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ABSTRACT 
 
 
 

BEAM-DRIVEN CO-LINEAR X-BAND ENERGY BOOSTER (CXEB) FOR A COMPACT 

FEL 

 
 

Achieving compact, efficient and cost-effective particle accelerators is overall major goal of the 

community to help propel future projects forward. In the realm of particle accelerators that 

enable both the high-energy physics and light-source communities, achieving the highest energy 

with the brightest beams in the shortest distance is most important and it is here where a 

paradigm shift is needed.  Achieving high energies in a shorter distance (higher gradients) than 

presently achievable is important for even small laboratory settings, i.e. universities or industries 

desiring light sources, as it would permit an affordable cost. While there are several methods 

being considered for compact, efficient particle accelerators, it was chosen to pursue a unique 

application of X-band (11.7 GHz) RF cavities as they are capable, due to their intrinsic high 

shunt impedance, of generating high gradients with relatively low input power. A novel idea that 

can push the Colorado State University’s (CSU) Advanced Beam Laboratory’s beam energy up 

from the present 6 MeV to over 32.6 MeV, without the need of additional, expensive X-band 

power sources was conceived. The concept is called the co-linear X-band energy booster 

(CXEB) and it relies on the use of X-band structures powered by the beam that is already 

available from the facility’s existing L-band (1.3 GHz) linear accelerator system. Also, this 

proposed system can provide electron beam to a compact free-electron laser (FEL) at CSU. The 

overall FEL system is quite compact and comparatively cost-effective given the fact that the 

existing L-band infrastructure already exists. 
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1. INTRODUCTION 

 
 
 
One of the future desires for many users of particle accelerators, including the high-energy 

physics (HEP) and light source communities, is to achieve higher energies in a more compact, 

efficient and cost-effective way [1, 2]. This can help make their research projects more 

attainable, mostly because of cost. For this reason, there are several research efforts to achieve 

compact particle accelerators. 

 

1.1. Typical Radio Frequency (RF) Configurations 

 

The typical features of a radio frequency (RF) particle accelerator system are shown in Figure 

1.1. An electron source provides the initial beam to the accelerator system, in this case a linear 

accelerator (linac). Power for the RF accelerating fields in the linac are provided by a high-power 

RF amplifier system, for instance the klystron indicated in Figure 1.1. And the beam is guided 

and focused with a series of magnets such as the solenoids and quadrupole magnets indicate in 

the figure. A control system is used to set and control and readback all conditions. Ancillary 

systems, such as electrical, power and vacuum systems are also employed. 
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gigahertz (GHz) range, which implies RF wavelengths in the range of tens of centimeters (cm) to 

less than a centimeter. A structure typically consists of multiple resonant cavities and so overall 

structure lengths tend to be in the tens of centimeter to single digit meter (m) range. Depositing 

the megawatt level power continuously into such a structure requires extraordinary measures to 

cool the device. This limits the peak achievable accelerating fields. The work around for this has 

been to use pulsed-power sources with limited duty factors to temporarily achieve very large 

accelerating potentials at a much lower average power, however this still runs into a limitation. 

At very high gradients field emission occurs on the surfaces of the structure and leads to 

electrical breakdown thus limiting the maximum achievable gradient. This limit increases with 

the RF frequency. A phenomenological equation known as the Kilpatrick criterion quantifies this 

� ��� = 1.64�!
!
�
!
!.!

!!    (1.1) 

where Ek is the maximum cavity field in MV/m. This relationship is shown in Figure 1.3. 

 

 

Figure 1.3 Kilpatrick plot  
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At high frequencies the maximum obtainable field scales as f1/2. It is clear that to reach high 

gradients it is needed to go to increasingly higher frequencies [3-5].  

 

Without going into details another quantity that represents a useful measure of the ability of an 

RF structure to convert power into net accelerating voltage can be introduced here. This quantity 

is referred to as the shunt impedance per unit length rsh, and is given by  

� =
!
!

��ℎ�
       (1.2) 

where L is the length of the structure, V is the net accelerating potential, and P is the power 

applied to the structure. For a chosen voltage V, one requires less power for structures with 

higher shunt impedance. 

 

For completeness, the scaling with frequency for the parameters commonly used to describe 

accelerator cavity design are summarized in Table 1.1. 

 
Table 1.1 Frequency dependence of room- temperature radio frequency accelerating cavity 
parameters 
 

Parameter Symbol Frequency Dependence 

Shunt Impedance per Unit Length [Ω/m] (r!") f
! ! 

Unloaded Quality Factor  (Q!) f
!! ! 

Power Dissipation Capability of Accelerator 
Structure [kW] 

 
f
!! ! 

Maximum Permissible Electric Field 
Gradient [MV] 

 
f
! ! 

 

As indicated in Table 1.1, there are some significant trade-offs to be considered when designing 

structures. While one might wish to achieve a maximum field gradient one needs to balance this 
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with other issues. For instance these include the lower unloaded quality factor (to be described 

later) and lower power dissipation capability of the accelerating structure. In addition, to achieve 

the calculated performance, the surface finish and tolerances scale inversely with the frequency 

and place significant demands on machining and construction [6-8]. 

 

In our concept, presented in this dissertation, some of the scaling listed in Table 1.1, will be 

exploited and our focus will be kept on more conventional types of accelerating structures, 

although in a new configuration. However, before moving on to the details of our concept it is 

necessary to touch upon the topic of advanced acceleration techniques (AAT) due to some of 

their features indeed show up in our concept. 

 

1.2. Advanced Acceleration Techniques (AAT) 

 
 
The classical method of particle acceleration as described above is very mature, and further 

progress without new concepts and ideas is slow to come. There are several methods being 

considered for compact, efficient particle accelerators, and there is an entire sub-community 

dedicated to Advanced Accelerator Techniques.  

 

There are several techniques that aim to achieve gradients higher than those produced by 

conventional linacs. The main categories are: two-beam acceleration (TBA) [9], wakefield 

acceleration (WFA) [10], plasma acceleration [11] and dielectric direct laser acceleration (DLA) 

[12]. As our concept has features of both TBA and WFA acceleration, the details of these two 

techniques and ongoing research efforts are discussed here.  
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1.2.1. Two-Beam Acceleration (TBA) 

 

In two-beam acceleration (TBA) a high power beam (high current, but modest beam voltage) is 

passed through an RF cavity structure where it losses it energy to the structure fields. This 

energy is fed into a second RF cavity structure whose frequency is tuned to the frequency 

coming out of the first structure. The gradients in the second RF structure are much higher than 

those in the first. A second beam is then passed through the second structure, but at a much lower 

current, and is accelerated to very high energies. This system is very analogous to a power 

transformer where one “exchanges” current for voltage. Thus the high-current, low voltage drive 

beam serves as an RF power source for the low-current, high voltage main beam. The Compact 

Linear Collider (CLIC) [13,14] at CERN, a high-gradient multi-mode two-beam accelerating 

structure, is based on the two-beam scheme and aims to provide an acceleration gradient of 

greater than 100 megaelectronvolt per meter (MeV/m) for a next generation multi-

teraelectronvolt (TeV) linear collider. 

 

1.2.2. Wakefield Acceleration (WFA)	

 

Similarly, in WFA two beams are used, but this time in the same beam tube. In a general sense 

the wakefield mechanism can be described as a speedboat rushing over the water. Each drive 

bunch leaves an electromagnetic wake behind itself that creates an electric gradient that is then 

used to accelerate the main beam. This electric wakefield gradient can be achieved in a number 

of different ways, the most popular well studied of which are with dielectric structures as in the 

Argonne Wakefield Accelerator (AWA) at Argonne National Laboratory (ANL) [15, 16], or in a 

plasma such as that used in the Facility for Advanced Accelerator Experimental Tests (FACET) 
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program at SLAC National Accelerator Laboratory, [17, 18] and the Proton Driven Plasma 

Wakefield Acceleration Experiment (AWAKE) program at the European Organization for 

Nuclear Research (CERN) [19,20].  

 

1.2.3. Plasma Acceleration	

 

While the FACET program uses an electron and positron beams to excite the plasma, others are 

exploring the use of a high power laser system to excite the plasma in a manner that generates 

very high gradients, i.e. greater than 10s and perhaps even 100s of gigavolts per meter (GV/m). 

AWAKE is also proposed to use plasma wakefields driven by a proton beam could accelerate 

charged particles. The most successful of these is the basic laser plasma wakefield acceleration 

techniques as practice by the group on the Berkeley Lab Laser Accelerator (BELLA) project at 

Lawrence Berkeley National Laboratory [21, 22], where they it has been shown an acceleration 

of a bunch to a few gigaelectronvolts (GeV) with relatively small energy spread. There are also 

other potentially exciting paths. For instance the beat frequency of two lasers of different 

frequency can be used to excite the plasma oscillations, the so-called laser beat-wave 

acceleration (LBWA) method [23]. Another example is a laser pulse modulated by the stimulated 

Raman forward scattering instability (self-modulated laser wakefield acceleration-SMLWFA) 

[24].  

 

1.3. CSU Linear Accelerator  

 

Colorado State University (CSU) has constructed an Advanced Beam Laboratory (ABL) as 

shown in Figure 1.4 for use in the study of both accelerator and laser systems. The goal of the 
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Table 1.3 Parameters for drive-laser system 

Micro Oscillator 

Parameter Symbol Value 

Average Power [mW] P!"# > 300 

Repetition Rate [MHz]  <81.25  

Pulse width [fs]  < 35 (with ext. comp.) 

Legend Elite Duo Amplifier 

Parameter Symbol Value 

Average Power (at 800 nm) [W] P!"# > 10 (at 1kHZ) 

Average Power (at 256 nm) [W] P!"# > 1 (at 1kHZ) 

Pulse Duration [fs]  40 (FWHM) 

 

Electron bunches of a few nanocoulombs (nC) will be emitted from a high-quantum efficiency 

(QE) cathode via the photoelectric effect at burst rates of up to 81.25 MHz.  

 
 

Figure 1.8 Coherent Titanium: Sapphire (Ti:Al2O3) laser system  
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1.3.4. Achieving Higher Energies Using Conventional Linac System 

 

To generate a 6 MV potential in our linac, only 1.8 MW is needed. Any more would damage the 

linac. This leaves us 18 MW from the klystron to work with. The absolute simplest way to get 

more potential is to just add more L-band sections after our L-band photoinjector. There would 

be enough power to readily reach 60 MV of potential in this way. In addition to that, L-band 

accelerating structures and transmission components such as waveguides and power dividers are 

pretty affordable as the tolerances are rather relaxed. Such a system would be roughly 5 to 6 

meters in length and represents the baseline to which was compared to our alternative concept, 

the co-linear X-band energy booster. 
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2. CO-LINEAR X-BAND ENERGY BOOSTER (CXEB) CONCEPT 

 
 
 
Our idea is to instead utilize the power in the electron beam from our L-band linac system as a 

drive source for an X-band linac structure. This will allow us to increase our beam energy 

without the need for expensive, specialized X-band klystrons. It also has the potential to make 

the overall system more compact, and also might provide us a way to increase our energy a 

modest amount without significant investment. 

 

Recent developments in the so-called X-band frequency regime drew our attention to create a 

unique concept that could help increase energies of accelerators in general. X-band RF cavities 

have an intrinsically high shunt impedance, so one is able to generate high gradients in the X-

band accelerating cavities with a relatively low input RF power. The novel concept is a co-linear, 

X-band energy-booster (CXEB) accelerator system. It relies on the use of X-band accelerating 

structures powered by an energetic electron beam that passes through it; therefore, it does not 

require a separate X-band RF power source. The design details of the system that will allow us to 

explore how to achieve our goal of reaching the maximum practical net potential across the X-

band accelerating structure while driven solely by the beam from the L-band system are given in 

this dissertation. This beam can then be used for subsequent purposes, such as the electron-beam 

power source for a free-electron laser (FEL) system. The basic parameters of the system are 

given in Table 2.1. 
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Table 2.1 Basic parameters of the CXEB system 
 

Parameter Symbol Value 

Frequency of Titanium:Sapphire Laser [MHz] f!"#$% 81.25 

Resonance Frequency of L-Band RF Gun [GHz] f!!!"#$ !"# 1.3 

Maximum Energy of L-Band RF Gun [MeV] E!!!"#$ !"# 6 

Maximum Macropulse Length of L-band RF Gun [µs] τ!!!"#$ !"# 10 

Resonance Frequency of X-band PEC and MAC [GHz] f!!!"#$ !"# & !"# 11.7 

 

The CXEB concept has some features that are common to the CLIC) and AWA. In here, these 

two concepts can be explored briefly.  

 

AWA and CLIC differ between each other according to the accelerating cavity structure design 

and overall layout. For instance, while CLIC is mainly focused on metallic accelerating 

structures that are running with two separate beams in a parallel configuration, AWA is mainly 

concerned with dielectric (quartz) loaded accelerating structures used in a co-linear fashion.  

 

The CXEB uses features of both. It is co-linear like the AWA, but uses all copper structure with 

a final frequency in the X-band similar to CLIC. 

 

2.1. Standing-Wave (SW) Cavity Case 

 

Before studying the travelling-wave (TW) case, which is the primary subject for the first part of 

this dissertation, it is useful to look at the on-resonance standing-wave (SW) case to both 

understand the advantage of the SW structure and its limitations. 
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In our previous study [31], we showed that by using a standing wave (SW), X-band (11.7 GHz) 

cavity tuned to the 9th harmonic of our 1.3-GHz linac and driven by the beam from this linac we 

could potentially increase our beam energy by a modest amount. In that paper it was shown that 

our 6-MeV electron bunch energy could periodically be boosted to 11 MeV upon passage 

through both the L-band and a relatively short and simple X-band linac structure, but there was a 

fundamental limit to that configuration.  

 

As a bunch passes through a structure, it loses energy to the cavity and this result in an induced 

voltage of: 

�! = 2��       (2.1) 

where q is the charge of a bunch passing through the cavity and k is the mode loss parameter 

[32,33]. 

� =
!!"!!!

!!!
          (2.2) 

where ω!" is the angular frequency of the RF mode R!" is the effective mode shunt impedance in 

ohms and Q! is the mode unloaded quality factor. Following passage through the cavity, the field 

decays with a time constant of [ibid, 33]: 

� =
!!!

!!"

         (2.3) 

The maximum equilibrium integrated voltage, V!"#, is reached when the integrated voltage 

added by the passing bunch equals the decay during the time between passages. 

 �!"# =
!!

!!!!!! !
     (2.4) 

where T! is the time between bunch passages. Assuming T! is much less than �, that the length of 

the cavity is equal to L, and using Equations 2.3 and 2.4, the expected result is found as: 
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�!"# = ��!! = ��!!�     (2.5) 

where I is the average beam current passing through the cavity. (The assumption here is that the 

electron bunch length is much less than the X-band wavelength.). Figure 2.1 shows the voltage 

build up over time in a representative SW X-band structure with relevant parameters given in 

Table 2.2. 

 

Figure 2.1 The voltage build-up in the X-band, SW, PEC structure. The blue line shows the 

sawtooth nature of the field over time and the red is the “smooth” buildup over time 

 

Table 2. 2 The basic parameters of the SW cavity system 

Parameter Symbol Value 

Resonance Frequency of X-band PEC [GHz] f!  11.7 

Average Drive Beam Current [A] I 0.1 

Length of SW X-band PEC [m] L 0.46 

Shunt Impedance per Unit Length [MΩ/m] r!" 107 

Unloaded Quality Factor Q! 8540 

Bunch Separation [ns] T! 12.3 

Achieved Energy at the End of PEC [MeV] E!"#$% 11 
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The basic setup for this simple configuration is shown in Figure 2.2. The L-band system provides 

the beam to power the X-band cavity. For a given shunt impedance, average beam current, and 

maximum achievable potential Equation 2.5 can be used to determine the length of the SW 

structure. Using the parameters values from above and limiting the maximum potential to 5 MV 

leads to a structure length of 46 cm. This potential in the X-band structure comes at the expense 

of power provided by the drive beam. The drive beam, originally at a potential of 6 MV upon 

entry to the X-band structure, thus exits the X-band structure at a potential of 1 MV. If one 

periodically shifts the phase of emission off the L-band cathode by 20 degree at L-band, this is 

equivalent to a 180 degree shift at X-band, thus placing the resulting bunch at the peak 

accelerating voltage of the X-band structure. The X-band structure thus acts as both a decelerator 

of the primary drive beam and an accelerator to the periodically boosted beam. Given that we 

had only 6 MV of potential to start with, we could gain on resonance no more than 6 MV in the 

X-band structure as that was the limit of the drive beam. A drop of 5 MV seemed reasonable and 

so the net potential in our design was limited to 11 MV, 6MV from the RF gun and 5 MV from 

the X-band structure. This was a very simple arrangement that would allow us to generate an 11-

MeV beam from our L-band system that was originally limited to 6 MeV. In this configuration 

most of the beam is used to power the X-band linac and loses energy, but a shift of 20 degrees at 

L-band allows the low-current, delayed beam to pass through the X-band structure on crest and 

gain energy. Our desire to achieve even higher energies for several applications, however, drove 

us to our present design configuration described below. 
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structure to the other and also adjust downward the average beam current by a form factor 

dependent on the bunch longitudinal profile. 

 

Upon doing this one find that the field at the structure output coupler is: 

�! =
!

!

!!!

!
�!"

!

!!

���!    (2.7) 

where I is the average beam current given by q T!, F is the bunch form factor that for a 

Gaussian bunch of duration �! is given by e!(!!!!")
!/!, and 

 �! =
!!!

!!

!
,    � =

!!"

!!!!
,   � = ��        (2.8) 

Continuing to follow closely the derivation in reference [ibid, 34] the following expression is 

found 

!!!

!
�!" =

!
!

!

!" !"
            (2.9) 

where dχ ds  is the stored energy in the field per unit length of the cavity. The flow of energy 

travels at the rate of the group velocity; therefore, the power exiting the coupler and available for 

other purposes is given by 

� =
!"

!"
=

!"

!"

!"

!"
=

!
!

!

(!!! !)!!"
�!     (2.10) 

Combining this with Equation 2.7 gives the result we are looking for, the power exiting the 

output coupler 

� =
!

!

!!!

!

!!"

!!

�
!
�
!
�
!�

!

!             (2.11) 

The entire derivation leading to this result makes some assumptions. One is that the energy is 

added to the cavity in a smooth fashion. For the approximation to be good requires that the 

number of bunches contributing to the field, 
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�!"## =
!

!!!!

(1− �!)        (2.12) 

be large. 

 

These equations can then be used to determine the required properties of the cavity to achieve a 

desired output power level; however, additional constraints need to be applied. In particular, 

generated power can only be equal to or less than the power in the beam.  

 

Assuming a linear increase of the field along the length of the cavity, which is equivalent to 

saying that N!"## is large, the peak, integrated potential that the beam experiences upon traversing 

the cavity is then 

� =
!

!
�!�                 (2.13) 

This needs to be set a reasonable value when compared to the incoming potential of the beam. 

Similarly, the generated power can be used to estimate the mean voltage, � , experienced by the 

bunch. 

� = � ��!     (2.14) 

Using Equations 2.7, 2.11, 2.13, and 2.14, the mean voltage of the bunch can be found as 

� = ��     (2.15) 

These equations will be used in the design of the overall system. 
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3. X-BAND RF CAVITY DESIGN  

 
 
 
Chapter 2 provides a theoretical guide for the overall design; however, in this chapter we study 

the practical design of RF structures that could be fabricated and used in our concept. 

	

3.1. X-band RF Cavity Design Study 

 

A consistent description [35, 36] of X-band cavity geometries is used, Figure 3.1, where a is the 

iris radius, R is the cavity radius, h (= 2r!) is the disc thickness, r! is the radius of the iris poles, 

l is the single cell length and λ is the wavelength of the fundamental excited mode. In our studies 

for SW X-band RF cavity design π mode and for TW X-band RF cavity design 2π/3 and 5π/6 

modes were chosen. For each of these designs it is considered the boundary conditions [37] and 

dispersion properties of disk-loaded waveguides confine the accelerating mode to be an integer 

multiple of cell lengths, i.e. for 2π/3 mode the one full period every 3 cells [38]. The details of 

each design will be provided below. 

 

Figure 3. 1 Schematic view of a generic X-band RF cavity 
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3.1.1. SW Power Extraction Cavity Design 

 
 
In general, the aim is to transfer energy from the L-Band RF wave to the electron beam, 

consisting of bunches of charged particles, and then from the electron beam to the RF wave 

induced in the X-band structure, thus a proper structure design that maximizes this interaction 

was needed. 

 

We have described two concepts, one that utilizes a simple standing wave cavity, but has some 

limitations; the other uses a travelling wave design. In this subsection we will describe the design 

of the SW structure and follow it in subsequent subsections with the TW designs. 

 

A standing wave is described by the following equation 

� = �! sin �� sin(�!"�)    (3.1) 

where k is the wavenumber and ωRF is the angular (or radial) radio frequency. The simplest 

cavity mode that will generate such a field is the π-mode (2π/2 or one full period in two cells). 

In addition to ensure the design operated in the �-mode additional adjustments were made to 

ensure that the structure was resonant at 11.7 GHz, that it had high effective shunt impedance, 

and that the iris dimensions were sufficient to ensure clean beam transport and minimize to some 

degree the effect of higher-order modes. Table 3.1 shows the output from the design program 

SUPERFISH [39, Appendix C] following our optimization of the geometry using three different 

values for the iris to wavelength ratio, a λ = 0.2, 0.15 and 0.1. 
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The final choices of parameters for our proposed PEC, as computed by the design code 

SUPERFISH, are given in Table 3.2. 

	

Table 3. 2 The parameters for the Power Extraction Cavity (PEC) 

Parameter Symbol Value 

Resonance Frequency [GHz] f! 11.7 

Phase Advance per Cell [Radian] ψ 2π/3 

Iris radius to Wavelength Ratio a λ 0.10 

Iris Radius [m] a 0.00256 

Disk Thickness [m] h 0.002 

Cell Radius [m] R 0.01006 

Unloaded Quality Factor Q! 6456.1 

Shunt Impedance per Unit Length [MΩ/m] r!! 110.3 

Group Velocity [m/s] ϑ! 1.63c 

 

3.1.3. TW Main Accelerator Cavity (MAC) Design 

 
 
Originally, it was chosen to use a 5π/6-mode TW main accelerating cavity (MAC) design which 

is given at Appendix D in detail. Even though the 5π/6-mode MAC can provide a better 

performance, a 2π/3-mode TW MAC design which is the same design as PEC but with a 

different length and couplers on both ends was chosen to avoid the expense of the overall higher 

system cost.  

 

3.2. Optimization Results 

 
In this section, the optimization studies were performed to achieve the maximum gradient in the 

system in an efficient way. 
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3.2.1. L-Band Photocathode RF Gun and Drive Laser Considerations 

 
 
The L-band (1.3 GHz) photocathode RF gun is powered by a 20-MW klystron (Thomson 

TV2022) capable of providing full power for 10 ��. The resistive losses at 6 megavolt (MV) are 

1.8 MW; therefore, there is an abundance of power for the beam. At full potential the on-axis 

longitudinal field at the cathode is 26 MV/m. Here it is assumed the use of a high quantum 

efficiency cathode (1%) and the maximum current density will be limited to 10 A/mm!
. The 

cathode radius will also be limited to 2 mm. This should allow us, via use of proper focusing 

through a reasonably short PEC, to avoid inadvertent beam losses. 

 

The drive laser will be assumed to provide a transverse top-hat distribution with a 2-mm radius 

and Gaussian distribution in the longitudinal direction. The laser power is adjusted to generate a 

peak current density of 10 A/mm2 and the bunch length, and therefore total charge per bunch, is 

adjusted to maximize the overall X-band power. The pulse frequency of the laser system is set at 

81.25 MHz, the 16th sub-harmonic of 1.3 GHz and the 144th sub-harmonic of 11.7 GHz. 

 

3.2.2. Optimization Results for PEC 

 
 
The output power in Equation 2.11 was maximized by varying the laser pulse length and the 

PEC length while constraining the mean voltage �  to 5 MV, ensuring that Nfill is equal to or 

larger than 10, and that the maximum charge per bunch is less than 7.4 nC. 5 MV was chosen so 

that upon passage of the PEC the originally 6-MeV electron beam would be at 1 MeV and 

therefore allow us to maintain adequate control of the spent beam. The 7.4 nC comes from a 
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calculation of the current required to achieve a fully matched condition between the klystron, 

waveguide and cavity system. 

 

Tables 3.3 and 3.4 provide some of the primary numbers and outputs of the optimization. Our 

optimization shows that for this simple case 1.13 MW X-band RF power can be generated from a 

233-mA beam (average current during the 10 µ� L-band RF pulse) passing through a 61.2-cm X-

band TW PEC. 

 

The cavity length was varied during the optimization to achieve the maximum power output 

subject to the constraint that at least 10 bunches participated in the power build-up in the cavity. 

This ensures that the N!"## condition is at least roughly met.  

	

Table 3.3 Calculated values for the PEC 

Parameter Symbol Value 

Cavity Length [m] L 0.612 

Ohmic Reduction η! 0.97 

Form Factor F 0.96 

Field at the end of PEC [MV/m] Eb 17 

PEC Power Available [MW] P 1.13 

Peak Voltage seen by the Bunch [MV] V 5.2 

Average Voltage seen by the Bunch [MV] V  5 

Number of Contributed Bunches N!"## 10 
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Table 3. 4 The optimized parameters for the photocathode gun and drive laser system 

Parameter Symbol Value 

Charge per Bunch [nC] q 2.86 

Current during L-band Pulse [mA] I 233 

Laser Frequency [MHz] flaser 81.25 

RF Repetition Rate [Hz] RRF 10 

L-band RF pulse Length [µs] Tpulse 10	

Duty Factor D 10
!! 

Bunch Duration  (FWHM) [ps] tbunch 9.1 

 
 
The power generated, 1.13 MW, is significantly less than the ~18 MW potentially available. The 

limitation is due to the choice of laser system. It is limited to 81.25 MHz. This is the 16th sub-

harmonic of the 1.3 GHz L-band system. If there were a way to provide an identical set of 

conditions, but at the full 1.3 GHz, then the power generated at X-band would be roughly 1.13 

MW x 16 = 18 MW. This clearly shows the potential of such a co-linear configuration to convert 

the power at one frequency to the power at another more favorable frequency that is suitable for 

accelerating beams. 

 
 

3.2.3. MAC Length Optimization 

 
In a constant impedance structure, the field drops as a function of length due to ohmic losses. In 

order to maximize the energy gain in a given length L, the condition should be met according to 

Equation 3.2 or 3.3 which is discussed in detail and given by Equation B.107 or B.108 in 

Appendix B. 

�! ≅ 2.52
!

!
        (3.2) 
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� = 2.52
!!!

!
      (3.3) 

Using these equations and the parameters given in Table 3.2, the optimum length of a single 

MAC structure was calculated as 1.08 m. 

 

3.2.4. Maximum Achievable Gradient 

 
The simplest configuration would be to immediately transport the power via waveguide from the 

PEC coupler to a single 2π/3 mode 1.08-m long MAC structure. Assuming for the time being 

that there are no ohmic losses in the waveguide or losses due to imperfect coupler matching, the 

full 1.13 MW would be available to drive the 110.3*1.08 = 119 MΩ load of the single structure 

2π/3 mode MAC. This in turn would produce an 11.6 MV potential across the structure. It can 

thus be seen that the merits of the slightly more complicated configuration when compared to the 

single SW structure arrangement. The SW case would allow us to boost our 6 MeV beam up to 6 

MeV + 5 MeV = 11 MeV. In the simplest TW configuration shown in Figure 2.8 maximum 

energy gain is 6 MeV + 5 MeV + 11.6 MeV = 21.6 MeV, a significant gain over the on-

resonance SW configuration. 

 

Performance of the system can be enhanced even further, but at the expense of more complexity. 

Figure 3.6 (a) and (b) show two additional configurations. In case (a) the power is divided by 

two and feeds two separate MAC structures, while in (b) the power is divided by four and feeds 

four MAC structures. These configurations are predicated on the fact that the net accelerating 

potential increases for a given power available as the square root of the net shunt impedance, 

thus if there were no power loss in the waveguide system, the four-structure configuration would 
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Table 3.5 The available potential and the maximum energy gain values for MAC 
 

Parameter Symbol Value 

Number of X-band MAC Cells - 126 

Total Length per Section [m] L 1.08 

Available Gradient (1 Section) [MV/m] E!!
 20.0 

Available Gradient (2 Sections) [MV/m] E!!
 14.3 

Available Gradient (4 Sections) [MV/m] E!!
 10.1 

Maximum Energy Gain (1 section) [MeV] W!!"!
 21.6 

Maximum Energy Gain (2 sections)* [MeV] W!!"!
 23.1 

Maximum Energy Gain (4 sections)* [MeV] W!!"!
 32.6 

 
*Includes waveguide power losses 
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4. ADVANCED FREQUENCY AND TIME DOMAIN SIMULATIONS USING ACE3P 

SUITE  

 
 
 
For more refined results, 3-dimenional (3D) frequency and time domain simulations were 

performed using the high-performance parallel computing capabilities of the National Energy 

Research Scientific Computing Center  (NERSC) [45] together with the SLAC National 

Accelerator Laboratory’s Advanced Computational Electromagnetics Code Suite ACE3P 

(Advanced Computational Electromagnetics 3D Parallel) [46-49, Appendix C]. The 3D 

computer-aided design (CAD) and post-processing were done using the Trelis [50] and Paraview 

[51] software, respectively. Detailed information about the computer capabilities used at NERSC 

and the ACE3P code are given in Appendix D. In this chapter more realistic simulations were 

performed for both the PEC and MAC, and 3D designs for the various other ancillary RF system 

parts in frequency domain [52] while following the related references [53-56, ibid, 33, 34]. The 

related theoretical descriptions are given at Appendix B in detail. Furthermore, the field build up 

in the PEC was simulated in time domain [57] and then compared the results were found in 

Chapters 2 and 3. 

 

4.1. Frequency Domain (FD) X-band TW PEC and MAC Designs Using OMEGA3P 

 

Some important parameters for our X-band PEC are simulated using OMEGA3P [58], the eigen-

frequency solver of the ACE3P Suite. The phase advance per cell, which is 2�/3 for X-band 

PEC and MAC, applies to single cell travelling-wave structures using periodic boundary 

conditions (PBC) at both end of each structure.  
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4.1.1. X-Band TW PEC and MAC Design Using Periodic Boundary Conditions 

(PBC) in OMEGA3P 

 
Our simulations studies was started to evaluate how different symmetry conditions effects the 

PEC and MAC parameters and because we would like to increase our central processing unit 

(CPU) time efficiency on the supercomputing facility. In this part of our study, while travelling 

wave boundary condition were applied [59] at the both ends of the half and quarter PEC single 

cell geometries, the mesh size was kept constant and similar to what was used for the whole cell. 

The parameter comparison results and the magnitude of the electric and magnetic fields for the 

each model of the single cell of our TW X-band PEC using OMEGA3P, eigen-frequency solver 

of ACE3P are given in Table 4.1 and Figure 4.1[60]. 

 

Table 4.1 Parameter comparison of TW X-band PEC single cell for different symmetries using 

OMEGA3P 

 

	

	

	

Parameter Symbol Value 

Symmetry Condition 
 

Full Model 
Half 

Symmetry 
Quarter 

Symmetry 

Mesh Number  11591 8955 5962 

Finite Element Method (FEM) 
Order 

 
2 2 2 

Inner radius to Wavelength Ratio a λ 0.2 0.2 0.2 

Cell Radius [m] R 0.0110275 0.00110275 0.0110275 

Resonance Frequency [GHz] f! 11.69559 11.699435 11.699753 

Unloaded Quality Factor Q! 6646.03 6649.69 6649.14 
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 (a)       (b) 
 
Figure 4.8 (a) The electric and (b) the magnetic field magnitudes of a WR-90 straight waveguide 
sections at 11.7 GHz. 

 
 

   

 (a)       (b) 
 
Figure 4.9 (a) The electric and (b) the magnetic field magnitudes of a WR-90 E-bend at 11.7 
GHz 
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4.2. Time-Domain (TD) Wakefield Excitation in the X-band PEC Using T3P 

 
T3P was used for the time domain verification our calculations given above. First, the excitation 

of the PEC with a single bunch was observed and then continue with multiple bunches. 

 

4.2.1. Single Bunch Excitation in X-band PEC 

 
A symmetric Gaussian bunch distribution [74] was defined in T3P [75] using a single 2.86 nC 

bunch  

Figures 4.14 (a) and (b), respectively, shows the wakefield excitation and impedance spectrum, 

of a single 2.86 nC, 1 mm long bunch that has travelled through the 72-cell X-band PEC 

structure. This compares favorably to Equation 2.11 and Tables 3.3 and 3.4. 

 

 
 

(a) 
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(b) 
 

Figure 4.14 (a) Wakefield excitation of a single bunch for the length optimization of the X-band 
PEC (b) Impedance spectrum of the X-band PEC using a single bunch 

 
 

4.2.2. Multibunch Excitation in X-band PEC 

 
When multiple bunches pass through the PEC each spaced from one another by a multiple of RF 

periods the fields coherently add. To show this effect a bunch train of 20 symmetric Gaussian 

bunches spaced by 12.3 ns were passed through the PEC. Each bunch was set to have 2.86 nC 

and the following bunch lengths 4, 2 and 1 mm were simulated. As a reminder the form 

factor (� � = �
! !"

!
!) is 0.62 for the longest bunch length (4 mm) and 0.97 for the shortest 

one (1 mm) where, � is the wavenumber of the 11.7 GHz mode. 

 

The electric field build-up due to the coherent wakefield excitation of the 72-cell X-band PEC 

for using 4, 2 and 1 mm bunch lengths and the resultant spectrums of each case are shown in 

Figures 4.15, 4.16 and 4.17, respectively. The related parameters and extracted X-band power 

results are given in Table 4.3. 
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(a) 

 
 

 
 

(b) 

Figure 4.17 (a) Wakefield excitation of 8 Gaussian bunches with 12.3 ns bunch separation, 2.86 
nC bunch charge and 1 mm bunch length (b) Spectrum of X-band PEC wakefield excitation for 
20 Gaussian bunches with 12.3 ns bunch separation, 2.86 nC bunch charge and 1 mm bunch 
length. 

 
 
If the wake potential W(s) in Figure 4.17 (a) is multiplied by the total charge 2.86 nC in the 

bunch then the energy loss found is the desired ~5 MeV and an output power of 1.14 MW is 
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achieved at the end of the X-band PEC. This result is consistent with the result we found earlier 

for the extracted power 1.13 MW thus providing confidence in our original calculations. 

 
Table 4.3 Extracted X-band Power for 4, 2 and 1 mm bunch lengths in 72-cell PEC 
 

Parameter Symbol Value 

Number of X-band PEC Cells  72 

Bunch Charge [nC] q 2.86 

Bunch Separation [ns] T! 12.3 

Group Velocity [m/s] ϑ! 1.63c 

Bunch Length [mm] � 4 2 1 

Form Factor  F 0.62 0.89 0.97 

Extracted X-band Power [MW] P!"# 0.51 0.95 1.14 
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5. CSU APPLICATION FOR CXEB 

 
 
 
In this part of the study, our novel concept was applied to a practical application, an FEL, to 

validate the usage of the system in real life applications. 

 
 

5.1.  Repetitive Bunches at Full Energy 

 
 
Our drive-laser system is capable of providing a 10-µs, 81.25-MHz burst of pulses at a 10-Hz 

repetition rate that are suitable for extracting electron bunches off the high-quantum efficiency 

photocathode. A simple 5%/95% beam splitter can then be used to separate the laser into two 

components, one used to generate the primary drive beam and the other used to generate the 

beam that will be accelerated. The optical delay between the two components of the laser will be 

adjusted so that there is a 20-degree difference at 1.3 GHz (42.7 ps). Since the X-band system is 

tuned to the 9
th

 harmonic of 1.3 GHz, this difference is exactly 180 degrees at 11.7 GHz. Shining 

both laser beams on the photocathode simultaneously will then create a train of bunches. The 

train of bunches will alternate in charge with one having 19 times the amount of charge in it 

compared to the next bunch and with the separation of these bunches being such that both will be 

accelerated by the L-band system while the X-band system will decelerate the high-current beam 

and accelerate the low-current beam. Figure 5.1 provides a graphical representation of the laser 

pulse train. 

 

Appealing to the linear nature of the fields we can consider the low-charge, low-current beam 

separate from the high-charge, high-current beam and consider the effects on both independently 

and together as they pass through the PEC. From Equation 2.7 it is seen that the fields 
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In our design example, Table 3.3, the high-current beam will lose 5 MV in passing through the 

PEC, but the low-current beam will gain 5 MV and therefore upon exiting the PEC will be at a 

beam energy of 11 MeV. 

 

A small magnetic chicane will then be placed immediately following the PEC. The low-energy, 

high-current beam will then be directed to a beam dump by the fields of the first dipole in the 

chicane, while the low-current, 11-MeV beam will travel through the chicane and then onward to 

the MAC. Assuming a configuration as shown in Figure 3.6 (b) the low-current beam will be 

further accelerated by the MAC and reach a full energy of 32.6 MeV. It can now be used for 

practical applications, in our case we choose to explore its use in driving a free-electron laser 

oscillator at a shorter wavelength than would be achievable with the L-band accelerator alone. 

 

5.2 One Application Example: An Infrared (IR) Free-Electron Laser (FEL) 

 

At CSU we have a 1.25-m long undulator magnet [77] originally designed for a free-electron 

laser (FEL) system. The undulator has a period of λ = 2.5 cm and a normalized field strength of 

K =  1.0. An electron with a normalized, relativistic beam energy of γ passing down the length 

of an undulator will emit light of wavelength: 

� =  
!!"#

!!!
1+

!
!

!
     (5.1) 

In our case, with a 32.6-MeV electron beam, the light emitted will be in the infrared (IR) at 4.6 

µm. 
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6. CONCLUSION 

 
 
In this dissertation, the novel co-linear X-band energy booster (CXEB) configuration explored. 

Our system converts power from a readily available L-band power amplifier into power at X-

band. This power is then used to drive X-band structures that have high shunt impedance in a 

manner that could conceivably shorten the effective length of an accelerator and thus reduce 

overall costs.  

 

Our novel concept then was applied to a practical application, an FEL design in the IR 

wavelength region, to validate the usage of the system in real life applications. 

 

In addition, our concept can also be well used to convert high power at X-band to power at much 

higher frequencies (~100 GHz) at W-band or (~200 GHz) at G-band. This power can then be 

used as a source for accelerating structures that have extremely high shunt impedance per unit 

length (> 350 MΩ/m) implying that very high gradients could be achieved (~150 MV/m). Such 

systems can be used to design very high-energy particle accelerators in a compact manner. Our 

calculations and simulations are also applicable to the facilities (CLIC, AWA and FACET) in the 

related laboratories (CERN, ANL and SLAC, respectively) that are mention previously to further 

increase their capabilities. 

 

In conclusion, a promising, compact, efficient and cost-effective particle accelerator concept that 

can be used for a variety of purposes such as driving an oscillator FEL was designed. The theory 

and simulations of the complete system including the power generation in the time domain were 
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provided. These full 3D, realistic simulations benefited from the use of SLAC’s ACE3P 

simulation suite running on the high power parallel computing capabilities of the NERSC. 

 

Ultimately it is our hope that the CXEB concept can be used to yield a new generation of robust 

and compact accelerator designs that are suitable for a myriad of applications such as in industry, 

public health, imaging and environmental research while not only saving overall costs but also 

the system performance. 
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APPENDICES 

 
 
 

APPENDIX A: INVENTION AND DEVELOPMENT OF PARTICLE ACCELERATORS 

 
 
 

A1.   Description of a Particle Accelerator 

 
 
A particle accelerator is a machine that accelerates charged elementary particles, such as 

electrons, positrons or protons, to higher energies. This can be done in particle accelerators 

delivering energy to a charged-particle beam by application of an electric field. 

 

A2.  DC versus RF Acceleration 

 

The particle accelerators can be categorized into two classes as electrostatic and electrodynamic 

(or electromagnetic) particle accelerators.   

 

The first particle accelerators were electrostatic accelerators, developed in the early 1930s, in 

which the beam gains energy from a constant (static) electric field. In this types of accelerators 

each particle acquires an energy equal to the product of its electric charge times the potential 

drop, and the use of electrostatic fields led to a unit of energy called the electronvolt (eV), equal 

to the product of the charge times the voltage drop. If a particle has a charge q and mass m and 

move through a potential difference of V then it will gain a kinetic energy (E!"#) of: 

�!"# =  
!!

!

!
= ��     (A.1) 
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variation of the field removes the restriction that the energy gain be limited by a fixed potential 

drop. The beam is accelerated within electromagnetic cavity structures, in which a particular 

electromagnetic mode is excited from a high frequency external power source. For acceleration, 

the beam particles must be properly phased with respect to the fields, and for sustained energy 

gain they must maintain synchronism with those fields.  

 

In classical electrodynamics, the interaction between electromagnetic fields and moving charged 

particles is described by two sets of equations. While the modern Maxwell's equations describe 

how electrically charged particles and currents or moving charged particles give rise to electric 

and magnetic fields, the Lorentz force law completes that picture by describing the force acting 

on a moving point charge � in the presence of electromagnetic fields. For a particle of charge q 

in an electromagnetic field, the Lorentz force on particle with charge � and velocity � in an 

electric field E and a magnetic field B, is given by: 

� = ��+ � �  × �      (A.2) 

Relating the Lorentz force to particle momentum or kinetic energy, has been known from 

definitions in classical mechanics: 

∆� = ���      (A.3) 

∆�! = ���      (A.4) 

where �� = ��� 

∆�! = ����      (A1.5) 

��� ∆�! = �∆��, where � =
�

!
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Then, the Lorentz force can be expressed in terms of fields and the change of kinetic energy 

becomes: 

∆�! = ��� = � �+ �  x � ��    (A.6) 

∆�! = � ��� +
!

!
�  ×� � ��                 (A.7) 

In the first part of the integral electric field � which is in the same direction of particle motion 

increases the particle kinetic energy and cause acceleration. This acceleration is independent of 

the particle velocity even the particle at rest � = 0.  

 

The second part of the integral depends on the particle velocity and it is normal to the 

propagation direction and magnetic field direction. Since then, the term vanishes due to the 

scalar product � × � � = 0. It causes only a deflection of the particle’s trajectory by changing 

the direction of momentum vector. 

 

In the circular accelerator, particles move in a circular trajectory using electromagnets until they 

reach the desired energy. The advantage of circular accelerators over linacs is the ring topology 

allows continuous acceleration, as the particle can transit indefinitely. Another advantage is that 

a circular accelerator is smaller than a linear accelerator of comparable power, such as a linac 

can be very long to have the equivalent power of a circular accelerator. 

 

Depending on the energy and the type of accelerated particle, circular accelerators have a 

disadvantage in that the particles emit synchrotron radiation (SR). When any charged particle is 

accelerated, it emits electromagnetic radiation and secondary emissions. As a particle travelling 

in a circle orbit is always accelerating towards the center of the circle and it continuously radiates 
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towards the tangent of the circle. This radiation is called synchrotron light and depends highly on 

the mass of the accelerating particle. Certain accelerators such as synchrotrons are built specially 

for producing synchrotron light. On the other hand for this reason, many high-energy electron 

accelerators are linacs.  

As mentioned above both the circular and linear particle accelerators have their own 

advantageous and disadvantageous. The decision can be made according to the required 

application. In our case, because of the main interest in the first part of this dissertation is related 

to linear type RF particle accelerators, the scope is narrowed to linacs starting from the invention 

and development of RF linac in the next subsection. 

 

A3.  Invention and Development of RF Linac 

 
 
Technological base of the linac is a consequence of the science includes the discoveries of 

electromagnetism by Faraday, Maxwell, and Hertz in the nineteenth century and the discovery of 

superconductivity in the twentieth century. The improvements in classical physics, especially 

classical mechanics, and electromagnetism, as well as relativity theory provide the development 

of linac in the second half of the twentieth century significantly. 

 

In 1924, Gustav Ising proposed the first accelerator that used time-dependent fields, consisting of 

a straight vacuum tube, and a sequence of metallic drift tubes with holes for the beam. The 

concept proposed by Ising was not tested at that time, but the publication was very important 

because it influenced Rolf Wideröe. 
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The first RF linear accelerator was conceived and demonstrated experimentally by Wideröe in 

1927 in Germany. This linac was the forerunner of all modern RF accelerators and inspired E. O. 

Lawrence to the invention of the cyclotron. 

 

The first formal proposal and experimental test for a linac was by Rolf Wideröe in 1928, but 

linear accelerators that were useful for research in nuclear and elementary particle research did 

not appear until after the developments of microwave technology in World War (WW) II, 

stimulated by radar programs. Since then, the progress has been rapid, and today, the linac is not 

only a useful research tool, but is also being developed for many other important applications. 

 

The original Wideröe linac concept was not suitable for acceleration to high energies. Linac 

development required higher-power microwave generators, and accelerating structures better 

adapted for high frequencies and for acceleration requirements of high-velocity beams. High-

frequency power generators, developed for radar applications, became available after WW II. At 

this time, a new and more efficient high-frequency proton accelerating structure, based on a 

linear array of drift tubes enclosed in a high-Q cylindrical cavity, the drift-tube linac (DTL) 

concept, was proposed by Luis Alvarez and coworkers at the University of California. Around 

the same time another a new and efficient accelerating structure for relativistic electrons was 

proposed, consisting of an array of pillbox-cavity resonators with a central hole in each end wall 

for propagation of both the beam and the electromagnetic energy, called the disk-loaded or iris-

loaded waveguide, and this development led eventually to the 3-km Stanford Linear Accelerating 

Center (SLAC) linac. From these two projects the first modern proton and electron linac were 

born [ibid 27]. 
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The modern linacs typically consist of sections of specially designed waveguides or high-� 

resonant cavities that are excited by RF electromagnetic fields, usually in the very high 

frequency (VHF) and ultra-high frequency (UHF) microwave frequency ranges. The accelerating 

structures are tuned to resonance and are driven by external, high-power radio frequency (RF) 

power tubes, such as klystrons, or various types of gridded vacuum tubes. The efficiencies of 

these tubes typically range from about 40 to 65%. The output electromagnetic energy from the 

tubes is transported in conventional transmission lines or waveguides to the linac structure. The 

accelerating structures must efficiently transfer the electromagnetic energy to the beam, and this 

is accomplished in two ways. First, the resonant buildup of the fields in the high-� structure 

transforms the low field levels of the input waveguide into high fields within the structure and 

produces a large ratio of stored electromagnetic energy relative to the ohmic energy dissipated 

per cycle. Second, through an optimized configuration of the internal geometry, the structure can 

concentrate the electric field along the trajectory of the beam promoting maximal energy 

transfer. The most useful figure of merit for high field concentration on the beam axis and low 

ohmic power loss is the shunt impedance. 

 

One of the main advantages of the linacs is its capability for producing high-energy, and high-

intensity charged-particle beams of high beam quality, where high beam quality can be related to 

a capacity for producing a small beam diameter and small energy spread. Other attractive 

characteristics of the linacs are strong focusing can be easily provided to confine a high-intensity 

beam; the beam traverses the structure in a single pass, and therefore repetitive error conditions 

causing destructive beam resonances are avoided; because the beam travels in a straight line, 

there is no power loss from synchrotron radiation, which is a limitation for high-energy electron 
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beams in circular accelerators; injection and extraction are simpler than in circular accelerators, 

since the natural orbit of the linac is open at each end; special techniques for efficient beam 

injection and extraction are unnecessary; the linac can operate at any duty factor, all the way to 

100% duty or a continuous wave (CW), which results in acceleration of beams with high 

average current. 

 

The linacs have been one of the most significant examples of high-technological research tool for 

almost about a century. We can expect that the linear accelerator will have a promising future. 

The straight-line trajectory avoids power losses caused by synchrotron radiation that 

accompanies circular RF accelerators. The capability for providing strong focusing allows high-

quality and high-intensity beams that enable precision measurements to be made, and provides 

high-power beams for many applications. We can anticipate continuing progress in areas such as 

RF light sources, colliding beams, high-power beams, high frequency RF power and microwave 

technology, and RF superconductivity. In addition to basic science research fields further 

developments in these areas will lead the compact linacs to new performance levels with higher 

currents, better beam quality, and lower power requirements, so the expansion of new 

applications for linacs in the medical and industrial areas are confidently expected in near future. 

 

A4.  RF Linacs in Global Facilities  

 
One of the most important decision point of RF linacs is the choice of technology between room-

temperature (normal-conducting) and cryo (superconducting) operation. The favor for a specific 

technology depends on several parameters such as the beam energy, beam current, beam power 

and duty factor. While normal-conducting copper RF structures are preferable for low-duty cycle 
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applications the superconducting niobium RF cavities are chosen for CW mode or long pulse 

length application because of low wall losses. 

 

Electron-positron linear colliders are preferred over circular colliders because synchrotron 

radiation losses, experienced by relativistic electrons in circular accelerators, are avoided. 

Furthermore, because of the strong focusing in a linac, high beam quality is achieved, which is 

required for high luminosity and a high collision rate. Stanford Linear Collider (SLC) which was 

the electron–positron linear collider at SLAC National Laboratory (originally Stanford Linear 

Accelerator Center) and the Los Alamos Neutron Science Center (LANSCE) formerly known as 

the Los Alamos Meson Physics Facility (LAMPF) multi-purpose proton linac at Los Alamos 

National Laboratory (LANL) are the two historically significant large linac projects [ibid 27].  

 

RF electron linacs also provide high-quality electron beams for free-electron lasers LCLS [79] 

and II (SLAC) [80], JLab FEL (JLAB) [81], FLASH (DESY) [82], ALICE FEL (Daresbury 

Laboratory) [83], FERMI (Elettra) [84], SPARC FEL (INFN) [85], Swiss FEL (PSI) [86], CLIO 

FEL (d’Orsay) [87], MAX-IV FEL (Lund University) [88] and SACLA (RIKEN) [89]. 

 

In addition to large scale R&D facilities which use electron linacs have large variety of usages in 

medical applications [90]; such as cancer therapy (in 10–20-MeV energy range) [91], medical 

irradiations [92], and also in industrial applications; such as radiation processing of food 

including sterilization [93]. 
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High intensity proton accelerators; such as Main Injector-MI (Fermilab) [94], Large Hadron 

Collider-LHC (CERN) [95] and Main Ring-MR (Japan Proton Accelerator Research Complex- 

J-PARC) [96], and spallation neutron sources; such as Spallation Neutron Source (SNS) [97], 

European Spallation Source (ESS) [98] have included protons linacs as injectors to high-energy 

synchrotrons for elementary particle and nuclear physics, material and life science research. 
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Waveguides most commonly used are either rectangular or circular, but the cross section shape 

can be arbitrary as long as it does not change abruptly along the waveguide. In either case, there 

is a lower limit in the wave frequency allowed for propagation (cutoff frequency), similar to the 

case of wave propagation in plasma. Waves having frequencies lower than the cutoff frequency 

cannot be propagated in a waveguide. The origin of the cutoff phenomena is in the boundary 

conditions at the conductor wall that should be satisfied by the electric and magnetic fields, and 

consequent deviation from the TEM nature. 

 

For a waveguide that is filled with air, the wave equation for the electromagnetic fields is given 

by: 

�
!
−

!

!!

!
!

!!!
�(�, t) = 0    (B.1) 

�
!
−

!

!!

!
!

!!!
� �, t = 0    (B.2) 

Each equation has three components. Obviously for a rectangular waveguide Cartesian 

coordinates provide simplicity for the solution. Equation B.2 can be decomposed into three 

scalar wave equations such as: �!, �! and �!. For Equation B.2 these are �!, �! and �!.  

 

In a cylindrical waveguide, the cylindrical coordinates �,∅, � can be most convenient. Unlike the 

Cartesian coordinates, the vector wave equation in the cylindrical coordinates cannot be 

separated into three scalar wave equations because of the complexity in the vector Laplacian. 

However, the axial (�) component of the vector wave equation reduces to a scalar wave equation 

in the cylindrical coordinates in a different wave. These two solution suggests the possibility of 

the entire electromagnetic fields in a waveguide can be described by two axial components, �! 
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and �!, because both electric and magnetic field components are not entirely independent but 

constrained through the Maxwell’s equations.  As long as the waveguide cross section does not 

change along the axis to describe electromagnetic fields in a waveguide, it is sufficient to solve 

the following two scalar wave equations:  

�
!
−

!

!!

!
!

!!!
�! �, � = 0    (B.3) 

�
!
−

!

!!

!
!

!!!
�! �, � = 0    (B.4) 

 

The transverse components, �! and �!, can be fully described by the axial fields, �! and �!. 

Due to fact that solving a scalar wave equation is simpler than solving a vector wave equation we 

start the derivation of wave equations from Maxwell’s equations. 

 

∇ × � = −�!
!�

!"
                  (B.5) 

      ∇ × � = �!
!�

!"
                (B.6) 

Since the direction of wave (and also the energy) propagation is along the waveguide (in z 

direction), we may assume the phase function as:  

�
!(!"!!!!) 

where �! is the axial wavenumber in the z direction. For the assumed phase function, the 

gradient operator along the z axis and time derivative can be replaced by: 

!

!"
→ −��!,      

�

��
→ �� 

The electric and magnetic fields can be written with their axial and transverse component 

decompositions as: 

� = �!+�!     (B.7) 
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� = �! + �!     (B.8) 

Then, Equations B1.5 and B1.6 can be written as: 

∇!× �! + ∇!�! × �! − ��!�!× �! = −���!(�! + �!)  (B.9) 

∇!× �! + ∇!�! × �! − ��!�!× �! = ���! (�! + �!)  (B.10) 

Because of  �!is unidirectional constant vector ∇! × �! = 0 the Equation B.9 can be rewritten for 

the transverse components as: 

 �! =
!!

!!!

(∇!�! × �! − ��!�! × �!)  (B.11) 

If Equation B.11 substitute into Equation B.9 then the transverse magnetic field can be entirely 

written in terms of axial fields as: 

 �! =
!!

(!/!)!!!!
!
(�!∇!�! − ��! �!∇!�!  × �!)  (B.12) 

Similarly, the transverse electric field in terms of the axial fields can be written as: 

 �! =
!!

!

!

!

!!!
!

(�!∇!�! + ��!∇!�!  × �!)              (B.13) 

Obviously, it is indicated that if the axial fields, �! and �! are known, the tranverse components 

of the electric and magnetic fields can be calculated. 

 

The different modes occur due to the boundary conditions imposed by the conductive walls of 

the waveguide. At a conducting surface, there can be no tangential electric field (there can be no 

component of the electric field parallel to the walls on the waveguide (or resonator), only 

perpendicular to them). Similarly, at a conducting surface, there can be no component of the 

magnetic field perpendicular to the surface (the magnetic field can only be parallel to the walls of 

the waveguide (or resonator)). Modes having no axial electric fields, �! = 0 ; are called 

Transverse Electric (TE) modes and modes having no axial magnetic fields, �! = 0; are called 
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As it is mentioned earlier there are two types of waves in a hollow waveguide with only single 

type conductor: 

TE-waves have � = (�! ,�! , 0) and � = (�! ,�! ,�!) 

TM-waves have � = (�! ,�! ,�!) and � = (�! ,�! , 0) 

The wall material is assumed to have a sufficiently large conductivity so that in the lowest order 

approximation the wall material can be regarded as a perfect conductor. Such approximation is 

not bad, as long as the skin depth is small enough and the field penetration into the wall is 

negligible. The boundary conditions are that the tangential components of the electric field and 

the normal derivative of the tangential components of the magnetic field are zero at the 

boundaries. 

 

In general, boundary conditions are specified either by the value of a field component (Dirichlet 

condition), or by the derivative of a field component along the normal to the boundary (Neumann 

condition). A good physical insight is obtained by assuming the boundaries to be perfect 

conductors where the tangential component of the electric field (�!) and the normal component 

of the magnetic field (�!) must be zero.  

�! = 0, �! = 0     (B.13) 

The second condition can be also stated, as the normal derivative of the tangential magnetic field 

at the boundary is zero.  

!!!

!"
= 0           (B.14) 
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B2.  TE Mode in Rectangular Waveguide 
 

As clearly mentioned above a TE wave has �! = 0 and �! ≠ 0. Consequently, all � field 

components are transverse to the propagation direction. Therefore for TE modes, the solution is 

needed for the magnetic field (�) which obeys the following scalar wave equation: 

�
!
−

!

!!

!
!

!"!
� = 0     (B.15) 

It can be written more explicitly as: 

!
!

!"!
+

!
!

!"!
+

!
!

!"!
−

!

!!

!
!

!"!
� = 0           (B.16) 

The wave equation applies to each field component, however we are mostly interested in the �!. 

Then Equation B.5 can be rewritten as : 

!
!

!!!
+

!
!

!!!
+

!
!

!!!
−

!

!!

!
!

!!!
H! = 0           (B.17) 

The solution of the wave equation is usually expressed as the product of functions of one 

variable: 

�! �,�, �, � = � �  � �  � �  �(�)    (B.18) 

For sinusoidally varying fields �(�) is proportional to �!"# and the propagation in the z direction 

is given with � �  is proportional to �!!"#. The constant � indicates the phase advance of the 

wave per unit length. � �  and � �  are the trigonometric functions, so longitudinal field in z 

direction can be expressed as:  

�! = �! �,� �
!(!"!!!!)    (B.19) 

Noting  
�

��
= −��!, 

�
�

���
=  −�!

! and 
�

��
= ��, 

�
�

���
=  −�

! the Equation B1.5 can be rewritten as: 

!
!

!"!
+

!
!

!"!
+

!

!

!

− �!
!
�! �,� = 0   (B.20) 
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This is a two dimensional Helmholtz equation and can be solved by the method of separation of 

variables as done for the Laplace equation. The boundary conditions for �! �,�  can be 

achieved by vanishing the tangential components of the electric field at the wall of the 

waveguide in Figure B.2.  

∇!�! �,� = 0 at � = 0,� and � = 0, �   (B.21) 

This condition can be satisfied by: 

�! �,� = �!���
!"

!
� ���

!"

!
�              (B.22) 

where � or � are integers and either of them can be zero but not simultaneously. Substitution of 

Equation B.22 in Equation B.8 yields dispersion relation which determines the axial wave 

number �! for a given frequency � and dimensions of the waveguide where � is the speed of 

light. 

�
!
= �

! !"

!

!

+
!"

!

!

+ �!
!      (B.23) 

The minimum frequency allowed for wave propagation (�! > 0) in a waveguide occurs at 

�! = 0 and is given by 

�! = �
!"

!

!

+
!"

!

!

    (B.24) 

Only waves having frequencies higher than �! can exist in the waveguide. Thus, this frequency 

is called the cutoff frequency (�!).  

 

For a given cross section of a rectangular waveguide � > � , the smallest cutoff frequency for 

TE!" mode occurs when m = 1, n = 0 and the cutoff frequency is ��!" mode is given as angular 

frequency, which is the rate of change of the phase of a sinusoidal waveform, in radians per 

second 
!"#$"%&

!"#$%&
 by: 
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�!,!" =
!"

!
     (B.25) 

or as ordinary frequency, which is the number of occurrences of a repeating event per unit time 

corresponding to one crest per second, Hertz [Hz]: 

�!,!" =
!

!
     (B.26) 

 

B3.  TM Mode in Rectangular Waveguide 
 

To accelerate charged particles, a longitudinal electric field, as the waves of the TM type have 

(or distorted TE waves can also be used). Similar to TE mode the wave equation can be written 

for TM mode using electric field (�). The wave equation applies to each field component, 

however we are mostly interested in the longitudinal electric field (�!). For TM modes, �! 

satisfying the Helmholtz equation is given: 

!
!

!"!
+

!
!

!"!
+

!

!

!

− �!
!
�! �,� = 0   (B.27) 

with the boundary conditions �! = 0 at � = 0,� and � = 0, �. 

This condition can be satisfied by: 

�! �,� = �!���
!"

!
� ���

!"

!
�     (B.28) 

where � and � are nonzero integers. The cutoff frequency of the TM mode is: 

�! = �
!"

!

!

+
!"

!

!

    (B.29) 

The longitudinal electric field (�!) can be written considering the explanations for the derivation 

that was used in Equation B.7 earlier as: 

�! = �! �,� �
!(!"!!!!)    (B.30) 
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The exponent (�� − ��) is typical for a travelling wave (TW). If it moves the with wave crest it 

will be equal to zero (�� − �� = 0). Then the phase velocity (�!!) can be expressed as: 

!

!
=

!

!
= �!!     (B.31) 

 

B4.  TE and TM Mode Profiles for Rectangular Waveguide 
 

For TE mode the electric field of in the y direction can be written as: 

�! �, �, � = �!���
!

!
� �

!(!!!!!")   (B.32) 

From � =
!

!"!!
� × � the corresponding magnetic field components can be written as: 

�! =
!

!!!
�!���

!

!
� �

! !!!!!"    (B.33) 

�! = −�
! !

!!!
�!���

!

!
� �

!(!!!!!")   (B.34) 

Similarly this calculation can be done for TM mode using the magnetic field in y direction �! 

and applying to � =
!

!"!!

� × �. Then the field components will be: 

�! �, �, � = �!���
!

!
� �

!(!!!!!")   (B.35) 

�! =
!

!!!

�!���
!

!
� �

! !!!!!"    (B.36) 

�! = �
! !

!!!

�!���
!

!
� �

!(!!!!!")   (B.37) 

According to these the general characteristics of electric and magnetic field profiles of TE and 

TM modes of a rectangular waveguide for � =
!

!
 shown as Figure B.3. 
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In the Cartesian coordinates, the z component of the Poynting vector is given by: 

�!(�×�
∗)! = �!�!

∗
− �!�!

∗    (B.38) 

For the TE mode, the Poynting vector can be written as: 

�! = −�!�!
∗     (B.39) 

The power transmitted in the waveguide shown in Figure B.2 can be found by integrating the 

Poynting vector in the axial direction given by: 

�!"#$ = ��
!

!
��

!

!
�!(�)    (B.40)  

The Poynting flux can be written as: 

�! =
!!

!"!
�!
!
���

! !

!
�          (B.41) 

 
Then,  

�!"#$ =
!!

!"!
�!
!

���
! !

!
� ��

!

!
 × �  (B.42) 

 

=
!!

!"!
�!
! !"

!
     (B.43) 

 

!!

!"!
=

!!

!!
1−

!!

!

!

   (B.44) 

 

= �!
! !"

!

!!

!!
1−

!!

!

!

   (B.45) 

and 
 

�!"# = �!
! !"

!

!!

!!
1−

!!

!

!

   (B.46) 

 
Similarly for the TM mode, 
 

�!"#$ =
!!

!"!

�!
! !"

!
    (B3.47) 

and 
 

�!"# = �!
! !"

!

!!

!!

!!
!!
!

!

   (B.48) 
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B6.  TE and TM Modes in Rectangular Resonator 

 
If the resonator case considered (both end of the waveguide closed with a metallic plate) for the 

length � in the z direction the boundary conditions on the cavity walls force the fields to exist 

only at certain quantized resonant frequencies. In this case, the waveguide form complete 

standing waves in all directions (all three Cartesian components of the wave vector are 

quantized, and therefore the modes can be written as TE!"# and TM!"#). Here, it is sufficient to 

consider TM modes because after suitable coordinates changes, TM modes can be recovered 

from TE modes. Then, Equation B.28 and B.29 can be expressed as: 

�! �,� = �!���
!"

!
� ���

!"

!
� ���

!"

!
�   (B.49) 

�! = �
!"

!

!

+
!"

!

!

+
!"

!

!

   (B.50) 

 
 

B7.  TE and TM Mode in Cylindrical (Pillbox) Cavity 

 

Electromagnetic waves in a cylindrical cavity can also be divided into TE and TM modes, as in 

rectangular waveguides, in cylindrical coordinates using the axial components �!  and �!  to 

satisfy the scalar wave equation. 

 

In accelerator cavities generally cylindrical cross sections are preferred. The electromagnetic 

field in this type of conductor tubes is rotationally symmetric as shown in Figure B.5.  
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For each "�" there is a travelling wave with its own phase velocity. 

�!! =
!

!!!
!!"

!

=
!

!!

           (B.64) 

The phase velocity is slowed down (compare Equation B.57 and Equation B.64) and now and � 

value can be found for the condition of acceleration that has (�!! = �!). 

 

Now, �!! < � and then �! < 0 = �
!" or � = ��

!. The solution of the wave equation is can be 

expressed with Bessel functions of imaginary argument, which are called modified Bessel 

functions (�!). 

�! � = �!�!(�
!
�)          (B.65) 

where �! is a constant. 

 

In this case some assumptions need to be done to have the dispersion relation, so there is not any 

direct analytical solution. For a given frequency and the radius of the waveguide the dispersion 

relation can be solved numerically to determine the aspect ratio between cavity radius and iris 

radius of the obstacle. 

 

B10. Travelling-wave (TW) and Standing-wave (SW) Disc-Loaded Cavities 

 

In a disc-loaded pillbox cavity at each obstacle, the iris acts as a scatterer, resulting in a 

transmitted and a reflected wave. When the spacing between irises approaches multiple of the 

wavelength then the transmitted and reflected waves from successive irises interfere strongly and 

the dispersion curve differs drastically from that of an empty cavity.  
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B11. Figures of Merit for RF Cavity Design 

 
In addition to wave and related mode characteristics mentioned so far some resonator 

(accelerating cavity) design parameters needs to be defined to better understand how they 

function. For that purpose there are several figures of merit commonly used for the 

characterization of the accelerating cavities.  

 

Quality Factor (�) 

Quality factor is the dimensionless parameter that indicates the ratio of the stored energy (�!) in 

the oscillating resonator (excited accelerating cavity) to the dissipated energy per cycle (�!) by 

damping processes. It is the measure of the strength of the damping of accelerating cavity’s 

oscillations and determines the maximum energy the cavity can fill to with a given input power. 

� = 2� ×
 !!

 !!

     (B.66) 

� = 2�� ×
 !! 

!!

                (B.67) 

� = � ×
!! 

 !!

                 (B.68) 

 

Stored Energy (��)  

Stored energy can be obtained integrating the Poynting vector over the volume as: 

!

!"

 

!"#

!!

!
�
!
+

!!

!
�

!
��    (B.69) 

Energy is stored via electric field and magnetic field in the system, so when the energy is all 

stored in E field it is given by: 

�! =
!!

!
�
!
��         (B.70) 
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and when it oscillates at back to the B field by: 

 �! =
!!

!
�

!
��         (B.71) 

It can be calculated for a pillbox cavity in terms of electric field peak (�!) as:  

�! =
!

!
�!��

!
�!�!

!(2.405)    (B.72) 

 

Dissipated Power (��) 

The dissipated power (�!) is the power loss because of the resistance in the accelerating cavity 

walls. It is given by: 

�! =
!

!
�! �

!
��

 

!"#$
              (B.73) 

where �! is the surface resistance can be written in terms of skin depth � =
!

!!!!!!
 and 

conductivity (�) as: 

�! =
!"!!!!

!
=

!

!"
         (B.74) 

�! can be calculated for a pillbox cavity  in terms of electric field peak (�!) as: 

�! = �
!!

!!
��!�!

!�!
!(2.405) � + �    (B.75) 

 

Accelerating Voltage (��) 

Accelerating voltage is the effective voltage (�!�), which T is the reduction fraction of the peak 

voltage between cavity walls caused by the sinusoidal time variation of the field in the cavity, 

seen by a charged particle while passing along the accelerating cavity.  

 

Transit-time Factor (�) 
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The transit-time factor (�) is the ratio of the acceleration voltage (�!) to the voltage which a 

particle can see with infinite velocity. An electric field on the axis seen by a particle with a 

velocity (�!) can be expressed from Equation 3.58 as: 

�! �, �, � = � �, � cos (�� + ∅)   (B.76) 

where, ∅ represents the phase term  �!�.  

 

The axial electric field amplitude �!, which is  
!!

!
, where �! is the axial RF voltage in an 

accelerating cavity cell that has a length �: 

�! ≡ � 0, �
! !

!! !
��      (B.77) 

Then, the energy gain can be expressed with Panofsky equation [ref] as: 

∆� = ��!� cos∅ �    (B.78) 

Regardless of ∅, the energy gain of a particle in a harmonically time-varying field is always less 

than the energy gain in a constant direct current (DC) field equal to that seen by the particle at 

the center of the cavity cell. This is known as the transit-time effect. The transit-time factor (�) 

is the ratio of the energy gained in the time-varying RF field to a DC field of voltage �! cos∅. 

And it provides the reduction in the energy gain caused by the sinusoidal time variation of the 

field in the cavity cell. It provides more realistic accelerating field by taking into account the 

time variation of the field during particle transit through the structure. In the general form it is 

expressed as: 

� =
! !,!

! !

!! !
!"#!"!"

! !,!
! !

!! !
!"

     (B.79) 
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Accelerating Gradient (��) 

Accelerating gradient is the effective voltage per unit length: 

�! =
!!!

!
= �!�          (B.80) 

 

Shunt impedance (���) 

Shunt impedance is the measure of the strength which an eigenmode of an accelerating cavity 

interacts with charged particles on a defined line. It relates the accelerating voltage and the 

power dissipation by:  

�!! =
!!
!

!!

     (B.81) 

Group velocity (��) 

Group velocity can be defined as the velocity of the electromagnetic energy flow in terms of the 

power (�!) of the travelling wave, and the stored energy per unit length (�!): 

�!"!!"!#$% !"#$ = �! =
!!

!!

           (B.82) 

 

B12. Accelerating Field and Power Attenuation in a CI-TW Disc-Loaded Cavity 

  
Along a TW structure the electric field is attenuated and certain amount of power is dissipated in 

the cavity walls. Due to the fact that in here, it is convenient to introduce some important 

relationships between the longitudinal accelerating field amplitude (�!) and the power (�!") of 

the travelling wave, and the stored energy per unit length (�!).  
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The travelling-wave power can be obtained by integrating the Poynting vector over a radial 

aperture (�): 

�!" = �!
!

!
�!2���     (B.83) 

The dissipated power (�!) in the resistive cavity walls can be written in terms of travelling-wave 

power along the propagation direction as: 

−
!!"

!"
      (B.84) 

The group velocity, �!, is also the energy flow velocity, and relates the TW power to the stored 

energy per unit length �! from Equation B.82 as: 

 �!! = �!�!     (B.85) 

Eliminating � from Equation B.54 and Equation B.68 yields a differential equation for TW 

power: 

!"!"

!"
= −

!!!"

!!!
    (B.86) 

Using the definition for the field attenuation per unit length as �! =
!

!!!!
, this equation becomes: 

!"!"

!"
= −2�!�!"     (B.87) 

In this thesis the main interest is CI disc-loaded TW structure for practical fabrication reasons. 

Due to this type of structure has uniform cell geometry these parameters are independent of z. 

This is very useful while we are introducing the power attenuation along the structure due to 

attenuation per unit length is constant, so then the solution to the Equation B.87 can be written 

as: 

�!"(�) = �!�
!!!!!    (B.88) 

If the same procedure applied to the accelerating gradient: 

!!

!"
= −

!!!

!!!!
= −�!�!    (B.89) 
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Then the solution will be:  

�!(�) = �!�
!!!!    (B.90) 

The relationship between TW power and accelerating gradient can be expressed in terms of the 

parameters defined above: 

�!
!
=

!!!!!!"

!!!
              (B.91) 

The total power attenuation at the end of the structure (� = �) can be found using Equations 

B.88 and B.90 as: 

�!"(�) = �!�
!!!!!             (B.92) 

�!(�) = �!�
!!!!             (B.93) 

�!� describes the total power attenuation for the structure. This can be defined as the total power 

attenuation parameter as: 

�! = �!� =
!"

!!!!
             (B.94) 

Then, the travelling wave power and accelerating gradient along the structure can be expressed 

in terms of input power �! and field �! as: 

�!"(�) = �!�
!!!!    (B.95) 

�!(�) = �!�
!!!    (B.96) 

The main aim in here is to maximize the energy gain of the particle. This can be done optimizing 

the length of the travelling-wave structure. The energy gain of a synchronous particle of charge � 

riding at a phase ∅ relative to the crest of the wave can be given with the integral as: 

∆� = �� = �cos∅ �!(�)��
!

!
   (B.97) 

the solution of this integral can be found for a given input field �! at the beginning of the 

structure (� = 0) from Equation B.96 as: 
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= ��!�
!!!

!!!

!!

cos∅    (B.98) 

Equation B.98 will be maximum for �! ≅ 1.26 and then maximum energy gain can be written 

as: 

∆�!"# = ��!"# = 0.57��!����∅        (B.99) 

The same result for ∆�!"# can be achieved in terms of �! by writing the equation relates �! to 

�! as: 

= � 2�!!�!�
!!!

!!!

!!

cos∅    (B.100) 

where,  

�!
!
= 2�!!�!�!    (B.101) 

and then, 

∆�!"# = 0.903 �!!�!����∅            (B.102) 

If the �!!  and �! are known the energy gain over the structure depends on �! according to 

Equation B.100. From Equation B.94 in addition to � value if � is also known the optimum �! 

can be determined. �! can be controlled by the group velocity which can be given in the form of 

Equation B.103 for a disc-loaded TW accelerator as: 

�! =
!!

!"!

=
!(!.!"#)!

!!!
!
!(!.!"#)

!

!

!

sin��!!!  (B.103) 

where a is the inner radius of the cavity, R is the outer radius of the cavity, h is the disc 

thickness, � is the phase advance per cell can be found from  

� = �!� =
!!

!
�    (B.104) 

and � is the is the attenuation per unit length of the field for the TM!" mode can be written as: 

� = (2.405/�)! −ω! �! ≈ 2.405/�      (B.105) 
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The value of �! also affects the filling time of the cavity, which defined as the time for the 

energy to propagate at the group velocity along the CI TW structure: 

�! =
!

!!

= �!
!!

!
      (B.106) 

For the optimum case, �! ≅ 1.26, in order to maximize the energy gain in a given length L, the 

following condition should be met in Equation B.106: 

�! ≅ 2.52
!

!
        (B.107) 

or  

� = 2.52
!!!

!
      (B.108) 

and at the end of the accelerator structure Equations B.95 and B.96 consumption ratios of the 

input power and the field, and can be given as: 

�!"(�) = 0.08�!    (B.109) 

�!(�) = 0.28�!    (B.110) 

According to figures of merit for RF cavities and the descriptions mentioned above the interest in 

this thesis is more likely a constant-impedance TW linear accelerator structure for several 

reasons, which are easy design and fabrication because of uniform cell structure, and efficient 

power extraction at the end of structure for the optimized case less than 10% of the input power 

goes into the matched load at the end of this structure as calculated in Equation B.109.  
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APPENDIX C: SOFTWARE COMPARISON AND SIMULATION METHODOLOGY 

 
 

C1.   Software Comparison 

Computer simulation tools for RF structure design are a necessity due to the need for accurate 

predictions of fundamental parameters such as frequency (�), the quality factor (�!) and the 

shunt impedance (�!!)  etc. Each simulation code uses different approaches for the mesh 

generation and simulation techniques while calculating RF structure parameters. For this reason, 

some of the important properties (advantages and disadvantages) of the simulation codes that 

were used in this thesis are discussed in this appendix. 

 

C1.1. SUPERFISH / POISSON 

 
SUPERFISH is a well-known, semi open-source code used for RF structure simulation. It was 

developed and is maintained by the Los Alamos National Laboratory Computer group. It has 

been used for many years for the design of a large variety of RF structures. It is a 2-dimensional 

(2D) code with cylindrical symmetry and uses a finite difference method (FDM) for solving 

Maxwell Equations. The overall workflow of SUPERFISH [99] is shown in Figure C.1. 
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C1.2. Advanced Computational Electromagnetics 3D Parallel (ACE3P) Suite	

 

Advanced Computational Electromagnetics 3D Parallel (ACE3P) is a 3D massively parallel 

(>10k CPUs) electromagnetic simulation suite based on the high-order finite element method 

(FEM) for solving Maxwell Equations. It was implemented in C++/MPI and was developed by 

the SLAC National Laboratory. The suite consists of frequency and time domain modules for 

research and design of particle accelerators. It is ideally suited for the high-performance 

computing (HPC) platform at NERSC, Lawrence Berkeley National Laboratory (Berkeley Lab)-

(LBNL or LBL). Use of these codes on the NERSC system enables one to perform large-scale 

electromagnetic simulations that can be used for improving existing facilities and optimizing the 

design of future machines. During this thesis the Hopper, Edison and Cori systems were used for 

the simulations performed. Some important specifications of each of these systems is discussed 

briefly here. 

• Hopper 

 
Hopper [104] was NERSC's first petaflop system, a Cray XE6, with a peak performance of 1.28 

Petaflops/sec, 153,216 compute cores, 212 terabytes (TB) of memory, and 2 petabytes (PB) of 

storage. Hopper placed number 5 on the November 2010 Top 500 Supercomputer list [105]. It 

was retired on Dec 15, 2015. 

• Edison 

 
Edison [106] is a Cray XC30, with a peak performance of 2.57 petaflops/sec, 133,824 compute 

cores, 357 TB of memory, and 7.56 PB of storage. 

• Cori 

 

Cori [107], the NERSC's newest supercomputer is a Cray XC40. It ranked as the 5th most 

powerful supercomputer in the world on the November 2016 list of Top 500 supercomputers in 
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the world.   It is unique among supercomputers of its size as it has two different kinds of nodes, 

2,004 Intel Xeon "Haswell" processor nodes and 9,300 Intel Xeon Phi "Knight's Landing" nodes. 

Cori also features a 1.5 PB Cray Data Warp Burst Buffer with I/O operating at a world's-best 1.5 

TB/sec. 

 

The 3-dimensional (3D) computer-aided design (CAD) and post-processor are done using Trelis 

and Paraview softwares, respectively. 

 
 
ACE3P consists of the following modules [108]: 

• Omega3P, an electromagnetic eigen solver; 

• S3P, a frequency-domain S-parameter solver; 

• T3P, a time-domain solver for transients and wakefield computations; 

• Track3P, a particle tracking code for multipacting and dark current studies; 

• Pic3P, a particle-in-cell code for self-consistent particle and field interactions; 

• TEM3P, a multi-physics code for integrated electromagnetic thermal and mechanical 

effects. 

 

ACE3P can also be used directly in conjunction with: 

 
• IMPACT, a beam dynamics code for realistic calculations of beam emittance in 

accelerators in the presence of wakefields, space charge, and radiative self-fields; 

• Fluka, a radiation code for evaluating radiation effects in materials. 
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The capabilities of the code can be listed as: 

• HPC 

• Accurate full-wave EM simulation  

• Import/export of 3D structures  

• Automatic adaptive mesh generation and refinement 

    Meshing scheme: 

o 2D-triangles 

o 3D-tetrahedrons 

• Adaptive Lanczos-Padé Sweep for fast frequency sweeps  

• Inclusion of skin effect and losses  

• Direct and iterative matrix solvers  

• Eigen mode matrix solver 

 

ANSYS software was used as a supporting code for our accuracy checks. 

 

C2. Simulation Methodology  

The parameters of a pillbox cavity can be determined analytically; however, for the modified 

pillbox (disc-loaded slow-wave) structures the solution of the dispersion relation are more 

readily done numerically. As a first check the simulated parameters of a pillbox cavity were 

compared to the known analytic solution. The following codes were checked: SUPERFISH, 

ANSYS High Frequency Structural Simulator (HFSS) [110] and ACE3P’s OMEGA3P. The 

electric and magnetic field distributions for each code are shown in Figures C.4, C.5 and C.6. 

The parameter comparison between analytically calculated and simulated results are presented 
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Table C. 1 Analytical and simulation result comparison for a copper pillbox RF cavity 

Parameters Symbol Analytical SUPERFISH OMEGA3P HFSS 

Cell Radius [m] R 0.00987 0.00987 0.00987 0.00987 

Resonance Frequency 
[GHz] 

f! 11.700 11.70001 11.70001 11.700012 

Shunt Impedance per 
Unit Length [MΩ/m]  

r!" 4.42 4.28 4.32 4.3 

Unloaded Quality 
Factor  

Q! 9170.5 9161.1 9168 9165 

Stored Energy [µJ] U! 4.64 4.7 4.89 4.74 

Dissipated Power [W]  P! 37.2 38.32 37.8 38.1 
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Table D.1 gives the resulting geometry parameters for a 5π/6-mode accelerating structure. This 

cavity will see a single, relatively low charge electron bunch, so the aperture requirements are 

not as severe. Further, our aim is to maximize the overall integrated voltage seen by the beam 

during its passage. This clearly argues for a 5π/6-mode MAC structure that has higher shunt 

impedance and shorter than a 2π/3-mode MAC. 

 

Table D.1 Parameters for the 5π/6 mode MAC 

Parameter Symbol Value 

Resonance Frequency [GHz] f! 11.7 

Phase Advance per Cell [Radian] ψ 5π/6 

Iris Radius to Wavelength Ratio a λ 0.1 

Iris Radius [m] a 0.00256 

Cell Radius  [m] R 0.01012 

Disk Thickness  [m] h   0.002 

Unloaded Quality Factor Q! 7598.7 

Section Length [m] L 0.7474 

Shunt Impedance per Unit Length 
[MΩ/m] 

r!! 153.7 

Group Velocity  ϑ! 0.095c 

 

In a constant impedance structure, the field drops as a function of length due to ohmic losses. As 

it is mentioned earlier in Chapter 3 and in detail at Appendix B in order to maximize the energy 

gain for a given length L, the condition should be met according to Equation 3.2 or 3.3 

[equivalently Equation B.107 or B.108]. 

 

For the given values of 2π/3 phase advance per cell design in Table 4.3, L = 1.08 m and 5�/6 

phase advance per cell design in Table D.1, L = 0.747 m. 
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Instead of using the simplest configuration to immediately transport the power via waveguide 

from the PEC coupler to a single 2π/3 mode 1.08-m long MAC, the alternate, higher shunt 

impedance 5π/6 mode ~0.75-m long MAC structure provides the same potential across the 

structure. The results for both cases are given in Table D.2.  

 
Table D.2 The available potential and the maximum energy gain values using alternative 5π/6 
mode MAC 
 

Parameter Symbol Value for 

ψ = 2π 3 
Value for 

ψ = 5π 6 

Number of X-band MAC Cell  126 72 

Total Length per Section [m] L 1.08 0.747 

Available Gradient (1 Section) [MV/m] E!!
 20.0 20.0 

Available Gradient (2 Sections) [MV/m] E!!
 14.3 14.3 

Available Gradient (4 Sections) [MV/m] E!!
 10.1 10.1 

Maximum Energy Gain (1 section) [MeV] W!!"!
 21.6 21.6 

Maximum Energy Gain (2 sections)* [MeV] W!!"!
 23.1 23.1 

Maximum Energy Gain (4 sections)* [MeV] W!!"!
 32.6 32.6 

*Includes waveguide power losses 
 
 

D2.  Advanced 3D Simulation Results for Alternative ��/�-mode MAC 

 
 

D2.1. Alternative TW X-Band ��/�-mode	MAC Design Using PBC in OMEGA3P 

 
Our L-band system is capable of generating beam for over 10 µs. This then argues for a structure 

with a very slow group velocity, as it will allow us to fill a longer cavity and capitalize on the 

long L-band RF pulses; however, as it is mentioned earlier this adds some complexity. The 

parameters for the alternative TW X-band MAC structure are given, as a comparison with 

SUPERFISH and OMEGA3P, in Table D.3. The magnitude of the electric and magnetic fields 
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APPENDIX E: ALTERNATIVE APPROACH FOR POWER EXTRACTION USING 

SMALLER BUNCH CHARGE AT 1.3 GHZ REPETITION RATE 

 
 
As an alternative approach we explore the operation of the system when driven by 100 Gaussian 

bunches, each of which have 0.17875 nC bunch charge and with a bunch separation of 769 ps 

(1.3 GHz repetition rate) and a 4 mm bunch length.  

 

This set up can be achieved using a Fabry-Perot interferometer, thus multiplying up the 

repetition rate of the laser system to 1.3 GHz. Even in this condition the high Q! of the X-band 

PEC can handle the decay in the field between excitations from the electron bunch. The charge 

per electron bunch goes down, but assuming no losses the average current would remain the 

same. Now, instead of 144 RF periods between excitations there would only be 9.  

 

As this configuration adds more complexity and bring further modifications to the laser system 

this was done to crosscheck the simulations with high repetition rates and smaller bunch charges. 

As expected the extracted X-band power is decreases proportional to the square of the PEC 

length, bunch charge and form factor; however, the higher frequency term compensate it at the 

same rate.  

 

The beam build-up due to the coherent wakefield excitation in the 18-cell X-band PEC using 4 

mm bunch length with the 12.3 ns and 769 ps bunch separation cases. The relevant wakefield 

excitations and impedance spectrums are shown in Figures E.1 and E.2. The related parameters 
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(a) 
	

	

	

	
(b) 

 
Figure E.2 (a) Wakefield excitation of 100 Gaussian bunches with 769 ps bunch separation, 
0.17875 nC bunch charge and 4 mm bunch length (b) Impedance spectrum of X-band PEC 
wakefield excitation for 100 Gaussian bunches with 769 ps bunch separation, 0.17875 nC bunch 
charge and 4 mm bunch length 
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Table E.1 Extracted X-band Power for 4 mm bunch lengths in 18-cell PEC 

 

Parameter 
Symbol Value for 81.25 MHz 

Repetition Rate 
Value for 1.3 GHz 

Repetition Rate 

Number of X-band PEC Cell  18 18 

Bunch Charge [nC] q 0.17875 2.86 

Bunch Separation [ns] T! 0.769 12.3 

Group Velocity [m/s] ϑ! 1.63c 1.63c 

Bunch Length [m] � 0.004 0.004 

Form Factor  F 0.62 0.62 

Extracted X-band Power [MW] P!"# 0.0313 0.0313 
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APPENDIX F: IMPROVEMENTS TO THE ENGINEERING OF HIGH-CURRENT 

PULSED MAGNETIC HORN SYSTEMS AT FERMILAB 

 

F.1. Introduction 
 
 
The principles of neutrino sources and experiments have changed since the early days of the late 

1950’s. The components that are used for neutrino production need to be optimized according to 

desired experimental parameters. This part of the research includes the optimization studies of 

magnetic focusing components used for neutrino production at Fermilab. 

 

F.2. Neutrino Sources 
 

Neutrino sources can occur either artificially or naturally. Our main interest in here is artificial 

neutrino sources, however one of the most important discoveries in neutrino physics, the 

phenomenon of neutrino oscillations which shows that neutrinos have mass [112-114], came 

about not through the use of artificial neutrino sources, but by using neutrinos produced naturally 

in the Sun and in the Earth’s atmosphere.  

 

There are two principal types of artificial sources: fission reactors, producing electron-type 

antineutrinos from beta decays of fission fragments, and proton accelerators that produce muon-

neutrinos (or antineutrinos) from pion decays in flight. Our focus will be on particle accelerator 

based neutrino production for this research. 
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Presently, there are several experiments that are using accelerator-based neutrinos worldwide: 

CERN, Switzerland [115-117]; Japan Proton Accelerator Research Complex (J-PARC), Japan 

[118-120]; and Fermi National Accelerator Laboratory (Fermilab), USA [121-123]. 

 

F.3. Fermilab  

Fermi National Accelerator Laboratory (Fermilab) was founded in 1967 and located just outside 

Batavia, Illinois, near Chicago. It is a US Department of Energy (DOE) national laboratory 

specializing in high-energy particle physics (HEP). Since 2007 Fermilab has been operated by 

the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities 

Research Association Inc. (URA). Colorado State University jointed the URA in May 2015. 

 

F.4. Fermilab Accelerator Complex 

Fermilab's accelerator complex includes several particle accelerators and storage rings as 

shown in Figures F.1. 
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F.6. Neutrino Production at Accelerator Based Neutrino Sources  

To produce an intense neutrino beam, a proton beam of sufficient energy (in our case 120 GeV) 

and intensity is required. This proton beam is directed onto a target, usually made of Graphite or 

Beryllium, where they smash into the nucleus creating numerous particles including short-lived 

pions, the source of neutrinos and anti-neutrinos. This beam of pions has a broad energy spread 

and divergence requiring specialized magnetic focusing [142] to maximize the throughput to the 

downstream detectors. The pion beam is focused using large, high current magnetic devices that 

are shaped as and therefore referred to as magnetic horns. The focused pion beam is directed into 

a long decay volume, essentially a long evacuated tube, where they decay into muons and 

neutrinos or antineutrinos. This whole process is shown in Figure F.4.  

 

Figure F. 4 Stages of neutrino beam production and focusing scheme [ibid 127] (Image courtesy 
of Fermilab) 

 

The design of the high-current horn and the associated striplines used to feed the current to the 

horn continue to evolve as existing experiments such as NuMI/NOvA are reconfigured for higher 

power proton beams of up to 1.2 MW. These horns must be even further refined and improved 

for the upcoming LBNF that will use even higher proton beam powers of up to 2.3 MW [144-

147]. In its present state, there appears to be a design flaw with the striplines that lead to fatigue 
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failures. This is a particular concern as once the high-power proton beams are delivered to the 

target, all materials in this region; the horns in particular, can become highly radioactive making 

repair impossible and replacement necessary and extremely difficult. It is also of concern 

because of the desire to go to higher overall powers and thus higher average power requirements 

for the horns themselves. The design must be better understood and improved to make the horns 

and striplines robust for future operations.  

F.7. Secondary Beam (Pion) Focusing Components in the Target Hall 

Neutrino production starts in the Target Hall (or Target Station). The target station consists of a 

solid target, the pulsed magnetic focusing horns and the associated sub-systems such as the high-

current striplines, cooling, and shielding infrastructure. A power supply that is outside of the 

shielding provides the required power to the magnetic horns. 

F.7.1. Power Supply 

 
Figure F.5 shows the pulsed power supply for the magnetic horns. A large capacitor bank 

dominates the pulsed power supply. Energy is stored in this capacitor bank and switched via 

silicon-controlled rectifiers (SCR) into the horn load. The supply produces a peak current of 

200,000 A pulse at 722 V, over a 2.3 µs half sine wave every 1.33 s. 
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Figure F.5 Power supply of magnetic horn (Image courtesy of Fermilab) 

 

F.7.2. High-Current Stripline 

 
The magnetic horns are fed the pulsed, high-current from the power supply via the striplines 

(blue components shown in Figure F.6). The horns and stripline system are quite complex, 

expensive and very difficult to replace. Detailed and extensive design work as well as 

experimental testing is required to ensure they can withstand the severe conditions they will be 

subjected to. 
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Figure F.6 3D CAD model of the attached magnetic horn (upper orange section) and the high 
current stripline (Turquoise colored component) with the cooling (lower orange section) and 
supporting infrastructure (light green section which holds the magnetic horn) (Image courtesy of 
Fermilab) 

 

F.7.3. Pulsed Magnetic Horn 

 
As mentioned above, the horns are essential components in producing intense neutrino beams 

and are used to produce toroidal magnetic fields, as shown in Figure F.7, that in turn are used to 

focus the pion beam. 
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between the high-current striplines and magnetic horn. However, to avoid excessive extra 

fabrication costs the length of the equalization section was optimized. 

 

The results of these evaluations and optimizations are being used to support the development of 

new designs to handle increased electric current and higher beam power for the NuMI upgrades 

and for the LBNF design. 

 

F.8.1. High-Current Stripline Simulations 

Two different magnetic horns structures are given in Figures F.9 and F.10 have both advantages 

and disadvantages. The high current stripline shown in Figure F.9 is an older and larger version; 

however, it is more tolerant to thermal heating and is very robust. The high-current stripline 

shown in Figure F.10 has been designed as a more compact structure. Compared to the older 

design this one is not symmetric in the y-direction. In addition to this, the L-shaped flag plates 

have been changed to chamfered plates.  

 

As seen in Figures F.9 and F.10 the high-current striplines are constructed as parallel conductors 

as this minimizes the impedance. Due to the electric current and resulting magnetic field a force 

occurs that plays an important role. Thus one needs to evaluate the behavior of the magnetic field 

and its related effects on the structure starting from the basic geometry.  

 

F.8.1.1. Magnetic Field of Straight Current Carrying Cylinder Conductor 

 
 
There are different metallic conductor plate combinations in the entire high-current stripline 

structure. Because of that it was started from first principles.  
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A constant current flowing through a cylindrical conductor generates a cylindrical magnetic field 

in the space surrounding it. The magnitude of this magnetic field can be expressed as in Equation 

F.1. 

� =
!!!

!!"
                                                             (F.1) 

where � is the electric current, �! permeability of free space, and � is the radial distance. First, to 

check the accuracy of the simulations codes with theoretical calculations a conductor of 

cylindrical cross-section (10 cm radius) carrying 1 Ampere (A) of constant current in the z 

direction (orthogonal to the page) was simulated. Then, the dimension of the conductors 

decreased from the larger dimensions (20 cm in radius) to real stripline plate equivalent cross-

section dimension value (2.5 cm in radius) with well-optimized meshes at the end. The results 

are readily compared to the theoretical calculations. Figures F.12 and F.13 show the behavior of 

the simulated magnetic field in the radial direction as shown with the POISSON/PANDIRA and 

ANSYS Maxwell 3D solvers. As expected, the magnetic-field distribution in the x-y plane is in 

very good agreement with theory (to better than 1%). The results are given in Table F.2. Since 

the simulated values are consistent between POISSON and PANDIRA, the rest of the 

simulations were performed in LANL’s kit with POISSON. 

 
 

Table F.2 Magnetic field magnitude comparison generated through theory and simulation 
 

Radius [m] 0.2 0.1 0.025 

Theory [T] 1x10-6 2x10-6 8x10-6 

POISSON [T] 1.004x10-6 2.005x10-6 8.012x10-6 

PANDIRA [T] 1.004x10-6 2.004x10-6 8.011x10-6 

ANSYS Maxwell 3D [T] 1.003x10-6 2.008x10-6 8.015x10-6 
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As expected and seen in Figures F.12 (b) and F.13 (b), the magnetic field value is directly 

proportional to the radial distance (B~r) in the conductor and inversely proportional to the radial 

distance (B~1/r) the outside of the conductor. According to right hand rule (RHR), if the same 

electric current applied to the conductor in the opposite direction (–z) the magnitude of the 

magnetic field will be the same, however the direction will be the opposite. 

 

F.8.1.2. Magnetic Force between Two Parallel Conductors 

 
As a next step, the magnetic field interaction between two metallic conductors each carrying 

equal currents but opposite directions is evaluated. In this case, the magnetic fields being created 

by the moving charges can interact and create forces between the conductors. 

 

The parallel conductors carrying currents in the same direction attract one another. Parallel 

conductors carry currents in the opposite direction and repel each other. The force on wire 1 due 

to the current in conductor 1 and the magnetic field produced by conductor 2 can be expressed as 

(force per unit length) 

!!"#$%&'(

!"#$%!
=

!!!!!!

!!"
                                .                     (F.2) 

As a numerical evaluation, Ampere’s force law is used to check the accuracy of both the LANL 

simulation kit and the ANSYS Maxwell 3D software. 

 

First, the FORCE code was applied to determine the magnetic force results on conductor 1. The 

distance between each conductor is 1 meter (m), the applied electric currents are 1 A in the same 

direction and the radii of the conductors are 2.5 cm. The calculated result based on the theory is 

2x10-7 N/m and the simulation results using Force and ANSYS Maxwell 3D are 2.014x10-7 N/m 
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As expected, the results are consistent for all geometries both with parallel currents in the same 

direction (Figures F.18 and F.19), and parallel currents running opposite directions (Figures F.20 

and F.21). 

Now, the high-current striplines for Fermilab’s horns will be examined. 

 

F.8.1.3. Magnetic Field and Force Evaluation of High-Current Striplines 

 
 

Four conductors are used to conduct the 200 kA into and out of the inner and outer conductor of 

the horn. This was shown in Figures F.9 and F.10 previously. The cross-section of all plates is 

0.2032 m (8 inches) by 9.25x10-3 m (0.375 inches) and the distance between each plate is 

9.25x10-3 m. Each carry an applied peak current of 50 kA, and the current flows with a polarity 

of + - - +. As such simulations were done for both relevant current polarity cases, + + and + -, 

Figures F.22 and F.23. 
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density is found to be ~3 times larger in the inner corner that seen on the average for the 700-kW 

design as shown in Figure F.33.  

 

According to these results, even though there is a higher stress point in the inner corner of the 

structure, the stress is not high enough to, in itself, cause structural damage, and so the damage is 

most likely coming from a combination of both heating and vibrational effects. 

 

These research results are being implemented in the on-going design upgrades of the magnetic 

horn stripline designs to handle increased electrical current and higher beam power for the NuMI 

upgrades and for future LBNF designs. The corner sections need to be evaluated not only 

mechanically and thermally but also considering electromagnetic contributions. It is better if the 

inner corner radius of the plate is enlarged for the higher current required in the next designs. 

 

F.8.1.4. Possible Solutions 

 

F.8.1.4.1. The Short Term Solution 

 
Since, the ANSYS Electromagnetic simulation results of the flag plates showed that the magnetic 

force is not high enough to cause the stress fracture by itself, these fractures are more likely 

related to fatigue failure due to insufficient damping of vibrational modes. There are possible 

solutions to avoid vibrational effects such as bolting the 700-kW stripline in a more rigid way as 

shown in Figure F.34. 

 



 



            




 









 





   

           













 



      




 










     


             






 





 


 






















 








             





           























 















       













 








     

            









 








               

    



     







    

         

               





 

















 



               

     








     

 

  



          















 




           




















     










































             





























































 

     









