed, i.e., the number of queued tasks at each compute node is 

small, so tasks can be completed well before their deadlines. However, more sophisti­

cated stochastic analysis is required for resource allocations as the system experiences 

workload surges or a loss of resources. Robust design for such systems involves deter­

mining a resource allocation that can account for uncertainty in a way that enables 
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the system to provide a probabilistic guarantee that a given QoS is achieved. Our 

study defines a stochastic methodology for quantifiably determining" the ability of a 

resource allocation to satisfy QoS constraints in the midst of uncertainty in system 

parameters. 

The problem of resource allocation in the field of heterogeneous parallel and dis­

tributed computing is NP-complete (e.g., [21, 49]), therefore, the development of 

heuristic techniques to find near-optimal solutions represents a large body of research 

(e.g., [4,16,32,34,35,49,60,65,99]). There are two major classes of resource alloca­

tion approaches widely used in practice: greedy heuristics and iterative algorithms. 

Usually, greedy heuristics are relatively fast (as opposed to time-consuming global 

search heuristics), as they generate a solution by making locally optimal decisions; 

this feature often makes greedy heuristics an appropriate choice to use in dynamic 

(i.e., on-line mapping) systems. However, the quality of solutions produced by greedy 

heuristics is generally lower than that produced by global search heuristics that pro­

gressively improve a solution through multiple iterations. 

In the first part of this chapter, a new stochastic robustness metric is presented 

where the uncertainty in system parameters and its impact on system performance 

are modeled stochastically. This stochastic model is then used to derive a quantitative 

evaluation of the robustness of a given resource allocation as the probability that the 

resource allocation will satisfy the expressed QoS constraints. Two alternative means 

for computing the metric are presented that render the required computation practical 

in a number of common environments. The utility of the proposed stochastic metric 

is analyzed in a simulated environment by comparing it against existing deterministic 

metrics, i.e., metrics where outcomes are not associated with probabilities. 

In the second part of this chapter, the proposed method of stochastic robustness 
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evaluation was integrated into greedy and global search heuristics developed to ad­

dress the problem of resource allocation for a class of distributed systems operating 

on periodic data sets schematically depicted in Fig. 4.1. In many systems of the 

considered class, it is highly desirable to minimize the period A between subsequent 

data arrivals while providing a probabilistic guarantee that each data set is processed 

within A time units. As a practical example, consider air traffic control and military 

applications where frequent radar scans are needed to identify an approaching target 

with a guaranteed high probability of successful processing of each scan. 

In summary, the two major contributions of this chapter include: (1) the develop­

ment of a mathematical model for a stochastic robustness metric that utilizes avail­

able information to quantifiably determine a resource allocation's ability to satisfy 

expressed QoS constraints; and (2) the design and performance analysis of optimiza­

tion techniques that solve the problem of robust resource allocation in distributed 

systems operating on periodically updated data sets. We will show that when the 

distributions of random variables associated with uncertain parameters in the stochas­

tic model are available, an evaluation of a resource allocation leads to more useful 

results than that achievable with deterministic metrics utilizing mean values. Ad­

ditional contributions include a discussion on the applicability of convolution and 

the bootstrap method for computing the proposed stochastic robustness metric, the 

derivation of a lower bound on a minimum A achievable based on our Integer Linear 

Programming relaxation, and an analysis of the literature pertinent to the area of 

robust resource allocation in distributed systems. 

In Section 4.3, a formal definition of stochastic robustness is given, while Section 

4.4 discusses methods of computing the stochastic robustness metric given the inde­

pendence of input parameters. A comparison study demonstrating the effectiveness 
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of the proposed robustness measure versus deterministic metrics is included in Sec­

tion 4.5. The descriptions of the heuristics or generating a robust resource allocation 

that utilize the new metric are presented in Section 4.6 and Section 4.7 for greedy 

and iterative approaches respectively. This is followed by a proof of an effective lower 

bound in Section 4.8, which is used for comparison in the performance analysis. Sec­

tion 4.9 contains the details of the simulation setup. The performance results of the 

developed heuristics are presented in Section 4.10. A discussion of the relation of this 

study to the published work from the literature is given in Section 4.11. A glossary of 

notation and acronyms used in the chapter are tabulated in Table 4.1 and Table 4.2, 

respectively. 

Table 4.1: Glossary of Notation 
T-

Pmin 

Pmax 

e 
A 
N 
M 

execution time of application a^ on compute node j 
performance characteristic 
local performance characteristic on node j 
minimum acceptable value for I/J 
maximum acceptable value for ip 
stochastic robustness metric equal to P[/3mj„ < ip < Pmax] 
time period between sequential data sets in the CASA example 
total number of applications considered for mapping 
number of heterogeneous nodes in the system 

4.3 Mathematical Model for Stochastic Robust­

ness 

A stochastic robustness metric for a given distributed computing environment should 

reasonably predict the performance of the system. Given the existing content in the 

CASA example, let Sj be the sequence of rij applications assigned to compute node 

j in the order they are to be executed, i.e., S,j = [al7-,a27-,...., anjj]. In the Google 
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Table 4.2: Acronyms 
CASA 
FFT 
PMR 
CR 
CRC 
GA 
ACO 
SA 
LB 
UB 
B&B 

Collaborative Adaptive Sensing of the Atmosphere 
Fast Fourier Transform 
Period Minimization Routine 
Contention Resolution heuristic 
Common Stopping Criterion 
Genetic Algorithm 
Ant Colony Optimization 
Simulated Annealing 
Lower Bound 
Upper Bound 
Branch-and-Bound algorithm 

example, the sequence Sj represents rij queries assigned to index server j . Let random 

variable T^ denote the execution time of each individual application (or query) a^ 

on compute node (or index server) j . The random variables T,j characterize the 

uncertainty in execution time for each of the applications in the system and serve as 

the inputs to the mathematical model. These random variables are the uncertainty 

parameters in the mathematical model. 

In the CASA example, the evaluation of system performance is based on the 

makespan value (total time required for all applications to process a given data set) 

[16] achieved by a given resource allocation, i.e., a smaller makespan equates to better 

performance. The functional dependence between the uncertainty parameters and the 

performance characteristic, denoted as ip, in the model is 

£ > } • (4i) 

In the Google example, the performance in the first phase is measured for each 

individual query. Unlike the CASA example, where the evaluation of makespan values 

occurs at each A, query performance evaluation in the Google example is performed 
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while the system is busy processing queries. Assume that M copies of a query arrive at 

index servers at wall-clock time t, and n,j is the number of queries pending execution or 

being executed by index server j at that time. Let toj denote the wall-clock start time 

of execution for the query being processed by index server j at time t. The functional 

dependence between the uncertainty parameters and the performance characteristic 

at time t, denoted as ip(t), is 

m = .maxM j T1:j - ( t - t0j) + JTTi:j i . (4.2) 

Due to its functional dependence on the uncertainty parameters T^, the performance 

characteristic in Eq. 4.1 and 4.2 is itself a random variable. 

Let the QoS constraints be quantitatively described by the values /?m;n and f3max 

limiting the acceptable range of possible variation in system performance [6], i.e., 

Pmin < ip < Pmax- The stochastic robustness metric, denoted as 0, is the 

probability that the performance characteristic of the system is confined 

to the interval [/3m;n,/3macc], i.e., Q = F[f3min < -0 < Pmax]- For a given 

resource allocation, the stochastic robustness quantitatively measures the probability 

that the generated system performance will satisfy the stipulated QoS constraints. 

Clearly, unity is the most desirable stochastic robustness metric value, i.e., there is 

zero probability that the system will violate the established QoS constraints. 
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4.4 Computational Issues 

4.4.1 Assumptions of Independence 

In the model of compute node j , the functional dependence between the set of local 

uncertainty parameters {7̂ 7-11 < i < n7} and the local performance characteristic 
Tlj 

ijjj can be stated in the CAS A example as ipj = YTj] in the Google example as 

«i 

i'3 = Tij - (t - t0j) + J2 Tij-
i=2 

Independence of the local performance characteristics implies that the random 

variables t/ji, I/J2, ..., VJM are mutually independent. If such independence is estab­

lished, the stochastic robustness in a distributed system can be expressed as the prod­

uct of the probabilities of each compute node meeting the imposed QoS constraints. 

Mathematically, this is given as 

M 

8 = HnPrmn<'^<(imaX}- (4.3) 

Specifically in Eq. 4.3, j3.nuix = A in the CASA example and (3max <C 0.5 sec. in the 

Google example. In both examples, (3min is set to 0 because there is no minimum 

time constraint on execution. 

If the execution times TV] of applications mapped on a compute node j are mu­

tually independent, then F[f3min < i/j < f3max] can be computed using an n^-fold 

convolution of probability density functions (pdfs) fx,:-{U) [62] 

nPmin < i>j < Pmax] = / [fTlj(U) * - * fTnjj(tnj)]dt. (4.4) 
" Pmin 

This assumption of independence is valid for non-multitasking execution mode which 
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is commonly considered in the literature [16,32,59,65,99]), and applied in practice in 

a variety of systems, e.g., an iterative UDP server model [36]. 

4.4.2 Fast Fourier Transform Method 

An n.y-fold convolution in Eq. 4.4 requires n7- — 1 computations of the convolution 

integral [62]; thus, a direct numerical integration may become a formidable task when 

rij is a relatively large number. However, a high quality approximation to the n^-fold 

convolution can be obtained, at a low computational expense, by applying Fourier 

transforms. Thus, if $2;. (u>) denotes the characteristic function of T^, i.e., the forward 

Fourier transform [76], and $T2 denotes the inverse Fourier transform, then Eq. 4.4 

can be computed as follows 

I* Pm a x 

P [ A n i n < '</<; < Pmax] = %) {®Tl3 H X .. . X $T n . . (co) }dt. (4.5) 

From this point on, assume that each pdf fvijiU) is expressed as a discrete prob­

ability mass function (pmf) utilizing Q points—this is common in practical imple­

mentations. As such, the calculation can be performed using a Fast Fourier Trans­

form method (FFT) that reduces the computational cost of finding the corresponding 

characteristic functions ^ . . The FFT method is a discrete Fourier transform algo­

rithm that reduces the number of computations needed for Q, points from 2f22 to 

2fHogfi [76]. Thus, the computational complexity of determining the local perfor­

mance characteristic can be drastically reduced, making the approach reasonable to 

compute. 

In dynamic systems (i.e., on-line mapping), processing a continuous stream of 

tasks (e.g., in the Google example), the number of convolutions required at each 
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mapping event is relatively low. For example, evaluating a potential allocation of a 

given task on a particular compute node requires only one convolution of the execution 

time distribution for the task with the completion time distribution of the the task 

assigned last to the considered compute node. Once the assignment of a given task is 

finalized, its computed completion time distribution will be used for future assignment 

assessments. 

4.4.3 Bootstrap Approximation 

This subsection presents an alternative method of evaluating ¥[(5min < ipj < (3max\ 

known in the literature as the bootstrap method [100]. In contrast to convolution 
nj 

that is applicable only when ipj = ^ T^, the bootstrap procedure can be applied 

to various forms of functional dependence between local uncertainty parameters T^ 

and the local performance characteristic -0j, making it very useful in practical imple­

mentations. For example, the processing of queries by a Web server is typically done 

in a parallel multitasking environment, and there exists a complex functional depen­

dence [8] between the time required to process a query and a number of currently 

executing threads, amount of data cached, types of requests, etc. 

Suppose that for each T -̂, its execution time distribution is known and fully de­

scribed with a pmf fr^iti)- The pmf can be derived analytically and presented as a 

closed-form expression, or obtained as a result of past executions of application i on 

compute node j . The latter is called a sample pmf. As a number of past executions k 

grows, new results of executions are added, and the sample pmf, f\k)T, • {U), constructed 

from these observations, converges in probability to fy (tj), i.e., f(k)Ti-{U) ~~> fTi:i(U)-

Let T*j denote one draw from the distribution fr^U) (or from /(fc)r?;/(^))- Let 

ijj* be a bootstrap replication whose computation is based on a known functional 

85 



dependence g() between T,,- and ipj, i.e., ip* = g(Tfj, ...,T£.j). In the bootstrap 

simulation step [100], B_ bootstrap replications of ip* can be computed, i>* 1; ...,I/J* B, 

and used to approximate a pmf of ipj, denoted as f(B)i> •(£)• Thus, the probability for 

the local performance characteristic -ipj can be approximated as: 

P[A™n < i>j < Pmax] « / f(B)^(t)dt. (4.6) 

Eq. 4.6 assumes the existence of a monotone normalizing transformation for the ipj 

distribution, and it is based on a proof of bootstrap percentile confidence interval [100]. 

An exact normalizing transformation will rarely exist, but approximate normalizing 

transformations may exist —which causes the probability that ipj is in the interval 

[Pmin, Pmax] to be not exactly equal to the integral on the right-hand side of Eq. 4.6. 

The pseudocode for the bootstrap analysis is shown in Fig. 4.3. 

B 4— number of bootstrap replications; 

Vboot <— vector of length B; 

Vsample <— vector of length rij; 

for b = 1 : B 

for i = 1 : n.j 

Vsample <— sample fTi:j{U) with replacement; 

Vboot <— g(Vsample); 

clear Vsample; 

Nsamples <— number of samples in Vboot £ [Pmin-, Pm,ax]\ 

^[Pmin < i>j < Pmax] ~ Nsamples 1B. 

Figure 4.3: Pseudocode for the bootstrap procedure. 

Table 4.3 presents the empirical data for an experiment conducted to illustrate 
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the accuracy of the bootstrap approximation for the case where the functional de­

pendence between T*j and ijjj is a summation. Table 4.3 captures the percent error 

resulted from the approximations based on Eq. 4.6 with respect to the exact convolu­

tion results. In the experiment, (imin was set to 0, [imax was set to the mean value of t 

in /(s)i/>(t)(i)—this ensures that (3max is specified in the reasonable range. All T -̂ dis­

tributions were modeled by randomly assigning a probability to each of Q, data points 

and normalizing the resultant pmfs. Each value in Table 4.3 represents the average 

across 100 different trials. Two trends can be identified from Table 4.3: (1) rela­

tive accuracy does not increase with the number of applications assigned to compute 

node j , (2) tighter approximations were obtained by increasing the number of boot­

strap replications. If distributions of uncertainty parameters were closer to Gaussian 

distribution -which occurs often in practice the resultant bootstrap approximations 

would be more precise as described in the proof of Eq. 4.6 [100]. There are other 

bootstrap approximations that may be more accurate, especially when the nature of 

the expected pmf of the performance metric is known. The above experiment demon­

strates that the bootstrap method is capable of producing reasonable approximations. 

The real strength of the bootstrap is its capability of handling mutually dependent 

random variables. Note however that some bootstrap methods require a significant 

amount of computation and might be prohibitively expensive in certain distributed 

systems. 

Table 4.3: Percent error resulted from bootstrap approximations. 

nj 

10 
100 

1000 

number of bootstrap replications 
100 
5.63 
8.35 
6.52 

1000 
5.61 
3.23 
2.84 

10000 
2.16 
2.13 
1.04 
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4.5 Comparison with Deterministic Metrics 

The experiments in this section seek to establish the utility of the stochastic ro­

bustness metric in distinguishing between resource allocations that perform similarly 

with respect to a commonly used deterministic metric, such as makespan, and the 

deterministic robustness metric from [6]. The simulation of the system outlined in 

the CASA example of Section 4.2 included 1000 randomly generated resource al­

locations, where 128 independent applications (N — 128) were allocated to eight 

machines (M = 8). Each of the application execution time distributions, specific to 

each application-machine pair, was modeled with a pmf randomly constructed on the 

range [0,40] seconds, inclusive. To construct each pmf, ten execution time values 

were uniformly spread across the range of the distribution. Each of these execution 

time values was assigned a probability sampled uniformly on the range (0,1). All 

application execution time distributions were subsequently normalized so the sum 

of the probabilities across all the execution time values becomes equal to 1. Let 

meanav be the average value computed across the means of all constructed applica­

tion execution time distributions. In the simulation, the QoS constraint A was set 

to A = 1.5 x JV x meanavIM. Recall, for the CASA example A is a QoS constraint 

on system processing time that is used in the definition of the stochastic robustness 

metric given in Eq. 4.3. In Fig. 4.4, the "stochastic robustness" vertical axes cor­

respond to the probability that the makespan will be < A. In this simulation, the 

deterministic robustness metric and makespan were calculated using the mean of the 

execution time distribution for each application-machine pair in the given allocation. 

In Fig. 4.4(a), a comparison between the stochastic robustness metric and makespan 

is presented for 1000 randomly generated resource allocations. As can be expected, in 

general, resource allocations that produce a very large makespan tend to have a very 
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small stochastic robustness metric value. However, there can be a large discrepancy 

between the predicted performance found using the predicted makespan, based on ex­

ecution time mean values, and the predicted performance found using the stochastic 

robustness metric. For example, in the figure, compare the two resource allocations 

labeled A and B. If the comparison of these two resource allocations is made using 

the predicted makespan, allocation A appears to be slightly superior to allocation 

B. However, resource allocation B presents a 99.8% probability of meeting the im­

posed QoS constraints, whereas allocation A has only a 75% probability of meeting 

it. In this case, using only the expected makespan to compare the two resource al­

locations leads to a sizable increase in risk for a modest ( « 5%) improvement in the 

expected makespan. Any of the approximately 100 resource allocations above and 

to the right of allocation A, delineated by the dashed lines in the figure, will have a 

higher robustness value yet higher (worse) makespan value than A. 

In Fig. 4.4(b), a comparison of the stochastic robustness metric and the determin­

istic robustness metric is presented for 1000 randomly generated resource allocations. 

The deterministic robustness metric, first introduced in [6], is based on a calculation 

of the minimum total increase across all task execution times in the Euclidean sense 

that can possibly violate A. The results also show a number of resource allocations 

that have a negative deterministic robustness value. For the data used in this simu­

lation study, a negative value for the deterministic robustness correlates with a low 

stochastic robustness value. 

Compare the two resource allocations C and D. Based on using deterministic 

robustness measure, allocation D (with a deterministic measure of 6.13 sec.) is pre­

ferred over C (with a deterministic measure of 3.25 sec). However, under the new 

stochastic model, allocation C (with a stochastic measure of 99.9%) is preferred over 

89 



D (with a stochastic measure of 75%). Thus in this case, using only the deterministic 

robustness metric to select a resource allocation, D appears to be more robust than 

C. In contrast, the stochastic robustness metric, which accounts for the distribution 

of makespan outcomes, shows that allocation C has a 99.9% probability of meeting 

the QoS constraint while allocation D has only a 75% probability of meeting the QoS 

constraint. 

Consider the sub-region identified in Fig. 4.4(b) with dotted lines originating from 

the point D, containing all of the points above and to the left of D. Each of these 

points in the sub-region has a higher stochastic robustness metric value than D but 

a lower deterministic robustness metric value than D. 

It is shown in [6] that the deterministic robustness metric, using an expected time 

for each task execution, provides better information for resolving a resource alloca­

tion than just a makespan. However, when execution time distributions are available, 

the stochastic robustness metric provides even better decision than the determinis­

tic robustness metric. Differences between the stochastic robustness metric and the 

deterministic robustness metric can be explained by the fact that the stochastic ro­

bustness metric uses information about the distribution of outcomes for the resource 

allocation to determine robustness. In contrast, the deterministic robustness metric 

uses a scalar estimate of each application's execution time on each machine to deter­

mine a resource allocation's robustness. Thus, if the information needed for using 

the stochastic model is available, or can be obtained, then a better selection among 

resource allocations is possible. 
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Figure 4.4: A plot of stochastic robustness metric versus (a) makespan and (b) deter­
ministic robustness for 1000 randomly generated resource allocations. The stochastic 
robustness metric values for allocations A and B exemplify the difference between 
the stochastic robustness metric and makespan. Similarly, the stochastic robustness 
metric values for allocations C and D exemplify the difference with the deterministic 
robustness metric. 
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4.6 Greedy Heuristics 

4 .6 .1 O v e r v i e w 

This research assumes that an acceptable level of stochastic robustness F[ip < A] is 

specified for the system described in the CASA example in Section 4.2. Thus, the 

performance goal for the mapper is to find resource allocations for a given set of Â  

applications on M machines that allows for the minimum period A between sequential 

data sets while maintaining a given level of stochastic robustness. 

Four greedy heuristics were designed for the problem of finding a resource al­

location with respect to this objective. Greedy techniques have been adapted in 

many systems, e.g., [16,49,70,73], as they perform well and are capable of generat­

ing solutions relatively fast as compared to time-consuming global search heuristics, 

e.g., [99,101,102]. The four heuristics can be categorized based on the amount of 

stochastic information that each of them uses. The first two of the proposed heuris­

tics utilize the entire spectrum of stochastic information at each stage of the decision 

process, as opposed to the third heuristic that uses mean values in the sorting stage, 

and the fourth heuristic that operates using mean values only. All of the heuristics 

employ the Period Minimization Routine, described next, to determine the minimum 

A supported by each resource allocation. 

Period Minimization Routine: The PMR procedure determines the mini­

mum possible value of A for a given resource allocation and a given level of stochastic 

robustness. As a first step, the results of the n^-fold convolutions are obtained with 

the FFT or bootstrap method for each compute node corresponding to the completion 

time (i.e., Yl^ij) distributions expressed in a pmf form. The completion time pmf 

on compute node j is comprised of Kj impulses, where every impulse is specified by 

92 



lo = tj <- min{ikj \l<k<Kj}l<j< M }; 

hi = t2<- ma,x{tkj | 1 < k < Kj, 1 < j < M } ; 

P <- specified level of P[V> < A]; 

while 3 tk:j e (/o, hi) | {1 < fc < % 1 < j < M) 
M 

p^ < A] - n Eftj x l(*fcj G [h,t2]) 
fe=l 

> 

switch P[V> < A] : 

= P : return; 

> P : hi <— i2; 

< P :lo^- t2; 

end of switch 

*2 *- ifej 1 {1 < fc < % 1 < j < M) closest to lo + (hi -

end of while 

A <— /?,?;. 

- *o)/2; 

Figure 4.5: Pseudocode for the Period Minimization Routine (PMR). 

the time tkj \ k G [1, Kj], and the probability pkj | A; 6 [1, Kj] for tjy to occur. 

As a second step, the minimum A is determined recursively as the smallest value 

among tkj | {1 < k < Kj, 1 < j < M}, such that the specified level of stochastic 

, where l(condition) is 1 
M 

robustness is less than or equal to F] 
J = I 

if condition is true; 0 otherwise. The 

Ki 

]T pkj x l(tkj < A) 
fe=i 
'MR procedure is summarized in Fig. 4.5. 

After Q_ steps, the PMR procedure reduces the uncertainty range by a factor 

~ (0.5)^, which is the fastest possible uncertainty reduction rate. This optimality is 

possible because F[ip < A] is strictly increasing as the number of impulses considered 

for its computation grows. The notation A(aj, rrij) will be used to denote a PMR call 

that returns the minimum value of A for the specified level of stochastic robustness 

when application a$ is added to machine m-j. 
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while not all applications are mapped 

for each unmapped application a* find the compute node rrij such that 

m,j <— argmin* {K{ai,m,j) \ 1 < j < M}; 

resolve ties arbitrarily; 

from all (aj,mj) pairs found above select pair(s) (ax,my) such that 

(ax,my) <— argmin {A(aum.j) | all (a,,,my)}; 

resolve ties arbitrarily; 

map ax on my; 

end of while 

Figure 4.6: Pseudocode for the two-phase Basic greedy heuristic. 

4.6.2 Basic Heuristic 

The Basic heuristic is based on the principles of the Min-Min algorithm (first pre­

sented in [49], and shown to perform well in many environments, e.g., [16,65,70]). 

The heuristic traverses through iV iterations resolving an allocation of one application 

at each iteration. In the first phase of each iteration, the heuristic determines the 

best assignment (according to the performance goal) for each of the applications left 

unmapped. In the second phase, it selects which application to map based on the 

best result found in the first phase. The Basic procedure is summarized in Fig. 4.6. 

4.6.3 Contention Resolution Heuristic 

The CR heuristic uses the sufferage concept introduced in [65], and used in [57]. Like 

the Basic heuristic, in every iteration this heuristic first determines the best assign­

ment for each of the applications left unmapped. Mapping decisions are finalized 

Argmin stands for the argument of the minimum, i.e., the value of the given argument for which the value of 
the given expression attains its minimum value 
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for those applications whose best choice compute nodes are unique, i.e., there are no 

other applications competing for these nodes. In the second phase, the most critical 

among the competing applications gets allocated, determined as the application with 

the largest difference between the two smallest A values corresponding to this appli­

cation's assignment to its best choice and its second best choice compute nodes, i.e., 

its sufferage. The CR procedure is summarized in Fig. 4.7. 

while not all applications are mapped 

for each unmapped application a.t 

find the first choice compute node m/j as 

rrij <— argmin{A(ai,rrij) | 1 < j < M}; 

for all (ai:irij ) pairs found above 

if rrij 7̂  mk , Vfc ^ j , t h e n map a* on mS ; 

else find the second choice compute node mS as 

rrij <— argmin{A(aj,mj) | (1 < j < Mk rrij / m,j )}; 

compute contention value C{ai) as 

C ( a l ) ^ { A ( a , , m f ) - A ( a 4 , m f ) ) } ; 

select unmapped application ax with maximum C(aj) as 

ax <— argmax{C(aj) | all unmapped a.,}; 

resolve ties arbitrarily; 

map ax on its first choice compute node m, , 

end of while 

Figure 4.7: Pseudocode for the two-phase Contention Resolution greedy heuristic. 

4 .6 .4 S o r t i n g Heur i s t i c 

This heuristic uses the concepts developed for the MCT algorithm that were observed 

to perform well in multiple resource allocation schemes designed for distributed sys­

tems, e.g., [16,65]. Initially, all Â  applications considered for mapping are sorted 
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based on the average computed for each application across the mean values fJ.(Ti:j) 

derived from execution time distributions of T^ | 1 < j < M. Three different order-

ings were considered in the experiments. The HI—>LO ordering where applications 

are ranked in descending order of their averages; L O ^ H I ordering where applications 

are ranked in ascending order of their averages; and ARBITRARY ordering where 

N applications are ordered randomly. Once sorting is completed, applications are 

fetched sequentially, each mapped on the compute node selected to provide the min­

imum value of the period A under the imposed level of stochastic robustness. The 

heuristic's procedure is summarized in Fig. 4.8. 

for each application a 
r M 

find the average A(a. 
3=1 

/M; 

order applications based on their averages A(cii) 

according to the selected type {HI-^LO, L O ^ H I , ARBITRARY}; 

while not all applications are mapped 

fetch next unmapped application a, from the ordered list; 

find the compute node rrij such that rrij <— argmin{A(aj,??i-:,) | 1 < j < M}; 

resolve ties arbitrarily; 

map CLJ on rrij] 

end of while 

Figure 4.8: Pseudocode for the Sorting greedy heuristic. 

4.6.5 Mean Load Balancing Heuristic 

This heuristic was developed based on the concepts of the OLB algorithm discussed 

in [56,65]. First, the Â  applications are sorted based on average value, as in the 
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sorting heuristic. Then, the applications are mapped in the {HI—>LO, LO—>HI, AR­

BITRARY} order where the compute node with the minimum mean of its execution 

time distribution is selected for each allocation. The heuristic's procedure is summa­

rized in Fig. 4.9. 

for each application a* 

find the average A(at) 
M 

E KTa) /M; 

order applications based on their averages A{a,i) 

according to the selected type {HF^LO, LO-+HI, ARBITRARY}; 

while not all applications are mapped 

fetch next unmapped application a,_ from the ordered list; 

find the compute node rrij such that rrij <— argmin{/i(Ty) | 1 < j < M}; 

resolve ties arbitrarily; 

map at on rrij; 

end of while 

Figure 4.9: Pseudocode for the Mean Load Balancing greedy heuristic. 

4.7 Global Search Heuristics 

4.7.1 Overview 

Three global search heuristics were designed to find a resource allocation that opti­

mizes the performance goal stated in Subsection 4.6.1. These heuristics are probabilis­

tic search techniques that have been widely used in optimization research [70,85,102], 

artificial intelligence [47], and many other areas. The first two of the heuristics oper­

ate with a set of complete resource allocations; whereas the third heuristic iteratively 

changes a single complete resource allocation. As opposed to the previous greedy 
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algorithms, where a single complete resource allocation was "constructed," iterative 

heuristics progress toward a final solution through modified versions of complete re­

source allocations. During each iteration, the existing complete resource allocation 

(or a set of allocations) is modified and evaluated. Such an iterative search process 

continues until an appropriate stopping criterion is reached. 

To establish a basis for the comparison of the global search heuristics and to 

demonstrate the performance over time for each of them, a common stopping criterion 

(CSC) of 150,000 calls to the PMR routine was used in this study. It is important to 

note that the PMR stochastic evaluation is the most computationally intensive part 

of any of the algorithms as it calls for M executions of (rij — l)-fold convolutions, 

followed by a recursive search for a minimum A level. 

4.7.2 Steady State Genetic Algorithm 

The adapted genetic algorithm (GA) implementation was motivated by the Genitor 

evolutionary heuristic [102]. Each chromosome in the GA models a complete resource 

allocation as a vector of numbers of length N where the ith element of the vector iden­

tifies the compute node assignment for application a*. The order in which applications 

are placed in a chromosome does not play any role and can be considered arbitrary. 

The population size for the GA was fixed at 200 members for each iteration. The 

population size was chosen experimentally by varying the population size between 100 

and 250 in increments of 50. For the samples tried, a value of 200 performed the best 

and was chosen for all trials. The initial members of the population were generated 

by applying the greedy Sorting heuristic presented before, in which the ARBITRARY 

ordering among applications was perturbed to have as a result different resource al­

locations to serve as the initial members of the population. In addition, the solution 
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produced by the greedy Basic heuristic was also added to the initial population. 

The GA was implemented as a steady state GA, i.e., for each iteration of the GA 

only a single pair of chromosomes was selected for crossover. Selection for crossover 

was implemented as rank-based selection using a linear bias function [102] where 

the population of chromosomes is sorted by A values. The most fit chromosome 

corresponds to a resource allocation with the smallest A value supportable at the 

specified level of stochastic robustness 0. Each chromosome generated by crossover or 

mutation is inserted into the population according its Lambda value such that after 

insertion the population remains sorted. Furthermore, the population is truncated 

after insertion to maintain a constant population size. 

To reduce the number of duplicate chromosome evaluations, each chromosome that 

is trimmed from the active population is recorded in a list of known bad chromosomes 

referred to as the graveyard. Selecting the size of the graveyard reflected a trade-off 

between the time required to identify that a new chromosome was not present in the 

population or the graveyard and the time required to evaluate the new chromosome. 

The graveyard size was limited to 20,000 chromosomes. 

To maintain the selective pressure of rank-based selection, an additional constraint 

was placed on the population requiring each chromosome to be unique, i.e., clones 

are explicitly disallowed. If a chromosome produced in any iteration were to generate 

a clone of an individual already present in the population or the graveyard, then that 

clone would be discarded prior to its evaluation for insertion into the population. 

The crossover operator was implemented using a two-point reduced surrogate pro­

cedure [102] where the elements between the crossover points are exchanged between 

the two parents. Crossover points are selected such that at least one element of the 

parent chromosomes differs between the selected crossover points as this guarantees 

99 



offspring that are not clones of their parents. In addition, each generated offspring is 

checked for uniqueness in the population and graveyard prior to making a call to the 

PMR routine that calculates the minimum A value. 

The final step in a single iteration of the GA is mutation. For each iteration of the 

GA, the mutation operator is applied to the newly generated offspring of the crossover 

operator. Each application assignment of the offspring is individually mutated with 

a probability referred to as the mutation rate. For the simulated environment, the 

best results were achieved using a mutation rate of 0.01. For a chosen application, 

the mutation operator randomly selects a different compute node assignment from a 

subset of compute nodes that provide smallest means of execution times. The best 

results in the simulation study were achieved when the size of this subset was set 

to three. Following mutation a final local search procedure, conceptually analogous 

to the steepest descent technique, was applied to the result prior to inserting the 

mutated chromosome into the population. 

The local search operator was introduced for inclusion into a GA as a follow-on 

step to the mutation operator for a flowshop problem in [107]. The implementation 

of the local search procedure, is similar to the coarse refinement presented as part of 

the GIM heuristic described in [97]. In particular, all applications are examined to 

determine which of them should be moved to a different compute node to realize the 

largest decrease in the minimum supportable A value. The procedure continues until 

moving any application would result in an increase in the minimum supportable A 

value. 

The GA procedure is summarized in Fig. 4.10. 
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generate initial population; 

evaluate each chromosome; 

rank population based on A values; 

while CSC not met 

select two chromosomes from the population; 

select crossover points; 

exchange compute node assignments 

between crossover points; 

ascertain if either offspring are unique; 

for each element of each child chromosome 

generate a random number x in the range [0,1]; 

if x < mutation rate 

determine 3 minimum mean execution time machines 

for the selected application; 

arbitrarily change the compute node assignment 

of the selected application; 

apply local search to each of the offspring; 

ascertain if either offspring is unique; 

insert unique offspring into population; 

trim population down to population size; 

move dead chromosomes to the graveyard; 

end of while 

output the best solution. 

Figure 4.10: Pseudocode for the Steady State Genetic Algorithm. 
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4.7.3 Ant Colony Optimization 

The Ant Colony Optimization (ACQ) heuristic belongs to a class of swarm optimiza­

tion algorithms where low-level interactions between artificial (i.e., simulated) ants 

result in large-scale optimizations by the larger ant colony. The technique was in­

spired by colonies of real ants that deposit a chemical substance (pheromone) when 

searching for food. This substance influences the behavior of individual ants. The 

greater the amount of pheromone on a particular path, the larger the probability that 

an ant will select that path. Artificial ants in ACO behave in a similar manner by 

recording their chosen path in a global pheromone table. 

The ACO algorithm implemented here is a variation of the ACO algorithm design 

described in [33]. During ACO execution, the N x M pheromone table is maintained 

and updated allowing the ants to share global information about good compute nodes 

for each application. Let each element of the pheromone table, denoted as r(ai,j), 

represent the "goodness" of compute node j for application a*. At a high level, the 

ACO heuristic works in the following way. A certain number of ants are released 

to find different complete mapping solutions. Based on the mapping produced by 

the individual ants, the pheromone table is updated. This procedure is repeated as 

long as the common stopping criterion is not reached. The final mapping solution 

is determined by mapping each application to its highest pheromone value compute 

node. 

At a low level, each ant heuristically "constructs" its complete mapping, and 

its mapping decision process balances between the (a) the performance metric and 

(b) the pheromone table information. The ant procedure involves two phases. In 

Phase 1. for each unmapped application, the compute node, denoted as jbestfai), is 

determined such that it would provide the minimum mean completion time, /imm(&t), 
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across all M compute node completion time distributions. Each of these distributions 

is obtained by mapping a$ to the compute node and determining the new completion 

time distribution for the compute node. The worth of application a*, denoted as r/(aj), 

is then determined as a result of the following normalization 

V(at) = AWaO ( 4 ? ) 

unmapped a^ 

In Phase 2, an unmapped application is stochastically selected (procedure de­

scribed later) and assigned to its jt)est(ai) compute node. The ant procedure is re­

peated until all applications have been mapped. 

Let the fitness of ant s_, denoted as f(s) G (0,1), be determined as the rank of 

ant s in the sorted order of ants in the current iteration. Sorting is based on the 

minimum possible level of A, obtained with a PMR call invoked at the end of each ant 

procedure, and ranking is done using a linear bias function [102]. The pheromone table 

is updated at the end of each high-level iteration, i.e., when all ants complete their 

paths. Specifically, if £ denotes a coefficient that represents pheromone evaporation, 

Bs denotes the set of application-compute node assignments comprising the path of 

ant s, and assuming Q_ ants released, each r(a,i,j) is updated as follows 

Q 

T(a,i,j) = / > x r(ai,j) +^2f(s) x l(oi assigned to j in Bs). (4.8) 
s = l 

Initially, all values in the pheromone table were set to 1. 

Let a be the scalar that controls the balance between the pheromone value and 
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worth. The probability that ant s selects application a,: to be mapped next is 

'[a* selected next] = 
a x T(ai,jbest.(ai)) + (1 - a) x rj(aj) 

]T ax r(ak, jbest(ak)) + (1 - a) x r](ak)' 
unmapped a^ 

(4.9) 

The scalar a was determined experimentally by incrementing from 0 to 1 in 0.1 steps. 

In the simulation trials tested, the performance peak was detected with a equal to 

0.5. The pheromone evaporation factor p of 0.01 was determined in a similar manner. 

The total number of ants for each iteration was set to 50; any further increase of this 

number in the experiments resulted in performance degradation. Note that numerical 

values for all of the aforementioned parameters were determined with respect to the 

input specified for the conducted experiments—i.e., these values must be readjusted 

for different inputs. 

The ACO procedure is summarized in Fig. 4.11. 

initialize pheromone table; 

while CSC not met 

for each ant 

while there are unmapped applications 

select application a; accordin 

map application ai: to jbest{o-i 

break ties arbitrarily; 

end of while; 

compute f(s) via PMR call; 

update pheromone table according 

end of while 

map each application a, to its jbesti^i) 

g to Eq. 4.9; 

) compute node; 

to Eq. 4.8; 

compute node. 

Figure 4.11: Pseudocode for the Ant Colony Optimization. 
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4.7.4 Simulated Annealing 

The Simulated Annealing (SA) algorithm -also known in the literature as Monte 

Carlo annealing or probabilistic hill-climbing [70] is based on an analogy taken 

from thermodynamics. In SA, a randomly generated solution, structured as the chro­

mosome for GA, is iteratively modified and refined. Thus, SA in general, can be 

considered as an iterative technique that operates with one possible solution (i.e., 

resource allocation) at a time. 

To deviate from the current solution in an attempt to find a better one, SA 

repetitively applies the mutation operation in the same fashion as GA including the 

local search. Once a new unique solution, denoted as Snew, is produced (SA uses the 

same graveyard technique as GA to determine uniqueness), a decision regarding the 

replacement of a previous solution with a new one has to be made. If the quality of the 

new solution, A(Snew), found after evaluation, is higher than the old solution, the new 

solution replaces the old one. Otherwise, SA uses a procedure that probabilistically 

allows poorer solutions to be accepted during the search process, which makes this 

algorithm different from other strict hill-climbing algorithms [70]. This probability is 

based on a system temperature, denoted T, that decreases with each iteration. As 

the system temperature "cools down" it becomes more difficult for poorer solutions 

to be accepted. Specifically, in the latter case, the SA algorithm selects a sample from 

the range [0,1) according to a uniform distribution. If 

random[0,1) > A(.snld)-A(Sn^u 
(4.10) 

1 + exp1
 T > 

the new poorer resource allocation is accepted; otherwise, the old one is kept. As 

it follows from Eq. 4.10, the probability for a new solution of similar quality to be 
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accepted is close to 50%. In contrast, the probability of poor solutions to be rejected 

is rather high, especially when the system temperature becomes relatively small. 

After each mutation (described in the GA procedure) that successfully produces 

a new unique solution, the system temperature T is reduced to 99% of its current 

value. This percentage, defined as a cooling rate, was determined experimentally by 

varying the rate in the range of (0.9,1] in 0.01 steps. The initial system temperature 

in Eq. 4.10 was set to A of the chosen initial resource allocation. 

The SA procedure is summarized in Fig. 4.12. 

Sold <~ initial randomly generated resource allocation; 

T <- A(Sold); 

while CSC not met 

Snew i~result of successful mutation; 

if A(Snew) < A(Sold) 
q , q 
'•"old 0newi 

else if Eq. 4.10 holds 

&old < &newi 

T < - 0 . 9 x T ; 

end of while 

Figure 4.12: Pseudocode for the Simulated Annealing. 

4.8 Lower Bound Calculation 

To evaluate the absolute performance attainable by the developed resource allocation 

techniques, a lower bound (LB) on the minimum period A was derived based on the 

assumption that the specified level of the stochastic robustness metric is greater than 

or equal to 0.5, i.e., 8 > 0.5, which is typical for practical implementations. The 
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process of calculating the LB involves two major steps. In the first step, a "local" 

lower bound on A is established for a given mapping. In the second step, a unique 

LB is computed for all possible local lower bounds by solving a relaxed form of the 

Integer Linear Program formulated for the resource allocation problem. 

Step 1: Consider a given complete resource allocation of iV applications on M 

compute nodes. Let A denote the maximum of the means across all M completion 

time distributions, M ( X ^ J ) >
 ie-> ^ = m a x ( / ' , ( E ^u) I 1 — 3— M}. As an assumed 

level of the stochastic robustness metric is greater than or equal to 0.5, A represents 

the smallest possible time period for a given mapping. To observe this, recall that 

1. mean //(a) is a "center of mass" of the distribution of random variable a, so 

that if z_ is the compute node given by z = a rgmax{/ i (^T^) | 1 < j < M}, 
i = i 

then F[ipz < A] = 0.5; 

2. F[tf)z < A] > F[4> < A] because according to Eq. 4.2, P[*0 < A] is computed as 

an M-product of F[rpj < A], where each of M terms is less than or equal to one. 

Step 2: An objective here is to determine LB, denoted as A*_, such that A* < 

min{A | all possible mappings}. Relying on the property that the sum of means is 
n i n'j 

equal to the mean of the sums, i.e., ^ n{Tij) — A*(5Z ̂ i)- the problem of finding A* 
i = l ' t=l 

can be formulated in the following Integer Linear Programming (ILP) form^. 

Let a binary decision variable x[i,j] | { l < z < A ^ ; l < j ' < M} be equal to one if 

application a* is assigned to compute node rjj, and equal to zero if Oj is not assigned 

to compute node rjj. The ILP objective function can be stated as 

N 

minimize A* = max{N^ M^u) x x[h3] I 1 5: 3 < M}. 
j = i 

^The ILP formulation presented below can easily be converted to a canonical ILP form [20]. 
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The objective function is subject to conditions (a) and (b): 

x[i,j] £ {0,1} for 1 < i < N, l<j< M; (a) 

£ > M = 1 f o r l < j < M ; (b) 

In addition to condition (a) explained above, condition (b) forces each application 

to be mapped to the system. For small-scale problems, a global optimal solution 

can be found for the derived ILP form in a reasonable time (e.g., by applying the 

Branch-and-Bound technique). However, condition (b) makes the ILP form NP-

complete [71], so that for large-scale problems a Linear Programming (LP) relaxation 

is required to the ILP form that implies that condition (a) is relaxed to real numbers, 

i.e., x[i,j] £ [0,1] | {1 < i < N, 1 < j < M}. Due to this relaxation, in general, an LP 

solution does not correspond to a valid mapping, but allows a global optimal solution 

to be found in polynomial time [44], that will be a lower bound for the ILP global 

optimal solution A*. Note that the derived LB is tighter for stochastic robustness 

levels approaching 0.5; this is a result of using mean values in the LB computation. 

4.9 Simulation Setup 

To evaluate the performance of the heuristics described above for the considered class 

of distributed HC systems operating on periodic data, the following approach was used 

to simulate a cluster-based radar system schematically illustrated in Fig. 4.1. The 

execution time distributions for twenty eight different types of possible radar ray pro­

cessing algorithms on eight (M = 8) heterogeneous compute nodes were generated by 

combining experimental data with benchmark results. The experimental data, repre­

sented by two execution time sample pmfs, were obtained by conducting experiments 

on the Colorado MAI radar [52]. These sample pmfs contain times taken to process 
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500 radar rays of different complexity by the Pulse-Pair & Attenuation Correction 

algorithm [13] and by the Random Phase & Attenuation Correction algorithm [13], 

both executed in non-multitasking mode on the Sun Microsystems Sun Fire V20z 

workstation. To simulate the effect of executing these algorithms on different plat­

forms, each sample pmf was scaled by a factor corresponding to the performance 

ratio of a Sun Microsystems Sun Fire V20z to each of eight selected compute nodes* 

based on the results of the fourteen floating point benchmarks from the CFP2000 

suite [95]. Combining the results available from the CFP2000 for fourteen different 

benchmarks on eight selected compute nodes and two sample pmfs provided a means 

for generating a 28 x 8 matrix where the ijth element corresponds to the execution 

time distribution of a possible ray processing algorithm of type i on compute node j . 

A set of 128 applications (N = 128) was formed for each of 50 simulation trials, 

where for each trial the type of each application was determined by randomly sampling 

integers in the range [1,28]. The 50 simulation trials provide good estimates of the 

mean and 95% confidence interval computed for every heuristic. 

4.10 Experimental Results 

4.10.1 Greedy Heuristics 

The results of our experiments with the Greedy heuristics are presented in Fig. 4.13. 

Both two-phase heuristics perform comparably and significantly outperform the one-

phase heuristics. By utilizing the entire spectrum of stochastic information at each 

stage of the decision process these two heuristics are able to outperform the others, 

' 'The eight compute nodes selected to be modeled were: Altos R510, Dell PowerEdge 7150, Dell PowerEdge 2800, 
Fujitsu PRIMEPOWER650, HP Workstation i2000, HP ProLiant ML370 G4, Sun Fire V65x, and Sun Fire X4100. 
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in terms of minimizing A. 

All of the variants of the one-phase sorting heuristic (the results for ARBITRARY 

ordering represent the average obtained over 50 reshuffled application orderings) per­

formed consistently better than the mean load balancing heuristic variants but worse 

than two-phase heuristics. Recall that the sorting algorithm utilizes all of the available 

stochastic information to select individual task machine pairings but relies on deter­

ministic information to order tasks for their selection. By utilizing a task ordering 

process that relies on deterministic information only, the number of required convo­

lutions to produce a mapping is drastically reduced but the quality of the mapping is 

also affected. For example, the first two-phase heuristic required approximately 66,000 

1-fold convolutions to produce a mapping, whereas the one-phase sorting heuristic re­

quired only 1024 1-fold convolutions to construct a mapping. This difference in the 

number of convolutions directly translated into a roughly 30 times reduction in the 

execution time of a simulation trial using the latter heuristic. 

Finally, the one-phase mean load balancing heuristic consistently performed the 

worst because it ignores the available stochastic information about task execution 

times. This results in ignoring the impact of machine heterogeneity on the completion 

time distributions, which is reflected in a high A value. Because the one-phase mean 

load balancing heuristic only operates with the means of execution time distributions 

during the mapping process, this heuristic avoided time-consuming convolution calls. 

This enabled Mean Load Balancing heuristic to finish in a small fraction of the time 

required for either two-phase heuristic to generate a mapping. 

Once the simulation results had been collected for the developed heuristics, it 

was noticed that there was a large discrepancy in the amount of computation re­

quired to produce each of the various mappings, i.e., two-phase heuristics required 
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tens of thousands of convolutions to produce a mapping as opposed to one-phase 

techniques required 1024 or less. Consequently, two new variants of the one-phase 

greedy algorithms that use multiple iterations, denoted in Fig. 4.13 as ITERATIVE, 

were created to increase the number of evaluated solutions to the level of Basic and 

CR, i.e., enable these variants to utilize roughly the same amount of computation to 

produce a mapping. 

In both iterative greedy variants, a random restart step was introduced so that 

after a mapping is produced a new random ordering is generated and the heuristic is 

executed again. Upon completion of each iteration the resultant mapping is compared 

against the best mapping found so far by previous iterations. If the new mapping is 

an improvement on the best mapping, then it is retained as the new best mapping, 

otherwise it is discarded. 

The results of the iterative variants are plotted in Fig. 4.14. As can be expected, 

the results of both iterative greedy approaches demonstrated some improvement over 

their non-iterative versions. However, the iterative version of the Sorting greedy 

heuristic performed worse than the Basic heuristic (the confidence intervals of the two 

do not overlap) but is a marked improvement over the corresponding non-iterative 

greedy version. The average A over 50 trials of the Basic heuristic was 542.5 msec.; 

whereas the average A over 50 trials of the iterative version of the Sorting greedy 

heuristic was 569.7 msec.—each had a confidence interval of 7 msec. The performance 

demonstrated by the iterative version of the Mean Load Balancing heuristic was still 

significantly worse than the performance of the other heuristics. 
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Figure 4.13: A comparison of the results obtained for the described heuristics where 
the minimum acceptable robustness value was set to be 0.90. The y-axis corresponds 
to a A value obtained by executing the corresponding heuristics. The A value for each 
heuristic corresponds to the average over 50 trials. 

4.10.2 Global Search Heuristics 

The results of the simulation are presented in Fig. 4.14. Both the GA and SA 

heuristics were able to improve upon the results of the Basic heuristic of [88] by more 

than 7% with respect to the absolute performance and by 50% with respect to the 

derived LB. However, the ACO procedure was unable to improve upon the results of 

the Basic heuristic but was able to produce a results such that the confidence intervals 

of the ACO and Basic results are overlapping. 

Across the 50 trials tested, LB produced a mean minimum supportable A of 469.8 

msec. The mean of the Basic heuristic over the same 50 trials was found to be 

542.5 with a 95% confidence interval of 7.07. The ACO results had a mean minimum 

supportable A value of 553.7 with a 95% confidence interval of 6.2. The SA procedure 

for the same trials produced a mean A value of 505.6 with a 95% confidence interval 
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Figure 4.14: A comparison of the results obtained for the described heuristics where 
the minimum acceptable robustness value was set to be 0.90. The y-axis corresponds 
to a A value obtained by executing the corresponding heuristics. The A value for each 
heuristic corresponds to the average over 50 trials, while the error bars correspond to 
95% confidence intervals. 

of 5.9. The GA result was very similar to the SA result, producing a mean A value 

of 505.3 with a 95% confidence interval of 6.1. 

Both the GA and SA heuristics performed comparably in this simulation envi­

ronment. The success of the SA procedure and the near overlap of the SA and GA 

results may suggest that the local search procedure used in the mutation operator by 

both GA and SA is responsible for their marked improvement over Basic. Additional 

experiments were conducted with the GA without utilizing local search and although 

the simple GA was able to improve the average result of the Basic heuristic by almost 

2% the improvement was not statistically significant. 

The ACO heuristic was unable to improve upon the results of the Basic heuristic. 

This might suggest that using only the mean values of the execution time distribu­

tions to construct solutions in Phase 1 is insufficient. Instead of operating with mean 
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values, intermediate minimum levels of A could be computed through PMR calls to 

potentially improve the results of the ACO procedure. However, this would dramati­

cally increase the number of evaluations required by ACO to produce the ants of each 

iteration. In so doing, the number of high-level iterations that the ACO procedure 

would be able to complete within the CSC would be significantly reduced. The major 

hindrance to the effectiveness of ACO in this environment is that it relies on the 

repetitive application of a constructive heuristic within an iteration to update the 

pheromone table. As shown in [88], constructive heuristics such as the Basic heuristic 

require a large number of time-consuming FFT executions, this approach significantly 

slows down each ant's production of a completed resource allocation, which, in turn, 

limits the number of high-level iterations that can be performed within the CSC. 

The success of combining a simple local search with GA and SA suggest that a 

more exhaustive local search may be worth investigating in other distributed systems. 

The more exhaustive local search might consider swapping applications between com­

pute nodes in addition to moving applications between compute nodes. Although the 

introduction of swapping will increase the number of evaluations required to complete 

the local search procedure, it may lead to an improved result over the current coarse 

approach to local search. 

4.11 Related Literature 

In heterogeneous distributed systems the concept of robust resource allocation called 

for a foundation of a universal robustness framework. The latter issue was first ad­

dressed in [6] - prior work in this area has referred to a resource allocation's tolerance 

to uncertainty as the robustness of that resource allocation. That work also defines 
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a set of criteria for definitively claiming that a resource allocation is robust given 

a deterministic estimate for each considered system parameter. This determination 

of robustness begins by asking the claimant to define the behavior of the system 

that makes it robust, i.e., differentiate between acceptable performance and unac­

ceptable performance of the system. Given this definition of acceptable performance, 

the uncertainty in system parameters must be identified along with its impact on the 

system's ability to deliver acceptable performance. 

In [6], a four-step procedure is defined for deriving a deterministic robustness met­

ric. The authors proposed procedure was used here to motivate the derivation of a 

stochastic robustness metric. According to [6], the first step in defining a robustness 

metric requires quantitatively describing what makes the system robust. This descrip­

tion establishes the required QoS level that must be delivered to refer to the system 

as robust essentially bounding the acceptable variation in system performance. A 

pair of values, (lmin and (3max that bound each performance feature must be identified, 

quantitatively defining the tolerable variation in each of the performance features. 

In the second step, all modeled system and environmental parameters that may 

impact the system's ability to deliver acceptable QoS are identified. These parameters 

are referred to as the perturbation parameters of the system. In our new stochastic 

approach, each perturbation parameter, or uncertainty parameter, is modeled as a 

random variable fully described with a pmf. In this way, all possible values of the 

considered perturbation parameters, and their associated probabilities, are included 

in the calculation of the stochastic robustness metric. Our new approach differs from 

that in [6], where a single deterministic estimated value for each of the identified 

perturbation parameters is used. 

In the third step, the impact of the identified perturbation parameters on the 
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system's performance features is defined. This requires identifying a function that 

maps a given vector of perturbation parameters to a value for the performance feature 

of the system. Similarly in our new stochastic environment, this involves defining the 

functional dependence between the input random variables and the given performance 

feature. However, in our new model this involves more complex computations to 

combine random variables. 

Finally, in the fourth step, the previously identified relation is evaluated to quan­

tify the robustness. As a measure of robustness, the authors in [6] use the "minimum 

robustness radius" that relies on a deterministic performance characteristic. Further­

more, it assumes there is no a priori information available about the relative likeli­

hood or magnitude of change for each perturbation parameter. Thus, the minimum 

robustness radius is used in a deterministic worst-case analysis. In our new stochastic 

model, more information regarding the variation in the perturbation parameters is 

assumed known. Representing the uncertainty parameters of the system as stochas­

tic variables enables the robustness metric in the stochastic model to account for all 

possible outcomes for the performance of the system. This added knowledge comes 

at a computational cost. The stochastic robustness metric requires more information 

and is far more complex to calculate than its deterministic counterpart. To handle 

the computational complexity, we considered the FFT and bootstrap approximation 

methods that greatly simplify the required calculations. 

In [15], the robustness of a resource allocation is defined in terms of the schedule's 

ability to tolerate an increase in application execution time without increasing the 

total execution time of the resource allocation. A resource allocation's robustness 

implies system slack thereby the authors are focusing their metric on a single very 

important uncertainty parameter, i.e., variations in application execution times. Our 
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metric is more generally applicable, allowing for any definition of QoS and able to 

incorporate any identified uncertainty parameters. 

Our methodology relies heavily on an ability to model the uncertainty parameters 

as stochastic variables. Several previous efforts have established a variety of tech­

niques for modeling the stochastic behavior of application execution times [12,27,64]. 

In [12], three methods for obtaining probability distributions for task execution times 

are presented. The authors also present a means for combining stochastic task repre­

sentations to determine task completion time distributions. Our work leverages this 

method of combining independent task execution time distributions and extends it 

by defining a means for measuring the robustness of a resource allocation against an 

expressed set of QoS constraints. 

In [50], a procedure for predicting task execution times is presented. The au­

thors introduce a methodology for defining data driven estimates in a heterogeneous 

computing environment based on nonparametric inference. The proposed method is 

applied to the problem of generating an application execution time prediction given 

a set of observations of that application's past execution times on different compute 

nodes. The model defines an application execution time random variable as the com­

bination of two elements. The first element corresponds to a vector of known factors 

that have an impact on the execution time of the application and is considered to 

be a mean of the execution time random variable. A second element accounts for all 

unmodeled factors that may impact the execution time of an application and is used 

to compute a sample variance. Potentially, this method can be extended to determine 

probability density functions describing the input random variables in our framework. 

The deterministic robustness metric established for distributed systems in [6] was 

used in multiple heuristics approaches presented in [97]. Two variations of robust 
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mapping of independent tasks to machines were studied in that research. In the fixed 

machine suite variation, six static heuristics were presented that maximize the robust­

ness of a mapping against aggregate errors in the execution time estimates. The va­

riety of evolutionary algorithms, e.g., Genitor and Memetic Algorithm, demonstrate 

higher performance as compared to the non-iterative greedy heuristics. However, 

greedy heuristics required significantly less time to complete a mapping. A similar 

trade-off was observed for another variation where a set of machines must be selected 

under a given dollar cost constraint that will maximize the robustness of a map­

ping. In our study, greedy heuristics applied in a stochastic domain experienced a 

significant execution slowdown due to a substantial number of calls for a convolution 

routine required at each step of a mapping "construction" process. Although this 

indicate that greedy heuristics may be inappropriate choices for systems where the 

time allotted to produce a mapping is strictly limited, the application of a bootstrap 

approximation method presented in Section 4.3 can alleviate such a problem in some 

of those systems. 

In [32], the authors present a derivation of the makespan problem that relies on a 

stochastic representation of task execution times. The authors also demonstrate that 

their presented stochastic approach to scheduling can significantly reduce the actual 

simulated system makespan as compared to some well known scheduling heuristics 

that are founded in a deterministic approach to modeling task execution times. The 

heuristics presented in that study were adapted in the stochastic domain and used 

to minimize the expected system makespan given a stochastic model of task execu­

tion times, i.e., the fitness metric there was based on the first moment of random 

variables. As shown, this approach works well for unconstrained optimization prob­

lems; however, in our study, the imposed QoS constraint in the distributed system 
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makes the optimization problem constrained calling for other methods. Therefore, 

our emphasis is on quantitatively comparing one resource allocation to another by de­

riving a metric for the resource allocation's robustness, i.e., the probability to deliver 

on expressed QoS constraints, to compute which the entire spectrum of stochastic 

information needs to be utilized. 

4.12 Summary 

This chapter proposes a stochastic framework that allows for evaluation and gen­

eration robust resource allocations in distributed heterogeneous computer systems 

operating in uncertain environments. As a basis for this framework, a new stochastic 

robustness metric was established mathematically. Given the raw volume of com­

putation required to compute this metric, the bootstrap approximation and FFT 

computational methods were explored to aid the practitioner to apply this approach 

in different real world scenarios. A utility of the new metric was evaluated in the sim­

ulated environment based on distinguishing among resource allocations that perform 

similarly with respect to a commonly used deterministic metric, such as a makespan, 

and the deterministic robustness metric presented in [6]. 

In the second part of this chapter, the new stochastic robustness metric was inte­

grated into a set of greedy and global search heuristics designed for a large class of 

heterogeneous clusters operating on periodic data sets. The goal in the experiments 

was to generate a resource allocation that allows for the minimum time period between 

sequential sensor outputs in a simulated radar system and guarantees a specified level 

probability that data processing is completed in time. 

The Basic and CR two-phase greedy heuristics developed in this study utilized 
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the entire spectrum of the available stochastic information. These heuristics signifi­

cantly outperformed Sorting and Mean Load Balancing heuristics, as the stochastic 

information in the last two was replaced with mean values completely or in the first 

phase. Furthermore, greedy heuristics were rather time-consuming when applied in 

the stochastic domain due to multiple calculations of the resultant probability mass 

functions. Thus, it was reasonable to compare the performance of the greedy heuris­

tics against global search algorithms. Three global search algorithms adapted in this 

study, i.e., GA, SA, and ACO, were tested under the same stopping criterion. Mul­

tiple parameters pertaining to each algorithm were setup for the highest efficiency in 

a given environment. A comparison analysis against the best greedy results and the 

lower bound, obtained by solving the relaxed ILP form, revealed a great potential of 

the GA and SA algorithms to manage efficiently resource allocations in distributed 

heterogeneous systems operating under uncertainty. 
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Chapter 5 

Sequential Resource Allocation in 

Distr ibuted Systems under 

Random Node Failures 

5.1 Overview 

The problem of finding efficient workload distribution techniques is becoming increas­

ingly important today due to the proliferation of parallel architectures in heteroge­

neous distributed systems. In many practical cases, the availability of compute nodes 

in a system changes spontaneously over time, i.e., nodes may leave or fail, join or re­

cover in a random fashion. Therefore, the resource-allocation policy must be designed 

to be robust with respect to absence and re-emergence of compute nodes so that the 

performance of the system is maximized over a wide range of processor and task het­

erogeneity. Such a policy is developed in this work, and its performance is evaluated 

on a model of a dedicated system composed of a limited set of heterogeneous Web 
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servers. Assuming that each HTML request results in a "reward" if completed before 

its hard deadline, the goal in this policy is to maximize a cumulative reward for suc­

cessfully processed HTML requests. A failure rate for each server is set relatively high 

to simulate its operation under harsh conditions. The simulation results demonstrate 

that the proposed approach based on the concepts of the Derman- Lieberman -Ross 

theorem, outperforms other policies compared in our experiments and its superior 

performance is sustainable for inconsistent, processor-consistent, and task-processor-

consistent types of heterogeneity. 

5.2 Introduction 

Distributed computing systems are widely used today for execution of large work­

loads composed of independent tasks that are divided among multiple heterogeneous 

compute nodes. The assignment of tasks to compute nodes is referred to in the liter­

ature as resource allocation or mapping. Effective mapping policies must account for 

multiple factors, e.g., the set of available compute nodes in the system, characteristics 

of these nodes, and links between them. Multiple scenarios can be identified where 

there is an uncertainty in the availability of functional compute nodes over time. Due 

to this uncertainty, any compute node may randomly fluctuate between the "failure" 

("down") and "working" ("up") states. 

First, consider a distributed system with a dynamic set of compute nodes, i.e., 

nodes may join and leave the system in an ad-hoc fashion. An example use of such 

a system is SETI at Home, composed of remote non-dedicated workstations that 

participate in distributed data processing [83]. Typically, compute nodes can go off­

line anytime, regardless of the portion of the load assigned to them. Furthermore, 
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the participation of any node may be interrupted by local usage of the node by its 

owner. 

A phenomenon known as "software aging" is a second example [38,63]. Software 

aging sources include memory leaks, unreleased file locks, accumulation of untermi-

nated threads, data corruption/round-off accrual, fllespace fragmentation, and shared 

memory pool latching. Performance problems caused by software aging have become 

commonplace for computing resources including safety critical systems. For exam­

ple, software aging of the Patriot Missile software was responsible for the loss of 

lives of American soldiers during the first Gulf War [67]. The solution found for this 

problem was to restart the Patriot software components every eight hours. Recovery 

mechanisms for software aging involve different, often proactive, fault management 

techniques for cleaning up system internal states to prevent the future occurrence of 

more severe failures or system performance degradation. 

The malfunction of underlying hardware resources is another common source of 

changing availability of compute nodes in the system, due to harsh operating con­

ditions or external physical impacts on the system. For example, broken cooling 

fans in a machine room typically cause a temperature increase that results in a high 

occurrence of processor malfunctions. Consequently, this initiates fatal errors or dra­

matic performance degradation that OS or process monitoring agents often resolve 

by restarting a process or rebooting an entire system. 

The fault tolerant aspect of distributed computing systems has been extensively 

explored in the last few years [14]. Available literature on distributed computing in 

such uncertain environments primarily considers reactive techniques, where a node 

failure is addressed only after its occurrence. Checkpoint-resume or terminate-restart 

mechanisms are often used to recover unprocessed tasks at the failed nodes [22,61]. 
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Node failure also can be addressed by keeping multiple copies of the workload on dif­

ferent nodes [96]. These approaches are coupled in practice with redundancy schemes 

that duplicate system hardware resources entirely or partially. Depending on the 

implementation, duplicated resources are either always active or become active dy­

namically. Additionally, most of the existing literature that offers an analytical for­

mulation of distributed-computing systems assumes a homogeneity among compute 

nodes and known system parameters [40,84]. 

Clearly, the uncertainty in working compute nodes is expected to degrade the 

performance of any resource-allocation policy that does not account for node failure 

and recovery. In this study, we model a dedicated system composed of a limited set of 

heterogeneous Web servers. The availability of servers is described with exponential 

distributions with failure rates that are relatively high to simulate harsh operating 

conditions. Each HTTP request made by a user of the website is assumed to have 

a hard deadline, limiting the total time available to process it, and an associated 

reward. The goal is to design a resource-allocation policy that maximizes the expected 

cumulative reward received from the requests that finish before their deadlines, with 

the uncertainty of compute node failures. 

The concept of robustness of a resource allocation was introduced in [6,89], and 

later efforts applied the concept to resource management [4,89,93]. The mathematical 

model developed in this research does incorporate many of the same basic principles 

addressed in our earlier work on robustness. In analyzing systems where compute 

resources fail in a random fashion, the operational periods of the compute resources 

are uncertain. This uncertainty can impact the system by causing tasks to fail during 

execution and finally miss their deadlines. Often in practice, if the number of failed 

tasks reaches a certain level a service provider becomes subject to profit losses and 
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penalties. Therefore, a simplistic quantification for robustness can be defined as the 

difference between the actual (or expected) profit and the lowest level that justifies 

the operation of the system. 

The major contribution of this paper is the design of a resource-allocation pol­

icy for the above environment based on the concepts of the Derman-Lieberman-Ross 

theorem [28]. Our simulation results demonstrate that the proposed solution outper­

forms other policies considered in this study. Its superior performance is sustainable 

in environments with different types of heterogeneity among tasks and compute nodes. 

Thus, the proposed resource-allocation mechanism can be applied to maximize the 

performance of a distributed heterogeneous system that experiences temporal com­

pute node failures. 

The remainder of this work is organized in the following manner. Section 5.3 

presents the Derman-Lieberman-Ross theorem and a corollary used as a basis in this 

research. Section 5.4 describes an approximation scheme used to pose a simplified 

resource-allocation problem into the Derman-Lieberman-Ross framework. Section 5.5 

builds on the solution for the simplified resource-allocation case by considering tasks 

with exponentially distributed execution times and different types of heterogeneity. 

Section 5.6 introduces the method developed to derive a distribution required for 

the Derman-Lieberman-Ross framework. Task deadlines and the technique used to 

estimate a probability that a task will be successfully completed through multiple 

reassignments are presented in Section 5.7. The parameters of the simulation setup 

are discussed in Section 5.8 along with the resource-allocation policies compared in 

this study. The simulation results are discussed in Section 5.9. A sampling of some 

related work is presented in Section 5.10. Section 5.11 concludes the paper. 
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5.3 DLR Policy 

In 1972, Derman, Lieberman, and Ross introduced the following optimal policy for 

the sequential stochastic assignment problem [28]. Suppose there are TV workers 

available to perform TV jobs. The TV jobs arrive in sequential order, i.e., job 1 arrives 

first, followed by job 2, etc. Associated with the jth. (j = 1,2,..., TV) job is a real-

valued random variable Xj representing its worth. It will be assumed that the Xj 

are independent and identically distributed random variables with cumulative density 

function (cdf) Gx(z) with finite mean value. If a "perfect" worker is assigned to the 

type j t h job, a reward Xj is obtained. However, none of the Ar workers are perfect, 

and whenever the ith worker is assigned to the j t h job, the reward is given by PiXj, 

where 0 < p% < l , i = 1,2, ...,7V represents the probability of worker i successfully 

completing any job. Each worker is assigned to one and only one job. The goal is then 

to assign the TV workers to the TV jobs so as to maximize the total expected reward. 

Let a policy be any rule for sequentially assigning workers to jobs. In particular, if 

m(i) is defined to be the job to which tth worker is assigned, then the total expected 

reward is given by 
r N 

E £ > X m ( i ) • (5.1) 

The desired policy is the one that maximizes this expected cumulative reward. 

Intuitively, it appears reasonable to match a worth of a job to the probability 

of a worker of completing this job, e.g., assign an appeared high worth job to to a 

worker with high pt. Quantifying this match requires Gx(z) and values of p,. The 

following Derman Lieberman -Ross (DLR) theorem embodies this intuition providing 

the optimal resource-allocation policy using the available stochastic information (see 

[28] for further details). 
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DLR Theo rem. For each N > 1, there exist numbers —00 = ao,jv < &\,N < 

«2,Ar < • • • < «N,N — +oo ; sitc/i £/ia£ whenever there are N assignments to make and 

probabilities p\ < P2 < ••• < PiV then the optimal choice in the first assignment is 

to use the worker i such that X\ is contained in the interval ( a ^ ^ / v , ^ ^ ] . The a ĵv 

depend on Gx but are independent of the pi values and calculated recursively for N 

as follows: 

rai,N-l 

(ti,N = / zdGx(z) + al_itN-iGx(ai-i,N-i) + ai:iv-i[l - Gx{a>i,N-i)], 
•'ai-l,N-l 

with the convention that ao.jv = — 00, a^,N — +00, - 00 x 0 = 0, and 00 x 0 = 0. 

Suppose that N = 5, and Gx{z) is as illustrated in Fig. 5.1. When the DLR policy 

is applied, the aij5 values are calculated recursively starting from N = 1. These values 

divide the domain of all possible job worths into five intervals. Once the first job has 

arrived, a resource-management system identifies which of these five intervals this 

job falls in based on the job's worth X\. Assume that this happened to be the third 

interval. Then, the resource-allocation system assigns the arrived job to the third 

worker in the sorted list of probability values p\ < pi < Pz < Pi < J05, as shown 

in Fig. 5.1. Sequentially as the next job arrives, N is decremented, and the same 

procedure is repeated by recalculating intervals. 

5.4 Simplified Resource Allocation 

Consider the following problem statement for a simplified resource allocation problem 

in a distributed system. Suppose there is a batch of iV tasks. Each task i, 1 < i < N, 

is characterized by: (a) the number of instructions it contains, denoted n^ and (b) 

reward rL for completing this task. Suppose that iV processors become available 
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Figure 5.1: The distribution described with cdf Gx{z) is divided into five intervals. 
According to the DLR policy, as the worth X\ of the arrived job belongs to the third 
interval, this job will be assigned to the third worker in the list of workers ranked 
based on probability values pt. 

sequentially in time. Whenever a new processor becomes available, we need to assign 

one of the remaining (unassigned) tasks to this processor. Suppose that the jth 

processor to arrive is characterized by a random variable Tj that specifies the time 

that processor takes to execute each instruction (assuming that all instructions in a 

task take the same time to execute on the given processor). Moreover, the processor 

might randomly fail some time during the execution of a task, modeled as follows. 

The probability of failure is defined by its failure rate Xj, so that the probability of 

failure during the execution of a task is given by Xj multiplied by the execution time 

(we discuss this failure model further below). 

Once task i is assigned to a processor, its execution begins, and reward r, will 

be obtained if the task is completed successfully. If a processor fails while executing 

the task, no reward is earned and the task is removed from the batch, i.e., the task 

will never be executed again. Let P[i,m(i)] denote the probability that task i is 
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successfully completed when assigned to processor m(i). Then, the goal is to maximize 

the total expected reward accumulated through N sequential assignments: 

maximize E 
N 

XViP[i,ro(i)] 
j = i 

(5.2) 

Using the failure model above, P[i,m(i)] = 1 — Xm^7iiTm^. Substituting this into 

Eq. 5.2 and simplifying, the optimization problem becomes 

maximize E 
N 

^{[nrii] x [-Am(i)Tm(i)]) (5.3) 

The set of workers and arriving jobs in the sequential stochastic assignment prob­

lem considered in Section 5.3 correspond to tasks in the batch and sequentially arriv­

ing processors considered here, respectively. Moreover, the performance goal given by 

Eq. 5.3 is structured identically to Eq. 5.1. Therefore, if we assume that the random 

variables Xj — XjTj, j = 1, . . . , N, have known cdf Gx(%) with a finite mean, then 

the policy derived in the DLR theorem can be applied. We can think of Xj as a 

basic failure parameter associated with processor j , which has the interpretation of 

per-instruction failure rate. 

The failure model above can be viewed as an approximation to the standard model 

where the time it takes for failure is exponentially distributed with parameter Xj. In 

this case, the probability that processor m(i) fails while executing'task i is given by 

e-Am(,,:)n,;rm(i) xjSmg the Taylor series expansion for the exponential function, 

(O-Am(i)nirm(0 _ i _ \ , . . „ . T , , , (-^m(i)WiTm(i)) (-Am(i)niTm(i)) 

Ignoring second order and higher terms, we arrive at the failure model used in the 
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derivation above. 

5.5 Tasks with Exponentially Distributed Execu­

tion Times 

In the simplified resource-allocation case described in the previous section, observe 

that (1) if tasks are ordered according to their r ^ values this order does not depend 

on processors j , and (2) the objective function for the resource-allocation problem 

is based on the product [rjTij] x [—Am(j)Tm(j)]. Fig. 5.2 illustrates this relationship 

between tasks and processors in a matrix form as the Cartesian product of two se­

quences: r-jTij, 1 < i < N and — XjTj. 1 < j < N. Note that the matrix is ordered 

in both row and column directions. The DLR theorem provides the optimal assign­

ment policy for such matrices given that processor's characteristic — XjTj is a random 

variable with a known distribution. 

r\n\ 
< 

r2n2 

< 
rNnN 

-Ai7V 
-XlTiTiU! 

< 
-A1T1r2n2 

< 
-XiTxrNnN 

< 
< 

< 

< 

—X2T2 

-A2T2r1n1 • 
< 

-A2T2r2n2 • 

< 
-X2T2rNnN • 

• • < 

• • < 

• • < 

• < 

—AATT/V 
-XNTNrini 

< 
-XNTNr2n2 

< 
-XNTNrNnN 

Figure 5.2: An example matrix based on the Cartesian product for the simplified 
resource-allocation example. 

In the literature on distributed systems, Estimated Time to Compute (ETC) 

matrices often are assumed to be given [49,57,99]. Each entry in an ETC matrix is 

an estimate of time, £,;,, to compute task i on processor j . Clearly, for the simplified 
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resource-allocation problem presented in Section 5.4, the ETC matrix would be based 

on a Cartesian product between T?,J and 7} sequences because ^- = n{Tj. However, 

in practice, it is difficult or even impossible to represent Uj with such a product. 

This is mainly because the exact number of executed instructions is usually unknown 

in advance due to conditional branching, uncertain input data, etc. Furthermore, 

instruction execution rates of participating processors may depend on the mix of the 

types of executed instructions [46]. Therefore, an ETC matrix based on empirical 

measurements typically provides a more accurate means of capturing the relationship 

among tasks and processors in distributed systems. 

The rest of this paper will focus on tasks with execution times exponentially 

distributed for each task-processor pair. This assumption implies that an ETC matrix 

contains expected execution times that are assumed to be known (expected values, 

i.e., means, are sufficient to fully describe exponential distributions [29]). Eq. 5.3 can 

be restructured as: 

(5.4) 

In this study, we distinguish between three major classes of heterogeneity in dis­

tributed systems: task-processor-consistent, processor-consistent, and inconsistent. 

The first class of heterogeneity describes systems where two conditions are satisfied: 

(1) if task A requires more time to execute than task B on one processor then the 

same is true for any other processor in the system; (2) if processor A requires more 

time to execute one task than processor B then it is true for any other task in the 

batch. The second type of heterogeneity implies condition (2) only. The third class 

describes systems where neither of these two conditions are met. 
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Fig. 5.2 demonstrates a matrix where all rows and columns are ranked in ascending 

order. This may not be the case for many ETC matrices where t^ entries are not 

represented by products of two independent components. As a result, the processors 

may not be ranked identically for each row. To satisfy the "global" ordering required 

to apply the DLR framework, the average mean execution values t™, 1 < j < N, used 

in this work are computed for each processor j across all the tasks left unassigned in 

the batch, i.e., t™ = J2i=x Uj/N. Because the set of such tasks changes as a resource-

allocation process continues, the t™ values change as well, which may change the 

ordering of processors. 

Once the processors and tasks are sorted in ascending order of —\t^v and r* re­

wards, respectively, matrix entry products —Xjt^'ri in some rows and columns might 

not completely follow these "global" orders as shown in Fig. 5.3. To evaluate qualita­

tively how much, on average, a given ETC matrix deviates from each of these "global" 

orders, A^ and Ac metrics are introduced for rows and columns, respectively. Con­

sider the A r metric. First, the Bubble sort algorithm [58] is hypothetically applied 

to each row, and the number of swaps required to match the corresponding "global" 

order for processors is counted. Then, A r is calculated as the average number of 

swaps across all the rows in the matrix. Similarly, the Ac metric is computed for the 

columns of the original matrix. 

5.6 Distribution of Processors 

The DLR theorem assumes that the distribution describing the relative random avail­

ability of each processor is known and constant over time. In the "Internet computing" 

model [22], where processors arrive from a large pool of external users, the required 
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Figure 5.3: The example matrix demonstrates that the orders established for proces­
sors and tasks required in the DLR framework are not followed completely for the 
first processor and for the second task. 

distribution can be constructed based on the past history of processor arrivals. In 

contrast, distributions in dedicated distributed systems need to be derived based on 

characteristics of the tasks batched and the parameters of the limited set of available 

processors. 

Fig. 5.4 illustrates a probability mass function (pmf) for a dedicated system 

composed of M_ processors. The values —Xkt%v> 1 — ^ — ^ i arranged in ascending 

order, can be used to compute the "bin boundaries" a ĵv according to the DLR policy. 

Let pk, 1 < k < M, denote a probability associated with each processor, characterized 

PA 

• 5 -AMt M 

Figure 5.4: The general pmf for a dedicated system with M processors. 

by —Afci™, in the pmf shown in Fig. 5.4. To evaluate the pk values, consider the 

following models describing the availability of processors in a dedicated distributed 
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system. The first two models are of little practical value; they are presented here 

solely to provide a transition to the third model actually used in this study. 

Identical failure rates, processor becomes available just after failure: 

Assume that each processor has the same failure rate A and becomes available for 

the next assignment immediately after a failure. Assume also that task completions 

do not make a processor available. Clearly in this situation, each processor fails, on 

average, the same number of times, i.e., probabilistic components pk are the same in 

the pmf shown in Fig. 5.4 can be computed as Pk = 1/M. 

Individual failure rates, processor becomes available just after failure: 

When each processor has its own failure rate A ,̂ it fails over time, on average, every 

A^1 time units. Therefore, the probability components pk can be calculated as pk = 

Individual failure rate, processor available just after failure and task 

completion: Suppose that each processor has failure rate Xk and becomes available 

immediately after a failure or a task completion. Let Wk_ denote the total availability 

rate for processor k. Assuming that times between failures and task completions are 

exponentially distributed for each processor, Wk can be computed as: 

1 _ e - W 
wk = Xk + — . (5.5) 

lk 

The second term in the sum in Eq. 5.5 estimates the processor's availability rate from 

task completions. On average, processor k would complete a task every t^v if there 

were no failures. The actual availability rate from task completions is lower than that 

because the probability of having no failures during t%v is accounted for in 1 — e~~Xkt*v. 

As before, the probability components pk can be calculated by normalizing the Wk 
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values, i.e., pk = wk/ ]Tfe=1 wk. 

Based on our simulation studies, the following iterative scheme to compute the 

pmf was found to be the most efficient. According to this scheme, the distribution, 

described with a weighted sum of two pmfs, is recalculated at each step of the map­

ping process before the assignment of the next task takes place. The first pmf is a 

normalized histogram constructed from the actual number of times that each pro­

cessor has become available since the execution of the batch started. For the second 

pmf, the processor availability rates Wj are recomputed because the number of tasks 

left in the batch decreases with time. Let N(to) denote the initial number of tasks in 

the batch and let N(t) denote the number of tasks left in the batch at time t. Then, 

NfyN^o)"1 and 1 — 7V(£)./V(£o)_1 are the weighting factors for the first and second 

pmfs in the sum, respectively. As such, these weighting factors are adjusted at each 

iteration proportionally to the progress made. 

5.7 Tasks with Deadlines 

Suppose that in addition to the exponentially distributed execution time, each task 

has a deadline di, i.e., the reward r.j will be earned only if task i is successfully 

completed by time d^. This means that if a processor fails before di while executing 

task i then task i returns to the batch, so it can be reassigned again. When di expires, 

the task is dismissed from the batch. Fig. 5.5 illustrates the possible states for a task 

and transitions between these states assuming that the considered task eventually 

fails. 

To account for possible multiple reassignments of each task in the resource-allocation 
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Figure 5.5: Any task in the batch waits in the queue before it is assigned and returns 
back to the queue if a processor fails during its execution. If <ij expires the task is 
dismissed from the queue. 

policy, let P,(t) be an estimate of the probability at time t that task i will be success­

fully completed before its deadline dt. Then, Eq. 5.4 can be adapted as follows: 

maximize E 

N(t) 

Y] hPi(t)] [-\m(i)tim(i)] 
4 = 1 

(5.6) 

The following approach was used in this study to estimate Fi(t). Let V*(£) denote 

the expected number of reassignments for task i from time t until its deadline. As 

the probability of failure for the assigned task i is: 

M 

e~^jUjs 

(5.7) 
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the probability Pj(<) follows: 

( M \ Vi^ 

^p,.(l_e-^)j . (5.8) 
Let T™ait(t) denote how long, on average, task i spends in a "wait" state (see 

Fig. 5.5). Similarly, let Trun denote the average time for a task to spend in a "run" 

state. Once T™ait{t) and Trun are found, Vt(t) can be computed as: 

dt - t 
l \ ' ) TWQ.it f-l\ I Trim.' *>"" ' ' 

Assuming that any task from the batch can be assigned to any processor, the 

average expected delay from the time when a task is assigned to a processor to the 

time when the processor fails can be computed as the mean across A"1 values: 

M 

T r u n = ^ p J - A j 1 . (5.10) 

A delay expected between sequential assignments for a given task, i.e., T™mt(t), 

depends on (1) how often processors become available and (2) how many tasks re­

main, on average, in the batch. To estimate (1), let W_ denote the overall processor 

availability rate in the system. As shown in Section 5.6, availability rate Wj for pro­

cessor j can be estimated with Eq. 5.5. Similarly, in the system composed of M 

processors, W can be computed as a sum of u>j rates: 

M 

W = ̂ WJ. (5.11) 

Although task completions and deadline expirations change the number of tasks that 
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remain in the batch, in this study we use a lower bound for this number assuming 

that only the tasks with expired deadlines are dismissed over the time period rfj — t. 

This results in the following estimate for T™alt(t): 

™>«m _ N(t) + NW 

In Eq. 5.12, "'+2
 ( ':) gives the average length of the queue over the time period 

d{ — t. This length is divided by 2 assuming that, on average, 50% of the remaining 

tasks will be assigned before task i. Our extensive experiments show that even if 

the absolute values found for Pj(t) with the described method are not quite accurate, 

they result in a good relative ranking among the tasks- -the only factor that matters 

in the DLR framework. 

5.8 Simulation Setup and Resource-allocation Poli­

cies 

The prototype system studied in this research is a dedicated heterogeneous computer 

cluster processing HTTP requests (tasks). Typically, such systems belong to a more 

general class of heterogeneous computing systems where new tasks arrive dynamically 

into the system, and their arrival times are, usually, not known in advance. In this 

study, we address a simplified case and work with a static environment assuming that 

a batch is filled with HTTP requests (i.e., tasks) without considering any new arrivals 

during a given mapping event. 

To generate ETC matrices to be used in the simulations, we assume that each 

task in the batch belongs to one of five classes, based on its complexity. Each task 
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class is defined by a set of exponential distributions, where each distribution describes 

the probability of all execution times for that class on a given processor within the 

heterogeneous suite. To specify each distribution, the mean execution time is gen­

erated randomly in the range of [0.5,4] sec. for each task-class processor pair. As 

a result of this random approach, an unsorted ETC matrix models the inconsistent 

heterogeneity described in Section 5.5. If the elements of each row in this matrix are 

independently sorted in ascending order, the matrix models the processor-consistent 

heterogeneity. If the elements of each column in the matrix are independently sorted 

in ascending order, that matrix models the task-processor-consistent heterogeneity. 

Note that as a new ETC matrix is created after each sorting procedure it represents 

a completely different distributed system. 

A batch for each simulation trial consisted of 200 tasks. Each task was randomly 

associated with one of the five classes. Each HTTP request (i.e., task) made by a user 

of the website must be completed within a deadline dj. If a task cannot be completed 

by its deadline then the request is considered timed out and will be discarded from 

the batch. The deadline for each task was set at a certain level L) based on the 

longest mean execution time for that task class determined across all the processors. 

The performance of resource-allocation policies was explored with respect to two 

proportionality factors D: 300% and 600%. 

Integer task rewards r, were generated in two different ways. The execution time 

independent rewards method computed the reward !r\ for each task i by sampling 

a uniform distribution in the range of (0,100] regardless of task execution times 

tij. In contrast, the execution time dependent rewards method generated reward 

r% based on a task class. Specifically, the interval (0,100] was divided evenly into 

five subintervals, and /•* was determined by sampling a uniform distribution on a 
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corresponding subinterval. For example, if task i belonged to the third class its 

reward value r» was generated from subinterval (40,60]. The second method appears 

to be plausible in many practical applications as it implies that tasks with longer 

execution times are more valuable in task-processor consistent systems. 

Typically, hardware failure rates are very low when a distributed system operates 

under normal operating conditions [104]. However because the goal of our research 

is to maximize system performance under harsh operating conditions, the simulated 

mean time between failures was set for each processor relatively high, i.e., within the 

range of [0.6,1]. As mentioned before, a processor in the simulation model becomes 

available either just after a hardware failure or just after a task completion. Once a 

task is assigned to a processor it is removed from the batch; if it fails it is returned 

to the batch. A task is discarded when its deadline expires. 

The performance of the following five different resource-allocation policies was 

explored in the given environment. 

1. In the deadline policy, a task with the closest deadline dt is assigned to the 

next available processor. 

2. In the reward policy, a task with the highest reward r* is assigned to the next 

available processor. 

3. In the reward_P policy, a task with the highest value rjPt(i) is assigned to the 

next available processor, where P,(t) is computed as described in Section 5.7 

4. In the DLR policy, once a processor becomes available, a resource-allocation 

system takes the following steps to select the next task for assignment: 

(a) sorts the remaining N(t) tasks in ascending order of r.; values; 
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(b) recomputes the distribution of processors, as explained in Section 5.6; 

(c) calculates "bin boundaries," for N(t) according to the DLR theorem; 

(d) determines the index i of the "bin" that the arrived processor corresponds 

to; 

(e) selects task with index i for assignment from the list of tasks formed in 

step (a). 

5. In the DLR_P policy, the steps are the same as in the DLR policy, but the 

task list is sorted based on r,P;(i) values. 

5.9 Experimental Results 

The resource-allocation policies described above were compared in the simulated envi­

ronment based on their ability to maximize the cumulative reward, averaged over 100 

simulation trials. For each of these trials performed for the same set of parameters 

(i.e., distributions, number of tasks, etc.), a random number generator was seeded 

differently. This allowed the performance of the resource-allocation policies to be ex­

plored over a broad range of samples pulled from the corresponding distributions. In 

each simulation trial, the ETC matrix was generated in a random fashion to model in­

consistent heterogeneity. The same matrix was sorted in the row direction and, then, 

in the column direction for the processor-consistent and task-processor-consistent sce­

narios, respectively. For each ETC matrix used in the experiment, the A r and Ac 

metrics were computed for DLR and DLR_P policies, as described in Section 5.5, 

to estimate how well the matrix complies with the ordering requirements of the DLR 

theorem. 
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The average performance across 100 simulation trials along with the correspond­

ing 95% confidence intervals are presented in Fig. 5.7 for all five resource-allocation 

policies. The DLR_P consistently delivers the best results for all three types of het­

erogeneity explored in this study. The superior performance of this policy is based 

on two factors incorporated into the decision making process: (1) the stochastic in­

formation describing the availability of processor types in the system, and (2) the 

probability P,(i) estimated for task i to be successfully completed through multiple 

reassignments. The second factor plays a very important role: once integrated into 

the rewarcLP policy, it improves its performance by 22%, on average, making it 

comparable the performance of the DLR policy. 

Fig. 5.6 demonstrates the progress of each policy over time in one of the simulation 

trials for processor-consistent heterogeneity with execution time independent rewards. 

This trial was selected because it reflects the average performance results plotted in 

Fig. 5.7(a). As expected, the r eward and rewardLP policies quickly accumulate the 

total reward in the beginning as they select the most profitable tasks first. When the 

number of such tasks becomes smaller, the total reward accumulation slows down as 

a result of more frequent task failures. Furthermore, closer to the end, the reward 

policy experiences a significant loss of tasks due to expired task deadlines. 

Tables 5.1 and 5.2, show the total number of successfully completed tasks averaged 

over 100 simulation trials. Despite the fact that the deadline policy completes the 

highest number of tasks, its performance remains the worst because many of the tasks 

have low reward values. In contrast, the DLR-based policies have rather moderate 

numbers of completed tasks, but the demonstrated performance results highlight their 

ability of selecting tasks on a "more intelligent" basis to maximize the cumulative 

reward. 
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Figure 5.6: A progress over time of the five resource-allocation policies with respect 
to the cumulative reward captured in one simulation trial for processor-consistent 
heterogeneity. 

Table 5.1: Average numbers of successfully completed tasks computed across 100 
simulation trials. Execution time independent rewards. 

policy 

deadl ine 
r eward 

reward_P 
D L R 

DLR_P 
deadl ine 
reward 

reward_P 
D L R 

DLR_P 

D 

300% 
300% 
300% 
300% 
300% 
600% 
600% 
600% 
600% 
600% 

heterogeneity 
task-processor 

consistent 
48 
33 
37 
41 
43 
75 
64 
63 
66 
67 

processor 
consistent 

47 
35 
31 
37 
38 
73 
57 
58 
69 
67 

inconsistent 

44 
29 
27 
32 
33 
61 
53 
50 
51 
53 
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Figure 5.7: The performance of five resource-allocation policies explored over the two 
methods of assigning rewards r; and two setups for D. 
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Figure 5.8: D L R policy: correlation between cumulative performance, A r , and Ac. 
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Table 5.2: Average numbers of successfully completed tasks computed across 100 
simulation trials. Execution time dependent rewards. 

policy 

deadline 
reward 

reward_P 
DLR 

DLR_P 
deadline 
reward 

reward _P 
DLR 

DLR_P 

D 

300% 
300% 
300% 
300% 
300% 
600% 
600% 
600% 
600% 
600% 

heterogeneity 
task-processor 

consistent 
48 
42 
39 
43 
43 
77 
64 
63 
66 
68 

processor 
consistent 

47 
37 
35 
43 
41 
73 
50 
60 
65 
58 

inconsistent 

28 
26 
24 
26 
25 
61 
43 
51 
54 
50 

It is easy to observe that the average results shown in Fig. 5.8 and Fig. 5.9 demon­

strate a correlation between the reduction in A r and Ac values and the performance 

improvement of the DLR-based policies. In both cases, a significant transition occurs 

from the inconsistent to the processor-consistent type of heterogeneity. This can be 

explained by the fact that taf values dominate in —\Vf expressions, which are used 

to rank processor types as described in Section 5.5. Thus, the majority of rows in the 

ETC matrix for the processor-consistent type of heterogeneity will be ranked in the 

same manner as the processor types in the DLR framework. 

A task-processor consistent heterogeneity in the DLR policy, does not result in an 

additional performance improvement with with execution time independent rewards 

because only r, values are used to rank tasks. The slight improvement for this reward 

generation method is observed in the DLR_P policy due to the fact that tij values 

are involved in the method of computing P,(t), and, consequently, TjPj(i) are used 

to characterize tasks in that policy. However, when the reward generation method 

is changed to execution time dependent, a significant performance improvement is 
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obtained in the task-processor consistent case (see Fig. 5.7.) This can be explained 

by the fact that all the columns in the ETC matrix were ranked exactly as required 

in the DLR framework, i.e., Ac = 0 (see Fig. 5.8.) 

5.10 Related Work 

The original work of Derman et al. [28] inspired research in various areas. Example 

applications of the DLR theorem include selling houses and job-search strategy [1]. 

In 1972, Albright and Derman determined the limiting behavior of the a^/v's as iV 

becomes large [3]. The derived closed form solution can be used to avoid lengthy 

computation of aMv's in such cases. Later, these authors addressed cases where the 

arrival process is a non-homogeneous Poisson process with a general discount function 

[2]. Nakai permits the distribution of resources to change according to a partially 

observable Markov process and allows the number of resources to be random [72]. 

Sakaguchi allows a fixed time horizon [81] and permits resource values to be dependent 

[82]. The results of these studies were applied to investment strategies [80], firing 

torpedoes at randomly arriving targets [82], allocating organs for transplants [26], and 

manufacturing and telecommunications [79]. Similar to our work, all aforementioned 

studies address a sequential assignment problem in different in problem domains, i.e., 

at each time when the resource-allocation system observes a realization of random 

variable, it must select the best action, one at a time in sequential order. 

As mentioned before, the fault tolerant aspect of modern distributed computing 

systems has been extensively explored. However, the available literature on dis­

tributed computing in such uncertain environments primarily considers reactive tech­

niques, where a node failure is addressed only after its occurrence [14]. One of the 
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few exceptions is the paper of Dhakal et al. [30] that presents two preemptive load-

balancing policies for a heterogeneous distributed computing system with wireless 

links between nodes. Preemptiveness in this case implies adjusting actions to com­

pensate for the possibility of node failure/recovery. The main goal for these policies 

is to avoid a scenario where a node fails while having a large amount of unprocessed 

load. The data transfer of such load to other nodes may result in a large random 

delay over wireless channels with following idle times on other nodes. A probabilis­

tic model, based on the concept of regenerative processes, is presented to assess the 

overall performance of the system under these policies. The experiments show that 

preemptively utilizing the statistical information about the failure and recovery pro­

cesses to adjust the load-balancing gain to an optimal value, allows one to minimize 

the mean of the overall completion time of the total workload. Although the problem 

domain differs from ours, [30] exemplifies an effective integration of the available node 

failure/recovery statistics into the resource-allocation process. 

5.11 Conclusion 

This paper presents a method for robust static resource allocation in distributed 

systems under high failure rate. Given a batch of tasks, a resource-allocation system 

assigns tasks to compute resources that become available just after recovery from fail­

ures or task completions. The major contribution is the design of a resource-allocation 

policy for the above environment based on the concepts of the Derman-Lieberman-

Ross theorem. The derived policy maximizes the expected cumulative reward received 

from the tasks that finish before their deadlines, given that the compute resources 

fail in a random fashion. 
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The resource-allocation policy was derived for the case where tasks and processors 

are categorized by the number of instructions and the time required to execute one 

instruction, respectively. Further, this policy was adapted to accommodate ETC 

matrices that provide a more accurate means of capturing the relationship among 

tasks and processors in distributed systems. As this study focused on dedicated 

distributed systems with a limited set of compute resources, the distribution describing 

the relative random availability of each processor was derived in Section 5.6 based on 

the characteristics of the tasks batched and the parameters of the processors available 

in the system. 

The superior performance demonstrated by the DLR resource-allocation policy 

reveals its great potential for a variety of applications in a broad spectrum of dis­

tributed systems. For example, the problem of maximizing the performance when 

the system experiences temporal failures of compute resources is an important issue 

for embedded systems (e.g., [75,91]), sensor networks (e.g., [108]), or special pur­

pose cluster-based systems (e.g., [89]). Similar to the environment considered in this 

work, such systems sometimes are employed under harsh conditions but must deliver 

a certain level of performance to remain in operation. The application domains in­

clude surveillance for homeland security, monitoring vital signs of medical patients, 

and automatic target recognition systems. Thus, the proposed DLR-based resource-

allocation scheme can be adapted in those systems. 
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Chapter 6 

Conclusions 

The robust design of computing and communication systems is becoming an increas­

ingly important issue. This research addressed the problem of defining a robust­

ness metric and developing effective resource-allocation techniques in various envi­

ronments. 

The first chapter presented a hybrid two-stage approach to initial resource allo­

cation in the ARMS shipboard computing system. It included the design of a static 

combinatorial heuristic for a set of application strings that must be assigned to a set of 

heterogeneous machines connected by a high-speed network. The application strings 

are fed by a continuous stream of data sets arriving from sensors, and the processing 

system has to satisfy a certain QoS level of throughput and latency. A model of the 

application strings and underlying hardware platform was used to quantify a metric 

for robustness against unpredictable increases of the workload, i.e., the load presented 

by the set of sensors. Then, the established metric was maximized with an evolution­

ary Genitor-based search method coupled with a specially designed string allocation 

routine. The solution was passed to the second stage where the Branch-and-Bound 
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algorithm improved it and tightened the upper bound. 

The second chapter addressed the problem of workload allocation in the IBM 

cluster-based printing system. In this system, an input stream of data, described 

using the Postscript language, arrives for rasterization. Requests for rasterization 

are processed by a dedicated cluster of workstations, where individual requests are 

distributed to the cluster by a centralized dispatcher. The collection of processed 

requests together describe an image stream that is displayed on a raster based device, 

e.g., a printer or computer monitor. The frequency of requests and the magnitude 

of the data required to describe each request pose a considerable challenge for even 

today's fastest workstations. The primary contributions of this study were a math­

ematical model of a dynamic distributed computing system with hard deadlines on 

task execution times and an application of this model to the design of a resource 

allocation heuristic suitable for this type of system. 

In the first part of the next chapter, a new stochastic robustness metric was pre­

sented where the uncertainty in system parameters and its impact on system perfor­

mance were modeled stochastically. This stochastic model was then used to derive a 

quantitative evaluation of the robustness of a given resource allocation as the proba­

bility that the resource allocation will satisfy the expressed QoS constraints. In the 

second part of this chapter, the proposed method of stochastic robustness evalua­

tion was integrated into greedy and global search heuristics developed to address the 

problem of resource allocation for a class of distributed systems operating on periodic 

data sets. In many systems of the considered class, it is highly desirable to minimize 

the period between subsequent data arrivals while providing a probabilistic guarantee 

that each data set is processed within a limited time. 
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The last chapter presented a method for robust static resource allocation in dis­

tributed systems under high failure rate. Given a batch of tasks, a resource man­

agement system assigns tasks to compute resources that become available just after 

recovery from failures or task completions. The major contribution was the design of 

a resource-allocation policy for the above environment based on the concepts of the 

Derman-Lieberman-Ross theorem. The derived policy maximizes the expected cumu­

lative reward received from the tasks that finish before their deadlines, given that the 

compute resources fail in a random fashion. The superior performance demonstrated 

by the developed DLRJP resource-allocation policy reveals its great potential for 

a variety of applications in a broad spectrum of distributed systems. For example, 

the problem of maximizing the performance when the system experiences temporal 

failures of compute resources is an important issue for embedded systems, sensor 

networks, and a variety of military applications. 
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