
THESIS 
 
 
 
SPATIAL VARIABILITY OF SNOW DEPTH MEASUREMENTS AT TWO MOUNTAIN PASS SNOW  

 
TELEMETRY STATIONS 

 
 
 
 
 
 
 
 
 
 

Submitted by  
 

Evan J.  Blumberg  
 

Department of Geosciences 
 
 
 
 
 
 
 
 
 
 
 

In partial fulfillment of the requirements  
 

For the Degree of Master of Science  
 

Colorado State University 
 

Fort Collins, Colorado 
 

Fall 2012 
 
 
 
Master’s Committee: 
 

Advisor: Steven Fassnacht 
 

Melinda Laituri 
Greg Butters 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

Copyright by Evan J. Blumberg 2012 
 

All Rights Reserved 



ii  

ABSTRACT 

 
 

SPATIAL VARIABILITY OF SNOW DEPTH MEASUREMENTS AT TWO MOUNTAIN PASS SNOW 

TELEMETRY STATIONS 

 

Much of the Western United States relies heavily on spring snow melt runoff to meet its 

industrial, agricultural, and household water needs. Water professionals use the network of 

snowpack telemetry (SNOTEL) stations to help forecast spring melt water runoff. These 

stations only represent a small area and across a watershed, the variability in snowpack 

properties can be large. Properties such as snow depth can vary substantially even over 

distances as short as a meter. Previous studies have examined how snow depth is 

distributed across the landscape and how terrain and vegetation parameters can be used as 

surrogates for the meteorological variables that drive the distribution of snow. The 

parameters are derived from a digital elevation model (DEM) that is now at a 30‐resolution, 

and they include elevation, aspect, slope angle, and canopy cover, as well as clear sky solar 

radiation and the maximum upwind slope. Typically three to five snow depth 

measurements are taken to represent each 30‐m DEM pixel. This study examines the 

distribution of variability in snow depth within a pixel. 

 

Snow depth surveys were conducted around the Joe Wright SNOTEL station near 

Cameron Pass in northern Colorado on May 1st, 2009 and May 1‐2, 2010 and around the 

Togwotee Pass SNOTEL station in north‐central Wyoming on March 17th 2009. Surveys were 

performed by taking snow depth measurements in a 1 x 1 kilometer block around each 

SNOTEL station. Due to the logistics of sampling these two locations that both have dense 
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forests and steep terrain, three different sampling methods were employed based on a 

standard of three points in a row spaced 5 meters apart. To examine the variability at a 

location (pixel), at least eight additional measurements were taken between the three points 

(11 points were taken on May 1st, 2009 at Joe Wright). At Togwotee Pass, 10 additional 

depth measurements were taken about the mid‐point, perpendicular to the main transect, 

yielding 21 points. For the 2010 survey at Joe Wright, the 11 points in a row were 

supplemented by two points at the beginning, middle and end (three standard points) to 

yield 17 measurements at a location. 

 

From these data the parameters most strongly correlated with the average snow 

depth, the standard deviation of snow depth, and the coefficient of variation were 

computed. Binary regression trees were used to further explore the relation between the 

average and variability and the terrain and canopy parameters. The statistics (average and 

standard deviation) from the standard three points was compared to all the points (11, 17 

or 21) measured at a location. Data were sub‐set from all the points to determine the 

average difference and subsequently an appropriate number of depth measurements that 

should be taken to represent a location. 

 

Key variables were not consistent for the 2009 and 2010 Joe Wright SNOTEL surveys, 

and also varied when looking at standard deviation or coefficient of variation. Among many 

surveys, canopy cover, elevation, and sin of slope were key variables, but to different 

degrees. Investigation into survey efficiency show that taking between 3 to 6 data points 
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per pre‐determined sample point is suitable to be within 5% of the overall average, whether 

it be the 11, 17, or 21 point survey scheme. 

 

Blumberg, E.J., 2012. Spatial Variability of Snow Depths Measurements at Two Mountain 

Pass Snow Telemetry Stations. Unpublished M.S. thesis, Department of Geosciences, 

Colorado State University, Fort Collins, Colorado, USA. 
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Chapter 1 ‐ Introduction 
 

1.1 – THE IMPORTANCE OF SNOW 

 
In the Western United States, 50 to 80% of the water is derived from snowmelt (USDA 

NRCS, 2009). This snowmelt contributes to the water supply for drinking water, industry, 

and irrigation for more than 60 million people (Bales et al., 2006) with an estimated direct 

and in direct economic impact of 300 billion dollars annually (Cline pers. comm., 2000). In 

California, 75% of the state’s water for agriculture was derived from snowmelt from the 

Sierra Nevada Mountains (Molotch et al., 2005), while in Colorado waters derived from 

snow melt along the Continental Divide are not only vital to that state but also to the mid‐ 

west and far‐western United States (Campbell et al., 1995). With so much reliance on 

snowmelt water, it is crucial to have the accurate estimates of amount of snow in the 

mountains and the subsequently runoff each season for water supply as well as flood 

preparation and mitigation. 

 
 
 

1.2 – SNOWPACK PROPERTIES 

 
Snow water equivalent (SWE) is the total amount of water that is in the snowpack and is 

very important for estimating spring snowmelt amounts 

<http://www.or.nrcs.usda.gov/snow/about/>. However, snow depth (ds) is the easiest 

snowpack property to measure. SWE is the product of ds and the depth‐averaged 

snowpack density (ρs), and ρs has been seen to be less spatially variable than SWE or depth 

(Logan, 1973; Fassnacht et al., 2010). 

http://www.or.nrcs.usda.gov/snow/about/
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1.3 – OPERATIONAL SNOW MEASUREMENTS 

 
In the 1930s, the Natural Resource Conservation Service (NRCS) started the snowcourse 

network across the Western United States to measure snow depth and SWE on a monthly 

basis, usually from January through June. Typically 10 to 15 snow samples were taken 

manually by extracting a snow core over a 100 to 300 m transect (USDA NRCS, 2009). The 

SWE data have been used by the NRCS and the National Weather Service to forecast spring 

and summer runoff volumes. 

In the late 1970s, the snowpack telemetry (SNOTEL) network was established to 
 

automate the snowpack and related measurements in the often remote mountain 

watersheds. Numerous snowcourse sites have been replaced by collocated SNOTEL 

stations.  The SNOTEL stations deliver data in real time using meteor burst technology. This 

involves sending and bouncing radio signals off an ionized meteor band 50 to 75 miles 

above the Earth, without the use of satellites (USDA NRCS 2009). SNOTEL stations record 

hourly snow depth, snow water equivalent (SWE), precipitation totals, air temperature, and 

other hydro‐climatic data at some stations in real time. SWE is collected by a pressure‐ 

sensing snow pillow while snow depth is measured using an ultrasonic depth sensor. 

The snowcourse and SNOTEL network are useful to provide reference points to 

estimate runoff volumes, but the manual snowcourse measurements are only collected 

monthly and while the SNOTEL data have an adequate temporal resolution to represent the 

dynamic evolution of the snowpack, they only represent a small area (~10 m2). To 

understand the distribution of snow, manual field surveys have been conducted across 

various small alpine watersheds (e.g., Elder et al., 1991; Balk and Elder, 2002; Erickson et al., 
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2005; Molotch and Bales, 2005; Hultstrand et al., 2006). However, almost all snowcourse 

and SNOTEL sites arelocated in forested areas, and the SNOTEL stations tend not to be 

representative of the area surrounding them (Molotch and Bales, 2005).  Rice and Bales 

(2010) suggested that a network of sensor should be used to provide a better estimate of 

snow depth. 

 
 
 

1.4 – PREVIOUS WORK 

 
Numerous studies have estimates snow depth across an area based using different 

statistical techniques (e.g., Erxleben et al., 2002). Since the distribution of snow is difficult 

to measure at a fine scale, various spatial terrain and vegetation variables are often used as 

a surrogate for the meteorology that drives the variability in snowpack properties. 

Elevation, slope, aspect, net clear sky solar radiation, and vegetation was used to estimate 

the distribution of snow depth at several Rocky Mountain sites in Colorado for the NASA 

Cold Land Process Experiment using five statistical models, including inverse distance 

weighting, kriging, modified residual kriging, cokriging, and binary regression trees (Erxleben 
 

et al., 2002). Each models left some spatial variability unexplained, with the binary 

regression trees being the most successfulexplaining 18‐30% of the variability in the 

snowpack at the studied sties. 

For alpine areas, wind related factors influence the distribution of snow depth so 
 

Winstral et al. (2002) created the maximum upwind slope and topographic break 

parameters from a digital elevation model (DEM) as surrogates for wind sheltering and 

drifting. For part of Niwot Ridge Colorado, these wind variables plus elevation, slope and 
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solar radiation were all found to be statistically significant in predicting snow depth, with 

 
the index of wind sheltering the most significant (Erickson et al., 2005). In an alpine basin of 

the Sierra Nevada Mountains of California, the spatial distribution of snow water equivalent 

(SWE) in an alpine basin was primarily controlled by elevation and maximum upwind slope 

(Molotch et al., 2005). 

 
 
 

1.5 – PURPOSE OF THIS RESEARCH 

 
In a study in Northern Saskatchewan Canada,Neumann et al. (2006) concluded that one 

single fixed point measurement (such as a SNOTEL station) is not a statistically useful tool to 

represent the average snow depth of an area, even with a relatively uniform snow pack. 

For areas of interest that cannot be surveyed manually, multiple automated sensors can be 
 

used to increase the accuracy of snow estimates for a particular basin mean within 25% 

using 1 to 44 sensors, with an average of 5, depending on the snow variability of the basin. 

More sensors are likely needed to achieve the same accuracy in a more topographically 

variable study area (Neumann et al., 2006). 

The goal of this research is to determine how many sampling points are needed to 
 

measure a representative snow depth. López‐Moreno et al. (2011) sampled 121 points at 
 

15 relatively homogenous 100‐m2 plots in the Spanish Pyrenees Mountains. They found that 

five to seven points produced an average snow depth within 5% of the 121 points. The 

sampling conducted in this research collected fewer points at each plot (hereinafter called a 

sampling location) but increased the number sampling location (per day) to more than 

130.Each survey used a different number of measurement points at each sampling location 
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to exploring the practicality and efficiency of sampling, yet the same question remained:“is 

there specific a number of measurement pointsat a sampling location after which extra 

depth measurements are not needed to yield a representative average?” This question will 

help inform sampling strategies and survey efficiency, and can lead to a better 

understanding of snowpack variability. The absolute difference between the average of a 

sub‐set of measurement points and all points at a sampling location was computed. 

Statistically analyses were performed to identify the key terrain and canopy variables 

that determine the distribution and variability of snow depth around the two SNOTEL 

stations.  The distribution of the snow was computed from the average of the depths at each 

sampling location, while the variability was computed from the standard deviation of depths 

per sampling location. The coefficient of variation was used as an integrator of the average 

and standard deviations. The independent variables included elevation, slope (sine of 

slope), northness (product of sine of slope and cosine of aspect to represent an integration 

of wind and sun influences with a steep north‐facing slope approaching a value of 1 and a 

steep south‐facing slope approaching a value of ‐1), eastness (product of sine of slope and 

sine of aspect to represent wind processes), cumulative monthly clear‐sky solar radiation, 

maximum upwind slope, and canopy density. The 

strength of the correlation between the independent variables and the snow statistics 
 

(average, standard deviation, coefficient of variation) were computed. The relation 

 
between these statistics was determined. Binary regression trees were also used to identify 

the sequence of variables necessary to distribute the average, standard deviation, and 

coefficient of variation of snow depth. 
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Through this research, it is hoped that snow surveys can be more accurate and 

efficient. Using different statistical methods to identify important factors contributing to 

snow pack depth will eventually help to determine snow depths over an area more 

accurately than a localized SNOTEL station, with less energy and time than a full snow survey.  

In future, models could be developed using the most important variables for a given area to 

determine the distribution of snow depth without manual measurements. 
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Chapter 2 ‐ Study Sites 
 

2.1 – SNOTEL STATION CHARACTERISTICS 

 
For this study, snow depth was measured manually around the Joe Wright SNOTEL station 

near Cameron Pass in northern Colorado and the Togwotee Pass SNOTEL station (2944 m 

above sea level) in northwest Wyoming (Figure 2.1). Both areas had extensive Spruce‐Fir 

forests.  The canopy was more dense at Joe Wright than Togwotee Pass (Figure 2.2). The 

Togwotee Pass area mostly faced from 150 ‐ 250 degrees (south east to south west), while 

the Joe Wright area faced either 80 ‐ 150 degrees (east to south east) or 270 ‐ 350 (west to 

north) (Figures 2.3a and 2.3b). 

Snow depth data from the SNOTEL sites were compared with manualsnow depth 

measurements around the each station to determine the spatial variability in snow depths. 

Each snow surveys attempted to cover a 1 x 1 kilometer areaaround the SNOTEL station 

with 10 transects each separated by 100 meters. Plots were taken at 50‐m intervals along 

each transect. The basic design was to determine the representivity of the SNOTEL station 

and the distribution of snow using the average of 3 points taken 5 meters apart (Meromy et 

al., 2012). 

All samples were taken at a 1‐m interval. The Togwotee Pass survey, conducted on 

March 17, 2009, used 21 measurement points in a plus configuration (Figure 2.4a), at 159 

locations.  The May 2, 2009 survey at Joe Wright used 11 measurement pointsin a row 

(Figure 2.4b), at 203 locations, while the May 1‐2, 2010 Joe Wright used 17 measurement 

points (Figure 2.4c), at 184 locations. This last survey had 11 measurement points in a row 

with 2 extra points at the beginning, middle and end. 
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2.2 – JOE WRIGHT SNOTEL STATION 

 
The 2008‐2009 snow season at Cameron Pass (Joe Wright SNOTEL) was slightly above 

average with a peak SWE of 701 mm, compared to the 30‐year average from 1980‐2009 of 

681 mm (Figure 2.5).  Peak SWE occurred on May 6, 2009, with the first snowfall occurring 
 

on October 12, 2008, first accumulation on October 22, 2008, and last day with snow on the 

ground being June 18, 2009. Snow depth peaked at 218 cm on April 19, 2009. In total, 

there were 246 days with snow on the ground, which is only 2.1 days less than the 30‐year 

average. 

The snow season of 2009‐2010 at Joe Wright SNOTEL was below the average peak 

SWE at 658 cm on May 16, 2010. The first snowfall occurred on September 22, 2009, with 

accumulation beginning on October 5, 2009. The last day with snow on the ground was 

June 17, 2010. In total, there were 261 days with snow on the ground. 

The May 2, 2009 survey at Joe Wright covered a 1x1km block around the SNOTEL 
 

station, consisting of 11 points at 203 locations.  The 11 points were in a north‐south 

direction spaced 1 meter apart. The May 1‐2, 2010 survey featured the same 1x1km block 

around the SNOTEL site, but consisted of 17 points at 184 locations. It was composed of the 

same north‐south line, but had one point to the east and west at the end and center 

locations of the line. 

 
 
 

2.3 – TOGWOTEE PASS SNOTEL STATION 

 
The peak SWE for 2008‐2009 at the Togwotee Pass was 841mm, occurring on May 8, 2009. 

This peak is above the 1981‐2009 average from of 700 mm (Figure 2.5). The March 17, 2009 
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Togwotee pass survey of 21 measurement points taken at 159 locations covered an area of 

 
700 m x1 km around the SNOTEL station. At each measurement location, there was a 

center point with 4 arms going north, south, east, and west for 5 points 1 meter apart. The 

Togwotee Pass transects ran from west to east while the Joe Wright transects ran from 

north to south due to the nature of the terrain. 

 

 
 

 
 

Figure 2.1: Regional map of Togwotee Pass, WY and Cameron Pass, CO for the Joe Wright 

SNOTEL (Image from Google Earth). 
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Figure 2.2: Canopy density of Togwotee Pass (left) and Joe Wright (right) survey areas, with 
snow depth sampling locations shown (red=2009, black=2010 for Joe Wright). 

 

 
 
 
 
 

45 
40 
35 
30 
25 
20 
15 
10 

5 
0 

 

 
 

Aspect 

 
 
 
 
 
 

 
Joe Wright 
 

Togwotee Pass 

 

 
 

Figure 2.3a: The distribution of aspect around the Togwotee Pass and Joe Wright SNOTEL 
stations at the snow depth sampling locations. 
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Figure  2.3b: Aspect maps for Togwotee Pass (left) and Joe Wright (right) survey areas, with 
snow depth sampling locations shown (red=2009, black=2010 for Joe Wright). 
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Figure 2.4: Survey sampling scheme for a) Togwotee Pass (March 17, 2009) with 21 points 
and arms branching out in each direction; b) Joe Wright (May 1, 2009) with 11 points and 
arms in the north and south direction; and c) Joe Wright (May 1‐2, 2010) with 17 points and 
arms in the north and south direction, plus one sample point to the east and west of the 
center point and each end point. 
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Figure 2.5: Peak SWE for water years 1981‐2009 at Togwotee Pass SNOTEL and 1980‐2010 
at Joe Wright SNOTEL (data from <http://www.wcc.nrcs.usda.gov/>). 

http://www.wcc.nrcs.usda.gov/
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Chapter 3 ‐ Methods 
 
 
 

3.1 – SAMPLING STRATEGIES 

 
During a snow sampling effort, eachsurveyor used a GPS unit to navigate to the start of a 

transect at a predetermined sample coordinate,and proceeded to follow their transect 

north‐south (Joe Wright survey) or east‐west (Togwotee Pass survey) at 50‐m intervals. 

Each person was instructed to navigate to within 10 meters for any given coordinate, and 

record the GPS coordinates at the center point to the nearest one meter. 

A1‐cm diameter aluminum probe(extendable in 1‐meter lengths)was used to 
 

measure snow depth to the nearest one centimeter. All measurements that were 

anthropogenically influenced, such as a road or the snow bank beside a road was noted, 

and the data were not used in the analysis. A measure of the canopy cover (closed, partially 

closed, open, or no trees), and the GPS error were also recorded.The data were entered 

into an electronic spreadsheet shortly after each survey was performed. 
 
 
 

 
3.2 – INDEPENDENT VARIABLES 

 
Several variables were generated from the DEM using GIS software to examine their 

relationto average snow depth and variability. Canopy density was also used but this 

product was obtained directly. The following is a brief explanationof each variable used. 
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3.2.1 – Elevation 

 
Elevation data (Figure 3.1) were obtained from the USGS 30‐meter 

DEM<http://seamless.usgs.gov>. Data points were overlain onto the DEM in Arc Map GIS 

software, and elevation for each data point was then extracted and entered into a 

spreadsheet. Elevation is important in higher mountain such as Cameron Pass, since more 

precipitation (Dingman et al., 1988) and thus more snow (Fassnacht et al., 2003) is typically 

observed as elevation increases. Although this is the case, factors such as wind can scour 

high elevation areas, and deposit greater amounts of snow at lower elevations. 

 
 
 

3.2.2 – Aspect 

 
The aspect was determined for each point where snow depth was measured (Figures 2.2a 

and 2.2b).  Aspect plays a very important role regarding snow depth, as it determines what 

areas get more or less sun throughout the winter and spring (Figure 3.2).  At mid‐latitudes, 

such as Colorado and Wyoming, aspect is very important, as north facing areas will see little 

sun through the winter, while south facing snow can see a significant amount of sun.   At 

high and low latitudes, aspect is not as important as the sun is either too weak to heavily 

affect the snow, or it is higher overhead, giving each aspect more consistent radiation. 

3.2.2a – Eastness 

Since aspect is a merely bearing denoting the slope angle from 0 to 360 degrees, 

Eastnesswas computed as a measure of how east an area faces, and is defined as: 
 
 
 
 
 

Eastness = sine ( 
aspect × n 

180 

 

) x sine ( 
s1ope × n 

180 

 

) (3.1), 

http://seamless.usgs.gov/
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as defined by Wallace and Gass (2008).  Similar to aspect, eastness is important because of 

how much solar radiation a given area will receive. More easterly aspects will receive 

earlier sun, while the northerly aspects will receive less solar radiation overall. 

3.2.2b – Northness 

 
Similar to eastness, northness is the measure of how north an area faces.  It is defined as: 

 
 
 
 
 

Northness = cosine ( 
aspect × n 

180 

 

) x sine ( 
s1ope × n 

180 

 

)  (3.2), 

 
 
 
 

as defined by Wallace and Gass (2008).  It is important since it influences the amount of 

solar radiation that a given area will receive, i.e., the more an area faces north, the less 

sunlight it will see, keeping the snow colder, and thus taking more time to melt. 

 
 
 

3.2.3 – Slope 

 
Slope values were determined using GIS software for each snow depth data point (Figure 

 
3.3).  Slope can be important in steep areas, where snow can either sluff off or avalanche 

off down to lower slopes.  This can have major impacts on snow depth and variability, as 

steep slopes may have lower snow depths, while shallow slopes in close proximity can be 

deeper due to the collection of the transported snow due to gravity. 



16  

3.2.4 – Maximum Upwind Slope 

 
Maximum upwind slope is a parameter used to describe the topographic shelter or 

exposure relative to a specific wind direction (Winstral and Marks, 2002). This is particularly 

important as it describes the variability in snow deposition due to wind transport and 

redistribution (Molotchet al., 2005).  It is defined as: 
 
 
 
 

SxA,dmax(xi,yi) = max (tan‐1 { 
ELEV(sµ,µµ)– ELEV  (si,µi) 

[(sµ–si)2+(µµ–µi)2] .J 

 

} ) (3.3), 

 
 
 

 
where A is the azimuth of the search direction, dmax controls the lateral extent of the 

search, (xi,yi) are the coordinates of the studied cell, (xy,yy) are the set of cell coordinates 

located along the line segment defined by A, dmax, and (xi,yi) (Winstral et al., 2002).  In 

alpine areas such as Cameron Pass (Figure 3.4), and Colorado in general, wind can be 

responsible for stripping snow from westerly alpine areas and redistributing and loading it 

onto easterly aspects. This has a large impact on snow depth, as within a few meters, snow 

can be non‐existent to several meters in depth. 

 
 
 

3.2.5 – Clear Sky Solar Radiation 

 
Both snow survey locations of Cameron Pass and Togwotee Pass have unique solar radiation 

values for the month that the survey took place (Figure 3.5). This is a measure of the solar 

radiation impacting a specific area. Like aspect, this is important as it will impact the snow 

depth, as areas seeing more intense sun will melt (and consolidate) faster than areas that 

do not see as much sun. 



Reading through a binary regression tree starts with the root node at the top of the 

tree, which is also the most critical variable. The root node will consist of all data points 
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3.2.6 – Canopy Cover 

 
Canopy cover data were obtained from the USGS <http://seamless.usgs.gov> and using GIS 

software the snow depth points were overlainon the canopy cover raster layer (Figure 2.1). 

Canopy cover is important, as it offers snow protection from the wind, and provides shade 

on sunny aspects. This can affect the snow depth, as a treed south facing slope may not be 

as melted out as an open south facing slope following a warm sunny spell. Protection from 

the wind can also keep the snow in place, keeping the snowpack deeper and preventing 

snow drifting and wind scouring. 

 
 
 

3.3 – ANALYSIS AND STATISTICAL METHODS 
 

 
From the snow depth data at each plot, average, standard deviation and coefficient of 

variation were calculated. Correlations between average snow depth, standard deviation, 

and coefficient of variation with each independent variable were calculated in the Microsoft 

Excel spreadsheet software. For each statistic and each study site/date, the independent 

variables were then ranked based on their correlation. 

Binary regression trees are an effective technique in identifying key variables 
 

affecting snow depth (Elder et al., 1991), and have been used to map the distribution of 

snow (Erxleben et al., 2002). Here regression trees were used to predict the key factors 

affecting average snow depth, standard deviation, and coefficient of variation. Regression 

trees were constructed in the statistical program R <http://www.r‐project.org>. 

http://seamless.usgs.gov/
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being regressed and an average overall value (snow depth average, standard deviation, or 

coefficient of variation for this study), as well as a value for the variable that is either less 

than, less than or equal, greater than, or greater than or equal. The tree then breaks down 

to less important variables in the same manner. When the variable is exhausted, there is a 

terminal node with the predicted value (snow depth average, standard deviation, or 

coefficient of variation) along with how many of the overall sample points are predicted to 

fall in that estimate. 

Comparisons of the 2009 and 2010 Joe Wright survey were conducted by 
 

overlapping both datasets to ensure that each corresponding data point from both years 

was actually at the same location, i.e., within the same pixel (pixels were approximately 30‐ 

m in size). A second comparison used points within one pixel to increase the number of 

comparable points between the 2009 and 2010 surveys. This enables highlighting 

similarities and differences between both years, including variability among the snowpack. 

To examine the impact of the number of sampling points per plot the average and 

standard deviation for the three (five for Togwotee Pass) points at the extremes of plot (+5, 

‐5) were compared to the average and standard deviation of all points within a plot. 

Further, an average was computed starting with the one center point and adding points 

until all data points at a plot were used (moving outward from the center). These averages 

were compared to the overall average at each plot (11 measurement points for the 2009 

Joe Wright survey, 17 measurement points for the 2010 Joe Wright survey, and 21 
 

measurement points for the 2009 Togwotee Pass survey) to compute the absolute percent 

difference from the overall average. 
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Figure 3.1: GIS elevation data for the a) Togwotee Pass and b) Joe Wright survey areas, with 
snow depth sampling locations shown (red=2009, black=2010 for Joe Wright). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2: The relation between aspect and latitude (from 
<http://www.fsavalanche.org/Encyclopedia.aspx>). 

http://www.fsavalanche.org/Encyclopedia.aspx
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Figure 3.3: Slope data for the a) Togwotee Pass and b) Joe Wright survey areas, with snow 
depth sampling locations shown (red=2009, black=2010 for Joe Wright). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Maximum upwind slope for the a) Togwotee Pass and b) Joe Wright survey 
areas, with snow depth sampling locations shown (red=2009, black=2010 for Joe Wright). 
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Figure 3.5: Solar radiation for the 2009 calendar snow year (October 15 – April 15) for the a) 
Togwotee Pass and b) Joe Wright survey areas, with snow depth sampling locations shown 
(red=2009, black=2010 for Joe Wright). 
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Chapter 4 ‐ Results 
 

4.1 – POINTS COMPARISON 

 
For each survey, the average snow depth and standard deviation were compared for each 

sampling location (Figure 4.1a‐c and Table 4.1). For the Joe Wright 2009 survey, average 

snow depth fromthe three mainmeasurement points (center, northern most and southern 

most points in Figure 2.3) was almost the same as the average of all 11 measurement points 

with a Nash‐Sutcliffe efficiency coefficient (N‐S) of 0.935 (Figure 4.1ai), while the three 

measurement point standard deviation was much less similar with an N‐S value of only 

0.188 (Figure 4aiii). There was no correlation between the average depth (from all 11 
 

measurement points) and the standard deviation (Figure 4aii). 

 
Since 17 points were measured at Joe Wright in 2010 (Figure 2.3), the averages and 

standard deviations were compared from the three main points, as per Joe Wright 2009, 

the 11 points in a row, as per Joe Wright 2009, and all 17 points (Table 4.1). All the 

averages were similar (Figure 4.1bi) with all N‐S values being greater than 0.88, but the 

three versus 11 averages were less similar in 2010 than in 2009 with almost the same 

number of plots being collected each year (203 in 2009 and 206 in 2010). There was also 

less correlation with the standard deviations (negative N‐S value for 3 vs. 11 and 3 vs. 17) 

and again no correlation between average snow depth and the variation in snow depth 

presented as the standard deviation (Figure 4bii). 

A similar procedure was followed for the 2009 Togwotee Pass survey, with three, 
 

five (center, northern, southern, eastern, western most points), 11 and 21 points being 

considered (Figure 2.3).  Three points produced similar averages as did 11 or 21 (N‐S of 0.9 
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and 0.831, respectively) and the five points also represented the 21 point average (N‐S of 

 
0.904) (Figure 4.1ci). The standard deviation of the three points represented the 11 point 

standard deviation (N‐S of 0.222) better than the 21 point standard deviation (N‐S of 0.03) 

while the five points produced a better variability estimate compared to the 21 points (N‐S 

of 0.461). Again there was no correlation between the average and standard deviation of 

snow depth (Figure 4cii). 

 
4.2 – INDEPENDENT VARIABLE CORRELATION 

 
The correlations between the independent variables (Chapter 3.2) and average snow depth, 

standard deviation of the snow depth, and the coefficient of variation were computed and 

ranked (Tables 4.2a, 4.2b, 4,2c). Canopy density was negatively correlated to the average, 

the standard deviation and the coefficient of variation. Canopy density was more 

correlated to the average at Joe Wright than Togwotee Pass. Elevation was negatively 
 

correlated with the standard deviation and coefficient of variation for both sites. The sine 

of slope was negatively correlated to the coefficient of variation at both sites, and with the 

standard deviation at Joe Wright, but it is positive for Togwotee Pass. 

The more correlated independent variables were somewhat consistent having 

 
similar correlation strengths each year (at Joe Wright for 2009 and 2010), but there was less 

consistency for the correlations between the two sites.When 11 measurement points were 

used to compute the statistics for the same pixels sampled in 2009 and 2010, the 

independent variables correlated to average snow depth were almost identical (Table 4.3), 

with the relations being stronger in 2010. For the standard deviation the variables were 

less consistent with three of the top five being the same (solar radiation, sine of slope, and 



24  

maximum upwind slope), but in a different order. The order and strength of the relation for 

the coefficient of variation was more consistent as it followed the ranking for the average 

snow depth.  For the 2010 sampling, all correlations were equal or stronger when only 11 

measurement points were used compared to 17, with the ranking being in the same order 

as shown in Table 4.3 for the 11 points. 
 

Overall the independent variables were more correlated with the average and 

standard deviation at Joe Wright than at Togwotee Pass, although none of the individual 

correlations were strong; the largest correlation coefficient was ‐0.274 (Table 4.2a). While 

it was not explored further, the location (UTM easting) was the most highly correlated 

variable at Togwotee Pass with the standard deviation (‐0.169) and coefficient of variation (‐ 

 
0.142). 

 
 
 

 
4.3 – BINARY REGRESSION TREES 

 
Regression trees were constructed in the statistical program R for each snow survey to 

identify the most important variables affecting snow depth. Three binary regression trees 

were made for each survey: average snow depth, standard deviation of snow depth, and 

coefficient of variation.  The following seven independent variables were used to generate: 

elevation, sine of slope, northness, eastness, canopy cover, solar radiation (May for Joe 

Wright surveys and March for Togwotee Pass survey), and maximum upwind slope. For 

each average snow depth regression tree, the independent variable and associated value 

are listed first, followed by the average snow depth (in centimeters), then by the number of 

data points being divided into each branch of the tree (Figures 4.2a‐c, 4.3a‐c, 4.4a‐c). At 
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each terminal nodes, the average snow depth and number of plots in the category are 

listed.The standard deviation and coefficient of variation regression trees are presented in 

the same manner, with the standard deviation or coefficient of variation listed in place of 

the average snow depth.  The first and second nodes in each regression tree are 

summarized in Table 4.4. 

Variables used in the creation of the average snow depth regression tree for the Joe 
 

Wright 2009 survey were canopy cover (root node), elevation, northness, and sin of slope. 

When standard deviation of average snow depth is regressed, sin of slope (root node), 

canopy cover, eastness, May solar radiation, northness, and maximum upwind slope were 

used in the construction of the tree. When coefficient of variation is regressed, elevation 

(root node), canopy cover, eastness, maximum upwind slope, northness, and sin of slope 

were used in construction of the regression tree. 

The Joe Wright 2010 snow survey average snow depth regression tree was 
 

constructed using eastness (root node), canopy cover, elevation, northness, and sin of 

slope.  The regression tree for standard deviation of average snow depth was constructed 

with sin of slope (root node), canopy cover, elevation, May solar radiation, northness, while 

the tree for coefficient of variation of average snow depth was constructed with elevation 

(root node), canopy cover, eastness, northness, and sin of slope. 

The Togwotee Pass snow survey average snow depth regression tree was 
 

constructed with the variables eastness (root node), canopy cover, maximum upwind slope, 

elevation, March solar radiation, and sin of slope. The regression tree for standard 

deviation of average snow depth was constructed with the variables elevation (root node), 
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sin of slope, maximum upwind slope, March solar radiation, and canopy cover. Key 

variables in the construction of the regression tree for coefficient of variation of average 

snow depth included elevation (root node), maximum upwind slope, sin of slope, canopy, 

and northness. 

 
 
 

4.4 – INTERANNUAL COMPARISON: JOE WRIGHT 2009 VERSUS 2010 

 
To compare the May 2009 and May 2010 snow surveys at Joe Wright, measurement plots 

were identified that were centered on the same DEM pixel which has a resolution of 30 m, 

yielding 99 measurement plots (~50% of all plots) that were on pixels that same pixel 

between the two years. The correlation with independent variables is presented in Table 

4.3 and was discussed above. Seventy additional measurement plots were identified that 
 

were within one pixel, with 13 more that were within 2 pixels from year to year. Only the 

same pixels and then within one pixel measurements were compared in terms of the 

average, standard deviation and coefficient of variation. 

Average snow depths were not well correlated (Figure 4.5a) between the two years 
 

for the same pixels (an R2 value of 0.260) and even less correlated for all 176 plots at the 

same pixel or with one pixel (an R2 value of 0.114). The slope of the line relating the two 

years was only 0.50 and 0.32 for the same and all pixels, respectively. The standard 

deviations were less correlated between the years (Figure 4.5b) than the average (an R2 

value of 0.046 and 0.064 for the same and all pixels) with shallow slopes (0.21 and 0.22). 

The coefficient of variation compared similarly (Figure 4.5c) with an R2 value of 0.064 and 

0.110, and slopes of 0.32 and 0.37 for the same and all pixels. 



27 

4.5 – SAMPLING METHODS 

 
Due to sampling logistics, the Togwotee Pass survey included 21 measurement points while 

the Joe Wright survey used only 11 points in 2009 and 17 in 2010, but will all points being 1‐ 

m apart.  The average computed for all measurement points at each location was assumed 

to be the true snow depth for a particular pixel.  To determine how many measurement 

points were needed to represent the true snow depth, the snow depth at the center point 

was compared to the average of all points.  The mean absolute difference between the one 

point and all points was computed.  The number of measurement points used to compute 

the average was increased by one and again compared to the all point average.  This was 

repeated until all measurement points were used in the average.  The absolute percent 

difference plotted versus the number of points illustrates that as more points are added, 

the deviation from the true snow depth decreases (Figure 4.6a).  Since the total number of 
 
measurement points varied (11, 17, 21), the number of points to be within 5% of the true 

snow depth (as suggested by López‐Moreno et al., 2011) increased between the two Joe 

Wright surveys (Table 4.5).  Examining these differences as a function of the percentage of 

total points (Figure 4.6b) shows that the deviation decreases most for the first few points 

then decreases at the same linear rate for both Joe Wright surveys.  Togwotee Pass was less 

variable between 20 and 50% of the points included in the average. 
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Table 4.1: Nash‐Sutcliffe efficiency coefficient for the comparison between a different 
number of measurement points per plot for the average and standard deviation at Joe 
Wright (2009 and 2010) and Togwotee Pass. These values correspond to Figure 4.1a‐c i and 
iii. 

location and date points comparison average snow depth standard deviation 
Joe Wright 2009 3 vs. 11 0.935 0.188 
Joe Wright 2010 3 vs. 11 0.886 ‐0.203 
Joe Wright 2010 3 vs. 17 0.883 ‐0.301 
Joe Wright 2010 11 vs. 17 0.983 0.757 

Togwotee Pass 2009 3 vs. 11 0.900 0.222 
Togwotee Pass 2009 3 vs. 21 0.831 0.030 
Togwotee Pass 2009 5 vs. 21 0.904 0.461 

 
 
 

Table 4.2a: Top five correlations (with correlation coefficient) for average snow depth, 
standard deviation, and coefficient of variation for Joe Wright in 2009. 

rank average snow depth standard deviation coefficient of variation 
1 canopy density (‐0.171) sine of slope (‐0.265) sine of slope (‐0.274) 
2 northness (0.152) elevation (‐0.190) elevation(‐0.244) 

3 eastness(0.131) canopy density (‐0.150) canopy density (‐0.134) 
4 solar radiation(‐0.131) max upwind slope(0.088) max upwind slope (0.123) 
5 elevation (0.120) solar radiation (0.079) solar radiation (0.119) 

/eastness (‐0.190) 

 
Table 4.2b: Top five correlations (with correlation coefficient) for average snow depth, 
standard deviation, and coefficient of variation for Joe Wright in 2010. 

rank average snow depth standard deviation coefficient of variation 
1 elevation (0.207) elevation (‐0.239) elevation(‐0.273) 
2 canopy density (‐0.161) sine of slope (‐0.208) sine of slope (‐0.209) 

3 northness (0.101) maxupwind slope(0.149) max upwind slope (0.136) 
4 sine of slope(0.093) canopy density (‐0.128) northness (‐0.113) 
5 eastness (‐0.085) solar radiation (0.106) solar radiation (0.113) 

 
Table 4.2c: Top five correlations (with correlation coefficient) for average snow depth, 
standard deviation, and coefficient of variation for Togwotee Pass in 2009. 
rank average snow depth standard deviation coefficient of variation 

1 eastness (0.236) canopy density (‐0.075) eastness (‐0.080) 
2 max upwind slope(0.160) elevation (‐0.061) elevation(‐0.043) 
3 sine of slope (0.101) sine of slope (0.049 solar radiation (‐0.032) 

4 canopy density (‐0.097) solar radiation (‐0.033) canopy density(‐0.025) 
5 solar radiation (‐0.034) northness (0.033) northness (0.024) 
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Table 4.3: Top five correlations (with correlation coefficient) for the measurements at the 
same pixel using 11 points between 2009 and 2010 (99 pixels) at Joe Wrightfor average 
snow depth, standard deviation, and coefficient of variation. 

rank average snow depth standard deviation coefficient of variation 
1‐2009 

2010 

elevation (0.206) 
elevation (0.318) 

northness (‐0.139) 
elevation (‐0.242) 

northness (‐0.186) 
elevation (‐0.286) 

2‐2009 
2010 

canopy density (‐0.169) 
canopy density (‐0.177) 

solar radiation (0.128) 
sine of slope (‐0.218) 

elevation(‐0.182) 
sin of slope (‐0.208) 

3‐2009 
2010 

northness (0.144) 
sine of slope (0.170) 

eastness (‐0.126) 
canopy density (‐0.208) 

sin of slope (‐0.179) 
max upwind slope (0.190) 

4‐2009 
2010 

solar radiation(‐0.126) 
northness (0.122) 

sine of slope (‐0.123) 
max upwind slope(0.200) 

eastness (‐0.178) 
northness (‐0.173) 

5‐2009 
2010 

eastness (0.125) 
solar radiation (‐0.099) 

max upwind 
slope(0.102)solar 
radiation (0.175) 

solar radiation (0.177) 
solar radiation (0.162) 

 

 
 

Table 4.4: Binary regression tree summary table, with variable at first root node and second 
node split for each tree. 

location and 
date 

variable first/root node split second node split 

Joe Wright 2009 Average Snow Depth Canopy Elevation 
Joe Wright 2009 Standard Deviation Sin of Slope Canopy 
Joe Wright 2009 Coefficient of Variation Elevation Canopy, Maximum 

Upwind Slope 
Joe Wright 2010 Average Snow Depth Eastness Eastness, Northness 
Joe Wright 2010 Standard Deviation Sin of Slope Canopy 
Joe Wright 2010 Coefficient of Variation Elevation Sin of Slope, Canopy 
Togwotee Pass Average Snow Depth Eastness Canopy 
Togwotee Pass Standard Deviation Elevation Sin of Slope, Elevation 
Togwotee Pass Coefficient of Variation Elevation Maximum Upwind 

Slope, Elevation 
 
 
 
 

Table 4.5: Average number and percentage of points per plot to achieve less than a 5% 
absolute difference from the average computed using all points per plot. 

location and date # of Points to be 
Within 5% Threshold 

% of Points to be 
Within 5% Threshold 

% Difference from 
Total Points 

Joe Wright 2009 4 of 11 36.4% 4.4% 
Joe Wright 2010 6 of 17 35.3 4.5 
Togwotee Pass 4 of 21 19.1 4.8 
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Figure 4.1: Comparison of i) 3 point average versus all points, ii) standard deviation vs. 

average and iii) 3 point standard deviation versus all pointsfor a) Joe Wright in 2009, b) Joe 

Wright in 2010, and c) Togwotee Pass in 2009. 
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Figure 4.2a:  Joe Wright 2009 regression tree for average snow depth.  Boxes without a 
variable represent a terminal node, with the average snow depth and how many points fit 
in that category.   
   

Canopy ≥ 36.5

155.6 cm

n = 203

Elevation < 3106

153.6 cm

n = 188

Sin Slope ≥ .1097

147.4 cm

n = 73

Northness < .1662

142.1 cm

n =56

Canopy < 77.5

138.6 cm

n = 49

Northness ≥ ‐.02059

129.9 cm

n =25

120.8 
cm

n = 15

143.5 
cm

n = 10

Canopy ≥ 83

147.7 cm

n = 24

142.3 
cm

n = 16

158.7 cm

n = 8

166.2 
cm

n = 7

165 cm

n = 17

Elevation < 3188

157.6 cm

n = 115

169.8 cm

n = 16

Northness < ‐.08359

155.6 cm

n = 99

150.9 
cm

n = 30

Canopy ≥ 75.5

157.6 cm

n = 69

155.8 cm

n = 60

169.7 
cm

n = 9

179.9 
cm

n = 15



 

Figur
Boxe
many
 

9.8

n =

re 4.2b:  Joe 
s without a v
y points fit in

Sin Sl

Northness < ‐

12.2

n =100

88

= 26

Nort

11.73

n = 47

Wright 2009
variable rep
n that catego

Sin Slop

13

n =

May Sol Rad < 6.

13.84

n =119

lope < .3922

12.62

n = 107

‐.07432

0

hness ≥ .1151

13.01

n= 74

15.24

n = 27

18

n

9 regression
resent a ter
ory.   
 

Ca

pe ≥ .156

3.84

= 132

.57e5

4

7

8.59

 = 7

18.93

n = 8

20.45

n = 
13

32 

n tree for sta
minal node,

Sin Slope

15

n = 

anopy ≥ 76.5

15.36

n = 196

5
Ea

Max Upwind Slo
1.765

14.59

n = 25

10.39

n = 8

ndard devia
 with the av

e ≥ .05984

5.95

203

East

astness ≥ .1116

16.58

n = 35

ope ≤ 

16.57

n = 17

21.

n = 

ation of aver
verage snow 

ness < .07865

18.5

n = 64

54

10

Ma
Slop

14

n 

32.57

n = 7

rage snow de
depth and h

Sin Slope ≥ .2

20.81

n = 29

ax Upwind 
pe < 19.96

18.36

n = 20

4.68

= 12

7

7

 
epth.  
how 

2209

26.26

n = 9

23.86

n = 8



 

 

Figur
Boxe
many
 
 

.0

n 

re 4.2c:  Joe 
s without a v
y points fit in

S

Sin Slope <

.082

n =11

Northness ≥ .135

.0805

n =104

0776

= 94

.107

n = 

Wright 2009
variable rep
n that catego

Canop

.0

n =

Sin Slope ≥

.0858

n = 118

in Slope ≥ .156

.0858

n =118

< .3922

27

11

51

79

10

.1149

n = 7

9 regression 
resent a ter
ory.   

 

E

py ≥ 76.5

0912

= 140

≥ .156

8

9

.1352

n = 7

.1352

n = 7

M

33 

tree for sta
minal node,

levation ≥ 3096

.105

n = 203

Max Upwind Slop
19.96

.1199

n = 22

.0991

n = 15

Ma

ndard devia
 with the av

e < 

.1646

n = 7

aximum Upwind S

.1357

n = 63

.

n

tion of avera
verage snow 

Slope < ‐1.545

.0862

n = 16

Max Upwin
11.

.14

n = 

Eastness ≥ ‐.064

.1249

n = 26

1107

n = 18
.156

n =

age snow de
depth and h

Sin Slope ≥ 
.0625

.1526

n = 47

nd Slope < 
.69 

427

40

2

68

 8

.1758

n = 14

 
epth.  
how 

.2088

n = 7



 

Figur
varia
in tha
 
 

.07

n =

re 4.3a:  Joe 
ble represen
at category. 

Si

Sin Slope ≥ .15

.0858

n =118

Sin Slope

.08

n =1

Northness ≥ .135

.0805

n =104

776

= 94

.10

n = 

Wright 2010
nt a termina
  

Canopy ≥ 7

.0912

n = 140

in Slope ≥ .156

.0858

n = 118

56

e < .3922

27

111

51

79

10

.11

n 

0 regression
l node, with

 

6.5

149

= 7

.1352

n = 7

.1352

n = 7

34 

 tree for ave
 the average

Elevation ≥ 309

.105

n = 203

Max Upwind Slo

.1199

n = 22

.0991

n = 15

erage snow d
e snow dept

96

ope < 19.96

9

2

.1646

n = 7

Maximum Up

.1

n =

depth.  Boxe
th and how m

pwind Slope < ‐1.5

.1357

n = 63

.0862

n = 16

S

Max Upw
1

.1

n 

Eastness ≥ ‐.064

.1249

n = 26

107

= 18
.15

n =

es without a 
many points

545

Sin Slope ≥ .0625

.1526

n = 47

wind Slope < 
1.69 

1427

= 40

42

568

= 8

.1758

n = 14

 

s fit 

.2088

n = 7



 

Figur
Boxe
many
 

Sin

8

n

re 4.3b:  Joe 
s without a v
y points fit in

Sin S

Sin Slope ≥ 

13.7

n =63

n Slope < .2354

13.07

n = 50

8.79

n = 7 

10.65

n = 11

Wright 2010
variable rep
n that catego

Sin Slope

14.

n = 

Eastn

lope < .3394

14.22

n =70

.2245

13.77

n = 43

16.11

n = 13

18.9

n = 

1

0 regression
resent a ter
ory.   
 

Canopy ≥ 78.5

15.95

n = 133

e ≥ .3684

34

91

ness ≥ .2264

14.84

n = 80

92

7

19.18

n = 10

35 

n tree for sta
minal node,

Sin Slope ≥ .

17.58

n = 184

Sin Slop

19

n =

16.06

n = 
15

13.24

n = 7

ndard devia
 with the av

1801

pe < .2441

9.44

= 42

Elevation ≥ 3

21.32

n = 27

Northness ≥ ‐.059

18.56

n = 20

21

n 

Canopy <

21.8

n = 5

ation of aver
verage snow 

3100

96

1.42

= 13

< 41.5

5

51

16.23

n = 11

M

21

n 
2

rage snow de
depth and h

29.22

n = 7

May Solar Radiatio
5.74e+05

23.4

n = 40

.12

= 
28

28.

n = 1

 
epth.  
how 

on ≥ 

7

12



 

Figur
witho
point
 

.0

n

re 4.3c:  Joe 
out a variabl
ts fit in that c

Sin Slope ≥ 

.0946

n =80

0658

 =11
Ea

.0937

n = 59

Wright 2010
e represent 
category.   

Sin

Canopy ≥ 78.

.1018

n = 107

.3684

6

0

stness ≥ ‐.2264

.0992

n = 69

7

9

.1316

n = 10

0 regression 
 a terminal n

 

E

n Slope ≥ .1946

.1061

n = 118

5

Northness

.123

n = 

.0972

n = 12

36 

tree for cov
node, with t

levation ≥ 3100

.1212

n = 184

s ≥ ‐.0622

31

27

.1439

n = 15

.1481

n = 11

variance of a
he average s

.0968

n = 13

Canop

.1

n 

.12

n =

.1212

n = 16

average snow
snow depth 

Canopy < 41.5

.1482

n = 66

Eastness ≥

.1616

n = 5

py ≥ 78.5

1495

= 46

Canopy <

.1646

n = 3

Canopy ≥ 65.5

.1483

n = 23

275

= 15

.1873

n = 8

w depth.  Bo
and how ma

≥ ‐.083

6

3

.2

n

< 74.5

6

0

3

.218

n = 

 
oxes 
any 

2406

n = 7

81

7



37 
 

 

 
Figure 4.4a:  Togwotee Pass 2009 regression tree for average snow depth.  Boxes without a 
variable represent a terminal node, with the average snow depth and how many points fit 
in that category.   
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Figure 4.4b:  Togwotee Pass 2009 regression tree for standard deviation of average snow 
depth.  Boxes without a variable represent a terminal node, with the average snow depth 
and how many points fit in that category.   
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Figure 4.4c:  Togwotee Pass 2009 regression tree for covariance of average snow depth.  
Boxes without a variable represent a terminal node, with the average snow depth and how 
many points fit in that category.   
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Figure 4.5:  Interannual comparison at Joe Wright of 2009 versus 2010 for a) average snow 
depth, b) plot snow depth standard deviation and c) plot snow depth coefficient of 
variation.  Corresponding points were taken either in the same 30‐m digital elevation model 
(DEM) pixel or within one 30‐m DEM pixel.  The R2 value and slope are shown for the 
corresponding points in the same pixel only. 
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Figure 4.6a: Absolute difference from average computed using a sub‐set of the points 
versus all points at a sampling location for each snow survey. The sub‐set average was 
computed using the center point as point 1 and adding points increasingly further away 
from the center. 
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Figure 4.6b: Absolute difference from average computed as a percentage of all points at a 
sampling location for each snow survey. The sub‐set average was computed using the 
center point as point 1 and adding points increasingly further away from the center. 
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Chapter 5 ‐ Discussion 
 

5.1 – REGRESSION TREES 

 
Among snow interpolation techniques, binary regression trees have been used to determine 

the important factors affecting snow depth variability within a study area (e.g., Elder et al., 

1991). Erxleben et al. (2002) found them to be the most accurate statistical test when 

looking at variability within the snowpack. Since each of the Joe Wright surveys composes 

the same area and uses the same sample points, one would expect that the key variables 

influencing the average snow depths for each survey to be the same or similar, as variables 

such as canopy cover, slope, and aspect will be constant both years, and other factors such 

as the driving local meteorology (solar radiation and maximum upwind slope) are constant. 

Canopy density would be expected to be the most important factor affecting 
 

average snow depth, as it can protect areas from wind and solar radiation, which has been 

found to be the most important variable affecting snow depth variability in California and 

Colorado respectively (Elder et al.1991; Winstral et al. 2002). Maintaining a shaded 

(reducing affects of solar radiation and aspect), wind protected area in an alpine basin such 

as at Joe Wright SNOTEL, should impact the variability and consequently canopy density was 
 

indeed a key factor in average snow depth distribution in both years, as it was the most 

correlated factor in 2009, and third most correlated in 2010.Overall canopy density was 

used as either the root node or second node in 6 out of the 9 constructed binary regression 

trees for all snow surveys. Similarly in two subalpine forest sites in New Mexico and 

Colorado ,Molotch et al. (2009) found 29% more snow accumulation in open canopy areas, 

while closed canopy areas decreased ablation rates by 39%. Additionally, Veatch et al. 
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(2009) states that statistical models of snow pack distribution are improved when 

generated with remotely sensed canopy cover data. 

Canopy density should control the distribution of standard deviation and coefficient 

of variation, and using binary regression trees, canopy density is one of the key variables for 

the distribution of average snow depth at all sites. Canopy cover is used in both 2009 and 

2010 regression trees for both standard deviation and coefficient of variation. It is the third 

most correlated variable in the 2009 survey for both standard deviation and coefficient of 

variation, and the third most correlated for standard deviation and sixth most for coefficient 

of variation. 

Canopy density is a less important factor atTogwotee Pass than Joe Wright, as it is 

only the fifth most correlated factor for both average snow depth and coefficient of 

variation, although it is the highest correlated factor for standard deviation. It is used as a 

predictor of snow depth in all the regression trees for average snow depth, standard 

deviation, and coefficient of variation. 

Along with canopy cover, maximum upwind slope should be another important 
 

factor, as the wind has the ability to completely scour specific areas, and deposit that same 

snow in other areas. Even below treeline, open areas can be affected by wind. Although 

wind seems to be important, maximum upwind slope was only used as a predictor in the 

Joe Wright 2009 standard deviation and coefficient of variation regression tree, yet was 

used in all of the Togwotee Pass regression trees. 
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5.2 – JOE WRIGHT 2009 VS. 2010 

 
The 2009 and 2010 Joe Wright SNOTEL snow surveys useda similar sample strategy (11 and 

 
17 points, respectively) with plots at approximately the same coordinates. However, due to 

sampling constraints only 99 plots were within the same pixel and 70 were within one pixel 

of the 203 plots taken in 2009 (206 in 2010). This was due in part to the complexity of the 

terrain, the dense canopy, safety/logistics of sampling, and possibly human error. It should 

be noted that in this dense forest, the GPS accuracy was occasionally reported to be as poor 

as 10 meters, implying that a specific plot may not actually be within the pixel it was 

reported to be in.Much of the snow hydrology literature suggests that there is a temporal 

consistency in the spatial patterns of the distribution of snow (e.g., Erickson et al., 2005; 

Sturm and Wagner, 2010). This research suggests that there is limited inter‐annual 

consistency in average snow depth (Figure 4.5a) is not strong, but the correlation to the 

terrain and canopy variables is quite consistent (Table 4.3). 

The R2 value of 0.24 between the 2009 and 2010 average snow depths (Figure 4.5a) 
 

could be expected as only two sets of data are being compared. To draw more solid 

conclusions between variability in snow depth at the same location over different years 

would require more data (e.g., Erickson et al., 2005). However, when using the combined 

data of data points in the same cell and within one cell, almost no relation existed with the 

R2 value reducing to 0.05. Each snow year is variable (2009 SNOTEL = 176.53 cm and 2010 

SNOTEL = 180.34 cm), leading to differences at similar locations.  If normal patterns were to 
 

hold true, one would think that the overall average of all the points would be less in 2009 
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than 2010 based on the SNOTEL readings, but it is opposite: 2009 overall average = 155.6 cm 

and 2010 overall average = 150.8 cm. However, the measurements at the SNOTEL station do 

not represent the surrounding area well (Meromy et al., 2012; Kashipazha, 2012). 

The standard deviation and coefficient of variation at the same locations were less 
 

related, with R2 values of 0.05 and 0.06, respectively (Figures 4.5b and 4.5c). However, 

trends may be more apparent with more data trends. This leads to further questions such 

as “is the standard deviation in one portion of a survey area always very large”, and“are 

there portions of an area that are more consistent than others.” 

Expanding on the average depth variability over many years would allow patterns to 

be identified. If high consistency and patterns were identified, then overall predictions 

about snow depth across a study area could be more accurately then just relying on the 

SNOTEL reading (and not using human surveys). Rice and Bales (2010) suggest that in open 

areas or areas with low density canopy,the snow distribution should be consistent through 

each snow year, as the areas are affected by the same physical features each season, while 

in more closed canopy areas, the snow distribution may vary through seasons due to 

changes in the vegetative structure and density, especially over time by human or natural 

factors. 

 
 
 

5.3 – HUMAN FACTORS 

 
Other problems arise with human error and factors. Many points were not able to be used, 

as surveyors were not in the exact location for each coordinate. In addition, surveyors aim 

for with 10 meters of a specified point. This can lead to up to 20 meters difference in points 
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between the 2009 and 2010 survey, which can potentially lead to great differences in snow 

depths for each point and standard deviations among the sample points, as differences in 

slope angle, canopy cover, and resulting solar radiation around a particular sample area can 

alter snow depth over just a few meters. Other factors affecting depth readings are where 

the surveyors exactly take a measurement. If the point is a tree, then they might shift a few 

centimeters, now taking a reading in a tree well, which is not consistent with the snow 

depths taken on normal terrain. Problems like this are potentially reduced by taking 

multiple points for each coordinate. Also, human inconsistencies and differences will make 

large differences. Each snow survey had multiple people working on it, and both 2009 and 

2010 were composed of mostly different people. Additionally, more time and energy is 

spent to sample more points, leading to potential snow depth reading mistakes. 11 

measurement points (Joe Wright 2009) in a row is the easiest, while 21 measurement points 

(Togwotee Pass) in a plus is the most difficult, especially with a dense canopy and steep 

areas. 17 measurement point surveys (Joe Wright 2010) seem to be the most reasonable 

compromise to ensure accuracy and efficiency. 

 
 
 

5.4 – SAMPLING STRATEGY 

 
Each snow survey (2009 and 2010 Joe Wright and 2009 Togwotee Pass) utilized a different 

sampling method due to the logistics of sampling. The Togwotee Pass survey occurred first 

and ambitiously used 21 measurement points in a plus (Figure 2.3a). During the survey it 

was recognized that the 10 points taken off the direction of the transect (the north and 

south arms as the Togwotee Pass transects ran west to east) required much more time due 
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to the slopes and dense forest cover in most portions of the survey. It was decided to 

eliminate the two arms (west and east arms at Joe Wright, as illustrated in Figure 2.3b) due 

to similar dense canopy and similar steep slopes (Figures 2.1 and 3.3). The Joe Wright 

transects run north to south. For the 2010 Joe Wright survey, it was recognized that six 

points could be easily added per plot without substantially increasing the sampling time. At 

the first, middle and last points in each plot, one point was added to the left (east) and one 

to the right (west) at a 1‐meter spacing (Figure 2.3c). 

It is recommended that this 17 measurement point sampling strategy be used for 
 

snow depth surveys wanting to determine local variability. In the Spanish Pyrenees, López‐ 

Moreno et al. (2011) used 121 points over a 100‐m2 plot but due to this large number of 

samples they were only able to sample 15 plots per sampling campaign. The use of 17 

measurement points is a decent tradeoff between being able to compute the variation 

(standard deviation) at a plot and the effort to perform the sampling. 

Most other surveys have used only three measurement points in the sub‐alpine 

 
(e.g., Molotch and Bales, 2005 around SNOTEL stations) or up to five measurement points in 

the alpine (e.g., Elder et al., 1991 at Emerald Lake, Sierra Nevada CA or Hultstrand et al., 

2006 at GLEES, Snowy Range WY) per sample location. The NASA Cold Land Process (CLPX) 

used only one snow depth, but with a random stratified sampling design yielded 550 snow 

depth measurements over a 1 km2 area (Erxleben et al., 2002).To reduce the difference 

from the assumed ground truth average to 5% (an arbitrary value suggested by López‐ 

Moreno et al., 2011), 5‐6 samples are adequate to represent one location (López‐Moreno et 

al., 2011).  However, the sites used by López‐Moreno et al. (2011) were chosen as they 
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appeared to be homogenous from the snow distribution on the surface, and only 15 plots of 

 
121 points were surveyed twice. In this work, it became 4 points for Togwotee Pass and Joe 

 
Wright in 2009 and 6 points at Joe Wright in 2010 (Figure 4.6a). Considering that there 

were only 11 total measurement points in 2009 and 17 in 2010, the percentage of the total 

points sampled is the same at about 35% to yield a 5% difference. For a lower difference 

such as 3%, all three surveys yielded the same percentage (Figure 4.6b). 

While only three surveys were performed, these results support the useof fewer 

points (than 11, 17 or 21) to represent a pixel/plot, while still retaining a high level of 

accuracy. The canopy had similar dense in most parts of both sites (Figure 2.1), but the 

slope is steeper at Joe Wright (Figure 3.2). However, the Togwotee Pass survey method is 

likely most representative, since points are taken in each direction (north, east, south, and 

west) from the center. The Joe Wright 2009 survey only took points in a north‐south 

transect, while the 2010 survey slightly expanded laterally. Hultstrand et al. (2006) used 5 

points in a plus that were spaced 2‐m apart, which is likely easier since it was in an alpine 

area, yet for sub‐alpine domains, a 2‐m lateral sampling off a main transect could balance 

variation with ease of sampling. For the intensive surveys at a plot by López‐Moreno et al. 

(2011), the configuration of the sampling was less relevant that increasing the spacing 

between points.Each survey is different and terrain variables need to be examined for more 

surveys. Having more points should lead to a more accurate survey, but this maybe less 

practical. In this work, the center snow depth was used at the first point for computing an 

average snow depth. Making an in‐situ decision of adding additional measurement points 

beyond a minimum could be tested, but this would require real‐time computation. For 



49  

example, if 5 measurement points are taken at 5‐m intervals and the difference among the 

first points (e.g., south, center, west) is greater than a specific threshold (e.g., 10 cm 

between deepest and shallowest snow depth for an average of 100 cm of snow), then 

additional points could be taken (e.g., 2‐m from the center in each direction). The issue of 

real‐time computation can be resolved by in‐situ input of snow depths into a smart‐phone 

or similar device. 
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Chapter 6 – Conclusions and 

Recommendations 
 

Snow depth variability among two different watersheds was investigated, identifying key 

variables driving snow depth variability, through simple correlations and binary regression 

trees. These key variables were not consistent for the 2009 and 2010 Joe Wright SNOTEL 

surveys, and also varied when looking at standard deviation or coefficient of variation. With 

several future surveys, trends might emerge for each area, such as a certain variable always 

being the most important driver of snow depth, and other variables never being key drivers. 

With a consistent pattern, in the future it could be possible to accurately estimate the snow 

depths throughout a given area without ever sampling, because different variables were 

recognized to affect the snowpack consistently. Rice and Bales (2010) suggest these 

variables should affect the snow pack in a consistent way each year in open terrain, but can 

change in closed terrain over many years as vegetation changes due to environmental and 

human factors. 

The methods of the snow surveys were also investigated in an effort to make future 
 

surveys more efficient. Using a 5% threshold (how many measurement points per sample 

location does it take to be within 5% of the overall average) yielded similar results for each 

snow survey, taking between 3 and 6 points to be within the threshold. 

With more field research and analysis, snow surveys can potentially become more 
 

efficient to perform, and spring runoff estimates can be more accurate. 
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