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Specular Null Polarization Theory:
Applications to Radar Meteorology

John C. Hubbert and V. N. Bringi
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The bilinear polarization transfer function that relates incident
and scattered polarization ratios in the LRH is (see Appendix
A)

(4)
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(7)

s-LRH Ev'
X = ES

H'

and for the RAe

ES

Xs _R A C = ----.l::.
EN'

The two polarization ratios are related by

Xs-L R H = _Xs-R A C .

where * signifies complex conjugation and r = (1+XX*)-o.5.
As shown in [5] the phase term e = e- j tan-

1(tan
1> tan E)

is necessary to maintain a constant phase difference between
the elliptic basis polarization vectors and is easily derived
from the geometric form for U. The ¢ and E represent the
tilt and ellipticity angles, respectively. From (2) optimum
polarizations are derived [1], [4]. Optimum polarizations are
those transmit polarization states that produce power extrema
in either the receive copolar or cross-polar power [4]. Optimum
polarizations may also be developed starting with the equation
that directly relates the incident and scattered polarization
ratios in a local right handed coordinate system convention
(LRH) which is shown in Fig. 2. The LRH is typically used in
optic polarimetry [6], [7] and is also referred to as the forward
scattering alignment convention (FSA) by Ulaby and van Zyl
[2]. From Figs. 1 and 2 it is seen that for the backscatter
direction Ev' = Ev and EEl' = -EN' Accordingly, there
are two possible polarization ratios for backscatter depending
on the coordinate system convention adopted. For the LRH

s_LRH 8V H + Xi8vv
X = -8H H - Xi8H V '

Equation (7) can be used as a common starting point to
develop and compare the optimum polarizations of radar,
optic and specular null polarization theories (SNPT) as was
done by Hubbert [5]. The optimum polarizations in traditional
radar polarimetry, henceforth called Kennaugh's polarization
theory (KPT), called cross-polar nulls are the equivalent of
the eigenpolarizations in optic polarimetry. We note however,
that the optic eigenpolarizations are not the same polarization
states as the KPT cross-polar nulls. In other words, for the
same coherent scatterer different transmit polarizations will
produce nulls in the "cross-polar" powers as is defined in optic
polarimetry, KPT and SNPT. Using (7) the eigenpolarizations

I. INTRODUCTION

T HE starting point for the development of radar polarime­
try is the radar voltage equation [1]:

V =h~Er

=h~SEi

= h~Sht (1)

where E", the electric field incident on the radar, h t , the
transmit polarization vector of the radar, and h,; the receive
polarization vector of the radar, are all described in the same
coordinate system (i.e., the definition of the horizontal and
vertical unit vectors remains the same for both forward and
backward propagation directions) which is shown in Fig. 1
for monostatic radar. This is referred to as the radar alignment
convention (RAC) or backscatter alignment convention (BSA)
by Ulaby and van Zyl [2]. The superscript T in (1) denotes
transpose, E i is the incident (or transmitted) electric field and
S is the 2 x 2 radar (or Sinclair) scattering matrix. Additionally,
the radar reception polarization vector is defined as that
polarization that the. radar transmits so that for monostatic
radar h; = h t . From (1) it is easy to derive the change of
basis transformation [1], [3], [4]

S =UTSU

= [811 812 ]
8 21 8 22

where U is the field transformation matrix and is defined as

[
e - e*x*]u=r

ex e*

Abstract-Specular null polarization theory (SNPT) has been
recently introduced for the case of coherent scattering where a
2 x 2 scattering matrix is sufficient to describe the scattering
process. In this paper, SNPT is extended to the case of incoherent
scattering. Optimum polarization states are derived and the
results are discussed in relation to the Classic radar optimum
polarizations. In traditional radar polarimetry, modeling of the
radar receive/transmit network is included in the radar voltage
equation and consequently this affects the optimum polarizations
and polarization responses of scatterers. SNPT eliminates this
effect and therefore allows for a more direct analysis of scatter­
ers. Modeling of ensembles of precipitation particles is used to
illustrate the results of the analysis.
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Fig. I. The radar alignment convention (RAC) for the monostatic case as
used in classic radar polarimetry.

(10)

(11)

SHY] [1]
Syy X

v = r [1]t [SHH
X SYH

where t denotes Hermitian adjoint and g denotes the polariza­
tion vector of the radar either as a receiver or a transmitter in
the RAe. We emphasize that (11) is not meant to model fixed
polarization mono static radar; however, a polarization agile
radar such as POLDIRAD at DLR (the German Aerospace
Agency) at Oberphaffenhofen, Germany can be programmed
to obey (11). The transmit and receive polarization states
of this radar can be set independently to arbitrary elliptic
polarization states. Equation (11) is termed the "specular
voltage equation." From (10) the change of basis formula for
SNPT is found as

or more compactly

copolar reception state defined as X in the RAC, it follows that
the voltage received in the H-V (horizontal and vertical) basis
in this so defined "copolar" channel may be expressed as [5]

SCATTERNG
ax:RJNATE

SYSTEM , _V' i
H~

Z'

1RANSMIT
a:x:RJINATE
SYSTEM

vV'

RECEVE
an:lDINATE
SYSTEM

Fig. 2. The LRH used to describe the transmit polarization state, the
backscattered wave, and the receive polarization state. H' = -H,
V' = V, Z' = -Z. (12)

(8)

(9)

where S is the SNPT scattering matrix. The SNPT scattering
matrix is identical to the KPT scattering matrix for linear
polarizations only since for linear polarizations X is real and
therefore V-I = V T . For completeness we also give the three
eigenvalue statements: for optic polarimetry (using the LRH)

Note the complex conjugation that appears on the right hand
side of the KPT eigenvalue statement (14) which is a direct
result of modeling the receive radar network.

The three fields, optic polarimetry, radar polarimetry, and
SNPT, may also be compared via the "voltage equations"
associated with each. For a comparison of voltage equations,
see Appendix B.

Hubbert [5] has developed SNPT for the case of coherent
scattering. In this paper SNPT is extented to incoherent
scattering through the use of an ensemble averaged covari­
ance matrix. Optimum polarizations are derived and they are
compared to the optimum polarizations that are derived using
traditional radar polarimetry. For a detailed description of the
existing theory for deriving optimum polarizations via the
covariance matrix see [10]-[12]. Optimum polarizations are
those incident polarization states which minimize or maximize
copolar power or cross-polar power. Tragl et al. [11] express
the copolar and cross-polar power functions in real Hermitian
quadratic forms. This allows the optimum polarizations to be

(13)

(15)

(14)

Sx = AX

Sx = AX*

and for SNPT (using the RAC)

Sx= AX.

for KPT (using the RAC)

or in the RAC

as defined in optic polarimetry are found by setting Xs _L R H =
Xi = X and solving for X as is done in [7]. This is equivalent
to defining X as the optic copolar reception polarization
state. If one wishes to find the "eigenpolarizations" of KPT,
one sets Xi = X and Xs _L R H = -X* and solves for X.
This is equivalent to defining the -X* as the radar copolar
reception polarization state. The reader is reminded that the
optimum reception state, i.e., that reception polarization state
that maximizes copolar power return, for a radar that transmits
X polarization is Xs- R A C = X* when using the RAC. If the
LRH is employed the polarization ratio becomes Xs-L R H =
-X*. Thus we see that the complex conjugation that appears in
both Xs- R A C and Xs-L R H is a result of KPT where the receive
network of the radar is modeled together with the scatterer
[3], [8], [9].

Obviously, Xs-L R H and Xi can be arbitrarily defined. Hub­
bert [5] proposed the choice Xi = X and Xs-L R H = -X
which is equivalent to defining -X as the copolar reception
polarization state. Physically this means that

E{; _ Ev'
Ek ElI,

E i E S

---..x::. ---..x::.
Ek ER-

It is now apparent why the SNPT choice of "copolar" po­
larization state is advantageous. For forward scattering a
polarization state is an eigenpolarization if Xis = Xi where
the superscript is denotes forward scattering. It seems natural
then to require (9) (i.e., Xs_R A C = Xi) for backscatter eigen­
polarizations using the RAe. Using this definition and solving
(7) for X yields the "eigenpolarizations" for SNPT. With the
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calculated via the eigenvalues of a 3 x 3 real symmetric matrix
for cross-polar extrema or via the Lagrange multiplier method
for the copolar extrema. This same approach is followed here
for SNPT. First, the nonreciprocal case is solved and then the
simplification SHY = SYH is introduced. Next, ensembles of
precipitation particles are modeled and covariance matrices are
constructed using the transition (T-) matrix method [13]. The
covariance matrices of typical precipitation particles are used
to illustrate the results of the developed theory. Specifically,
we demonstrate how modeling of the radar in KPT affects
polarization responses and optimum polarizations and show
that SNPT eliminates these effects thus allowing for a better
characterization of scatterers.

II. RADAR MODELING AND POLARIMETRIC SIGNATURES

With the advent of polarimetric agile radars, interest in
polarimetric signatures, optimum polarizations and elliptical
polarization basis has increased [14]-[17]. When analyzing the
chacteristics of scatterers it is important to understand how
modeling the radar in KPT effects the various polarization
signatures, i.e., it is of interest to identify and separate those
polarization features that can be attributed to the scatterer(s)
from those caused by the modeling of the radar. With this in
mind SNPT was formulated.

The copolar reception polarization state for SNPT is defined
so that the return from a specular scatterer, such as a spherical
raindrop, will always be completely received by the copolar
channel. A specular scatterer is described in the H-V basis by
the identity KPT scattering matrix

S = [~ ~l
The utility of SNPT can be seen by exarmnmg various
polarization response plots. A polarization response plot shows
a radar measureable as a function of incident tilt and ellipticity
angle [2], [4]. For example, the SNPT copolar and cross­
polar power polarization responses of a specular scatterer
are flat planes at unity and zero, respectively. Compare this
to the corresponding copolar power polarization responses
for KPT and optic polarimetry which vary between unity
and zero (see [2], [5]). Therefore, deviations in the SNPT
polarization responses from these two reference planes are
directly attributable to those features of the scatterer which
are different from a specular scatterer. Because of this, we
say that a specular reflector becomes the reference scatterer
for SNPT.

We next illustrate the effects of modeling the
radar on copolar differential phase defined as
t5~(</J, E) arg{S22(</J, E)Sil(</J, En for KPT and ass ....
t5co(</J, E) = arg{S22(</J, E)Sil(</J, En for SNPT. In [5] the
copolar differential phase polarization response is shown for
a scatterer modeled in the RAC in the H-V basis as

S =8

= [~ ~].
This can be thought of as modeling a small oblate raindrop
that is in the Rayleigh scattering regime: the scatterer is
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much smaller than the wavelength and therefore not only is
the copolar differential phase zero, but also there is zero
phase shift upon backscatter for both vertical and horizontal
incident polarizations. Physically, it does not matter what
elliptical polarization is transmitted, the backscattered wave
suffers no phase shift due to the particle at backscatter.
Therefore, the copolar differential phase should be zero for
all polarization bases. However, Fig. 13 in [5] shows that
t5~ (</J, E) for a scatterer modeled by (17) is in fact not
identically zero. This superfluous nonzero differential phase is
not due to the scatterer but rather due to the nature of the KPT
basis transformation. In contrast, t5~o (</J, E) for this scatterer is
always zero in any polarization basis as shown in [5].

For further insight into the reason that this superfluous
differential phase occurs, consider 45° linear incident polar­
ization which can be decomposed into identical H and V
electric field components. When a 45° linear polarized wave
is specularly reflected, the H and V components remain the
same as the incident H and V components in the RAC,
i.e., (9) is true, and the return is completely received by
the KPT copolar channel. Let a differential phase shift now
occur between the incident H and V components. Again the
reflected H and V wave components remain the same as
the incident H and V components, i.e., (9) remains true.
However, the reflected wave will now be divided between the
KPT copolar and cross-polar channels until the differential
phase between the incident H and V components is 90°
whereby the reflected wave will be completely received by
the KPT cross-polar channel. It is the modeling of the radar
receive network that results in the particular definition of
copolar used in KPT that causes the transference of power
from copolar to cross-polar as the ellipticity angle of the
incident wave goes from zero to 90° (i.e., from llinear 45°
to circular). Coupled to the transference of power process
is the occurence of the superfluous {j~(</J, E). One could
argue that an incident right circularly polarized wave actually
does become left hand circular upon specular reflection and
therefore the reflected wave polarization is in fact orthogonal
to the incident polarization state. However, we feel that for
the study of scatterers it is more appropriate and insightful
to focus on the nature of the reflected field components, i.e.,
(9) is fundamental in defining copolar and eigenpolarizations.
Note that optic polarimetrists could analogously argue that an
incident 45° linear polarized wave that is specularly reflected
actually does become -45° linear polarized and therefore the
reflected wave polarization state is orthogonal to the incident
wave polarization state. Hence, the reflected wave should be
directed into the cross-polar channel but is instead is called
copolar in KPT! Again, SNPT circumvents these issues by
considering (9) fundamental in defining the copolar reception
state and eigenpolarizations and doing so eliminates the effects
of modeling the radar and of reversal of propagation direction
on the polarization signatures of scatterers.

III. COVARIANCE MATRIX FOR SNPT

Following [10] and [11], a covariance matrix can be used
to describe incoherent scattering for SNPT. To construct the
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covariance matrix the outer product of the feature vector

is taken which gives the covariance matrix in the H-V
basis (19) as shown at the bottom of the page where (-)
denotes ensemble averages. Note that the covariance matrix
is Hermitian. Initially reciprocity is not invoked in order to
maintain generality. Transformation of the covariance matrix
to other polarization bases is accomplished by a unitary
similarity transformation

(28)

(27)

Thus optimum polarizations depend on interchannel covari­
ances. For comparison, the conditions for optimum polariza­
tions as given by [11] for KPT are listed next: for cross-polar
optimum polarizations

(20)

where and for copolar optimum polarizations

(36)

(35)

(34)

(31)

(32)

(33)

(30)

(29)

-R24
Rh
R 22

-R12

511 (~:) =522 (X)

522 (~:) = 511 (x)

512 (~:) = - 521(X)

521(~: ) = - 51 2 (X)

R 11 (~:) =p~ (~:)
=Pc~(X)

=R44(X)

R 22 ( ~:) =P: (~: )

=P:(X)

= R33(X)

where -1/X* is the orthogonal polarization to X. Using
(30)-(33) in (20) it can be shown that

from which the orthogonal power relations are found as

B. Reciprocal Relations

It can be shown that

(26)

(24)

(23)

(25)

xx* ]r?x
*2 * . (21)

(2 X
1

and for cross-polar optimum polarizations
aR22-a- = r[R24 - R 21]X*

= r[(5215;2! - (5215rl!]
=0

where

Tn(X) = aTa (X) T-1(X).
X*

The conditions for copolar optimum polarizations are

aR11-'a- = r[R21+ RdX*
= r[(5215rl! + (5115r2!]

=0
aR44-a- = - r[R24 + R43]X*

= - r[(5215;2! + (5225r2!]
=0

The individual members of the specular covariance matrix in
(20) are represented as Rab' a, b = 1,2,3,4.

aa:E(x) = Tn(X) :E(X) - :E(X)Tn(X) (22)
X*

A. Conditions for Optimum Polarizations

Following [11], the optimum polarizations can be found in
terms of the covariance functions themselves by taking the
derivative of the covariance matrix with respect to X* and
equating to zero. The derivative can be calculated as

(SHHSYH!
(ISVHI2!

(SHVSYH!
(SVVSYH!

(SHHSHV!
(SVHSHV!
(ISHVI 2!

(SVVSHV!

(19)
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C. Copolar Optimum Polarizations

Optimum polarizations can be found using real linear al­
gebra. The copolar power function, Rll (X) can be expressed
as

(37)

W 22 = (ISHHI2) + (ISvvI2) + (ISHVI
2) + (ISVHI2)

+ 2~{ (SHVSYH)} + 2~{ (SHHSyV)}

W23 = 'S{ SvHS;Iv }

W 33 = (ISHHI2) + (ISvvI2) + (ISHVI 2) + (ISVHI2)

+ 2~{(SHHSyV)} - 2~{(SHVSYH)} (46)

where

In order to find the optimum polarizations, the complex vector
(38) is transformed to a real vector by

(48)

Wll =2((ISHHI
2) + (I Sv v I2))

W I 2 =2~{(SHHS;Iv) - (SvvS;Iv)}

W I 3 =0

W22 = (ISHHI
2) + (ISvvI2) + 4(ISHVI

2)

+ 2~{ (SHHSyV)}

W 23 =0

W 33 = (ISHHI2) + (ISvvI2) + 2~{ (SHHSyV)}

and (47), shown at the bottom of the page. Optimum po­
larizations can be found using Lagrange multipliers [18]. A
sixth-order polynomial will result and thus, there are six
possible optimum polarizations for the general case where
SHY # SVH. The Lagrange multiplier method used here is
similiar to that offered by [19] and [20].

Reciprocity is now invoked, i.e., SHY = SVH which
simplifies Wand w:

(38)

(39)

(40)

(41)

~ -~]
1 O'

j 0

o
o
1

-j

where 2- 1/ 2 Q is unitary and Q is defined as

so that

Then Y(X) takes the form

s" (X) = r 2 [1 + XX* 1 - XX* 2~{X} 2'S{X}]

where W is real and symmetric, and v is the real vector

~ and 'S specify the real and imaginary parts, respectively.
Since the first member of the vector y is unity, this allows the
copolar power function to be written in the inhomogeneous
Hermitian quadratic form

(50)

and (49), shown at the bottom of the page. The method of
Lagrange multipliers can be applied to (43) which results in
the following set of linear equations:

with the constraint imposed by (45) where ,\ is the Lagrange
multiplier. Because of the zero entries in (48) and (49), the
solution is simplified. The linear equation in (50) involving
the imaginary part of X, V3, is

(42)

(43)

s"Y = 2.

(44) (51)

and imposes the constraint

yT y = 1. (45)

The members of Wand ware

Wll =2((ISHHI2) + (ISvvI2))

W 12 = ~{(SHHS;Iv) + (SHHSYH) - (SvvS;Iv)

- (SVVSYH)}

W I 3 = - 'S{(SHHSYH) - (SHHS;Iv) + (SvvS;Iv)

- (SVVSYH)}

where VI, v2, and V3 are the individual members of Y. Thus,
either V3 = 0, i.e., the 'S{X} = 0, or ,\ = W33 . For nonlinear
optimum polarizations to exist ,\ = W 33 . Using this value
for the Lagrange mutiplier, the remaining system of equations
may be solved analytically for VI and V2. However, the con­
straint (45) must be checked for a valid nonlinear polarization
solution to exist. The remaining optimum polarizations are
found by setting V3 = 0 and solving the resulting reduced
set of linear equations with the constraint vi + v~ = 1. A
fourth order polynomial in ,\ will result and thus there are
four possible linear optimum polarizations. In comparison,

(47)

(49)
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there are six possible KPT copolar optimum polarizations all
of which can be elliptical [11].

D. Cross-Polar Optimum Polarizations

The cross-polar power function, R22(X), can be expressed
as

(59)

(60)

(61)

VI (Bll - >.) +V2B12 = 0

v IBI 2 + v2(B22 - >.) = 0

2V3(B33 - >.) + b3 = 0

of linear equations is found to be

with the constraint imposed by (45) where b3 is the third
member of the vector b. One solution to this set of equations
is VI = V2 = 0, V3 = 1 which corresponds to circular
polarizations. Thus, circular polarizations are always optimum
polarizations. The other solutions are found from the Lagrange
multipliers satisfying(53)

(52)

X]·
2

-X

where

The cross-polar power can be expressed III terms of the
inhomogeneous Hermitian quadratic form

and then v is found from

(62)

The X can be found from v via (44). Thus, besides circular
polarization, there are possibly two other optimum polariza­
tions (and their orthogonal complements) which will be linear
if b3 is zero. This is an important condition to recognize: the
cross-polar power minimum polarization state will be linear if:

IV. MODELING PRECIPITATION PARTICLES

The optimum polarizations for ensembles of scatterers are
now calculated from simulated covariance matrices. The model
used is described in [21] which employs the transition (T -)
matrix method to calculate the 2 x 2 scattering matrix and then
integrates over the specified size and orientation distributions.

(64)

(65)

(63)
b3

V3 = - ----:-c=------,--,-
2(B33 - >.)

2 (1 - V~)(Bll - >.)2
V 2 = Bf2 + (Bll - >')2

vi = 1 - V~ - v~.

for reciprocal scattering. This condition does not apply to
KPT. In KPT there are also three orthogonal pairs of optimum
polarizations but they are, in general, elliptical. The polariza­
tion state for which the cross-polar power attains an absolute
minimum is referred to as the characteristic polarization state.

We finally note that the equations developed above are based
on the SNPT change of basis (12) which is for backscatter;
however, since this change of basis expression is identical to
the change of basis equation for forward scattering

§ = V-I [Sk~ Sk~] V (67)Sis Sis ,
VH VV

except that the entries of S are now forward scattering ampli­
tudes, the above equations are applicable to other forward and
bistatic scattering problems as well.

(54)

Because of the zero entries, the extrema problem is simplified.
Upon applying the method of Lagrange multipliers, the system

Bi: =0.5[(ISHVI2) + (ISVHI2)]

B I 2 = 0.25~{ (SVVSYH) - (SHHSYH)

- (SHHSf'rV)+ (SvvSf'rv)}

B I 3 =0.258'{(SvvSf'rv) - (SHHSf'rv)

- (SVVSYH) + (SHHSYH)}

B 22 = 0.25[(ISHHI2) + (ISvvI2) + (ISHVI2)

+ (ISVHI2) - 2R{(SHV SYH) + (SHHSyV)}]

B 23 = 0.58'{ (SHVSYH)}

B 33 = 0.25[(ISHHI2) + (ISvvI2) + (ISHVI
2) + (ISVHI

2)

+ 2~{ (SHVSYH) - (SHHSyV)}] (55)

and (56), shown at the bottom of the page. The extrema of
(54) can again be found by applying the method of Lagrange
multipliers. There will be in general six optimum polarizations
for the nonreciprocal case. Invoking reciprocity where SHY =
SVH, (55) and (56) simplify to

Bi: = (ISHVI2)

B I 2 =0.5R{(SvvSf'rv) - (SHHSf'rV)}

B I 3 =0

B 22 = 0.25[(ISHHI2) + (ISvvI 2) - 2~{ (SHHSyv)}]

B 23 =0

B 33 = 0.25[(ISHHI2 ) + (ISvvI2) + 4(ISHVI 2)

- 2R{(SHHSyv)}] (57)

bT = [0 0 8'{(SHHSI'Iv) + (SHVSVV))]' (58)

where B is real and symmetric and v is given by (44). By
expanding (52) and (54) and equating coefficients, Band b
are found to be

(56)
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TABLE I
THE OPTIMUM POLARIZATIONS FOR THE ENSEMBLE OF

SCATTERERS DESCRIBED BY THE COVARIANCE MATRIX IN (69)

OPTIMUM POLARIZATIONS

(70)IReolPea = _--'c------'-----,-,-
(p/J,Px )1/2'

where Reo = (S22S11) (or Reo = (822811) for SNPT),
is an important microphysical indicator of the melting level
and of mixed precipitation types [24], [25]. The co-to-cross
covariance is defined as R{f = SnSh for KPT and ass ....u; = SllS~1 for SNPT.

There are two KPT copolar power minima located at ¢ =
-84.60,

E = -38.40 and ¢ = 84.60,
E = 38.40. Neither

of these KPT copolar minima polarization states are copolar
optimum polarizations for SNPT as can be seen by comparing
the KPT and SNPT copolar power plots. All of the KPT
polarization response plots show minima or maxima in the
vicinity of the KPT copolar power minima polarization states.
These minima and maxima are caused by the' radar receive
network modeled in the KPT basis transformation as discussed
previously. Since the minima and maxima for ZtfR(¢' E) and
D~ (¢, E) are located at the copolar power minima, one could
be mislead into believing that a greater sensitivity to these
parameters might be achieved by making measurements in
these or the surrounding elliptical polarization bases. The
problem with such a scheme is seen by examining the KPT
Peo plot which decreases in value around the copolar power
minima and in fact p~ (¢, E) does go to zero at the KPT
copolar power minima. As Pea (¢, E) decreases, the fluctuations
in Deo(¢ , E) and ZOR(¢, E) increase very rapidly due to
Rayleigh fading [26]. This effect substantially reduces the
accuracy to which Deo(¢ , E) and ZOR(¢, E) can be estimated
with dual polarization radars.

Since the conditions for optimum polarizations depend on
co-to-cross channel covariances, it is insightful to examine
the magnitude of R x show in Fig. 4. The magnitude of
the KPT R x appears to approach zero at seven locations
(three are hidden). In accordance with (28), IR{f1 has only
four nulls whoses locations are given by the KPT copolar
optimum polarizations in Table I. Another null does occur at
¢ = -900,

E = 00 but this represents the same polarization
as ¢ = 90 0,

E = 00. There are no minima in IR~ I at the
ellipitical polarization states and these KPT IRxI minima at
elliptical polarizations exist due to the modeling of the radar
receive network in the KPT basis transformation. As a result,
KPT theory yields more copolar optimum polarizations than
does SNPT for this class of scatterers. We finally note that
that maximum and minimum SNPT Deo(¢ , E) and ZOR(¢, E)
occur at the characteristic polarization state or its orthogonal
complement polarization state and that the SNPT Peo (¢, E) is
always greater than 0.96.

The polarization response plots for this ensemble of scat­
terers are now compared for KPT and SNPT. Fig. 3 compares
the copolar power (Z), copolar differential reflectivity (ZOR)
and copolar differential phase (Dca) polarization responses
while Fig. 4 compares the copolar correlation coefficient (Pea)
and the magnitude of the co-to-cross covariance (IRxl). The
KPT polarization responses are found in the left panels while
the corresponding SNPT polarization responses are found
to the right. The generalized copolar correlation coefficient,
calculated as

(69)

v'2(SHHSi'IV)
2(ISHvI2)

v'2(Svv Si'Iv)

KPT SNPT
tilt ellip. tilt ellip.

max. 0° 0° 0° 0°
COPOL saddle 90° 0° - -

min. 1 -84.6° -38.4° - -
min. 2 84.6° 38.4° 90° 0°
max. _45° 43.7° 0° 45°

XPOL saddle 45° 1.3° 45° 0°
min. 0° 0° 0° 0°

The wavelength is 5.5 em. The model was modified so that
arbitrary mean canting angles for ensembles of particles could
be included. This was accomplished by using the Fisher
distribution [22], [23] which is equivalent to a two dimensional
Gaussian distribution that has been mapped to a sphere. For
details of the Fisher distribution, see Appendix C.

An exponential size distribution of equilibrium shaped
raindrops (oblate spheriods) is modeled as N(D)
No exp {-3.67(D / Do)} where D is the diameter of an
equi-volumetric spherical raindrop and Do is the median
diameter. The parameters for the exponential distribution are:
No = 8000 mm"! m-3 , Do = 2.56 mm, D rn in = 0.5 mm,
D rn ax = 7 mm. A mean canting angle in the polarization plane
(plane perpendicular to the radar line of sight) and a canting
angle variance is specified using the Fisher distribution. The
Fisher distribution parameters are 7J = ¢' = 0 and K, = 100

- -r-]

where () and ¢ represent the mean canting angle in a spherical
coordinate system with () being the elevation angle and ¢' the
azimuth. The incident wave is directed along the negative x­
axis (see [21] for details). Thus for this orientation distribution
the mean canting angle is zero (minor axis vertical) and the
standard deviation as calculated by (C5) is approximately
8.70

• Because of reciprocity the covariance matrix used here
will have the form [l0]

[

(ISHHI2)
Eo = v'2(SHvSl'm)

(SvvSl'm)

The covariance matrix for the ensemble then is

[

1.0 0.0 0.6183e-j5.o4° ]

Eo = 0.0 0.0036 0.0
0.6183ej5.o4° 0.0 0.4119

where the matrix has been normalized by (ISHHI2) with
10 log [(ISHHI2)] 57.7 dBZ which is conventional
radar reflectivity. The electric fields are modeled with the
ejwte-jkr time-space convention and therefore Dca is defined
as arg {(SVVSi'IH)}' From the covariance matrix (69),
(SHH SHv) = (Svv Si'Iv) = 0 which satisfies the conditions
(24)-(29) which means that H and V are optimum copolar
and cross-polar polarizations for both KPT and SNPT. All
of the optimum polarizations are listed in Table I (orthogonal
complements of the cross-polar optimum polarizations are
not listed). The characteristic polarization, the cross-polar
minimum, is horizontal.
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Fig. 3. Polarization response plots as functions of transmit tilt (q,) and ellipticity (E) angles for the ensemble of raindrops described by (69). Left column
is due to KPT and the right column is due to SNPT. From top to bottom: Copolar power, copolar differential power and copolar differential phase.
Differential reflectivity is in decibel scale.

The effects of a nonzero mean canting angle is illustrated
next by using the same size distribution of raindrops as
described by (69) and letting (j = 20° and (j,' = 90° in
the Fisher distribution. This gives a mean tilt angle of 20°
from vertical in the plane of polarization. For polarization
definitions, a positive tilt angle is measured counterclockwise
from the horizontal axis. Thus, the corresponding tilt angle is
- 20° for polarization definitions. The covariance matrix is

where the matrix
10 log [(ISHHI 2 )1 =

are given in Table II. Common optimum polarizations for
K.PT and SNPT are the copolar maximum and cross-polar
minimum which are both linear at -20°. This is the
characteristic polarization state. Also, the SNPT copolar
minimum corresponds with the copolar KPT saddle point. For
SNPT the cross-polar maximum occurs (and always does) for
circular polarizations but for KPT, the cross-polar maximum
is at a tilt angle of 25.0° and ellipticity angle of 43.7°. There
are also two copolar minimums for KPT which are again not
optimum polarizations in SNPT and are attributed to the radar
receive network modeled in KPT. Note that the condition for
SNPT linear characteristic polarization state, (66), is satisfied
by the matrix in (71).

Next, the same particle size distribution is given a mean
canting angle outside the polarization plane by letting (j = 20°

0.1813ej-171.4°

0.0431
0.1l66e-j166.6°

0.6955ej-3.76° ]
0.1l66ej1666°

0.5068

(71)
is normalized by (ISHHI 2

) with
57.3 dBZ. The optimum polarizations

[

1.0
0.1813ej171.4°
0.6955ej3.76°

:Eo =
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Fig. 4. Polarization response plots as functions of transmit tilt (</» and ellipticity (E) angles for the ensemble of raindrops described by (69). Left column is
due to KPT and the right column is due to SNPT. Top panels: Copolar correlation coefficient. Bottom panels: cross covariance.

TABLE II
THE OPTIMUM POLARIZATIONS FOR THE ENSEMBLE OF

SCATTERERS DESCRIBED BY THE COVARIANCE MATRIX IN (71)

OPTIMUM POLARIZATIONS

TABLE III
THE OPTIMUM POLARIZATIONS FOR THE ENSEMBLE OF

SCATTERERS DESCRIBED BY THE COVARIANCE MATRIX IN (72)

OPTIMUM POLARIZATIONS
KPT SNPT

tilt ellip. tilt ellip.
max. _20° 0° ·20° 0°

COPOL saddle 70.0° 0.0° - -
min. 1 64.5° 38.5° - -
min. 2 75.5° -38.5° 70° 0°
max. 25.0° 43.7° 0° 45°

XPOL saddle 25.0° 1.3° 25° 0°
min. _20° 0° _20° 0°

KPT SNPT
tilt ellip. tilt ellip.

max. -15.6° 0.0° -15.6° 0°
COPOL saddle 74.4° 0.0° - -

min. 1 79.7° 38.8° - -

min. 2 69.2° 38.8° 74.4° 0°
max. 29.4° 43.9° 0° 45°

XPOL saddle 29.4° -1.1° 29.4° 0°
min. -15.6 ° 0° -15.6° 0°

and (fi' = 50°. The covariance matrix is before the the SNPT cross-polar saddle point is located 45° in
tilt angle away from the tilt angle of the cross-polar minimum.

The numerical method used here failed to locate the KPT
copolar minimum polarizations even though double precision
(32-b representation) was used. In order to find the correct
values for the Lagrange multipliers, a simple search method
was implemented by incrementing X (the Lagrange multiplier)
until a value was found that gave lv = 1. The value
of the Lagrange multipliers are: 1) 0.04432415474 and 2)
0.04432415661. As can be seen it is only after the eighth
decimal place that the two numbers differ. These numbers were
confirmed by calculating the vector v and the resulting tilt and
ellipticity angles and then comparing them to those obtained
by using a simple search method to find the minimum of the

0.1371e-j171.8°

0.026
0.0857e-j166.9°[

1.0
0.1371ej171.8°
0.6804ej3.84°

:Eo =

0.6804e-j3.84° ]
0.0857ej166.9°

0.4873

(72)
where the matrix is normalized by (ISHHI 2 ) with
10 log [(ISHHI 2

) ] = 57.4 dBZ. The optimum polarizations are
given in Table III. Common optimum polarizations for KPT
and SNPT are again the cop alar maximum and cross-polar
minimum which are both linear -15.6°. This angle can be
obtained by projecting the mean canting angle onto the plane
of polarization and is termed the apparent mean canting
angle. The other common optimum polarizations are the KPT
copolar saddle point and the SNPT copolar minimum. As
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A. Mixed Precipitation

Next, wet hail particles are added to the above described
ensemble of rain particles in order to simulate a rainlhail
mixture. Wet hail is modeled as oblate spheroids with an axis
ratio of 0.75 and with the dielectric constant of water at 0°
centigrade. The raindrops are given a mean canting angle of
- 20° in the plane of polarization. The hailstones are assumed
to follow an exponential size distribution of the form [27]

where No = 115A3.63, A is in units of mm- 1, No is in
mm"! m:", and D is in mm. The distribution was truncated
at 0.5 em and 4.0 cm. The mean tilt angle, e, is 90° (i.e., the
major axis is vertical) with a standard deviation of 20° and
¢/ is distributed uniform in the interval 0-2x. Thus, the hail
particles alone exhibit negative ZDR (in the H-V basis) and the
ZDR value is -0.85 dB. The reflectivity, 10 log ((ISHH 1

2) ) ,

of the hail alone was made equal to the reflectivity of the
rain component. Combining the hail with the rain yields the
following covariance matrix:

copolar power function. These KPT copolar power minima,
which can be difficult to find numerically, only exist because
of the receive network modeled in KPT and do not exist in
SNPT.

It was found that for all mean canting angles and variances
of canting angle simulated, the tilt angle of the characteristic
polarization state yielded the apparent mean canting angle,
and that the accompanying ellipticity angle was zero for
both SNPT and KPT. Several other particle types were also
modeled, e.g., oblate ice and two layer (i.e., water coated ice),
and again for various mean canting angles and variances of
canting angles the cross-polar minimum power polarization
states were always linear and indeed from the covariance
matrices it was observed that in each case 'S{SHHSHv} =
-'S{SHVSyv}'
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~
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angle of the cross-polar minimum polarization state for KPT
and SNPT is -18.8° which is very close to the -20.0° mean
canting angle given to the raindrops. This result shows that
even with significant amounts of hail, the algorithm was able
to resolve the apparent mean canting angle of the rain particles.
If the number density of the hail particles is increased, thus
increasing the hail reflectivity, the estimated mean canting
angle will err further from - 20° and likewise, if the hail
density is decreased, better estimates of the mean canting
angle of the raindrops can be expected. In other words, the
estimated mean canting angle will be a reflectivity weighted
average of the hail and rain mean canting angles. To illustrate
this, the above ensembles of raindrops and hail particles are
now mixed for various relative reflectivity values. Shown in
Fig. 5 are the calculated mean tilt angles for the characteristic
polarization basis and the copolar maximum polarization basis
for both KPT and SNPT. For low relative hail reflectivities
both the characteristic tilt angles and the copolar maximum
tilt angles give good estimates of the mean canting angle
of the raindrops. As the relative hail reflectivity increases,
the characteristic tilt angle continues to give a reasonable
estimate of the mean canting angle of the raindrops up to
approximately 5 dBZ relative hail reflectivity. However, the
copolar tilt angle decreases rapidly toward -90° which is
the mean canting angle of the hail particles. For this case
the tilt angle of the characteristic polarization state is a
better estimator of the mean canting angle of the raindrops.
Fig. 6 shows the accompanying ellipticity angles for the KPT
characteristic polarization state (Curve A) and the copolar
maximum polarization state (Curve B). For all values of
relative hail reflectivity the ellipticity angles are small being
less than 10. The ellipticity angles for SNPT are not shown
since they are zero.

If the hail particles are distributed uniform random in both
e and ¢/ (i.e., no preferential alignment) then much larger
relative hail reflectivities will not affect the estimated mean
canting angle of the raindrops using either the tilt angle
from the characteristic polarization state or copolar maximum
polarization state. When relative hail reflectivities as high as

Fig. 5. The tilt angles for the characteristic polarization state and the copolar
maximum polarization state as a function of the relative horizontal reflectivity
of the hail, e.g., for 0 dBZ the rain and hail ensembles have equal reflectivities.
Curve A: KPT characteristic tilt. Curve B: SNPT characteristic tilt. Curve
C: KPT copalar maximum tilt. Curve D: SNPT copolar maximum tilt.

(73)

0.0907e-jl71.4°
0.025
0.0583e-j1666°

N(D) = Noe- A D

[

1.0
~o = 0.0907ej171.4°

0.8934e-j039°

0.8934ejO.39° ]
0.0583ej166.6°

0.8619
(74)

which is normalized by (ISHHI 2
) with 10Iog((ISHHI 2

) )

60.3 dBZ. The optimum polarizations are are given in
Table IV. For this covariance matrix 'S{SHHSHv}
-'S{SHVSyv} and therefore the SNPT cross-polar minimum
is linear; however, the cross-polar minimum for KPT is slightly
elliptical with the angle of ellipticity being -0.3°. Also, the
copolar maximum polarization state no longer match the cross­
polar minimum polarization state for either KPT or SNPT as
was true for single distribution of particle type (i.e., only rain
or hail or graupel etc.). The nonzero ellipticity angles for KPT
are a result of modeling both the radar receive network as
well as the rainlhail mixture in KPT. The nonmatching of the
copolar maximum polarization state and cross-polar minimum
polarization state is related to the mixing of different particle
types with different orientation distributions thus creating a
nonsymmetric orientation distribution of particles. The tilt
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Fig. 6. The ellipticity angles for the characteristic polarization state and the
copolar maximum polarization state as a function of the relative horizontal
reflectivity of the hail, e.g., for 0 dBZ the rain and hail ensembles have equal
reflectivities. Curve A: ellipticity angle of KPT characteristic polarization
state. Curve B: ellipticity angle of KPT copolar power maximum polarization
state. The equivalent SNPT ellipticity angles are always zero.

TABLE IV
THE OPTIMUM POLARIZATIONS FOR THE RAINIHAIL MIXTURE. THE ENSEMBLE

OF RAINDROPS IS DESCRIBED BY THE COVARIANCE MATRIX IN (69) BUT WITH A

MEAN CANTING ANGLE OF - 20° IN THE PLANE OF POLARIZATION

OPTIMUM POLARIZATIONS
KPT SNPT

tilt ellip. tilt ellip.
max. -25.6° -0.24° -25.6° 0° .

COPOL saddle 57.2° 0.23° - -
min. 1 64.2° -42.8° - -
min. 2 58.3° 43.3° 57.2° 0°
max. -8.58° 44.7° 0° 45°

XPOL saddle 26.2° -0.11° 26.2° 0°
min. -18.8 ° -0.30° -18.8° 0°

35 dBZ are used, the estimated canting angle is within a
half of a degree of the actual raindrop mean canting angle
of - 200

• To explain this, note that ensembles of particles
which have a uniform orientation distribution have co-to-cross
covariances that are are zero and therefore the co-to-cross
covariances of the mixture are a function of the raindrops
only. As another application, it is well known that small ice
crystals can be oriented by in-cloud electric fields (giving a
nonzero mean canting angle) while the larger snow particles
are not and thus the larger particles are uniformly random
distributed. Even if the large snow particles contribute 35
dBZ more relative reflectivity than the oriented ice crystals,
it still should be possible to recover the mean canting angle
of the ice crystals provided that an accurate measurement of
the cross-polar signal can be made.

B. Separation of Shape and Orientation

In order to separate particle shape effects from the effects of
orientation (i.e., spread of canting angle distribution) a tech­
nique suggested by [28] is used. They showed that the ratio of
the maximum to minimum LDR value for linear polarizations
is nearly independent of shape effects and depends primarily
on orientation effects. The general linear depolarization ratio
is defined here as LDRx = 10 log [ISxy/SxxI2] where X
and Y are any two orthogonal polarization states. Accordingly,

Fig. 7. LDRH - LDR45 as a function of the standard deviation of the
canting angle distribution (J. Curves A, B, C correspond to drop size
distributions truncated at 3, 5.5, and 7 mm, respectively.

LDRH and LDR45 represent the linear depolarization ratio in
the H-V and ±45 linear polarization bases. LDR45 can be
obtained from ~ in (20) by letting X = 1.

Again, raindrops are modeled as before with exponential
size distribution and a Fisher spatial distribution with a co­
variance matrix as given by (69). The upper limit of the
drop size distribution is varied between 3-7 mm to simulate
a variety of mean shapes which will vary the ZOR of the
ensemble. Shown in Fig. 7 is the difference LDRH - LDR45

as a function of the standard deviation of the canting angle
distribution a, Curves A, B, C correspond to the maximum
drop size diameters of 3, 5.5, and 7 mm, respectively. As can
be seen the curves lie very close to one another even though
ZOR varies as much as 2.6 dB for a given value of a as
is shown by Fig. 8. If the particles have uniform orientation
distribution them LDRH - LDR45 = 0 and ZOR = O. Since
LDRH - LDR45 is nearly independent of ZOR, a reasonable
estimate of the standard deviation of the canting angle can be
made assuming that the particles follow a Fisher orientation
distribution. If the particles have a mean canting angle other
than horizontal, then the above polarimetric transformation can
be applied so that the covariance matrix is expressed in its
characteristic polarization basis. The mean axis ratio can be
estimated from ZOR in this basis.

C. Symmetry and Optimum Polarizations

It has been established [29] that for single scatterers possess­
ing a line of symmetry (perpendicular to the line of sight) there
exists a linear polarization state such that the cross-polar power
is zero. Interestingly, this is equivalent to the condition (66)
for coherent scattering and can be easily seen by examining
the expression for the KPT cross-polar nulls for coherent
reciprocal scattering, shown as (75), at the bottom of the next
page. As can been seen the numerator is always real and if
(66) is true then the denominator is also real. Thus Xxnull

is real and the polarization state is linear. Condition (66) can
also be derived from the expression for the cross-polar null
polarization states for SNPT. But for an ensemble of particles,
(66) only applies to the cross-polar power extrema for SNPT
and is not a sufficient condition for cross-polar power extrema
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Fig. 8. ZDR as a function of the standard deviation of the canting angle dis­
tribution (J". Curves A, B, C correspond to drop size distributions truncated
at 3, 5.5, and 7 mm, respectively.

V. CONCLUSION

In traditional radar polarimetry (KPT), both the scatterer and
the transmit/receive network of the radar are modeled in the the
change of basis formulation (2). Specifically, it is the modeling
of the receive network of the radar that is responsible for the

for KPT. The above example of a mixture of hail and rain
particles illustrated this fact. It is intuitively satisfying that the
condition for linear cross-polar nulls for coherent scattering
is identical to the condition for linear cross-polar extrema for
incoherent scattering.

Our modeling studies show that if the particle orientation
distribution is symmetric about some plane then the character­
istic polarization basis (or cross-polar null polarization state)
is linear and the tilt angle of the characteristic polarization
state is the apparent mean canting angle of the ensemble of
particles for both KPT and SNPT. If two particle ensembles
with different orientation distributions are combined such that
the composite ensemble is no longer symmetric, then the
characteristic polarization state in KPT becomes elliptical
although only slightly for the case examined in this paper.
In contrast, the characteristic polarization state was linear for
SNPT. We note that the characteristic polarization state in
SNPT will always be linear for any ensemble that is composed
of symmetric particles. We have observed that for any of the
particles that are modeled by the T-matrix method, which must
be rotationally symmetric, condition (66) is always satisfied.
Since the covariance matrix is constructed by a weighted
incoherent addition of the individual particles, condition (66)
will also necessarily be satisfied for the ensemble regardless of
the symmetry of the orientation distribution. A possible indi­
cator of nonsymmetric orientation distribution is the degree of
similarity of the SNPT copolar power maximum polarization
state and characteristic polarization state.

complex conjugation in the eigenvalue statement (14) and the
transpose instead of inverse in (2). This modeling of the radar
receive network affects optimum polarizations and polarization
responses. For example if the copolar differential quantities
ZDR (differential reflectivity) or Dca (differential phase) are
plotted as a function of incident tilt and ellipticity angles,
large minima and maxima values result in the areas around
the KPT copolar power minima (e.g., see Fig. 3). Specular null
polarization theory (SNPT), which uses (9) for the definition
of eigenpolarization, shows that these minima and maxima are
a result of modeling the radar receive network in KPT.

SNPT does not include modeling of the radar receive
network and as a consequence separates those characteristics
that are due to the nature of the scatterer. This separation
is accomplished by using a specular scatterer (for example,
a spherical raindrop) as a reference scatterer. This means that
that polarization state which results when a plane wave is spec­
ularly reflected is defined as the copolar reception polarization
state. The resulting mathematics when expressed in the RAC
takes a standard form: the eigenvalue stat~ment is Sx = AX
and the change of basis transformation is S = V-ISV. This
paper has extented this theory to incoherent scattering using
a covariance matrix approach and the optimum polarizations
were derived. The results for the reciprocal case show that
there is only one value for the Lagrange multiplier that
corresponds to a SNPT copolar elliptical optimum polarization
and this optimum polarization can be found analytically. The
remaining four SNPT optimum polarizations are always linear
and are found numerically via the Lagrange multiplier method.
This is in contrast to traditional radar polarimetry theory
which yields six optimum copolar polarizations which may be
either linear or elliptical. Our modeling studies for ensembles
of spheroids indicate that there are only two linear SNPT
copolar optimum polarizations, a maximum and a minimum,
while there are four KPT copolar optimum polarizations, a
maximum, two minima and a saddle point. The two additional
KPT optimum polarizations, which are KPT copolar minima,
are attributed to modeling the radar receive network. As in
KPT there are three SNPT optimum cross-polar polariza­
tions along with their orthogonal counterparts. However, in
SNPT one cross-polar optimum polarization is always circular.
The remaining two optimum polarizations will be linear if
8'{(SHHSHV)} = -8'{ (SHVSyV)}' (66), which is not true
for KPT. It is intuitively satisfying that the condition for cross­
polar linear optimum polarization for incoherent scattering
is the same condition as for coherent scattering in SNPT.
The zero entries in the Hermitian quadritic forms for copolar
and cross-polar power for SNPT reduce the complexity of
calculating optimum polarizations for SNPT in comparison to
KPT.

Ensembles of particles were modeled using the transition
(T-) matrix as was done by [21]. Their method was extended

353015 20 25
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where S are the members of the optic (Jones) scattering matrix
and are related to the radar (Sinclair) scattering matrix by

which is valid for relating the H-V components of the two
matrices only. Using this relationship, the matrix S will be
written as

where t denotes Hermitian adjoint (transpose conjugate). The
difference between the three equations can be understood by
examining the definition of the reception polarization vectors
f, h, and g. In optic polarimetry f denotes a unit polarization

(AI)

(A2)

(Bl)

(B2)

(B3)

~HV] [Ef ]
Svv Ev

optic polarimetry

radar polarimetry

SNPT

. [-1s= o

V =ftEL RH

V =h~ERAC

V =gtERAC

4) Calculate the relevant radar parameters e.g.,
ZDR, Deo , Peo in this basis. These parameters can
be used to infer the mean shape, Mie scattering effects
and particle mixtures.

5) Transform the covariance matrix to the linear basis
which is 45° from the characteristic polarization basis
and calculate LDR in that basis. Difference this LDR
with the LDR in the characteristic polarization basis to
obtain an estimate of the canting angle spread.

Finally, we note that SNPT is equivalent to treating the
complex backscattering amplitudes as if they were complex
forward scattering amplitudes and then analyzing the backscat­
ter problem as a forward scattering problem with the additional
restriction that SHY = SVH. Therefore, SNPT presented here
for the case where SHY -::J SVH may also be applied to general
forward or bistatic scattering problems.

S = [-SHH -SHV] (A3)
SVH Svv'

Substituting (A3) into (AI) gives

[EHs f] = [-SHH -SHV] [Ek] (A4)
EVf SVH Svv Et·

Using this matrix equation it is simple to solve for the bilinear
polarization transfer function (7).

ApPENDIX A

DERIVATION OF POLARIZATION TRANSFER FUNCTION

To obtain the equation that relates incident and scattered
polarization ratios in the LRH, we begin with the optic
scattering matrix equation in the H-V (horizontal and vertical)
basis

ApPENDIX B
COMPARISON OF VOLTAGE EQUATIONS

We compare the three voltage equations and show how the
three different change of polarization basis formulas result.

to allow for arbitrary mean canting angles which was accom­
plished by using a Fisher distribution [23] to model the particle
orientation distribution. When a single class of particles, such
as raindrops, was modeled with a Fisher distribution, the
tilt angle from the cross-polar power minimum polarization
(the characteristic polarization state or basis) was the mean
canting angle if the ensemble mean canting angle was in the
plane of polarization; otherwise the tilt angle from the cross­
polar power minimum polarization was the apparent mean
canting angle which is that angle that results when the mean
canting angle of the ensemble is projected on to the plane
of polarization. If two particle ensembles, such as raindrops
and hailstones, have different orientation distributions, then the
tilt angle from the cross-polar power minimum polarization
will be, in general, a weighted average of the mean canting
angle from each particle ensemble. If, however, one particle
ensemble is distributed uniformly random in space while the
other possesses a mean canting angle, then it is possible to
detect the mean canting angle even if the reflectivity of the
randomly oriented particles exceeds the reflectivity of the
oriented particles by 30-35 dBZ. For the mixture of hail
and rain example given in this paper, the tilt angle from
the cross-polar power minimum polarization was a better
estimator of the mean canting angle of the raindrops than the
tilt angle from the copolar maximum polarization. Since for
ensembles of spheroids (66) is always true, the SNPT cross­
polar minimum polarization state will always be linear for
this class of scatterers. This is not necessarily true for KPT
as the hail/rain ensemble illustrated. For all of the various
mixtures of spheroids we have modeled, the SNPT copolar
optimum polarizations were always linear, i.e., constraint
(45) was never satisfied when the Lagrange multiplier A =
W 33 . Therefore, we believe that for ensembles composed of
rotationally symmetric particles, the SNPT copolar optimum
polarization are always linear. Our modeling results also
suggest that for ensemble of spheriods there exist only two
SNPT copolar optimum polarizations both of which are linear
while there are four KPT copolar optimum polarizations
of which two are typically elliptical. We believe that the
two additional KPT copolar optimum polarizations and the
ellipticity angles of the optimum polarizations exist only due
to the modeling of the radar receive network in the KPT
equations.

Our modeling results also showed that it is possible to sepa­
rate orientation effects from shape effects as was suggested by
[28]. This is done by calculating LDR (linear depolarization
ratio) in the characteristic polarization basis and also in the
linear basis 45° in tilt angle from the characteristic polarization
basis. The difference of these two LDR's is a good estimator
of the spread of the canting angle distribution.

For meteorological applications, we then suggest the fol­
lowing steps.

1) Accurately measure the backscatter covariance matrix
in the H-V basis.

2) Calculate the characteristic polarization state from which
the mean canting angle is estimated.

3) Transform the covariance matrix to the characteristic
polarization basis.
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where h denotes the field incident on the scatterer. From

(B4)-(B6) the change of basis formulas can be derived. Note

that even though different coordinate conventions are used,
all polarization vectors transform acording to the same rule:
f = ur, h; = Vh~, g = Ug/, and h = Vh' where f

denotes a new polarization basis, [see (3) for a definition of
V.] Substituting these into (B4), (B5), and (B6) gives the
change of basis formulas S' = V-ISV, S' = VTSV, and

S' = V-ISV, respectively.

reception vector defined in a LRH. Since the incoming wave

is also defined in the same coordinate system, i.e., LRH, a

standard complex inner product rule is employed to find the
received voltage. In radar polarimetry h actually denotes the
transmit polarization state of the receiving radar in the RAe.
One must realize that if a radar transmits X polarization than
it receives X* when the RAC is used. This is why hT is used

instead of h"l in the radar voltage equation and this is how

modeling the radar is included in the radar voltage equation.

In SNPT g denotes a unit polarization reception vector defined

in the RAe. Since the incoming wave is also defined in the

RAC, again a standard complex inner product rule is used to

calculate the voltage.
The above voltage equations can be expanded to include

the scattering matrices:

v = ftSh

V =h~Sh

V=gtSh

optic polarimetry

radar polarimetry

SNPT

(B4)
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(B6)
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Fig. 9. Values of K for the fisher distribution versus solid angle e with in
which lie 68.27% of the canting angles of the particles.

where Bis the solid angle within which 68.27% of the particles

lie. If K; ?: 3 (values of B less than :::::::52°), (C4) simplifies and

K, can be directly approximated by

1.1479
K, ::::::: 1 _ cos e' (CS)

In other words, if one wishes to restrict 68.27% of the canting
angles of the particles to within a solid angle of 52° or less,
then K, may be found directly with (C5); otherwise (C4) should
be used. Shown in Fig. 9 is a plot of (C4) with Bon the vertical
axis and the base ten logarithm of K, on the horizontal axis.
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