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ABSTRACT 

 

 

APPLICATION OF SYMBOLIC COMPUTING IN ANALYSIS OF MODAL 

PROPERTIES OF STRUCTURALLY COUPLED TWIN TALL BUILDINGS 

 

 

 This thesis develops non-dimensionalized symbolic expressions for the 

normalized natural frequencies of two identical tall buildings structurally connected by a 

skybridge. Symbolic expressions for the modal shapes are also developed to express the 

coupled movements of the two buildings. The mass and stiffness of the two tall buildings 

are generalized and reduced to the skybridge level, and the equations of motion are 

evaluated with Maple 13 math and engineering software. A parametric study of the 

effects of coupling stiffness on the modal properties is carried out using formulas 

resulting from symbolic computing. The obtained symbolic expressions are compared 

with the results of numerical analysis performed using Risa-3D structural engineering 

analysis software. Findings of this thesis show a good agreement between the symbolic 

expressions and Risa-3D results. The developed symbolic equations are proposed as a 

tool for use in the preliminary analysis of tall buildings connected by a skybridge.
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1. Introduction 

1.1 Introductory Statements 

 As the world’s population continues to increase and move from rural areas to 

urban centers, the need for additional working and living space is ever increasing. Due to 

the high cost of land and the increased number of individuals living in a relatively small 

space, urban areas have few options to adequately accommodate this increased demand. 

To accommodate this growing need for physical space, the development of vertical real 

estate in the form of skyscrapers will be a common solution to alleviate this increased 

demand. With more and more tall buildings being located in a close proximity, the 

opportunity exists to connect these structures and create additional physical space. In the 

creation of the interconnected vertical spaces, the design of these structures will become 

more sophisticated. It will push designers to extremes and challenge them to incorporate 

new ideas. The interconnected structures may include, but are not limited to podium 

structures, sky gardens, or as examined by this thesis, skybridges. 

 One example of tall buildings or structures connected by a skybridge are the 

Petronas Towers located in Kuala Lumpur, Malaysia. The towers consist of two 88 story 

buildings connected by a skybridge spanning 58.4 m (Thornton, Hungspruke, & Joseph, 

1997). A unique characteristic about these buildings and their skybridge is the bridge is 

not engineered to have forces from one building transmitted through the skybridge into 

the other building (Thornton, Hungspruke, & Joseph, 1997). The bridge is designed to 

slide or move independent of the buildings, thus not utilizing the skybridge to transfer 

forces from building to building and allow one building to aide in resistance of forces 

imposed on the other building (Thornton, Hungspruke, & Joseph, 1997). 
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1.2 Scope of Research and Outcomes 

 The modeling of the connection of twin tall towers by a skybridge and the 

dynamic modal properties of these buildings using free vibration analysis are the focus of 

research described in this thesis. A set of closed-formed symbolic equations that calculate 

the natural frequencies and modal shapes of two identical tall buildings connected by a 

skybridge is developed through the use of the symbolic computing software, Maple 13. 

This research uses a simplified analytical model with equivalent mass and springs of the 

representative twin building configuration reduced to the skybridge level, developed by 

Lim (2008). A comparison is performed to verify the results of the closed-form 

expressions through the development of a representative model using the structural 

analysis software, Risa-3D Demonstration version 9.0.1. 

 In addition, the ultimate intent of this work is to provide designers with a quick 

and reliable method, for use during the preliminary stages of design of tall buildings, to 

evaluate the effects and potential benefits of interconnecting such structures. Often 

designers have to restrain themselves from utilizing the immense amount of computing 

power in the initial design stages of projects, especially large projects such as super-tall 

buildings. With the advances in structural analysis software, it is very tempting to 

immediately start developing a very detailed finite-element model (FEM) that requires a 

tremendous amount of inputs. Before a highly detailed FEM model that provides the final 

outputs for design of the building is developed, designers should first develop a very 

basic, simplified model that is transparent, easily modified and allows the designer to 

understand the basic workings of the building and its components (Carpinteri, Lacidogna, 

& Puzzi, 2010). This thesis creates a set of closed-form equations describing the modal 
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properties of twin tall buildings connected by a skybridge that allow the designer to 

develop a basic feel for the performance and actions of the building(s) during the 

preliminary design stages. At this juncture, use of simplified methods is encouraged by 

well-established designers of tall buildings such as William Baker, partner and structural 

engineer at Skidmore, Owings and Merrill LLP, the company responsible for structural 

design of the world’s current tallest building (Baker, 2010). 

1.3 Review of Related Literature 

1.3.1 Symbolic Computing in Engineering 

 Since its earliest uses and development dating back to 1953, symbolic computing 

continues to gain popularity (Nolan, 1953). Since that time, the use of symbolic 

computing software has been used in advanced engineering applications. 

 There are several distinct advantages related to symbolic analysis of engineering 

mechanics and structural engineering. Such approaches provide the opportunity to handle 

algebraic expressions that previously may have reached “unmanageable proportions” and 

would be too cumbersome to solve by traditional methods (Banerjee, 2004). Symbolic 

analysis of advanced engineering problems allows the user to focus on the physical 

nature of the problem and its results. Numerical analysis frequently leads to outcomes 

that do not allow for direct extraction of physical interpretations of the results (Beltzer, 

1990; Sebastian, 2010).  It has been noted that the use of symbolic computational 

software improves the reliability of calculations as well as provides a method to shorten 

the amount of time required to perform extensive and repetitive calculations (Noor & 

Andersen, 1979; Beltzer, 1990). Videla et al. (2007) showed that the usage of “Computer 

algebra systems (CAS)” is capable of reducing computing times involving complex 
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algebraic equations handled by CAS systems by as much as 50%, e.g. in development of 

an exact stiffness matrix using the finite element method. The usage of symbolic 

computation in structural engineering has been used extensively in developing closed-

form solutions to engineering problems involving many iterative calculations, the finite-

element method, structural analysis, spectral analysis and determination of vibrational 

frequencies and mode shapes similar to those analyzed in this thesis (Noor & Andersen, 

1979; Beltzer, 1990; Pavlovic, 2003; Banerjee, 2004; Videla, Baloa, Griffiths, & 

Cerrolaza, 2007; Prokic, 2010). As mentioned previously and examined in this thesis, 

symbolic computing is particularly useful in the analysis of vibrational problems. As 

shown by Prokic (2006; 2010), symbolic computing programs are commonly used to 

solve systems of equations and to evaluate the determinants of matrices to determine 

symbolic forms of eigenvalues. In regards to free vibrational analysis, symbolic 

computing can be used to quickly, and with more ease than numerical methods, examine 

the sensitivity of frequencies to changes in physical parameters of the system (Noor & 

Andersen, 1979). Hashemi and Adique (2010) used symbolic computing software to 

identify and analyze the coupled vibrational modes that exist within a “sandwich beam” 

and to evaluate the contributions from the differing modes based on different physical 

properties of the beam.  

 Several disadvantages of using symbolic computational software have been noted. 

The main drawback existing even with today’s advances in technology remains the size, 

length and complexity of the symbolic results generated by the symbolic software (Noor 

& Andersen, 1979; Beltzer, 1990). Despite the advances achieved in symbolic computer 

programs, the display of the results in a compact, reduced and useable format often 
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requires extensive time and effort by the end user (Noor & Andersen, 1979; Pavlovic, 

2003). 

 A variety of symbolic computing software packages are available for engineering 

use. Some of the more commonly known programs are Maple version 14, MathCAD 

version 14, Matlab version R2010b and Mathematica version 8. 

1.3.2 Structurally Coupled Buildings 

 Numerous researchers have looked at the effects and benefits of connecting tall 

structures through methods such as dampers, skybridges and podiums. The bulk of the 

research is focused on the use of a physical dampening link between tall structures to 

reduce the effects of seismic forces. For example, Zhu, Ge and Huang (2010) investigated 

the effects of connecting two multi-story buildings with either visco-elastic dampers 

(VED) or viscous fluid dampers (VFD). They found through parametric studies and 

optimization of results that the use of dampers reduced the base shear of each tower in a 

twin tower configuration connected by dampers by up to 50%. Kim, Ryu and Chung 

(2006) also used VEDs connecting three five-story buildings and two twenty-five story 

buildings of differing structural systems at the seismic joint and with a skybridge, 

respectively. They found that installing a VED between the top two stories of either set of 

structures decreased displacements and the number or magnitude of plastic hinges 

generated within the buildings by a seismic event. Bhaskararao and Jangid (2006) used 

closed-form analytical expressions and numerical analysis to determine the number and 

placement of friction dampers to best minimize construction and material cost in order to 

obtain the highest reduction in building acceleration and displacement. Bharti, Dumne, 

and Shrimali (2010) looked at the use of Magnetorheological (MR) dampers in three 
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cases of passive off, passive on, and semi-active control strategies to evaluate the effects 

on base shear, top floor acceleration and displacement between two structures of differing 

height. They found the semi-active strategy to be the most effective of the three methods 

and the impacts on shorter buildings to be more responsive than that of taller buildings, 

although their findings did show more favorable control of taller structures due to the 

coupling of the buildings. Lee, Kim and Ko (2010) investigated the connection of a 

skybridge to two non-identical buildings to determine the best connection configuration 

for the skybridge. Their findings showed that a rigid connection of the skybridge and the 

two buildings increased displacements in the top floors of the buildings due to the 

structural irregularities that existed in the two buildings. Their research also showed that 

a combination of lead rubber bearings (LRB) and linear motion bearings (LMB) provided 

the best configuration to control motion of the two connected buildings against seismic 

and wind forces. Various research has been done to investigate the impacts of utilizing 

passive, semi-active and active dampers when connecting two buildings in close 

proximity. The general consensus resulting from these studies is that semi-active dampers 

represent the best and most economical solutions for mitigation of building vibrations 

(Asano, Yamano, Yoshie, Koike, Nakagawa, & Murata, 2003; Christenson, Spencer Jr., 

Johnson, & Seto, 2006; Christenson, Spencer Jr., & Johnson, 2007). 

 The analysis of multiple structures connected by some linkage, whether a podium 

structure, sky garden or skybridge, is more complex for seismic and wind loads than that 

of single tall structures under the same loading. The research mentioned above was 

predominantly focused on building response caused by seismic loading. Research has 

also been carried out to investigate wind effects on structures and analyze the coupled 
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vibrational motions resulting from structural linkages. Wind tunnel studies have been 

conducted to provide insight and to clarify the complicated methods needed to properly 

analyze multiple-connected structures, and to develop the wind forces on the structures, 

and how those are affected by the buildings’ coupled interactions (Boggs & Hosoya, 

2001; Rofail & Holmes, 2007; Lim & Bienkiewicz, 2007). 

 The coupled vibrational modes discussed in this thesis also occur in other 

engineering structures. Representative examples of such structures are long-span bridges, 

“sandwiched beams”, and other engineering structural systems (Sepe & Augusti, 2001; 

Sepe, Diaferio, & Augusti, 2003; Banerjee, 2004; Hashemi & Adique, 2010). 

 

2. Background 

2.1 Symbolic Computing in Structural Engineering 

2.1.1 Definition of Symbolic Computing 

 A definition provided for symbolic computation as found on the website 

Wikipedia states:  

Symbolic computation or algebraic computation, relates to the use of 

machines, such as computers, to manipulate mathematical equations and 

expressions in symbolic form, as opposed to manipulating the 

approximations of specific numerical quantities represented by those 

symbols. (Symbolic Computation, 2010)  

 

 Explained further, symbolic computing in its simplest form is a computer algorithm that 

requires input from the user consisting of either numerical values or exact terms such as 

“fractions, radicals, and symbols” and then performs mathematical operations on the 

numeric values and symbols provided by the user (Maple). The fractions and radicals 

may contain numerical quantities, whole number integers, or symbols. The advantage of 
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symbolic computing technology is how these algorithms handle non-numeric terms. The 

computer algorithm is coded in such a manner that by entering particular inputs, namely 

the use of numeric terms and symbols representative of numeric values, calculations are 

performed using the numbers and symbols defined by the user and carried through each 

step of the calculation until a final answer is determined or the user assigns numerical 

values to the symbols. If no numeric values are used and only symbols are input, then the 

program displays outputs as exact values with no numerical simplification and 

consequently no rounding errors.  

 The basic concept of symbolic computing is that generic symbols representative 

of numeric quantities are used to perform algebraic calculations without using numeric 

values until desired by the user. While each proprietary software has its own specific 

syntax, all symbolic software packages operate under this basic principle. 

2.1.2 Examples of Symbolic Computing  

 A representative example of software capable of performing both numerical and 

symbolic calculations is Wolfram’s Mathematica 8. Within this software, as with other 

symbolic computing programs, the user may perform standard numerical calculations as 

would be performed on a basic calculator. Several examples outlined from Wolfram’s 

website are: 

�
����1� ≔ 24 + 35 − 6 [1] �������1� = 53 [2] 

  

or 

�
����2� ≔ 63 × 857 ÷ 3 [3] �������2� = 17997 [4] 
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Both sets of inputs and outputs demonstrate how a user may input numerical values 

within the software and how a numerical answer is returned, which in these two cases 

happen to be the exact output. Similarly, if the user specifies an algebraic expression with 

an unknown variable x, this can also be handled by the software. For example: 

�
����3� ≔ 3� − 5�� + 7 [5] �������3� = 7 + 3� − 5�� [6] 

  

No simplification is able to be performed and the output is the same as the input. 

Example 4 illustrates a case when simplification can be implemented: 

�
����4� ≔ 7�� − 2� + 4�� + 3� − 2 [7] �������4� = 11�� + � − 2 [8] 

  

As can be seen from the output in equation 8, the software easily handles the algebraic 

simplification of equation 7 according to standard rules. More advanced problems can be 

evaluated as well. A representative example is determining the eigenvalues and 

eigenvectors of a two degree-of-freedom (2DOF) mass and spring system using free 

vibration analysis, see Figure 1.   

 

Figure 1. 2DOF spring-mass system 

The equations of free motion for this system are: 

�� ! + 3"�! − 2"�� = 0 [9] 2�� � − 2"�! + 3"�� = 0 [10] 
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Assuming that �! = #!$%&' and �� = #�$%&', equations 9 and 10 are converted into a set 

of two algebraic homogeneous equations written in matrix form: 

()3" − �*�+ −2"−2" )3" − 2�*�+, -#!#�. = /000 [11] 

  

Pre-multiplying row 1 by 1 �⁄  and row 2 by 1 2�⁄  and letting *� = 2 result in the 

following equation: 

343"� − 25 − 2"�− "� 4 3"2� − 256 -#!#�. = /000 [12] 

  

Determination of the eigenvalues and eigenvectors of equation 12 is a simple and straight 

forward procedure. With the aid of symbolic computer algebra software such as 

Mathematica 8 or Maple 13, it can also easily be accomplished. For example, if Maple 13 

is used, the following sequences are formulated as input: 

# ≔ 3 3"� − 2"�− "� 3"2� 6 [13] 

89�ℎ);9
$<=#
>$�=<+: [14] @, $ ≔ B9>$
@$C�D=E)#+ [15] 

  

The output is as follows: 

@, $ ≔
FGG
GGHI94 + 14 √41K "�I94 − 14 √41K "� LMM

MMN , 3− 2"I94 + 14 √41K " − 3" − 2"I94 − 14 √41K " − 3"1 1 6 [16] 

  

As can be seen from equation 13, the )−2+ term is not input into matrix �#�. This results 

from the code or general format in which eigenvector problems are solved by Maple 13. 

According to the help menu within Maple 13, the “Eigenvectors(..) function solves the 
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simple eigenvector problem #. � = 2. �” where A refers to the matrix similar to that 

shown in equation 13, x refers to the vector �O = P#! #�Q (shown here transposed) as 

displayed in equation 12, 2 refers to the matrix: 

2 = R2 11 2S [17] 

  

and the (.) is the operator syntax within Maple 13 signifying the multiplication of matrix 

�#� or matrix �2� by vector P�Q. Therefore, the software is coded to automatically solve 

for the 2 values when the command ”Eigenvectors(..)” is called. The command 

”with(LinearAlgebra):” shown in equation 14 is a command within Maple 13 that 

indicates the user needs to access the linear algebra package to perform operations such 

as to “construct and manipulate Matrices and Vectors, compute standard operations, 

query results and solve linear algebra problems,” as outlined in the Maple 13 help menu. 

 The results in equation 16 show the output for the eigenvalues and eigenvectors of 

the 2DOF problem displayed in Figure 1. The first answer in brackets displays the two 

eigenvalues that exist for this problem displaying the symbols used and no numerical 

simplification. The second set of answers displayed in brackets are eigenvectors 

determined for the two eigenvalues with the expression in column one corresponding to 

the first eigenvalue and that in column two to the second eigenvalue. Again, the 

representative symbols are carried through the calculations and displayed in the final 

answer with no simplification.  

2.2 Structurally Coupled Tall Buildings 

2.2.1 Identical Twin Tall Building Model 

 Using the building configuration defined in Lim (2008) as a guide, an identical 

twin tall building configuration is utilized for this thesis as shown in Figure 2. 
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Figure 2. Isometric view of twin tall buildings connected by a skybridge. 

A plan view of the twin buildings, at the skybridge level, is shown in Figure 3. The local 

coordinates for each building and the planar dimension D of the square cross-section are 

included in the figure. The building on the left is denoted as B1 and the building on the 

right as B2. The mass of each building is assumed to be distributed uniformly throughout 

the cross-section of the building and therefore the center of mass is assumed at the 

geometric center of each building and denoted as the origin (O). The stiffness of each 

building is also assumed to concentrically pass through the geometric center of each 

cross-section. As a result, the dynamic and static couplings of the buildings are 

eliminated (Thomson & Dahleh, 1998). 
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Figure 3. Plan view of twin tall building at the skybridge level 

2.2.2 Reduction of Mass and Stiffness to Skybridge Level 

 The equations for mass reduced to the skybridge level, developed in Lim (2008), 

are used in this thesis for the mass in the sway directions x and y and the torsional 

direction θ. A simplification is used by assuming a single linear mode approximation of 

the building vibration in each direction.  

�TU = �T∗ 4Wℎ 5� , �XU = �X∗ 4Wℎ 5� , �YU = �Y∗ 4Wℎ 5  [18] 

  

where 

�T∗ = �TW3 , �X∗ = �XW3 , �Y∗ = �YW3   [19] 

�T = �X = Z[\�,  �Y = Z[\�=]� [20] 

  

As assumed in Lim (2008), �T, �X and �Y are the constant mass (or polar mass moment 

of inertia) per unit height, Z[ is the building mass density and =] is the radius of gyration 

about the mass center (O). A full derivation of the equations used in Lim (2008) is 

presented in Appendix A. The final form for the equations for equivalent mass is as 

follows (equations A-33 and A-35 in Appendix A): 

�TU = �XU = Z[\�W^3ℎ�  [21] 
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�YU = Z[\�W^3ℎ� _ℎ =̀�W a [22] 

  

 Using the model developed in Lim (2008), a system with equivalent spring forces 

reduced to the skybridge level is used as a basis for determining the equations of motion 

for the twin building system (equation A-29 in Appendix A).  

"TU = �TU*T� = Z[\�W^3ℎ� )2bcT+�  <
d  "XU = �XU *X� = Z[\�W^3ℎ� e2bcXf�
 [23] 

"YU = �YU *Y� = Z[\�W^3ℎ� _ℎ =̀�W a )2bcY+� [24] 

  

where *T, *X and *Y are the circular natural frequencies of the buildings in their 

respective directions.  

 As can be seen from equation 24, the formula for �YU  can be rewritten as: 

"YU = �YU *Y� = �TU _ℎ =̀�W a )2bcY+�   D=   �XU _ℎ =̀�W a )2bcY+� [25] 

  

Figure 4 shows a schematic of the equivalent spring forces represented in the coupled 

building system. Sway stiffness in the x- and y-directions are shown for each building B1 

and B2 as are the torsional stiffnesses.  

 

Figure 4. Equivalent system of spring forces reduced to the skybridge level.  
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Figure 5. Plan view of buildings showing fixed-fixed end condition and rigid end sections. 

 Also shown in Figure 4 are a linear spring and a torsional spring labeled "gh and 

"ih respectively, representing axial and bending coupling stiffness due to the skybridge. 

Figure 5 shows a plan view of the two buildings (at the skybridge level) with the 

skybridge modeled as a fixed-fixed beam. Also shown in Figure 5 are rigid end sections 

of the skybridge modeled with infinite axial and bending stiffness (Lim, 2008). The rigid 

end sections represent stiffening assumed to exist due to an engineered connection of the 

skybridge at the building’s central core and stiffening from connections along the 

building/skybridge interface. Therefore, the linear spring in Figure 4 represents the axial 

stiffness of the skybridge and its equation is "gh = B# 
U⁄  where E is the effective 

modulus of elasticity of the bridge, A is the effective area of the bridge, and 
U = 
 − 2� 

is the effective length of the skybridge. Similarly, the torsional spring at the skybridge in 

Figure 4 represents the bending stiffness of the skybridge "ih = B� 
Û⁄  where I is the area 

moment of inertia of the skybridge cross section. 

2.2.3 Free Vibration Analysis of Coupled Twin Tall Buildings 

 Using the equivalent spring forces shown in Figure 4, the rigid end links of length 

b, and the effective length 
U, the equations of motion are determined for the x-, y- and θ-

directions for the twin towers (Meriam & Kraige, 2002). Figure 6 shows the resulting  
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(a) Forces due to motion in the x-direction. 

 

(b) Forces due to motion in the y-direction. 

 

(c) Forces due to motion in the θ-direction. 

Figure 6. Forces due to motion in the x, y and θ-directions 
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forces from motion in the three differing directions. In Figure 6 (a), assuming the 

movement of building B1is greater than B2, the resulting forces of each building are  

shown. Likewise for Figure 6 (b) and Figure 6 (c), it is assumed that the motion of  

 
(a) Free body diagram of forces in the x-direction 

 
(b) Free body diagram of forces in the y-direction 

 
(c) Free body diagram of forces in the θ-direction 

Figure 7. Free body diagrams for six degrees of freedom in x-, y- and θ-directions 
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building B1 is greater than B2 in the sway and torsional movement respectively, and the 

resulting forces are thusly shown. Figure 6 (c) also shows shear and moment forces 

induced at the end of the rigid end sections of the skybridge due to rotation of the 

buildings. 

 Substituting "gh and "ih into the equations of Figure 6 results in the free body 

diagrams, for forces summed in the x-, y- and θ-directions, depicted in Figure 7. 

Appendix B shows the complete derivation of the forces displayed in Figure 6 and Figure 

7. From the free body diagrams in Figure 7, the resulting equations of motion from free 

vibration analysis in the x-direction are as follows: 

�TU� T!U )�+ + )"TU + "gh+�T!U )�+ − "gh�T�U )�+ = 0 [26] �TU� T�U )�+ − "gh�T!U )�+ + )"TU + "gh+�T�U )�+ = 0 [27] 

  

It should be noted that the configuration of the skybridge for this thesis assumes that, 

when the buildings and skybridge are viewed in an elevation view or isometric view as 

shown in Figure 2, the skybridge has a pinned connection at each end of the skybridge in 

the direction perpendicular to the longitudinal axis of the skybridge. Therefore, as both 

buildings move in either direction along the x-axis, the bridge will rotate about the y-axis 

and no shear forces or bending moments induced into the building/bridge system result 

from these motions. 

 As can be seen from the equations displayed in Figure 7 (b) and (c) and derived in 

Appendix B, coupling exists between the y- and θ-directions, resulting in the following 

equations of motion in the y-direction: 

�XU � X!U )�+ + e"XU + "ihf�X!U )�+ − "ih�X�U )�+ + "ih 
2 �Y!U )�+ + "ih 
2 �Y�U )�+ = 0 [28] 
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�XU � X�U )�+ − "ih�X!U )�+ + e"XU + "ihf�X�U )�+ − "ih 
2 �Y!U )�+ − "ih 
2 �Y�U )�+ = 0 [29] 

  

Likewise, the equations of motion in the θ-direction are: 

�YU � Y!U )�+ + "ih 
2 �X!U )�+ − "ih 
2 �X�U )�+ + ("YU + "ih3 )
� − �
 + ��+, �Y!U )�+
+ j"ih3 _
�2 + �
 − ��ak �Y�U )�+ = 0 [30] 

�YU � Y�U )�+ + "ih 
2 �X!U )�+ − "ih 
2 �X�U )�+ + j"ih3 _
�2 + �
 − ��ak �Y!U )�+
+ ("YU + "ih3 )
� − �
 + ��+, �Y�U )�+ = 0 [31] 

 

3. Analysis of Coupled Twin Tall Building System 

 The analysis of the coupled twin tall building system consists of manipulation of 

the equations of motion such that the eigenvalues and eigenvectors of the system can be 

determined through the use of symbolic computing tools. The results of this analysis are a 

set of closed-form symbolic expressions for both the eigenvalue and eigenvector 

solutions. The ultimate goal of this analysis is to develop the formulas in such a way that 

the final results are shown in a non-dimensionalized form thus allowing for wider 

application. Analysis includes a limiting case of an infinitely stiff skybridge and 

illustrates how the computed dynamic properties are affected while the stiffness is 

approaching the limit. Lastly, a Risa-3D model is created using assumed properties of the 

building system and results from this structural analysis software are determined. These 

results are compared with numerical values determined from the symbolic solutions - the 

eigenvalues and eigenvectors - using the same properties.  Two specific properties are 

varied for the Risa-3D model and the numerical evaluation of the symbolic equations. 

The parameter b is varied for lengths 0 �, 10 � and 20 � and the modulus of elasticity 
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of the skybridge is varied for values of 5,000 lm<, 10,000 lm< and 20,000 lm< to 

evaluate the performance of the building system with the varying lengths of the rigid end 

sections and varying stiffness of the skybridge.  

3.1 Development of Equations of Motion for Analysis using Symbolic 

Computing Tools 

 It can be seen from equations 26 and 27 that the dynamic motions of the buildings 

in the x-direction are decoupled from those in the y- and θ-directions. Therefore the 

equations of motion in the x-direction can be placed into the following representative 

2DOF matrix expression: 

��U�TP� UQT + �"U�TP�UQT = 0 [32] 

  

where 

��U�T = (�TU 00 �TU, [33] 

�"U�T = "TU (1 + ng −ng−ng 1 + ng, [34] 

ng = opqors = =$
<�9@$ <�9<
 E�9cc
$EE  [35] 

P�UQT = -�T!U�T�U . [36] 

  

Equation 32 is similar to the 2DOF example presented in Section 2.1.2. It can be 

explicitly written as follows: 

−�TU*�"TU R1 00 1S -�T!U�T�U . + (1 + ng −ng−ng 1 + ng, -�T!U�T�U . = P0Q [37] 

  

Denoting �TU*� "TU⁄ = 2, equation 37 can be expressed in a non-dimensionalized form 

suitable for analysis by the symbolic computing software: 
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(1 + ng − 2 −ng−ng 1 + ng − 2, t�T!U\�T�U\ u = P0Q [38] 

  

 Examination of equations 28 through 31 shows the forces from the y- and θ-

directions are coupled. They form a coupled four degree-of-freedom (4DOF) system 

defined by the following equation: 

��U�XYP� UQXY + �"U�XYP�UQXY = P0Q [39] 

  

where 

��U�XY = FGG
GH�XU 00 �XU 0 00 00 00 0 �YU 00 �YU LMM

MN [40] 

�"U�XY = "XU

FGG
GGG
GGH1 + ni −ni ni 
2 ni 
2−ni 1 + ni −ni 
2 −ni 
2ni 
2 −ni 
2 "YU"XU + ni3 )
� − �
 + ��+ ni3 _
�2 + �
 − ��a

ni 
2 −ni 
2 ni3 _
�2 + �
 − ��a "YU"XU + ni3 )
� − �
 + ��+LMM
MMM
MMN [41] 

ni = "ih"XU = =$
<�9@$ �$
d9
> E�9cc
$EE [42] 

P�UQXY =
vwx
wy�X!U�X�U�Y!U�Y�U zw{

w| [43] 

  

 Recall that l and b are, respectively, the length from the geometric center of 

building B1 to the geometric center of building B2 and the length of the infinitely rigid 

portions of the skybridge. The relative bending stiffness ni is used as a parameter 

indicating the level of structural coupling between the skybridge and the building. This 
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parameter is changed while the effects of its value on the dynamic properties of the 

coupled system are evaluated. 

 It is necessary to manipulate equation 39 to resemble an expression similar to that 

of equation 38 determined for the x-direction so the dynamic modal properties may be 

determined with the symbolic computing software. A complete derivation of the 

simplification of terms and steps needed to change equation 39 into its non-

dimensionalized format (to be evaluated by the symbolic computing software) can be 

found in the Appendix C. The resulting form is as follows: 

−2���XYP}UQXY + �~U�XYP}UQXY = P0Q [44] 

  

where 

2 = *�"XU �XU⁄ = *�*X,�U��  [45] 

���XY = 31 0 0 00 1 0 00 0 1 00 0 0 16 [46] 

�~U�XY = 31 + ni −ni ni �! ni �!−ni 1 + ni −ni �! −ni �!ni �! −ni �! � + ni �� ni �^ni �! −ni �! ni �^ � + ni ��
6 [47] 

P}UQXY =
vww
wx
www
y �X!U\�X�U\�Y!U  W =]\ ℎ�Y�U  W =]\ ℎ zww

w{
www
|

 [48] 

� = "YU"XU  =̀� [49] 

�! = 
2 =̀  [50] 
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�� = 
�  −  �
 +  ��3 =]�  [51] 

�^ = 
� 2⁄  +  �
 −  ��3 =]�  [52] 

  

The final equation to be used in eigenvalue analysis using the symbolic computing 

software is: 

31 + ni − 2 −ni ni �! ni �!−ni 1 + ni − 2 −ni �! −ni �!ni �! −ni �! � + ni �� − 2 ni �^ni �! −ni �! ni �^ � + ni �� − 26
vww
wx
www
y �X!U\�X�U\�Y!U  W =]\ ℎ�Y�U  W =]\ ℎ zww

w{
www
|

= P0Q [53] 

  

3.2 Reduction of System from 4 Degrees-of-Freedom to 2 Degrees-of-

Freedom 

 Analysis was performed for a hypothetical case of the coupled twin tall building 

system as the lengths b of the skybridge rigid ends increase until both equal a final value 

of 
 2⁄ . Observation of the system as the length b parameter approaches 
 2⁄  shows that 

the skybridge resembles a rigid body and thusly the twin-building system reduces from 

4DOF to 2DOF. This problem is similar to that explored by Schlichting (1979) in his 

discussion of a “mathematical analog of a boundary-layer flow” initially introduced by L. 

Prandtl. The example discusses damped vibration of a point-mass described by second 

order linear differential equations and examines how the solution to the equation changes 

when the value of the mass is reduced to a very small value. This case is compared with a 

massless system. Schlichting (1979) applied this example to illustrate a boundary-layer 

theory in presence of small fluid viscosity and that with viscosity set to be exactly equal 

to zero. The near solid surface flows are completely different in the two cases. A similar 
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scenario is posed here as there is a significant difference in the dynamic responses of the 

systems when parameter b is less than 
 2⁄  (4DOF) and when it is at the limit of = 
 2⁄  

(2DOF).  

 To determine the resulting mode shapes of the final 2DOF system, analysis of the 

system as b approaches the limit of 
 2⁄  is needed. Starting with equation 39 and 

substituting the values for �XU  and �YU  into the mass matrix and extracting the ni term 

from the stiffness matrix, the following equation is obtained: 

FGG
GGG
H�XU 0 0 00 �XU 0 00 0 �XU 4ℎW5 =̀� 0

0 0 0 �XU 4ℎW5 =̀�LMM
MMM
N

vwx
wy� X!U� X�U� Y!U� Y�U zw{

w|

+  "XUni

FGG
GGG
GGG
H 1ni + 1 −1 
2 
2−1 1ni + 1 − 
2 − 
2
2 − 
2 "Yni"X + 13 )
� − �
 + ��+ 13 _
�2 + �
 − ��a
2 − 
2 13 _
�2 + �
 − ��a "Yni"X + 13 )
� − �
 + ��+LMM

MMM
MMM
N

vwx
wy�X!U�X�U�Y!U�Y�U zw{

w|

= P0Q  

[54] 

  

It can be seen that as parameter b approaches 
 2⁄ , the value of ni approaches infinity. 

As ni tends to infinity, the quantities within the mass matrix still have finite values as do 

the values in the force vector; therefore the values within the stiffness matrix must be 

finite to ensure that equation [54 is satisfied for a nontrivial solution. Therefore, the four 

equations within the stiffness matrix must equal: 

�X!U − �X�U + 
2 )�Y!U + �Y�U + = 0 [55] 

−�X!U + �X�U − 
2 )�Y!U + �Y�U + = 0 [56] 
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2 e�X!U − �X�U f + 13 )
� − �
 + ��+�Y!U + 13 _
�2 + �
 − ��a �Y�U = 0 [57] 


2 e�X!U − �X�U f + 13 _
�2 + �
 − ��a �Y!U + 13 )
� − �
 + ��+�Y�U = 0 [58] 

Multiplying equation 56 by (-1) results in the same expression as equation 55, thus 

equations 55 and 56 are the same. Pre-multiplying equation 57 and 58 by 2 
⁄  and 

substituting  � = 
 2⁄  results in the same equations as was found for equation 55: 

�X!U − �X�U + 
2 )�Y!U + �Y�U + = 0 [59] 

  

Therefore, at � = 
 2⁄  all 4 equations are the same. Next, assume that: 

� = �X!U + �X�U2 → 2� = �X!U + �X�U  [60] 

� = �Y!U + �Y�U2 → 2� = �Y!U + �Y�U  [61] 

  

Substitute equation 61 into 59: 

�X!U − �X�U + 
� = 0 [62] 

  

Solve equation 60 for �X�U  and substitute into equation 62 and solve for �X!U  to get: 

�X!U = � − 
2 � [63] 

  

Likewise: 

�X�U = � + 
2 � [64] 

  

If it is assumed that � ≠ 0 and � = 0, then from equations 63 and 64: 

�X!U = �X�U  [65] 

  

Similarly, if it is assumed that � ≠ 0 and � = 0, then from equations 63 and 64: 

�X!U = − �� �, �X�U = �� � [66] 
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From the formulas in equations 65 and 66, a pure translational mode shape in the y-

direction exists as does a mode shape with coupled rotational and translational motion. 

Thus the two modes shapes now present in the 2DOF system are: 

P�QX,%� = t1100u [67] 

P�QY,%� =
vwx
wy− 
2 �
2 �11 zw{

w|
 [68] 

  

Because the system is now a rigid body, the coupled motion of the mode shape in 

equation 68 results in rotation of the twin-building system about the centroid location 

between the two buildings. This mode shape has downward translational motion for 

building B1, upward translational motion for building B2, and counterclockwise rotation 

for each building. Thus resulting in coupled motion of the twin-building system about the 

centroid of the two building system. 

 Numerical analysis of the symbolic eigenvalue and eigenvector solutions 

determined from equation 53 are evaluated to determine if these results identify the same 

findings for the eigenvectors shown in equations 67 and 68. 

3.3 Development of Risa-3D v9.0.1 Structural Analysis Model 

 Risa-3D Demonstration Version 9.0.1 structural engineering analysis software is 

used to create a representative model of the twin tall buildings connected by a skybridge 

to compare the software’s results with those of the symbolic equations developed within 

this thesis. Risa-3D v9.0.1 allows the user to perform dynamic analysis of the structural 

model by placing representative masses at nodal points, assigning end fixities for 
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members, defining member geometry and material properties, as well as specifying joint 

boundary conditions to model linear or torsional springs at each nodal point. 

 Numerical values were input into the Risa-3D v9.0.1 model to perform analysis. 

Using Lim (2008) quantities as a basis, similar values are used for creation of the Risa-

3D model. The cross-section of each building was assigned lengths of 40 m x 40 m (D x 

D), the height set at 300 m (H), the skybridge elevation at 150 m )ℎ = W 2⁄ +, a spacing 

of 80 m (l) between the buildings’ geometric centers, and a building gross mass density 

of 200 kg/m
3
 (Z[).  The polar radius of gyration was assumed as =] = 0.3 \. The natural 

frequencies of the uncoupled three modes assumed for each of the buildings not 

connected by the skybridge were: 0.16 Hz for the two translational (x and y) modes and 

0.24 Hz for the torsional mode (θ) (Lim, 2008). From these quantities, masses and spring 

stiffnesses were assigned to the Risa-3D model.  

 A simple model was developed in Risa-3D v9.0.1. Figure 8 shows a plan view of 

the model created in Risa-3D that is representative of the views displayed in Figure 4 and 

Figure 5 for the twin tall buildings at the skybridge level. Figure 8 only shows the nodal 

points and the centerline of the skybridge members. Nodes are shown in Figure 8 and 

represented by an N followed by the number of the corresponding node. Node N4 on the 

left hand side of Figure 8 and node N2 on the right hand side represent the geometric 

centers of buildings B1 and B2 respectively. Nodes N6 and N5 represent the ends of the 

rigid links present at each end of the skybridge as depicted in Figure 5. There are three 

different members that make up the skybridge model shown in Figure 8. Member M3 

shown in the middle represents the portion of the skybridge that has properties of EA and 

EI that are varied to analyze the response of the buildings due to the changing of these 
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properties. Members M5 and M4 represent the rigid end links that may or may not exist at 

the ends of the skybridge. It should be noted that members M5 and M4 were removed and 

only member M3 was used to represent the scenario where the length of the rigid end 

section parameter � = 0. Likewise, the properties of members M5 and M4 are assigned 

properties so these members have a stiffness ratio infinitely large in relation to member 

M3. The coordinates of nodes N6 and N5 are changed to vary the length of the rigid end 

sections of length b displayed in Figure 5. Solid square cross sectional shapes were 

assigned to all three members of Figure 8. The area A and moment of inertia I were fixed 

for all cases of analysis and the modulus of elasticity E was varied to provide the 

differences in the values of ni that were targeted.  

 
Figure 8. Risa-3D v9.0.1 Structural Analysis Model Plan View 

 It cannot be shown in Figure 8, but as mentioned earlier, lumped masses are 

placed at nodes N4 and N2 representing the masses of each building. For this model, the 

masses were determined from the properties listed in this section and calculated using 

equations 21 and 22. These masses were designated for the x-, y- and θ-directions.  

 Also shown in Figure 8 are the boundary conditions assigned for nodes N4 and 

N2. It can be seen that linear springs are shown in Figure 8 for the x- and y-directions. 

Also, a torsional spring is assigned at these two nodes as well. The equivalent spring 

forces assigned for each boundary condition were calculated from equation 23 for the 

linear springs and equation 24 for the torsional spring as based on the properties outlined 

in this section.  

x 

y 
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 Figure 9 shows an isometric view of the model created in Risa-3D v9.0.1. As can 

be seen, the vertical support of the model is handled by two short, massless members M1 

and M2 with zero stiffness. Nodes N1 and N3 were designed with a pinned connection as 

shown to allow free rotation about any direction. Stability of the model in the x- and y-

directions is provided by the linear springs discussed earlier. The two massless members 

M1 and M2 were used because Risa-3D would not analyze the model with vertical 

support being placed directly at nodes N2 and N4.  

 
Figure 9. Isometric view of Risa-3D v9.0.1 structural analysis model. 

 Table 1 through Table 5 show specific properties entered into Risa-3D v9.0.1 for 

the model where the rigid end link has a length of � = 10 � and the skybridge modulus 

of elasticity a value of B = 20,000 lm<. Similar properties were used for analysis of the 

other models where � = 0 � and 20 � and B = 5,000 lm< and 10,000 lm<.  

 
Table 1. Risa-3D v9.0.1 Member Primary Data for b = 10 m and E = 20000 MPa 

Label I Joint J Joint Section/Shape Type 
Design 

List 
Material 

M1 N1 N2 Building Column None Massless 

M2 N3 N4 Building Column None Massless 

M3 N5 N6 Bridge Beam None Bridge 

M4 N2 N5 Bridge_Infinite Beam None Bridge_Infinite 

M5 N6 N4 Bridge_Infinite Beam None Bridge_Infinite 

x 

y z 
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Table 2. Risa-3D v9.0.1 General Material Properties for b = 10 m and E = 20000 MPa 

Label E [MPa] G [MPa] Nu Therm (/1E5 C) 
Density 

(kg/m^3) 

Building 1.00E-06 0 0.3 0 0 

Bridge 20000 1923.077 0.3 1.17 0 

Bridge_Infinite 1.00E+07 3.00E+06 0.3 1.17 0 

 

 

Table 3. Risa-3D v9.0.1 Joint Coordinates for b = 10 m and E = 20000 MPa 

Label X [m] Z [m] Y [m] 

N1 0 140 0 

N2 0 150 0 

N3 80 140 0 

N4 80 150 0 

N5 10 150 0 

N6 70 150 0 

 

 
Table 4. Risa-3D v9.0.1 Joint Boundary Conditions for b = 10 m and E = 20000 MPa 

Joint 

Label 
X 

[kN/mm] 
Z 

[kN/mm] 
Y 

[kN/mm] 
X Rot. 

[kN-m/rad] 
Z Rot. 

[kN-m/rad] 
Y Rot. 

[kN-m/rad] 

N1 Reaction Reaction Reaction - - - 

N3 Reaction Reaction Reaction - - - 

N2 S129.363 - S129.363 - S2.096e+7 - 

N4 S129.363 - S129.363 - S2.096e+7 - 

 

 
Table 5. Risa-3D v9.0.1 Joint Loads and Enforced Displacements for b = 10 m and E = 20000 

MPa 

Joint 

Label 
L,D,M Direction 

Magnitude [(kN,kN-m),  

(mm,rad), (kN*s^2/m, kN*m^2)] 

N2 M X 1.28E+05 

N4 M X 1.28E+05 

N2 M MZ 9.22E+06 

N4 M MZ 9.22E+06 

N2 M Y 1.28E+05 

N4 M Y 1.28E+05 
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4. Results and Discussion  

4.1 Results from Symbolic Computing 

4.1.1 Eigenvalue Results 

 Analysis of the two symbolic matrices outlined in equations 38 and 53 for the x-

direction and y-θ directions respectively with the symbolic computing software Maple 13 

yields the resulting six eigenvalue solutions: 

2T,%� = 1 [69] 2T,]�' = 1 + 2ng [70] 2X,%� = 1 [71] 

2X,]�' = 12 )1 + �+ + ni _1 + 
�4 =̀�a − 12 �� [72] 

2Y,%� = �_12 )1 + �+ + ni _1 + 
�4 =̀�a + 12 ��a�  [73] 

2Y,]�' = _� + 2 B�"XU =̀�
a  [74] 

  

where 

� = �� − 2� + ni� _
�=̀� − 4a + _−ni _ 
�2=̀� − 2a + 1a� + 4ni� 
�=̀� [75] 

  

The formulas in equations 69 and 70 show the eigenvalues associated with the equations 

of motion for the x-direction. Similarly, equations 71 through 74 display the eigenvalues 

for the y-θ equations of motion. As seen in equations 69 through 74, there are two 

eigenvalues associated with each of the three principal directions of the twin tall building 

model. They are denoted as “in” and “out” which is associated with in-phase movement 

and 180 degrees out-of-phase movement. The complete un-simplified expressions 
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corresponding to equations 71 through 74 for the y- and θ-directions as output by Maple 

13 are displayed in Appendix D. 

 Recall from Section 3.1 that the final form of the matrix in equation 38 associated 

with the x-direction specified �TU*� "TU⁄ = 2, therefore the final resulting normalized 

natural frequencies for the x-direction are expressed by taking the square root of the 

previous formulas:  

�T,%� = 1 [76] �T,]�' = �1 + 2ng [77] 

  

Likewise, the symbolic results of equation 53 associated with the y-direction specified 

�XU *� "XU� = 2, the resulting final normalized natural frequencies are: 

�X,%� = 1 [78] 

�X,]�' = _12 )1 + �+ + ni _1 + 
�4 =̀�a − 12 ��a!/�
 [79] 

  

The eigenvalue results for the two modes in the θ-direction require one additional step to 

determine the normalized natural frequency. Similar to modes in the y-direction, 

�XU *� "XU� = 2 was specified. However, it is desired that the two modes associated with 

the θ-direction be normalized to the torsional natural frequency. Therefore, each mode for 

the θ-direction is multiplied by 1 �⁄  and the square root taken which results in the final 

normalized natural frequencies: 

�Y,%� = j�_12 )1 + �+ + ni _1 + 
�4 =̀�a + 12 ��a� W *X�ℎ *Y� k! �⁄
 [80] 

�Y,]�' = j_� + 2 B�"XU =̀�
a W *X�ℎ *Y� k! �⁄
 [81] 
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4.1.2 Mode Shapes of y-θ motion 

 In addition to the determination of the eigenvalues of equations 38 and 53, Maple 

13 was used to symbolically determine the modal shapes corresponding to the six 

eigenvalues. Determination of the mode shapes are as follows: 

P�QT,%� = /110 [82] 

P�QT,]�' = / 1−10 [83] 

P�QX,%� = t1100u [84] 

P�QX,]�' =
vww
xw
wy 1−1− 4 1=�5X,]�'− 4 1=�5X,]�'zww

{w
w| [85] 

P�QY,%� = t )=�+Y,%�−)=�+Y,%�11 u [86] 

P�QY,]�' = t 001−1u [87] 

  

where 

4 1=�5X,]�' =
3�4 √�2ni − 15 − 
�4=̀� + )1 + √� + 2ni+ =̀�
�ni� � 4
�=̀�ni� e"XUf�

+)−2 − √� − 2ni+4"YU =̀�"XU + 4)"YU+� 6
4 ni 
 "XU  =̀ �_)−2 ni − 3 + √�+=̀� − ni
�2 a "XU + 3"YU�  

[88] 

)=�+Y,%� = 4 ni 
 "XU  =̀ �_)2 ni + 3 + √�+=̀� + ni
�2 a "XU − 3"YU�

FGG
H�4 √�2ni + 15 + 
�4=̀� + )−1 + √� − 2ni+ =̀�
�ni� � 4
�=̀�ni�e"XUf�

+)2 − √� + 2ni+4"YU =̀�"XU − 4e"YUf� LMM
N  

[89] 
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where =� is the effective radius of rotation.  

 The effective radius of rotation describes the coupled motion of the translational 

and rotational components of mode shapes y-out and θ-in. The effective radius of rotation 

is non-dimensional and expressed as: 

=� = �XU ℎ�YU W=̀  [90] 

As seen in equations 85 and 86, modes y-out and θ-in possess a primary component and a 

secondary component resulting in coupled motion. For mode y-out, there is a primary 

translational component and a secondary rotational component represented by equation 

88. Similarly, mode θ-in has a primary rotational component and a secondary 

translational component represented by equation 89. Conversely, equations 82 through 84 

and 87 show the modal shapes for modes x-in, x-out, y-in and θ-out to be purely 

translational or purely rotational. Figure 10 graphically shows the six mode shapes as 

determined from the symbolic analysis of the twin tall building system and displays these 

modes grouped by the principal direction of the dominant building motion. Figure 10 (a) 

shows the motion relating to the x-direction. As shown in the figure, mode x-in displays 

the two buildings moving in the same directions. Conversely, mode x-out displays the 

two buildings moving in opposite directions. The same trend is displayed in Figure 10 (b) 

and Figure 10 (c) with the addition of the coupled movement for mode y-out and θ-in.  

 The two expressions for equations 88 and 89 are simplified from their full form 

by the elimination of terms having no influence on the formulas within the expected 

design range of ni. The range of ni specified is from 0 to 1.5 with the upper limit being 

beyond the expected value for the relative bending stiffness ni. An additional 

simplification is made from the final output of Maple 13 to the final form of the equations 
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in 88 and 89. The final results from Maple 13 show individual expressions for the third 

and fourth terms of the vector in equation 85 and the first and second terms of the vector 

in equation 86. However, numerical analysis of these equations yield the same values  

Mode x-in  Mode x-out 

(a) Mode shapes for x-direction 

Mode y-in  Mode y-out 

(b) Mode shapes for y-direction 

 

Mode θ-in  Mode θ-out 

(c) Mode shapes for θ-direction 

Figure 10. Mode shapes for six natural modes determined for twin-tall buildings connected by a 

skybridge. 

within the range of ni mentioned previously and were therefore reduced to a single 

expression for each of the respective mode shapes, y-out and θ-in. The following 

formulas are the final symbolic output for the coupled mode shapes from Maple 13 that 
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were simplified to the effective radius of rotation expressions shown in equations 88 and 

89. 

P�QX,]�' =
vwx
wy−�!�!����11 zw{

w|
 [91] 

  

where 

−�!�! = 

2ni�! �Ini + 12 � + 12 ni�^ + 12 + 12 ni�� − 12 √�K )� − ni − 4ni�!� + ni�� + ni�^+− 32 I� + ni�^ + ni�� − 83 ni�!�K + 12 + 12 √� �

FGG
GH�Ini + 12 � + 12 ni�^ + 12 + 12 ni�� − 12 √�K )� − 4ni�!� + ni�� + ni�^+ + ni + 12− 32 )� + ni�� + ni�^+ + 12 √� + 4ni�!� − 2ni��� − 2�ni + 4ni��!� − 2ni��^ �

× 1 2� )� + ni�^ − 1 + ni�� − √�+ LMM
MN

 [92] 

���� = 2ni�! I− 32 ni�� − 32 � + 4ni� �!� − 32 ni�^ + 32 + ni − 12 √�K
�Ini + 12 � + 12 ni�^ + 12 + 12 ni�� − 12 √�K )� − 4ni�!� + ni�� + ni�^+ + ni + 12− 32 )� + ni�� + ni�^+ + 12 √� + 4ni�!� − 2ni��� − 2�ni + 4ni��!� − 2ni��^ � 

[93] 

  

For 

P�QY,%� =
vwx
wy �!�!−����11 zw{

w|
 [94] 

  

where 
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�!�! = 

2ni�! �)ni)−1 + �� + �^ − 4�!�+ + �+ _12 )2ni + � + ni�^ + 1 + ni�� + √�+a
− 32 I� + ni�^ + ni�� − 83 ni�!�K + 12 )1 − √�+ �

FGG
GGH� 12 )2ni + � + ni�^ + 1 + ni�� + √�+)ni�� + � − 4ni�!� + ni�^+− 32 I� + ni�^ + ni�� − 83 ni�!�K + 2 I12 ni + 14 − 14 √� − ni��� − �ni + 2ni��!� − ni��^K�

× _12 )� + ni�^ − 1 + ni�� + √�+a LMM
MMN
 [95] 

−���� = 

2ni�! I− 32 ni�� − 32 � + 4ni� �!� − 32 ni�^ + 32 + ni + 12 √�K
�Ini + 12 � + 12 ni�^ + 12 + 12 ni�� + 12 √�K )� − 4ni�!� + ni�� + ni�^+ + ni + 12− 32 )� + ni�� + ni�^+ − 12 √� + 4ni�!� − 2ni��� − 2�ni + 4ni��!� − 2ni��^ � [96] 

  

 As mentioned in Section 1.3.1 and illustrated in equations 92 and 93 as well as 95 

and 96, the final formulas can be long and cumbersome and take considerable effort by 

the user to reduce to a workable format. 

 Additional modal shape analysis was performed on the coupled motion of modes 

y-out and θ-in and their effective radius of rotation values. Figure 11 (a) and (b) show the 

motion of the coupled modes y-out and θ-in respectively. Figure 11 (c) shows 

parametrically how the value of =� changes as ni is increased for the particular situation 

of � = 0 �. The trends are similar for � = 10 � and � = 20 �. As seen in Figure 11 (c) 

and illustrated in Figure 11 (a), as the value of ni decreases, the effective radius of 

rotation increases for mode y-out. Thus viewed in Figure 11 (a), as the value of ni goes 

to zero, the effective radius of rotation goes to infinity and mode y-out shows purely 

translational motion in lieu of the coupled translational-rotational motion at larger values 

of ni. Similarly, mode θ-in shown in Figure 11 (b) and (c) show as the value of ni 

decreases, the effective radius of rotation tends to zero. Thus viewed in Figure 11 (b), as 
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ni decreases, =� decreases until mode θ-in is purely rotational and no longer displays 

coupled rotational-translational motion. As the relative bending stiffness ni decreases 

and approaches zero, the buildings display behavior of unconnected buildings. These 

trends and diagrams match the findings in Lim (2008). 

 
(a) 

 
(b) 

 

(c) 

Figure 11. (a) Schematic showing effective radius of rotation for mode y-out; (b) Schematic 

showing effective radius of rotation for mode θ-in; (c) Comparison of effective radius 

of rotation values for coupled mode y-out and θ-in. 
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4.1.3 Uncoupling of y-θ motion 

 If the value of ni = 0, then the (4 x 4) matrix of equation 53 becomes diagonal 

and the cross-coupling between the y- and θ-directions does not exist.  When this occurs, 

the equations of motion in the y- and θ-directions can be treated as four independent 

equations and the motions in the y- and θ-directions can be analyzed independently.   

 The off-diagonal (2 x 2) block matrix values in equation 53 were examined to 

determine their significance in the calculated natural frequencies and modal shapes.  If 

these terms were very small, they could be neglected and this approximation would lead 

to two (independent) 2DOF systems and a simplified analytical solution (similar to that 

for the x-direction) could be obtained.  However, it was found that the off-diagonal (2 x 

2) terms of equation 53 were not insignificant in presence of the coupling relative 

bending stiffness ni.  As a result, the coupled (4 x 4) matrix equations had to be 

employed to determine the natural frequencies and modal shapes.  These quantities were 

obtained symbolically as outlined in Section 4.1.   

4.2 Numerical Results of Symbolic Equations for 4 Degrees-of-Freedom 

Reduced to 2 Degrees-of-Freedom 

 Using the building properties outlined in Section 3.3, the symbolic expressions 

shown in equations 78 through 81 for the normalized natural frequencies for y- and θ-

modes and the modal shapes in equations 84 through 87 and the effective radius values in 

equations 88 and 89 were evaluated numerically. The results were analyzed to determine 

if the equations characterize the behavior of the building system as parameter b 

approaches 
 2⁄  and the system transforms from 4DOF to 2DOF.  
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 Two methods were used to analyze the numeric results of the symbolic 

expressions and evaluate their behavior as parameter b approaches 
 2⁄ . Maple 13 and 

Microsoft Excel were used for the numeric evaluation of the formulas. In both instances, 

it was found that the normalized natural frequency values for equations 79 and 81, or 

modes y-out and θ-out respectively, equal zero once parameter b equals a value of 

1.0 × 10�� < 
 2⁄ . From this finding, it is determined that the symbolic formulas do 

model the building system reduction from 4DOF to 2DOF. This is observed in both the 

Maple 13 and Microsoft Excel examples. Table 6 shows the results of the Maple 13 and 

Microsoft Excel worksheets. From Table 6, it can be viewed that the normalized natural 

frequency value Ω for mode θ-in becomes very large and thus the system becomes 

infinitely rigid. 

 
Table 6. Normalized natural frequency values for y and θ modes with � = 1.0 × 10�� < 
 2⁄  

from Maple 13 and Microsoft Excel. 

EI Values 

(kN-m
2
) 

Stiffness Ratio 

Values 
Mode 

Symbolic 

Values 
Ω 

EI = 1.04 + E09 ψB = 1.2 + E28 y-in 1.000 

  
θ-out 0.000 

  θ-in 5.099 + E14 

  y-out 0.000 

 

 From the findings of the normalized natural frequency values in Table 6, it is 

determined that since modes y-out and θ-out are zero, their respective mode shapes shut 

off and are no longer present. Modes y-in and θ-in remain as the only two modes present 

and thus the system is reduced to 2DOF. Since only two modes shapes are now present, 

their corresponding modal shapes as determined from evaluation of equations 84 and 86 

by Maple 13 and Microsoft Excel are as follows: 
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P�QX,%� = t1100u [97] 

P�QY,%� = t−0.30.311 u [98] 

 The results in equations 97 and 98 show the numerical values obtained match the 

expected mode shape shown in equations 67 and 68. 

 The ability of the symbolic expressions developed in this thesis are shown to 

model the behavior of the building system as the skybridge becomes infinitely rigid and 

thusly transforms to a 2DOF system from a 4DOF system.  The results show the 

symbolic formulas model the behavior of the building system for the normalized natural 

frequencies and modal shapes as the parameter b approached the limit of 
 2⁄  and rigid 

body motion. Table 6 shows that as parameter b approaches a value approximately equal 

to 
 2⁄ , mode y-out and θ-out equal zero and are no longer present.  

4.3 Risa-3D Model Results 

4.3.1 Comparison of Modal Natural Frequencies 

 Comparisons of the frequency values determined by the symbolic formulas 

derived in this thesis are compared to the Risa-3D v9.0.1 model results using the 

parameters defined in Section 3.3. In comparing the values, a difference of less than 0.2% 

was found between the frequencies for modes x-in, x-out, y-in and θ-out shown in 

equations 76 through 78 and 81 and those of the Risa-3D v9.0.1 model for all variations 

of parameter b and E.  Due to the small difference between these values, only the 

frequencies of modes y-out and θ-in are discussed further. Three different values for 

parameter b )� = 0 �, 10 �, 20 �+ were used to compare the frequency values between 
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the equations of this thesis and those of the Risa-3D v9.0.1 model. Table 7 corresponds to 

� = 0 �, Table 8 to � = 10 � and Table 9 to � = 20 �. For each of these three values 

of parameter b, the value of E for the skybridge is varied to evaluate the difference of the 

frequencies between the symbolic formulas of this thesis and the Risa-3D model. As 

expected, the general trend for all three tables is as E decreases in value so do the 

frequencies. Likewise, as the value for parameter b increases and the effective length of 

the bridge )
 − 2 �+ decreases, the frequency values increase as the value of ni 

increases.   

 The comparison of the frequency values of the symbolic equations and the Risa-

3D v9.0.1 results for mode θ-in show good correlation. The largest difference between 

the values for � = 0 � is 3.625% and the difference decreases as the value of E 

decreases. The same can be said for � = 10 � and 20 � with the largest percent 

difference being 5.5% and 10.0% respectively. Similarly with these values, as E 

decreases, the percent difference between the values decrease.  

 As for mode y-out, the comparison of the frequencies between the symbolic 

formulas and results from Risa-3D v9.0.1 show stronger correlation with less than 2.0% 

difference for all situations. It should be noted there was less than 0.00007 Hz variation 

between any of the mode y-out frequencies for all values of parameter b and E. The effect 

on mode y-out frequencies due to coupling of the tall buildings is minimal and is 

illustrated in the small differences between the frequencies shown in Table 7, Table 8 

and Table 9. Regardless, the symbolic equations are closely correlated for this particular 

mode with the Risa-3D v9.0.1 results.  
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Table 7. Comparison of frequency results of modes θ-in and y-out for parameter b = 0 m and 

varying E of the skybridge for thesis equations vs. Risa-3D model. 

E Values 

(MPa) 

Stiffness 

Ratio 

Values 
Mode 

Symbolic 

Values 
f (Hz) 

 

Risa-3D 

Values 
f (Hz) 

% Diff 

E = 20000 ψB = 0.2 θ-in 0.53956 
 

0.52000 3.625% 

  
y-out 0.16080 

 
0.16400 1.988% 

E = 10000 ψB = 0.1 θ-in 0.41727 
 

0.40900 1.982% 

  
y-out 0.16078 

 
0.16300 1.378% 

E = 5000 ψB = 0.05 θ-in 0.34004 
 

0.33500 1.483% 

  
y-out 0.16075 

 
0.16300 1.401% 

 

 

Table 8. Comparison of frequency results of modes θ-in and y-out for parameter b = 10 m and 

varying E of the skybridge for thesis equations vs. Risa-3D model. 

E Values 

(MPa) 

Stiffness 

Ratio 

Values 
Mode 

Symbolic 

Values 
f (Hz)  

Risa-3D 

Values 
f (Hz) 

% Diff 

E = 20000 ψB = 0.4 θ-in 0.78220 
 

0.73900 5.523% 

  
y-out 0.16081 

 
0.16400 1.981% 

E = 10000 ψB = 0.2 θ-in 0.57833 
 

0.56100 2.996% 

  
y-out 0.16081 

 
0.16400 1.986% 

E = 5000 ψB = 0.1 θ-in 0.44247 
 

0.43100 2.593% 

  
y-out 0.16079 

 
0.16300 1.374% 

 

 

 
Table 9. Comparison of frequency results of modes θ-in and y-out for parameter b = 20 m and 

varying E of the skybridge for thesis equations vs. Risa-3D model. 

E Values 

(MPa) 

Stiffness 

Ratio 

Values 
Mode 

Symbolic 

Values 
f (Hz)  

Risa-3D 

Values 
f (Hz) 

% Diff 

E = 20000 ψB = 1.5 θ-in 1.38902 
 

1.25000 10.009% 

  
y-out 0.16082 

 
0.16400 1.977% 

E = 10000 ψB = 0.75 θ-in 0.99661 
 

0.95000 4.677% 

  
y-out 0.16082 

 
0.16400 1.978% 

E = 5000 ψB = 0.38 θ-in 0.72468 
 

0.69200 4.509% 

  
y-out 0.16081 

 
0.16400 1.982% 
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4.3.2 Comparison of Modal Shapes 

 Figure 10 shows the six modal shapes present in the coupled building system as 

determined by the symbolic analysis. Figure 10 (a) shows the sway modal shapes in the 

x-direction, Figure 10 (b) shows the sway modal shapes in the y-direction including the 

coupled modal shape y-out and Figure 10 (c) shows the torsional mode shapes about the 

z-axis including the coupled mode θ-in. 

 A comparison of the modal shapes as determined from the symbolic equations 

versus the Risa-3D v9.0.1 model was performed. The same mode shapes were found 

regarding the four un-coupled modes of the Risa-3D v9.0.1 model and the results of this 

thesis. A difference exists between the two coupled mode shape solutions. The difference 

exhibited is between the positive and negative signs as displayed by the symbolic 

solutions when compared to results of the Risa-3D v9.0.1 model. The symbolic solutions 

have a sign convention of P�QX,]�'O = P)++ )−+ )−+ )−+Q and 

P�QY,%�O = P)++ )−+ )++ )++Q respectively whereas the results from the Risa-3D 

model have signs of P�QX,]�'O = P)++ )−+ )++ )++Q and 

P�QY,%�O = P)−+ )++ )++ )++Q respectively. It is suspected that this difference exists 

because of differing algorithms available for determining eigenvectors. The mode shapes 

as determined from the Risa-3D v9.0.1 model are shown in Figure 12 for the particular 

case of � = 10 � and B = 20,000 lm<. Similar mode shapes exist for the other two 

lengths of parameter b and values of E. The modes are shown grouped by principal 

direction of the corresponding mode shape, i.e. x-in and x-out, y-in and y-out, θ-in and θ-

out. For clarity and due to difficulty in accurately displaying the rotation of the building 

sections in Risa-3D, the full un-deformed model including building, rigid end sections 
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and skybridge sections is depicted in Figure 12 (a), while Figure 12 (b) through (g) show 

only the rigid end sections and the skybridge portions of the model.  

 
(a) Undeformed Risa-3D model 

 
(b) Mode x-in 

 

(c) Mode x-out 

 
(d) Mode y-in 

 
(e) Mode y-out 

 
(f) Mode θ-in 

 
(g) Mode θ-out 

Figure 12. Risa-3D v9.0.1 modal shapes for b=10 m and E=20000 MPa. 
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 The modal shapes determined from the symbolic expressions developed in this 

thesis match those determined by Lim (2008). Comparison of the modal shapes differed 

however from those found in the Risa-3D v9.0.1 model for the two coupled modes y-out 

and θ-in. The differences can be viewed when examining Figure 10 and Figure 12. The 

two coupled modal shapes showed differences in signs for the translational components 

of mode y-out and the rotational components of θ-in. The remaining four mode shapes for 

this thesis and the Risa-3D results were in agreement. 

 

5. Conclusions and Recommendation for Future Research 

 The connection of two twin tall towers by a skybridge has the potential to be a 

valuable tool for structural engineers to control vibrational motions. This research has 

demonstrated how the use of symbolic computing tools along with a simplified model of 

twin tall buildings with equivalent mass and stiffness reduced to the skybridge level can 

be used to determine the dynamic modal properties of the building system. Specific 

findings and outcomes of thesis include: 

• Symbolic analysis provides a useful platform for free vibration analysis of 

structurally coupled tall buildings. 

• Symbolic expressions model the behavior of building system as properties are 

tested at their limit. 

• Obtained symbolic equations show good agreement with Risa-3D results. 

• Developed symbolic equations are proposed as a tool for use in preliminary 

analysis of tall buildings connected by a skybridge. 
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 Future research could include the development of damping properties of the 

skybridge between the twin tall buildings. Also, research can be done to extend the 

symbolic formulas to include the forcing terms on the right hand side of the equations of 

motion. Lastly, further efforts could be performed on the various connection 

configurations that exist between the skybridge and the buildings to account for forces 

induced by vibrational motion in the x-direction of the coupled building system. 
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Appendix A 

Derivation of generalized mass and stiffness: 

Following is a full derivation of the generalized masses and stiffnesses using formulas 

and notation as shown in Lim (2008): 

��)�+� �)�, �+ + "�)�+��)�, �+ = ��)�, �+ [A-1] 

 ��)�, �+ = ��)�+��)�+ [A-2] 

 ��)�+ = I �WK�� [A-3]   � =  T =  X =  Y = 1 [A-4]  
��)ℎ, �+ = 4ℎW5�� ��)�+ [A-5]  
��)�+ = ��)ℎ, �+ 4Wℎ 5��

 [A-6]  
��)�, �+ = ��)�+ 4Wℎ 5�� ��)ℎ, �+ [A-7]  
��)�+ 4Wℎ 5�� ���)�+� �)ℎ, �+ + "�)�+��)ℎ, �+� = ��)�, �+ [A-8]  ¡ ��)�+ ¢��)�+ 4Wℎ 5�� ���)�+� �)ℎ, �+ + "�)�+��)ℎ, �+� = ��)�, �+£ d�¤

`  [A-9]  
j¡ ���)�+��d�¤

` k ¢4Wℎ 5�� ���)�+� �)ℎ, �+ + "�)�+��)ℎ, �+�£ = ¡ ��)�, �+��)�+d�¤
`  [A-10]  W2 � + 1 4Wℎ 5�� ���)�+� �)ℎ, �+ + "�)�+��)ℎ, �+� = ¡ ��)�, �+��)�+d�¤

` = m�∗)�+ [A-11] 
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W2 � + 1 4Wℎ 5�� ��)�+�� �)ℎ, �+ + *��)�+��)ℎ, �+� = m�∗)�+ [A-12]  
��∗ = W2 � + 1 �� [A-13] 

 �� = Z[\� cD= E = �, � [A-14]  �� = Z[\�=̀� cD= E = � [A-15]  
��∗ 4Wℎ 5�� �� �)ℎ, �+ + *��)�+��)ℎ, �+� = m�∗)�+ [A-16]  
m�∗)�+ = ¡ I �WK�� ��)�, �+d�¤

` = 1W�� ¡ �����)�, �+d�¤
` = 1W��  ���¥! � + 1 ��)�, �+|¤̀ [A-17]  m�∗)�+ = 2�W§� l�̃)�+ [A-18]  2� = W��¥! � + 1 [A-19]  ©T = ©X = 1 and ©Y = 0 [A-20]  lT­)�+ = lX)�+ [A-21]  lX­ )�+ = lT)�+ [A-22]  lY®)�+ = lY)�+ [A-23]  ��∗ 4Wℎ 5�� �� �)ℎ, �+ + *��)�+��)ℎ, �+� = m�∗)�+ [A-24]  ��∗ 4Wℎ 5�� �� �)ℎ, �+ + *��)�+��)ℎ, �+� = 2�W§� l�̃)�+ [A-25]  ��∗ 4Wℎ 5�� 4Wℎ 5§� �� �)ℎ, �+ + *��)�+��)ℎ, �+� = 2�ℎ§� l�̃)�+ [A-26]  ��U� �)ℎ, �+ + "�U��)ℎ, �+ = m�U)�+ [A-27] 
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��U = ��∗ 4Wℎ 5��¥§�
 [A-28]  "�U = ��U*�� [A-29]  m�U)�+ = 2�ℎ§� l�̃)�+ [A-30]  �T = �X = Z[\� and �Y = Z[\�=̀� [A-31]  

�XU = �X∗ 4Wℎ 5�¯¥§¯ = Z[\�W2 X + 1 4Wℎ 5�¯¥§¯
 [A-32]  

�XU = Z[\�W3 4Wℎ 5� = jZ[\�W^3 k 4 1ℎ�5 = °iℎ� [A-33]  
�YU = �Y∗ 4Wℎ 5�±¥§± = Z[\�=̀�W2 Y + 1 4Wℎ 5�±¥§± 4ℎW5 4Wℎ 5 [A-34]  
�YU = Z[\�W^3 4 1ℎ�5 4ℎW5 =̀� = �XU 4ℎW5 =̀� [A-35] 
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Appendix B 

Formation of equations from free body diagram for y- and θ-motions: 

Summation of forces in the y-direction for building B1: 

−"XU�X!U − 12B�
Û e�X!U − �X�U f − 6B�
U� )�Y!U + �Y�U + − 12B�
Û �e�Y!U + �Y�U �f = �XU � ! [B-1]  Summation of forces in the y-direction for building B2:  −"XU�X�U + 12B�
Û e�X!U − �X�U f + 6B�
U� )�Y!U + �Y�U + + 12B�
Û �)�Y!U + �Y�U + = �XU � � [B-2]  Summation of moments for building B1:  −"YU�Y!U − 6B�
U� e�X!U − �X�U f − 4B�
U �Y!U − 2B�
U �Y�U − 6B�
U� �)�Y!U + �Y�U +
− 12B�
Û �e�X!U − �X�U f − 6B�
U� �)�Y!U + �Y�U + − 12B�
Û ��)�Y!U + �Y�U += �YU � Y!U  

[B-3] 
 Summation of moments for building B2:  −"YU�Y�U − 6B�
U� e�X!U − �X�U f − 4B�
U �Y�U − 2B�
U �Y!U − 6B�
U� �)�Y!U + �Y�U +

− 12B�
Û �e�X!U − �X�U f − 6B�
U� �)�Y!U + �Y�U + − 12B�
Û ��)�Y!U + �Y�U += �YU � Y�U  

[B-4] 
 �XU � X!U + _"XU + 12B�
Û a �X!U − 12B�
Û �X�U + _12B�
Û � + 6B�
U� a �Y!U

+ _12B�
Û � + 6B�
U� a �Y�U = 0 [B-5] 
 �XU � X�U − 12B�
Û �X!U + _"XU + 12B�
Û a �X�U − _12B�
Û � + 6B�
U� a �Y!U

− _12B�
Û � + 6B�
U� a �Y�U = 0 [B-6] 
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�YU � Y!U + _12B�
Û � + 6B�
U� a �X!U − _12B�
Û � + 6B�
U� a �X�U
+ _"Y + 4B�
U + 12B�
U� � + 12B�
Û ��a �Y!U
+ _2B�
U + 12B�
U� � + 12B�
Û ��a �Y�U = 0 

[B-7] 
 �YU � Y�U + _12B�
Û � + 6B�
U� a �X!U − _12B�
Û � + 6B�
U� a �X�U

+ _2B�
U + 12B�
U� � + 12B�
Û ��a �Y!U
+ _"Y + 4B�
U + 12B�
U� � + 12B�
Û ��a �Y�U = 0 

[B-8] 
 "i = 12B�
Û = 12B�)
 − 2�+^ [B-9]  �XU � X!U + e"XU + "if�X!U − "i�X�U + "i 
2 �Y!U + "i 
2 �Y�U = 0 [B-10]  �XU � X�U − "i�X!U − e"XU + "if�X�U − "i 
2 �Y!U − "i 
2 �Y�U = 0 [B-11]  �YU � Y!U + "i 
2 �X!U − "i 
2 �X�U + ("Y + "i3 )
� − � 
 + ��+, �Y!U

+ "i3 _
�2 + � 
 − ��a �Y�U = 0 

[B-12] 
 �YU � Y�U + "i 
2 �X!U − "i 
2 �X�U + "i3 _
�2 + � 
 − ��a �Y!U

+ ("Y + "i3 )
� − � 
 + ��+, �Y�U = 0 

[B-13] 
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Appendix C 

Derivation of non-dimensionaled matrix equations for y-θ equations of motion: 

��U�XYP� UQXY + �"U�XYP�UQXY = P0Q [C-1] 
 

FGG
GH�XU 0 0 00 �XU 0 00 0 �YU 00 0 0 �YU LMM

MN
vwx
wy� X!U� X�U� Y!U� Y�U zw{

w|

+  "XU

FGG
GGG
GGHni + 1 −ni ni 
2 ni 
2−ni ni + 1 −ni 
2 −ni 
2ni 
2 −ni 
2 "Y"X + ni3 )
� − �
 + ��+ ni3 _
�2 + �
 − ��a

ni 
2 −ni 
2 ni3 _
�2 + �
 − ��a "Y"X + ni3 )
� − �
 + ��+LMM
MMM
MMN

vwx
wy�X!U�X�U�Y!U�Y�U zw{

w|

= t0000u 

[C-2] 

 

FGG
GGG
H�XU 0 0 00 �XU 0 00 0 �XU 4ℎW5 =̀� 0

0 0 0 �XU 4ℎW5 =̀�LMM
MMM
N

vwx
wy−*��X!U−*��X�U−*��Y!U−*��Y�U zw{

w|

+  "XU

FGG
GGG
GGHni + 1 −ni ni 
2 ni 
2−ni ni + 1 −ni 
2 −ni 
2ni 
2 −ni 
2 "Y"X + ni3 )
� − �
 + ��+ ni3 _
�2 + �
 − ��a

ni 
2 −ni 
2 ni3 _
�2 + �
 − ��a "Y"X + ni3 )
� − �
 + ��+LMM
MMM
MMN

vwx
wy�X!U�X�U�Y!U�Y�U zw{

w|

= t0000u 

[C-3] 
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−�XU *�
FGG
GGH
1 0 0 00 1 0 00 0 4ℎW5 =̀ 0
0 0 0 4ℎW5 =̀ LMM

MMN
vwx
wy�X!U�X�U�Y!U�Y�U zw{

w|

+ "XU

FGG
GGG
GGHni + 1 −ni ni 
2 ni 
2−ni ni + 1 −ni 
2 −ni 
2ni 
2=̀ −ni 
2=̀ "Y"X=̀ + ni3=̀ )
� − �
 + ��+ ni3=̀ _
�2 + �
 − ��a

ni 
2=̀ −ni 
2=̀ ni3=̀ _
�2 + �
 − ��a "Y"X=̀ + ni3=̀ )
� − �
 + ��+LMM
MMM
MMN

vwx
wy�X!U�X�U�Y!U�Y�U zw{

w|

= t0000u 

[C-4] 

 
− �XU *�"XU FGG

GGH
1 0 0 00 1 0 00 0 4ℎW5 0
0 0 0 4ℎW5LMM

MMN
vwx
wy �X!U�X�U�Y! U =̀�Y�U  =̀ zw{

w|

+  
FGG
GGG
GGG
Hni + 1 −ni ni 
2=̀ ni 
2=̀−ni ni + 1 −ni 
2=̀ −ni 
2=̀ni 
2=̀ −ni 
2=̀ "Y"X=̀� + ni3=̀� )
� − �
 + ��+ ni3=̀� _
�2 + �
 − ��a

ni 
2=̀ −ni 
2=̀ ni3=̀� _
�2 + �
 − ��a "Y"X=̀� + ni3=̀� )
� − �
 + ��+LMM
MMM
MMM
N

vwx
wy �X!U�X�U�Y!U =̀�Y�U =̀ zw{

w|

= t0000u 

[C-5] 

 
− *�*�U�� �l�

vwx
wy �X!U�X�U�Y!U =̀�Y�U =̀ zw{

w| + �Ä�
vwx
wy �X!U�X�U�Y!U =̀�Y�U =̀ zw{

w| = t0000u [C-6] 
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−2�l��l��!
vwx
wy �X!U�X�U�Y!U =̀�Y�U =̀ zw{

w| + �Ä��l��!
vwx
wy �X!U�X�U�Y!U =̀�Y�U =̀ zw{

w| = t0000u [C-7] 
 −2���XYP}UQXY + �~U�XYP}UQXY = P0Q [C-8]  where:  
���XY = 31 0 0 00 1 0 00 0 1 00 0 0 16 [C-9] 
 
�~U�XY = 31 + ni −ni ni �! ni �!−ni 1 + ni −ni �! −ni �!ni �! −ni �! � + ni �� ni �^ni �! −ni �! ni �^ � + ni ��

6 [C-10] 
 P}UQXYO = -�X!U\ �X�U\ �Y!U  W =]\ ℎ �Y�U  W =]\ ℎ . [C-11]  
2 = *�"XU �XU⁄ = *�*X,�U��  [C-12] 
 � = "YU"XU  =̀� [C-13]  �! = 
2 =̀  [C-14]  
�� = 
�  −  �
 +  ��3 =]�  [C-15]  
�^ = 
�2  +  �
 −  ��3 =]�  

[C-16] 
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Appendix D 

Non-simplified Eigenvalue Output from Maple 13: 

2X,%� = 1 [D-1] 

 2Y,]�' = � + ni�� − ni�^ [D-2]  2Y,%� = ni + 12 � + 12 ni�� + 12 ni�^ + 12
+ 12 Æ� 1 + ni���̂ + 4ni� + 4ni − 2ni�� − 2�−2ni�^ + 2ni�^� + 2ni����^ + 2�ni�� − 4�ni−4ni��� + �� + ni� ��� − 4ni��^ + 16ni��!�

� [D-3] 
 2X,]�' = ni + 12 � + 12 ni�� + 12 ni�^ + 12

− 12 Æ� 1 + ni���̂ + 4ni� + 4ni − 2ni�� − 2�−2ni�^ + 2ni�^� + 2ni����^ + 2�ni�� − 4�ni−4ni��� + �� + ni� ��� − 4ni��^ + 16ni��!�
� 

[D-4] 
 �X,%� = Ç2X,%� 
 

[D-5] 
 
�Y,]�' = È2Y,]�'W*X�ℎ*Y�  [D-6] 
 
�Y,%� = È2Y,%�W*X�ℎ*Y�  [D-7] 
 �X,]�' = Ç2X,]�' [D-8]  


