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ABSTRACT 
 

 

 

SPATIAL ANALYSIS OF HUMAN LYME DISEASE RISK IN AN ENDEMIC COUNTY 
 

 

 

An understanding of the factors that drive spatial variation in human Lyme disease risk 

is important for appropriate development and implementation of public health interventions. 

Yet, these factors are poorly understood. This dissertation utilized fine-scale environmental and 

human Lyme disease data from a single county to quantify the spatial distribution of human 

Lyme disease occurring 2001-2011 and to evaluate whether spatial variation in disease risk was 

explained by several factors, including land use, land cover, deer density, and tick infestation on 

deer.   

All studies were conducted with data from Howard County, Maryland. The first project 

described spatial clustering of human Lyme disease according to residence. When compared to 

other areas of the County, areas with elevated disease risk were characterized by more low-

density development and more red and white oak forest. The second project used multilevel 

(i.e., mixed effect) models to examine risk factors for human Lyme disease among all homes in 

Howard County. In this analysis, 8% of all variation in human disease risk was due to the census 

block group location of households; the remaining variation in human disease risk occurred 

within census block groups. Most of the variation in risk between census block groups was 

explained by household-level land use and land cover characteristics and census block group-

level differences in forest and socio-demographics, yet some variation in risk between block 

groups remained unexplained with available covariates. Increased risk of Lyme disease was 
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associated with low- and medium-density residential development, red and white oak forest, 

increasing proportion of the census block group classified as forest, and residing in a census 

block group characterized by higher income, home value, and education. The third project 

evaluated associations between deer density, tick infestation on deer, and human disease risk. 

Study findings suggested that areas with lower deer density had higher abundance of ticks on 

deer and higher risk of human Lyme disease. These results suggest that moderate deer 

reduction in inland areas, as occurs through community deer management programs, may not 

be a viable Lyme disease prevention measure.  

This dissertation advances knowledge of the fine-scale epidemiology of human Lyme 

disease and demonstrates the importance of using human outcome data, in addition to 

entomologic data, to understand variation in Lyme disease risk. These studies use advanced 

analytic methods to demonstrate significant sub-county spatial variation in risk of human Lyme 

disease, validate previously recognized risk factors for human illness, identify novel associations 

of a specific forest type with human disease, and demonstrate the importance of human 

behavior in placing humans at risk. Finally, results of this dissertation suggest that additional 

analyses using multilevel modeling techniques may help to provide insight regarding many 

remaining questions in the epidemiology of Lyme disease.  

  



iv 

  

ACKNOWLEDGMENTS 
 

 

 

I would especially like to acknowledge my advisor, Jennifer Peel. Without your 

knowledge, patience, and encouragement, this work would not have been possible. Under your 

mentorship, the knowledge I have gained through this degree-seeking process has been 

broader than I possibly imagined. To John Reif, my co-advisor—I started down this path in your 

office in the summer of 2009 and have appreciated your continual guidance since then.    

To the remaining members of my committee: Lars Eisen—I appreciate your immense 

knowledge of the subject matter and your ecologic perspective on all things Lyme disease. Brad 

Biggerstaff—Thank you for your patience with my endless statistical questions and for the 

mentorship you provided along the way. To the last member of my committee, my supervisor, 

Paul Mead—I am grateful you gave me the chance to be an epidemiologist in the first place. I 

appreciate your leadership and friendship. 

I would like to thank the colleagues with whom I have worked over the years—I have 

learned so much and enjoyed my job immensely because of all of you. Thank you all for your 

support—I would list you all individually, but you will not fit into the one page maximum I have 

for acknowledgments! To Alison Hinckley, you are a great colleague and friend—I would not 

have set off down this path if not for you. Thank you for the pep talks! Moreover, I thank 

Andrias Hojgaard and Martin Williams for performing all of the tick pathogen testing. Finally, I 

am indebted to Phil Norman and Katherine Feldman in Maryland.  



v 

  

DEDICATION 
 

 

 

I dedicate this dissertation to family; without your unconditional support, this 

dissertation would not have been possible. To my parents—you have always had confidence in 

me. To my sisters—our sisterly love and antics constantly make me smile. To my daughters, 

Britt and Teagan—someday you will understand why mom went to “work” and “school” and 

missed an occasional good night kiss. I hope one day this journey of mine gives you assurance 

that you can do anything as long as you work hard. To my husband, Brian—you are my biggest 

supporter and my best friend. Without your love, support, endless encouragement, and 

fantastic parenting, I would never have started down this road, let alone reached the end.  

  



vi 

  

TABLE OF CONTENTS 
 

 

 

ABSTRACT .........................................................................................................................................ii 

ACKNOWLEDGMENTS ..................................................................................................................... iv 

DEDICATION ..................................................................................................................................... v 

TABLE OF CONTENTS....................................................................................................................... vi 

LIST OF TABLES ................................................................................................................................. x 

LIST OF FIGURES ............................................................................................................................ xiii 

CHAPTER 1....................................................................................................................................... 1 

1. INTRODUCTION AND BACKGROUND .................................................................................. 1 

INTRODUCTION .................................................................................................................................... 1 

Summary of literature and rationale for dissertation ..................................................................................... 1 

Dissertation overview ...................................................................................................................................... 3 

BACKGROUND ...................................................................................................................................... 5 

History of Lyme disease ................................................................................................................................... 5 

Ecology of Lyme disease .................................................................................................................................. 6 

Pathogen transmission, clinical manifestations, and diagnosis .................................................................... 10 

Human Lyme disease surveillance in the United States ................................................................................ 13 

Current methods for Lyme disease prevention ............................................................................................. 16 

Spatial variation in risk of human Lyme disease ........................................................................................... 19 

Environmental risk factors for Lyme disease ................................................................................................ 21 

Deer density and ticks on deer as environmental risk factors for Lyme disease .......................................... 25 

FIGURES .............................................................................................................................................. 31 

CHAPTER 2: PROJECT 1 ................................................................................................................. 38 

2. EPIDEMIOLOGY AND CLUSTERING OF HUMAN LYME DISEASE, HOWARD COUNTY, 

MARYLAND—2001-2011 .......................................................................................................... 38 

INTRODUCTION .................................................................................................................................. 38 

METHODS ........................................................................................................................................... 39 

Study location ................................................................................................................................................ 39 



vii 

  

Study population ........................................................................................................................................... 40 

Geographic data ............................................................................................................................................ 40 

Analytic methods ........................................................................................................................................... 41 

RESULTS .............................................................................................................................................. 45 

Incidence ....................................................................................................................................................... 45 

Characteristics of reported Lyme disease patients ....................................................................................... 45 

Geographic information ................................................................................................................................ 46 

Cluster detection ........................................................................................................................................... 47 

DISCUSSION ........................................................................................................................................ 51 

Limitations ..................................................................................................................................................... 53 

Strengths ....................................................................................................................................................... 57 

Conclusions.................................................................................................................................................... 58 

TABLES ................................................................................................................................................ 59 

FIGURES .............................................................................................................................................. 64 

CHAPTER 3: PROJECT 2 ................................................................................................................. 68 

3. HOUSEHOLD AND NEIGHBORHOOD CHARACTERISTICS AS RISK FACTORS FOR HUMAN 

LYME DISEASE ........................................................................................................................... 68 

INTRODUCTION .................................................................................................................................. 68 

METHODS ........................................................................................................................................... 70 

Study design .................................................................................................................................................. 70 

Study location and population ...................................................................................................................... 70 

Household-level Lyme disease classification ................................................................................................. 71 

Explanatory variables and specifications....................................................................................................... 72 

Statistical analysis .......................................................................................................................................... 74 

RESULTS .............................................................................................................................................. 76 

Incidence of Lyme disease in the study population ...................................................................................... 76 

Characteristics of study households .............................................................................................................. 77 

Census block group variation ........................................................................................................................ 77 

Multilevel model development ..................................................................................................................... 78 

Relative contribution of levels in explaining spatial variation in risk of Lyme disease .................................. 81 

Sensitivity analyses ........................................................................................................................................ 82 

Comparison of associations in multilevel and single level models................................................................ 83 

DISCUSSION ........................................................................................................................................ 84 

Limitations ..................................................................................................................................................... 90 



viii 

  

Strengths ....................................................................................................................................................... 93 

Conclusions.................................................................................................................................................... 93 

TABLES ................................................................................................................................................ 96 

FIGURES ............................................................................................................................................ 102 

CHAPTER 4: PROJECT 3 ............................................................................................................... 104 

4. DEER DENSITY, BLACKLEGGED TICK INFESTATION ON DEER, AND HUMAN LYME DISEASE 

RISK 104 

INTRODUCTION ................................................................................................................................ 104 

METHODS ......................................................................................................................................... 106 

Study location and deer density estimates ................................................................................................. 106 

Tick infestation on deer ............................................................................................................................... 107 

Household address and Lyme disease information..................................................................................... 107 

Analytic methods ......................................................................................................................................... 109 

RESULTS ............................................................................................................................................ 114 

Descriptive analyses .................................................................................................................................... 114 

Association between deer density and blacklegged tick abundance .......................................................... 117 

Association of deer density with risk of human Lyme disease .................................................................... 119 

Association of tick infestation on deer with risk of human Lyme disease .................................................. 122 

DISCUSSION ...................................................................................................................................... 124 

Limitations ................................................................................................................................................... 126 

Strengths ..................................................................................................................................................... 130 

Conclusions.................................................................................................................................................. 131 

TABLES .............................................................................................................................................. 132 

FIGURES ............................................................................................................................................ 144 

CHAPTER 5: DISSERTATION DISCUSSION AND CONCLUSIONS ................................................... 149 

Future directions ......................................................................................................................................... 154 

Conclusions.................................................................................................................................................. 156 

CHAPTER 6: REFERENCES ............................................................................................................ 158 

CHAPTER 7: APPENDICES ............................................................................................................ 175 

Appendix 1.0. Human subjects research approval documentation ............................................................ 175 

PROJECT 1 APPENDICES ............................................................................................................................... 178 

Appendix 1.1. Overview of surveillance practices in Howard County ......................................................... 178 



ix 

  

Appendix 1.2. Assessment of impact of surveillance practices on total case count ................................... 179 

Appendix 1.3. Spatial autocorrelation of Lyme disease incidence by census block group ......................... 180 

Appendix 1.4. Spatial autocorrelation of population growth, 2000-2009 .................................................. 182 

Appendix 1.5. Spatial cluster detection analysis using case counts in census block groups ....................... 184 

Appendix 1.6. Spatiotemporal cluster analysis ........................................................................................... 185 

Appendix 1.7. Environmental characteristics within clusters assessed at two scales ................................. 186 

PROJECT 2 APPENDICES ............................................................................................................................... 187 

Appendix 2.1. Multilevel Models 2 and 3 with forest fragmentation and socio-demographic variables 

separately .................................................................................................................................................... 187 

Appendix 2.2. Red and white oak forest as source for forest fragmentation calculations ......................... 189 

Appendix 2.3. Removal of all observations with missing data .................................................................... 190 

Appendix 2.4. Reclassification of land use categories ................................................................................. 191 

Appendix 2.5. Reclassification of land cover categories ............................................................................. 192 

Appendix 2.6. Comparison of multilevel Model 3 with GEE........................................................................ 193 

PROJECT 3 APPENDICES ............................................................................................................................... 194 

Appendix 3.1. Tick counts on deer and deer density using alternate deer density variables ..................... 194 

Appendix 3.2. Tick counts on deer and deer density: multinomial and truncated tick counts ................... 195 

Appendix 3.3. Tick abundance and deer density with alternate variables for tick abundance ................... 196 

Appendix 3.4. Human Lyme disease outcome models using alternate deer density variables .................. 198 

Appendix 3.5. Association of density of infected adult ticks with human Lyme disease risk ..................... 199 

 

 

 

  



x 

  

LIST OF TABLES 

 

 

 

Table 2.1. Human Lyme disease cases, Howard County, Maryland 2001-2011 ........................... 59 

Table 2.2. Proportion of reported Lyme disease patient addresses geocoded, Howard County, 

Maryland ....................................................................................................................................... 60 

Table 2.3. High-risk spatial clusters detected using two km radius maximum cluster size ......... 61 

Table 2.4. Percent of land area according to land use and land cover classification, inside and 

outside of two km high-risk clusters, Howard County, Maryland ................................................ 62 

Table 2.5. Area-weighted socio-demographic factors inside and outside of two km maximum 

radius high-risk clusters ................................................................................................................ 63 

Table 3.1. Howard County households according household- and neighborhood-level 

characteristics and reported Lyme disease during 2001-2011 .................................................... 96 

Table 3.2. Univariate single level fixed effect associations between land use, land cover, forest 

indices and socio-demographic indices and household risk of Lyme disease, Howard County, 

Maryland ....................................................................................................................................... 97 

Table 3.3. Multivariable Model 1: multilevel and single level (fixed effects only) associations 

between land use and land cover classification at the household location and household risk of 

Lyme disease, Howard County, Maryland .................................................................................... 98 



xi 

  

Table 3.4. Multivariable Model 2: multilevel and single level (fixed effects only) associations 

between neighborhood variables and household risk of Lyme disease, Howard County, 

Maryland ....................................................................................................................................... 99 

Table 3.5. Multivariable Model 3: multilevel and single level (fixed effects only) associations of 

both household and neighborhood variables and household risk of Lyme disease, Howard 

County, Maryland ....................................................................................................................... 100 

Table 3.6. Covariance and fit of multilevel models of Lyme disease risk, Howard County, 

Maryland ..................................................................................................................................... 101 

Table 4.1. Deer density across parks by year, Howard County, Maryland ................................. 132 

Table 4.2. Deer density in individual parks, Howard County, Maryland, 2001-2011 ................. 133 

Table 4.3. Deer culled and mean number of ticks identified on right ear of hunted deer ........ 134 

Table 4.4. Cumulative number of deer culled and tick abundance on deer by park, Howard 

County, Maryland ....................................................................................................................... 135 

Table 4.5. Deer culled during October only and mean number of ticks identified on right ear of 

hunted deer, by year, Howard County ....................................................................................... 136 

Table 4.6. Deer density, deer culled, tick abundance on deer in October, and cumulative 

incidence of Lyme disease in buffer areas, by park, Howard County, Maryland ....................... 137 



xii 

  

Table 4.7. Borrelia burgdorferi infection prevalence among adult blacklegged ticks, Fall 2012-

Winter 2013 ................................................................................................................................ 138 

Table 4.8. Unadjusted, adjusted, and generalized estimating equations (GEE) models of 

association of tick counts on deer and deer density in parks, Howard County, Maryland ........ 139 

Table 4.9. Univariate associations of possible covariates with risk of Lyme disease among homes 

surrounding parks, Howard County, Maryland .......................................................................... 140 

Table 4.10. Unadjusted, adjusted, and adjusted generalized estimating equations (GEE) logistic 

regression models of deer density and human Lyme disease risk, Howard County, Maryland, 

2001-2011 ................................................................................................................................... 142 

Table 4.11.  Unadjusted, adjusted, and adjusted generalized estimating equation (GEE) logistic 

regression models of tick abundance on deer during October and human Lyme disease risk, 

Howard County, Maryland .......................................................................................................... 143 

 

 
  



xiii 

  

LIST OF FIGURES 

 

 

 

Figure 1.1. Illustration depicting the enzootic cycle of Lyme disease .......................................... 31 

Figure 1.2. Illustration of the life stages of Ixodes scapularis ticks .............................................. 32 

Figure 1.3. Confirmed Lyme disease cases, United States, 2011 ................................................. 33 

Figure 1.4. Number of reported Lyme disease cases, by year, United States—1995-2011 ......... 34 

Figure 1.5. Map of the State of Maryland highlighting Howard County ...................................... 35 

Figure 1.6. Satellite image of Howard County, Maryland............................................................. 36 

Figure 1.7. Pathway between white-tailed deer, other environmental factors, and human Lyme 

disease .......................................................................................................................................... 37 

Figure 2.1. Lyme disease incidence in Howard County, neighboring counties, and Maryland, 

2001-2011 ..................................................................................................................................... 64 

Figure 2.2. Smoothed case density surface of reported human Lyme disease in Howard County 

Maryland, 2001-2011 .................................................................................................................... 65 

Figure 2.3. Number of high-risk clusters detected according to maximum cluster size limits .... 66 

Figure 2.4. High-risk clusters detected given two software settings ............................................ 67 

Figure 3.1. Map of Maryland with Howard County indicated by darker shading ...................... 102 



xiv 

  

Figure 3.2.  Residual variation in risk across census block groups given different covariates, 

Howard County, Maryland, 2001-2011 ...................................................................................... 103 

Figure 4.1. Simplified mechanism through which deer act on human Lyme disease with 

representation of associations evaluated in this study. ............................................................. 144 

Figure 4.2. Map of Howard County with parks used in analysis shown in purple ..................... 145 

Figure 4.3. Tick counts on the right ear of hunted deer according to median deer density of 

park, 2001-2011 .......................................................................................................................... 146 

Figure 4.4. Mean number of ticks per deer and median deer density by park, October only ... 147 

Figure 4.5. Cumulative incidence of human Lyme disease surrounding each park during 2001-

2011, by quartile of deer density ................................................................................................ 148 



1 

  

CHAPTER 1 
 

 

 

1. INTRODUCTION AND BACKGROUND 

INTRODUCTION 

Summary of literature and rationale for dissertation 

Lyme disease is a multisystem zoonotic illness caused by spirochetes of the Borrelia 

burgdorferi sensu lato complex and transmitted to humans by Ixodes species ticks (Figures 1.1. 

and 1.2.). The disease occurs in specific geographic areas of North America, Europe, and Asia 

that support the enzootic cycle of the bacteria. In the United States, Lyme disease is the most 

common vector-borne disease and typically the sixth most common nationally notifiable 

disease (Centers for Disease Control and Prevention 2013a). Lyme disease does not occur 

uniformly across the United States; 13 states in the Northeast, mid-Atlantic and north-central 

regions account for approximately 95% of all reported cases (Figure 1.3.)(Steere et al. 1984; 

Nadelman and Wormser 1998; Steere 2001; Centers for Disease Control and Prevention 2013a).  

The incidence and geographic range of Lyme disease have increased consistently since 

its discovery in the late 1970s in Lyme, Connecticut, despite development of several possible 

prevention methods (Figure 1.4.)(Stafford 2007; Centers for Disease Control and Prevention 

2013a). In the absence of a commercially-available vaccine, there is clear need for better 

prevention options if the disease is to be controlled in the United States. Theoretically, 

prevention of Lyme disease can occur at the individual level (e.g., tick checks, repellent use), 

household level (e.g., landscape modification to reduce likelihood of infected ticks in the 
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peridomestic habitat), or community level (e.g., deer population reduction). Community-level 

interventions may hold the most potential because of their broader spatial impact and because 

they do not rely on individual human behavior to achieve success. Robust information regarding 

risk factors for human disease is critical not only for the continued development of novel 

prevention methods, but also for appropriate, effective, and successful implementation of 

prevention methods in high-risk areas.  

The risk of acquiring Lyme disease depends upon the abundance of infected ticks and on 

human behavior patterns that facilitate interaction with tick-infested habitat. Few 

environmental risk factors (defined for the purposes of these projects as factors other than 

human behavioral factors that increase risk of human disease) have been identified 

consistently; proximity to forest and low-density residential development are most commonly 

associated with disease (Killilea et al. 2008). The underlying biologic mechanism for these 

associations is not well understood but may be related to elevated potential for human contact 

with forested and forest edge environments in which ticks, rodent reservoir hosts, and white-

tailed deer all coexist (Jackson et al. 2006a; Killilea et al. 2008). Nevertheless, tick abundance 

and infection prevalence vary across space not only between regions, but also between 

individual properties within endemic areas (Maupin et al. 1991; Ostfeld et al. 1995; Nicholson 

and Mather 1996; Kitron and Kazmierczak 1997; Wilson 1998; Pardanani and Mather 2004; 

Connally et al. 2006). Environmental risk factors should be refined beyond simply “forest” in 

order to better target environmental or behavioral interventions in a meaningful way. A more 

specific understanding of environmental risk factors could help develop and guide appropriate 

implementation of public health interventions.   
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The spatial scale of analysis is important when examining the association of explanatory 

factors with Lyme disease risk. Most analyses of environmental risk factors for human Lyme 

disease have been conducted at coarse spatial scales—at the county level and above. This 

approach is helpful when focusing prevention and education resources in specific states and 

counties but masks sub-county variation and limits our overall understanding of disease risk. 

The spatial variation in human Lyme disease risk has not been well quantified on a fine (i.e., 

sub-county) spatial scale. Additionally, there is limited information regarding risk factors that 

act on the scale of an individual residential parcel or neighborhood.   

This body of work examines the spatial variation in human Lyme disease risk and 

environmental and socio-demographic factors that may be associated with spatial variation in 

risk, all within an endemic county. The findings from these studies may help refine 

understanding of factors associated with human Lyme disease and consequently help inform 

future directions for Lyme disease prevention research. 

Dissertation overview 

The studies described in this dissertation examine the spatial distribution of human 

Lyme disease in one county (Howard County, Maryland) and evaluate whether spatial variation 

in disease risk is associated with several factors, including land use, land cover, deer density, 

and tick abundance on deer. The remainder of Chapter 1 provides general background 

information regarding Lyme disease, specifically its history, ecology, transmission, clinical 

manifestations and human disease surveillance. Additionally, Chapter 1 contains a more 

detailed review of literature relevant to the spatial distribution of and environmental risk 
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factors for Lyme disease, including deer density and tick abundance on deer, in the eastern 

United States. Chapter 2 (Project 1) describes the first known effort to quantify the clustering of 

human Lyme disease on the sub-county level, using the residential address of patients with 

Lyme disease reported to the public health system as case houses and all other households 

without reported Lyme disease as non-case households. Chapter 3 (Project 2) describes the 

assessment of environmental and socio-demographic factors associated with Lyme disease 

using an historical cohort of all households in Howard County. The multilevel analysis includes 

household location-specific environmental explanatory factors, as well as area-based forest 

fragmentation and census block group socio-demographic variables. Chapter 4 (Project 3) 

examines the association of sub-county variation in deer density with human Lyme disease risk. 

This last analysis is augmented by inclusion of measures of tick abundance on deer, which may 

mediate the effect of deer density on human disease risk. The study population in Project 3 is a 

subset of households in Howard County, those within a half-mile of parks with robust deer 

density measurements and hunting data. All studies use fine-scale exposure and outcome data 

from one county with an endemic pattern of Lyme disease incidence. These studies were 

conducted at a spatial scale relevant to feasible implementation of possible prevention 

methods. The remaining chapters contain a summary of collective findings and 

recommendations for future research, references, and appendices containing supplemental 

analyses for each project.  

The State of Maryland consistently reports a high incidence of human Lyme disease. All 

studies described herein use data from Howard County, Maryland (located 10 miles from 

Baltimore and 20 miles from Washington D.C.; Figures 1.5. and 1.6.)(Bacon et al. 2008; Centers 
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for Disease Control and Prevention 2013a). The approximately 252 square miles had a 

population in 2010 approximately 287,000 with a population density of 1,145 residents per 

square mile (US Census Bureau 2012). The eastern half of the county has light urban and 

suburban development; the western part of the county transitions to primarily rural and 

agricultural uses. This county was selected as the study location due to the emergence of Lyme 

disease during the study time frame (2001-2011) and the availability of detailed geographic and 

environmental information, particularly deer density and tick abundance on deer information.  

In this series of projects, fine-scale environmental data and geocoded address data in 

Howard County is used to: 1) describe and quantify spatial and temporal clustering of human 

Lyme disease cases and describe environmental and socio-demographic factors associated with 

high-risk clusters (Project 1); 2) evaluate the association between several environmental and 

socio-demographic factors assessed at the household and neighborhood level  with human 

Lyme disease risk (Project 2); and 3) evaluate the associations between other environmental 

variables, specifically deer density and tick abundance on deer, and spatial variation in human 

Lyme disease risk among a subset of Howard County households (Project 3). 

BACKGROUND 

History of Lyme disease 

Lyme disease was first identified during an investigation of a cluster of juvenile arthritis 

patients in Old Lyme, Connecticut, in the late 1970s (Steere et al. 1977). A few years later, the 

etiologic agent, Borrelia burgdorferi, was discovered (Burgdorfer et al. 1982; Steere et al. 1983).     

Lyme disease occurs in parts of the northern hemisphere; however, the etiologic genospecies, 

vector species, ecology and clinical manifestations vary slightly across continents.  
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Although the spirochete and its associated clinical syndrome were identified a few 

decades ago, there is evidence of its existence in Europe and North America long before. 

B. burgdorferi was identified in museum specimens of ticks collected in the late 1800s in Europe 

and early 1900s in the northeastern United States (Persing et al. 1990; Matuschka et al. 1996). 

A clinical syndrome reminiscent of Lyme disease was first described by a Swedish physician in 

1909 (Afzelius 1910); a similar rash associated with a tick bite was described in Wisconsin in 

1969 (Scrimenti 1970).   

Since the discovery of Lyme disease as a distinct clinical entity, the incidence and 

geographic distribution of the disease have increased dramatically (Figures 1.3. and 1.4.). This 

increase may be due to enhanced detection and reporting as well as geographic expansion and 

a true increase in disease risk (Bacon et al. 2008). Currently, Lyme disease is the most common 

vector-borne disease in the United States, with approximately 30,000 confirmed and probable 

cases reported to the public health system annually (Centers for Disease Control and 

Prevention 2013a). In 2011, Lyme disease was the sixth most common nationally notifiable 

disease; during the same year, it was the second or third most common illness reported in 

highly endemic states (Centers for Disease Control and Prevention 2013a).  

Ecology of Lyme disease 

Lyme disease spirochetes are transmitted to humans by Ixodes species ticks. Ixodes 

scapularis (the blacklegged tick or “deer tick” [also referred to as Ixodes dammini]) is the vector 

in the Northeast and north-central United States (Figures 1.1. and 1.2.)(Steere et al. 1978; 

Steere and Malawista 1979). Lyme disease also occurs sporadically along the Pacific Coast of 
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the United States, where the human vector is Ixodes pacificus. In Europe and Asia, the vector 

species are Ixodes ricinus and Ixodes persulcatus, respectively. 

Ticks are not insects; they are arthopods closely related to mites and spiders (Class: 

Arachnida, Subclass: Acari)(Goddard 2003). Ticks require blood for development, and are 

efficient vectors of many bacterial, viral, and protozoan agents. When actively searching for a 

host, ticks that vector B. burgdorferi “quest” on vegetation. They ascend vegetation, such as a 

blade of grass, and wait for an animal to approach. Signals such as vibration or carbon dioxide 

may influence ticks’ readiness to climb on a passer-by (Goddard 2003). Based on morphological 

and behavioral characteristics, ticks are classified as hard ticks (Ixodidae), soft ticks (Argasidae), 

or Nutellidae, a rare group that have features of both hard and soft ticks (Goddard 2003). The 

Ixodes species ticks that vector Borrelia burgdorferi are hard ticks with three life stages. In a 

roughly two-year life cycle, I. scapularis consume three blood meals, one each as larvae, 

nymphs, and adults (Figures 1.1. and 1.2.)(Piesman and Spielman 1979; Yuval and Spielman 

1990). Following a successful blood meal, adult females drop off the animal host and lay eggs, 

completing the life cycle.    

The enzootic cycle of B. burgdorferi is a complex interaction between mammalian hosts 

and tick vectors (Figure 1.1.). Lyme disease foci are comprised of numerous host, vector, and 

environmental features, only some of which have been fully described. Transovarial 

transmission of B. burgdorferi occurs minimally (Piesman et al. 1986). Consequently, larval ticks 

only rarely transmit B. burgdorferi to humans; however, they may acquire infection during the 

first blood meal. Once acquired, infection persists transstadially (across life stages), presumably 
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for the remainder of the tick’s life (Piesman and Sinsky 1988; Mather and Mather 1990; Mather 

et al. 1990). The white-footed mouse (Peromyscus leucopus) is generally considered the 

principal reservoir host for the enzootic cycle of B. burgdorferi in the eastern United States;  the 

mouse is capable of maintaining high levels of spirochetemia, is a favored host for I. scapularis 

ticks, and can efficiently infect feeding ticks (Levine et al. 1985; Donahue et al. 1987). Other 

small rodent species, including shrews and chipmunks, as well as some bird species, also serve 

as reservoir hosts; these alternate species may be more important to the enzootic cycle than 

mice in some areas (Anderson and Magnarelli 1984; Mather et al. 1989; Telford III et al. 1990; 

Slajchert et al. 1997; Piesman and Gern 2004; Brisson et al. 2008).  

White-tailed deer (Odocoileus virginianus) are the preferred blood meal host for adult 

Ixodes ticks but  they are not infectious to feeding ticks (Piesman et al. 1979; Anderson and 

Magnarelli 1980; Main et al. 1981; Telford et al. 1988; Wilson et al. 1990b; Kurtenbach et al. 

1998). Deer are important to the Lyme disease enzootic cycle because they host large 

populations of ticks in the reproductive stage.  They are also critical to broader geographic 

dispersal of ticks because they travel farther than mice and small rodents. Adult blacklegged 

ticks feed on large mammals other than deer, although an estimated 95% of all adult feeding 

takes place on deer (Wilson et al. 1990b). Additional detail on the role of deer in the enzootic 

cycle is presented in the background section, “Deer density and ticks on deer as environmental 

risk factors for Lyme disease” (page 26). 

Nymphal stage ticks are primarily responsible for the transmission of B. burgdorferi to 

humans. As a result of their small size, nymphs frequently go unnoticed for the several days of 
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tick attachment required to transmit B. burgdorferi (Figure 1.2.). Additionally, nymphal I. 

scapularis actively seek blood meals when humans are most active outdoors: late spring and 

early summer (Figure 1.1.)(Piesman et al. 1987; Falco et al. 1999). Moreover, this seasonal 

timing coincides with the occurrence of the vast majority of human cases (Bacon et al. 2008; 

Centers for Disease Control and Prevention 2013a). Adult ticks also transmit B. burgdorferi to 

humans, although fewer human cases occur during seasons when adult blacklegged ticks are 

active (fall and early spring)(Piesman et al. 1991; Falco et al. 1996; Bacon et al. 2008). 

Although I. scapularis is found throughout much of the eastern United States, Lyme 

disease is not endemic in the southern or central states. Immature I. scapularis in the South 

prefer to feed on lizards rather than small rodents. Importantly, some lizards are inherently 

resistant to infection with B. burgdorferi and therefore do not infect immature ticks. This 

difference in host preference lowers the overall infection rate in the region (Apperson et al. 

1993; Oliver et al. 1993; Piesman and Gern 2004).   

Both biotic and abiotic factors contribute to the ecology of I. scapularis ticks in eastern 

North America (Kahl et al. 2002; Piesman 2002). These blacklegged ticks are unquestionably 

forest inhabitants. Tick distribution has been positively associated with deciduous, dry-mesic 

forests and sandy (or loamy sand) soils overlying sedimentary rock and negatively associated 

with grasslands, wet or pine forests, acidic and clay soils (Guerra et al. 2002). Blacklegged ticks 

thrive on humidity and desiccate easily, but need moist, rather than water-logged, settings to 

survive (Dister et al. 1997; Guerra et al. 2002; Piesman and Gern 2004). Deciduous forests 

provide ample leaf litter to protect ticks from desiccation and snowfall (Schulze and Jordan 



10 

  

1995; Piesman and Gern 2004). Although populations of I. scapularis have been associated 

primarily with oak and maple forests in the Northeast United States, they can inhabit a broad 

range of ecologic settings, particularly shrub-dominated habitat (Piesman and Spielman 1979; 

Maupin et al. 1991). Density of infected blacklegged nymphs has been associated with lower 

elevation, lower vapor pressure deficit, and low seasonal extremes in minimum temperature in 

a predictive acarological risk model in the eastern United States (Diuk-Wasser et al. 2012). 

In the Northeast United States, Lyme disease is widely assumed by the scientific and 

medical community to be acquired primarily in the peridomestic (residential) environment 

(Pardanani and Mather 2004; Connally et al. 2006; Killilea et al. 2008; Eisen et al. 2012). This 

assumption is based on early studies that demonstrate presence of infected ticks on individual 

residential properties in endemic areas and recall of infected individuals (Falco and Fish 1988; 

Maupin et al. 1991; Nicholson and Mather 1996; Cromley et al. 1998; Orloski et al. 1998). 

However, the proportion of human Lyme disease cases that are acquired in the home 

environment is unknown and difficult to ascertain (Eisen and Eisen 2007; Killilea et al. 2008). 

Human movement, a long incubation period (i.e., 3-30 days, longer for those without a 

recognized erythema migrans rash) and frequent lack of recognition of tick bites complicate 

precise identification of an exposure location for most cases.  

Pathogen transmission, clinical manifestations, and diagnosis 

Borrelia burgdorferi is a motile spirochete with a small linear chromosome 

(approximately 1.5 MB) and several linear and circular plasmids (Fraser et al. 1997; Casjens et 

al. 2000; Steere et al. 2004). Virulence factors are not well-defined; however, several antigenic 
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proteins exist and form the basis for current serologic tests. The spirochete is proficient at host 

adaptation; several outer surface proteins (Osps) are expressed differentially within sites inside 

the tick and the mammalian host, coincident with variation in pH and temperature (Bergstrom 

et al. 2002). Borrelia burgdorferi sensu lato includes three genospecies that cause human Lyme 

disease (Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii) and more than a 

dozen other organisms whose relevance as human pathogens is unknown (Barbour 1998; 

Stanek and Reiter 2011).  

The Lyme disease spirochete disseminates locally in the skin at the site of the tick bite, 

initiating a robust innate immune response in which macrophages engulf and kill spirochetes 

(Steere et al. 2004). An erythema migrans (EM) rash at the site of the bite is an early sign of 

illness and is present in 70%-80% of patients (Smith et al. 2002; Steere and Sikand 2003; Bacon 

et al. 2008). The rash usually appears between three and 32 days following a tick bite, allowing 

differentiation between EM and allergic reactions to tick saliva; the latter occur within hours 

but typically subside within a few days. An EM rash is also usually accompanied by “flu-like” 

symptoms. EM can occur as a single lesion, or less commonly, as multiple lesions following 

dissemination in the bloodstream or lymphatic system (Sikand and Muellegger 2011). Without 

antibiotic treatment, the pathogen disseminates and can affect multiple organ systems 

including the heart, joints and nervous system (Steere 2001). Within days to weeks after illness 

onset, the organism has been documented in myocardium, retina, bone, spleen, retina, 

meninges and brain (Duray and Steere 1988). The spirochete invades and migrates through 

tissues, adheres to several types of host cells, and can evade immune clearance by changing 

antigenic expression (Steere et al. 2004).  
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Few organisms are present in infected individuals, limiting direct detection of infection; 

culture of EM rash biopsies and blood have low sensitivity (Aguero-Rosenfeld et al. 2005). Early 

Lyme disease is diagnosed clinically in areas where the disease is common; all other clinical 

circumstances require accompanying serologic tests (Wormser et al. 2006). A two-tier serologic 

approach is recommended. In this testing algorithm, a highly sensitive first tier enzyme 

immunoassay (EIA) is used as a screening test; positive or equivocal samples are then subjected 

to more specific western immunoblots to assess antibody reactivity to individual proteins 

(Centers for Disease Control and Prevention 1995; Wormser et al. 2006). Although 

recommended two-tier serologic tests are highly sensitive and specific for illness of duration 

longer than 4-6 weeks, sensitivity is low in early illness (Bacon et al. 2003; Aguero-Rosenfeld et 

al. 2005). Serologic assays can remain positive for months to years following successful 

treatment (Feder et al. 1992; Aguero-Rosenfeld et al. 2005). Approximately 7% of infections are 

asymptomatic (Steere et al. 1998; Steere et al. 2003). 

Early antibiotic treatment can prevent more serious manifestations of illness (Wormser 

et al. 2006). Treatment of Lyme disease occurs with specific oral antibiotics in early disease, but 

may require intravenous therapy if not initiated until later in the course of illness (Wormser et 

al. 2006). Recognized death due to Lyme disease is rare (Kugeler et al. 2011). However, several 

cases of sudden death with post-mortem evidence of  B. burgdorferi in cardiac tissue were 

recognized recently (Centers for Disease Control and Prevention 2013b). These findings suggest 

unrecognized death due to Lyme disease may be occurring. A post-infectious syndrome with 

clinical resemblance to chronic fatigue syndrome has been documented in a small percentage 

of patients (Nadelman and Wormser 1998; Wormser et al. 2006). The cause of these symptoms 
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is not understood, but may be a result of an abnormal immune response or persistent antigen 

stimulation from non-viable organisms (Steere et al. 2004; Chandra et al. 2010; Chandra et al. 

2011a; Chandra et al. 2011b; Barbour 2012). 

Human Lyme disease surveillance in the United States 

Surveillance for human Lyme disease in the United States occurs according to state laws 

(Centers for Disease Control and Prevention 2013a). Public health officials of the Council of 

State and Territorial Epidemiologists (CSTE), the unifying organization of health departments, 

determine which conditions will be “nationally notifiable” and the standardized case definitions 

according to which potential cases will be classified (Teutsch and Churchill 2000; Centers for 

Disease Control and Prevention 2013a). Cases of notifiable conditions are reported voluntarily 

to the Centers for Disease Control and Prevention through the National Notifiable Diseases 

Surveillance System (NNDSS) (Teutsch and Churchill 2000; Centers for Disease Control and 

Prevention 2012; Centers for Disease Control and Prevention 2013a).  

For these studies, human Lyme disease cases reported to the Howard County Health 

Department during 2001-2011 were used.  The case definition for Lyme disease contains 

requirements for clinical presentation, laboratory findings, and exposure history. The 1996 CSTE 

case definition for Lyme disease was in effect for cases occurring during 2001-2007. Beginning 

in January 2008, a revised Lyme disease case definition was in place. As part of the 1996 case 

definition, in the absence of an EM rash, a confirmed case required laboratory evidence in the 

form of culture or demonstration of an antibody response. Two-tier testing was recommended 

but not required for confirmation (Council of State and Territorial Epidemiologists 1996). In the 
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2008 definition, the clinical and exposure criteria were unchanged. Criteria for laboratory 

evidence of infection were strengthened to require one of the following: 1) culture; 2) positive 

two-tier IgM serology, within the first 30 days of illness; 3) positive two-tier IgG serology; or 4) 

positive single-tier IgG western immunoblot (Council of State and Territorial Epidemiologists 

2008). The other major revision in the 2008 case definition was allowance for probable and 

suspect cases, not solely confirmed cases.  The effect of the case definition revision on reported 

case numbers has not been thoroughly examined; however, according to analyses performed 

by several state health departments, the total number of confirmed and probable cases 

classified under the 2008 definition is likely equivalent to the number of confirmed cases under 

the 1996 case definition (CDC, unpublished data).  

The 2008 Lyme disease surveillance case definition (Council of State and Territorial 

Epidemiologists 2008) is excerpted here: 

…For purposes of surveillance, [erythema migrans (EM)] is defined as a skin lesion 

that typically begins as a red macule or papule and expands over a period of days 

to weeks to form a large round lesion, often with partial central clearing. A single 

primary lesion must reach greater than or equal to 5 cm in size across its largest 

diameter. Secondary lesions also may occur. Annular erythematous lesions 

occurring within several hours of a tick bite represent hypersensitivity reactions 

and do not qualify as EM. For most patients, the expanding EM lesion is 

accompanied by other acute symptoms, particularly fatigue, fever, headache, 

mildly stiff neck, arthralgia, or myalgia. These symptoms are typically intermittent. 

The diagnosis of EM must be made by a physician. Laboratory confirmation is 

recommended for persons with no known exposure. For purposes of surveillance, 

late manifestations include any of the following:  musculoskeletal system--

recurrent, brief attacks (weeks or months) of objective joint swelling in one or a 

few joints, sometimes followed by chronic arthritis in one or a few joints; nervous 

system--any of the following, alone or in combination: lymphocytic meningitis; 

cranial neuritis; radiculoneuropathy; or, rarely, encephalomyelitis; cardiovascular 

system--acute onset of high-grade (2nd-degree or 3rd-degree) atrioventricular 
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conduction defects that resolve in days to weeks and are sometimes associated 

with myocarditis. 

Confirmed: a) a case of EM with a known exposure, or b) a case of EM with 

laboratory evidence of infection and without a known exposure or c) a case with at 

least one late manifestation that has laboratory evidence of infection. 

Probable: any other case of physician-diagnosed Lyme disease that has laboratory 

evidence of infection  

Suspected: a) a case of EM where there is no known exposure… and no laboratory 

evidence of infection, or b) a case with laboratory evidence of infection but no 

clinical information available (e.g. a laboratory report).  

 

Under-reporting is inevitable in public health surveillance (Teutsch and Churchill 2000; 

Doyle et al. 2002). Under-reporting for Lyme disease has been estimated to be between three 

and 12-fold, meaning that for every one case reported, three to 12 Lyme disease cases actually 

occur and are diagnosed (Meek et al. 1996; Orloski et al. 1998; Naleway et al. 2002). Although 

the mechanisms of laboratory reporting and follow-up have changed over time and vary across 

jurisdictions, one component of the Lyme disease case definition has remained unchanged—

direct reporting of EM rashes from clinicians in endemic areas. Recent research using clinical 

laboratory data including test volume, positivity rates for various tests, and published sensitivity 

and specificity of tests has yielded an estimate that roughly 300,000 human infections with B. 

burgdorferi occur in the United States each year (Hinckley et al. 2014). This estimate is ten-fold 

higher than the number of Lyme disease cases reported to the Centers for Disease Control and 

Prevention in 2011 (Centers for Disease Control and Prevention 2013a). Over-reporting is likely 

to occur as well, but may be less of a problem in areas where the disease is common than in 

areas where the disease is rare and the positive predictive value for Lyme disease laboratory 

tests is substantially reduced (Tugwell et al. 1997). 
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Current methods for Lyme disease prevention  

Lyme disease has continued to increase in incidence and geographic range since its 

discovery in the late 1970s, despite research identifying several possible prevention and control 

options (Hayes and Piesman 2003; Bacon et al. 2008; Eisen et al. 2012; Centers for Disease 

Control and Prevention 2013a). In theory, prevention of Lyme disease is accomplished by 

interrupting the enzootic cycle with environmentally-based interventions or by implementing 

human-based behavioral interventions. Therefore, prevention can occur at multiple possible 

“levels”: individual level (e.g., personal protective measures such as repellent use and daily tick 

checks), household level (e.g., landscape modification) or community level. Currently, two 

possible community-level interventions exist: deer population reduction and acaricide (tick 

pesticide) treatment of deer (using four-poster devices) (Hayes and Piesman 2003; Fish and 

Childs 2009).  

Most efforts at preventing disease have focused on disseminating information and 

encouraging personal protective measures despite limited evidence regarding their 

effectiveness (Hayes and Piesman 2003). During the 1990s, human vaccines for Lyme disease 

were developed. A recombinant OspA vaccine with adjuvant was commercially available 

starting in 1999. In a large double-blind placebo controlled trial, efficacy for preventing Lyme 

disease was 49% after two injections and 76% after three injections (Steere et al. 1998). Due to 

rapidly waning antibody titers, booster doses were needed every one to three years. The 

Advisory Committee on Immunization Practices recommended that vaccination be considered 

in persons aged 15-70 years of age who live in or frequent areas of high risk for Lyme disease 

(Advisory Committee on Immunization Practices 1999; Steere 2001). Acceptance by both 
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practitioners and the public was limited, and the vaccine was withdrawn from the market in 

2002. Some of the reasons for the limited vaccine demand were: low risk in most of the 

country, high cost and need for frequent booster injections, inability to provide vaccination to 

children (the highest risk group), and a misconception spread through advocacy groups that the 

vaccine triggered autoimmune arthritis (Steere 2001).  

Other personal prevention measures include use of insect repellent, avoidance of tick 

habitat, wardrobe modification to improve tick detection and complicate tick attachment 

(wearing light-colored clothing and tucking pants into socks), checking the body daily for ticks, 

and showering within two hours of being outdoors. There are few studies in which the 

effectiveness of these measures has been assessed; evidence that these measures prevent 

human Lyme disease is limited (Ley et al. 1995; Orloski et al. 1998; Herrington 2004; Connally et 

al. 2009). The lack of evidence for the effectiveness of these measures may be both a result of 

difficulty in accurate quantification of their use and overall infrequency in use, even in areas 

where Lyme disease is highly endemic (Gould et al. 2008). Antibiotic prophylaxis following tick 

bite is another prevention option in endemic areas; however, many people with Lyme disease 

never recall a tick bite and thus do not seek care (Wormser et al. 2006).     

Measures to prevent disease that can be implemented at the household level include 

landscape modification to minimize tick migration into the yard and treatment of the landscape 

with acaricide (Stafford 2007). Although a single springtime application of acaricide can kill 

most ticks for the duration of the summer in a non-residential setting (Schulze et al. 1991; 

Stafford 1991; Schulze et al. 2001b; Schulze et al. 2005; Stafford 2007; Schulze et al. 2008), a 
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recent well-powered randomized, placebo-controlled trial assessing this intervention found 

that even though acaricide killed ticks where it was applied, there was no reduction in tick 

encounters or human illness in the acaricide-treated households compared to placebo-treated 

households (CDC, unpublished data). Possible reasons for this discrepancy include: 1) acaricide 

cannot legally be applied near water, and thus killing ticks in certain areas does not necessarily 

translate to lower risk in the yard as a whole; 2) people are not acquiring ticks in their own yard; 

or 3) there is a threshold effect in the association between tick abundance and human-tick 

encounter risk. Nevertheless, this study suggests that area-wide application of acaricide by 

homeowners to prevent human illness reduced tick abundance but did not apparently reduce 

human risk. Further studies evaluating other intervention methods are underway.   

Community-level measures to prevent Lyme disease are not in widespread use, but are 

potentially the most promising because of the broader spatial scale on which they intervene. 

Additionally, community-level measures do not rely on the practices of each individual to 

achieve success. Current theoretical options are acaricide application on deer and deer 

population reduction (Hayes and Piesman 2003). Interventions related to white-tailed deer 

have been suggested because deer are an important source of blood for adult blacklegged ticks. 

Acaricide treatment of deer (via four-poster feeding stations) may reduce tick populations by 

roughly 70%, after a delay of several years (Brei et al. 2009). The impact of four-poster devices 

on human disease has been assessed in only one study, with mixed results (Garnett et al. 2011). 

Widespread use of four-posters is hampered by cost and need for consistent personnel and 

resources to achieve success. Deer elimination or near elimination in isolated (i.e., island) 

settings may be a viable measure to interrupt the enzootic cycle of Lyme disease. Evidence for 
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more moderate deer reduction (not nearing elimination) as a viable prevention method is 

limited (Stafford 2007). A few intervention studies have examined the impact of deer reduction 

or elimination on blacklegged tick abundance, mostly in island or isolated geographic settings 

not representative of the mainland ecology where most persons at risk for Lyme disease reside 

(Wilson et al. 1984; Wilson et al. 1988; Deblinger et al. 1993; Stafford et al. 2003; Rand et al. 

2004; Jordan et al. 2007). These studies have shown that when deer are eliminated or nearly 

eliminated, tick reproduction and abundance are substantially reduced, but the relationship 

may not be linear. The effect of deer reduction in an inland setting open to deer immigration is 

unclear.  

Spatial variation in risk of human Lyme disease  

Description of spatial patterns in disease occurrence has been intrinsic to the practice of 

epidemiology since its infancy (Snow 1855; Palm 1890). Description of the distribution of health 

outcomes necessarily includes not only “who” is affected but “where” a condition of interest 

occurs. The geographic distribution of a health outcome itself may provide clues as to the 

source of the disease (Waller and Gotway 2004). If a disease displays geographic clustering, the 

cluster size itself can reveal a scale at which control measures and education efforts are most 

appropriate (Glavanakov et al. 2001). A growing body of literature devoted to spatial statistics 

and spatial patterns of disease is linked to terms such as “spatial epidemiology” or “health 

geography”. Use of geographic information systems (GIS) and spatial statistical models to study 

environmental risk factors for vector-borne diseases has increased in recent years (Kitron 1998; 

Eisen and Eisen 2011). 
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Spatial variation in entomologic measures of tick abundance and infection prevalence 

occurs not only across states and regions but between locations only a few hundred meters 

apart (Pardanani and Mather 2004; Killilea et al. 2008). In contrast, analyses of spatial and 

temporal variation of human Lyme disease cases have been reported at coarse spatial scales (at 

the county level and above). Specifically, Waller et al. (2007) used hierarchical modeling 

methods to describe spatial and temporal patterns of reported Lyme disease across states and 

counties in the Northeast United States during 1990-2000 and described regional trends. 

Spatial and temporal heterogeneity of county-level incidence in New York State has been 

described by multiple authors (Glavanakov et al. 2001; Chen et al. 2005; Chen et al. 2006). 

Glavanakov et al. (2001) found that although the Lyme disease epidemic advanced 

geographically during 1986-1996, there was a consistent positive spatial autocorrelation in 

incidence rates within a 120 km distance of the southeastern New York focus. In other words, 

counties with centroids within this distance of each other experienced similar trends in 

incidence over time. Likewise, Chen and colleagues measured spatial autocorrelation of county 

incidence rates in New York during 1990-2000 and found similar results. They also described 

changing trends in demographic characteristics of reported cases during the study period (Chen 

et al. 2005). The authors noted that although incidence rates increased overall during the study 

period, the rate was initially higher for females but became more common among males. 

Additionally, the incidence rates within each age group increased during 1990-2000, indicating 

that the overall increase in incidence was not limited to specific ages.  

Public health data are routinely collected and disseminated by aggregation at 

geopolitical boundaries. Quantification of spatial variation in incidence across counties or states 
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can help direct scarce public health resources for prevention to the most affected areas; 

however, fine-scale (i.e., within a county or “sub-county”) differences in vector-borne disease 

risk are potentially blurred through this process (Eisen et al. 2006; Eisen and Eisen 2007; 

Winters et al. 2010). Understanding reasons for spatial variation in disease occurrence can help 

refine knowledge of risk factors for disease.  

Environmental risk factors for Lyme disease 

Lyme disease can occur where ticks, infected reservoir hosts, and deer coexist at a 

density high enough to support the dynamic enzootic cycle. Risk of acquiring Lyme disease is 

based on tick abundance and infection prevalence, as well as human interaction with these foci. 

Most epidemiologic and ecologic studies of Lyme disease have focused not on human behavior, 

but on elucidation of environmental risk factors—non-human factors in the environment that 

are associated with elevated tick density, infection prevalence, or human disease incidence.   

Blacklegged tick density and infection prevalence vary across space but specific reasons 

for this heterogeneity are not well understood (Wilson 1998). The most likely explanations are 

variation in habitat type and host population movement. The highest densities of host-seeking 

I. scapularis occur in forested environments (Piesman and Spielman 1979; Maupin et al. 1991; 

Stafford and Magnarelli 1993; Ostfeld et al. 1995). Spatial autocorrelation of blacklegged tick 

abundance has been shown at state and regional scales (Nicholson and Mather 1996; Kitron 

and Kazmierczak 1997). In a more fine-scale analysis in South Kingstown, Rhode Island, 

distribution of ticks did not have any spatial pattern, but was very heterogeneous even 

between locations < 200 m apart (Pardanani and Mather 2004). Several studies have examined 
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landscape or climatic associations with I. scapularis abundance but without examination of 

human disease occurrence (Maupin et al. 1991; Stafford and Magnarelli 1993; Dister et al. 

1997; Guerra et al. 2002; Allan et al. 2003; Bunnell et al. 2003; Lubelczyk et al. 2004; Diuk-

Wasser et al. 2012). In another study in Rhode Island, although tick abundance and infection 

prevalence tended to be higher at residences of patients with reported Lyme disease  than 

those without, those measures alone did not predict human disease (Connally et al. 2006). 

Because entomologic measures alone are not perfect correlates for human disease risk, human 

disease or tick encounters are critical study endpoints when identifying risk factors.  

Consensus on established environmental risk factors for Lyme disease is lacking, possibly 

due to the use of varying spatial scales in analyses and continuing evolution of spatial analytic 

methods (Connally et al. 2006; Killilea et al. 2008). The spatial scale of analysis is critical when 

examining potential Lyme disease risk factors. Use of coarse geographic boundaries as entities 

in defining level of disease risk is subject to the loss of individual-level information in all 

“ecologic” analyses, and subsequent ecologic fallacy (Rothman et al. 2008). Ecologic fallacy 

occurs when aggregate factors tied to areas with higher disease incidence are incorrectly 

interpreted as individual-level risk factors. These types of studies can be valuable for hypothesis 

generation but cannot be used to understand human risk of Lyme disease at smaller scales 

(Morgenstern 2008; Rothman et al. 2008).     

Rural or low-density residential development has been positively associated with Lyme 

disease risk when compared to medium- and high-density development areas (Glass et al. 1995; 

Cromley et al. 1998; Orloski et al. 1998; Smith et al. 2001). Several studies have also identified 
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the presence or close proximity of forests as a primary risk factor for Lyme disease at various 

spatial scales (Maupin et al. 1991; Glass et al. 1995; Dister et al. 1997; Kitron and Kazmierczak 

1997; Jackson et al. 2006a). 

 Several researchers have demonstrated that, in addition to the mere presence of 

forest, fragmented forest characteristic of modern suburban and exurban development is 

associated with higher entomologic indices or human disease incidence (Allan et al. 2003; 

LoGiudice et al. 2003; Jackson et al. 2006a; Jackson et al. 2006b; Keesing et al. 2009). However, 

others found no association or an inverse association (Cromley et al. 1998; Brownstein et al. 

2005; Diuk-Wasser et al. 2012). The potential association between forest fragmentation and 

human Lyme disease is complex. Landscape features affect animal populations; some 

researchers theorize that landscape fragmentation creates local foci of elevated B. burgdorferi 

prevalence by decreasing the diversity of small mammals that can live in that environment 

(LoGiudice et al. 2008; Keesing et al. 2009). The fragmented ecosystem favors the predominant 

infectious reservoir host, the white-footed mouse, which can flourish even in very resource-

restrictive environments. Furthermore, forest edges resulting from fragmentation are the 

preferred habitat of white-tailed deer, the presence of which supports elevated tick 

reproduction in those areas. Finally, land-use changes that favor fragmented reforestation and 

suburbanization have increased human exposure to forested environments such as those 

bordering lawns, golf courses, or parks (Patz et al. 2004; Jackson et al. 2006a).  

Several case-control studies have examined individual-level risk factors for human Lyme 

disease in the United States. An age-matched case-control study including data from 51 cases in 
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Hunterdon County, New Jersey, identified rural residence (odds ratio [OR]: 14.0, 95% 

confidence interval [CI]: 1.7-116.4), performing brush clearing activities (OR: 4.0, 95% CI: 1.4-

14.4), and presence of a bird feeder on property (OR: 3.2, 95% CI: 1.0-10.2) to be associated 

with human Lyme disease (Orloski et al. 1998). Similarly, an unmatched case-control study 

using 294 incident Lyme disease cases in Chester County, Pennsylvania, found rural residence 

(OR: 2.96, 95% CI: 1.22-7.18), homes within 100 feet of forest (OR: 4.26, 95% CI: 1.71-10.59), 

and deer observed on the property (OR: 2.71, 95% CI: 1.94-3.79) to be risk factors for infection 

(Smith et al. 2001). Connally et al. found woods adjacent to property to have an elevated, but 

not statistically significant, effect on risk of Lyme disease in a large age- and neighborhood-

matched case-control study of 349 Lyme disease cases conducted in Connecticut (OR: 1.53, 95% 

CI: 0.79-2.95)(Connally et al. 2009). In an age- and sex-matched case-control study of risk 

factors for Lyme disease in children, Klein et al. (1996) found insufficient evidence of 

associations between Lyme disease risk and presence of animals (including deer) on property, 

time spent outdoors, use of insect repellent and tick checks, along with many other potential 

risk factors among 44 case-control pairs (Klein et al. 1996). Using geocoded residence of 

reported Lyme disease patients and randomly selected control addresses in Baltimore County, 

Maryland,  Glass et al. (1995) identified several environmental risk factors for Lyme disease: 

residence in forested areas, non-highly developed areas, specific soil types, and residence in 

two specific regions of the County (Glass et al. 1995).   
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Deer density and ticks on deer as environmental risk factors for Lyme disease 

Brief history of white-tailed deer in the northeastern United States 

Although present in moderate numbers during colonial times, deer became scarce by 

1900 due to habitat loss for agriculture and unregulated hunting (Northeast Deer Technical 

Committee 2009). Following gradual reforestation and additional loss of predators, deer 

populations grew exponentially. White-tailed deer prefer habitat where forested and 

developed landscapes meet, an increasingly common setting as land use patterns continue to 

favor fragmentation in the northeastern United States (Northeast Deer Technical Committee 

2009). The deer population of Connecticut increased from 19 in 1896 to an estimate of over 

76,000 in 2004 (Stafford 2007). Conflicts between humans and deer have become a prominent 

wildlife management concern and center around three major issues: risk of zoonotic diseases 

including Lyme disease, deer-motor vehicle collisions, and ecologic and landscape damage 

(Conover 2002). Communities throughout the northeastern United States have instituted active 

deer management programs due to widespread overpopulation (Northeast Deer Technical 

Committee 2009).  

Role of deer in the enzootic cycle 

Deer are a preferred host for adult I. scapularis; they serve as sources of blood as well as 

a mating location (Wilson et al. 1990b). Upon completion of the blood meal, adult female ticks 

drop off of deer and lay eggs. Eggs hatch as larvae, seek and ingest a blood meal on small 

rodents, overwinter, and emerge as nymphs the following spring. As the nymphal stage 

blacklegged tick is responsible for most human Lyme disease illness in the eastern United 

States, the role of deer in human risk is separated by two years of tick life cycle and several 
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other factors that affect tick survival and infection prevalence (Figure 1.7.). Meteorologic 

factors and availability of blood meal hosts affect the survival of eggs to larvae and larvae to 

nymphs (McEnroe 1977; Carey et al. 1980; Carey et al. 1981; Main et al. 1981; Main et al. 1982).  

The population explosion of white-tailed deer has been implicated in the emergence of 

several zoonotic tickborne diseases in the Northeast U.S. (Steere 2001; Telford III 2002; Stafford 

2007). On the contrary, some have suggested this correlation is a coincidence given the large 

populations of white-tailed deer elsewhere in the United States and the possibility that small 

mammal hosts are more important in the enzootic cycle (Ostfeld 2011; Levi et al. 2012). 

Nevertheless, deer population reduction is often cited as a possible control measure for Lyme 

disease (Hayes and Piesman 2003; Stafford 2007).  

The function of white-tailed deer in the maintenance and rate of infection within B. 

burgdorferi enzootic foci is not well understood. Although deer are a seemingly necessary 

factor for survival of newly introduced blacklegged ticks, once established in an area the 

relationship between deer and blacklegged ticks may change if alternate blood meal hosts are 

available (Levi et al. 2012).   

Deer density  

Evidence that deer population reduction corresponds to Lyme disease risk reduction is 

limited. Multiple observational or deer exclusion studies have been conducted; although most 

have shown some level of correlation between deer abundance and tick abundance, others 

have found no association (Piesman et al. 1979; Anderson and Magnarelli 1980; Schulze et al. 

1984; Wilson et al. 1985; Wilson et al. 1990a; Daniels et al. 1993b; Stafford 1993; Duffy et al. 
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1994; Daniels and Fish 1995; Ginsberg and Zhioua 1999; Talleklint-Eisen and Lane 2000; Schulze 

et al. 2001a; Rand et al. 2003; Ginsberg et al. 2004; Jordan and Schulze 2005). Experimental 

studies have demonstrated that complete or near complete elimination of deer in isolated 

settings may have a substantial impact on reproduction of blacklegged ticks (Wilson et al. 1984; 

Wilson et al. 1988; Rand et al. 2004). More moderate deer reduction efforts appear to have a 

non-uniform effect on tick abundance, but methodological differences prevent direct 

comparison between studies (Deblinger et al. 1993; Stafford et al. 2003; Jordan et al. 2007). 

Only two studies assessed the impact of incremental deer reduction on human Lyme disease 

occurrence. Both studies failed to demonstrate an impact on human risk, although they were 

hampered by unreliable methods of disease reporting (Kilpatrick and LaBonte 2003; Jordan et 

al. 2007).  

Deer as moderators of local infection prevalence 

Studies have demonstrated conflicting information regarding the relationship between 

deer density and B. burgdorferi infection prevalence in ticks (Amerasinghe et al. 1992; Pichon et 

al. 1999; Rand et al. 2004). Deer also provide blood meals to immature ticks, and because they 

are not reservoirs, may serve to limit the local infection prevalence (Lacombe et al. 1993). 

Removal of deer could additionally serve to increase the number of adults seeking blood meals, 

increasing the likelihood of human contact with infected adult ticks (Rand et al. 2004). Deer 

population reduction could have unintended ecologic consequences, and the full range of 

impact of deer reduction on the enzootic cycle needs further research.  
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Tick abundance on deer  

Tick population density has been compared across space and time by examining the 

abundance of ticks on hosts, including deer (Amerasinghe et al. 1992; French et al. 1992; 

Amerasinghe et al. 1993). The quantitative relationship between deer density and blacklegged 

tick abundance on deer is not well understood (Deblinger et al. 1993; Glass et al. 1994; Rand et 

al. 2003). One possible reason for discrepant findings is the sex ratio of deer. Several studies 

have indicated that male deer have higher levels of tick infestation than female deer, possibly 

because they cover a broader geographic range (Main et al. 1981; French et al. 1992; Kitron et 

al. 1992; Amerasinghe et al. 1993; Cortinas and Kitron 2006). Thus, the complex relationship 

between deer density and tick abundance and Lyme disease risk may also depend on the sex 

ratio of deer herds. Deer management in the Northeast United States is geared toward 

reduction in female deer to assist population management (Northeast Deer Technical 

Committee 2009); however, male deer may be more important to the Lyme disease enzootic 

cycle. 

Blacklegged tick abundance on deer has been studied as a proxy outcome measure for 

human Lyme disease risk. In Indiana, clustering of blacklegged ticks on deer in space and time 

was detected using a spatial scan statistic (Keefe et al. 2009). Abundance on deer has been 

associated with environmental factors in geographic information system (GIS)-based analyses in 

studies in Maryland, Illinois and New Jersey (Schulze et al. 1984; Kitron et al. 1992; Glass et al. 

1994). In Illinois, abundance of ticks on deer was highest in forested areas with sandy soils, near 

streams. In Kent County, Maryland, tick abundance on deer was associated with well-drained 

sandy soils, and negatively associated with urban land use and wetlands (Glass et al. 1994). In 
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New Jersey, most of the variability of abundance of ticks was due to elevation (Schulze et al. 

1984).  

Abundance of blacklegged ticks on deer has been associated with human Lyme disease 

at the county level and between communities > 20 km apart (Wallis et al. 1978; Schulze et al. 

1984; Daniels et al. 1993a; Kitron and Kazmierczak 1997; Raizman et al. 2012). One recent study 

was the first to examine the spatial association between deer density at the county level and 

B. burgdorferi infected ticks on deer with human disease; however, the study was conducted in 

Indiana, an area with very low enzootic transmission of B. burgdorferi (Raizman et al. 2012). 

The potential association of tick abundance on deer and sub-county variation in deer density 

has not been evaluated. 

Summary of deer density and tick abundance on deer 

Additional observational or experimental studies are needed in order to determine the 

potential for localized reduction in deer density to serve as a viable Lyme disease prevention 

measure. The association between sub-county spatial variation in deer density and human 

disease has not been examined. Deer populations fluctuate dynamically, but deer generally 

have a limited home range of up to one mi2 (Sparrowe and Springer 1970; Kilpatrick and Spohr 

2000; New Jersey Department of Environmental Protection 2010). In a suburban landscape, 

deer home range is smaller than in forested or agricultural environments. One study in 

Connecticut using telemetry data revealed a mean home range of 0.17 mi2 for female white-

tailed deer that did not vary significantly by season (Kilpatrick and Spohr 2000). Small area 

variations in deer density may be partially responsible for fine-scale variation in distribution of 
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blacklegged ticks in the environment. The biologic mechanism through which some previously 

described environmental risk factors (such as density of development or forest fragmentation) 

may be associated with Lyme disease risk may be through fine-scale differences in deer density. 

Evaluation of the associations between static environmental risk factors, deer density, tick 

abundance on deer and human Lyme disease is needed in order to better understand causes of 

spatial variation in disease risk. 
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Figure 1.1. Illustration depicting the enzootic cycle of Lyme disease  

(Courtesy: CDC-Division of Vector-Borne Diseases) 
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Figure 1.2. Illustration of the life stages of Ixodes scapularis ticks 

(Courtesy: CDC-Division of Vector-Borne Diseases) 
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Figure 1.3. Confirmed Lyme disease cases, United States, 2011 

(Courtesy: CDC-Division of Vector-Borne Diseases) 
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Figure 1.4. Number of reported Lyme disease cases, by year, United States—1995-2011 
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Figure 1.5. Map of the State of Maryland highlighting Howard County 
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Figure 1.6. Satellite image of Howard County, Maryland  

(source: www.maps.google.com) 
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Figure 1.7. Pathway between white-tailed deer, other environmental factors, and human Lyme disease* 

*Deer density and human Lyme disease are in purple boxes while other related or intermediate factors are displayed in orange boxes 
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CHAPTER 2: PROJECT 1 
 

 

 

2. EPIDEMIOLOGY AND CLUSTERING OF HUMAN LYME DISEASE, HOWARD COUNTY, 

MARYLAND—2001-2011 

 

INTRODUCTION 

In the United States, Lyme disease incidence and geographic range have increased since 

the disease was first described in the late 1970s, despite several possible prevention methods 

(Hayes and Piesman 2003; Bacon et al. 2008). Lyme disease occurs across broad geographic 

areas; however, spatial and temporal variation in blacklegged tick abundance, tick infection 

prevalence, and human disease has been documented within these areas. Variation in 

abundance of blacklegged ticks in the environment has been documented not only between 

states and regions, but also between locations only a few hundred meters apart (Pardanani and 

Mather 2004; Killilea et al. 2008).  

Evaluation of spatial and temporal variation in human disease has been relatively 

infrequent (Glavanakov et al. 2001; Frank et al. 2002; Chen et al. 2005; Chen et al. 2006; Waller 

et al. 2007). Comparing human Lyme disease incidence across states and counties and over 

time quantifies movement and trends as the causative agent moves into new areas, although it 

does not provide fine-scale information on spatial variation in risk within those counties. 

Examining sub-county variation in disease occurrence may provide critical information 

regarding disease distribution and possible risk factors. Description of clustering of human Lyme 
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disease cases within a single county can provide insight into the fine-scale processes that result 

in human disease within that county and refine hypotheses regarding risk factors for disease. 

However, the spatial or spatiotemporal clustering of human Lyme disease has not been 

quantified on a sub-county scale. Furthermore, cluster size itself may reveal a spatial scale at 

which control measures and education efforts are most appropriate (Glavanakov et al. 2001). 

Recent developments in software that utilize spatial scan statistics allow for statistically 

robust determination of areas with elevated risk of disease. The goals of this project were to 

describe the epidemiology and clustering of human Lyme disease in one county and to explore 

environmental and socio-demographic factors that may be associated with areas of elevated 

disease risk.   

METHODS 

Study location  

The State of Maryland consistently reports a high incidence of human Lyme disease 

(Bacon et al. 2008; Centers for Disease Control and Prevention 2013a). Howard County, 

Maryland, is located between Baltimore and Washington D.C. Its 250 square miles had a 2010 

population of approximately 287,000 people, with a density of 1,145 people per square mile 

(US Census Bureau 2012). Howard County was selected as the study location because of the 

emergence of Lyme disease during the study time frame and availability of detailed geographic 

information.  
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Study population  

Potential Lyme disease cases that occurred during 2001-2011 were reported by 

clinicians and laboratories, and subsequently investigated and classified according to 

standardized case definitions by local and state health officials. Cases occurring 2001-2007 

were classified according to the case definition established in 1996 (Council of State and 

Territorial Epidemiologists 1996); cases occurring 2008-2011 were classified according a revised 

case definition that took effect in 2008 (Council of State and Territorial Epidemiologists 2008). 

Data submitted from the Maryland Department of Health and Mental Hygiene (MDHMH) to the 

Centers for Disease Control and Prevention (CDC) through the National Notifiable Diseases 

Surveillance System (NNDSS) were used for basic descriptive analyses; these data included age, 

sex, date of disease onset, presence of symptoms associated with the surveillance case 

definition, and case status (i.e., confirmed or probable). Additionally, for the sole purpose of 

this study, MDHMH directly provided Lyme disease case data that were stripped of patient age 

and sex information, but contained residential address (not transmitted through NNDSS). 

Methods for this project were approved by Institutional Review Boards at CDC, MDHMH, and 

Colorado State University (Appendix 1.0.).  

Geographic data   

Addresses for all residential structures as of 2004 were available from the Howard 

County Geographic Information Systems Division (n=94,308). Households present in this file 

were assumed to be all households present during the entire study period, 2001-2011. 

Residential address data from reported Lyme disease patients were cleaned for misspellings 

and typographical errors with Google Maps and geocoded using the Howard County geographic 
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household file within ArcGIS v.10.1 (Environmental Systems Research Institute [ESRI], Redlands, 

CA). Census block group data (including year 2000 block group boundaries, 2009 population 

estimates, 2009 estimates for educational, age distribution, income and home value variables, 

and 2000-2009 population growth estimates) were obtained from ESRI.. A 2010 land use 

dataset was obtained from the State of Maryland Department of Planning (resolution: one 

meter). A 2002 land cover dataset was obtained from the United States Geological Survey Gap 

Analysis Program (resolution: 30 meters). Metrics of forest fragmentation were calculated using 

Patch Analyst, the FRAGSTATS™ software add-in to ArcGIS (Rempel et al. 2012).  

Analytic methods  

Mid-year 2005 U.S. Census Bureau estimates were used to calculate Lyme disease 

incidence in Howard County, neighboring counties, and the State of Maryland.   

Case density surface 

A visual assessment of the spatial variation in Lyme disease by household during the 

study period was accomplished by creating a smooth density surface within ArcGIS. Kernel 

density functions, which interpolate point data into a continuous surface, were used to create 

smoothed surfaces. Two smoothed surfaces were created: one for case households and one for 

the population denominator of all households within the County. Kernel density functions were 

calculated using a bandwidth of 2640 feet (1/2 mile), with cell sizes of 370 feet. A case density 

surface (analogous to a map of cumulative disease incidence) was calculated by dividing the 

two surfaces (Peterson et al. 2009). The resulting map displayed cumulative incidence of case 

households per total Howard County households.   
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Cluster detection 

Home address was assumed to reflect the spatial location of exposure; cluster detection 

was conducted using the spatial scan statistic available in SaTScan™ software v.9.1.1 (Kulldorff 

M. and Information Management Services Inc. 2011). The spatial scanning software examined 

circles of varying radii and calculated a relative risk (RR) for each evaluated cluster based on the 

observed number of households with reported Lyme disease within the circle versus the 

number expected under the null hypothesis. The null hypothesis was that disease risk was the 

same within any evaluated circle as it was outside of the circle (Kulldorff M. and Information 

Management Services Inc. 2011). Cluster analysis utilized the geographic coordinates of each 

household in Howard County. Households were classified as having at least one reported case 

of Lyme disease (case households) or no reported Lyme disease during the entire study period 

(non-case households). Spatial cluster detection calculations were based on a binomial 

distribution.  

For spatiotemporal cluster detection, the method was similar to that of spatial cluster 

detection, except the scan assessed cylinders of various sizes and heights, where the size was 

equivalent to the circle evaluated in a spatial scan and the height of the cylinder was equivalent 

to time. For this type of analysis, census block group was used as the administrative boundary 

and assessment of potential clusters was based on a Poisson distribution of case counts 

occurring within census block groups. Based on geographic location, case households were 

assigned to one of 118 census block groups located within Howard County from the year 2000 

Census. Reported date of disease onset was used to represent time of infection; analyses 

scanned windows with one-month intervals. If more than one case occurred at the same 
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address, additional cases were included in spatiotemporal calculations that did not factor into 

spatial analyses (based on binary outcome of at least one case per household vs. no cases). 

Tests of statistical significance for each potential spatial or spatiotemporal cluster were 

based on a likelihood ratio test. Monte Carlo simulations (n=999) were used to obtain p-values 

as per the software default methodology. A high-risk disease cluster was defined as an area 

with an elevated RR and a p-value < 0.05. Analyses were conducted using the software default 

maximum cluster size (50% of the study population) and at several different maximum cluster 

sizes in order to better resolve the shape and distribution of clusters according to residence. 

Confirmed and probable Lyme disease cases were used. Clusters were visualized and additional 

spatial statistics calculated in ArcGIS. 

Exploratory description of factors associated with high-risk clusters  

To describe how geographic areas identified as high-risk clusters differed from 

remaining areas of the County, environmental and socio-demographic characteristics were 

compared between these areas. Environmental factors from land use and land cover datasets 

were extracted as total area units inside and outside high-risk clusters using the Tabulate Area 

tool in ArcGIS. Cell counts for individual land use and land cover categories were combined into 

broad categories for analysis. Specifically, land use categories were the following: very low-

density development dominated by agriculture or open fields (properties between five and 20 

acres), very low-density development dominated by forest (properties between five and 20 

acres), low-density development (areas of at least 90% single family or duplex dwellings, with 

lot sizes of from one-half acre to five acres), medium-density development (lot sizes between 
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one-eighth and one-half acre), high-density or urban development (more than eight dwelling 

units per acre or other urban non-residential uses), herbaceous or agricultural use (e.g., parks, 

pastures, cropland, and brush), and forest (deciduous, evergreen, or mixed forest types), 

herbaceous and agricultural (pasture, row crops, parks). The final land cover categories were 

the following: urban (impervious surfaces), herbaceous or agricultural (i.e., row crops, 

cultivated trees, pasture), red oak and white oak forest (oak-hickory forests with forest canopy 

dominated by Quercus [alba, rubra] and other oaks), chestnut oak forest (dominated by 

Quercus prinus with other oaks [Q. alba, falcata, rubra, velutina coccinea]), all other deciduous 

forest classes, and mixed deciduous/evergreen forest.   

Forest fragmentation metrics were calculated using the forest class of the land use 

dataset. Specifically, amount of forest edge relative to total forest area and mean forest patch 

size were calculated. Census variables such as median income and educational attainment were 

calculated as area-weighted averages of census block group values for both geographic areas 

(inside high-risk clusters and outside clusters).  

Proportion of total area inside high-risk clusters in each land use or land cover category 

was compared to proportion of total area similarly classified in the remaining area of the 

county using χ2 tests in SAS (SAS Institute, Cary, NC). Due to the nature of the total area data 

extraction and modifiable areal unit problem that plagues area-based geographic analyses, 

statistical tests were conducted at two different units of area. Specifically, area was converted 

to units of one hectare (ha) (i.e., 0.01 km2) and one km2 for statistical tests, and corresponding 

results compared. In contrast to the statistical testing for comparison of land use and land cover 
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between high-risk clusters and the remainder of the County, forest fragmentation and socio-

demographics were described in the respective areas but without accompanying statistical 

tests. Given the area-weighted calculations for these variables, design of advanced statistical 

methods to compare these calculations was beyond the scope of our exploratory objective.  

RESULTS 

Incidence   

From the NNDSS database, 1,914 confirmed and probable Lyme disease cases were 

reported from Howard County during 2001-2011. Annual incidence in Howard County ranged 

from 14.5 cases to 132.1 cases per 100,000 residents during the study period (mean: 64.6 cases 

per 100,000 residents; Table 2.1). During 2001-2011, Lyme disease incidence in Howard County 

varied from roughly equal to three-fold higher than the incidence for all of Maryland (Figure 

2.1.). Despite year-to-year variation as would be expected due to underlying variation in the 

enzootic cycle and surveillance practices, incidence in most Maryland counties increased during 

the beginning of the study period, peaking in 2007 or 2008 (Figure 2.1.).  

Characteristics of reported Lyme disease patients 

The age distribution of reported cases among Howard County residents was bimodal; 

cases occurred most commonly among 5-14 year olds and 40-65 year olds. The median age of 

cases was 42 years (range: < 1 – 89 years; Table 2.1.). The age distribution did not change 

substantially from year to year; the lowest median ages of 28 and 28.5 occurred in the years 

with the fewest number of reported cases (2002 and 2003). Males accounted for 56% of cases; 

the male predominance occurred in all years except that with the fewest total cases (2002; 

Table 2.1.). Race and ethnicity were unavailable for the majority of reported cases. Among the 
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1,303 confirmed cases with at least one confirmatory clinical sign or symptom reported, 

erythema migrans (EM) rash was the most common clinical sign (76%), followed by arthritis 

(12%), Bell’s palsy (12%), radiculoneuropathy (7%), meningitis (2%), encephalitis (1%), and 

atrioventricular block (1%). The percent of confirmed cases with patient symptom information 

that had reported EM rash varied over the study period, ranging from 54% in 2005 to 91% in 

2009. Among all confirmed cases, the percent of patients with EM ranged from 53% in 2005 to 

74% in 2011. Five percent of cases were hospitalized. The median week of disease onset was 26 

(approximately end of June), but varied between week 24 (mid-June) and week 29.5 (end of 

July; Table 2.1.). Annual incidence was not correlated with week of median disease onset (r=-

0.34; p=0.306). Median week of disease onset and median age did not differ according to 

surveillance case status (confirmed vs. probable; Wilcoxon Rank Sum test p=0.701 and p=0.555, 

respectively). The general epidemiology of Lyme disease cases within Howard County thus 

generally mirrored that of the nationwide picture (Bacon et al. 2008). Appendix 1.1 describes 

surveillance practices in Howard County during the study time period and discusses possible 

effects of these practices on study findings. Incidence of EM cases alone, those with a disease 

manifestation likely less subject than others to changes in surveillance practices, demonstrated 

a similar temporal trend when compared to the trend in overall incidence. This finding 

suggested that temporal changes in reported case numbers during the study period likely 

reflected true changes in disease occurrence rather than surveillance artifact (Appendix 1.2.). 

Geographic information 

Residential address of patients with reported Lyme disease during 2001-2011, devoid of 

other personal identifiers, was provided directly to CDC from MDHMH. The total number of 
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cases (n=1,934) differed slightly from that reported through NNDSS, likely because of 

differences in timing of when reporting years are closed to modification (K. Feldman, MDHMH, 

personal communication). Of these, 112 cases (6%) were excluded from further geographic 

analyses because they lacked an address or only listed a post office box and 52 (3%) were 

excluded because listed addresses were not located within Howard County. In total, 1,753 

(91%) cases (1,521 confirmed, 232 probable) from 1,672 unique residences were successfully 

geocoded (Table 2.2.). Among the 80 cases that occurred in the same household as another 

case, some may have been duplicate entries of the same case (e.g., the same onset date, but a 

repeated positive serology the following year); duplicate entries could not be reconciled 

definitively given lack of identifiers. 

The density surface of human Lyme disease according to residence displayed a 

heterogeneous, patchwork pattern of disease occurrence across the County (Figure 2.2.). 

Density of human Lyme disease was lower in the eastern part of the County compared to the 

central and western parts of the County. Examination of cumulative incidence across census 

block groups revealed a similar pattern (Appendix 1.3.). 

Cluster detection 

Spatial cluster analyses 

Unique geocoded case households (n=1,672) and non-case households (n=92,636) were 

input into SaTScan software for spatial cluster analyses. Analyses were conducted at several 

maximum cluster sizes (Figure 2.3.). Geographic clustering of Lyme disease cases by residence 

was evident, regardless of maximum cluster size setting within SaTScan software. Overall, high-
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risk clusters were in the west-central part of the County. With the software default maximum 

cluster size of 50% of the entire population, nearly all of the western and central part of 

Howard County was part of one very large high-risk cluster with a 15 km radius. The 

corresponding RR of 2.0 indicated that, in this area, risk of a household having reported Lyme 

disease was twice that of the rest of the County; two additional smaller high-risk clusters were 

also identified (Figure 2.4., top panel). The greatest number of high-risk clusters (n=7) were 

detected when setting the maximum cluster size to two km radius (Figure 2.3.). This setting also 

detected high-risk clusters that were more specific to geographic areas with high case density 

(Figure 2.4., bottom panel). High-risk clusters identified at the two km radius maximum 

displayed RRs that ranged from 2.1-12.9 (Table 2.3.). The potential for population growth 

during the study period to influence cluster detection due to artificial underestimation of the 

population at risk was minimal (Appendix 1.4.). Using case counts per census block group, 

rather than point process data, clusters detected with the software default maximum size were 

similar (Appendix 1.5.).  

Spatiotemporal cluster analysis  

Spatiotemporal cluster detection was based on census block group population 

denominators. The average 2009 estimated population per census block group in Howard 

County was 2,443 (range: 571-7,371 people). The mean number of reported Lyme disease cases 

per census block group was 15 (range: 0 - 68 cases). Spatiotemporal analysis conducted with 

the software default maximum cluster size revealed a very large cluster located in virtually the 

same spatial location as detected in the spatial cluster analysis, encompassing the entire 

western and central part of the County during 2005-2011 (Appendix 1.6.).   
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Description of factors associated with high-risk clusters 

Exploratory analyses were conducted to compare environmental and socio-

demographic factors inside high-risk clusters using the two km maximum radius setting to the 

remaining area in the County. Due to the sheer volume of area-based pixels extracted as each 

land use and land cover class, nearly all factors were statistically significantly different inside 

high-risk cluster areas when compared to the remaining area using the one ha unit of analysis, 

despite very minimal absolute difference (Table 2.4.). Comparison using a larger unit (one km2) 

of analysis (and consequently decreasing the total N [or sample size] in the statistical test) 

revealed potentially more biologically-meaningful significant differences. Regardless of the unit 

of analysis, when compared to area outside, high-risk clusters had more low-density residential 

development (30.3% vs. 16.7% outside of clusters) and more red and white oak forest (38.9% 

vs. 15.3% outside of clusters; Table 2.4.). High-risk clusters also displayed less herbaceous cover 

and land used for agriculture (Table 2.4.). The proportion of land use classified as forest (and 

thus presumed to more likely represent contiguous forest without other uses) did not greatly 

differ between the areas inside and outside high-risk clusters. However, upon summation of the 

land cover classes that pertain to forest (likely less contiguous forest), higher amount of total 

forest cover was present inside the two km high-risk clusters as compared to the remainder of 

the County (Appendix 1.7.). Proportions of some land use and land cover classes inside high-risk 

clusters and outside were sensitive to maximum cluster size detection used; nevertheless, for 

most land use and land cover classes, findings were comparable regardless of cluster detection 

software setting (Appendix 1.7.).  
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Although interpretation of comparisons is hampered by lack of statistical testing, two 

separate indices suggested more fragmented forest was present within the two km maximum 

high-risk clusters compared to the rest of the County. Specifically, in a ratio of length of forest 

edge to total forest area, more forest edge habitat existed inside high-risk clusters (ratio of 68:1 

vs. ratio of 20:1). Mean forest patch size inside clusters was smaller than in the rest of the 

County (39 acres vs. 474 acres); smaller forest patches are considered an indicator of increased 

forest fragmentation (Patz et al. 2004; Brownstein et al. 2005). Additionally, fragmentation 

metrics were calculated using land cover classified as red and white oak forest. These findings 

were opposite in direction to those of land use classified as forest: the ratio of red and white 

oak forest edge to red and white oak area was smaller inside high-risk clusters (ratio of 80:1 vs. 

ratio of 106:1), and average patches of red and white oak dominated forest were twice the size 

as those outside high-risk clusters (49 acres vs. 24 acres). The potential association between 

fragmentation and high-risk clusters was thus sensitive to which type of forest measure was 

examined. 

In descriptive evaluation, the area inside the two km maximum high-risk clusters was 

characterized by higher median household income, higher median per capita income and higher 

median home value, and a higher percent of the population with at least a bachelor’s degree 

(40% vs. 36%), despite seemingly equivalent crude age distributions (Table 2.5.). Area within 

high-risk clusters was also characterized by higher average population density; population 

growth during 2000-2009 was similar between the geographic areas (Table 2.5.). 
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DISCUSSION 

In this first reported evaluation of the spatial variability of human Lyme disease within a 

single county, risk of Lyme disease varied according to geographic location of residence. In high-

risk cluster areas, risk of human Lyme disease was about twice that expected based on the 

underlying population distribution. Clustering was detected in the same general areas of 

Howard County despite modification of the maximum detectable cluster size. Furthermore, 

high-risk clusters were robust to analysis using point process data, case count aggregates within 

census block groups, and spatiotemporal data. No clear spatial scale at which clustering 

occurred was evident, as different size high-risk clusters were identified with modified software 

settings. 

The substantial spatial clustering of human disease was supported by noteworthy 

differences in land use, land cover, and degree of landscape fragmentation in these areas when 

compared to the remainder of the County. The geographic areas containing high-risk clusters 

were generally wealthier and had more low-density residential development (lots between 

one-half and five acres). These findings agree with results from prior studies in other locations 

that used different study designs, outcome measures, and analytic methods. Rural or low-

density development has been associated with increased risk of human disease in studies 

conducted in Maryland (Glass et al. 1995), New Jersey (Orloski et al. 1998), Pennsylvania (Smith 

et al. 2001) and Connecticut (Cromley et al. 1998). Presence of forest has been associated 

previously with tick abundance and human risk (Maupin et al. 1991; Glass et al. 1995; Dister et 

al. 1997; Jackson et al. 2006a). Here, no difference was demonstrated in amount of contiguous 

forest between high-risk clusters and remaining area; however, land cover classified as forest 
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(representing more interspersed or fragmented forest rather than contiguous forest) was more 

prevalent in high-risk clusters. Higher density of forest edge habitat and smaller fragments of 

contiguous forest indicate that more fragmented forest may be present in the areas 

characterized as high-risk clusters. Nevertheless, examination of an alternate forest data source 

(land cover classified as red and white oak forest) provided opposite results in the same area 

using the same overall methodology. Indices related to forest edge and forest patch size have 

been associated with elevated tick abundance or elevated human incidence in other studies 

(Allan et al. 2003; LoGiudice et al. 2003; Jackson et al. 2006a). However, the directions of 

associations reported in the literature are inconsistent, as they are here.  

This study was the first to describe a potential association between human Lyme disease 

incidence and a specific type of forest in the eastern United States. Although abundance of 

blacklegged ticks has been generally linked to oak and maple forests (Piesman and Spielman 

1979), to our knowledge, this study is the first to link any specific forest type in this region with 

risk of human disease. Some forest types may provide more plentiful rodent food sources or 

leaf litter, or could reflect the underlying soil composition and its impact on tick survival (Jones 

et al. 1998b; Jones et al. 1998a; Ostfeld et al. 2001; LoGiudice et al. 2008) . Nevertheless, the 

finding of proportionally more red and white oak forest inside high-risk clusters could be 

spurious or due to its commonality as the most frequent type of deciduous forest in Howard 

County.  

Overall, the descriptive epidemiology of Lyme disease cases from this single county 

mirrors the general picture of Lyme disease nationwide. Specifically, patients with reported 
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Lyme disease are predominantly male, the age distribution is bimodal, and EM rash is the most 

common clinical manifestation. Yet, year-to-year variability in these characteristics was 

apparent, as might be expected with relatively small number of cases in a single area.  

Limitations 

This study was subject to several limitations, including error introduced by surveillance 

practices and geocoding. Lyme disease cases were considered those that were reported to the 

public health system and met specific criteria of the surveillance case definition. Under-

reporting is common to most surveillance systems and is also documented in Lyme disease 

surveillance (Coyle et al. 1996; Meek et al. 1996; Campbell et al. 1998; Naleway et al. 2002). The 

degree of under-reporting varies by public health jurisdiction and over time. In addition, some 

degree of over-reporting based on misdiagnoses is likely to occur. Inherent under-reporting or 

over-reporting of cases, or changes in the case definition that occurred during the study period, 

would result in misclassification of individual households according to Lyme disease status. The 

ability of the health department to detect and classify Lyme disease cases was likely not related 

differentially to space across the County; however, the possibility of differential under-

diagnosis and under-detection in lower income areas with presumably less access to health 

care cannot be ruled out. This detection bias would result in a differential misclassification 

across space, with more reported Lyme disease cases occurring in higher income areas, and 

increased likelihood of detecting spatial clusters in higher income areas.  Although the area 

inside the two km maximum clusters was characterized by higher income and home value, the 

remainder of the County was still, on average, far from disadvantaged, minimizing the potential 

for this bias to affect cluster detection. Additionally, differential detection could occur because 
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of differences in providers with respect to reporting practices.  However, the likelihood for 

differential detection due to provider reporting practices tied to the spatial location of patient 

residence is minimized in this relatively small area, as people likely utilize clinicians that are not 

necessarily the closest to their house, but those clinicians that accept their insurance. Temporal 

trends in incidence in Howard County compared to neighboring counties and the State of 

Maryland were similar. This similarity suggests that the increasing and then decreasing trend in 

incidence over time that occurred in Howard County during the study period likely reflected 

true changes in disease risk rather than temporal differences in disease detection.  

A total of 91% of confirmed and probable cases were able to be geocoded. Post office 

boxes are often associated with rural rather than suburban areas, and can bias geocoding 

ability away from rural areas (Zimmerman et al. 2008; Wey et al. 2009). The 38 (21%) non-

geocoded cases with post office boxes for addresses were located broadly across 17 of the 35 

zip codes present within Howard County. The most common post office box zip codes were 

located in more heavily populated areas; their mostly non-rural location suggests that the 

impact of this potential geographic bias likely had minimal effect on our findings. Other cases 

were unable to be geocoded because of missing address or irreconcilable typos in address. 

Misclassification of these case households as non-Lyme disease houses was likely non-

differential in space across the County and thus only served to attenuate our ability to detect 

significant clusters.   

In this study, residential address was used as a proxy for location of exposure to infected 

blacklegged ticks. The peridomestic exposure assumption is common in scientific literature 



55 

  

pertaining to Lyme disease in the eastern United States; the assumption is based on data that 

demonstrated presence of infected blacklegged ticks in the yards and woods surrounding the 

homes of Lyme disease patients and that many patients believe their property to be where they 

acquired a tick bite (Falco and Fish 1988; Maupin et al. 1991; Nicholson and Mather 1996; 

Cromley et al. 1998; Orloski et al. 1998). Peridomestic exposure is, in general, difficult to 

validate and could not be validated in this study. Yet, our finding of statistically significant areas 

of elevated risk to residents implies either: 1) most disease is acquired in the home 

environment or neighborhood, or 2) away from home behavior patterns are similar among 

neighbors (e.g., they visit the same distant parks for recreation). While some misclassification of 

spatial exposure location is inevitable, substantial non-differential exposure misclassification 

would likely limit cluster detection ability due to presence of increasedrandom error and loss of 

statistical power (assuming common epidemiologic understanding regarding directionality of 

bias applies to spatial misclassification (Rothman et al. 2008). Consequently, the finding of 

spatial clustering according to location of residence likely reflects some inherent environmental 

or social processes that put people who reside in certain areas at elevated risk for disease. For 

example, these areas of elevated risk may be dominated not only by specific environmental 

characteristics that promote increased abundance of infected ticks, but may also be 

characterized by more residents who interact with their environment (e.g., people who garden 

more or more often recreate outdoors in wooded or forest edge habitat). 

The impact of areal units on statistical testing is an example of the modifiable areal unit 

problem (MAUP) that plagues many geographic analyses (Waller and Gotway 2004; 

Schabenberger and Gotway 2005). MAUP actually reflects two underlying but overlapping 
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issues related to ecologic fallacy. The first, the “scale effect”, occurs when different results 

coincide with increasing larger units of spatial areal aggregation. The second, sometimes 

referred to as the “grouping effect”, occurs when results differ depending on the shape in 

which the underlying data are aggregated. While the field of spatial statistics has yet to resolve 

these problems, being aware of them and understanding the limitations of the data are 

paramount. In this study, aggregation of areal units to two different scales revealed some 

differing results, but also demonstrated some consistent findings regardless of areal unit. 

Potentially, findings consistent across scales may be the most biologically meaningful. 

This study demonstrated that Lyme disease occurrence on a sub-county level is non-

uniform. Although detection of significant human disease clustering is likely a finding that is 

generalizable to other endemic areas, there are many reasons why the generalizability of 

findings of specific maximum cluster sizes and corresponding environmental and socio-

demographic associations may be limited. The underlying abundance of reservoir hosts and tick 

infection prevalence may coalesce differentially across space in other counties and states and 

inherently modify human risk. The findings from this study are exploratory in nature, and 

demonstrate the utility of conducting cluster detection analysis in endemic areas to identify 

those areas at highest risk of disease. This approach can be implemented in additional 

geographical areas to assess generalizability of findings of cluster sizes and of associated 

factors.  
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Strengths 

This study was the first to describe sub-county clustering of human Lyme disease; it was 

also the first study to associate environmental and socio-demographic factors with clustering of 

human disease. Although some of these factors have been associated with elevated tick 

abundance and human risk in different study designs, none have been associated with 

clustering of disease. Furthermore, this is the first description of an association between a 

single oak forest type and human disease risk in the eastern United States.   

Although public health resources and policies for Lyme disease case follow up differ 

across counties and states, activities are often relatively consistent within a single county. 

Restriction of this analysis to a single county minimized potential confounding by differential 

case detection across space that could occur by conducting this type of study across different 

counties. Fortunately, this analysis was able to be conducted with point-based data for not only 

case households, but all households within the County. Consequently, cluster finding was not 

limited by the minimum size of a political unit (here, a census block group).  

Use of human disease data is an important outcome measure to assess risk of Lyme 

disease (Cromley et al. 1998; Eisen and Eisen 2008; Eisen et al. 2012). Presumably, risk increases 

when the abundance of infected ticks in the environment increases. However, examination of 

abundance of infected ticks as an outcome measure, rather than human illness, ignores the role 

that human behavior plays in tick exposure. Human behavior patterns may be independent of 

environmental characteristics, and are difficult to measure accurately. The ultimate endpoint of 

human disease inherently takes some human behavior into account (Eisen et al. 2012). 
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Conclusions 

Quantification of sub-county disease clustering and identification of factors potentially 

associated with that clustering are critical to understanding disease processes and to 

development and implementation of appropriate prevention measures. Comparing overall 

disease incidence across counties or states can help direct public health resources, but does not 

refine understanding of where risk is highest, why it may be high in specific places, and who is 

at highest risk for encountering infected ticks. In this study, we examined univariate differences 

in environmental and socio-demographic factors although many of these factors are not 

independent of one another. An understanding of the relative importance and potential 

confounding of these factors with one another in their association with human Lyme disease is 

needed on a sub-county scale. Project 2 builds upon this work to examine the multivariable 

associations of these same factors with human Lyme disease risk at the household level. 

Additionally, further investigation into the role of specific forest types in Lyme disease risk is 

needed. Conducting analyses at the sub-county level is necessary in order to better refine risk 

factors and understand disease processes that vary in highly endemic areas. Similar sub-county 

analyses should be conducted elsewhere using residential data to compare findings.  
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TABLES 

Table 2.1. Human Lyme disease cases, Howard County, Maryland 2001-2011* 

Year Confirmed 

cases (n) 

Probable 

cases (n) 

Incidence**   Male 

(%) 

Median 

age (years) 

Median 

onset week 

2001 68 - 25.2 56 36 26 

2002 39 - 14.5 44 28 26 

2003 42 - 15.6 64 28.5 29.5 

2004 94 - 34.9 62 43 26.5 

2005 150 - 55.7 61 44.5 27 

2006 113 - 41.9 55 44.5 26 

2007 352 - 130.6 55 40 27 

2008 296 60 132.1 52 42 26 

2009 203 65 99.5 59 42 25 

2010 171 66 88.0 57 43.5 24 

2011 137 58 72.4 55 44 27 

Total 1,665 249 64.6† 56 42 26 

*Reported through the National Notifiable Diseases Surveillance System 

**Total (confirmed and probable) cases per 100,000 residents, based on mid-2005 population estimate 

†Average annual incidence (cumulative incidence=710.3 cases per 100,000 residents)  
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Table 2.2. Proportion of reported Lyme disease patient addresses geocoded, Howard County, 

Maryland* 

 

Year Confirmed 

cases  

(n) 

Probable 

cases  

(n) 

Geocoded case addresses 

Confirmed  

n (%)  

Probable 

n (%)  

Total        

n (%)  

2001 68 - 62 (91) - 62 

2002 39 - 37 (95) - 37 

2003 42 - 39 (93) - 39 

2004 94 - 86 (91) - 86 

2005 150 - 137 (91) - 137 

2006 113 - 99 (88) - 99 

2007 358 - 326 (91) - 326 

2008 307 63 275 (90) 59 (94) 334 

2009 203 65 184 (91) 62 (95) 246 

2010 172 65 153 (89) 56 (86) 209 

2011 137 58 123 (90) 55 (95) 178 

Total 1,683 251 1,521 (90) 232 (92) 1,753 (91) 

*Cases provided directly from the Maryland Department of Health and Mental Hygiene 
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Table 2.3. High-risk spatial clusters detected using two km radius maximum cluster size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Cluster Radius 

(km) 

Observed case 

households (n) 

Expected case 

households (n) 

Relative 

risk  

p-value 

1 1.67 109 46.0 2.46 <0.001 

2 1.76 40 11.8 3.46 <0.001 

3 1.97 42 14.4 2.98 0.001 

4 1.76 80 38.9 2.11 0.002 

5 1.58 20 4.8 4.24 0.030 

6 0.15 8 0.6 12.94 0.030 

7 0.31 13 2.0 6.41 0.040 



62 

  

Table 2.4. Percent of land area* according to land use and land cover classification, inside and 

outside of two km high-risk clusters, Howard County, Maryland  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Land covered by water was excluded 

** Chi-squared tests conducted using two different units of area as the basis of calculation (one hectare [ha] and 

one km
2
) 

 

  

Variable 

Percent area inside and outside of high-risk 

clusters 

Inside Outside  
p-value**                  

(one ha) 

p-value**  

(one km2) 

Land use 

category 

 

Very low-density residential, 

dominated by forest 
7.7 3.7 <0.001 0.171 

Very low-density residential, 

dominated by agriculture 
3.1 4.7 <0.001 0.610 

Low-density residential 30.3 16.7 <0.001 0.017 

Medium-density residential 13.0 9.8 <0.001 0.479 

 High-density residential 1.6 3.1 0.136 0.889 

 Urban/commercial 2.3 10.5 <0.001 0.067 

 Herbaceous/agriculture 13.8 27.0 <0.001 0.040 

 Forest 27.9 23.9 <0.001 0.528 

Land 

cover 

category 

Herbaceous/agriculture 35.0 51.1 <0.001 0.030 

Urban/residential 14.2 18.1 <0.001 0.492 

 Red-white oak forest 38.9 15.3 <0.001 <0.001 

 Chestnut oak forest 2.9 6.3 <0.001 0.334 

 Other deciduous forest 4.2 6.0 <0.001 0.612 

 Mixed forest 4.7 2.6 <0.001 0.401 
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Table 2.5. Area-weighted* socio-demographic factors inside and outside of two km maximum 

radius high-risk clusters  

Variable 
Inside 

clusters 

Outside 

clusters 

Median household income ($) 140,662 124,394 

Per-capita income ($) 57,189 48,798 

Median home value ($) 620,990 557,844 

Population growth during 2000-2009 (%) 2.47 2.19 

Population density (people per mi2) 1,238 1,116 

Percent of population with ≥ bachelor’s degree 39.6% 35.6% 

Percent of population < 15 years old 22.8% 22.5% 

Median age (years) 41.7 40.5 

*2009 estimates per census block group 
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FIGURES 

 

Figure 2.1. Lyme disease incidence in Howard County, neighboring counties, and Maryland, 

2001-2011*  

*Incidence was calculated as total (confirmed and probable) reported cases per 100,000 residents using 2005 U.S. 

Census Bureau estimates. Howard County incidence is displayed green, State of Maryland incidence is displayed 

black, and incidence in counties that share a border with Howard County are displayed in gray.  
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Figure 2.2. Smoothed case density surface of reported human Lyme disease in Howard County 

Maryland, 2001-2011*  

 

*Map was created using kernel density functions with half mile bandwidth.  Smoothed surface of case residences 

was divided by smoothed surface of all residences in the county to produce this map of cumulative incidence 

across space. Darker color indicates higher density of cases according to residence. 
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Figure 2.3. Number of high-risk clusters detected according to maximum cluster size limits  
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Figure 2.4. High-risk clusters detected given two software settings*  

*Top panel displays the high-risk clusters as detected setting the maximum cluster size to the software default of 

50% of the population. The bottom panel depicts those detected setting the maximum to two km. Clusters are 

numbered according to numbers in Table 2.3. High-risk clusters are depicted in red, and overlay the density surface 

displayed in Figure 2.2.   
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CHAPTER 3: PROJECT 2 
 

 

 

3. HOUSEHOLD AND NEIGHBORHOOD CHARACTERISTICS AS RISK FACTORS FOR HUMAN 

LYME DISEASE  

 

INTRODUCTION 

Lyme disease is the most common vector-borne disease in the United States (Centers 

for Disease Control and Prevention 2013a), yet risk factors for human infection are not well-

described. Substantial research effort has been directed at examining the spatial distribution as 

well as landscape and climatic factors associated with tick abundance and infection prevalence. 

Although these entomologic factors are necessary components for human Lyme disease risk, 

human infection depends not only upon abundance of infected ticks in the environment but 

also human behavior, movement, and interaction with the environment.  

In the studies conducted to date that have examined risk factors for human Lyme 

disease, rural or low-density residential development has been positively associated with 

disease risk when compared to medium- and high-density development areas (Glass et al. 1995; 

Cromley et al. 1998; Orloski et al. 1998; Smith et al. 2001). The presence or close proximity of 

forests has been documented at various spatial scales as a primary risk factor for human Lyme 

disease (Maupin et al. 1991; Glass et al. 1995; Dister et al. 1997; Kitron and Kazmierczak 1997; 

Jackson et al. 2006a). Studies are mixed regarding a link between forest fragmentation and 
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human Lyme disease risk (Cromley et al. 1998; Allan et al. 2003; Brownstein et al. 2005; Jackson 

et al. 2006a; Killilea et al. 2008; Keesing et al. 2009; Diuk-Wasser et al. 2012).  

While determination of individual-level risk factors for disease has been the mainstay of 

epidemiologic research, health scientists are increasingly aware of the importance of the 

context in which individuals reside on their behaviors and health outcomes (Diez-Roux 1998; 

Diez-Roux 2000; Diez Roux and Aiello 2005; Rothman et al. 2008). These “neighborhood” or 

“group” factors may augment or diminish one’s specific individual risk of disease. Traditional 

epidemiologic study designs are either individual or group in nature (e.g., case-control and 

ecologic studies, respectively), and are unable to simultaneously examine the role of individual 

and group variables on an individual’s risk of disease. Risk factors for Lyme disease may be 

individual behaviors or environmental factors that act at the household or neighborhood level. 

Additionally, neighborhood-level factors could affect both the abundance of infected ticks and 

the social context that influences how people move and interact with their environment.   

Multilevel analysis (i.e., hierarchical, or mixed effect modeling) can not only account for 

the non-independence of observations within groups, but allows for description of both 

between- and within-group variability (Diez Roux and Aiello 2005). A multilevel epidemiologic 

analysis that can both quantify and examine the determinants of variability in disease risk 

across space has not been conducted for Lyme disease. In this multilevel analysis using data 

from a single county, environmental and socio-demographic associations with household-level 

risk of Lyme disease were examined. The goals of this project were to determine if Lyme 

disease risk was associated with any of the same environmental or socio-demographic factors 
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that were tied to high-risk clusters in Project 1, and to examine the relative contribution of 

household-level and census block group-level factors in describing spatial variation in risk.   

METHODS 

Study design 

Associations between environmental and socio-demographic risk factors and household 

risk of human Lyme disease were assessed using an historical cohort of all households in one 

Lyme disease endemic county. Land use and land cover classifications were assessed at 

individual geocoded household points. Census block group of residence was considered the 

“neighborhood” for multilevel analysis. Ideally, a multilevel model for risk of Lyme disease 

should also include individual-level variables, although they were not ascertained as part of this 

study. 

Study location and population 

This study used data for all residences in Howard County, Maryland, which is located 

between Baltimore and Washington D.C. (Figure 3.1.). Howard County is 250 square miles and 

had a population in 2010 of approximately 287,000, with a density of 1,145 residents per 

square mile (US Census Bureau 2012). Households were enumerated using a geographic 

shapefile of all residential structures in Howard County as of 2004 (n=94,308), available from 

the Howard County Geographic Information Systems Division. Households present in Howard 

County in the 2004 geographic shapefile were assumed to be households present during the 

entire study period, 2001-2011. 
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Household-level Lyme disease classification  

Potential Lyme disease cases that occurred during 2001-2011 were reported by 

clinicians and laboratories and subsequently investigated and classified according to 

standardized case definitions by local and state health officials. Cases occurring 2001-2007 

were classified according to the case definition established in 1996 (Council of State and 

Territorial Epidemiologists 1996); cases occurring 2008-2011 were classified according a revised 

case definition that took effect in 2008 (Council of State and Territorial Epidemiologists 2008). 

For the purpose of this study, the Maryland Department of Health and Mental Hygiene 

(MDHMH) provided Lyme disease case information that was stripped of patient age and sex 

information, but contained residential address. Residential address data for reported patients 

were cleaned for misspellings and typographical errors with Google Maps and geocoded using 

the Howard County household address file within ArcGIS v.10.1 (Environmental Systems 

Research Institute, Redlands, CA).  

The outcome assessed was reported Lyme disease in each household. All residences 

were classified according to a binary outcome of Lyme disease or no Lyme disease. Lyme 

disease classification was based on confirmed and probable cases reported to the health 

department during 2001-2011; households without a reported case of Lyme disease during the 

study period were considered to have no human Lyme disease. For all analyses, residence was 

considered to be location of infection. Use of patient information for this study was approved 

by Institutional Review Boards at the Centers for Disease Control and Prevention, MDHMH, and 

Colorado State University (Appendix 1.0.). 
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Explanatory variables and specifications 

Potential explanatory variables for risk of Lyme disease were created from several 

datasets, and were chosen a priori, primarily based on previous research as described in 

Chapter 1. Land use and land cover category values were assigned to each house using ArcGIS 

according to the classification of the pixels in which each geocoded residence was located. 

Multilevel assignments (i.e., households nested within census block groups) were extracted 

according to year 2000 Census block group assignments using ArcGIS. Values for several 

variables were calculated or extracted according to census block group boundaries to classify 

the general area in which houses were located.  

Household-level variables 

Land use and land cover datasets were used to describe place of residence with regard 

to how general human use of the landscape and the dominant vegetation type. Two variables 

were ascertained at the household: land use classification and land cover classification; these 

variables were created using the same datasets as were used for Project 1. 

For classification of land use, a dataset was obtained from the State of Maryland 

Department of Planning. This 2010 dataset was created from a combination of residential 

parcel data and aerial photography, with a stated resolution of one meter; the 24 land use 

categories in the Howard County dataset were collapsed into five classes for further analysis. 

Final land use categories were the following: low-density development (including very low-

density development classes dominated by forest and agriculture, all lot sizes of at least one-

half acre), medium-density development (lot sizes between one-eighth and one-half acre), high-
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density or urban development (more than eight dwelling units per acre or other urban non-

residential uses), herbaceous or agricultural use (e.g., parks, pastures, cropland, and brush), and 

forest (deciduous, evergreen or mixed forest types) (Table 3.1.).  

For land cover, a dataset delineating dominant vegetation type was obtained from the 

United States Geological Survey Gap Analysis Program. This 2002 dataset was created from 

aerial video, satellite data, and ground assessments using the National Vegetation Classification 

System as the basis for the classification of dominant canopy species. Resolution was two 

hectares for land cover interpretation, but 30 meters for classified pixels. Land cover classes 

were initially collapsed into six classes as in Table 3.1, and then into four broad classes for 

regression analyses. Final land cover classes were grouped based on frequency and similarity 

with respect to potential role in the B. burgdorferi enzootic cycle and were the following: urban 

(impervious surfaces), herbaceous or agricultural (i.e., row crops, cultivated trees, pasture), red 

oak and white oak forest (oak-hickory forests with forest canopy dominated by Quercus [alba, 

rubra] and other oaks), and all other forest types (primarily other deciduous forests types as 

well rare deciduous/evergreen mixed forests). 

Census block group-level variables 

Forest fragmentation 

Several indices of forest prevalence and fragmentation were calculated using Patch 

Analyst, the FRAGSTATS™ software add-in to ArcGIS (Rempel et al. 2012). Forest patch size and 

edge metrics were calculated using the forest class of the land use dataset described above; 

variables assessed were the following: proportion of census block group with land use 



74 

  

classification of forest; mean forest patch size in census block group; amount of forest edge 

relative to total census block group land area; amount of forest edge relative to amount of 

census block group classified as forest; and, mean amount of forest edge per forest patch in 

census block group (Table 3.1.). 

Socio-demographic characteristics 

In order to describe contextual effects related to income, age, and education, 2009 

census block group estimates were assigned to all households based on their census block 

group (Table 3.1.).    

Statistical analysis 

Multiple statistical methods are routinely used to account for non-independence among 

observations, particularly mixed effect (or “multilevel”) models and generalized estimating 

equations (Hanley et al. 2003; Waller and Gotway 2004; Hubbard et al. 2010; Subramanian and 

O'Malley 2010). Choice of which method to use depends on several factors, including whether 

correlation among observations is of interest in itself or just a statistical issue that should be 

handled (Hubbard et al. 2010). 

Multilevel logistic regression models were created to examine the associations between 

household-level land use and land cover, census block group-level forest fragmentation and 

census block group-level socio-demographic factors and risk of Lyme disease. The multilevel 

analytic strategy was employed to account for the hierarchical nature of the independent 

variables and the potential non-independence of risk among households in the same census 

block group; moreover, this strategy was used to distinguish the relative importance of 
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household and census block group effects in explaining variation in risk of Lyme disease across 

census block groups. 

Multilevel models were constructed with random intercepts for census block groups 

using PROC GLIMMIX with Laplace approximation in SAS v.9.3 software (SAS Institute, Cary, 

NC).  Traditional intraclass correlation coefficients (ICC) are possible only in linear models; a 

pseudo-ICC was calculated using a “null” or “empty” model without any covariates, but with a 

random intercept for census block group (referred to as Model 0). The pseudo-ICC was used to 

describe the variation in risk of Lyme disease according to census block group. Specifically, the 

pseudo-ICC was calculated by dividing the estimate for the covariance parameter by the sum of 

the covariance parameter and the constant value of 3.29 (approximately π2/3) (Snijders and 

Bosker 1999; Alexandrescu et al. 2011).   

Univariate fixed effect logistic regression analyses were conducted to calculate crude 

odds ratios (OR) and for comparison to multilevel model findings. Three multivariable logistic 

regression models were created: 1) a model with only household-level characteristics (i.e., land 

use and land cover); 2) a model with only census block group-level variables (i.e., forest 

fragmentation and socio-demographic factors); and 3) a “full” model with both household and 

census block group effects. All multilevel models were additionally fit in models without 

random intercepts (single level models) to compare fixed effect estimates. Crude and adjusted 

odds ratios (aOR), 95% confidence intervals (CI) and p-values are presented for all models. 

Akaike’s Information Criterion (AIC) values were used to assess goodness-of-fit (Akaike 1974). 
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Pseudo-ICC and covariance parameter values from each multilevel model were 

compared to examine how household and census block group effects reduced correlation 

within census block groups (i.e., between-block group variation), and determine how much 

correlation remained within census block groups after accounting for these covariates. The 

reduction in between-block group variance across models was assessed by calculating the 

proportion of the covariance parameter reduced given a set of fixed effects (Snijders and 

Bosker 1999; Alexandrescu et al. 2011; Bertille et al. 2013; Singh et al. 2013). 

Household land use and land cover were entered in all models as categorical variables 

with urban land use and land cover considered the reference groups; census block group forest 

fragmentation and socio-demographic indices were entered as continuous variables. Odds 

ratios for all continuous variables were calculated per interquartile range (IQR) increase. 

Correlation of variables as evidenced by impact on standard errors was considered when 

constructing multivariable models. Multiplicative interaction was assessed between land use 

class and land cover class at the household location using a cross-product term in logistic 

regression using a p-value cutoff of 0.2. 

RESULTS 

Incidence of Lyme disease in the study population 

Of 1,934 confirmed and probable Lyme disease cases reported among Howard County 

residents during 2001-2011, 112 cases (6%) were excluded from further geographic analyses 

because they either lacked an address or had a post office box listed, and 52 (3%) were 

excluded because listed addresses were not located in Howard County. In total, 1,753 (91%) 

cases (1,521 confirmed, 232 probable) from 1,672 unique residences were successfully 
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geocoded; these 1,672 houses were classified as having the outcome. Of 92,636 geocoded 

houses considered to have no human Lyme disease during the study time frame, five were 

unable to be assigned to a Howard County census block group. Thus, the final dataset included 

92,631 non-case households. All households were nested within 118 census block groups in 

Howard County.    

Characteristics of study households 

The characteristics of study households according to several explanatory factors are 

shown in Table 3.1.; univariate logistic fixed effect associations are shown in Table 3.2. There 

were several significant differences in univariate analyses. When compared to households 

without Lyme disease during the study period, households with Lyme disease occurred more 

often in low- or medium-density residential development or in forest, and with dominant 

vegetation classified as red and white oak forest. Homes with reported Lyme disease occurred 

more frequently in census block groups with proportionally more area classified as forest and 

larger contiguous forest patches (i.e., more crude forest edge habitat (more forest edge per 

forest patch), and lower forest edge per forest area ratio; Table 3.2.). In univariate models, 

higher Lyme disease risk was also associated with residence in census block groups 

characterized by lower population density, higher average income, higher average home value, 

older average age of residents, and higher average education.  

Census block group variation 

The -2 Log Likelihood values of a null (i.e., no covariates) fixed effect model and a null 

model with only a random intercept for census block group (Model 0) were compared by a 
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likelihood ratio test using a mixture of chi-squared distributions; this comparison revealed 

substantial variation occurred across census block groups in risk of Lyme disease during 2001-

2011 (p<0.0001).  

Multilevel model development 

Model 1 

In multilevel Model 1, which included only household land use and household land 

cover classifications, low-density residential development (aOR: 2.12; 95% CI: 1.76-2.57), 

medium-density residential development (aOR: 1.96; 95% CI: 1.68-2.30), and land use classified 

as forest (aOR: 1.40; 95% CI: 1.04-1.87) were associated with increased risk of Lyme disease 

when compared to high-density residential or urban development (Table 3.3.). Land use 

classified as herbaceous or agriculture was associated with lower disease risk (aOR: 0.67; 95% 

CI: 0.46-0.97) than high-density residential or urban areas. Only one residential land cover 

classification was associated with elevated human Lyme disease risk compared to urban areas 

with no vegetative cover: red and white oak forest (aOR: 1.45; 95% CI: 1.22-1.71; Table 3.3.).   

Model 2 

In multilevel Model 2, which included forest and socio-demographic indices assessed at 

the census block group level, increasing percent of the census block group classified as forest 

was associated with elevated risk of disease (aOR: 1.43; 95% CI: 1.12-1.84). Although 

significantly associated with disease risk in univariate models, no other forest fragmentation 

metrics remained associated with Lyme disease risk in the multivariable setting, nor was there a 

clear trend in effect estimates (Table 3.4.). Mean amount of forest edge per forest patch was 
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not included in Model 2 due to correlation with other forest fragmentation variables and less 

biological relevance than the other forest variables. Although other forest variables were 

related to each other, inclusion of all variables did not substantially affect model stability and 

thus all were retained.  

Income variables (median household income, median per capita income and median 

home value) were restricted to one variable due to multicollinearity. Median home value was 

selected not only because of its strong univariate association, but because in contrast to 

income itself, home value could better represent the exterior neighborhood landscape. After 

adjusting for census block group forest variables, residing within block groups with lower 

population growth (IQR aOR: 0.81; 95% CI: 0.73-0.91) and higher average home value (IQR aOR: 

1.56; 95% CI: 1.31-1.86) were associated with elevated Lyme disease risk (Table 3.4.). In 

contrast, population density was not associated with household disease risk after controlling for 

the effect of other census block group socio-demographic and forest variables on household 

disease risk in a multilevel model (Table 3.4.). 

Model 3 

Model 3 combined all covariates in Models 1 and 2 (Table 3.5.). After accounting for 

forest and socio-demographic variables assessed at the census block group level, the same 

household-level land use and land cover characteristics remained significantly associated with 

elevated risk of Lyme disease in multilevel analysis. Low-density residential development (aOR: 

1.85; 95% CI: 1.52-2.26) and medium-density residential development (aOR: 1.80; 95% CI: 1.54-

2.12) were associated with increased risk of disease compared to high-density residential and 
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urban development (Table 3.5.). The positive association between residing in a home with land 

use classified as forest and disease was attenuated after adjusting for census block group forest 

prevalence and edge characteristics in this multilevel model (aOR: 1.29; 95% CI: 0.96-1.77; 

Table 3.5.). Residing in a location with land use classified as herbaceous or agricultural 

remained protective when compared to high-density residential or urban development (aOR: 

0.62; 95% CI: 0.43-0.90). Likewise, the association remained between elevated risk of Lyme 

disease and residence in an area classified as red and white oak forest (compared to urban or 

minimal vegetative cover) after controlling for census block group forest variables and socio-

demographic differences (aOR: 1.32; 95% CI: 1.11-1.57; Table 3.5.). Residence in homes located 

within pixels classified as red and white oak forest was also associated with elevated risk when 

specifically compared to residence in all other forest classes (aOR: 1.35; 95% CI: 1.1-1.7). 

In multilevel Model 3, after adjusting for differences between land use and land cover of 

households, increasing proportion of the census block group classified as forest remained 

positively associated with disease (Table 3.5.) while other forest fragmentation variables were 

not significantly associated with Lyme disease risk (Table 3.5.). Similarly, positive associations 

between disease risk and lower population growth and higher average census block group 

home value remained consistent after adjustment for household-level characteristics. There 

was no evidence of interaction on a multiplicative scale between household land use class and 

land cover class with respect to risk of Lyme disease (p=0.98). Household land use and land 

cover were not subject to substantial confounding by variables assessed at the census block 

group level. Likewise, effect estimates of the census block group variables changed minimally 

after controlling for household land use and land cover classifications.     
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Relative contribution of levels in explaining spatial variation in risk of Lyme disease  

The pseudo-ICC of Model 0, the null model without covariates, indicated that 8.3% of 

variation in risk of Lyme disease in Howard County was due to census block group of residence 

(Table 3.6.). This same value can also be conceived of as the degree of correlation, or “non-

independence”, in risk among homes within each census block group. The variance between 

block groups decreased after taking into account the covariates in Model 1; specifically, 39.7% 

of the total variance between block groups was explained by household specific land use and 

land cover characteristics. The census block group-level fixed effects included in Model 2 

explained a much higher proportion of variance (63.9%) in risk of Lyme disease between block 

groups. When these variables were together in Model 3, the most variation across census block 

groups was explained; however, the results were not additive (Table 3.6.). Specifically, 

household land use and land cover, census block group forest characterization, and census 

block group socio-demographics explained 73.5% of the variance in risk between census block 

groups, leaving over 25% of the variance in risk between census block group still unexplained. 

Model 3 displayed the lowest AIC value and was considered the best of the candidate models 

(Table 3.6.). 

In Figure 3.2., census block groups are displayed according to whether there was higher 

than expected variance, lower than expected, or similar to expected (at α=0.05), given each 

model described above. As covariates were added to a null model, much of the variation 

between block groups disappeared. Four block groups displayed higher than expected variation 

in risk and four block groups displayed lower than expected variation in risk given the Model 3 

covariates. Thus, the covariates explained most of the spatial variation in risk of Lyme disease 
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according to census block group in Howard County, yet a substantial portion was unexplained, 

particularly in these areas, and may be accounted for by unmeasured household characteristics 

or individual behavioral differences. 

Sensitivity analyses 

To assess the relative contribution of the two groups of census block group variables 

(forest characteristics and socio-demographic variables), Models 2 and 3 were replicated using 

each group of variables separately (Appendix 2.1.). The socio-demographic variables explained 

more of the variation between census block groups than did forest variables; however, the 

model with forest variables only displayed better model fit. Nevertheless, both groups of 

variables in models together explained the most variation across census block groups and fit 

the data best, as evidenced by a lower AIC value.    

Multivariable model 3 was also run in iterations of only two forest metrics at a time—

proportion of the census block group classified as forest and one other. This analysis was 

conducted to ensure that possible associations were not attenuated by over-adjusting for 

related forest variables. Model fixed effects were essentially unchanged.  

Census block group forest indices were also calculated using red and white oak forest. 

Univariate and multivariable findings (in Models 2 and 3) were similar in direction to those 

calculated using the land use forest class, but no metrics were significantly associated with 

disease (Appendix 2.2.). Risk of disease remained elevated for household residence in red and 

white oak forest when compared to residence in an urban area (without substantial vegetation) 

after adjusting for the structure and prevalence of red and white oak forests in the census block 
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group. The AIC value of this Model 3 was the lowest of any, indicating the best model fit; 

however, less variation in risk across space was explained by using red and white oak to 

calculate forest fragmentation compared to land use classified as forest.  

The robustness of study findings were assessed with regard to choices made in grouping 

land use and land cover classes, and to missing data. Overall, these choices had minimal effect 

on findings; nevertheless, upon reclassification, residence in land use classified as forest 

became more highly associated with disease, and the protective effect of residence in land use 

classified as herbaceous or agricultural diminished (Appendices 2.3.-2.5.).   

Fixed effect estimates of multilevel Model 3 were compared to the same model 

implemented as a generalized estimating equations (GEE) model with an exchangeable 

correlation structure. The final associations in Model 3 were mostly robust to the choice of 

modeling method, except that associations with population growth and percent of the 

population with a bachelor’s degree were diminished in the GEE model (Appendix 2.6.). 

Comparison of associations in multilevel and single level models 

If non-independence between observations in this study was not taken into account, 

inference on associations with human Lyme disease risk would have been based on results from 

single-level models in Tables 3.3-3.5. In this analysis, although effect estimates were slightly 

diminished in magnitude and confidence intervals were wider after accounting for correlation 

in the multilevel model structure, strong associations with disease risk would have been 

detectable regardless of method.  
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DISCUSSION 

Risk of Lyme disease in endemic areas may be tied to factors at individual, household, 

and neighborhood levels (Glass et al. 1995; Orloski et al. 1998; Smith et al. 2001; Connally et al. 

2009). This project was the first known multilevel analysis of risk factors for human Lyme 

disease and the first study that examined the environmental and socio-demographic 

associations with reported Lyme disease among all households in one endemic county. 

Household risk of Lyme disease was associated with residence in suburban forested 

environments of low- and medium- density development characterized by red and white oak 

forest cover and in areas with more contiguous forest. In this analysis, some variation in human 

disease risk was due to census block group of residence, but most variation in risk occurred 

within census block groups. This finding underscores the fine-scale spatial variation in human 

disease risk.   Use of multilevel model structure allowed 1) accurate simultaneous assessment 

of the associations between household and census block group environmental and socio-

demographic characteristics with household risk of Lyme disease; 2) quantification of the 

variation in risk between census block groups; and 3) assessment of the relative contribution of 

household and census block group characteristics to reduction in the between census block 

group variation in risk of Lyme disease. 

Despite use of different methodology from that in Project 1, this analysis also 

demonstrated variation in risk of Lyme disease across space. Specifically, 8% of variation in risk 

of Lyme disease across space was due to solely to census block group of residence. Most of the 

variation across census block groups could be accounted for with household land use and land 

cover classification and census block group-level differences in forest and socio-demographics, 
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but some unexplained variation across space remained. Most variation (92%) in risk of Lyme 

disease between houses was not due to geographic “neighborhood” location, but to other 

factors that vary within neighborhoods. Such fine-scale variation in risk could be a product of 

household landscape characteristics, individual behaviors, and chance. Ignoring the nested 

structure of households within census block groups could have resulted in erroneously small 

standard errors for coefficient estimates (Hanley et al. 2003; Waller and Gotway 2004; Diez 

Roux and Aiello 2005); however, this would have had relatively minimal impact on broad 

conclusions in this study. Residual between-census block group correlation remained after 

accounting for available covariates. Further examination into the effect of this correlation on 

fixed effect associations interpreted on a different level (household) and need for spatially-

structured random effects is necessary.   

Risk of reported Lyme disease was associated with low- and medium-density residential 

development, residence in areas with dominant vegetation classified as red and white oak 

forest, proportion of the census block group classified as contiguous forest, and residence in 

wealthier and more educated census block groups with lower population growth during the 

study period. These findings, which were obtained with a novel analysis method and study 

population, support many findings already documented in the scientific literature. Risk of Lyme 

disease has been associated with residence in lower-density development in studies conducted 

in Maryland (Glass et al. 1995), New Jersey (Orloski et al. 1998), Pennsylvania (Smith et al. 

2001) and Connecticut (Cromley et al. 1998). Cromley et al. (1998) found rural areas to be at 

higher risk than medium-density development areas in a 12 town region of Connecticut in a 

geographic information system (GIS) analysis. One other published GIS-based study utilized 
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residential-level Lyme disease patient information within a single county to analyze 

environmental associations with Lyme disease risk. That study was conducted in Baltimore 

County, Maryland, which borders Howard County, and the authors found “highly developed” 

land to be associated with lower risk than all other development classes (Glass et al. 1995). Self-

reported “rural” residence was associated with 14 times higher odds of Lyme disease (95% CI: 

1.7-116.4) as compared to self-reported suburban or urban residence classification in 

Hunterdon County, New Jersey (Orloski et al. 1998). In addition, self-reported rural residence 

was associated with three times higher odds of Lyme disease than urban residence in Chester 

County, Pennsylvania (Smith et al. 2001). The mechanism through which residing in lower-

density residential development impacts human risk is not clear. This association could be a 

surrogate for living within closer proximity to forest, more residential properties present that 

contain or border forests, or more forest-associated outdoor recreation than other areas.  

In Howard County, residence in forest dominated by red and white oak species was 

associated with elevated risk of disease in Howard County. Although blacklegged tick 

abundance has been tied to oak and maple forests, Projects 1 and 2 are the first known studies 

to associate a specific forest type with human disease risk in the eastern United States. The 

importance of red and white oak forests as compared to other oak forests is unknown, but 

could be linked to the corresponding forest understory, abundance of leaf litter, underlying soil 

characteristics, or increased acorn production. Acorns produced by oak trees are an important 

source of food for small rodents, including white-footed mice. Abundance of reservoir 

competent white-footed mice and other small mammals are linked to availability of nutritious 

food that promotes winter survival and reproduction (Jones et al. 1998a; Ostfeld 2011). Acorn 
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masts have been linked to abundance of reservoir hosts, ticks, and elevated Borrelia burgdorferi 

infection prevalence (Jones et al. 1998b; Ostfeld et al. 2001; Ostfeld et al. 2006). Nevertheless, 

the association with residence in an area dominated by red and white oak forest may solely 

reflect residence in deciduous forest in general, as red and white oak forest is the most 

common type of deciduous forest in Howard County. Future effort should be directed at 

elucidating the potential association of red and white oak forests with elevated risk. 

Examination of soil as an explanatory variable will help tease apart the importance of soil 

underlying the forest from the forest composition itself. GIS datasets have become more 

refined in recent years, as has computing power, which will promote specificity in 

understanding of the mechanism through which land cover and forest types are associated with 

disease risk.  

Of all forest indices assessed at the census block group level, only the proportion of the 

census block group classified as forest remained significantly associated with human illness 

after adjusting for household environmental characteristics and census block group differences 

in socio-demographic characteristics. Presence of forest near homes has been associated with 

tick abundance and human risk, although the proportion of land in a census block group 

classified as forest has not previously been evaluated with respect to human risk (Maupin et al. 

1991; Glass et al. 1995; Dister et al. 1997; Jackson et al. 2006a). This finding underscores the 

potential importance of the broader neighborhood ecosystem structure in determining human 

risk, independent of the environmental conditions at the home itself.  
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Associations with forest patch size and edge metrics differed between Project 1 and 

Project 2, despite use of the same landscape fragmentation calculation method. Specifically, 

high-risk clusters identified in Project 1 were characterized by proportionally more edge and 

smaller forest patches. In contrast, this project demonstrated that homes with reported human 

Lyme disease were more often in areas with larger forest patches and more total forest edge. 

Nevertheless, those associations disappeared in multivariable models with proportion of the 

census block group classified as forest, suggesting volume of forest may be more important 

than forest structure with respect to human disease risk. Association between larger forest 

patches and increased human disease risk was also found by Brownstein et al. (2005) and Diuk-

Wasser et al. (2012), but Allan et al. (2003) found lower blacklegged tick abundance in larger 

forest patches. Jackson et al. (2006) identified a specific forest to herbaceous cover edge index 

to be associated with increased of human Lyme disease incidence in road bounded polygons 

(Jackson et al. 2006a); whereas, in the current analysis type of edge was unspecified. Conflicting 

results in the literature may result from varied fragmentation measurement methods, different 

spatial units of aggregation, different outcome measures (human vs. entomologic), and 

univariate vs. multivariable analysis methods. In this study, forest fragmentation was calculated 

using land use classified as forest, which inherently is land classified as not belonging to 

predominantly residential areas. This measurement method was unable to address more fine-

scale forest structure within census block groups or among smaller patches. The role that 

landscape fragmentation plays in increasing human risk remains to be elucidated, although 

these fragmentation indices did explain some portion of the variation in risk across space in 

Howard County.  
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Household Lyme disease risk was higher in census block groups with lower population 

growth and higher average home value. Lower population growth may indicate a more stable 

forest ecosystem, rather than one subject to clearing for development. The impact of forest 

clearing on disease risk has not been examined; however, areas with active or recent 

construction may be avoided for recreational purposes as compared to pristine forest. Jackson 

and colleagues (2006) published the only other study to include median income in census block 

group. Their goal was solely to control for potential differences in access to health care, rather 

than to examine income as a potential contextual-derived variable associated with reported 

Lyme disease (Jackson et al. 2006a). Clearly, home value itself does not predict Lyme disease 

risk, but is a surrogate for other landscape and behavioral characteristics that are difficult to 

ascertain, possibly including whether residential land includes or is bordered by forest.  

Land use and land cover are often lumped together in datasets frequently used in GIS-

based analyses. Yet, these two mechanisms by which to classify the landscape may be 

independently relevant to Lyme disease risk.  Specifically, analyzing land cover helps 

understand how dominant vegetation types may foster the enzootic cycle. In contrast, land use 

data provide information with respect to the dominant purpose of the land. This analysis 

demonstrated an absence of a synergistic or antagonistic multiplicative effect between land use 

and land cover types at the household and human disease risk. Nevertheless, synergism of 

these effects is still possible on an additive scale. 

Group-level variables considered in multilevel analysis can be conceived of as integral 

variables or derived variables (Diez Roux 2002; Diez Roux and Aiello 2005). Integral variables 
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describe a characteristic of the group itself, whereas derived variables represent aggregation of 

individual-level data. In our analysis, forest indices assessed at the census block group are not 

only integral variables, but can be conceived of as biologic risk factors, as they may directly 

modify the risk in the environment. In contrast, the socio-demographic variables assessed at 

the census block group are integral variables, and though may be explanatory factors, are not 

biologic risk factors. They are surrogates for the context in which people reside, and may 

represent differences in behavior and interaction with the environment.  

Limitations 

This study was subject to several limitations. Misclassification of households with 

respect to the outcome of Lyme disease during the study period could have occurred through 

reporting and surveillance practices, as well as geocoding limitations described in Chapter 2. 

This potential misclassification is unlikely differential with regard to environmentally-derived 

exposure variables; however, outcome misclassification could be differential across space due 

to differences in clinician reporting practices. If people residing in specific parts of the county 

were more likely to seek health care from a clinician more inclined to report cases of Lyme 

disease to the health department, differential outcome misclassification across space could 

occur.  Furthermore, differential outcome misclassification could be linked to higher income 

and education. If wealthier and better educated people had better access to medical care and 

were more likely to have a case of Lyme disease both diagnosed and reported, this could serve 

to overestimate the association of these variables with Lyme disease. Nevertheless, by 

controlling for the differences in average income and education across census block groups, we 

may have minimized the impact of this potential bias away from a null association.  
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Misclassification of explanatory environmental and socio-demographic variables was 

possible. In these analyses, location of residence was assumed to be the location of infection, 

and may not be accurate for some cases. Misclassification of exposure location was likely non-

differential across space, resulting in a presumed bias toward null associations with disease risk 

according to location of residence. Moreover, significant associations identified in this project 

may have otherwise been stronger absent this type of misclassification, assuming common 

epidemiologic knowledge regarding directionality of bias applies to spatial analyses (Rothman 

et al. 2008). 

Misclassification of land use and land cover assessed at the household could have 

occurred in several ways, including misclassification due to spatial error in geocoded house 

placement, consideration of the land use and land cover class at only one point location (pixel), 

and error in the creation of the datasets themselves. Land use pixel classifications were 

inherently determined in consideration of the broader context of the neighboring environment 

(i.e., low-density development as a class does not specifically represent density at only one 

pixel). Consequently, placement error of a house into a neighboring pixel would likely have had 

resulted in minimal bias. Presumably, this misclassification would be non-differential with 

respect to Lyme disease status; however, because there are more than two categories for land 

use and land cover, potential direction of non-differential bias is unknown (Rothman et al. 

2008). Measurement error in census block group assignment and in calculation of forest indices 

were also possible, and would also likely be non-differential with respect to disease status.   
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Assumptions of multilevel (or mixed effect, hierarchical or conditional) models can be 

difficult to verify (Hubbard et al. 2010). Population average (or “marginal”, or GEE) approaches 

to dealing with non-independence between observations are generally more robust to 

misspecifications (Hanley et al. 2003; Hubbard et al. 2010). Nevertheless, effect estimates from 

the final multilevel model were compared to those from a GEE model; overall findings were not 

substantially different.  

Multilevel analysis can be a powerful tool in epidemiology, but is frequently limited by 

lack of foresight to collect appropriate data at different levels and lack of understanding of the 

most appropriate groups to model (Diez-Roux 2000). In this study, census block group data 

were not collected specifically to assess census block group effects in association with Lyme 

disease, and thus our ability to define census block group-level effects for Lyme disease was 

hampered. Census block group was used as the neighborhood in this study. Unfortunately, the 

neighborhood context in which people reside, how it affects Lyme disease risk, and variability 

across space is likely best described by other (unknown) boundaries. Lastly, although ideal 

multilevel models of Lyme disease risk in an endemic area would include three levels 

(individual, household, and neighborhood), this analysis lacked individual-level data. Individual 

differences in behavior (e.g., propensity for gardening, jogging in woods, or preventive 

measures used) or more specific residential landscape characteristics (e.g., property size or 

forest border) likely account for most variation in risk of Lyme disease but were absent from 

this analysis.  
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Strengths 

This study was the first to assess environmental and socio-demographic factors with risk 

of human Lyme disease on a sub-county scale. The study population consisted of all households 

in one endemic county, and was thus not subject to substantial selection bias. This robust 

sample size also contributed to high power in a multilevel analysis. Under-powered studies can 

be a problem; power in multilevel analysis depends on the number of groups and the number 

of observations within each group. Simulation studies have demonstrated that a minimum of 

50 groups and 30 observations per group are needed to assure model convergence (Maas and 

Hox 2005; Moineddin et al. 2007).  

Restriction of the study population to a single county minimized the impact of 

surveillance differences across counties and states that could occur as detailed in the 

Background and Project 1. Additionally, availability of household-specific information for non-

case households allowed for more fine-scale analyses than possible with case count totals 

within administrative boundaries. Case count aggregation is typical with notifiable diseases and 

corresponding analysis is purely ecologic.  

Conclusions 

Without a human vaccine, greater understanding of the underlying causes of spatial 

variation in risk is necessary to identify and implement appropriate methods of disease 

prevention. Prevention of Lyme disease can theoretically occur at individual, household, or 

community levels. In this novel approach to understanding the epidemiology of human Lyme 

disease, the utility of multilevel analyses was evident. With respect to Lyme disease, multilevel 
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analyses have the ability to disentangle the importance of various levels with respect to risk.  

This type of analysis may help better understand the level at which various factors act on 

disease risk, and in turn inform the appropriateness of prevention methods that act on 

different levels.  

This analysis was the first to apply to multilevel model structure to Lyme disease, a 

method more often used in the social sciences than the health sciences.  Importantly, much 

multilevel research does not address spatial autocorrelation and its impact on fixed effect 

findings or on interpretability of findings at higher levels. Few authors have bridged the 

disciplines that commonly employ either multilevel analysis or spatial analysis; many 

methodologic questions remain (Chaix et al. 2005a; Chaix et al. 2005b; Merlo et al. 2005).  One 

major question is of the best measure to evaluate the importance of the group variable, the 

Pseudo ICC as evaluated here, or the median odds ratio, a measure which translates the 

variance to the more interpretable odds ratio scale (Merlo et al. 2006).  

Further analyses of risk factors for Lyme disease should be directed at defining what 

scale of “neighborhood” is most important in describing disease risk. For example, one could 

assess characteristics in buffers of increasing sizes around case and control homes, and 

determine where associations with disease risk are maximized. Moreover, it would be 

informative to examine random slopes in addition to random intercepts across neighborhoods 

to determine whether fixed effect associations differ across space or are relatively uniform. The 

possibility remains that risk factors are non-uniform in distribution or effect across space, even 
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within an endemic county; this variability could provide insight into why consistent factors have 

not been well-defined in the decades since the discovery of Lyme disease.  

Although the household and census block group-assessed environmental and socio-

demographic factors utilized as explanatory variables in this study explained some of the spatial 

variation in Lyme disease risk, unmeasured factors also contributed to Lyme disease risk. 

Additional assessment of socio-demographic factors such as income, education, and landscape 

factors obtained at the individual or household level is ideal. Some important factors may 

include more specific landscape design at each house (e.g., manicured space, sunny vs. shady 

areas, gardens), property size, and percent forest in a smaller “neighborhood”, human outdoor 

behavior, and the unmeasured spatial variation in both reservoir hosts and tick abundance.  

Relatively few studies have examined variables that assess human interaction with the 

environment—most focus on landscape characteristics and use of personal protective 

measures (Orloski et al. 1998; Smith et al. 2001; Connally et al. 2009; Finch et al. 2014). These 

studies have demonstrated that increased time spent outside, doing yard work (including 

performing brush clearing activities), using tools (electrical, gasoline, or hand-powered), and 

having children who participate in outdoor sports are associated with increased Lyme disease 

risk. Broad, well-powered studies have not been conducted to better understand how human 

behavior patterns contribute to increased risk; such information could greatly help refine 

prevention messages.  
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TABLES 

Table 3.1. Howard County households according household- and census block group-level 

characteristics and reported Lyme disease during 2001-2011 

Variable type Variable 

Houses with Lyme 

disease* 

N=1,672 

Houses without 

Lyme disease** 

N=92,631 

Household-level variables 

Land use 

n (%) 

Low-density development 565 (33.8) 19,694 (21.3) 

Medium-density development 738 (44.1) 35,802 (38.7) 

Urban/high-density development 270 (16.2) 28,390 (30.7) 

Herbaceous/agriculture 36   (2.2) 4,906   (5.3) 

Forest 63   (3.8) 3,834   (4.1) 

Land cover 

n (%) 

Urban 625 (37.4) 41,009 (44.3) 

Herbaceous/agriculture 608 (36.4) 32,641 (35.3) 

Red-white oak forest 271 (16.2) 9,009   (9.7) 

Chestnut oak forest† 80   (4.8) 5,428   (5.8) 

Other deciduous forest† 49   (2.9) 2,656   (2.9) 

Mixed deciduous/evergreen forest† 39   (2.3) 1,860   (2.0) 

Census block group-level variables 

Forest 

fragmentation 

in census block 

group 

Mean (IQR)‡ 

Proportion classified as forest 0.272 (0.184) 0.245 (0.162) 

Mean forest patch size (km2) 0.204 (0.187) 0.176 (0.138) 

Mean forest edge per forest patch (m) 3,069 (1,687) 2,835 (1,594) 

Mean forest edge per total land area 

(ratio*1,000)  

1.359 (0.562) 1.339 (0.566) 

Mean forest edge per forest area 

(ratio*1,000) 

5.93  (3.52) 6.50  (3.70) 

Socio-

demographics 

in census block 

group (2009 

estimates) 

Mean (IQR) ‡ 

Median age (years) 39.8 (8.2) 38.8 (8.1) 

Proportion with ≥ bachelor’s degree   0.389 (0.076) 0.370 (0.098) 

Population density (# people per mi2)  2,206  (2,607) 2,674 (2,761) 

Population growth (% change 2000-2009)  1.77  (2.30) 1.85 (2.40) 

Per capita income ($) 48,767 (15,353) 45,230 (15,440) 

Median household income ($) 121,803(37,244) 111,705 (54,550) 

Median home value ($) 500,567 (273,858) 
440,545 

(255,611) 

*n=1,649 for forest size and edge variables in census block groups (missing data=no pixels were classified as forest) 

**n ranges between 91,449 for forest size and edge variables, 92,472 for socio-demographic indices (data 

unavailable for four census block groups, 92,626 and 92,603 for land use and land cover, respectively (some 

households in pixels with no data). 

†Collapsed to one category (“other forest”) for regression analyses 

‡IQR = interquar`le range
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Table 3.2. Univariate single level fixed effect associations between land use, land cover, forest indices and socio-demographic indices 

and household risk of Lyme disease, Howard County, Maryland 

Variable type Variable Variable specification* Odds 

ratio  

95% CI** p-value 

Land use  Low-density development 3.02  2.61-3.49 <0.001 

 Medium-density development 2.17 1.88-2.49 <0.001 

 Forest 1.73 1.31-2.28 0.001 

 Herbaceous/agriculture 0.77 0.55-1.10 0.146 

 Urban/high-density development ref   

Land cover  Herbaceous/agriculture 1.22  1.09-1.37 0.001 

 Red-white oak forest 1.97 1.71-2.28 <0.001 

 Other forest 1.11 0.93-1.32 0.240 

 Urban ref   

Forest 

fragmentation 

indices 

Percent area classified as forest IQR (16.2% increase in percent of total land in 

census block group) 

1.30  1.22-1.38 <0.001 

Forest edge per total land area  IQR (0.57 increase in ratio of edge to area*1,000) 1.05  0.99-1.11 0.088 

Forest edge per forest patch IQR (1,594 m) 1.13  1.08-1.17 <0.001 

Mean forest patch size IQR (0.14 km2) 1.16  1.12-1.21 <0.001 

Forest edge per forest area IQR (3.74 increase in ratio of edge to area*1,000)  0.76  0.71-0.82 <0.001 

Socio-

demographic 

indices 

Population density IQR (2,761 people per mi2) 0.74  0.69-0.79 <0.001 

Per capita income IQR ($15,314 increase) 1.58  1.47-1.69 <0.001 

Percent population growth 2000-2009 IQR (2.4% increase in growth) 0.96  0.92-1.02 0.165 

Median household income IQR ($54,550) 1.70  1.56-1.85 <0.001 

Median home value IQR ($255,611) 1.64  1.54-1.76 <0.001 

Median age IQR (8.1 years) 1.33  1.23-1.43 <0.001 

Percent of population ≥ bachelor’s 

degree 

IQR (9.84% increase in % population) 1.23  1.17-1.30 <0.001 

*Land use and land cover were each class variables with reference group indicated (ref); continuous variable associations displayed per interquartile range 

(IQR) unit increase 

**95% confidence interval 
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Table 3.3. Multivariable Model 1: multilevel and single level (fixed effects only) associations between land use and land cover 

classification at the household location and household risk of Lyme disease, Howard County, Maryland 

 

 

 

 

 

 

 
                

 

*Adjusted odds ratio, reference group indicated (ref) 

**95% confidence interval  

Variable 

type 

Variable specification Multilevel model Single level model 

aOR* 95% CI** p-value aOR* 95% CI** p-value 

Land use Low-density development 2.12  1.76-2.57 <0.001 2.78  2.39-3.24 <0.001 

Medium-density development 1.96  1.68-2.30 <0.001 2.10 1.83-2.42 <0.001 

Forest 1.40 1.04-1.87 0.025 1.55 1.17-2.05 0.002 

Herbaceous/agriculture 0.67  0.46-0.97 0.033 0.74 0.52-1.05 0.092 

High-density development/urban ref   ref   

Land cover Herbaceous/agriculture 0.99  0.86-1.15 0.909 1.10  0.98-1.23 0.126 

Red-white oak forest 1.45  1.22-1.71 <0.001 1.60 1.38-1.86 <0.001 

Other forest 1.02  0.85-1.23 0.805 0.99 0.83-1.18 0.908 

Urban ref   ref   
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Table 3.4. Multivariable Model 2: multilevel and single level (fixed effects only) associations between census block group variables 

and household risk of Lyme disease, Howard County, Maryland  

Variable type Variable Variable specification* 
interquartile range  

Multilevel model Single level model 

aOR** 95% CI† p-value aOR** 95% CI† p-value 

Forest 

fragmentation 

indices 

Percent classified as forest 16.2% 1.43 1.12-1.84 0.005 1.44  1.24-1.67 <0.001 

Mean forest patch size  0.14 km2 0.98 0.87-1.10 0.673 0.98 0.92-1.05 0.529 

Forest edge per forest area 3.74 (ratio*1,000) 1.12 0.94-1.34 0.188 1.12  1.00-1.26 0.045 

Forest edge per total area 0.57 (ratio*1,000) 0.93 0.81-1.07 0.320 0.96  0.87-1.05 0.327 

Socio-

demographic 

indices 

Population density 2,761 people 0.96 0.81-1.14 0.608 0.95 0.84-1.08 0.423 

Percent population growth  2.4% 0.81 0.73-0.91 <0.001 0.82  0.76-0.88 <0.001 

Median home value $255,600 1.56 1.31-1.86 <0.001 1.52 1.37-1.68 <0.001 

Median age 8.1 years 1.03 0.86-1.22 0.779 1.03  0.92-1.15 0.634 

Percent ≥ bachelor’s degree 9.8% 1.10 0.99-1.22 0.073 1.10  1.03-1.18 0.007 

*Associations displayed per interquartile range (IQR) increase 

**Adjusted odds ratio 

†95% confidence interval 
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Table 3.5. Multivariable Model 3: multilevel and single level (fixed effects only) associations of both household and census block 

group variables and household risk of Lyme disease, Howard County, Maryland 

  Variable Variable specification* Multilevel model Single level model 

aOR** 95% CI† p-value aOR** 95% CI† p-value 

Land use Low-density development  1.85  1.52-2.26 <0.001 2.05  1.70-2.47 <0.001 

Medium-density development  1.80 1.54-2.12 <0.001 1.78  1.53-2.07 <0.001 

Forest  1.29  0.96-1.77 0.089 1.31  0.98-1.74 0.072 

Herbaceous/agriculture  0.62  0.43-0.90 0.012 0.63  0.44-0.91 0.013 

High-density development/urban  ref   ref   

Land cover Herbaceous/agriculture  0.91  0.78-1.06 0.235 0.94 0.82-1.08 0.411 

Red-white oak forest  1.32  1.11-1.57 0.002 1.35  1.14-1.59 <0.001 

Other forest  0.98  0.81-1.17 0.788 0.95 0.79-1.10 0.536 

Urban  ref   ref   

Forest 

fragmentation 

indices 

Percent classified as forest IQR (16.2%) 1.36 1.07-1.73 0.012 1.30  1.11-1.51 <0.001 

Mean forest patch size IQR (0.14 km
2
) 0.93 0.83-1.04 0.201 0.98 0.91-1.05 0.560 

Forest edge per forest area IQR (3.74 ratio*1000) 1.03 0.87-1.21 0.772 1.03 0.91-1.15 0.172 

Forest edge per total area IQR (0.57 ratio*1000) 0.95 0.82-1.09 0.426 0.97  0.88-1.07 0.540 

Socio-

demographic 

indices 

Population density IQR (2,761 people) 1.02 0.86-1.22 0.790 1.02 0.90-1.17 0.721 

Percent population growth  IQR (2.4%) 0.87 0.78-0.97 0.010 0.87  0.81-0.93 <0.001 

Median home value IQR ($255,600) 1.46 1.21-1.75 <0.001 1.37 1.22-1.55 <0.001 

Median age IQR (8.1 years) 0.97 0.82-1.15 0.707 0.98  0.87-1.10 0.689 

Percent ≥ bachelor’s degree IQR (9.8%) 1.13 1.01-1.25 0.027 1.10  1.02-1.18 0.012 

*Land use and land cover were class variables with reference groups indicated (ref); continuous variable associations displayed per interquartile range (IQR) 

increase 

**Adjusted odds ratio 

† 95% confidence interval 
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Table 3.6. Covariance and fit of multilevel models of Lyme disease risk, Howard County, Maryland 

Model characteristic 
Model 0: random 

intercept only 

Model 1: 

household only 

Model 2: census block 

group only 

Model 3: household + 

census block group 

Covariance parameter 0.2966 0.1741 0.1006 0.0867 

P-value of covariance 

parameter* 
<0.0001 <0.0001 <0.0001 <0.0001 

Pseudo-intraclass correlation 

coefficient  
0.083 0.050 0.030 0.022 

AIC** 16,800 16,384 16,245 16,118 

*P-value of likelihood ratio test that covariance parameter is equal to 0 

**Akaike’s information criterion 
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FIGURES 

 

 

 

 

 

 

 

Figure 3.1. Map of Maryland with Howard County indicated by darker shading 
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Figure 3.2.  Residual variation in risk across census block groups given different covariates, 

Howard County, Maryland, 2001-2011*†   

*Census block groups in red indicate significantly elevated variance (p < 0.05) of the random intercept compared to 

average, green significantly lower variance compared to average, and yellow, not statistically different than 

average. Panels depict this variation given a) null model with no covariates, b) Model 1 with household land use 

and land cover only, c) Model 2 with census block group covariates only, d) Model 3 with both household and 

block group covariates. 

†Census block groups in white were excluded from analyses because 2009 es`mates for socio-demographics were 

unavailable.   
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CHAPTER 4: PROJECT 3 
 

 

 

4. DEER DENSITY, BLACKLEGGED TICK INFESTATION ON DEER, AND HUMAN LYME 

DISEASE RISK 

 

INTRODUCTION 

Over 30,000 cases of Lyme disease are reported each year in the United States; nearly 

all cases are from the northeastern, mid-Atlantic and north-central states (Centers for Disease 

Control and Prevention 2013a). Risk of acquiring Lyme disease varies across space even within 

endemic areas; a demonstration of this variation within one county is provided in Project 1.  

Reasons for fine-scale differences in the enzootic cycle or in human interaction with the cycle 

are not well understood (Wilson 1998; Killilea et al. 2008). An exploration of possible 

associations between land use, land cover, census block group-level landscape fragmentation, 

census block group socio-demographic factors and risk of Lyme disease in the same county was 

presented in Project 2.  

In addition to the environmental factors examined in Projects 1 and 2, the abundance 

and infection prevalence of mammals and ticks in the environment are likely critical to variation 

in risk across space. White-tailed deer are an important host for adult Ixodes scapularis ticks 

and are critical to tick reproduction and geographic dispersal (Figure 4.1.) (Piesman et al. 1979; 

Wilson et al. 1990b; Barbour 1998). Accordingly, deer population reduction has been suggested 

as a possible Lyme disease prevention measure (Kilpatrick and Walter 1997; Hayes and Piesman 
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2003; Stafford 2007). Although deer are a preferred host for adult blacklegged ticks and most 

observational studies have shown some correlation between deer abundance and tick 

abundance, others have found no association (Piesman et al. 1979; Anderson and Magnarelli 

1980; Schulze et al. 1984; Wilson et al. 1985; Wilson et al. 1990a; Daniels et al. 1993b; Stafford 

1993; Duffy et al. 1994; Daniels and Fish 1995; Ginsberg and Zhioua 1999; Schulze et al. 2001a; 

Rand et al. 2003; Ginsberg et al. 2004; Jordan and Schulze 2005). Intervention studies of the 

impact of deer population reduction on tick abundance have demonstrated that near complete 

or complete elimination of deer in isolated settings will have a substantial impact on 

reproduction of blacklegged ticks (Wilson et al. 1984; Wilson et al. 1988; Rand et al. 2004). 

More moderate deer reduction efforts appear to have non-uniform effects on tick abundance 

(Deblinger et al. 1993; Stafford et al. 2003; Jordan et al. 2007). The effect of deer reduction may 

be buffered by increased tick abundance on remaining deer, but these complex data are 

difficult to generalize.  

The associations between deer density and tick abundance with human Lyme disease 

risk are also not well-understood (Figure 4.1.). The role of deer density and tick abundance on 

deer with respect to human disease risk is separated by two years of blacklegged tick life cycle 

and multiple other factors, including density of infected reservoir hosts and density of nymphs, 

which contribute to ecological risk of disease.  No studies have examined the spatial differences 

in deer density in association with human Lyme disease risk at any spatial scale. Currently, 

insufficient evidence exists to determine an association between deer density and human Lyme 

disease risk. Consequently, there is a lack of understanding as to whether moderate community 

deer management programs may have any effect on the spatial variation in risk of Lyme disease 
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in those areas. Abundance of blacklegged ticks on deer has been associated with human Lyme 

disease risk at the county level and between communities >20 km apart (Wallis et al. 1978; 

Kitron and Kazmierczak 1997). In areas with measured deer density and tick infestation on deer, 

evaluation of spatial associations between deer density, tick abundance, and human Lyme 

disease risk are possible, but have not been conducted on a sub-county scale.   

As a complement to Projects 1 and 2, this project examines the role of deer density and 

tick infestation on deer in spatial variation in human Lyme disease risk in a single inland county. 

The goals of this project were to examine the associations between 1) deer density and tick 

infestation on deer, 2) deer density and risk of human Lyme disease, and 3) tick infestation on 

deer and risk of human Lyme disease. 

METHODS 

Study location and deer density estimates 

Maryland consistently reports a high incidence of human Lyme disease (Bacon et al. 

2008; Centers for Disease Control and Prevention 2013a). This study used data from Howard 

County, Maryland, which is located between Baltimore and Washington D.C. (Figure 4.2.). The 

approximately 250 square miles had a population in 2010 of approximately 287,000  (US Census 

Bureau 2012) and a substantial white-tailed deer population. The Howard County Deer 

Management Program has managed the deer population since 2000, although more informal 

management occurred prior to that time (Howard County Department of Recreation and Parks 

2000). As part of the program, managed hunts and sharpshooting occurred each year at several 

public parks and natural areas to help curb white-tailed deer population growth within the 

County. To assess progress in reducing deer density, the management program annually 
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obtained deer density estimates during winter months in both hunted and un-hunted areas. 

These assessments were conducted using aerial Forward Looking Infrared Radar (FLIR) 

technology, and provided an annual snapshot of an inherently dynamic deer population. Deer 

density estimates in Howard County were first calculated in early 2001; estimates from parks 

across Howard County through early 2011 were examined for this analysis (Figure 4.2.).  

Tick infestation on deer 

Basic information for each deer culled as part of the deer management program 

(including age, sex, date and location of kill, and counts of ticks on the right ear) was extracted 

from paper records. Records pre-date the official beginning of the management program in 

2000, as some deer removal occurred through the county government, in the early winter 

months of 1998, and Fall 1999-Winter 2000. Data on tick counts in years prior to deer density 

estimates were included to maximize sample size; analyses were conducted with cumulative 

rather than year-specific data. During the Fall 2012-Winter 2013 deer management season, in 

addition to counting the number of ticks on the right ear of each culled deer, ticks were placed 

in ethanol and shipped to the Centers for Disease Control and Prevention (CDC), Division of 

Vector-Borne Diseases in Fort Collins, Colorado, for species identification and pathogen testing. 

Pathogen testing was performed with a multiplex real-time polymerase chain reaction (PCR) 

assay designed to detect several tickborne pathogens (Hojgaard et al. 2014).   

Household address and Lyme disease information 

Potential Lyme disease cases that occurred during 2001-2011 were reported by 

clinicians and laboratories, and subsequently investigated and classified according to 
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standardized case definitions by local health officials. Cases occurring 2001-2007 were classified 

according to the case definition established in 1996 (Council of State and Territorial 

Epidemiologists 1996); cases occurring 2008-2011 were classified according a revised case 

definition that took effect in 2008 (Council of State and Territorial Epidemiologists 2008). For 

this study, the Maryland Department of Health and Mental Hygiene (MDHMH) provided Lyme 

disease case information that was stripped of patient age and sex, but contained residential 

address. 

Address for all residential structures as of 2004 was available from the Howard County 

Geographic Information Systems Division (n=94,308). Households present in Howard County in 

the 2004 geographic shapefile were assumed to be the households present during the entire 

study period, 2001-2011. Residential addresses of patients were cleaned for misspellings and 

typographical errors with Google Maps and geocoded using the Howard County household 

address file within ArcGIS v.10.1 (Environmental Systems Research Institute, Redlands, CA).  

Household Lyme disease classification was based on confirmed and probable cases reported to 

the health department during 2001-2011; households without at least one reported case of 

Lyme disease during the study period were considered to have no human Lyme disease. Use of 

case information for this study was approved by Institutional Review Boards at the Centers for 

Disease Control and Prevention, MDHMH, and Colorado State University (Appendix 1.0). 
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Analytic methods 

Descriptive analyses 

Differences in the number of ticks found on the right ear of hunted deer were compared 

across parks and over time with Kruskal-Wallis tests, a non-parametric method for testing 

whether more than two samples arise from the same distribution. Difference in tick infestation 

by sex of deer was assessed by the Wilcoxon Rank-Sum test, a non-parametric method for 

testing whether two samples arise from the same distribution (Ott and Longnecker 2001).  

Regression analyses 

Regression models were used to examine associations between: 1) tick infestation on 

deer and deer density in Howard County parks; 2) deer density and human Lyme disease risk 

among homes surrounding parks; and 3) tick infestation on deer and human Lyme disease risk 

among homes surrounding parks.   

Data restrictions  

Regression models used information from areas of Howard County where relevant data 

were available. Deer density data were available only for specific parks and natural areas. 

Annual aerial estimates of deer density were captured on a single day and likely subject to 

substantial measurement error. To minimize the impact of this measurement error on analyses, 

analyses were restricted to parks with at least five years of deer density estimates during 2001-

2011. Furthermore, a cumulative variable (i.e., median deer density during the study period) 

was used for analyses. A summary of several measurements may be a more meaningful 
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representation of deer density during the study period and should minimize the impact of a 

single measurement on findings.    

To determine associations between tick infestation on deer and both deer density and 

human Lyme disease, parks were restricted to those with data regarding tick infestation on 

culled deer. Data were limited further to measurements on deer culled during October of any 

year. During October, questing behavior of adult blacklegged ticks peaks (Stafford 2007) and 

number of ticks on deer were most likely to be non-zero.  

For analyses related to human Lyme disease risk, a half-mile buffer was created around 

the parks to capture all homes in close proximity to each park that may be “exposed” to the 

relative deer density and tick infestation in those parks. This buffer was chosen due to the 

relatively limited home range (≤ one mi2) of white-tailed deer in suburban environments 

(Sparrowe and Springer 1970; Kilpatrick and Spohr 2000; New Jersey Department of 

Environmental Protection 2010).  

Overview of regression models 

For regression analysis to examine the association between tick infestation on hunted 

deer and deer density in each park, no specific direction of association was hypothesized 

because of conflicting information in the existing published literature. This analysis used 

individual hunted deer in Howard County as the unit of observation. Median deer density in a 

park was the independent variable and was examined both as a continuous and categorized 

variable. Tick counts on the right ear of individual deer were the outcome measure in Poisson 

and negative binomial regression models appropriate for count data.   
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For analysis of the association between deer density and human Lyme disease risk, the 

primary hypothesis was that human Lyme disease risk among homes surrounding parks would 

be higher around parks with higher average deer density. Individual households within the 

buffers around parks were used as the units of observation in logistic regression models. The 

primary deer density variable examined was categorized by quartiles of median density.  

For models of tick infestation on deer and risk of human Lyme disease among homes 

surrounding parks, the primary hypothesis was increased odds of Lyme disease among homes 

with increasing tick infestation on deer in nearby parks. Mean tick infestation over time was the 

primary independent variable assessed; additionally, given lack of a priori knowledge of what 

measure of tick infestation may be most appropriate, other variables were examined. Logistic 

regression models were used to assess odds of Lyme disease among homes according to 

infestation of ticks on deer in the proximal park.  

Selection of covariates 

In the models used to evaluate the association between tick infestation on deer and 

deer density, the sex and the age of deer, and the year culled were included a priori. In human 

Lyme disease models, potential covariates included land use and land cover data, forest 

fragmentation indices, and census block group socio-demographic information as assessed in 

Projects 1 and 2. A covariate was considered a confounding variable if its presence changed the 

odds ratio of interest by 10% or more (Maldonado and Greenland 1993).   

A dataset describing land use was obtained from the State of Maryland Department of 

Planning (resolution: one meter). A land cover dataset was obtained from the United States 
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Geological Survey Gap Analysis Program (resolution: 30 meters). Landscape fragmentation was 

calculated using Patch Analyst, a FRAGSTATS™ software add-in to ArcGIS (Rempel et al. 2012). 

Census block group data (including year 2000 block group boundaries, 2009 population 

estimates, 2009 estimates for income and home value variables, and 2000-2009 population 

growth estimates) were obtained from the Environmental Systems Research Institute 

(Redlands, CA). 

Land use and land cover categories were collapsed into broad, biologically-relevant 

categories for use as potential covariates in analysis. Final land use categories were the 

following: low-density development (including very low-density development classes, in 

addition to areas of at least 90% single family or duplex dwellings, with lot sizes of at least one-

half acre), medium-density development (lot sizes between one-eighth and one-half acre), high-

density or urban development (more than eight dwelling units per acre or other urban non-

residential uses), herbaceous or agricultural use (e.g., parks, pastures, cropland, and brush), and 

forest (deciduous, evergreen, or mixed forest types), herbaceous and agricultural (pasture, row 

crops, parks). Final land cover categories were the following: urban (impervious surfaces), 

herbaceous or agricultural (i.e., row crops, cultivated trees, pasture), red oak and white oak 

forest, and all other forest types (primarily other deciduous forests types as well rare 

deciduous/evergreen mixed forests). Environmental factors from land use and land cover 

datasets were extracted to ascertain classification at each geocoded household point location. 

Additionally, the Tabulate Area tool in ArcGIS was used to calculate the proportion of total area 

inside each park and buffer associated with each land use and land cover class.  
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Forest fragmentation indices were calculated in park and surrounding buffer areas; 

variables assessed were mean forest patch size and density of forest edge in relation to total 

area. Census block group variables including median home value, median household income, 

per capita income, population density, and population growth were assigned to each household 

based on its geolocated census block group assignment. Use of four-poster tick control devices 

(in place in a single park during most of the study period) was also examined as a potential 

covariate. 

Model selection 

For analysis of tick infestation on deer and deer density, models assessed were 

unadjusted, using different link functions appropriate for counts (i.e., Poisson, negative 

binomial), and adjusted for a priori covariates. For logistic regression models of human Lyme 

disease risk, final adjusted models were selected manually by assessing impact of potential 

confounders on the association of interest. Collinearity and instability caused by small cells 

were assessed and taken into consideration when selecting final adjusted models. Deviance 

residuals were examined to assess fit and identify outlying observations; logistic model fit was 

additionally assessed by Deviance, Pearson and Hosmer and Lemeshow goodness-of-fit tests 

(Hosmer and Lemeshow 2000; Hoffman 2004). 

Due to the potential for non-independence of observations among deer hunted from 

the same park and human Lyme disease among households around each given park, the need 

to account for the potential correlation among observations was evaluated. Generalized 

estimating equations (GEE) with an exchangeable correlation structure were used for this 
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purpose; this method contrasts with the multilevel models presented in Project 2. Here, 

description of between-park variance was not of interest itself, only the fixed effect estimates. 

Thus, GEE was selected as an appropriate method to account for non-independence among 

observations (Hanley et al. 2003; Hubbard et al. 2010).  

All models were fit using SAS software v.9.3 (SAS Institute, Cary, NC). Poisson and 

negative binomial models were implemented in the GENMOD procedure. Logistic models were 

constructed in the LOGISTIC procedure. All GEE models were implemented in the GENMOD 

procedure with a repeated statement, using an exchangeable correlation structure between 

observations associated with each park. Quasi-likelihood criterion (QIC) (Pan 2001) and 

covariance parameters were compared between GEE models fit with exchangeable correlation 

structures and those with independent structures to assess need for GEE models. Crude and 

adjusted odds ratios (OR and aOR, respectively), 95% confidence intervals (CI), and p-values 

were calculated.  

RESULTS 

Descriptive analyses 

Deer density 

A total of 15 parks (or natural areas) had aerial deer density estimates for at least five 

years during 2001-2011 (Tables 4.1. and 4.2.). Total deer density in all measured areas of 

Howard County ranged from a high of 94.3 deer per mi2 to a low of 9.9 deer per mi2. No 

obvious increase or decrease in density over time was evident (Table 4.1.). Area assessed at 

each site ranged from 0.17 mi2 to 5.35 mi2. Density estimates were highly variable not only 
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between parks but also across years within individual parks (Table 4.2.). The low total county 

density estimate in 2011 was likely due to the lack of an aerial estimate from one park with very 

overabundant deer that had been included in years past, rather than a true county-wide 

decrease in deer density (Table 4.1.).  

Deer culled through deer management program 

From early Winter 1998 through the Fall 2012 - Winter 2013 (except for Fall 1998 - 

Winter 1999 when deer management did not occur), 2,603 deer were culled in Howard County 

(Tables 4.3. through 4.6.). The number of deer removed ranged from 50 in the abbreviated first 

season to 256 in Fall 2000 - Winter 2001 (Table 4.3.). Nearly two-thirds (1,642/2,603; 63%) of all 

removed deer were female (annual range: 58% - 76% female). Of 2,588 culled deer with 

approximate age information, the mean age was approximately two years (median age: one 

and a half years). During this time 11 different public natural areas or parks were hunted; seven 

were areas with routine deer density measurement and accounted for 2,487 (96%) of all deer 

culled during the study period (Tables 4.3. and 4.4.). 

Tick infestation on culled deer 

Over 15 deer management seasons, 2,353 ticks were counted on the right ear of culled 

deer (Table 4.3.). Nearly all ticks (n=2,247, 95.5%) were counted on deer culled in parks with 

deer density estimates. Cumulatively, there were 0.90 ticks per right ear of culled deer (mean: 

0.92; median: 0; range: 0 - 37 ticks per deer; variance: 7.42). Ticks per culled deer per park 

ranged from 0.32 - 1.07 (Table 4.4.). Tick infestation on deer differed across parks (p<0.001). 

When analyses were restricted to only those deer hunted during October, the peak of the adult 
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blacklegged tick questing season, the means across parks ranged from a low of 0.73 to a high of 

2.63 ticks per hunted deer, but the difference was not statistically significant (p=0.152; Table 

4.6.). Tick infestation on deer also differed across hunting seasons (p=0.013). During October, 

the mean number of ticks per deer varied between years from a low of 0.33 in 2005 to a high of 

3.38 in 2011, with no apparent trend increasing or decreasing trend over time (Table 4.5.). The 

variance in tick abundance by park during October ranged from 2.1 to 41.5 (Table 4.6.); 

maximum ticks per deer by park, during October, ranged from seven to 37. Ticks were two 

times more abundant on male deer as compared to female deer (mean: 1.3 per male deer vs. 

0.7 per female deer; p<0.001).  

Borrelia burgdorferi infection prevalence in ticks -- 2012-2013 season 

All but one tick collected from the right ear of hunted deer during the Fall 2012-Winter 

2013 management season were adult Ixodes scapularis; one adult Amblyomma americanum 

was identified late in the season (February). Of the 284 individual adult I. scapularis tested for 

presence of B. burgdorferi using a multiplex real-time PCR assay (Hojgaard et al. 2014), 35 

(12.3%) were positive (Table 4.7.). The percent of tested ticks that were positive varied across 

the parks from a low of zero (where only one tick was tested) to a high of 17.7% (Table 4.7.). An 

index was created to assess density of infected adult ticks; this index was calculated as the 

number of positive ticks per 100 deer culled. Values for this index ranged from a low of 8.3 to a 

high of 27.9 across parks (Table 4.7.).  



117 

 

Reported human Lyme disease among a subset of Howard County households 

A total of 21,370 homes were located within half-mile radius buffers around 15 selected 

parks. The number of homes in an individual park buffer ranged from 159 to 5,040 homes. 

Overall, at least one reported case of Lyme disease during 2001-2011 occurred in 451 (2.1%) of 

these homes. Cumulative incidence of Lyme disease during the study period varied between 

0.58% of homes to 5.03% of homes around a park (Table 4.6.).    

Association between deer density and blacklegged tick abundance 

Univariate associations 

The association between tick abundance on deer during October and median deer 

density was examined. In addition to median density as a continuous variable (the primary 

explanatory variable of interest), the seven parks with hunting data were also grouped into a 

three-level deer density variable based on median density (≤ 24, 25 - 62, > 63 deer per mi2). A 

visual depiction of the crude association between mean tick abundance and median deer 

density is shown in Figures 4.3 and 4.4. Based upon these figures, an inverse association 

between tick abundance and deer density was expected. 

Three different regression model types were explored: Poisson, overdispersed Poisson, 

and negative binomial models. Variance in tick counts during October (σ2=11.9) exceeded the 

mean (µ=1.4), thus a pure Poisson model was not considered further.    

Table 4.8 displays relative risks (RR) for two deer density variable specifications and 

different model types. In the crude overdispersed Poisson model, median deer density as a 

continuous variable was inversely associated with tick abundance on deer during October (RR 
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per 10 deer per mi2 increase in density: 0.92, 95% CI: 0.84-0.99, p=0.033). Upon examination of 

the three-level class variable for median deer density, the lower two categories of deer density 

(density ≤ 24 deer per mi2 and 25 - 62 deer per mi2) did not differ with respect to counts of ticks 

on deer. In contrast, the highest level of deer density was borderline inversely associated with 

tick abundance on deer compared to the lowest level of deer density (RR: 0.54, 95% CI: 0.28-

1.03, p=0.063). Although the negative binomial model is generally more flexible in handling 

overdispersion than a Poisson model, the Poisson model has a simpler variance structure 

(Gardner et al. 1995). Given that the standard errors did not differ substantially, the simpler 

overdispersed Poisson model was selected for a multivariable model.  

Multivariable model development 

In an adjusted overdispersed Poisson model that accounted for sex and age of deer and 

year of cull, the inverse association between median deer density and tick abundance on deer 

was stronger when compared to unadjusted models, regardless of how deer density was 

specified (RR per 10 deer per mi2: 0.87, 95% CI: 0.81-0.94, p<0.001). Additional adjustment for 

total land area at each location assessed to determine density did not change the strength or 

direction of the association.  

The need to account for non-independence of deer within parks was examined by 

comparing results to those from a generalized estimating equations (GEE) framework using an 

exchangeable covariance structure. The working correlation matrix value of -0.0022 and a 

minimal change in QIC value between the GEE with exchangeable correlation (QIC=207.8) and 

assuming independence between observations (QIC=208.8) indicated no need to account for 
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clustering. Additionally, the magnitude of the relative risk estimates for both deer density 

variable specifications did not change substantively with the GEE framework (Table 4.8.). The 

overdispersed Poisson model without GEE had larger (i.e., more conservative) standard errors 

and thus was considered the final model.   

Seven observations displayed high deviance residuals; these observations had very high 

tick counts. To examine the impact of these outlying values, a multinomial logistic model 

(outcome values of 0, 1, ≥ 2 ticks) and a Poisson model after truncating higher end tick counts 

at 10 were constructed. The findings of the highest deer density associated with the lowest tick 

counts were robust to specification of the outcome variable. The association of tick counts on 

deer and deer density was also assessed using alternate deer density specifications (mean and 

variance), and alternate tick abundance metrics. Mean density was highly correlated with 

median; findings were similar. Parks with the highest average density and lowest tick 

abundance also had the highest variance in deer density estimates over the study period. This 

may indicate that the higher densities reflect more instability in how deer use the environment 

and their accurate quantification. Results from these supplemental analyses are presented in 

Appendices 3.1.-3.3.   

Association of deer density with risk of human Lyme disease 

Univariate associations 

A scatterplot of cumulative incidence of Lyme disease around parks by quartile of 

median deer density is shown in Figure 4.5. Visually, parks with higher average deer density did 

not display higher incidence of Lyme disease in surrounding buffers as was hypothesized. In 
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univariate analyses, with only a fixed effect for quartile of median deer density, there was an 

unexpected trend toward an inverse association between median deer density and risk of 

human Lyme disease. Specifically, the two highest quartiles of deer density were associated 

with lower risk of human disease compared to the lowest quartile of deer density (Q3 OR: 0.37, 

95% CI: 0.23-0.61; Q4 OR: 0.64, 95% CI: 0.52-0.79). However, despite a highly statistically 

significant p-value for trend across quartiles, there was not a clear linear or threshold 

association with reduced human risk across the quartiles; the third quartile of deer density 

displayed a stronger inverse association than the highest quartile.   

Multivariable model development 

Univariate associations of potential covariates with human disease are shown in Table 

4.9.  Potential covariates assessed at the park and buffer could not be included in multivariable 

models because they were collinear with deer density assessed at the park (i.e., all houses 

surrounding a park had the same value for these variables). The final adjusted model contained 

class variables for land use and land cover type at the household location and a dichotomous 

variable for median home value in the census block group. After adjustment for confounding 

factors, there was not a clear association between deer density and human Lyme disease risk, 

although the trend toward lower human risk in areas with higher deer density remained (Table 

4.10.). Specifically, the first and second quartiles were not statistically different from one 

another; the inverse association between the highest deer density level and human disease risk 

was attenuated compared to that of the third quartile of deer density (Q3 OR: 0.49, 95% CI: 

0.30-0.80; Q4 OR: 0.77, 95% CI: 0.60-1.01). 
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In an adjusted GEE model, the exchangeable working correlation matrix was very small 

(0.00031). QIC values for the exchangeable structure (QIC= 4306.8) and for an independent 

structure (QIC=4303.6) were highly similar, indicating minimal need to account for correlation 

among homes given the covariates included. Not surprisingly, accounting for potential 

clustering did not substantially affect statistical significance or interpretation; the first and 

second quartiles did not differ from one another, the third quartile of deer density was 

associated with reduced risk of Lyme disease compared to the lowest quartile of density (OR: 

0.49, 95% CI: 0.32-0.75, p=0.001), and the highest level of deer density was not significantly 

different than the lowest two quartiles with respect to human disease risk (OR: 0.75, 95% CI: 

0.52-1.09, p=0.134; Table 4.10.).  

The final adjusted logistic model without a GEE structure was considered the final 

model. This model displayed moderate goodness-of-fit.  Specifically, the Deviance test indicated 

good fit (p=0.29), although the Pearson test was highly significant (p <0.001); the Hosmer and 

Lemeshow goodness-of-fit test indicated moderate fit (p=0.32). No deviance residuals were 

higher than four; although there were a few outlying observations, all remained in the model.  

Association between deer density and human Lyme disease risk was also examined 

using other deer density metrics (mean and variance), and findings were similar. Areas with 

highest deer density regardless of average metric and with the highest variance were 

associated with lowest risk of disease (Appendix 3.4.).  
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Association of tick infestation on deer with risk of human Lyme disease 

Univariate associations 

The association between mean tick infestation on hunted deer and human Lyme disease 

was assessed in the buffer area surrounding parks with hunting data (seven parks, n=12,881 

households). Mean number of ticks on deer during October as a continuous variable was not 

associated with risk of human disease in univariate analysis (OR per one unit increase in mean 

tick count: 0.99, 95% CI: 0.75-1.31; p=0.963), nor was the dichotomized mean number of ticks 

during October (> 1.37 vs. ≤ 1.37 ticks) (OR: 1.14, 95% CI: 0.90-1.44, p=0.287; Table 4.11.).  

Additionally, two alternative measures of tick abundance, variance and maximum, were 

investigated for their association with human Lyme disease. Variance in number of ticks on deer 

during October, as a continuous variable, was not associated with human risk (OR per one unit 

increase in variance: 1.0, 95% CI: 0.98-1.01, p=0.851), nor was variance as a dichotomous 

variable (variance > 10 vs. ≤ 10) (OR: 1.21, 95% CI: 0.94-1.56, p=0.144). Maximum number of 

ticks found on a single deer in a park, without restriction on months, as a continuous variable, 

was associated with a slightly increased risk of human disease in the surrounding area (OR per 

single tick increase in maximum ticks on deer: 1.01, 95% CI: 1.00-1.02, p=0.041; OR per 10 tick 

increase in maximum ticks on deer: 1.12, 95% CI: 1.00-1.24; Table 4.11.). When maximum 

number was dichotomized (< 25 ticks, ≥ 25 ticks), the univariate association with human risk 

was stronger (OR for ≥ 25 ticks: 1.41, 95% CI: 1.10-1.81, p=0.007; Table 4.11.).  
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Multivariable model development 

In a model of mean number of ticks on deer as a dichotomous variable, land use class at 

the household was the only confounding variable. In a minimally adjusted model with only this 

covariate, mean number of ticks on deer was associated with elevated human Lyme disease risk 

(OR for >1.37 ticks vs. ≤ 1.37 ticks ): 1.29, 95% CI: 1.01-1.63; p=0.039; Table 4.11.). A fully 

adjusted model was also created that included land use and land cover at the household 

location and a dichotomous variable for median home value; this model was constructed to 

increase comparability with the deer density and human Lyme disease model. In the fully 

adjusted model, the association between mean number of ticks on deer and human Lyme 

disease risk diminished (OR for > 1.37 ticks vs. ≤ 1.37 ticks): 1.15, 95% CI: 0.90-1.48; p=0.257). 

Mean number of ticks specified as a continuous variable was not associated with human risk in 

multivariable models (Table 4.11.).  

The fully adjusted model fit the data well. Specifically, the Deviance and Pearson tests 

were highly non-significant (p=0.712 and p=0.395, respectively); the Hosmer and Lemeshow 

goodness-of-fit test had a p-value of 0.949. Deviance residuals were nearly all below three.  

Upon comparison with a fully adjusted model constructed with an exchangeable 

covariance structure, the working correlation matrix for the model with mean tick infestation as 

a dichotomous variable was slightly larger than in other models above (0.001). Moreover, QICs 

varied more between the exchangeable and independent covariance structures (QIC 

exchangeable=2,757; QIC independent= 2,737). Although interpretation did not differ, more 
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unexplained correlation among homes was evident in this analysis; the GEE model was 

considered the final model.  

In an exploratory multivariable analysis of maximum number of ticks on deer in a park 

as the explanatory variable, a minimally adjusted model as above (including land use class at 

household) was associated with elevated risk as both a continuous and dichotomous variable. 

The association was attenuated in the fully adjusted model (OR for > 25 vs. ≤ 25 ticks: 1.35, 95% 

CI: 0.96-1.91; p=0.086), but a trend toward increased risk persisted (Table 4.11). However, in a 

GEE model no association remained (Table 4.11). Additionally, median deer density as a 

continuous variable was added to a fully adjusted model with dichotomized maximum ticks; 

neither the tick variable, nor deer density, were associated with human disease risk after 

adjusting for household land use and land cover.  

Finally, a model was constructed to assess the association between infestation of deer 

by infected adult blacklegged ticks from the 2012-2013 deer management season and risk of 

Lyme disease during the entire study period; there was no detectable association (Appendix 

3.5.). 

DISCUSSION 

This study examined the associations of deer density, tick infestation, and human Lyme 

disease risk on a sub-county scale. In this analysis, deer density was not clearly and strongly 

associated with human Lyme disease risk. Nevertheless, there was evidence of a trend toward 

higher disease risk in areas with lower deer density but higher tick infestation on deer.  
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Deer density varied substantially across time and space, and the difficulty of accurate 

quantification may have affected study findings. However, results from this study suggest that 

moderate difference in deer density across space in an endemic county is not an obvious cause 

of spatial variation in risk of human Lyme disease. Intervention studies assessing the impact of 

deer population reduction on blacklegged tick abundance suggest that, in some circumstances, 

deer may need to be nearly absent from an area to affect tick reproduction (Wilson et al. 1984; 

Wilson et al. 1988; Rand et al. 2004). However, the mechanism through which deer could 

contribute to human Lyme disease risk may occur on a very fine spatial scale. Difference in 

utilization of specific properties by deer was not assessed, but may still contribute to spatial 

differences in risk to humans on their respective properties. Three studies have found self-

reported evidence of deer utilizing the residential property to be associated with increased 

Lyme disease risk (Lastavica et al. 1989; Orloski et al. 1998; Smith et al. 2001).  

Tick infestation on deer varied across parks, and may be a more meaningful measure of 

human risk than deer density. Several studies conducted at larger spatial scales have identified 

positive associations between tick abundance on deer and human Lyme disease, but this study 

was the first known to be conducted within a single county (Wallis et al. 1978; Schulze et al. 

1984; Daniels et al. 1993a; Kitron and Kazmierczak 1997; Raizman et al. 2012). The most 

appropriate measure of tick infestation on deer as it may relate to the enzootic cycle and 

quantification of tick population abundance across space is unknown; here, we explored mean, 

maximum and variance. Low statistical power limited the ability to detect minimal differences 

in overall infestation across space given the low tick counts, collected from only the right ear of 

hunted deer. If more of each deer had been examined and more differentiation between high 
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and low infestations was possible, a stronger association between tick infestation and human 

disease risk may have been detected. Moreover, male deer had twice as many ticks as female 

deer, an observation that has been noted previously (Main et al. 1981; French et al. 1992; 

Amerasinghe et al. 1993; Cortinas and Kitron 2006). These consistent findings underscore that 

the association between deer and human disease risk is complex; simply managing a deer 

population within a single inland jurisdiction will likely not impact human Lyme disease risk. 

In this project, residence around parks with more red and white oak forest and larger 

forest patches (despite the same relative amount of forest) was associated with increased 

human risk in univariate analysis. Teasing apart the relative contributions of these factors in 

concert with deer density, tick infestation on deer and human disease risk was not possible in 

this project. Likewise, the relative importance of deer density, tick infestation on deer, and land 

use and land cover with respect to human Lyme disease could not be distinguished; all homes 

around a park had the same value for deer density, tick abundance, proportion of park and 

buffer with a given land use or land cover types and could not all be included in a statistical 

model together. Prospective data collection that includes more individual, household-specific 

and census block group level data may allow these types of analyses in the future. 

Limitations 

This study was subject to several limitations. Existing data on tick infestation on deer 

(counts on the right ear of hunted deer) were utilized, which may have limited statistical power 

to detect differences in average tick infestation across parks in Howard County. Counts of ticks 

on deer could have been subject to measurement error not only because of the small portion of 



127 

 

the deer examined, but also because of error in tick detection and quantification. This 

measurement error would likely be more pronounced in the higher tick counts, where quick 

counting, losing track of numbers, or not counting as carefully after reaching a certain number 

of ticks, were all possible. In fact, we witnessed this type of discrepancy during the 2012-2013 

management season between recorded tick counts per deer and number of actual ticks 

removed and placed in vials. Ticks on highly infested deer were undercounted compared to the 

number ultimately identified in vials and tested for B. burgdorferi. This underestimation was 

likely non-differential across parks; tick counts were performed by one of two designated 

people during the entire study period. Undercounting of higher numbers of ticks would serve to 

bias findings toward the null. Species was determined for all ticks collected during the 2012-

2013 season, and only one was not I. scapularis. Although all historically counted ticks were 

probably not I. scapularis, species determination from the most recent year provided some 

confidence that most were likely the species of interest.  

Misclassification of the deer density variable was likely, and was probably a major 

source of bias in the deer density results. Density was assessed at specific parks and natural 

areas that may not be representative of the rest of Howard County. Although the aerial surveys 

occurred only once per year, and deer are a dynamic population in time and space, attempts 

were made to minimize bias. A categorized cumulative variable was used to minimize the 

impact the expected misclassification may have had on the findings. Nevertheless, median 

density over time as assessed here was not clearly associated with risk of Lyme disease. Yet, a 

biologically plausible inverse association was detected between tick infestation on deer and 

deer density using this method of deer density measurement. Increase in tick abundance on 
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deer in concert with lower deer density was detected temporally in intervention studies 

(Deblinger et al. 1993; Rand et al. 2004). Presumably, in areas with lower deer density, the 

remaining deer host more ticks. Quantification of deer pellet counts in each park prior to the 

beginning of each hunting season may have been a more accurate and cheaper, albeit much 

more labor-intensive, alternative to assess population density. Although use of a cumulative 

measure compared to a time-lagged density variable may have resulted in loss of information, 

the issue of measurement error outweighed potential loss of information. Moreover, the 

complexity of assigning a time lag to control houses that did not have inherent associated date 

of “outcome” was beyond the scope of this project.  

Furthermore, assumption that all homes within a half mile of parks are equally exposed 

to the deer density of that park is likely inaccurate. Performing similar analysis using 

increasingly smaller buffer areas around parks could prove informative; however, small 

numbers of homes around more rural parks may limit interpretability of more restricted buffer 

sizes. Residual confounding due to differences in land use and land cover in the buffer areas 

was possible; nevertheless, controlling for land use and land cover at each household location 

in the buffer areas controlled for some of these differences in acceptability of the buffer area to 

deer.   

Misclassification of households according to Lyme disease status was possible, as was 

discussed in earlier chapters. Any potential for differential diagnosis and reporting of Lyme 

disease according to socio-economic status discussed in earlier studies, although still possible, 
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may have been minimized by using a restricted dataset of homes that were all within close 

proximity to natural areas, generally indicative of similar socio-economic status. 

In these analyses, location of residence was assumed to be the location of exposure. 

Lyme disease is widely assumed to be acquired peridomestically, and thus use of geocoded 

residence is an established surrogate for site of exposure (Maupin et al. 1991; Orloski et al. 

1998; Eisen and Eisen 2007). In this analysis the same deer density and tick infestation on deer 

was assigned to each home around a park. Consequently, the potential for misclassification of 

exposure location was minimized; the assumed exposure location was not restricted to one 

property only but therefore included the nearby park and the entire buffer area around the 

park. 

Deer density and tick infestation on deer are separated from human disease risk by two 

years of blacklegged tick life cycle, and factors including weather and reservoir host abundance, 

all of which likely play the biggest role in determining the density of infected nymphal 

blacklegged ticks and which were unmeasured in this analysis. Furthermore, adult tick 

infestation on deer may not directly correlate with abundance of nymphal ticks two years later, 

as multiple factors affect tick survival.  These intermediate factors, as well as human interaction 

with the environment all affect human risk.  Furthermore, as many of these factors likely differ 

across Lyme disease-endemic areas, generalizability of findings in this study beyond Howard 

County may be limited.  
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Strengths 

This was the first study to examine the associations of deer density, tick infestation on 

deer, and human Lyme disease risk on a sub-county scale. Use of data collected over several 

years increased power and reliability of findings. Additionally, use of data from a single county 

minimized the differences in exposure and outcome assessment that may occur across 

jurisdictions.  

Linear distance from a home to a wooded area or park could be associated with Lyme 

disease risk but was unmeasured in Project 2. If access to these types of areas affects risk, the 

restriction of analyses in Project 3 to homes within one-half mile of wooded natural areas 

minimized potential confounding by that unmeasured variable. Interestingly, the same 

household land use and land cover characteristics were associated with elevated risk in this 

restricted dataset as were in Project 2.  

Although intervention studies to assess effect of deer density on human Lyme disease 

risk are needed, this study used observational data collected by a community deer 

management program to assess the role that moderate differences in deer density across space 

may play in risk of human Lyme disease. Existing data were used to assess how a typical 

community deer management program’s actions may affect risk of Lyme disease in their 

community, rather than determining an association from artificial experimental conditions that 

lack applicability to real-world prevention programs. These findings suggest that while deer 

overpopulation is problem for numerous reasons, including risk of motor-vehicle accidents and 
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crop damage, moderate community deer management activities in inland communities may 

have minimal impact on human Lyme disease risk in already endemic areas.    

Conclusions 

Deer reduction has been proposed as a Lyme disease prevention measure, yet the 

association between deer density and human Lyme disease risk is unknown. This study provides 

some evidence that differences in average deer density over time may not be tied to sub-

county spatial variation in risk of Lyme disease in endemic areas. Here, higher burden of ticks 

per deer was demonstrated in areas with lower deer density, but that finding could result from 

other land cover differences not assessed in this project. Nevertheless, it is entirely possible 

that the association between deer density and human risk was muted by a higher number of 

ticks per deer where deer are less plentiful. Future research into the role of spatial differences 

in deer density and Lyme disease risk should use one or more alternate means of assessing 

density, and attempt to obtain ticks from a larger portion of individual deer than just the right 

ear when assessing abundance. 
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TABLES 

Table 4.1. Deer density* across parks by year, Howard County, Maryland 

 

 

 

 

 

 

 
                            

 

*Assessed as deer/mi
2
 

 

 

  

Year No. parks 

assessed 

Total deer 

density  

(total deer/ 

total area) 

Mean deer 

density           

(per park) 

Median deer 

density     

(per park) 

Range in deer 

density       

(across parks) 

2001 10 82.8 92.7 51.5 17 - 448 

2002 9 82.3 89.7 64.0 17 - 285 

2003 10 94.3 102.8 111.5 22 - 178 

2004 11 83.3 103.1 61.5 17.7 - 275 

2005 7 34.3 30.8 26.0 14 - 48 

2006 12 78.4 124.2 64.0 22 - 530 

2007 14 47.8 76.7 40.5 0 - 540 

2008 15 79.1 89.1 56.0 18 - 425 

2009 14 51.2 74.9 44.0 17.2 - 450 

2010 14 35.2 78.1 26.6 1 - 535 

2011 10 9.9 18.8 18.9 0 - 41.4 
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Table 4.2. Deer density* estimated in individual parks, Howard County, Maryland, 2001-2011 

 

 

 
*Assessed as deer/mi
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Park 

Size 

assessed 

(mi2) 

No. 

years  

No. 

years 

hunted 

Mean 

density  

Median 

density 

Range in 

density 

Variance 

in 

density 

Quartile of 

median deer 

density 

ARP 0.17 11 10 39.3 29.4 12 - 75 511.5 1 

DML 0.69 6 0 36.2 37.8 2 - 65 571.6 1 

DFP 0.50 11 13 41.0 34.0 14 - 96 677.8 1 

MPE 1.75 10 15 25.4 24.0 14 – 53 125.3 1 

BBP 1.80 8 0 45.1 38.2 22 – 99 665.8 2 

SAV 5.35 5 0 42.1 43.6 1 – 117 2,255.4 2 

SMP 0.29 8 7 46.6 39.7 17- 107 809.3 2 

WRP 0.29 7 0 50.4 45.0 10 - 99 1,373.8 2 

HRP 0.28 5 7 48.7 47.0 0 - 100 1,277.5 3 

WOO 0.36 11 0 106.3 55.6 14 - 275 8,629.5 3 

WFP 1.09 11 3 75.8 64.0 21 - 161 2,706.5 3 

BEL 0.20 5 0 496 530.0 425 - 540 2,942.5 4 

BLA 0.50 10 10 133.2 104.0 38 - 448 14,590.4 4 

MBP 0.27 8 0 76.2 76.5 0 - 161 3,905.7 4 

RBP 0.63 9 0 108.1 67.0 17 - 285 7,060.3 4 
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Table 4.3. Deer culled and mean number of ticks identified on right ear of hunted deer 

 
*Year classified according to beginning of deer management season (fall), but associated data collection continued 

through following winter.  No deer management activities took place during the management season that began in 

1998. 

 

 

 

 

 

 

  

Year*  No. parks 

hunted 

Total no. 

deer culled 

Mean no. deer 

culled per park 

Range no. 

culled per park 

Total ticks 

counted 

Mean no. 

ticks per deer 

1997 1 50 50 n/a 9 0.18 

1998 n/a n/a n/a n/a n/a n/a 

1999 1 134 134 n/a 253 1.89 

2000 2 256 128 96 - 160 159 0.62 

2001 2 164 82 56 - 108 67 0.41 

2002 2 90 45 30 - 60 165 1.83 

2003 4 199 49.8 32 - 60 146 0.73 

2004 4 220 55 39 - 78 105 0.48 

2005 4 177 44.3 27 - 80 79 0.45 

2006 7 130 18.6 5 - 43 115 0.88 

2007 6 188 31.3 4 - 90 124 0.66 

2008 7 188 26.9 1 - 56 164 0.87 

2009 9 237 26.3 4 - 72 259 1.09 

2010 7 189 27 9 - 51 182 0.96 

2011 7 181 25.9 2 - 80 259 1.43 

2012 7 200 28.6 9 - 68 267 1.34 
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Table 4.4. Cumulative number of deer culled and tick abundance on deer by park, Howard 

County, Maryland 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

Park Quartile 

median deer 

density 

Total no. 

deer culled 

Total 

hunting 

days 

Deer culled 

per hunting 

day 

Mean no. ticks 

per deer  

ARP 1 274 49 5.6 1.0 

DML 1 0 0   

DFP 1 479 93 5.2 1.0 

MPE 1 1,149 147 7.8 1.1 

BBP 2 0 0   

SAV 2 0 0   

SMP 2 123 26 4.7 0.7 

WRP 2 0 0   

HRP 3 60 17 3.5 1.1 

WOO 3 0 0   

WFP 3 57 7 8.1 0.3 

BEL 4 0 0   

BLA 4 345 69 5 0.4 

MBP 4 0 0   

RBP 4 0 0   
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Table 4.5. Deer culled during October only and mean number of ticks identified on right ear of 

hunted deer, by year, Howard County 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Year No. parks 

hunted 

Total deer 

culled 

Total ticks 

counted 

Mean no. ticks 

per deer 

1997 0 - - - 

1998 0 - - - 

1999 1 102 185 1.88 

2000 2 73 58 0.82 

2001 2 59 36 0.62 

2002 - - - - 

2003 4 56 78 1.42 

2004 4 59 51 0.88 

2005 4 49 16 0.33 

2006 5 37 45 1.22 

2007 5 62 47 0.78 

2008 5 75 107 1.43 

2009 6 84 128 1.54 

2010 3 25 33 1.38 

2011 5 46 152 3.38 

2012 4 32 83 2.59 
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Table 4.6. Deer density, deer culled, tick abundance on deer in October, and cumulative 

incidence of Lyme disease in buffer areas, by park, Howard County, Maryland 

*Percent of homes with reported Lyme disease during 2001-2011  

 

 

 

  

Park Quartile 

median 

deer 

density 

Total 

deer 

culled 

(Oct) 

Total 

hunting 

days 

(Oct) 

Deer 

culled per 

hunting 

day (Oct) 

Mean no. 

ticks per 

deer (Oct) 

Variance 

in tick 

count 

(Oct) 

No. 

houses 

in 

buffer  

Cumulative 

Lyme disease 

incidence in 

buffer (%)* 

ARP 1 65 11 5.9 2.63 41.52 515 1.36 

DML 1 - - - -  740 3.51 

DFP 1 124 22 5.6 1.37 15.47 2,190 2.15 

MPE 1 358 36 9.9 1.40 10.15 5,040 2.82 

BBP 2 - - - -  576 5.03 

SAV 2 - - - -  1,590 1.07 

SMP 2 23 5 4.6 0.87 1.76 320 4.69 

WRP 2 - - - -  208 3.85 

HRP 3 22 5 4.4 1.41 4.35 840 0.60 

WOO 3 - - - -  799 1.38 

WFP 3 5 1 5.0 1.60 12.80 159 1.26 

BEL 4 - - - -  1,031 0.58 

BLA 4 111 19 5.8 0.73 2.11 3,817 1.86 

MBP 4 - - - -  1,632 1.84 

RBP 4 - - - -  1,913 1.83 
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Table 4.7. Borrelia burgdorferi infection prevalence among adult blacklegged ticks, Fall 2012-

Winter 2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Infested with at least one tick on the right ear 

**Positive by real-time PCR assay designed to detect presence of B. burgdorferi in ticks 

†Percent of homes with reported Lyme disease during 2001-2011  

 

 

 

 

 

 

 

Park  Deer 

culled (N) 

Deer 

infested* 

n (%) 

Ticks 

tested 

(N) 

Positive 

ticks** 

n (%) 

Density of 

infected adults  

(positive ticks per 

100 deer culled)  

Cumulative 

Lyme disease 

incidence in 

buffer (%)† 

ARP 33 7 (21) 24 3 (12.5) 9.1 1.36 

BLA 9 1 (11) 1 0 (0)  1.86 

DFP 41 14 (34) 72 8 (11.1) 19.5 2.15 

HRP 11 0  (0) 0 n/a  0.6 

MPE 68 23 (34) 157 19 (12.1) 27.9 2.82 

SMP 24 3 (13) 13 2 (15.4) 8.3 4.69 

WFP 14 3 (21) 17 3 (17.7) 21.4 1.26 
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Table 4.8. Unadjusted, adjusted, and generalized estimating equations (GEE) models of association of tick counts on deer and deer 

density in parks, Howard County, Maryland* 

 

* Relative risk (RR); 95% confidence intervals (CI) presented; reference group indicated for class variables (ref) 

**Overdispersion in Poisson model scaled by square root of Pearson’s Chi-square/degrees of freedom 

†Models adjusted for sex and age of deer and year culled 

‡ GEE implemented with exchangeable correlation structure 

 

 

 

Deer 

density 

variable  

Variable 

specification 

Crude overdispersed 

Poisson model** 

Crude negative binomial 

model 

Adjusted overdispersed 

Poisson model**† 

Adjusted Poisson with 

GEE†‡ 

RR 95% CI p-val RR 95% CI p-val RR 95% CI p-val RR 95% CI p-val 

Median  10 deer per 

mi2 

0.92 0.84-0.99 0.033 0.91 0.86-0.97 0.003 0.87 0.81-0.94 <0.001 0.88 0.82-0.94 <0.001 

Low ≤ 24 deer per 

mi2 

ref   ref   ref   ref   

Medium 25 - 62 deer 

per mi2 

1.23 0.85-1.77 0.272 1.23 0.88-1.72 0.231 1.30 0.91-1.87 0.153 1.26 0.98-1.63 0.068 

High ≥ 63 deer per 

mi2 

0.54 0.28-1.03 0.063 0.54 0.34-0.85 0.009 0.45 0.24-0.82 0.009 0.44 0.34-0.57 <0.001 
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Table 4.9. Univariate associations of possible covariates with risk of Lyme disease among homes 

surrounding parks, Howard County, Maryland  

Variable Variable 

specification 

N Houses with 

Lyme disease   

n (%) 

Odds 

ratio† 

95% CI† p-val 

Land use* 

Urban/high-density 

development 
5,944 73 (1.2) ref   

Herbaceous/ 

agriculture 
614 5 (0.8) 0.66 0.27-1.66 0.382 

Forest 922 17 (1.9) 1.51 0.89-2.57 0.129 

Medium-density 

development 
10,629 259 (2.4) 2.01 1.55-2.61 <0.001 

Low-density 

development 
3,250 97 (3.0) 2.47 1.82-3.36 <0.001 

Land cover* 

Urban 10,638 194 (1.8) ref   

Red-white oak 

forest 
2,288 86 (3.8) 2.10 1.63-2.72 <0.001 

Other forest type 1,559 35 (2.3) 1.24 0.86-1.78 0.253 

Herbaceous/ 

agriculture 
6,869 136 (2.0) 1.09 0.87-1.36 0.458 

Four poster 

tick control 

**  

No 17,553 380 (2.2) ref   

Yes 3,817 17 (1.9) 0.86 0.66-1.11 0.236 

Median 

home value 

*** 

Q1 4,902 55 (1.1) ref   

Q2 5,445 107 (2.0) 1.76  1.27-2.44 <0.001 

Q3 5,576 115 (2.1) 1.85 1.34-2.56 <0.001 

Q4 5,547 174 (3.2) 2.90 2.14-3.94 <0.001 

Median 

household 

income *** 

Q1 5,260 85 (1.6) ref   

Q2 4,808 75 (1.6) 0.96  0.70-1.32 0.807 

Q3 5,901 126 (2.1) 1.32 1.00-1.75 0.047 

Q4 5,401 165 (3.05) 1.91 1.47-2.49 <0.001 

Per capita 

income *** 

Q1 4,864 67 (1.4) ref   

Q2 5,720 104 (1.8) 1.32  0.97-1.80 0.078 

Q3 5,155 107 (2.1) 1.51 1.11-2.06 0.008 

Q4 5,631 173 (3.1) 2.26 1.70-3.00 <0.001 

Population 

density *** 

Q1 4,979 111 (2.2) ref   

Q2 5,244 145 (2.8) 1.24  0.97-1.60 0.087 
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Q3 5,226 80 (1.5) 0.68 0.51-0.91 0.009 

Q4 5,921 115 (1.9) 0.87 0.67-1.13 0.287 

Population 

growth 2000-

2009 *** 

Q1 5,782 119 (2.1) ref   

Q2 5,580 127 (2.3) 1.11  0.86-1.42 0.435 

Q3 5,180 99 (1.9) 0.93 0.71-1.21 0.577 

Q4 4,828 106 (2.2) 1.07 0.82-1.39 0.635 

Proportion 

low-density 

development 

** 

Q1 6,438 94 (1.5) ref   

Q2 2,631 37 (1.4) 0.96  0.66-1.41 0.840 

Q3 4,843 108 (2.2) 1.54 1.16-2.03 0.003 

Q4 7,458 212 (2.8) 1.97 1.54-2.52 <0.001 

Proportion 

red-white 

oak forest ** 

Q1 3,178 43 (1.4) ref   

Q2 7,413 114 (1.5) 1.14  0.80-1.62 0.470 

Q3 5,163 123 (2.3) 1.78 1.25-2.52 0.001 

Q4 5,616 171 (3.0) 2.29 1.63-3.21 <0.001 

Proportion 

forest ** 

Q1 3,154 56 (1.8) ref   

Q2 5,424 106 (2.0) 1.10  0.80-1.53 0.556 

Q3 7,709 206 (2.7) 1.52 1.13-2.05 0.006 

Q4 5,083 83 (1.6) 0.92 0.65-1.29 0.632 

Mean forest 

patch size ** 

Q1 5,086 89 (1.8) ref   

Q2 6,245 113 (1.8) 1.03  0.78-1.37 0.815 

Q3 4,999 107 (2.1) 1.23 0.93-1.63 0.155 

Q4 5,040 142 (2.8) 1.63 1.24-2.13 <0.001 

Forest edge 

density ** 

Q1 5,780 168 (2.9) ref   

Q2 5,922 95 (1.6) 0.55 0.42-0.70 <0.001 

Q3 4,582 99 (2.2) 0.74 0.57-0.95 0.018 

Q4 5,086 89 (1.8) 0.60 0.46-0.77 <0.001 

 
†Variables divided into quartiles, reference group indicated (ref); 95% CI=95% confidence interval 

* Variable assessed at house point location  

**Variable assessed at park/buffer. Proportions were calculated as proportion of total park/buffer area of that 

class  

***Variable assessed at census block group 
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Table 4.10. Unadjusted, adjusted, and adjusted generalized estimating equations (GEE) logistic regression models of deer density 

and human Lyme disease risk, Howard County, Maryland, 2001-2011* 

 

*Odds ratios (OR), adjusted odds ratios (aOR), 95% confidence intervals (95% CI), and p-values presented; reference group for class variables indicated (ref). 

**Adjusted for land use type at house, land cover type at house and dichotomous median home value at census block group 

†GEE model constructed with exchangeable covariance structure  

  

Variable Variable specification 
Unadjusted Adjusted** Adjusted + GEE† 

OR 95% CI p-value aOR 95% CI p-value aOR 95% CI p-value 

Deer density 

Q1 (< 38 deer per mi2) ref   ref   ref   

Q2 (38 - 45 deer per mi2) 0.98 0.74-1.29 0.876 1.17 0.86-1.59 0.329 1.25 0.75-2.07 0.392 

Q3 (46 - 56 deer per mi2)  0.37 0.23-0.61 <0.001 0.49 0.30-0.80 0.004 0.49 0.32-0.75 0.001 

Q4 (> 56 deer per mi2)  0.64 0.52-0.79 <0.001 0.77 0.60-1.01 0.055 0.75 0.52-1.09 0.134 

Land use 

class  

Low-density development    1.79  1.26-2.54 0.001 1.72 1.36-2.18 <0.001 

Medium-density development    1.78 1.36-2.38 <0.001 1.79 1.34-2.39 <0.001 

Herbaceous/agriculture    0.57 0.23-1.44 0.236 0.56 0.21-1.51 0.253 

Forest    1.10 0.63-1.90 0.744 1.08 0.62-1.87 0.789 

Urban/high-density development    ref   ref   

Land cover 

class  

Herbaceous/agriculture    0.85  0.66-1.10 0.223 0.85 0.71-1.32 0.070 

Red-white oak forest    1.60 1.20-2.10 0.001 1.55 1.22-1.98 <0.001 

Other forest    1.01 0.69-1.48 0.953 1.01 0.78-1.32 0.941 

Urban    ref   ref   

Median 

home value  

High    1.36 1.02-1.81 0.036 1.34 0.91-1.99 0.140 

Low    ref   ref   
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Table 4.11.  Unadjusted, adjusted, and adjusted generalized estimating equation (GEE) logistic regression models of tick abundance 

on deer during October and human Lyme disease risk, Howard County, Maryland* 

Variable 
Variable 

specification 

Unadjusted Minimally adjusted** Fully adjusted† Adjusted + GEE‡ 

OR 95% CI p-val aOR 95% CI p-val aOR 95% CI p-val aOR 95% CI p-val 

Mean 

ticks on 

deer (Oct) 

per one unit increase 0.99 0.75-1.31 0.963 1.20 0.87-1.63 0.278 1.00 0.68-1.47 0.996 0.88 0.44-1.78 0.725 

Low (≤1.37 ticks) ref   ref   ref   ref   

High (>1.37 ticks) 1.14 0.90-1.44 0.287 1.29 1.01-1.63 0.039 1.15 0.90-1.48 0.257 0.93 0.49-1.74 0.815 

Maximum 

ticks on 

deer 

per one unit increase 1.01 1.00-1.02 0.041 1.01 1.00-1.02 0.021 1.01 0.99-1.02 0.285 1.01 0.99-1.08 0.410 

Low (<25 ticks) ref   ref   ref   Ref   

High (≥25 ticks) 1.41 1.10-1.81 0.007 1.46 1.14-1.88 0.003 1.35 0.96-1.91 0.086 1.29 0.68-2.42 0.427 

*Odds ratios (OR), adjusted odds ratios (aOR), 95% confidence intervals (95% CI), and p-values presented; reference group for class variables indicated (ref). 

**Adjusted for land use 

†Adjusted for land use and land cover at household location and dichotomous median home value at census block group 

‡Used fully adjusted model; GEE specified with an exchangeable covariance structure 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Simplified mechanism through which deer act on human Lyme disease with representation of associations evaluated in 

this study. 
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Figure 4.2. Map of Howard County with parks used in analysis shown in purple 
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Figure 4.3. Tick counts on the right ear of hunted deer according to median deer density of 

park, 2001-2011 
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Figure 4.4. Mean number of ticks per deer and median deer density by park, October only 
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Figure 4.5. Cumulative incidence of human Lyme disease surrounding each park during 2001-

2011, by quartile of deer density
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CHAPTER 5: DISSERTATION DISCUSSION AND CONCLUSIONS 
 

 

 

The number of human Lyme disease cases in the United States has continued to 

increase despite introduction of several possible prevention methods in the decades since the 

disease was first described (Stafford 2007; Centers for Disease Control and Prevention 2013a). 

In the absence of a commercially-available vaccine, environmental and human behavioral 

interventions are the only mechanisms by which to combat this tickborne disease. There is clear 

need for better prevention options, or for existing options to be more broadly and 

appropriately implemented, if the disease is to be controlled in the United States. 

Understanding factors that drive spatial variation in risk is helpful to appropriately implement 

or promote possible interventions.   

The studies described in this dissertation quantified the spatial distribution of human 

Lyme disease in one county and demonstrated that a portion of spatial variation in disease risk 

was explained by environmental and socio-demographic factors. Project 1 demonstrated 

significant spatial clustering of human Lyme disease according to residence. Several 

environmental and socio-demographic differences were apparent between high-risk clusters 

and the remainder of Howard County; proportionally, high-risk clusters contained more low-

density development and red and white oak forest, and more area characterized by higher 

average income and home value. Project 2 approached the spatial variation in risk of human 

Lyme disease in Howard County differently. Using multilevel models, significant variation in 

disease risk was evident between census block groups. Using different analysis methods and 
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observational units, many of the same factors were associated with elevated Lyme disease risk 

in Project 2 as were linked to high-risk clusters in Project 1 (i.e., residence in low- and medium-

density development, and in area dominated by red and white oak forest and characterized by 

higher home values). Most of the variation in Lyme disease risk between census block groups 

was explained by these variables, although 25% of the variation in risk between census block 

groups remained unexplained. Most of the total variation in Lyme disease risk in Howard 

County occurred within (not between) census block groups, further illustrating the fine-scale 

nature of spatial variation in human Lyme disease risk. Nevertheless, Lyme disease risk in 

Howard County was clearly affected by factors acting at multiple levels.  

Project 3 examined additional factors that might contribute to spatial variation in Lyme 

disease risk on a sub-county level, specifically variation in deer density and tick infestation on 

deer. These factors were examined separately and in a restricted subset of Howard County 

population because deer and tick data were not available across the entire county. In 

multivariable models, lower-density residential development and red and white oak forests 

were associated with disease risk after the effects of deer density and tick infestation on deer 

were controlled. The finding of higher tick infestation on deer in areas with lower deer density 

suggests that effects of moderate differences in deer density may be buffered— more ticks may 

attach to remaining deer in areas where deer are less plentiful. Yet, there were no areas in our 

study where deer were scarce. The role of deer density and tick infestation on deer in human 

disease risk is not well-understood. There are several other important factors which contribute 

to disease risk including abundance and infection prevalence of reservoir hosts, nymphal tick 

abundance, and human behavior, all of which were unmeasured in this analysis. This study 
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provided evidence that fine-scale differences in deer density are not clearly associated with 

spatial variation in Lyme disease risk within a single county; however, there were limitations to 

the completeness and accuracy of these data.  Nevertheless, the study findings suggest that 

broad, community-driven moderate deer population reduction in inland settings may not be an 

effective Lyme disease prevention measure.   

The studies described here were based on existing data. While more convenient, 

cheaper, and faster to obtain than prospectively designed and collected information, use of 

existing data leaves the investigator with several limitations that cannot be overcome including: 

type of data collected (e.g., tick counts on the right ear of deer), accuracy of the data collected 

(e.g., Lyme disease cases reported to the public health system), and artificial neighborhood 

boundaries for multilevel analysis (e.g., census block groups). The boundaries of census block 

groups used in these projects are likely not the most appropriate delineations for 

neighborhoods as they relate to risk of Lyme disease. Furthermore, true location of patient 

exposure is unknown for most cases. Yet, the demonstrated clustering by residential location 

suggests that residential address may be an appropriate proxy for most patients.  However, 

whether the home itself, the immediate vicinity, or the neighborhood is where people in these 

areas most often contact infected ticks remains unresolved.  

In epidemiologic studies, there is often a balance between validity and generalizability 

(Rothman et al. 2008). These studies were conducted using detailed environmental and Lyme 

disease patient address data in one single county. The level of detail in observation for both 

exposure and outcome would likely be sacrificed if one were to conduct this type of analysis 
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across a broader geographic area.  As a consequence, although the estimates of effect in these 

studies are quite precise and relatively unbiased, there is limited ability to generalize these 

estimates or other findings to other geographic areas.   

Many factors tied to human risk were constant across these studies. This consistency 

suggests these detected associations were not chance findings. Similar associations have been 

documented in other studies, using other designs, populations, and methods. Confirming these 

findings is informative, yet most of the detected associations do not necessarily provide clear, 

actionable information that can help prevent Lyme disease.  

A decade ago Lubelczyk and colleagues (2004) suggested that refining the vegetation 

species associated with elevated tick abundance could help natural resource managers target 

management strategies (Lubelczyk et al. 2004). Exotic invasive shrub species have been tied to 

elevated tick abundance (Elias et al. 2006); the mechanism through which red and white oak 

forest may act on elevated disease risk could be through the underlying soil composition itself 

and leaf litter, or through increased presence of exotic invasive species in this type of forest. 

Further work should use a similar data set to assess the potential association between red and 

white oak forest and human disease in other places. This was the most common oak-dominated 

forest in this area, and it is possible that species specificity is meaningless.  

These studies identified a potential association between forest structure and human 

Lyme disease risk. However, the proportion of the census block group composed of forest 

displayed the strongest association with Lyme disease risk in a multivariable setting that 

included residential land use and land cover characteristics. Conflicting data in the literature 
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suggest that blacklegged tick abundance and infection may be highest in small forest patches 

with more potential for human contact with edge environments and for reduced biodiversity to 

amplify; however, an opposite association with human disease has also been documented 

(higher incidence associated with larger forest patches)(Brownstein et al. 2005; Diuk-Wasser et 

al. 2012). Here, higher human risk associated with residence near larger average forest patches 

was demonstrated, but the association diminished in multivariable models. Understanding the 

mechanism through which forest structure and fragmentation affects tick abundance and 

infection prevalence is important to understanding Lyme disease ecology, but may be not be as 

important to disease prevention from a public health perspective. Humans likely encounter all 

types and shapes of forested environments in endemic areas, all of which have some infected 

ticks. If areas with higher entomologic risk are not where humans most frequently interact with 

forested environments, demonstration of higher tick abundance and infection prevalence in 

specific forest structures are irrelevant with regard to human Lyme disease.  

While lower-density residential development was consistently associated with human 

risk in these projects, its role and relevance to prevention is unclear. Although low-density and 

sprawling development contributes to zoonotic disease emergence (Patz et al. 2004), 

modification of existing low-density development is probably not feasible. The mechanism 

through which low-density development increases disease risk is unknown, but it could reflect 

both environmental and behavioral factors. How individual and household landscape 

characteristics are tied to the environmental and socio-demographic factors we assessed is 

unknown, but critical to understand in order to appropriately implement prevention methods. 

Individual and household landscape-specific factors were unmeasured in these studies, and 
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likely play the largest role in placing humans at risk of Lyme disease in endemic areas. These 

factors include where people travel on a day to day basis, what types of forested habitats they 

may contact, and the nature of that contact. As further evidence of the importance of behavior, 

most of the spatial variation in risk in Lyme disease demonstrated in Project 2 was not between 

census block groups, but within. This finding underscores the very fine-scale variation in Lyme 

disease risk within endemic areas.   

Future directions 

In the decades since Lyme disease was first described, substantial ecologic research has 

contributed to understanding of the enzootic cycle. Yet, comparatively little research has 

addressed human risk of disease. The research community should redirect attention to 

understanding human behavior as it relates to contact with forested environments and Lyme 

disease risk. Furthermore, prevention methods need to be assessed according to whether 

human contact with ticks is actually reduced. Ultimately, although knowledge of the exact 

biological mechanisms through which disease occurs is valuable to design of control measures, 

disease prevention does not often require complete understanding of mechanism. Conversely, 

complete understanding of disease processes does not necessarily translate into effective 

prevention and control (Renwick 1973). 

significant advances in computing power and statistical software in recent years have 

allowed for broader use of multilevel modeling methods, methodologic questions remain that 

relate to spatial relationships and logistic models. For example, logistic regression is common in 

health research, yet in a multilevel structure, measures of neighborhood importance are less 
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clear than in linear models—partitioning of variance is not possible as it is in linear models 

(Merlo et al. 2006). Furthermore, the intraclass correlation coefficient for multilevel logistic 

models is dependent upon the prevalence of the outcome, a feature which limits its 

interpretability and widespread use (Merlo et al. 2006). The median odds ratio provides a 

useful alternative tool to the intraclass correlation coefficient, but is not a widely understood 

measure, even among epidemiologists (Merlo et al. 2006). Finally, much multilevel research has 

ignored the spatial relationships among observations and groups of observations (Chaix et al. 

2005a). Bridging of these disciplines is in its infancy, and appropriate implementation and 

interpretation remains a challenge. Future work in the immediate future should solidify the 

meaning and interpretability of neighborhood level variance, neighborhood level fixed-effect 

interpretation, and importance of residual spatial autocorrelation in order to properly interpret 

the importance of various levels in Lyme disease risk.   

Although community-level interventions hold the most promise to prevent human Lyme 

disease because they lack reliance upon individual adherence, community deer management in 

inland settings may not be a viable and effective option; other strategies are drastically needed. 

The public health and scientific research community needs to identify viable and effective 

options for environmental intervention that can be accomplished at a broader scale in addition 

to efforts of individual homeowners. Although possibly managed by a county or town natural 

resource department, these theoretical community interventions would not be implemented 

evenly across their jurisdiction, but would be targeted to both public and private areas of the 

jurisdiction with highest risk. Multidisciplinary studies that incorporate individual behavior, 

landscape characteristics, reservoir abundance and infection prevalence, entomologic indices, 
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and human outcomes are critical, but scarce (Eisen and Eisen 2008; Finch et al. 2014). Advances 

in novel spatial epidemiologic analytic methods are needed to understand how the diverse, 

dynamic Lyme disease enzootic cycle and human behavior patterns are linked to Lyme disease 

risk across endemic regions before broad community-level interventions can become 

commonplace.  

Conclusions 

This dissertation advances knowledge of the fine-scale epidemiology of human Lyme 

disease and demonstrates the importance of using human outcome data in addition to 

entomologic data to understand variation in Lyme disease risk. This first known effort to 

quantify the sub-county spatial variation of human Lyme disease demonstrated that disease 

risk in some areas was twice that of other areas within the same county. Second, these studies, 

using advanced analytic methods, validated associations of previously recognized risk factors 

for Lyme disease—increased disease risk associated with low-density development and 

presence of forest. Moreover, this dissertation identified several associations with increased 

human Lyme disease risk that deserve further consideration—residence in areas composed of 

red and white oak forest, and that amount of forest in the vicinity of residence may be more 

important to disease risk than the fragmented structure of the forest. Additionally, Project 3 

provided evidence that fine-scale variation in deer density in inland areas is not clearly and 

strongly associated with human risk. Consequently, community deer management programs, 

although helpful for deer overpopulation, may not be a viable Lyme disease prevention 

measure for inland areas. Finally, results of this dissertation suggest that multilevel models may 

help to provide insight regarding many remaining questions in the epidemiology of Lyme 
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disease; specifically these models may help define the scale at which various factors act on 

disease risk, and in turn, inform the most appropriate prevention methods. 
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PROJECT 1 APPENDICES 

Appendix 1.1. Overview of surveillance practices in Howard County  

Prior to electronic laboratory reporting, which began in Maryland in 2009, surveillance 

for human Lyme disease cases in Howard County occurred entirely by paper reports (mostly 

faxed reports) from clinicians and laboratories. As of 2013, only two laboratories report 

electronically; others, including some major clinical laboratories, still report by fax (K. Feldman, 

personal communication). The general dedication of public health employees in Howard County 

to Lyme disease case follow-up and classification has varied over time. Case counts in Howard 

County were highest in 2007 and 2008; however, an increase in cases during that time occurred 

throughout many counties in Maryland. New personnel were hired to work on Lyme disease at 

the state level in 2006 and 2007; their hiring may have resulted in more robust case follow-up 

statewide during 2007 and 2008, and resulted in a higher proportion of laboratory reports 

successfully investigated and classified as cases during those years (K. Feldman, personal 

communication).  

Changes in surveillance practices during 2007-2008 may have led to an increase in 

proportion of potential cases being classified as confirmed or probable cases. In this scenario, 

more people with later states of disease (those confirmed by laboratory tests) would be 

classified as confirmed cases in contrast to earlier years, when those laboratory reports were 

never successfully classified.  Improved case detection and classification during that time would 

not likely have occurred differentially across space within Howard County. The impact on purely 

spatial cluster detection was presumably minimal, but impact on temporal analyses could have 

been more substantial. These changes in surveillance practices underscore the value in 
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conducting analyses within a single public health jurisdiction to minimize the impact 

surveillance practices have on spatial variation in disease on a sub-county level.  

Appendix 1.2. Assessment of impact of surveillance practices on total case count 

Figure A-1.2.  Lyme disease incidence in Howard County 2001-2011: total cases vs. cases with 

reported erythema migrans (EM) 

Erythema migrans (EM) rash is the most common clinical presentation of Lyme disease 

and the first clinical sign that occurs for most patients, well before an antibody response can be 

detected. Changes may occur in how laboratory reports are collected (electronic vs. paper) or 

laboratory criteria required for confirmation. As a result, the proportion of possible cases that 

can be classified may be modified due to sheer burden on the public health system. In contrast, 

EM is often reported directly to the public health system by clinicians, a process has not 

systematically changed over time, and is not subject to changes with modifications to the 

surveillance case definition that occurred during the study time period. In Figure A-1.2, the 

same overall trend in incidence during 2001-2011 is detected when examining only cases with 
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EM as compared to all confirmed and probable cases. The proportion of all cases that have EM 

rash does, however, decline during the study time period. This trend could be linked to 

enhanced follow up on laboratory reports, beginning of electronic laboratory reporting as 

mentioned in Appendix 1.1, and to the beginning of the probable surveillance case definition in 

2008.   

Appendix 1.3. Spatial autocorrelation of Lyme disease incidence by census block group 

 

 

 

 

 

 

Figure A-1.3a. Cumulative incidence of reported human Lyme disease (confirmed and probable 

cases per 100,000 residents) by census block group, Howard County, Maryland, 2001-2011 
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Figure A-1.3b.  Census block groups with significant spatial autocorrelation in human Lyme 

disease incidence.  Type of autocorrelation is indicated in the figure legend, with “H” and “L” 

depicting high and low, respectively. 

By examining not only cumulative incidence but also the spatial autocorrelation of 

cumulative incidence values (by Moran’s I test), higher incidence of Lyme disease clearly 

occurred in the western and central part of Howard County and lower incidence occurred in the 

eastern part of the County.  This appendix presents an alternate method to examine disease 

clustering than what is presented in the main text of Chapter 2, which was based on binary 

point-based rather than census block group count data.    
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Appendix 1.4. Spatial autocorrelation of population growth, 2000-2009  

Figure A-1.4a.  Percent population growth during 2000-2009 by census block group, Howard 

County 
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Figure A-1.4b.  Census block groups with significant spatial autocorrelation of population 

growth during 2000-2009. Type of autocorrelation is indicated in the figure legend, with “H” 

and “L” depicting high and low, respectively. 

Differential population growth in the western and central parts of the County during the 

study period could artificially elevate disease risk in those areas by underestimation of 

population denominators. The potential of this to affect cluster detection was examined by 

assessing spatial autocorrelation in estimated population growth from 2000-2009 per census 

block group. Global Moran’s I statistic revealed significant heterogeneity in population growth 

by census block group (p<0.001); local Moran’s I statistics revealed clustering of increased 

population growth in four census block groups (shown in red in Figure A-1.4b.).  However, only 

one of these census block groups was in the elevated risk area of the western and central part 
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of the County, and was not a block group with very high incidence of Lyme disease. Thus, the 

detected high-risk clusters do not appear to result from an artificial underestimation of the 

population.   

 

Appendix 1.5. Spatial cluster detection analysis using case counts in census block groups 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1.5.  Spatial high-risk clusters based on 50% population maximum cluster size software 

setting   

Cluster findings displayed in A-1.5 were obtained using case counts per census block 

group rather than binary point-based household data. Although the very small high-risk cluster 

was not detectable using this method, these results are generally consistent with findings 

obtained using point-based data.  
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Appendix 1.6. Spatiotemporal cluster analysis  

 

 

 

 

 

 

 

 

 

 

  

 

Figure A-1.6.  Spatiotemporal cluster analysis with 50% population maximum revealed one 

high-risk cluster in the western and central part of Howard County beginning June 2005 through 

end of study period (2011). 
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Appendix 1.7. Environmental characteristics within clusters assessed at two scales  

Table A-1.7. Comparison of land use and land cover characteristics inside and outside high-risk 

cluster areas assessed at two maximum cluster size settings. 

 

 

 

 

 

 

 

 

 

 L

and use and land cover characteristics associated with two km maximum high-risk clusters were 

presented in the main text. Here, we compare those findings to those from high-risk clusters 

detected using the software default maximum cluster size of 50% of the population. Regardless 

of maximum cluster size, high-risk clusters had more low-density development, less high-

density or urban development, more red and white oak forest but less other deciduous forest. 

In contrast, those factors that differed depending on the scale of the cluster assessed were: 

medium-density development, land cover classified as herbaceous or agricultural, and 

proportion of land classified as forest.   

Land use category 

50% population 

maximum cluster size    

(% of total area) 

2 km maximum cluster 

size 

(% of total area) 

Inside   Outside Inside Outside 

Low-density development 22.9 10.3 30.3 16.7 

Medium-density development 2.4 20.9 13.0 9.8 

High-density development 0.7 6.2 1.6 3.1 

Urban 2.8 20.1 2.3 10.5 

Herbaceous/agricultural 35.0 13.2 13.8 27.0 

Forest 28.5 27.7 27.9 23.9 

Very low density - forest 5.5 1.7 7.7 3.7 

Very low density- agricultural 7.1 1.0 3.1 4.7 

Land cover category     

Herbaceous/agricultural 65.4 27.8 35.0 51.1 

Urban 3.9 37.7 14.2 18.1 

Red-white oak forest 18.2 15.3 38.9 15.3 

Chestnut oak forest 5.4 7.1 2.9 6.3 

Other deciduous forest 4.7 7.5 4.2 6.0 

Mixed forest 1.9 4.0 4.7 2.6 

Total forest 30.1 34.0 50.6 30.2 
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PROJECT 2 APPENDICES 

Appendix 2.1. Multilevel Models 2 and 3 with forest fragmentation and socio-demographic 

variables separately 

Table A-2.1a. Multilevel model 2 containing only census block group-level forest indices*  

Variable type Variable Variable specification** 

(interquartile range) 

Multilevel model 

aOR† 95% CI‡ p-val 

Forest 

fragmentation 

indices 

Percent classified 

as forest 

20.3% 1.44 1.05-1.97 0.026 

Mean forest 

patch size  

0.15 km2 1.01 0.88-1.16 0.913 

Forest edge per 

forest area 

1.9 (ratio*1,000) 0.99 0.88-1.16 0.904 

Forest edge per 

total area 

411.5 (ratio*1,000) 0.86 0.72-1.03 0.099 

* Covariance parameter for model: 0.2343, AIC: 16,300 

**Associations for continuous variable displayed per increase in interquartile range 

†Adjusted odds ratio 

‡95% confidence interval 

 

 

 

Table A-2.1b. Multilevel model 2 containing only census block group-level socio-demographic 

indices*  

Variable type Variable Variable 

specification**   

(interquartile range) 

Multilevel model 

aOR† 95% CI‡ p-val 

Socio-

demographic 

indices 

Population density 2,761 people 0.90 0.77-1.06 0.208 

Percent population 

growth  

2.4% 0.85 0.76-0.95 0.006 

Median home value $255,600 1.56 1.30-1.88 <0.001 

Median age 8.1 years 0.98 0.82-1.16 0.794 

Percent ≥ bachelor’s 

degree 

9.8% 1.14 1.03-1.27 0.014 

* Covariance parameter for model: 0.1328; AIC: 16,481 

**Continuous variables displayed per increase in interquartile range 

†Adjusted odds ratio 

‡95% confideence interval 
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Table A-2.1c. Multilevel model 3 containing only census block group-level forest indices*  

* Covariance parameter for model: 0.1408, AIC: 16,150 

**Referent group for class variables indicated (ref); continuous variables displayed per increase in interquartile 

range (IQR) 

†Adjusted odds ratio 

‡95% confidence interval 

 

Table A-2.1d. Multilevel model 3 containing only census block group-level socio-demographic 

indices*  

*Covariance parameter for model: 0.1098, AIC:16,352 

**Referent group for class variables indicated (ref); continuous variables displayed per increase in interquartile 

range (IQR) 

†Adjusted odds ratio 

‡95% confidence interval 

 

Variable type Variable Variable 

specification** 

Multilevel model 

aOR† 95% CI‡ p-val 

Land use Low-density development  2.10 1.73-2.54 <0.001 

Medium-density development  1.95 1.67-2.29 <0.001 

Forest  1.38 1.03-1.84 0.032 

Herbaceous/ agriculture  0.66 0.45-0.95 0.026 

High density development/urban  ref   

Land cover Herbaceous/agriculture  0.96 0.83-1.11 0.567 

Red-white oak forest  1.38 1.17-1.64 <0.001 

Other forest  0.99 0.82-1.19 0.926 

Urban  ref   

Forest indices Percent classified as forest IQR (16.2%) 1.31 1.00-1.72 0.046 

Mean forest patch size IQR (0.14 km
2
) 1.01 0.90-1.14 0.898 

Forest edge per forest area IQR (3.74 ratio*1,000) 0.99 0.90-1.14 0.940 

Forest edge per total area IQR (0.57 ratio*1,000) 0.90 0.77-1.06 0.195 

Variable type Variable Variable 

specification** 

Multilevel model 

aOR† 95% CI‡ p-val 

Land use Low-density development  1.81 1.48-2.20 <0.001 

Medium-density development  1.78 1.52-2.09 <0.001 

Forest  1.28 0.95-1.71 0.010 

Herbaceous/ agriculture  0.61 0.42-0.88 0.009 

High-density development/urban  ref   

Land cover Herbaceous/agriculture  0.91 0.78-1.05 0.194 

Red-white oak forest  1.34 1.13-1.60 0.001 

Other forest  0.98 0.81-1.18 0.834 

Urban  ref   

Socio-

demographic 

indices 

Population density IQR (2,761 people) 0.92 0.79-1.08 0.320 

Percent population growth  IQR (2.4%) 0.88 0.79-0.98 0.023 

Median home value IQR ($255,600) 1.46 1.20-1.76 <0.001 

Median age IQR (8.1 years) 0.91 0.77-1.07 0.248 

Percent ≥ bachelor’s degree IQR (9.8%) 1.10 1.00-1.22 0.063 
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Appendix 2.2. Red and white oak forest as source for forest fragmentation calculations 

 

Table A-2.2a. Univariate fixed effects red-white oak forest (RWO) and human Lyme disease* 

*Characteristics displayed according to interquartile range (IQR); 95% CI=95% confidence interval 

 

 

Table A-2.2b. Multilevel Model 2, substituting red and white oak census block group-level forest 

indices for total forest indices*  

Variable type Variable Variable 

specification** 

interquartile range 

Multilevel model 

aOR† 95% CI‡ p-val 

Red-white oak 

forest  (RWO) 

fragmentation 

indices 

Percent classified as RWO 20.3% 1.39 0.85-2.26 0.189 

Mean RWO patch size  0.15 km
2
 1.01 0.87-1.17 0.861 

RWO edge per RWO area 1.9 (ratio*1,000) 1.00 0.99-1.01 0.562 

RWO edge per total area 411.5 (ratio*1,000) 0.90 0.67-1.21 0.477 

Socio-

demographic 

indices 

Population density 2,761 people 0.95 0.77-1.17 0.636 

Percent population growth  2.4% 0.82 0.73-0.92 0.001 

Median home value $255,600 1.37 1.11-1.69 0.004 

Median age 8.1 years 1.09 0.90-1.30 0.380 

Percent ≥ bachelor’s degree 9.8% 1.14 1.02-1.28 0.027 

* Covariance parameter for model: 0.1056, AIC:15,242 

**Variables displayed per increase in interquartile range (IQR) 

†Adjusted odds ratio 

‡95% confidence interval 

 

 

 

 

Red and white oak 

(RWO) forest 

fragmentation indices 

IQR 

total 

Mean (IQR) 

with Lyme 

disease 

Mean (IQR) 

without Lyme 

disease 

Odds ratio       

(per IQR 

increase) 

95% CI p-val 

Percent census block 

group classified as RWO 

0.203 0.174 

(0.205) 

0.140     

(0.195) 

1.51 1.40-1.62 <0.001 

RWO edge per RWO 

area (ratio *1000) 

1.90 5.325   

(1.74) 

6.421   

(1.90) 

0.99 0.99-1.00 0.028 

RWO edge per total area 

(ratio *1000) 

411.50 537.670 

(368.21) 

494.333 

(411.50) 

1.26 1.18-1.36 <0.001 

Mean RWO patch size 

(km
2
) 

0.153 0.229406 

(0.20249) 

0.189749 

(0.15256) 

1.13 1.10-1.17 <0.001 
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Table A.2.2c. Multilevel Model 3, substituting red and white oak census block group-level forest 

indices for total forest indices*  

Variable type Variable Variable specification** 

 

Multilevel model 

aOR

† 

95% CI‡ p-value 

Land use Low-density development  1.90 1.55-2.33 <0.001 

Medium-density development  1.87 1.58-2.21 <0.001 

Forest  1.41 1.04-1.90 0.0264 

Herbaceous/agriculture  0.62 0.42-0.90 0.0132 

High density 

development/urban 

 ref   

Land cover Herbaceous/agriculture  0.88 0.75-1.03 0.104 

Red-white oak forest  1.27 1.07-1.52 0.007 

Other forest  0.95 0.78-1.15 0.585 

Urban  ref   

Red-white oak 

forest  (RWO) 

indices 

Percent classified as RWO IQR (20.3%) 1.22 0.80-1.86 0.343 

Mean RWO patch size  IQR (0.15 km
2
) 1.05 0.91-1.22 0.509 

RWO edge per RWO area IQR (1.90 ratio*1,000) 1.00 0.99-1.00 0.471 

RWO edge per total area IQR (411.5 ratio*1,000) 0.88 0.64-1.20 0.415 

Socio-

demographic 

indices 

Population density IQR (2,761 people) 0.98 0.80-1.21 0.863 

Percent population growth  IQR (2.4%) 0.87 0.78-0.98 0.012 

Median home value IQR ($255,600) 1.30 1.05-1.61 0.016 

Median age IQR (8.1 years) 1.01 0.85-1.21 0.878 

Percent ≥ bachelor’s degree IQR (9.8%) 1.14 1.02-1.28 0.026 

* Covariance parameter for model: 0.0922, AIC: 15117 

**Referent group for class variables indicated; continuous variables displayed per increase in interquartile range 

(IQR) 

†Adjusted odds ratio 

‡95% confidence interval 

 

Appendix 2.3. Removal of all observations with missing data  

By removing all observations with missing land use or land cover, the sample size only 

decreased by 160 observations. The Model 0 covariance parameter was 0.2944 (as compared to 

0.2966). Therefore, these observations had little effect on the initial overall variation across 

census block groups. 
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Appendix 2.4. Reclassification of land use categories  

Table A-2.4. Results of multilevel Model 3 upon reclassification of very low density 

development dominated by forest and very low density development dominated by agriculture 

or open fields from the low density class to the forest/herbaceous classes respectively*  

Variable type Variable Variable 

specification** 

Multilevel model 

aOR† 95% CI‡ p-val 

Land use Low-density development  1.71 1.40-2.09 <0.001 

Medium-density development  1.76 1.50-2.06 <0.001 

Forest  1.45 1.12-1.87 0.005 

Herbaceous/agriculture  0.85 0.63-1.15 0.287 

High density development/urban  ref   

Land cover Herbaceous/agriculture  0.91 0.78-1.06 0.223 

Red-white oak forest  1.33 1.12-1.59 0.001 

Other forest  0.97 0.81-1.17 0.762 

Urban  ref   

Forest 

fragmentation 

indices 

Percent classified as forest IQR (16.2%) 1.32 1.03-1.68 0.959 

Mean forest patch size in CBG IQR (0.14 km
2
) 0.95 0.85-1.07 0.387 

Forest edge per forest area IQR (3.74 ratio*1,000) 1.03 0.87-1.23 0.725 

Forest edge per total area IQR (0.57 ratio*1,000) 0.95 0.83-1.10 0.496 

Socio- 

demographic 

indices 

Population density IQR (2,761 people) 1.01 0.84-1.20 0.959 

Percent population growth  IQR (2.4%) 0.86 0.77-0.95 0.005 

Median home value IQR ($255,600) 1.51 1.25-1.82 <0.001 

Median age IQR (8.1 years) 0.98 0.83-1.16 0.817 

Percent ≥ bachelor’s degree IQR (9.8%) 1.10 0.99-1.22 0.086 

*Covariance parameter for model: 0.0948, AIC: 16,144  

**Referent group for class variables indicated (ref); continuous variables displayed per increase in interquartile 

range (IQR) 

†Adjusted odds ratio 

‡95% confidence interval 

 

Here, very low density residential development dominated by agriculture and very low 

density residential development dominated by forest were reclassified from low-density 

development into herbaceous/agriculture and forest land use classes, respectively. Both 

herbaceous/agriculture and forest were land use classes with small sample sizes of households; 

reclassification yielded larger samples sizes, strengthened the positive association with 

residence in forest, and attenuated the protective association of residing in land used for 

herbaceous or agricultural purposes.   
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Appendix 2.5. Reclassification of land cover categories  

Table A-2.5.   Results of multilevel Model 3 upon reclassification of land cover categories to 

more forest categories*  

Variable type Variable Variable 

specification** 

Multilevel model 

aOR† 95% CI‡ p-value 

Land use Low-density development  1.82 1.49-2.23 <0.001 

Medium-density development  1.78 1.52-2.09 <0.001 

Forest  1.27 0.94-1.70 0.118 

Herbaceous/agriculture  0.59 0.40-0.85 0.006 

High-density development/urban  ref   

Land cover Herbaceous/agriculture  0.92 0.79-1.07 0.259 

Red-white oak forest  1.33 1.12-1.58 0.001 

Chestnut oak forest  0.95 0.74-1.22 0.681 

Other deciduous forest  0.93 0.69-1.26 0.639 

Mixed deciduous/evergreen forest  1.15 0.82-1.61 0.429 

Urban  ref   

Forest 

fragmentation 

indices 

Percent classified as forest IQR (16.2%) 1.32 1.04-1.68 0.022 

Mean forest patch size IQR (0.14 km
2
) 0.95 0.85-1.06 0.348 

Forest edge per forest area IQR (3.74 ratio*1000) 1.03 0.87-1.22 0.739 

Forest edge per total area IQR (0.57 ratio*1000) 0.96 0.83-1.10 0.507 

Socio-

demographic 

indices 

Population density IQR (2,761 people) 1.01 0.85-1.20 0.896 

Percent population growth  IQR (2.4%) 0.87 0.78-0.96 0.008 

Median home value IQR ($255,600) 1.45 1.21-1.74 <0.001 

Median age IQR (8.1 years) 0.98 0.83-1.15 0.760 

Percent ≥ bachelor’s degree IQR (9.8%) 1.11 1.00-1.23 0.049 

* Covariance parameter for model: 0.08389, AIC: 16,121 

**Referent group for class variables indicated (ref); continuous variables displayed per increase in interquartile 

range (IQR) 

†Adjusted odds ratio 

‡95% confidence interval 
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Appendix 2.6. Comparison of multilevel Model 3 with GEE 

Table A-2.6. Comparison of multivariable multilevel model 3 of household and census block group risk factors for Lyme disease with 

model 3 implemented as a generalized estimating equations (GEE) model with an exchangeable correlation structure 

Variable type Variable Variable specification* Multilevel model GEE with exchangeable 

structure 

aOR† 95% CI‡ p-val aOR† 95% CI‡ p-val 

Land use Low-density development  1.85  1.52-2.26 <0.001 1.84 1.51-2.25 <0.001 

Medium-density development  1.80 1.54-2.12 <0.001 1.78 1.47-2.14 <0.001 

Forest  1.29  0.96-1.77 0.089 1.27 0.98-1.65 0.077 

Herbaceous/agriculture  0.62  0.43-0.90 0.012 0.62 0.38-1.01 0.052 

High-density development/ 

urban 

 ref      

Land cover Herbaceous/agriculture  0.91  0.78-1.06 0.235 0.92 0.77-1.10 0.343 

Red-white oak forest  1.32  1.11-1.57 0.002 1.33 1.14-1.55 <0.001 

Other forest  0.98  0.81-1.17 0.788 0.98 0.81-1.20 0.857 

Urban  ref      

Forest 

fragmentation 

indices 

Percent classified as forest IQR (16.2%) 1.36 1.07-1.73 0.012 1.34 1.05-1.71 0.020 

Mean forest patch size  IQR (0.14 km
2
) 0.93 0.83-1.04 0.201 0.95 0.87-1.04 0.234 

Forest edge per forest area IQR (3.74 ratio*1000) 1.03 0.87-1.21 0.772 1.02 0.89-1.17 0.797 

Forest edge per total area IQR (0.57 ratio*1000) 0.95 0.82-1.09 0.426 0.07 0.83-1.09 0.453 

Socio-

demographic 

indices 

Population density IQR (2,761 people) 1.02 0.86-1.22 0.790 1.00 0.84-1.20 0.978 

Percent population growth  IQR (2.4%) 0.87 0.78-0.97 0.010 0.90 0.81-1.00 0.053 

Median home value IQR ($255,600) 1.46 1.21-1.75 <0.001 1.37 1.11-1.70 0.004 

Median age IQR (8.1 years) 0.97 0.82-1.15 0.707 0.99 0.82-1.19 0.907 

Percent ≥ bachelor’s degree IQR (9.8%) 1.13 1.01-1.25 0.027 1.11 0.99-1.24 0.084 

*Referent group for class variables indicated (ref); continuous variables displayed per increase in interquartile range (IQR) 

†Adjusted odds ratio 

‡95% confidence interval 
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PROJECT 3 APPENDICES 

Appendix 3.1. Tick counts on deer and deer density using alternate deer density variables 

 

Table A-3.1. Adjusted associations of tick counts on deer during October with mean deer 

density and variance in deer density across parks, Howard County, Maryland 

 

 

 

 

*Adjusted for sex and age of deer and year culled; RR=relative risk; reference group for class variable indicated 

(ref) 

**95% confidence interval  

Here, mean and variance in deer density were explored as explanatory factors for 

association with tick counts on deer. Mean deer density was not divided into levels, as the 

correlation between mean deer density and the primary explanatory variable, median deer 

density, was nearly perfect (r=0.998, p<0.001). The findings were in accordance with those of 

the primary analysis that used median density.  

Variance in deer density in parks had one extreme outlier (σ2>14,000). When variance 

was included in adjusted overdispersed Poisson models as a continuous variable, this outlying 

value was removed. Additionally, variance was dichotomized into low and high values. In this 

analysis, parks with high variance were inversely associated with tick abundance on deer. Thus, 

as with the trend in primary analyses for increasing deer density to be associated with fewer 

ticks on deer, increasing variance in deer density was also associated with fewer ticks on deer. 

Conversely, those areas with the lowest deer density and least variation in density estimates 

had the highest tick abundance.  

Exposure variable Exposure variable specification Adjusted RR* 95% CI** p-val 

Mean deer density  Continuous (per 10 deer / mi2) 0.91 0.87-0.96 <0.001 

Variance in deer 

density 

Continuous (per 100 units) 0.99 0.99-1.00 <0.001 

Dichotomous low (≤ 810) ref   

Dichotomous high (> 810)  0.37 0.22-0.60 <0.001 
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Appendix 3.2. Tick counts on deer and deer density: multinomial and truncated tick counts 

 

Table A-3.2a. Association of tick abundance on deer with deer density in parks, Howard County, 

Maryland. Tick counts truncated at a high value of 10 ticks  
 

 

 

 

 
 

 

 

 

*Adjusted for sex and age of deer and year culled; reference group for class variable indicated (ref) 

**95% confidence interval 

 

The count variable for ticks on deer was truncated at 10; therefore, observations with 

counts higher than 10 were re-classified to have values of 10. Results in an adjusted 

overdispersed Poisson model were similar to that of the primary analysis. The highest level of 

deer density was associated with lowest tick abundance, even when the highest levels of 

abundance were minimized. 

Table A-3.2b. Association of tick abundance on deer with deer density in parks*   
 

 

 

 

 

 

 

 
*Tick counts implemented as a three-level multinomial outcome variable 

†Adjusted odds ratio; reference group indicated (ref) 

‡95% confidence interval 

The association between tick counts and deer density was examined with tick counts 

classified into a three-level nominal variable (no ticks, one tick, and two or more ticks). In this 

Outcome 

variable 

specificatio

n 

Median deer 

density level 

Adjusted RR* 95 % CI** p-value 

Truncated 

tick counts 

(> 10 = 10) 

Low (≤ 24 deer 

per mi2) 

ref   

Medium (25 - 62 

deer per mi2) 

1.08 0.80-1.46 0.623 

High (≥ 63 deer 

per mi2)  

0.50 0.31-0.81 0.004 

Outcome 

variable  

Median deer density level aOR† 95% CI‡ p-val 

0 ticks Low (≤ 24 deer per mi2) ref ref  

1 tick Medium (25 - 62 deer per mi2) 1.33 0.78-2.27 0.301 

≥ 2 ticks Medium (25 - 62 deer per mi2) 1.08 0.69-1.69 0.727 

1 tick High (≥ 63 deer per mi2) 1.56 0.80-3.02 0.189 

≥ 2 ticks High (≥ 63 deer per mi2) 0.39 0.20-0.77 0.006 
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multinomial adjusted logistic regression model, there were no differences between detection of 

no ticks vs. one tick in any of the deer density levels. In contrast, the highest deer density level 

was associated with reduced odds of finding a deer with two or more ticks.  

 

 

Appendix 3.3. Tick abundance and deer density with alternate variables for tick abundance 
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Figure A-3.3. Maximum number of ticks per deer and variance in number of ticks per deer in 

October according to median deer density during the study period 

 

Adjusted logistic regression models with variance in tick abundance and maximum tick 

abundance as outcome variables were not created due to quasi-complete or complete 

separation in data points. Based on visual assessment of this crude association (above), 

variance in ticks on deer and maximum numbers of ticks on deer were highest at the lowest 

levels of deer density.    
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Appendix 3.4. Human Lyme disease outcome models using alternate deer density variables  

 

Table A-3.4. Association of deer density (calculated as mean density and variance in density) 

and human Lyme disease risk, Howard County, Maryland 

 Variable specification aOR* 95% CI† p-val GEE 

aOR‡ 

95% CI† p-val 

Mean 

density 

Continuous ( 10 deer per 

mi
2
) 

0.98 0.96-0.99 0.003 0.98 0.96-0.99 <0.001 

Quartiles of 

mean deer 

density  

Q1 (< 41 deer per mi
2
) ref   ref   

Q2 (42 - 49 deer per mi
2
) 0.93  0.68-1.28 0.667 1.00 0.55-1.82 0.991 

Q3 (50 - 77 deer per mi
2
)   0.94 0.66-1.36 0.752 0.96 0.68-1.36 0.824 

Q4 (> 77 deer per mi
2
)  0.73 0.56-0.95 0.020 0.70 0.51-0.97 0.030 

Variance in 

density  

Low (≤ 810) ref   ref   

High (> 810) 0.63 0.49-0.80 <0.001 0.60 0.44-0.81 0.001 

*Adjusted odds ratio; reference group for class variable indicated (ref) 

†95% confidence interval 

‡Generalized estimating equation (GEE) with exchangeable correlation structure 

 

The primary analysis between deer density and human Lyme disease risk used quartiles 

of median deer density; there was a trend toward decreased risk of Lyme disease with 

increased deer density, however the association was not clearly linear. Additionally, mean deer 

density was examined. The adjusted odds ratio (OR) and adjusted OR in a generalized 

estimating equations (GEE) model were highly similar to that of median deer density as a 

continuous variable.  Using quartiles of mean deer density, the highest quartile of deer density 

was associated with reduced risk of Lyme disease, and the dose-response trend according to 

the fixed effect estimates was clearer than with the quartiles of median deer density.   
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Appendix 3.5. Association of density of infected adult ticks with human Lyme disease risk  

 

Table A-3.5. Density of infected adult ticks during 2012-2013 and cumulative risk of Lyme 

disease among households surrounding parks, Howard County, Maryland, 2001-2011*  

 OR 95% CI p-val aOR 95% CI p-val 

Density of infected 

adults: 2012-2013 
1.01 0.99-1.03 0.351 1.00 0.97-1.02 0.802 

*OR=odds ratio; 95% CI= 95% confidence interval; aOR=Adjusted OR 

As the density of infected adult ticks increased (in the five parks with corresponding 

data), no trend toward increase in cumulative human disease risk in those parks was evident.  

Infection data were only available for the most recent deer hunting season, and did not directly 

correlate in a biologically meaningful way with human disease data from 2001-2011.  

Nevertheless, if an association had been detected, it may have suggested that parks with higher 

burden of infection were constant over time in Howard County.     


