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ABSTRACT

OPEN AND CLOSED GROMOV-WITTEN THEORY OF THREE-DIMENSIONAL

TORIC CALABI-YAU ORBIFOLDS

We develop the orbifold topological vertex, an algorithm for computing the all-genus,

open and closed Gromov-Witten theory of three-dimensional toric Calabi-Yau orbifolds. We

use this algorithm to study Ruan’s crepant resolutions conjecture and the orbifold Gromov-

Witten/Donaldson-Thomas correspondence.
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CHAPTER 1

Introduction

The primary investigations of this dissertation lie in the study of various conjectural

correspondences in Gromov-Witten theory. In particular, we study these correspondences

for toric Calabi-Yau 3-folds. In this introductory chapter, we provide the reader with some

of the motivations, historical developments, and breakthroughs in this active field, while also

giving a sense of where the work carried out herein lies within the larger context.

1.1. Gromov-Witten Theory

Gromov-Witten (GW) theory has its roots both in enumerative geometry and theoretical

physics. The origins of the theory lie in papers of Gromov on pseudoholomorphic curves in

symplectic manifolds [32] and Witten on topological strings [64], with other major devel-

opments in the early stages of the theory provided by Kontsevich, Manin, Ruan, and Tian

[38, 39, 59, 61].

A central theme in virtual curve counting theories in general (and GW theory in partic-

ular) is to fix a smooth, projective variety X and to consider appopriate compact parameter

spaces of algebraic curves in X with fixed genus g and degree β ∈ H2(X,Z). The necessity of

compactness forces us to allow our curves to degenerate to singular objects. In recent years,

mathematicians have developed a plethora of ways in which to allow degenerations depend-

ing on whether the curves in X are viewed as subschemes, ideal sheaves, maps, quasi-maps,

etc. (see [54] for an introduction to these various points of view). As the first successful

approach in building a compact parameter space with desirable properties, GW theory views

the curves in X as parametrized curves, ie. we keep track of maps f : C → X.
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More specifically, GW theory studies moduli spaces of stable maps Mg,n(X, β). These

moduli spaces parametrize (up to isomorphism) pairs (C, f) where

(1) C is a connected genus g (at worst) nodal curve with n marked, distinct points,

(2) f : C → X is a holomorphic map of degree β: f∗([C]) = β ∈ H2(X,Z), and

(3) there are finitely many automorphisms of C which commute with f .

Because of the finite automorphism condition, spaces of stable maps naturally inherit

the structure of Deligne-Mumford stacks. Moreover, they are compact, as can be seen by

using properties of stable reduction for curves ([29]). However, the moduli stacksMg,n(X, β)

can be terrible to work with: possibly reducible, non-reduced, and not of pure dimension.

Notwithstanding, the stacks admit a perfect obstruction theory and therefore (by [4]) they

support a virtual fundamental class [Mg,n(X, β)]vir of the expected dimension:

(1–1)

∫
C

c1(X) + (dimX − 3)(1− g).

The importance of Calabi-Yau 3-folds (CY3s) in the subject becomes obvious in light of

(1–1): it is exactly the condition for which we expect a zero-dimensional space of curves (and

hence a virtual “curve count”) for all g and β. When the expected dimension is positive,

curve counts can still be computed by imposing certain incidence conditions as we will see

below. Physical principles in string theory tell us that the curve counts thus obtained should

witness a significant amount of structure inherent in the corresponding physical system.

Moduli stacks of stable maps have natural evaluation maps evi : Mg,n(X, β) → X for

each marked point. For αi ∈ H∗(X), (primary) GW invariants are defined as the intersection

2



numbers

〈α1 · · ·αn〉X,βg,n :=

∫
[Mg,n(X,β)]vir

∏
i

ev∗i (αi) ∈ Q.

Intuitively, we think of each ev∗i (αi) as imposing an incidence condition on the image of the

ith point.

It is difficult to get a sense of the structure inherent to GW theory simply by considering

the invariants individually. As we will see below, the structures we are after can only be

witnessed after packaging the invariants into natural generating functions. Choosing a basis

φ1, ..., φN of H∗(X) with dual coordinates x1, ..., xN , the GW Potential is defined by:

(1–2) GW (X;x1, ..., xN , q, u) :=
∑
g,ni,β

〈φn1
1 · · ·φ

nN
N 〉

X,β
g,
∑
ni

∏
i

xnii
n1!

qβu2g−2.

Physics not only makes predictions about curve counts in smooth varieties, but it also nat-

urally extends to orbifold targets, ie. varieties with finite quotient singularities. Motivated

by the guiding physical principles of string theory on orbifolds, Chen and Ruan developed

orbifold stable maps in [18] in the symplectic category (the analogous development in the

algebraic category followed in [2]). One of the guiding aspects of the theory is to allow the

source curves to obtain orbifold points to probe the orbifold structure of the targets. With

some modification, all of the foundational theory goes through in the orbifold case: there is

a virtual fundamental class of the expected dimension, natural evaluation maps (with image

in the inertia orbifold), and orbifold GW invariants can be encoded exactly as in (1–2).

1.2. Toric Calabi-Yau Threefolds

In the years since the original developments of GW theory, direct computations have

proven to be extremely elusive. Indeed, even for the quintic 3-fold (the prototypical example
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of a projective CY3), GW invariants have only been computed mathematically in genus

≤ 1. Due to virtual localization techniques ([31]), one arena where direct computations have

actually been successful is for toric targets. A variety (or orbifold) X is toric if it contains

a dense open subset isomorphic to an algebraic torus and the action of the torus naturally

extends to an action on X. For any class α, virtual localization tell us that

∫
[Mg,n(X,β)]vir

α =
∑
F

∫
F

i∗F (α)

eeq(NF )

where the sum is over the fixed loci of the torus action, iF : F ↪→ X is the inclusion, and we

formally invert the equivariant Euler class of the normal bundle in the localized equivariant

cohomology ring. The contributions at the fixed loci can be evaluated in terms of graph

sums of Hodge integrals on moduli spaces of curves. Therefore, localization reduces the

computation to that of graph combinatorics and Hodge integrals.

If we restrict further to (smooth) toric CY3s, the computation of GW invariants is com-

pletely solved with the topological vertex algorithm. In particular, motivated by large N

duality, Aganagic, Klemm, Mariño, and Vafa ([3]) suggested the existence of open GW

invariants counting maps from Riemann surfaces with boundary and they introduced the

topological vertex as a certain generating function of open invariants of C3. They proposed

a specific gluing algorithm for obtaining the GW potential of any toric CY3 X in terms of

a topological vertex contribution defined near each torus fixed point of X. Moreover, via

large N-duality, they gave a concrete prediction for the topological vertex in terms of Schur

functions evaluated on the formal variables. A key aspect of the theory is that the topologi-

cal vertex encodes invariants of all genera at once making it significantly more efficient than

the traditional localization techniques where invariants must be computed genus by genus.

4



In the smooth case, the predictions of [3] have been completely verified mathematically in

[47] (see also [22, 37, 41, 42, 43, 50]).

Given the effectiveness of the topological vertex in the smooth case, we are naturally

confronted with the question of whether such an algorithm exists for toric CY3 orbifolds.

The first contribution of this dissertation (Chapter 2) is to develop such an algorithm. In

particular, we define open orbifold GW invariants of [C3/G] where G is any finite abelian

group acting trivially on the volume form and we use these invariants to define the orbifold

vertex. The key result that we prove is an explicit gluing algorithm analogous to that in [3]

for reducing the GW theory of any toric orbifold CY3 to the orbifold vertex.

With the orbifold vertex in hand, we obtain a local-to-global approach for investigating

conjectural correspondences related to GW theory of toric CY3 orbifolds: first prove the

correspondence for the vertex, then show compatibility with the gluing algorithm. A major

motivation of the work carried out in this dissertation is to gather support for this approach in

the study of two particular problems: Ruan’s crepant resolution conjecture and the orbifold

Gromov-Witten/Donaldson-Thomas correspondence (described below).

The orbifold vertex is naturally a generating function of G-Hodge integrals on mod-

uli spaces of stable orbifold curves. In the smooth case, these generating functions were

proven to be expressible in terms of Schur functions (arising from certain knot invariants in

Chern-Simons theory). In the orbifold case, we do not have physical predictions for these

generating functions, but the orbifold GW/DT correspondence suggests that in special cases

we can express the orbifold vertex in terms of loop Schur functions (cf. Chapter 4). The

ultimate usefulness of the orbifold vertex will be determined by a comprehensive study of

5



the corresponding G-Hodge integrals which arise. One of the overlying themes of Chapters

3 - 5 is to lay down the first steps in this direction.

1.3. Ruan’s Conjecture

If X is a Gorenstein orbifold and Y is a crepant resolution of singularities, then physical

principles suggest that the string theory of the two spaces should be equivalent, in some sense.

With this guiding physical principle, Ruan conjectured in ([60]) what is commonly referred

to as the crepant resolution conjecture (CRC). Roughly, he asserted that the GW theory of a

Gorenstein orbifold should be equivalent to that of a crepant resolution. The formulation of

this conjecture was one of the motivating factors in the development of orbifold GW theory in

[18]. In the years since its original formulation, the CRC has attracted a significant amount

of attention in the field (eg. [9, 10, 11, 20, 21, 30, 63]) and continues to be a very active area

of research.

For the purposes of this dissertation, we restrict ourselves to orbifolds satisfying a hard-

Lefschetz condition. In that case, Bryan and Graber ([10]) give a refinement of the CRC

which we paraphrase:

Conjecture (Ruan-Bryan-Graber). If X is a Gorenstein, hard-Lefschetz orbifold and

Y is a crepant resolution, then there exists an affine linear change of formal parameters and

analytic continuation so that GW (X) = GW (Y ).

We propose that the Ruan-Bryan-Graber conjecture (in the toric CY3 case) should be

approached with the orbifold vertex. In particular, we propose a CRC statement for open

GW theory and expect that this open CRC is compatible with gluing.
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In Chapter 3, we investigate the first nontrivial geometry for which this approach applies.

In particular, we prove the first example of the open CRC (Theorem 3.10)1. The correspon-

dence is via a change of variables where we have introduced additional winding parameters

to keep track of how the boundaries map into the target.

Moreover, we show that our open correspondence is compatible with gluing. In particular,

we deduce a new example of the Ruan-Bryan-Graber conjecture (Theorem 3.12) by gluing our

open correspondence. These verifications provide promising support for our local approach

to the toric CY3 CRC.

1.4. Gromov-Witten/Donaldson-Thomas Correspondence

Donaldson-Thomas (DT) theory views curves in X as embedded subschemes, rather than

parametrized curves. The relevant compact moduli space is HilbX(n, β), the Hilbert scheme

of curves in X with fixed Euler characteristic n and one-dimensional support β. In case X is

3-dimensional, the Hilbert scheme has a perfect obstruction theory2 and therefore supports

a virtual fundamental class of the expected dimension ([62]). DT invariants are defined by

intersecting against the virtual class. For our purposes, we restrict to the CY3 setting.

If X is a CY3, then the expected dimension of the Hilbert scheme is zero and we define

Nn,β :=

∫
[HilbX(n,β)]vir

1 ∈ Z.

We naturally package these integer counts into the degree β DT partition function:

DTβ(v) :=
∑
n

Nn,βv
n

1In recent work with A. Brini and R. Cavalieri, we generalize the open CRC to all type A 3-fold singularities
([7]).
2Rather, the natural perfect obstruction theory comes from the isomorphic moduli scheme of ideal sheaves.

7



and we define the reduced partition function by formally removing the degree 0 contributions:

DT •β (v) :=
DTβ(v)

DT0(v)
.

Similarly we obtain a degree β GW partition function GW •
β (u) defined by the following

formula: ∑
β

GW •
β (u)qβ = exp

∑
β 6=0
g≥0

(∫
[Mg,0(X,β)]vir

1

)
u2g−2qβ

 .

Notice that GW •
β (u) encodes virtual counts of maps from possibly disconnected curves which

are not allowed to contract entire connected components. Maulik, Nekrasov, Okounkov, and

Pandharipande conjectured the Gromov-Witten/Donaldson-Thomas correspondence relating

these series ([45, 46]).

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande).

GW •
β (u) = DT •β (−eiu).

In particular, the correspondence does not allow the conjecture to be checked term-by-

term, rather we must know every invariant on one side to compute a single invariant on the

other. A significant amount of work has culminated in a proof of the GW/DT correspondence

for toric 3-folds (equivariant, with descendents) in [47] and a recent proof for CY complete

intersections in products of projective spaces in [53].

DT theory is generalized to orbifold targets by Bryan, Cadman, and Young in [8] where

they develop a DT analog of the orbifold vertex. They show that for certain geometries,

the DT orbifold vertex can be computed combinatorially generalizing the Schur function

evaluations in the smooth case. Naturally, we ask whether an extension of the GW/DT

8



correspondence holds for orbifolds and whether this correspondence can be witnessed on the

level of the orbifold vertex. This question is the motivation behind Chapter 5.

As a natural starting point, we investigate the correspondence for the one-leg An−1 vertex

[C3/Zn]. The special case in the smooth setting (n = 1) is the Gopakumar-Mariño-Vafa

(GMV) formula (named after the physicists who first made the prediction) and was proven

independently in [42] and [50]. In Chapter 5, we prove the An−1 generalization of this

formula which we playfully call the gerby GMV formula. The proof of the gerby GMV

formula requires a significant number of new tools, including a combinatorial generalization

of the Murnaghan-Nakayama rule for Schur functions (Theorem 4.1). The tools utilized in

the proof of the gerby GMV formula, in particular the use of the wreath Fock space and the

combinatorics of loop Schur functions, appear to forge a promising path forward in further

investigations of the orbifold vertex.

Moreover, at the end of Chapter 5 we compile more evidence for the local-to-global

approach of the orbifold vertex by showing that the gerby GMV formula is compatible with

gluing. In particular, we state and prove the orbifold GW/DT correspondence for all local

Zn-gerbes over P1 – this serves as the first example of the orbifold GW/DT correspondence

where curve classes lie entirely in the singular locus.3

1.5. Organization of the Dissertation

Chapter 2 develops the GW orbifold vertex which serves as the basic building block for

the GW theory of toric CY3 orbifolds. This chapter serves as the backbone of the local-to-

global approach pursued in later chapters. The main content from this chapter previously

appeared in [56].

3A related class of examples of the orbifold GW/DT vertex correspondence appeared in [65].
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Chapter 3 investigates an open version of the Ruan-Bryan-Graber crepant resolution

conjecture and its compatibility with gluing. The results of this chapter were obtained in

collaboration with R. Cavalieri and appeared previously in [17].

Chapter 4 contains a study of loop Schur functions and a proof of the loop Murnaghan-

Nakayama rule. The results in this chapter are important in the final chapter, but this

chapter can also be read independently of the rest of the dissertation. This content appeared

previously in [57].

Chapter 5 proves the gerby GMV formula and deduces from it the GW/DT correspon-

dence for a large class of local orbifold lines. The results in this chapter were obtained in

collaboration with Z. Zong and previously appeared in [58].

10



CHAPTER 2

The Gromov-Witten Orbifold Vertex

In this chapter we generalize the Gromov-Witten topological vertex developed in [22, 37,

41] to the orbifold setting. In particular, we show that the orbifold Gromov-Witten theory

of any 3-dimensional toric Calabi-Yau orbifold can be reduced to appropriate generating

functions of open orbifold Gromov-Witten invariants, local to each torus fixed orbifold point

of the target. The formalism which is developed in this chapter is the starting point of

our local-to-global approach and will be utilized in subsequent chapters to investigate the

crepant resolution conjecture and the Gromov-Witten/Donaldson-Thomas correspondence

for orbifolds.

2.0.1. Statement of Results. The first step in our program is to generalize the def-

inition of open GW invariants to the affine orbifold [C3/G] where G is any finite abelian

group. After suitably generalizing the work of [37] and [6], we give a definition (Section

2.2) of the GW Orbifold Vertex as a generating function of open GW invariants of [C3/G]

where G is any finite abelian group. The orbifold vertex is naturally a generating function

of G-Hodge integrals on moduli spaces of orbifold curves.

The technical heart of this chapter then lies in proving that the GW orbifold vertex of

Definition 2.12 glues, ie. that it is a building block for the GW theory of 3-dimensional toric

CY orbifolds. We present the main gluing result in Section 2.3.

Theorem (Theorem 2.17). The GW theory of 3-dimensional toric CY orbifolds is de-

termined by the GW orbifold vertex and a suitable gluing algorithm.

11



Given the toric diagram Γ = {vertices, edges} associated to the target orbifold X , the

gluing algorithm has the following form:

GW •(X ) =
∑

Λ

∏
edges

E(e,Λ)
∏

vertices

V (v,Λ)

where GW •(X ) is the GW partition function of the target, V (v,Λ) is the GW orbifold vertex

and E(e,Λ) consists simply of an automorphism correcting combinatorial factor and a sign

which depends on the geometry of the target near e. The sum is over all possible ways of

assigning decorated partitions to the edges (Section 2.3.2).

In Section 2.5, we make an explicit connection between our formalism and earlier work

in the smooth case and we suggest a relationship between the orbifold vertex defined herein

and the DT orbifold vertex defined in [8].

2.1. Preliminaries

2.1.1. Toric Calabi-Yau Orbifolds. By a Calabi-Yau orbifold we mean a smooth,

quasi-projective Deligne-Mumford stack over C with trivial canonical class. We do not

require the isotropy of the generic point to be trivial, but we will require that our orbifolds

are Gorenstein (see below). A toric Calabi-Yau orbifold is defined to be such a stack with

the action of a Deligne-Mumford torus T = T ×BG having an open dense orbit isomorphic

to T (cf. [27]). To a toric CY orbifold X of dimension three we can associate a planar

trivalent graph ΓX = {Edges, Vertices} where the vertices correspond to the torus fixed

points and the edges correspond to the torus invariant lines. Following [8], we make the

following definition.
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Definition 2.1. Let Γ be a trivalent planar graph with a chosen planar representation.

An orientation of Γ is a choice of direction for each edge and an ordering of the edges incident

to each vertex which is compatible with the counterclockwise cyclic ordering.

2.1.2. The Target Space [C3/G]. We set up notation here that will be used through-

out. Locally near a torus invariant point of a toric CY 3-fold, the space can be modelled

as a global quotient [C3/G] where G preserves the coordinates and acts trivially on the vol-

ume form (this is the Gorenstein condition mentioned above). We allow G to be any finite

abelian group. More specifically, if G = Zn1 × ... × Znl , then the action of G on C3 can be

described with weights (~α1, ~α2, ~α3) ∈ G3 summing to 0 where the generator εi of Zni acts on

the coordinates of C3 as

εi · (z1, z2, z3) = (e
2π
√
−1α1

i
ni z1, e

2π
√
−1α2

i
ni z2, e

2π
√
−1α3

i
ni z3).

Define

gi = lcm

{
nj

gcd
(
αij, nj

) : j = 1, ..., l

}

Then Zgi is the effective part of the G action along the ith coordinate axis.

We define three Lagrangian suborbifolds L1,L2,L3 inside [C3/G] as follows. We can view

[C3/G] as the neigborhood of the (image of) zero in the global quotient

(2–1) [O(−1)⊕O(−1)/G]

where z1 is the coordinate in the base direction. Define an anti-holomorphic involution on

O(−1)⊕O(−1)

σ(z1, z2, z3) = (1/z1, z1z3, z1z2).
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One checks that σ descends to an involution σG on the quotient (2–1). L1 is defined to be

the fixed locus of σG. L2 and L3 are defined analogously.

The GW orbifold vertex is defined in Definition 2.12 to be the oriented open GW potential

of a formal neighborhood of the coordinate axes in [C3/G], relative to the Lagrangian L :=

L1 ∪ L2 ∪ L3.

2.1.3. Toric Orbifold Lines. In order to prove the gluing formula in Section 2.3.4,

we recall some basic facts about toric orbifold lines, ie. orbifolds with coarse space P1.

It follows from the classification theorem of [27] that any toric orbifold line (with finite

abelian stabilizers) is an abelian gerbe over a football P1
n0,n∞ , and any such orbifold can

be constructed via successive root constructions over the football. Recall that the nth root

construction of a line bundle L on a space X is defined as the fibered product:

X(L,n) −−−→ BC∗

ψ

y yλ→λn
X

L−−−→ BC∗

where the bottom map classifies the line bundle L. The top map classifies a line bundle M

on X(L,n) with M⊗n = ψ∗L. We denote M by L1/n and refer to it as the nth root of L.

Generalizing this notion, if L1, ..., Ll are line bundles on X and n1, ..., nl ∈ N, then X(Li,ni)

can be defined as the fiber product:

X(Li,ni) −−−→ BC∗ × ...× BC∗

ψ

y yλi→λnii
X −−−→ BC∗ × ...× BC∗

The orbifold Picard group of X(Li,ni) is generated by bundles pulled back from X via ψ

along with the nith root of Li.
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We will be concerned with the case when X is the football P1
n0,n∞ . The line bundles on

P1
n0,n∞ are of the form

(2–2) L := O
(
a

n0

[0] +
b

n∞
[∞] + c

)
.

The numerical degree of L is defined to be the Chern-Weil class of the bundle (cf. [19]). In

this case, we compute deg(L) = a
n0

+ b
n∞

+ c. We also make the following definition which

will be useful in the computations of Section 2.3.

Definition 2.2. Any line bundle on P1
n0,n∞ can be written uniquely in the form (2–2)

with 0 ≤ a ≤ n0−1 and 0 ≤ b ≤ n∞−1. Given such a representation, we define Int(L) := c.

Suppose that Li = O
(
ai
n0

[0] + bi
n∞

[∞] + ci

)
. The line bundles on P(Li,ni)

n0,n∞ are of the form

(2–3) ψ∗
(
O
(
a

n0

[0] +
b

n∞
[∞] + c

))
⊗
(
L

1/n1

1

)m1

⊗ ...⊗
(
L

1/nl
l

)ml
.

We denote such a line bundle by O (a, b, c;m1, ...,ml). The degree of O (a, b, c;m1, ...,ml) is

a

n0

+
b

n∞
+ c+

l∑
i=1

mi

ni

(
ai
n0

+
bi
n∞

+ ci

)
.

An orbifold line bundle contains the information of a representation of the isotropy on

the fibers. For example, in the case of the bundle (2–2) on P1
n0,n∞ , the generator of Zn0 acts

on the fiber over 0 as a
n0

and the generator of Zn∞ acts on the fiber over ∞ as b
n∞

(we have

identified S1 with R/Z).

Following section 2.1.5 of [35], we now give a concrete description of the isotropy of P(Li,ni)
n0,n∞

as well as how the groups act on the fibers of the orbifold line bundle O (a, b, c;m1, ...,ml).

Over any point other than 0 or ∞, the isotropy is simply Zn1 × ...× Znl and the generator

15



of Zni acts on the fiber of O (a, b, c;m1, ...,ml) by mi
ni

. Over 0, the isotropy group G0 is an

extension of Zn0 by Zn1 × ...× Znl :

0→ Zn1 × ...× Znl → G0 → Zn0 → 0.

Similarly for the isotropy G∞. The extension G0 can be determined by the 2-cocycle γ0 :

Zn0 × Zn0 → Zn1 × ...× Znl defined by

γ0(r, r′) =


(a1, ..., al) r + r′ ≥ n0

0 r + r′ < n0.

Explicitly, as a set G0 consists of (l + 1)-tuples (r, s) with r ∈ Zn0 , s ∈ Zn1 × ...× Znl . The

operation is defined by

(r, s) + (r′, s′) := (r + r′, s+ s′ + γ0(r, r′)).

On the fiber of O(a, b, c;m1, ...,ml) over 0, we compute that (1, (0, ..., 0)) ∈ G0 acts as

a

n0

+
l∑

i=1

miai
nin0

while (0, (0..., 1i, ..., 0)) ∈ G0 acts as

mi

ni
.

When a rank 2 bundle N over P(Li,ni)
n0,n∞ splits as the sum of two line bundles, the Calabi-Yau

condition reduces to:

N = O(a, b, c;m1, ...,mk)⊕O(−a− 1,−b− 1,−c;−m1, ...,−ml).
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Finally, the following lemma gives us a characterization of when certain torus fixed maps

from a football to P(Li,ni)
n0,n∞ exist.

Lemma 2.3. Suppose C is an orbifold with coarse space P1 and orbifold structure only

over 0 and ∞. Suppose f : C → P(Li,ni)
n0,n∞ is a C∗ fixed map of degree d twisted at 0 by

(k0
0, (k

0
1, ..., k

0
l )) ∈ G0 and at ∞ by (k∞0 , (k

∞
1 , ..., k

∞
l )) ∈ G∞. Then

k0
0 = k∞0 = d

and

dci
ni
− k0

i

ni
− k∞i

ni
∈ Z ∀i ≥ 1.

Proof. This is Lemmas II.12 and II.13 in [35]. �

In particular, once the degree and twisting at either 0 or ∞ are fixed, then the other

twisting is determined.

2.1.4. Open Gromov-Witten Invariants. In [37], Katz and Liu propose a tangent

obstruction theory for the moduli spaceMg;h(X,L|d; γ1, ..., γh) of stable maps from h-holed

Riemann surfaces into X with degree given by d ∈ H2(X,L;Z) and boundary conditions

given by γi ∈ H1(L;Z) provided the following two conditions are met:

• L is the fixed locus of an anti-holomorphic involution σ : X → X and

• (X,L) can be equipped with a well-behaved C∗ action with the real subtorus S1 fixing

L.

An important aspect of their theory is that varying the choice of torus action leads to a

family of localized virtual fundamental classes.
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In particular, if X = Tot(OP1(−1) ⊕ OP1(−1)), L is the fixed locus of the involution

σ : (z, u, v) → (1/z̄, z̄v̄, z̄ū), and we consider degree d maps from a disk (D2, S1), then the

proposed virtual fundamental class is

e(R1π∗f
∗N(d)) ∩M0,1(D2, S1|d)

where N(d) is a Riemann-Hilbert bundle defined in Example 3.4.4 of [37]. Assuming that

the virtual localization formula of [31] naturally generalizes to this setting, Katz and Liu

suggested that the contribution of such a disk invariant to the open GW potential of (X,L)

should be given by

t

d2
eeq(−R•π∗f ∗(TX , TL)) =

t

d2

eeqH1(N(d))

eeqH0(L(2d))

where L(2d) is defined in Example 3.4.3 of [37], the Euler classes are S1 equivariant, and

t is generator of H∗S1({pt}). The motivation for N(d) and L(2d) is that their holomorphic

doubles are precisely the bundles OP1(−d) ⊕ OP1(−d) and OP1(2d), respectively. In other

words, the Riemann-Hilbert bundles are ‘half’ of the bundles obtained by pulling back TX

along a degree d map to the base P1.

In order to generalize this setup to orbifolds, we define certain orbifold Riemann-Hilbert

bundles in the next section which naturally generalize L(2d) and N(d).

2.1.5. Orbifold Riemann-Hilbert Bundles. We define two classes of Riemann-

Hilbert bundles on the orbifold disks (Dr, S
1) := [(D2, S1)/Zr] which play a crucial role

in the computation of the open GW potential of ([C3/G] ,L).

2.1.5.1. L(m): For m > 0, consider the orbifold line bundle O(m,m, 0) on the football

P1
r,r. Let z, u be local coordinates near 0 on the coarse space. We define an anti-holomorphic
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involution by:

σ : (z, u)→ (1/z,−z−2m/ru)

We then define the Riemann-Hilbert bundle L(m) on (Dr, S
1) by

L(m) := (O(m,m, 0)|Dr ,O(m,m, 0)σ|S1
).

The global sections of L(m) are by definition the σ invariant global sections ofO(m,m, 0).

The global sections of O(m,m, 0) are generated by

{
z〈

m
r
〉+i}2bm

r
c

i=0
.

Since

σ :
(
z, αiz

〈m
r
〉+i)→ (

z,−αiz2bm
r
c+〈m

r
〉−i) ,

then the global sections of L(m) are:

(2–4)

bm
r
c−1∑

i=0

(
αiz
〈m
r
〉+i − αiz2bm

r
c+〈m

r
〉−i)+

√
−1βz

m
r

with αi ∈ C and β ∈ R. We can embed the sections (2–4) torus equivariantly into the global

sections of O(m, 0, 0) by mapping them to

bm
r
c−1∑

i=0

αiz
〈m
r
〉+i + βz

m
r .

Remark 2.4. This natural choice of identification determines an orientation for the

sections.
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2.1.5.2. N(m,n, l): Given m,n ∈ Z≥0 and l ∈ Q≥0 with −l+ n
r
∈ Z, consider the rank 2

bundle

N1 ⊕N2 = O(m,−m− n,−l +
n

r
)⊕O(−m− n,m,−l +

n

r
)

on P1
r,r. There is an anti-holomorphic involution

σ : (z, u, v)→ (1/z, zlv, zlu).

We define the Riemann-Hilbert bundle N(m,n, l) on (Dr, S
1) by:

N(m,n, l) :=
(

(N1 ⊕N2)|Dr , (N1 ⊕N2)σ|S1

)
.

The H1 sections of N(m,n, l) are by definition the σ invariant H1 sections of N1 ⊕ N2.

The H1 sections of N1 ⊕N2 are generated by

{(
z〈

m
r
〉−i, z〈

−m−n
r
〉−j
)}l+〈m

r
〉+〈−m−n

r
〉−1

i,j=1
.

Since

σ :
(
z, αiz

〈m
r
〉−i, βjz

〈−m−n
r
〉−j
)
→
(
z, βjz

−l−〈−m−n
r
〉+j, αiz

−l−〈m
r
〉+i
)
,

the σ invariant sections are:

l+〈m
r
〉+〈−m−n

r
〉−1∑

i=1

αi

zi−〈
m
r
〉 ,

l+〈m
r
〉+〈−m−n

r
〉−1∑

i=1

αi

zl+〈
m
r
〉−i


Remark 2.5. In order to compute the equivariant Euler class of these bundles, we face

the choice of embedding the sections into either N1 or N2. We will denote the corresponding

Euler classes by e(H1(N(m,n, l)))+ or e(H1(N(m,n, l)))−, respectively.
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2.1.6. Tautological Classes. We recall the definitions of some natural classes on

Mg,n(BG), the moduli stack of (orbifold) stable maps to the classifying stack BG. For

γ = (γ1, ..., γn) an n-tuple of elements in G, we denote by Mg,γ(BG) the open and closed

substack Mg,n(BG) ∩
⋂n
i=1 ev

∗
i (1Iγi) where 1Iγi is the fundamental class of the component in

the inertia stack indexed by γi.

By the definition of BG, Mg,γ(BG) parametrizes degree |G| covers of the source curve,

ramified over the twisted points, with an action of G which exhibits the source curve as a

quotient of the cover. Let

p : Uh →Mg,γ(BG)

be the universal covering curve of genus h where h is computed via the Riemann-Hurwitz

formula. The Hodge bundle on Mg,γ(BG) is the rank h bundle defined by

E := p∗ωh

where ωh is the relative dualizing sheaf of p. G naturally acts on E and its dual E∨. For any

ζ ∈ G, we define Eζ and E∨ζ to be the ζ-eigenbundles of E and E∨, respectively. They are

related by the formula (Eζ)∨ = E∨ζ−1 . We also have the formula

E∨ζ−1 = R1π∗f
∗Oζ

where π is the map from the universal curve, f is the universal map, and Oζ is the line

bundle with isotropy acting by multiplication by ζ. The lambda classes are defined as the

chern classes of these bundles:

λζj := cj (Eζ)
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For later convenience we introduce the notation

Λξ(t) := (−1)rk

rk∑
j=0

(−t)rk−jλξj

with rk := rk(Eζ).

By forgetting the orbifold structure of the curve, there is a universal coarse curve

q : Ug,|γ|+|µ| →Mg,γ(BG)

along with a section sp for each marked point p. We define the cotangent line bundles by

Lp := s∗pωg

where ωg is the relative dualizing sheaf of q. The psi classes on Mg,γ(BG) are defined by

ψp := c1 (Lp)

2.2. The Orbifold Vertex

In this section, the orbifold vertex is defined via localization. The result is an expression

in terms of G-Hodge integrals on Mg,n(BG) and a combinatorial disk function.

2.2.1. Torus Action and Fixed Loci. Refer to Figure 2.1 throughout this section.

Set X := [C3/G] and choose an orientation for ΓX consistent with the labelling (x1, x2, x3)

of the coarse coordinates for X . To equip X with a C∗ action, begin with an action on TC3

having CY weights

~w := (w1, w2, w3) with w1 + w2 + w3 = 0.
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w

1

2w

3

Figure 2.1. The toric diagram ΓX . The labelling of the weights coincides
with the counterclockwise orientation of the coordinates. The orientations of
the edges show that disk invariants are computed with D+ on the 1st and 3rd
coordinates and D− on the 2nd.

This action descends to the quotient and the corresponding weights on the coordinates of

the coarse space are g1w1, g2w2, g3w3. One checks that S1 ⊂ C∗ fixes each Li.

Pulling the torus action back to the moduli space of stable bordered maps, the S1 fixed

loci consist of maps f : Σ→ X such that

• Σ is a compact curve attached to some number of disks at possibly twisted nodes,

• f contracts the compact curve to the origin,

• f maps a disk onto the ith axis with local expression z → zd (d is the winding number)

and with boundary mapping to

Li ∩ {xj = 0|j 6= i} ∼= S1.

Such a fixed locus can be encoded with the datum of:

• The genus of the contracted curve,

• Winding profiles: Three vectors of positive integers, ~di = (di1, ..., d
i
li
) i = 1, 2, 3, corre-

sponding to li disks mapping to Li with windings determined by dij, and
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• Twisting profiles: Three vectors of elements of G, ~ki = (ki1, ..., k
i
li
) i = 1, 2, 3, corre-

sponding to the twisting of the nodes attaching the corresponding disk to the contracted

curve.

In order to more easily track such a locus, set ~µ = (µ1, µ2, µ3) where

(2–5) µi =
{

(di1, k
i
1), ..., (dili , k

i
li
)
}
.

Remark 2.6. µi can naturally be identified with a conjugacy classes in the wreath

product G o Sd with d =
∑

j d
i
j (cf. [44]).

We denote such a fixed locus by F (g, ~µ). F (g, ~µ) can be identified with a product of

a zero dimensional stack and Mg,−~k (BG) := Mg,n (BG) ∩ ev∗(−~k) where n = l1 + l2 + l3

and ev∗(−~k) is shorthand for pulling back all of the −kij-twisted points via the appropriate

evaluation maps. The zero-dimensional stack encodes automorphisms of the fixed loci which

will be accounted for in Section 2.2.2

The next lemma gives a condition on each disk which is necessary for the above locus to

be nonempty (cf. [6], section 2.2.2).

Lemma 2.7. Suppose h : (Dr, S
1) → (X ,Li) is a C∗ fixed winding d map, twisted by

k = (k1, ..., kl) ∈ G. Then

−d
gi

+
∑
j

kjα
i
j

nj
∈ Z.

Proof. Doubling the map h, we get a degree d map ĥ : P1
r,r → [O(−1) ⊕ O(−1)/G]

which is twisted by k at 0 and −k at∞. The target is a rank 2 bundle N1⊕N2 over [P1/G].

24



Consider the bundle ĥ∗N1 on P1
r,r. Define

ri := r
∑
j

kjα
i
j

nj

Then the generator of the isotropy on P1
r,r at 0 acts on the fiber of the pullback by ri+1

r
and

the generator of the isotropy at ∞ acts by −ri−ri+1

r
. Furthermore, the degree of ĥ∗N1 is −d

gi
.

Since the isotropy at 0 contributes a fractional part of 〈 ri+1

r
〉 to the degree and the isotropy

at ∞ contributes a fractional part of 〈−ri−ri+1

r
〉 to the degree, we see that

(2–6)
−d
gi
−
〈ri+1

r

〉
−
〈
−ri − ri+1

r

〉
∈ Z.

The result follows from (2–6). �

2.2.2. The Obstruction Theory. In this section, we give a precise formula for the

restriction of the obstruction theory to a fixed locus in terms of the combinatorial data of

that locus. We parse the contributions into three components.

• Compact Curve: A contracting compact curve contributes a Hodge part:

Λ~α1

(w1)Λ~α2

(w2)Λ~α3

(w3) := eeq (E∨~α1(w1)⊕ E∨~α2(w2)⊕ E∨~α3(w3))

where E∨~αi(wi) denotes the dual of the αi-character sub-bundle twisted by the torus

weight wi. The contracting curve also contributes a factor of wi for each direction in

which the curve can be perturbed, ie. if the contraction to BG factors through BGi

where Gi is the isotropy along the ith axis. We denote this contribution by δ.

• Nodes: Each node contributes a gluing factor of |G| explained in Section 2.1 of [13].

There is a contribution of wi for each direction which the node can be perturbed. There
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appears a node smoothing contribution of

(
giwi
dij
− ψij

)−1

.

There is a term (
wigi
dij

)−δ
0,ki

j

to cancel the infinitesimal automorphism at the origin of the disk. There is also a con-

tribution of wl for each direction which the node can be perturbed. This contributions

is

δ(kij) :=
∏
{wl : kij ∈ Gl}.

• Disks: A disk mapping to the ith leg with winding d and twisting k ∈ G contributes a

combinatorial factor of Dσi
k (d; ~w) which is described in the next section.

Remark 2.8. We have abused notation at this point. Having previously defined the wi

to be numbers we are now treating them as equivariant cohomology classes. We have done

this to ease notation and one can simply interpret the wi in this context as wit where t is

the generator of H∗S1({pt}).

2.2.3. The Disk Function. Suppose h : (Dr, S
1)→ (X ,Li) is a k = (k1, ..., kl) twisted,

winding d map from an orbidisk. As in Lemma (2.3), define integers

ri := r
∑
j

kjα
i
j

nj
for i = 1, 2, 3.

Then the generator of the isotropy of Dr acts on the fiber of the pullback of the three normal

directions to the origin in X as ri
r

.
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The disk has d · |G|
gi

global automorphisms and an infinitesimal automorphism factor wigi
d

.

We define

Dσi
k (d; ~w) :=

(giwi
d

)δ0,k gi
d|G|

eeq
(
H1N

(
ri+1, ri,

d
gi

))σi
eeq
(
H0L

(
rd
gi

))
where

σi :=


+ if the ith leg is oriented outward,

− if the ith leg is oriented inward.

Remark 2.9. As a notational convenience, we define r4 := r1 and r5 := r2 to reflect the

cyclic labeling of the coordinates.

Remark 2.10. We can define N
(
ri+1, ri,

d
gi

)
(ie. it satisfies the hypothesis of Example

2.1.5.2) due to Lemma 2.7.

Making the identifications of Example 2.1.5.1, we see that

eeq
(
H0L

(
rd

gi

))
=

⌊
d
gi

⌋
−1∏

j=0

(
wi −

giwi
d

(〈
d

gi

〉
+ j

))

=

⌊
d
gi

⌋∏
j=1

giwi
d
j

=
(giwi

d

)⌊ d
gi

⌋ ⌊
d

gi

⌋
!

where we have left out the weight 0 contribution from h∗( ∂
∂zi

) as usual (cf. section 27.4

of [33]). Choosing the ‘positive’ orientation of sections discussed in Example 2.1.5.2, we
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compute

eeq
(
H1N

(
ri+1, ri,

d

gi

))+

=

d
gi

+〈 ri+1
r 〉+〈

ri+2
r 〉−1∏

j=1

(
wi+1 +

giwi
d

(
j −

〈ri+1

r

〉))

=
(giwi

d

) d
gi

+〈 ri+1
r 〉+〈

ri+2
r 〉−1 Γ

(
dwi+1

giwi
+
〈 ri+2

r

〉
+ d

gi

)
Γ
(
dwi+1

giwi
−
〈 ri+1

r

〉
+ 1
) .

One can check (using w1 +w2 +w3 = 0) that the ‘negative’ orientation of the sections merely

introduces a factor of

(−1)
d
gi

+〈 ri+1
r 〉+〈

ri+2
r 〉−1

.

Putting this all together, we compute

D+
k (d; ~w) =

(giwi
d

)age(k)+δ0,k−1 gi

d|G|
⌊
d
gi

⌋
!

Γ
(
dwi+1

giwi
+
〈 ri+2

r

〉
+ d

gi

)
Γ
(
dwi+1

giwi
−
〈 ri+1

r

〉
+ 1
) .

Remark 2.11. This generalizes the disk function defined in Section 2.2.3 of [6].

2.2.4. The Orbifold Vertex. We now put together the contributions coming from

the compact curve, the nodes, and the disks. We assign formal variables to track the discrete

invariants. We let λ track the Euler characteristic 2g − 2 + n. For ~µ as in (2–5), define the

formal variables

p~µ := p1
µ1 · p2

µ2 · p3
µ3

with formal multiplication given by

(
p1
µ1 · p2

µ2 · p3
µ2

)
·
(
p1
ν1 · p2

ν2 · p3
ν2

)
:=
(
p1
µ1∪ν1 · p2

µ2∪ν2 · p3
µ2∪ν3

)
.
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Definition 2.12. Define

VX ,g,~µ(~w) :=

∏(
|G|δ(kij)D

σi
kij

(dij; ~w)
)

δ · |Aut(~µ)|

∫
M

g,−~k(BG)

Λ~α1
(w1)Λ~α2

(w2)Λ~α3
(w3)∏(giwi

dij
− ψij

)
where

D+
k (d; ~w) =

(giwi
d

)age(k)−1 gi

d|G|
⌊
d
gi

⌋
!

Γ
(
dwi+1

giwi
+
〈 ri+2

r

〉
+ d

gi

)
Γ
(
dwi+1

giwi
−
〈 ri+1

r

〉
+ 1
)

and

D−k (d; ~w) = (−1)
d
gi

+〈 ri+1
r 〉+〈

ri+2
r 〉−1

D+
k (d; ~w).

We define the connected open GW potential of X by

VX (λ,p; ~w) :=
∑
g,~µ

VX ,g,~µ(~w)λ2g−2+np~µ.

We define the disconnected open GW potential of X by

V •X (λ,p; ~w) := exp (VX (λ,p; ~w)) .

Finally, we define the oriented GW orbifold topological vertex V •X ,~µ(λ; ~w) to be the coefficient

of p~µ in V •X (λ,p; ~w).

Remark 2.13. If the moduli space in the above definition does not exist, we set the

contribution equal to zero except in two exceptional cases where we make the following

conventions for the unstable integrals. We set

∫
M0,1(BG)∩ev∗(0)

1

a− ψ
:=

a

|G|
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and ∫
M0,2(BG)∩ev∗i (ki)

1

(a1 − ψ1)(a2 − ψ2)
:=


1

|G|(a1+a2)
if k1 = −k2 ∈ G

0 else.

2.3. Gluing Algorithm

In this section, we describe an algorithm for gluing open amplitudes. We prove that the

GW orbifold vertex and the gluing algorithm determine the GW invariants of any toric CY

orbifold of dimension 3.

2.3.1. The Geometric Setup. Let Y be a toric Calabi-Yau orbifold of dimension 3

and ΓY the corresponding toric diagram with a chosen orientation as in Definition 2.1. Let

V := {vi} be the set of vertices in Γ and let Gi be the isotropy group at the corresponding

point yi ∈ Y . We set Ec := {eij} to be the compact edges in ΓY directed from vi to vj. Let

Cij denote the corresponding line connecting yi to yj. If e ∈ Ec, let Ce be the corresponding

curve in Y , let De ∈ H2(Y ,Q) be the dual of [Ce] ∈ H2(Y ,Q) under the natural pairing,

and let Ge be the isotropy over Ce. Define Ne,r (Ne,l) to be the orbifold line bundle on Ce

corresponding to the toric divisor to the right (left) of e.

Choose a Calabi-Yau C∗ action on Y . Let Yi be a neighborhood of yi so that Yi ∼= [C3/Gi].

Let (xi1, x
i
2, x

i
3) be the coarse coordinates at Yi so that the cyclic ordering of the coordinates

coincides with the orientation of ΓY at yi. These coordinates inherit an orientation and

a C∗ action from Y , we label the weights of the action ~w(i) := (wi1, w
i
2, w

i
3). We define

Lagrangians in Yi as in Section 2.2. This gives us everything we need to compute amplitudes

as in Definition 2.12.

2.3.2. Edge Assignments. We now define the edge assignments which are permitted

by the geometry of the orbifold at each torus invariant line.
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Definition 2.14. We say that the triple (d, k, k′) ∈ N × Gi × Gi′ is admissible with

respect to eii′ if the map

f : P1
r,s → Cii′

given by z → zd and twisted by k at yi and k′ at yi′ exists. In this case, define

n(e, d, k, k′) := Int(f ∗Ne,r) + 1

(cf. Definition 2.2).

Remark 2.15. Lemma 2.3 gives a characterization of admissible triples.

Definition 2.16. An edge assignment for ΓY is a finite set of admissible triples for each

e ∈ Ec.

Let AY be the set of edge assignments. For Λ ∈ AY , e ∈ Ec, define Λe to be the set of

admissible triples over e. Define

n(Λe) :=
∑
Λe

n(e, d, k, k′).

Define ρkd(Λe) to be the number of times the triple (d, k, k′) appears in Λe. Also define

d(Λe) :=
∑
Λe

d.

Finally, define Λi to be the induced triple of twisting/winding profiles at yi.

2.3.3. Gluing Algorithm. We are now ready to state the main algorithm for gluing

the orbifold vertex.
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Theorem 2.17. The Gromov-Witten potential of Y is

GW •(Y) :=
∑

Λ∈AY

∏
vi∈V

V •Yi,Λi(λ; ~w(i))
∏
e∈Ec

∏
d,k

(d|Ge|)ρ
d
k(Λe) ρdk(Λe)!(−1)n(Λe)Qd(Λe)

e

where Qe are formal variables tracking the degree and we impose Qe = Q′e if [Ce] = [C ′e] ∈

H2(Y).

Remark 2.18. It is a consequence of the theorem that GW •(Y) is independent of the

choices of orientation and torus action.

Remark 2.19. The obvious extension of this algorithm can be used to define/compute

the open GW potential of Y with inner and/or outer branes. These potentials will depend

on the choices of orientation and torus action.

2.3.4. Proof of Gluing Formula. By localization arguments, it need only be checked

that disk contributions glue to multiple cover contributions on a given edge. Using the no-

tation of Section 2.1.3, a given edge is isomorphic to P(Li,ni)
r,s with isotropy group G0 at 0

and G∞ at ∞. To prove the gluing formula, we compute the contribution to the poten-

tial from a representable C∗ fixed map from a football f : F → P(Li,ni)
r,s ⊂ Y twisted by

~k0 = (d, (k0
1, ..., k

0
l )) ∈ G0 at 0 and ~k∞ = (d, (k∞1 , ..., k

∞
l )) ∈ G∞ at ∞. We show that this

contribution decomposes as the corresponding disk contributions along with the prescribed

gluing factor.

Since Y is a toric Calabi-Yau 3-fold, the normal bundle splits (cf. Section 2.1.3) as

NP(Li,ni)
r,s /Y = Nl ⊕Nr

= O(a, b, c;m1, ...,ml)⊕O(−a− 1,−b− 1,−c;−m1, ...,−ml).
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The total space of the normal bundle inherits an orientation and a Calabi-Yau C∗ action

from Y . We label the oriented weights of this action (on C3) by w1, w2, w3 at 0 and

w′1 :=
−rw1

s
,

w′2 := w3 − rw1

(
−a− 1

r
+
−b− 1

s
− c−

∑
mi

(
ai
rni

+
bi
sni

+
ci
ni

))
,

and

w′3 := w2 − rw1

(
a

r
+
b

s
+ c+

∑
mi

(
ai
rni

+
bi
sni

+
ci
ni

))
at ∞. Near P(Li,ni)

r,s ⊂ Y , ΓY can be decorated as in Figure 2.2 to account for the orientation

and the C∗ action.

w

w

w
w'

w'

w'

1

2

3

1

2

3

Figure 2.2. The neighborhood of P(Li,ni)
r,s ⊂ Y

Using the usual obstruction theory for local invariants and the virtual localization for-

mula, the contribution of the map f is

(2–7)
w1w

′
1

τfτ ′fd
3n

eeq (−R•π∗f ∗Nl) · eeq (−R•π∗f ∗Nr)

eeq
(
R0π∗f ∗TP(Li,ni)

r,s

)
where n =

∑
ni and as before τf and τ ′f cancel the infinitesimal automorphism if 0 and/or

∞ is either marked or a node.
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Remark 2.20. In the computations that follow, we make the following index and product

convention for decreasing indices: Suppose m < n, set

{Ai}mi=n = {Am+1, Am+2, ..., An−1},

ie. we forget the first and last terms if the index decreases. Similarly, we set

m∏
i=n

Ai = (Am+1 · Am+2 · ... · An−1)−1 .

2.3.4.1. Numerator of (2–7). We begin by computing eeq (R•π∗f
∗Nl). Suppose s0 is a

minimally vanishing section of f ∗N1 on the complement of∞ and s∞ is a minimally vanishing

section on the complement of 0. If z is a local coordinate of F at 0, then s∞ = s0z
M where

M := Int(f ∗Nl) = deg(f ∗Nl)− ord0(s0)− ord∞(s∞).

Therefore the vector space H∗(F , f ∗Nl) is generated by {s0z
p}Mp=0 with equivariant weights

{
W1(p) :=

(
w2 −

rw1

d
(ord0(s0) + p)

)}M
p=0

.

Similarly, if we let t0 and t∞ be minimally vanishing sections of f ∗Nr, then t∞ = t0z
M where

N := Int(f ∗Nr) = deg(f ∗Nr)− ord0(t0)− ord∞(t∞).

Therefore the vector space H∗(F , f ∗Nr) is generated by {t0zq}Nq=0 with equivariant weights

{
W2(q) :=

(
w3 −

rw1

d
(ord0(t0) + q)

)}N
q=0

.
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Multiplying the classes, we get

eeq
(
R•π∗f

∗NP(Li,ni)
r,s /Y

)
=

M∏
p=0

W1(p)
N∏
q=0

W2(q).

Define positive integers

r̂ :=
d

r
+ ord0(s0) + ord0(t0)

and

ŝ :=
d

s
+ ord∞(s∞) + ord∞(t∞).

Using the Calabi-Yau condition on the weights, ie. w1 + w2 + w3 = 0, one easily computes:

(2–8) −W2(−p− r̂) = W1(p).

Therefore we can write

(2–9) eeq
(
R•π∗f

∗NP(Li,ni)
r,s /Y

)
= (−1)N+1

∏
W1(p)

where the product is indexed by

0 −→M and − r̂ −N −→ −r̂.

Recalling the index convention of Remark 2.20 and using the fact that M + N + r̂ + ŝ = 0

(this depends on the CY condition), we see that many of the terms in (2–9) cancel and the

remaining terms are indexed by

0 −→ −r̂ and M + ŝ −→M.
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Making the appropriate cancellations and inverting, we compute

eeq
(
−R•π∗f ∗NP(Li,ni)

r,s /Y

)
= (−1)N+1

−1∏
p=−r̂+1

W1(p)
M+ŝ−1∏
p=M+1

W1(p)

= (−1)N+1

r̂−1∏
p=1

W1(−p)
ŝ−1∏
p=1

W1(p+M)

Using the definition of W1, we conclude that the numerator of (2–7) is

eeq
(
−R•π∗f ∗NP(Li,ni)

r,s /Y

)
= (−1)N+1

(rw1

d

)r̂−1 Γ
(
dw2

rw1
+ ord0(t0) + d

r

)
Γ
(
dw2

rw1
− ord0(s0) + 1

)
·
(
sw′1
d

)ŝ−1 Γ
(
dw′3
sw′1

+ ord∞(t∞) + d
s

)
Γ
(
dw′3
sw′1
− ord∞(s∞) + 1

) .(2–10)

2.3.4.2. Denominator of (2–7). Lastly, we must compute eeq
(
R0π∗f

∗TP(Li,ni)
r,s

)
. Because

TP(Li,ni)
r,s

= O(1, 1, 0; 0, ..., 0), we have f ∗TP(Li,ni)
r,s

= O(d, d, 0). If v0 is a minimally vanishing

section at 0, then H0(F , f ∗TP(Li,ni)
r,s

) is generated by

{
v0z

j ∂

∂z

}b d
r
c+b d

s
c

j=0

where z has weight − rw1

d
, v0 has weight − rw1

d

〈
d
r

〉
and TP(Li,ni)

r,s
is linearized with w1, w

′
1.

Therefore the denominator of (2–7) is

eeq
(
R0π∗f

∗TP(Li,ni)
r,s

)
=

b d
r
c−1∏
j=0

b d
s
c∏

j=b d
r
c+1

(
w1 −

rw1

d

(〈
d

r

〉
+ j

))

=
(rw1

d

)b d
r
c
⌊
d

r

⌋
! ·
(
sw′1
d

)b d
s
c ⌊
d

s

⌋
!.(2–11)
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Computing (2–7) with equations (2–10) and (2–11) shows that the edge contribution

from f towards the closed GW invariants is equal to

dn(−1)N+1D+
~k0

(d; ~w)D−~k∞(d; ~w′).

This concludes the proof. �

2.4. Insertions

In the original formulation of the topological vertex ([3]), insertions of cohomology classes

were disregarded. Indeed, for smooth toric CY 3-folds the moduli spaces of stable maps have

virtual dimension 0. Due to the fundamental class axiom, only finitely many invariants with

fundamental class insertions are nonzero. By dimensional reasons, the rest of the invariants

have only divisor insertions, which are easily handled by the divisor equation. In the orbifold

case, however, the divisor equation does not hold for the twisted classes in degree 2 and

insertions of these classes tend to give interesting invariants. Consequently, we develop our

formalism to include insertions.

Throughout this section, we restrict to the case where Y is an effective orbifold (ie. the

isotropy of the generic point is trivial). By the Gorenstein condition, this implies that the

nontrivial isotropy is supported in codimension 2. One could presumably carry out the

computations for non-effective orbifolds, however we do not pursue that here.

2.4.1. Orbifold Comology of Y. To compute the primary insertion invariants, we

must first understand the Chen-Ruan orbifold cohomology of Y . Since we have restricted

to the effective case, the only class in degree 0 is the untwisted fundamental class. As in

the smooth case, if we disregard the finitely many nonzero invariants with fundamental class
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insertions, then by dimensional reasons the rest of the insertions must be in H2
CR(Y). One

computes that H2
CR(Y) is generated by the following classes.

• Divisor classes De in the untwisted sector.

• Twisted line classes ce,h := (Ce, h) ⊂ IY with h ∈ Ge.

• Twisted point classes vi,h := (yi, h) ⊂ IY where Yi can be identified with [C3/Gi], the

fixed point set of h ∈ Gi is {yi}, and h acts on C3 with weights e2πirj with
∑
rj = 1.

Assign formal variables te, ce,h, vi,h corresponding to insertions of these cohomology classes.

2.4.2. Orbifold Vertex with Insertions. Suppose X is as in section 2.2 such that

the action of G is effective. Let e1, e2, e3 be the edges and let v be the vertex in ΓX . As

before, H2
CR(X ) is generated by classes cej ,h and vh with corresponding formal variables cej ,h

and vh. We modify Definition 2.12 to include insertions as follows.

• We denote the invariant with mj,h insertions of the class cej ,h and nh insertions of the

class vh by VX ,g,~µ
(
(cej ,h)

mj,h · (vh)nh ; ~w
)
. The effect of adding these twisted insertions

on the localized contribution is simply to prescribe the twisting at the marked points.

Therefore, the corresponding vertex is defined by replacing the moduli space in Defini-

tion 2.12 with

Mg,n+
∑
h(nh+

∑
j mj,h) (BG) ∩ ev∗

(
~k
)
∩
∏
h∈G

ev∗(1Ih)
nh+

∑
j mj,h

• VX (λ,p, c,v; ~w) is defined by taking the sum in (2.12) over all g, ~µ as well as all possible

insertions of cej ,h and vh and including the formal variables

(cej ,h)
mj,h(vh)

nh

mj,h!nh!
.
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• The oriented GW orbifold vertex with insertions V •X ,~µ(λ, c,v; ~w) is defined to be the

coefficient of p~µ in

V •X (λ,p, c,v; ~w) := exp (VX (λ,p, c,v; ~w)) .

2.4.3. Gluing with Insertions. In order to obtain the full open/closed GW potential

of Y (sans fundamental class insertions), we modify the gluing algorithm of Theorem 2.17

as follows.

• At each vertex vi, we compute V •Yi,Λi(λ, c(i),v(i); ~w(i)).

• We replace Qe with exp(te)Qe to account for the divisor equation imposing the relation

te = te′ if De = De′ ∈ H2(Y).

2.5. Connection with Earlier Work

In the smooth case, we recover the computations of [22] which can then be related to

the topological vertex of [3] and the generating functions P~µ of [52]. We summarize these

correspondences in this section.

Assume that G is trivial so that X = C3. Orient ΓX with all three edges directed outward.

~µ is simply a triple of partitions (µ1, µ2, µ3) where µi = (di1, ..., d
i
li
) determines the winding

profile along the ith Lagrangian. From Definition 2.12, we compute

Vg,~µ(~w) =

∏
i,j w1w2w3D

+(dij; ~w)

|Aut(~µ)|

∫
Mg,l(~µ)

3∏
i=1

Λ(wi)w
l(~µ)−1
i

w1w2w3

∏
i,j

(
wi
dij
− ψij

)
where

D+(dij; ~w) =
1

wid!

Γ
(
dwi+1

wi
+ d
)

Γ
(
dwi+1

wi
+ 1
) .
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Simplifying, we get

Vg,~µ(~w) =
1

|Aut(~µ)|

 3∏
i=1

li∏
j=1

∏dij−1

k=1 (dijwi+1 + kwi)

(dij − 1)!w
dij−1

i

∫
Mg,l(~µ)

3∏
i=1

Λ(wi)w
l(~µ)−1
i∏li

j=1(wi(wi − dijψij))
.

This computation was made in Appendix A of [22]. The results of [41] and [47] together

imply that

(2–12) (−
√
−1)l(~µ)V •~µ (λ; ~w) = C

(
w2
w1
,
w3
w2
,
w1
w3

)

µ1,µ2,µ3 (q)

where the right side is the framed topological vertex defined in [3] via large N duality where

q = e
√
−1λ.

2.5.1. Connection with 3d Partitions. In the rest of this section, we extract from

the literature the explicit connection between (2–12) and the generating functions of 3d

partitions defined in [52].

There are two natural bases for the center of the group ring of Sd, related by the character

table. Equation (2–12) is written in terms of the partition basis. The authors of [3] suggest

that it is more natural at times to view the vertex in the representation basis. Also in [3],

a particular formula is derived for relating different framings of the vertex. Applying this

change of basis and framing dependency formula to equation (2–12), we compute that the

topological vertex at the canonical framing in the representation basis is given by

(2–13) C~ν(q) =
(
e
√
−1λ
)−1

2

(∑3
i=1 κ(νi)

wi+1
wi

) ∑
|µi|=|νi|

(−
√
−1)l(~µ)V •~µ (λ; ~w)

3∏
i=1

χνi(µ
i).

where κ(ν) = 2
∑

(i,j)∈ν(j − i), χν is the character of S|ν| indexed by ν, and q = e
√
−1λ (cf.

Proposition 6.6 of [41]).
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In [52], generating functions P~ν(q) were defined by enumerating 3d partitions with pre-

scribed asymptotics. They proved the following identity relating their generating functions

to the topological vertex in the representation basis at canonical framing.

(2–14)
P~ν(q)

M(q)
= q−

1
2
||~νt||2C~ν(1/q)

where M(q) =
∏

k≥1(1 − qk)−k is the classical MacMahon function and ||~ν||2 :=
∑

(νji )
2.

Putting together equations (2–13) and (2–14), we get the identity

(2–15)
P~ν(q)

M(q)
=
(
e
√
−1λ
) 1

2

(∑3
i=1 κ(νi)

wi+1
wi
−||(νi)t||2

) ∑
|µi|=|νi|

(
√
−1)l(~µ)V •~µ (λ; ~w)

3∏
i=1

χνi(µ
i).

Remark 2.21. Our formalism for the orbifold vertex generalizes V •~µ (λ; ~w) whereas the

orbifold vertex formalism of Bryan, Cadman, and Young generalizes P~ν(q)
M(q)

. A relation between

the two (the GW/DT correspondence for toric CY orbifolds) should generalize equation (2–

15). In Chapter 5, we state and prove such a correspondence for the first class of nontrivial

orbifold targets.
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CHAPTER 3

The Open Crepant Resolution Conjecture

In this chapter we make explicit, for a specific geometry, our approach of reducing

Gromov-Witten correspondences for toric Calabi-Yau 3-folds to local statements at each

torus fixed point, utilizing the orbifold vertex formalism of the previous chapter. Our inves-

tigation here centers around Ruan’s crepant resolution conjecture.

3.0.2. Statement of Results. We give a complete description of our local-to-global

approach to the CRC for the geometries in Figure 3.1 at particular framing. The global

quotient X = [OP1(−1)⊕OP1(−1)/Z2] is a Hard Lefschetz orbifold having Y = KP1×P1 as its

crepant resolution. X can be covered by two copies of [C3/Z2], whose resolutions cover Y .

(a) KP1 ⊕OP1 (b) KP1×P1

(c) [C3/Z2] (d) [(OP1(−1)⊕OP1(−1))/Z2]

Figure 3.1. BZ2 gerbes are denoted in bold and orientations for open invari-
ants have been chosen using the conventions of Chapter 2.

In particular, the main results of this chapter are as follows.
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Theorem (Theorem 3.10). We make and verify a Crepant Resolution Statement for the

open invariants of [C3/Z2] and KP1 ⊕OP1.

This is the first occurence of a crepant resolution statement for open invariants. We

compute the genus 0 open potential for [C3/Z2] (Proposition 3.9) using the methods of

Chapter 2. In order to evaluate invariants for more than one boundary component we

generalize Theorem 1 of [16] to the case of two-part hyperelliptic Hodge integrals with an

arbitrary number of descendant insertions (Theorem 3.5). The open potential for KP1 ⊕

OP1 is computed (Proposition 3.3) using the techniques of [37]. Some interesting classical

combinatorics is required to package the potential in a manageable form.

Theorem (Theorem 3.12). We verify the Ruan-Bryan-Graber CRC for X and Y .

We prove Theorem 3.12 by showing that our open CRC is compatible with the gluing

algorithm of Theorem 2.17. Thus, we have gathered some positive evidence that the CRC,

in the toric case, may be addressed locally.

3.0.3. Outline of the Proofs. Sections 3.1 and 3.2 are the computational meat of

the paper in which we compute all relevant open invariants. In Section 3.3 we show that the

open invariants satisfy the open crepant resolution conjecture by a direct comparison. We

show in section 3.4 that the closed CRC for [(OP1(−1)⊕OP1(−1))/Z2] can be deduced from

the open CRC.

3.1. Open Gromov-Witten Invariants of KP1 ⊕OP1

In this section we compute the open GW invariants of KP1 ⊕ OP1 . We equip the space

with a particular C∗ action with (Calabi-Yau) weights on the tangent bundle depicted in

Figure 3.2.
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1

1

-2

0

1
-1

Figure 3.2. The web diagram for KP1 ⊕OP1 , and the specialized toric weights.

The C∗ fixed maps are quite easy to understand:

• The source curve consists of a genus 0 (possibly nodal) closed curve along with attached

disks.

• The non-contracted irreducible components of the closed curve must be multiple covers

of the torus invariant P1.

• The disks must map to the fixed fibers of the trivial bundle with prescribed windings

at the Lagrangians.

Analyzing the obstruction theory via the normalization sequence of the source curve, one

sees that the 0 weight at the bottom vertex limits the possible contributing maps in the

following ways:

• Maps with positive dimensional components contracting to the bottom vertex do not

contribute.

• Maps with nodes mapping to the bottom vertex contribute only if the node connects a

d-fold cover of the invariant P1 to a disk with winding d.

Fixed loci FΓ are indexed by localization graphs as in Figure 3.3.
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Figure 3.3. The open localization graphs have bi-colored vertices to keep
track of which vertex components contract to, and decorated arrows to repre-
sent disks mapping with given winding.

The combinatorial data is given by three multi-indices:

• k1, ..., kl the degrees of the multiple covers of the invariant P1 which do not attach to a

disk at the bottom vertex.

• d1, ..., dm the winding profile of the disks with origin mapping to the top vertex.

• dm+1, ..., dn the winding profile of the disks with origin mapping to the bottom vertex

or equivalently if n > 1 these are the degrees of the multiple covers of the invariant P1

which do attach to a disk at the bottom vertex.

• If n = 1, we have the possibility of maps from a single disk mapping the origin to the

bottom vertex, we label the locus of such maps Γ′.

With the given multi-indices, the fixed locus FΓ is isomorphic to a finite quotient of

M0,n+l where we interpret M0,1 and M0,2 as points. Define the contribution from a fixed

locus Γ to be

(3–1) OGW (Γ) :=

∫
FΓ

i∗[M]vir

e(Nvir)
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where i∗[M]vir is the restriction of the virtual fundamental class (proposed in [37]) to the

fixed locus and Nvir denotes the virtual normal bundle of FΓ in the moduli space of stable

maps.

In order to package the invariants in the Gromov-Witten potential, we assign the following

formal variables:

• q tracks the degree of the map on the base P1

• y(t)
i tracks the number of disks with winding i at the top vertex

• y(b)
i tracks the number of disks with winding i at the bottom vertex

• x tracks insertions of the nontrivial cohomology class (conveniently this class is a divi-

sor).

The open potential is computed by adding the contributions of all fixed loci:

OGWKP1⊕OP1 (x, q, y
(t)
i , y

(b)
i ) =

∑
Γ′

OGW (Γ′)y
(b)
d

+
∑
Γ6=Γ′

OGW (Γ)(qex)k+dm+1+...+dny
(t)
d1
· ... · y(t)

dm
y

(b)
dm+1
· ... · y(b)

dn
(3–2)

In (3–2), Γ′ denotes graphs consisting of a single white vertex and arrow labelled with

winding d.

For non-degenerate graphs Γ 6= Γ′, we denote by OGW (Γ) the contribution to the po-

tential from the fixed locus indexed by Γ, including invariants with any number of divisor

insertions. Following the obstruction theory for open invariants proposed in [37], OGW (Γ)

are computed using the following ingredients: the euler class of the push-pull of the tangent

bundle, the euler class of the normal bundle of FΓ in the moduli space of stable maps, and
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all relevant automorphisms of the map:

(3–3)
1

|glob. aut.|

∫
FΓ

e(−R•π∗f ∗TKP1⊕OP1 ) · (inf. aut.)

(smoothing of nodes)

For the computational convenience, we organize the computation on each locus Γ into

three parts:

• Closed Curve: This consists of a closed curve contracting to the upper vertex as well as

multiple covers of the torus fixed P1. We choose not to include the d-covers of the fixed

line which are attached to a disk mapping with winding d to the bottom vertex. The

contracted component contributes (−2t3)−1 from the push-pull of the tangent bundle

and each k-cover contributes

(3–4)
−t
k2

eH1(O(−2k))

eH0(O)eH0(O(2k))
=

(−1)k

tk2

(
2k − 1

k

)
.

Here we have included both the global automorphism of the k : 1 cover and the infini-

tesimal automorphism at the point ramified over the bottom vertex.

• Disks: A disk can either be mapped to the top or the bottom vertex. Following Katz

and Liu [37], the contribution of a disk mapping to the top vertex with winding d is

given by

(3–5)
1

d

eH1(N(d))

eH0(L(2d))
=

(−1)d+1

td

(
2d− 1

d

)

where L(2d) and N(d) are defined in Examples 3.4.3. and 3.4.4 of [37]. We have

divided the contributions in a way that the contribution of a disk mapping to the

bottom vertex also includes the contribution of the multiple cover attaching it to the
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contracted component. The reason for this is that the combined contribution becomes

1

d2

eH1(O(−2d))

eH0(O)eH0(O(2d))

eH1(N(d))

eH0(L(2d))

eH0(N/X)
t
d
− t

d

=
1

d2

(−1)d+1

t2

(
2d− 1

d

)
1

t

−0t3

t
d
− t

d

=
(−1)d+1

td

(
2d− 1

d

)
(3–6)

which is the same as the contribution of the disk at the top vertex.

Remark 3.1. In order to interpret the expression −0
1−1

in the above equations, first recall

that it arises as s1s2s3
s1+s2

where the si sum to 0 by definition. As s3 → 0, the quotient

tends to −s1s2.

• Nodes: Since we have already accounted for the nodes at the bottom vertex (those

attaching winding d disks to d : 1 covers), this piece only contains the contribution from

nodes at the top vertex. For each such node connecting either a disk of winding d or a

curve of degree d to the contracted component we get a contribution of −2t3 from the

push-pull of the tangent sheaf and a contribution of 1
( t
d
−ψi)

from node smoothing.

Putting the pieces together:

OGW (Γ) =
1

|Aut(Γ)|

l∏
i=1

(−1)ki

tk2
i

(
2ki − 1

ki

) n∏
i=1

(−1)di+1

tdi

(
2di − 1

di

)

· (−2t3)l+n−1

∫
M0,n+l

1∏
( t
ki
− ψi)

∏
( t
di
− ψi+l)

.(3–7)

where Aut(Γ) is the product of the automorphisms of the ordered tuples (k1, ..., kl), (d1, ..., dm),

and (dm+1, ..., dn).
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Applying the string equation to the integral and simplifying, (3–7) becomes

OGW (Γ) =

(3–8)
−2l+n−1

|Aut(Γ)|

[
l∏

i=1

(−1)ki+1

ki

(
2ki − 1

ki

)][ n∏
i=1

(−1)di
(

2di − 1

di

)]
(d+ k)l+n−3

where d =
∑
di and k =

∑
ki.

Recall now that the contribution of a disk is the same regardless of whether it maps to the

top or bottom Lagrangian. Therefore, if we let Γ(d̄; k̄) denote all Γ 6= Γ′ with winding profile

d̄ = (d1, ..., dn) and fixed k̄ = (k1, ..., kl), we can attach the formal variables to compute the

contribution from Γ:

∑
Γ∈Γ(d̄;k̄)

OGW (Γ) =
−2l+n−1

|Aut(d)|

n∏
i=1

(
y

(t)
di

+ y
(b)
di

(qex)di
) n∏
i=1

(−1)di
(

2di − 1

di

)

· 1

|Aut(k)|

l∏
i=1

(−1)ki+1(qex)ki

ki

(
2ki − 1

ki

)
(d+ k)l+n−3(3–9)

We now want to sum over all k̄ with
∑
ki = k. In order to do this, we first define a

function F (X, Y ) by

F (X, Y ) := exp

(∑
κ≥1

(−1)κ+1

κ

(
2κ− 1

κ

)
XκY

)

=
∑
l,k

∑
k

1

|Aut(k)|

[
l∏

i=1

(−1)ki+1

ki

(
2ki − 1

ki

)]
XkY l(3–10)

where the second sum is over all l-tuples k = (k1, ..., kl) with
∑
ki = k. The sum of

all contributions with fixed winding (d1, ..., dn) and with (k1, ..., kl) satisfying
∑
ki = k is
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obtained by specializing Y = 2(d+k) and multiplying the coefficient of Xk by an appropriate

factor:

∑
|k̄|=k

∑
Γ∈Γ(d̄;k̄)

OGW (Γ) =
−2n−1

|Aut(d̄)|

n∏
i=1

(
y

(t)
di

+ y
(b)
di

(qex)di
) n∏
i=1

(−1)di
(

2di − 1

di

)

·(qex)k(d+ k)n−3[F (X, 2(d+ k))]Xk .(3–11)

To handle (3–11), we find a closed form expression for F . Start with the known generating

function

(3–12)
∑
k≥1

(
2k − 1

k

)
(−1)kXk =

1

2
· 1−

√
1 + 4X√

1 + 4X

If we divide by −X and formally integrate term by term (imposing that the constant term

is 0), we get

(3–13)
∑
k≥1

(−1)k+1

k

(
2k − 1

k

)
Xk = ln

(
1

2
(1 +

√
1 + 4X)

)

Finally, we can write

F = exp

(
Y ln

(
1

2
(1 +

√
1 + 4X)

))

=

[
1

2
(1 +

√
1 + 4X)

]Y
(3–14)

There are a few interesting comments to make at this point:

• Setting G := 1
2
(1 +

√
1 + 4X), we see that G = 1 + X · C(X) where C(X) is the

generating function for the Catalan numbers.

• G satisfies the recursive relation Gn = Gn−1 +XGn−2.
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• It is easy to see that the recursion and the relation between G and the Catalan numbers

are equivalent to the array of coefficients of Gi taking on a slight variation of two classical

combinatorial objects, as illustrated in Figure 3.4. Here “slight variation” is probably

best described by looking at the first few terms in Table 3.1.

G

G

G

1

2

3

..
.

Catalan Triangle

Lucas Triangle

Figure 3.4. The coefficients of Gn as classical combinatorial numbers.

Table 3.1. The first coefficients of the series of Gn.

1 x x2 x3 x4 x5 x6 x7 x8 x9

G 1 1 −1 2 −5 14 −42 132 −429 1430
G2 1 2 −1 2 −5 14 −42 132 −429 1430
G3 1 3 0 1 −3 9 −28 90 −297 1001
G4 1 4 2 0 −1 4 −14 48 −165 572
G5 1 5 5 0 0 1 −5 20 −75 275
G6 1 6 9 2 0 0 −1 6 −27 110
G7 1 7 14 7 0 0 0 1 −7 35
G8 1 8 20 16 2 0 0 0 −1 8
G9 1 9 27 30 9 0 0 0 0 1
G10 1 10 35 50 25 2 0 0 0 0

Using the recursion and induction, one easily proves the following lemma.

Lemma 3.2. If d > 0, the Xk coefficient of G2(d+k) is

(3–15)

(
k + (2d− 1)

2d− 1

)
d+ k

d
.
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The Xk coefficient of G2k is 2.

These are precisely the coefficients we need. Therefore, we conclude:

• From equation (3–11), if (d1, ..., dn) 6= ∅, then

∑
|k̄|=k

∑
Γ∈Γ(d̄;k̄)

OGW (Γ) =
−2n−1

d · |Aut(d)|

n∏
i=1

(
y

(t)
di

+ y
(b)
di

(qex)di
)

·
n∏
i=1

(−1)di
(

2di − 1

di

)∑
k≥0

(d+ k)n−2

(
k + (2d− 1)

2d− 1

)
(qex)k.(3–16)

• Also from equations (3–11), if (d1, ..., dn) = ∅ and (k1, ..., kl) 6= ∅, then

(3–17)
∑
|k̄|=k

∑
Γ∈Γ(∅;k̄)

OGW (Γ) =
−1

k3
(qex)k.

Here we have recovered the Aspinwall-Morrison formula for KP1 ⊕OP1 .

Finally recall that:

• If both d̄ = ∅ and k̄ = ∅, then the locus consists of the degree 0 maps with only divisor

insertions which can be computed via localization to be

(3–18)
−x3

12
.

• The contribution from a locus Γ′ consisting of a single disk mapping to the bottom

vertex with winding d is given by

(3–19)
1

d2
y

(b)
d .
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Adding all contributions we conclude that

OGWKP1⊕OP1 (x, q, y
(t)
i , y

(b)
i ) =

−1

2

x3

3!
+
∑
k≥1

−1

k3
(qex)k +

∑
d≥1

1

d2
y

(b)
d

+
∑

(d1,...,dn)6=∅

[
−2n−1

d · |Aut(d)|

n∏
i=1

(
y

(t)
di

+ y
(b)
di

(qex)di
) n∏
i=1

(−1)di
(

2di − 1

di

)

·
∑
k≥0

(d+ k)n−2

(
k + (2d− 1)

2d− 1

)
(qex)k

]
(3–20)

In a neighborhood of x = −∞ we have:

(3–21)
∑
k≥0

(
k + (2d− 1)

2d− 1

)
(qex)d+k =

(qex)d

(1− qex)2d
.

Using (3–21) we can express (3–20):

(3–22)
∑
k≥0

(d+ k)n−2

(
k + (2d− 1)

2d− 1

)
(qex)k =

1

(qex)d
dn−2

dxn−2

(
(qex)d

(1− qex)2d

)

where differentiation/integration is computed formally termwise. When n ≥ 2, there is no

ambiguity as dn−2

dxn−2 is a derivative. When n = 1, we must practice a little bit of caution as

the integral is only defined up to translation. Notice that

(3–23) lim
x→−∞

∑
k≥0

1

k + d

(
k + (2d− 1)

2d− 1

)
(qex)k+d = 0,

hence by ∫
(qex)d

(1− qex)2d
dx

we denote the antiderivative having limit 0 as x approaches −∞.

We conclude this section by putting the open potential in its simplest form:
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Proposition 3.3. The open Gromov-Witten potential (sans fundamental class inser-

tions) for KP1 ⊕OP1 is

OGWKP1⊕OP1 (x, q, y
(t)
i , y

(b)
i ) =

−1

12
x3 +

∑
k≥1

−1

k3
(qex)k

+
∑
d≥1

[
1

d2
y

(b)
d +

(−1)d+1

d

(
y

(t)
d + y

(b)
d (qex)d

)(2d− 1

d

)

· 1

(qex)d

∫
(qex)d

(1− qex)2d
dx

]

+
∑

d1,...,dn(n≥2)

[
−2n−1

d · |Aut(d)|

[
n∏
i=1

(−1)di
(
y

(t)
di

+ y
(b)
di

(qex)di
)(2di − 1

di

)]

· 1

(qex)d
dn−2

dxn−2

(
(qex)d

(1− qex)2d

)]
.

The first line is the closed contribution, the next two lines are the contribution from

curves with one boundary component, and the final two lines are the contribution from

curves with more than one boundary component.

3.2. Open Orbifold Gromov-Witten Invariants of [C3/Z2]

In this section we compute the open orbifold GW invariants of [C3/Z2] following [6]. We

will need an evaluation of certain hyperelliptic Hodge integrals in order to package the open

invariants.

3.2.1. Hyperelliptic Hodge Integrals. In this section we prove a closed formula

for a generating function which packages the hyperelliptic Hodge integrals of the form

(3–24) L(g, i,m) :=

∫
M0;2g+2,0(BZ2)

λgλg−i(ψ)m
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where m is a multi-index (m1, ...,ml), |m| := m1 + ...+ml = i− 1, and

ψ
m

:= ψm1
1 · ... · ψ

ml
l .

Remark 3.4. Recall that M0;2g+2,0(BZ2) is the moduli space of maps from genus zero

curves into BZ2 with (2g + 2) twisted marked points. Each such map corresponds to a

(possibly nodal) genus g double cover of the source curve ramified over the marked points.

We have two natural forgetful maps:

M0;2g+2,0(BZ2)
F−−−→ Mg

π

y
M0;2g+2

by sending a map to the corresponding double cover of its source curve. The lambda

classes on M0;2g+2,0(BZ2) are defined to be

λi := ci(F
∗E)

where E is the Hodge bundle on Mg. Recall that the psi classes are defined via pull-back

from M0;2g+2.

For a fixed i and m with |m| = i− 1, define the generating function

(3–25) Li,m(x) :=
∑
g

L(g, i,m)
x2g

(2g)!
.

We know from the λgλg−1 computation [5, 12, 26] that

(3–26) L1,∅ = log sec
(x

2

)
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and we also know from [16] that

(3–27) Li,(i−1) =
2i−1

i!
Li1,∅

The following theorem generalizes (3–27).

Theorem 3.5.

(3–28) Li,m =

(
m1 + ...+ml

m1, ...,ml

)
2i−1

i!
Li1,∅.

Remark 3.6. This formula appeared independently in Danny Gillam’s PhD dissertation.

He computationally verified the result for l ≤ 4.

Proof. We use induction on the multi-index m. Given a multi-index m = (m1, ...,mk)

with |m| = j − 1, we know the result is true if either j = 1 or k = 1. Suppose the lemma

holds in the following cases:

(1) j < i and

(2) j = i, k ≤ l.

Under these assumptions, we show (3–28) holds when j = i and k = l + 1.

Notation. Write m = (m1, ...,ml,ml+1) and set m′ = (m1, ...,ml−1,m
′
l) where m′l :=

ml +ml+1. For a subset A ⊆ {1, ..., l+ 1}, we write m(A) for the multi-index which is equal

to m in the entries indexed by numbers in A and equal to 0 in the other entries. Ac denotes

the complement of A. m[k] denotes the multi-index m with the first entry replaced by k.

We prove the recursion by evaluating via localization auxiliary integrals onM0;2g+2,0(P1×

BZ2, 1). This moduli space parametrizes double covers of the source curve with a special
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rational component picked out. By postcomposing the usual evaluation maps with projection

onto the first factor, we have evaluation maps to P1 which we denote by ei. The auxiliary

integrals are:

A1: ∫
λgλg−iψ

m({1}c)
e∗l (0)e∗l+1(0)e∗2g+2(∞)

A2: ∫
λgλg−iψ

m′({1}c)
e∗l (0)e∗l+1(0)e∗2g+2(∞)

Let us breifly explain the notation in the integrals.

(1) In each integrand, we do not include the ψ1 part of the Hodge integral. The ψ1

classes in the result make an appearance through node smoothing. The other ψ classes

correspond to the marked points with the matching index.

(2) We have abused notation in order to make the expression legible. By λg−i we intend

ceq.g−i(R
1π∗f

∗O) where the trivial bundle is linearized with 0 weights: the lambda classes

are how these classes restrict to the fixed loci. By e∗i (0) (resp. e∗i (∞)) we denote

ceq.1 (e∗lO(1)) linearized with weight 1 over 0 and weight 0 over ∞ (resp. 0 over 0 and

−1 over ∞). These classes essentially localize to require the corresponding mark point

to map over 0 (resp. ∞).

(3) The difference in the two auxiliary integrals is that we have “spread” the ψ classes on

the two points fixed over 0 in two different ways.

(4) Both integrals vanish by dimensional reasons. In both integrals the degree of the class

we integrate is m2 + ...+ml+1 + 3 + 2g− i and this is strictly less than 2g+ 2 (because

m1 + ...+ml+1 = i− 1 and m1 > 0).
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(5) Localizing A1 yields relation (3–30) among Hodge integrals where all terms are already

known by induction. Localizing A2 we get a relation (3–31) computing one unknown

Hodge integral in terms of inductively known ones. Noticing that (3–30) and (3–31) are

proportional to each other allows one to determine the desired integral.

Analyzing the obstruction theory via the normalization sequence of the source curve, one

sees that the maps in the contributing fixed loci satisfy the following properties ([15] for

more details):

• The preimages of 0 and ∞ in the corresponding double cover must be connected.

• One distinguished projective line in the source curve maps to the main component of

the target with degree 1. The corresponding double cover has a rational component

over the distinquished projective line.

• The lth and (l + 1)th marked points must map to 0 while the (2g + 2)th marked point

must map to ∞.

The contributing fixed loci are:

Fg: All marked points except for the (2g + 2)th map to 0. The corresponding double

cover contracts a genus g component over 0 and does not have a positive dimensional

irreducible component over ∞. This locus is isomorphic to M0;2g+2,0(BZ2).

Fg1,g2 : 2g1 + 1 marked points map to 0 and 2g2 + 1 marked points map to∞ (this includes

the points that are already forced to map to 0 and∞). The corresponding double cover

contracts a genus g1 component over 0 and a genus g2 component over ∞. This locus

is isomorphic to M0;2g1+2,0(BZ2)×M0;2g2+2,0(BZ2).
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The mirror analog of Fg is not in the fixed locus because we are requiring that at least 2

marked points map to 0.

The first integral evaluates on the two types of fixed loci to:

Fg:

(−1)i

tm1

∫
M0;2g+2,0(BZ2)

λgλg−iψ
m

=
(−1)i

tm1
L(g, i,m)

Fg1,g2 :

2(−1)i

tm1

i−1∑
k=1

∑
A⊆{2,...,l−1}

(
2g + 1− l

2g1 + 1− |A|

)
(−1)k−|m(Ac)|−1

·
∫
M0;2g1+2,0(BZ2)

λg1λg1−i+kψ
i−k−|m(A)|−1
1 ψ

m(A)
ψmll ψ

ml+1

l+1

·
∫
M0;2g2+2,0(BZ2)

λg2λg2−kψ
k−|m(Ac)|−1
1 ψ

m(Ac)

where we only sum over subsets A which keep the powers of ψ classes nonnegative. The

subset A determines which ψ classes map to 0 and the binomial coefficient corresponds to

the number of ways to distribute the marked points without a ψ class.

Now write nA,k for the multi-index m(Ac)[k−|m(Ac)|− 1]. The vanishing of the integral

and the above computations lead to the following recursive relations which are satisfied by

L:

L(g, i,m) = 2
∑
g1

i−1∑
k=1

∑
A⊆{2,...,l−1}

(
2g + 1− l

2g1 + 1− |A|

)
(−1)k−|m(Ac)|

· L(g1, i− k,m− nA,k) · L(g2, k, nA,k)(3–29)
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Evaluating the auxiliary integral for all genera and packaging (3–29) in generating function

form:

dl−1

dxl−1
Li,m =

2
i−1∑
k=1

∑
A⊆{2,...,l−1}

(−1)k−|m(Ac)|
(
dl−1−|A|

dxl−1−|A|Li−k,m−nA,k
)(

d|A|

dx|A|
Lk,nA,k

)
(3–30)

The second integral leads to a very similar relation:

dl−1

dxl−1
L(i,m′) =

2
i−1∑
k=1

∑
A⊆{2,...,l−1}

(−1)k−|m
′(Ac)|

(
dl−1−|A|

dxl−1−|A|Li−k,m′−n′A,k

)(
d|A|

dx|A|
Lk,n′A,k

)
(3–31)

By definition, nA,k = n′A,k, so

(3–32)
d|A|

dx|A|
Lk,nA,k =

d|A|

dx|A|
Lk,n′A,k

Also, the induction hypothesis implies (because k ≥ 1) that

(3–33)
dl−1−|A|

dxl−1−|A|Li−k,m−nA,k =
(ml +ml+1)!

ml!ml+1!

dl−1−|A|

dxl−1−|A|Li−k,m′−n′A,k

Therefore the left hand sides of (3–30) and (3–31) are term by term proportional and we

can conclude,

(3–34)
dl−1

dxl−1
Li,m =

(ml +ml+1)!

ml!ml+1!

dl−1

dxl−1
Li,m′ .

Now recall that l(m) = l + 1, so in order for
∫
λgλg−iψ

m
to be defined, we must have at

least l+ 1 marked points in our moduli space. Thus, in order to get a nontrivial integral, we
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must have 2g + 2 ≥ l + 1. All coefficients of monomials of smaller degree than xl−1 in both

generating functions vanish and we can conclude that

Li,m =
(ml +ml+1)!

ml!ml+1!
Li,m′

=
(ml +ml+1)!

ml!ml+1!

(
m1 + ...+m′l
m1, ...,m′l

)
2i−1

i!
Li1,∅

=

(
m1 + ...+ml+1

m1, ...,ml+1

)
2i−1

i!
Li1,∅(3–35)

where we use the induction hypothesis again on the second equality. �

All Li,m can be further packaged in one jumbo generating function (with infinitely many

symmetric variables qi keeping track of all possible descendant insertions):

(3–36) L(x, q) :=
∑
i,m

Li,mqm

Corollary 3.7.

(3–37) L =
1

(2
∑
qi)

exp
((

2
∑

qi

)
L1,∅

)
=

1

2
∑
qi

sec2
∑
qi
(x

2

)

Proof. The first equality follows immediately from theorem (3.5). The second is ob-

tained by plugging (3–26) for L1,∅. �

3.2.2. Open Invariants of [C3/Z2]. We now define a C∗ action on the orbifold with

weights on the tangent bundle depicted in Figure 3.5.

We characterize the C∗ fixed maps:

• The source curve consists of a genus 0 closed curve along with attached disks. The

closed component can carry (possibly twisted) marks whereas a disk can only carry a
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1

0

-1

Figure 3.5. Toric diagram for [C3/Z2] and C∗ weights.

mark at the origin (and then only if it is not attached to a closed component). The

attaching points of the nodes must carry inverse twisting.

• The closed curve must contract to the vertex.

• The disks must map to the twisted C with prescribed windings at the Lagrangian.

Since we are working with a Z2 quotient, we simply refer to points as twisted or untwisted

as there is no ambiguity. A careful analysis of the obstruction theory via the normalization

sequence of the source curve shows that the 0 weight conveniently kills all contributions

where a disk attaches to a contracted component at an untwisted node. By dimensional

reasons, all other marks must be twisted.

Combinatorially, the fixed loci Λ are indexed by

• m the number of insertions of the twisted sector and

• d1, ..., dn the winding profile of the disks.

Remark 3.8. Since all nodes and marked points are twisted, the maps restricted to the

contracted component (maps into BZ2) classify double covers of the contracted component

with simple ramification over m+ n points. Since such a cover only exists if m+ n is even,

the loci are non-empty only when m+ n is even.
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If we let z and wd be formal variables tracking the twisted sector insertions and the

winding d disks, then the open orbifold potential can be computed as

(3–38) OGW[C3/Z2](z, wi) =
∑

Λ

OGW (Λ)
zm

m!
wd1 · ... · wdn

We now group the computation of OGW (Λ) into three components:

• Closed Curve: The closed curve contracted to the vertex essentially carries the infor-

mation of a map into BZ2 along with the weights of the C∗ action on the three normal

directions. This classifies a double cover of the source curve. Analogous to [13, section

2.1], the contribution from the closed component is the equivariant euler class of two

copies of the dual of the Hodge bundle on the cover twisted by the weights of the action

on the untwisted fixed fibers:

(3–39) e(E∨−1(−1)⊕ E∨−1(0))

We also get a contribution of t−1 from the weight of the action on the twisted sector.

• Disks: The disk contribution is laid out in [6, section 2.2.3]. This contribution is a

combinatorial function depending on the winding at the Lagrangian and the twisting

at the origin of the disk. The localization step simplifies the disk contribution to two

cases, either the origin of the disk is marked and twisted (possibly a node) or the origin

is unmarked. For the particular case at hand, a disk with winding d and with twisting

at the origin contributes

(3–40)
1

2d

(2d− 1)!!

(2d)!!
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whereas a disk with no mark and no twisting at the origin contributes

(3–41)
1

2d2
.

• Nodes: We consider the nodes attaching a winding d disk to the closed component.

Each one gets a t from the weight of the action on the twisted sector. Smoothing the

node contributes 1
t

2d
−ψi

2

.

Putting together the three parts described above, we find that OGW (Λ) is:

1

|Aut(d)|

[
n∏
i=1

1

2d

(2di − 1)!!

(2di)!!

]∫
(2)ntn−1 e

eq(E∨−1(−1)⊕ E∨−1(0))∏n
i=1( t

di
− ψi)

=
1

|Aut(d)|

[
n∏
i=1

(2di − 1)!!

(2di)!!

]
g−1∑
i=1

∑
|j|=i−1

∫
λgλg−i(dψ)j

where the integral is taken over M0;m+n,0(BZ2), g = m+n−2
2

(the genus of the cover of the

closed curve) and (dψ)j and |j| are defined in section 3.2.1.

Summing over all m (equivalently g) and specializing qi = di in Thereom 3.7, we see that

the contribution to the open potential from all maps with a fixed winding profile d1, ..., dn is

given by

(3–42)
1

|Aut(d)|

[
n∏
i=1

(2di − 1)!!

(2di)!!

]
dn−2

dzn−2

sec2d(z/2)

2d

There is no ambiguity for n ≥ 2, but we must again be careful when n < 2.

When n = 1 the above formula still holds, but since integrals are only defined up to

translation, we must make sure and get the correct constant term. The constant term

corresponds to the contribution from maps with one boundary component and no marked

64



points. The only type of map in the fixed locus that satisfies this criteria is a disk with no

marked points mapping with winding d. We’ve seen that the contribution from such a map

is 1
2d2 .

When n = 0, we must compute the closed contribution. The maps must have at least

3 marked points to be stable, but any map into BZ2 must have an even number of twisted

points (see Remark (3.8)). Since there are no disk or node smoothing factors, the contribution

is

(3–43) H(z) =
∑
g≥1

∫
M0;2g+2,0(BZ2)

λgλg−1
z2g+2

(2g + 2)!
.

By the λgλg−1 result of Faber and Pandharipande [26], d2

dz2H(z) = log(sec(z/2)).

Pulling together everything from the above discussion, we prove the following result:

Proposition 3.9. The open orbifold Gromov-Witten potential (sans fundamental class

insertions) of [C3/Z2] is

OGW[C3/Z2](z, wi) = H(z)

+
∑
d≥1

(
1

2d2
+

(2d− 1)!!

(2d)!!

∫
sec2d(z/2)

2d
dz

)
wd

+
∑

d1,...,dn(n≥2)

1

|Aut(d)|

(
n∏
i=1

(2di − 1)!!

(2di)!!

)(
dn−2

dzn−2

sec2d(z/2)

2d

)
wd1 · ... · wdn ,(3–44)

where the antiderivative is chosen to vanish at z = 0.

3.3. The Open Crepant Resolution Conjecture

Now that we have computed the open potentials for [C3/Z2] and its crepant resolution

KP1 ⊕OP1 , we show that there is a change of variables which equates the stable terms. We
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start with the contribution from a given winding profile on the orbifold, we consider all

contributions on the resolution with that same winding profile, and we show that the change

of variables equates these contributions. More specifically, we show the following.

Theorem 3.10. Under the change of variables

q → −1 x→ iz

y
(b)
d →

i

2
wd y

(t)
d →

i

2
wd(−eiz)d(3–45)

the open GW potential of KP1 ⊕ OP1 analytically continues to the open GW potential of

[C3/Z2] up to unstable terms.

Proof. The closed portion of the Theorem was proven in [10, Section 3.2]. Consider

the winding d disk contribution on the resolution:

1

d2
y

(b)
d +

(−1)d+1

d

(
y

(t)
d + y

(b)
d (qex)d)

)(2d− 1

d

)
1

(qex)d

[∫
(qex)d

(1− qex)2d
dx

]
.

Making the change of variables, it becomes

i

2d2
wd +

(−1)d+1

d

(
i

2
wd(−eiz)d +

i

2
wd(−eiz)d)

)(
2d− 1

d

)
1

(−eiz)d

[
i

∫
(−eiz)d

(1 + eiz)2d
dz

]

=
i

2d2
wd +

i(−1)d+1

d
wd

(
2d− 1

d

)[
i

∫
(−eiz)d

(1 + eiz)2d
dz

]

=
i

2d2
wd +

−i
d
wd

(
2d− 1

d

)
·

[
i

∫
sec2d(z/2)

(22d)
dz

]
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Here we do not pay attention to the constant terms in the anti-derivatives since they corre-

spond to unstable terms about which we make no claims. Hence we obtain:

(3–46)
1

d

(
2d− 1

d

)
wd

∫
sec2d(z/2)

(22d)
dz =

(2d− 1)!!

(2d)!!
wd

∫
sec2d(z/2)

2d
dz,

the disk potential computed on the orbifold.

Finally, consider a general term with winding profile d1, ..., dn:

(3–47)
−2n−1

d · |Aut(d)|

[
n∏
i=1

(−1)di
(
y

(t)
di

+ y
(b)
di

(qex)di
)(2di − 1

di

)]
1

(qex)d
dn−2

dxn−2

(
(qex)d

(1− qex)2d

)

Making the change of variables, this becomes:

−2n−1

d · |Aut(d)|
(i)n

n∏
i=1

wdi

(
2di − 1

di

)
1

in−2

dn−2

dzn−2

1

22d
sec2d

(z
2

)

=
1

2d · |Aut(d)|

n∏
i=1

wdi
22di−1

(
2di − 1

di

)(
dn−2

dzn−2
sec2d

(z
2

))

=
1

|Aut(d)|

n∏
i=1

(2d− 1)!!

(2d)!!

(
dn−2

dzn−2

sec2d
(
z
2

)
2d

)
wdi · ... · wdn .

The final expression coincides with the contribution on the orbifold. �

3.4. The Closed Crepant Resolution Conjecture via Gluing

In this section we deduce the Ruan-Bryan-Graber crepant resolution conjecture for the

orbifold X = [O(−1)⊕O(−1)/Z2] and its crepant resolution Y = KP1×P1 from the results of

the previous sections.

The orbifold X can be presented in terms of two charts isomorphic to [C3/Z2]. We equip

the two charts with the compatible torus action depicted in Figure 3.6.
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1

1

-1

-1

0

0

Figure 3.6. Symmetry of [O(−1)⊕O(−1)/Z2]

In section 3.1 we computed disk invariants for the left vertex in figure 3.6. The right

vertex with the given weights and orientation gives the same invariants multiplied by a

factor of (−1)d. In other words, the open potential for the right vertex in Figure 3.6 can be

obtained from the open potential of the left vertex under the change of variables z → z̃ and

wd → −w̃d.

Remark 3.11. Throughout the rest of this section, variables with a tilde correspond to

formal variables on the right sides of the diagrams.

Refer to Figure 3.7 for the resolution.

1

1

-1

-1

1 -1

0

0

2

-2

1

-1

Figure 3.7. Symmetry of KP1×P1 .
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It is not hard to check that the disk invariants for the right half of the diagram with

the given orientations and weights coincides with disk invariants computed in section 3.1.

Therefore, the open potential on the right can be obtained from the open potential on the

left by the change of variables:

q → q̃ x→ x̃

y
(b)
d → ỹ

(t)
d y

(t)
d → ỹ

(b)
d(3–48)

The setup for the crepant resolution conjecture is as follows. The Chen-Ruan orbifold

cohomology of [O(−1)⊕O(−1)/Z2] has two generators in degree 2, the fiber over a point of

P1 and the class of the constant function on the twisted P1. We assign the formal variables

W and Z to correspond to insertions of these classes, respectively. Any map into the orbifold

is classified by the degree on the twisted P1, thus we only need one degree variable P . On the

resolution, we have two insertion variables, corresponding to the fiber over a point in each

P1, let these be X and Y . We also have two degree variables corresponding to the degree of

a map on each P1; denote them Q and U , where Q corresponds to the P1 which is dual to

the divisor corresponding to X.

Theorem 3.12. After the change of variables

Q→ −1 U → −P

X → iZ Y → iZ +W(3–49)

the genus 0 GW potential of KP1×P1 equals the genus 0 GW potential of [O(−1) ⊕

O(−1)/Z2] up to unstable terms.
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First we express the two potentials as a sum over the same set of decorated trees. We

then describe how one can extract the contribution to the GW potential from each tree by

multiplying vertex and edge contributions. The open crepant resolution statement proved

in section 3.3 verifies that the change of variables equates the vertex contributions and edge

contributions.

Since the portion of the computation corresponding to degree 0 maps into the orbifold is

immediate from the closed computation done in section 3.3, we focus on contributions with

nonzero powers of U and P .

3.4.1. Closed Invariants of [O(−1)⊕O(−1)/Z2]. The closed potential of the orbifold

can be expressed as a sum over localization trees:

• black (white) vertices of the tree correspond to components contracting to the left (right)

orbifold vertex;

• edges of the tree correspond to multiple covers of the twisted P1 obtained by gluing

disks. Each edge is decorated with a positive integer denoting the degree of the multiple

cover.

By the gluing algorithm of Theorem 2.17, closed GW invariants of the orbifold are ob-

tained by gluing open invariants along half edges. For a given localization tree T with more

than one edge, the corresponding contribution to the GW potential is given by

(3–50) GWX(T ) =
∏

black vertices

V (v)
∏

edges e

E(e)
∏

white vertices

Ṽ (v)

In the above formula, V (v) and Ṽ (v) are the open invariants with winding profile corre-

sponding to the edges meeting at v (with the formal variables z and z̃ replaced with Z). In
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the case that v is univalent, only the contribution from disks with twisted origin is taken.

The edge contribution is:

(3–51) E(e) =
(−1)d2d(PeW )d

wdw̃d
.

where e is an edge marked with d. The PeW is from applying the divisor equation to the

new divisor class obtained by gluing and the (−1)d2d is the gluing factor of Theorem 2.17.

In the case that T ′ is the tree with a unique edge labeled d, then one must also take into

account the contribution from gluing two unmarked disks. The contribution in this case is

(3–52) GWX(T ′) = V (v1)E(e)Ṽ (v2) +
1

2d3
(PeW )d.

3.4.2. Closed invariants of KP1×P1. Again, the Gromov Witten potential is ex-

pressed as a sum over localization graphs. For each graph, collapsing all “vertical” edges

(ie. edges corresponding to multiple covers of the vertical fixed fibers) produces essentially

a tree as in section 3.4.1, with the extra decoration of a subset S of the edges corresponding

to edges mapping to the top invariant line. We forget this extra decoration to organize the

potential as a sum over the same trees of section 3.4.1.

Again by the gluing algorithm of Theorem 2.17, the contribution to the GW potential

from all loci corresponding to a given decorated tree T is:

(3–53) GWY (T ) =
∑

S⊂{edges}

( ∏
black vertices

V (S)(v)
∏

edges e

E ′(e)
∏

white vertices

Ṽ (S)(v)

)

In the above formula, V (S)(v) and Ṽ (S)(v) are the open GW contributions from all fixed

loci with winding profile determined by the edges meeting v (we replace the formal variables
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q, q̃ with Q and x, x̃ with X). If an adjacent edge is in S, this corresponds to a disk mapping

to the upper Lagrangian and vice versa. Also

(3–54) E ′(e) =


−d(UeY )d

y
(t)
d ỹ

(t)
d

if e ∈ S

−d(UeY )d

y
(b)
d ỹ

(b)
d

if e /∈ S

where e is an edge labeled with d. The −d is the gluing factor of Theorem 2.17 and the UeY

comes from applying the divisor equation to the new divisor class created by gluing.

Let V ′(v) and Ṽ ′(v) denote the open contributions corresponding to all fixed loci with

winding profile (d1, ..., dn) given by the edges (e1, ..., en) meeting v (summing over all pos-

sibilitiees for the disks to map to the top edge or the bottom edge). Undoing (3–9), we

have:

V (S)(v) =



y
(t)
d

y
(t)
d +y

(b)
d (QeX)d

(
V ′(v)− 1

d2y
(b)
d

)
v univalent, e ∈ S

y
(b)
d (QeX)d

y
(t)
d +y

(b)
d (QeX)d

(
V ′(v)− 1

d2y
(b)
d

)
+ 1

d2y
(b)
d v univalent, e /∈ S

∏
ei∈S

y
(t)
di

∏
ei /∈S

y
(b)
di

(QeX)di∏n
i=1

(
y

(t)
di

+y
(b)
di

(QeX)di
) V ′(v) else

and

Ṽ (S)(v) =



ỹ
(t)
d (QeX)d

ỹ
(t)
d +ỹ

(b)
d (QeX)d

(
V ′(v)− 1

d2 ỹ
(t)
d

)
+ 1

d2 ỹ
(t)
d v univalent, e ∈ S

ỹ
(b)
d

ỹ
(t)
d +ỹ

(b)
d (QeX)d

(
V ′(v)− 1

d2 ỹ
(t)
d

)
v univalent, e /∈ S

∏
ei∈S

ỹ
(t)
di

(QeX)di
∏
ei /∈S

ỹ
(b)
di∏n

i=1

(
ỹ

(b)
di

+ỹ
(t)
di

(QeX)di
) V ′(v) else

Remark 3.13. In each of the above formulas for the vertex contributions, the third case

is the generic case and the other two are adjusted to take into account the Γ′ loci of (3–2).

3.4.3. The Crepant Resolution Transformation. In order to verify the Ruan-

Bryan-Graber crepant resolution conjecture, we show that after the prescribed change of
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variables,

(3–55) GWY (T )→ GWX(T )

for every decorated tree T .

Even though our formulas for the vertex and edge contributions of GWX(T ) and GWY (T )

involve winding variables, these variables cancel in the product. Hence we can make any

substituion for the winding variables and it does not affect the overall product. Motivated

by the open crepant resolution transformation, in the above formulas for GWY (T ) we make

the substitutions:

y
(b)
d →

i

2
wd ỹ

(b)
d →

i

2
(eiZ)dw̃d

y
(t)
d →

i

2
(−eiZ)dwd ỹ

(t)
d → (−1)d

i

2
w̃d

Q→ −1 U → −P

X → iZ Y → iZ +W

By Theorem 3.10, under this change of variables V ′(v) → V (v) and Ṽ ′(v) → Ṽ (v). So

for any S ⊂ {edges}, we have:

(3–56) V (S)(v)→



1
2
V (v)− i

4d2wd v univalent, e ∈ S

1
2
V (v) + i

4d2wd v univalent, e /∈ S

1
2n
V (v) else
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and similarly,

(3–57) Ṽ (S)(v)→



1
2
Ṽ (v) + i

4d2 w̃d v univalent, e ∈ S

1
2
Ṽ (v)− i

4d2 w̃d v univalent, e /∈ S

1
2n
Ṽ (v) else

Also, under the change of variables

(3–58) E ′(e)→ 2E(e).

Given any tree T with more than one edge, the extra terms on the univalent vertices

cancel by summing over all contributions e ∈ S and e /∈ S. Therefore, from (3–56),(3–57)

and (3–58);

GWY (T ) =

∑
S⊂{edges}

∏ 1

2
V (v)

∏
2E(e)

∏ 1

2
Ṽ (v) = 2#{edges}

∏
V (v)

∏
E(e)

∏
Ṽ (v)

2#{edges}

= GWX(T ).(3–59)

If T ′ is the tree with a unique edge labeled d:

(3–60) GWY (T ′) = V (v1)E(e)Ṽ (v2) +
1

2d3
(PeY )d = GWX(T ′).

Equations (3–59) and (3–60) establish Theorem 3.12.
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CHAPTER 4

The Loop Murnaghan-Nakayama Rule

In this chapter we take an adventurous detour into the land of algebraic combinatorics.

As we will see in Chapter 5, the An−1 orbifold vertex is closely linked to combinatorial

gadgets called loop Schur functions. The identities which we develop in this chapter will be

pivotal in proving the Gromov-Witten/Donaldson-Thomas correspondence of Chapter 5.

4.0.4. Statement of Results. The classical Schur functions sρ(x) are a special class

of power series defined in infinitely many variables x = (x1, x2, ...) and indexed by partitions

ρ (we refer the reader to Section 4.1 for a precise definition). Schur functions are classically

known to form an orthonormal, integral basis of the ring of symmetric functions and they

have proven ubiquitous in many areas of mathematics.

Another (rational) basis for the ring of symmetric functions is given by products of the

power-sum functions pk(x). The classical Murnaghan-Nakayama rule provides a simple way

to write the symmetric function pksρ in the Schur basis:

(4–1) pksρ =
∑
σ

(−1)ht(σ\ρ)sσ

where the sum is over all ways of adding a length k border strip to ρ and ht is the height (ie.

the number of rows) of the border strip, minus 1.

Loop Schur functions naturally generalize the combinatorial definition of Schur functions

and have previously been studied by Lam and Pylyavskyy in the context of loop symmetric

functions ([40]). Given a positive integer n, the loop Schur functions sρ[n] are power series

in infinitely many variables {xi,j : i ∈ Zn, j ∈ N} and indexed by partitions ρ. There is also
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a notion of loop power-sum functions pk[n]. In Section 4.2 we provide a combinatorial proof

for the natural generalization of the Murnaghan-Nakayama rule.

Theorem 4.1.

pk[n]sρ[n] =
∑
σ

(−1)ht(σ\ρ)sσ[n]

where the sum is over all ways of adding length kn border strips to ρ.

By forgetting the index i ∈ Zn, Theorem 4.1 specializes to the classical Murnaghan-

Nakayama rule and, to the best of our knowledge, our proof provides a new combinatorial

proof of the classical result.

For any 0 ≤ l < n, we introduce in Section 4.1 the l-shifted loop Schur functions slρ[n], a

close variant of the loop Schur functions (in particular, s0
ρ[n] = sρ[n]). We prove the following

identity in Section 4.3.

Theorem 4.2. For l 6= 0,

0 =
∑
σ

(−1)ht(σ\ρ)slσ[n]

where the sum is over all ways of adding length kn border strips to ρ.

4.0.5. Outline of the Proofs. Theorem 4.1 is proven as a corollary of the following

identity

Theorem 4.3. For any N ≥ kn+ l(ρ),

pk,N [n]xδsρ,N [n] =
∑

(−1)ht(σ\ρ)xδsσ,N [n]

where

xδ := (x−1,1 · ... · x−N,1)(x−2,2 · ... · x−N,2)...(x−N,N),
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pk,N [n], sρ,N [n] are defined by specializing xi,j = 0 if j > N , and the sum is over all ways of

adding length kn border strips to ρ.

To prove Theorem 4.3, we begin in Section 4.2.1 by interpreting the product xδsρ,N [n]

combinatorially in a way which will be convenient for later arguments - the key is a sign-

reversing involution previously defined in [14]. In Section 4.2.2, we define a generating

function Fρ,N [n] for certain combinatorial gadgets related to those discussed in Section 4.2.1.

In Sections 4.2.3 and 4.2.4 we define sign-reversing involutions on the terms in Fρ,N [n] so

that the sum of the weights of the fixed terms can be identified with the left and right-hand

sides, respectively, of Theorem 4.3. This proves that both sides are equal to Fρ,N [n], thus

proving the theorem. Theorem 4.2 is proven in Section 4.3 using similar techniques.

4.1. Definitions and Notation

We now make precise the objects which appeared in the statements of Theorems 4.1 and

4.2. Before defining loop Schur functions, we begin by briefly recalling the classical Schur

functions (see eg. [44]). Though originally defined as quotients of antisymmetric functions,

Schur functions can be defined combinatorially as generating functions of semi-standard

Young tableaux as we now describe.

To a partition ρ we can associate a Young diagram (which we also call ρ), a northwest

justified collection of boxes where the rows encode the sizes of the parts of ρ. For example,

if ρ is the partition (4, 3, 3, 2), the associated Young diagram is given in Figure 4.1.

A tableau of ρ is an assignment of positive integers to the boxes of ρ. A semi-standard

Young tableau (SSYT) of ρ is a numbering of the boxes so that numbers are weakly increasing

left to right and strictly increasing top to bottom – an example is given in Figure 4.2.
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ρ =

Figure 4.1. The Young diagram associated to the partition (4, 3, 3, 2).

T = 1 1 2 4

2 3 3

4 4 6

7 7

Figure 4.2. A SSYT of the Young diagram.

For each � ∈ ρ, we define the weight w(�, T ) to be the number appearing in that square.

To each tableau T ∈ SSY T (ρ) we can associate a monomial

xT :=
∏
�∈ρ

xw(�,T ).

For example, to the SSYT in Figure 4.2 we associate the monomial xT = x2
1x

2
2x

2
3x

3
4x6x

2
7.

The Schur functions can be defined by the rule

sρ :=
∑

T∈SSY T (ρ)

xT .

It is not obvious, but this definition of Schur functions coincides with the classical defi-

nition (cf. [44] or [14] for a combinatorial proof).

The power-sum functions are defined as

pk :=
∑
i

xki .
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The sum in the classical Murnaghan-Nakayama rule (4–1) is over all Young diagrams

σ ⊃ ρ such that the complement is connected, contains k boxes, and contains no 2 × 2

square. We say that σ is obtained from ρ by adding a length k border strip and ht(σ \ ρ) is

the number of rows the border strip occupies, minus 1.

4.1.1. Loop Schur Functions. In the current paper, we study loop Schur functions

which we now define. For a positive integer n and partition ρ, the colored Young diagram

(ρ, n) is obtained by coloring the boxes of the Young diagram by their content modulo n. In

other words if � is in the ith row and the jth column (row and column indexing begins with

1), we color it c(�) := j − i mod n. For example, if ρ = (4, 3, 3, 2) and n = 3, the colored

Young diagram is given in Figure 4.3.

0↔ , 1↔ , and 2↔ .

Figure 4.3. The colored Young diagram associated to (4, 3, 3, 2) with n = 3.
The bottom row describes the correspondence between the chosen colors and
elements of Z3.

We let ρ[i] denote the collection of boxes with color i. To each semi-standard Young

tableau T ∈ SSY T (ρ, n), we associate a monomial in n infinite sets of variables {xi,j : i ∈

Zn, j ∈ N}:

(4–2) xT :=
n−1∏
i=0

∏
�∈ρ[i]

xi,w(�,T ).
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For example, we associate the monomial

xT = x0,1x0,3x0,4x0,6x0,7x1,1x1,3x1,4x1,7x
2
2,2x2,4

to the SSYT given in Figure 4.4.

T = 1 1 2 4

2 3 3

4 4 6

7 7

Figure 4.4. A SSYT of the colored Young diagram.

Definition 4.4. The loop Schur function associated to (ρ, n) is defined by

sρ[n] :=
∑

T∈SSY T (ρ,n)

xT .

Power-sum functions also naturally generalize to the colored setting.

Definition 4.5. The loop power-sum functions are defined by

pk[n] :=
∑
j

(
n−1∏
i=0

xi,j

)k

.

Remark 4.6. By definition we have the following specializations:

pk[n]|(xi,j=xj) = pkn and sρ[n]|(xi,j=xj) = sρ.

It follows immediately that Theorem 4.1 specializes to the classical identity (4–1) by forget-

ting the index i.
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4.1.2. Shifted Loop Schur Functions. To define the l-shifted loop Schur functions

appearing in Theorem 4.2, we define the shifted weight

wl(�, T ) := w(�, T ) +
l · c(�)

n

and the corresponding monomial

(4–3) xT,l :=
n−1∏
i=0

∏
�∈ρ[i]

xi,wl(�,T )

where the variables appearing in the monomial now belong to the set {xi,j : i ∈ Zn, j ∈ 1
n
Z}.

Definition 4.7. The l-shifted loop Schur function1 associated to (ρ, n) is defined by

slρ[n] :=
∑

T∈SSY T (ρ,n)

xT,l.

Remark 4.8. By definition, s0
ρ[n] = sρ[n].

4.2. Proof of the Loop M-N Rule

4.2.1. Involutions: Round One. In this section we give a combinatorial description

of the product xδsρ,N [n] which will prove useful in later arguments. For a given Young

diagram ρ, and positive integers n and N > l(ρ), define ρ̂ to be the diagram obtained by

adding adding a staircase of size N to the left of ρ. In other words, we add N − i+ 1 boxes

to the left of the ith row of ρ (if i > l(ρ), the right edge of the new boxes should be justified

with the right edge of the new boxes in the rows above it). As before, the diagram is colored

by content modulo n. Consider pairs (T, τ) where

1The l-shifted Schur functions here should not be confused with the shifted Schur functions defined in [49].
We shift the index of the variables wheras they shift the variables themselves. Moreover, they sum over
reverse tableaux.

81



(a) T is a tableau (not necessarily semi-standard) of ρ̂, and

(b) τ = (τ1, ..., τN) is a labeling of the N rows of ρ̂ with the numbers 1, ..., N (considered

as a permutation of {1, ..., N} given by i→ τi).

Let Tρ,n,N be the set of such pairs (T, τ) which satisfy the following conditions:

(i) T only contains the numbers 1, ..., N .

(ii) The rows of T are weakly increasing.

(iii) The leftmost entry in the jth row is at least τj.

Remark 4.9. When confusion does not arise, we omit the subscripts and write T =

Tρ,n,N .

Example 4.10. For ρ = (2, 1), n = 3, and N = 5, two examples of elements which

belong to T are given in Figure 4.5.

2 2 3 4 4 4 5 2

5 5 5 5 5 5

4 4 5 4

2 2 1

3 3

2 2 3 4 4 4 5 2

4 4 5 5 5 4

5 5 5 5

2 2 1

3 3

Figure 4.5. Two elements of T which are interchanged by I1.

As in (4–2), we can associate to each T a monomial xT . Let (−1)τ denote the sign of the

permutation τ . We have the following identity.

Lemma 4.11.

xδsρ,N [n] =
∑

(T,τ)∈T

(−1)τxT .
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Proof. We consider a sign reversing involution which cancels pairs of terms in the sum.

We then identify the sum of the fixed terms as xδsρ,N [n]. The involution we use is defined

in [14], the setting here is only slightly different. We include the details for completeness.

The involution I1 is defined on a pair (T, τ) as follows:

(I) Look for the rightmost and then highest vertical domino such that the upper entry

is at least the lower entry.

(II) Swap every box to the left of the upper box in (I) with the box directly to its southeast.

(III) Swap the elements of τ which index these two rows.

Define I1(T, τ) to be the new tableau and permutation obtained through this process. We

will often abuse notation and write I1(T, τ) = (I1(T ), I1(τ)) to reference the action on the

tableau or the permutation alone. See Figure 4.5 above for two elements of T which are

interchanged by I1.

First of all, I1(T, τ) is an involution because the location of the domino in step (I) is

preserved under the action. It is easy to see that xT = xI1(T ) since the involution moves

entries along diagonals on which the colors are constant. It is also easy to see that (−1)τ =

−(−1)I1(τ) whenever (T, τ) is not fixed by I1 because switching two elements of the labeling

τ corresponds to multiplying the corresponding permutation by a transposition. Therefore,

we conclude that ∑
T

(−1)τxT =
∑
T I1

(−1)τxT .

where T I1 is the set of elements in T which are fixed by I1.

It is left to analyze T I1 . If (T, τ) is fixed by I1, then T must be a column-strict tableau.

In particular, the column immediately to the left of ρ ⊂ ρ̂ should read 1, ..., N top to bottom.

In particular, this implies that the entries of ρ̂ \ ρ must be 1 in the first row, 2 in the second
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row, etc. and τ is forced to be the identity. The constraint imposed on the entries of ρ are

simply that they form a semi-standard tableau. The entries in ρ̂ \ ρ contribute xδ to each

monomial xT and the sum over all semi-standard tableaux of ρ contributes sρ,N [n]. �

4.2.2. Master Generating Function. In this section we define a master generating

function Fρ,N [n] which is shown in subsequent sections to equal both the left and right-hand

sides of the identity in Theorem 4.3. To that end, we fix a partition ρ = (ρ1, ..., ρl), positive

integers n and k, and a positive integer N satisfying N ≥ kn + l. For any i ∈ {1, ..., N},

let ρ̂i be the diagram obtained by adding kn boxes to the right of the ith row of ρ̂. The

combinatorial objects we want to consider are pairs (T, τ) where

(a) T is a tableau of the diagram ρ̂i for some i, and

(b) τ = (τ1, ..., τN) is a labeling of the N rows of ρ̂i with the numbers 1, ..., N (considered

as a permutation in SN).

Let Sρ,n,k,N be the set of such tableaux which satisfy the same three conditions (i) - (iii)

required of the set T in Section 4.2.1.

Example 4.12. For ρ = (2, 1), n = 3, k = 1, and N = 5, two examples of elements

which belong to S are given in Figure 4.6.

2 2 3 4 4 4 5 2

5 5 5 5 5 5

4 4 5 4

2 2 3 4 5 1

3 3

2 2 3 4 4 4 5 2

5 5 5 5 5 5

4 4 5 4

4 5 3

2 2 3 3 1

Figure 4.6. Two elements of S which are interchanged by I2.
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To each (T, τ), we assign a monomial xT as before. We define the generating function

Fρ,N [n] by

(4–4) Fρ,N [n] :=
∑

(T,τ)∈S

(−1)τxT .

4.2.3. Involutions: Round Two.

Lemma 4.13.

Fρ,N [n] = pk,N [n]xδsρ,N [n]

Proof. We define an involution on the terms of Fρ,N [n] which cancels terms in pairs.

The remaining terms are seen to coincide with the left-hand side of Theorem 4.3. We define

the involution I2 on sets of pairs (T, τ) as follows.

If T is a tableau of ρ̂i and the knth entry of row i is τi, then define I2(T, τ) = (T, τ).

Otherwise, the knth entry of row i is l with l > τi because of conditions (ii) and (iii) in

Section 4.2.1. Then I2(T, τ) is defined by the following process:

(I) Remove the first kn boxes (along with their labels) of the ith row, and shift the

remaining boxes in that row to the left by kn units.

(II) Interchange τi and τj where j is the row with τj = l.

(III) Slide the boxes in row j to the right by kn units and reinsert the kn boxes (along

with their labels) in row j.

Notice that when I2 does not fix an element, it sends a tableau of ρ̂i to a tableau of ρ̂j

with j 6= i. We will again abuse notation and write I2(T, τ) = (I2(T ), I2(τ)). See Figure 4.6

for an illustration of two elements of S which are interchanged by I2.
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It is easy to see that I2 is an involution, xT = xI2(T ),and if (T, τ) is not a fixed point of

I2, then (−1)τ = −(−1)I2(τ). Therefore, the terms which are not fixed cancel in pairs in the

sum (4–4).

By definition, the terms which are fixed correspond to those where the kn leftmost boxes

in ρ̂i all contain the number τi. If we set N := {1, ..., N}, then we obtain a bijection between

the sets SI2 and T ×N by mapping (T, τ) to (T ′, τ, i) where T ′ is obtained by removing the

leftmost kn boxes from row i and sliding the remaining boxes to the left. Moreover, this

bijection preserves (−1)τ and the weights are related by the equation xT =
(∏n−1

j=0 xj,i

)k
xT
′
.

We have

Fρ,N [n] =
∑

(T,τ)∈S

(−1)τxT

=
∑

(T,τ)∈SI2

(−1)τxT

=
∑

(T ′,τ,i)∈T ×N

(−1)τ

(
n−1∏
j=0

xj,i

)k

xT
′

=

 N∑
i=1

(
n−1∏
j=0

xj,i

)k
 ∑

(T ′,τ)∈T

(−1)τxT
′


= pk,N [n]xδsρ,N [n]

where the last equality follows from Lemma 4.11 and the definition of the loop power-sum

functions. �

4.2.4. Involutions: Round Three.

Lemma 4.14.

Fρ,N [n] =
∑

(−1)ht(σ\ρ)xδsσ,N [n]
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where the sum is over all ways of adding a length kn border strip to ρ.

Proof. We define a different involution on S which cancels terms in the sum Fρ,N [n]

in pairs. The sum of the weights of the remaining terms is then seen to coincide with∑
(−1)ht(σ\ρ)xδsσ,N [n]. The involution I3 is defined as follows.

First, if (T, τ) is a tableau on ρ̂i and two rows of ρ̂i have the same number of boxes, then

one of those rows must be i, call the other one j (it is not hard to see that at most two rows

can have equal length). Define I3(T, τ) = (T ∗, τ ∗) where T ∗ is obtained by swapping the

entries of rows i and j and τ ∗ is obtained by swapping τi and τj.

Example 4.15. See Figure 4.7 for an example of two elements of S which are interchanged

by I3.

2 2 3 4 4 4 5 2

5 5 5 5 5 5

4 4 5 4

2 2 3 4 5 1

3 3

←→ 2 2 3 4 4 4 5 2

2 2 3 4 5 1

4 4 5 4

5 5 5 5 5 5

3 3

Figure 4.7. Two elements of S which are interchanged by I3.

If all rows of ρ̂i have distinct size, then I3(T, τ) is obtained as follows:

(I) Slide the ith row of ρ̂i northwest until the length of the rows are strictly decreasing,

slide τi upward with the row, call this new tableau (T ′, τ ′).

(II) Apply the involution I1 from the proof of Lemma 4.11 to (T ′, τ ′).

(III) Reverse step (I).
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Remark 4.16. The important thing to notice is that the new diagram obtained in Step

I can be identified with σ̂ for some σ which is obtained from ρ by adding a length kn border

strip.

Example 4.17. Figure 4.8 illustrates the involution I3.

2 2 3 4 4 4 4 2

2 2 3 4 4 1

4 4 5 5 5 5 4

5 5 5

3 3

−→ 2 2 3 4 4 4 4 2

4 4 5 5 5 5 4

2 2 3 4 4 1

5 5 5

3 3

−→ 2 2 3 4 4 4 4 2

2 2 3 4 4 5 1

4 4 5 5 5 4

5 5 5

3 3

−→ 2 2 3 4 4 4 4 2

4 4 5 5 5 1

2 2 3 4 4 5 4

5 5 5

3 3

Figure 4.8. The involution I3 in three steps. The first diagram is (T, τ), the
second is (T ′, τ ′), the third is I1(T ′, τ ′), and the fourth is I3(T, τ).

As with the other involutions, it is easy to see that I3 reverses the sign and preserves the

weight for all elements (T, τ) ∈ S which are not fixed. The elements of S which are fixed

by I3 are those which get fixed by I1 in step (II) above. Therefore, step (I) above defines a

map f : SI3ρ →
∐
T I1σ where the union is over all σ which are obtained by adding a length

kn border strip to ρ. The map f is clearly invertible, so f is a bijection. The function f

preserves the weight but does not quite preserve the sign. In fact, f introduces a factor

of −1 for every shift in step (I) (corresponding to multiplying τ by a transposition). This
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introduces a factor of (−1)ht(σ\ρ). Putting it all together, we have

Fρ,N [n] =
∑

(T,τ)∈Sρ

(−1)τxT =
∑

(T,τ)∈SI3ρ

(−1)τxT

=
∑
σ

(−1)ht(σ\ρ)
∑

(T ′,τ ′)∈T I1σ

(−1)τxT =
∑
σ

(−1)ht(σ\ρ)xδsσ,n[N ]

where the last equality follows from Lemma 4.11. �

Lemmas 4.13 and 4.14 complete the proof of Theorem 4.3. Dividing both sides by xδ and

taking N →∞ proves Theorem 4.1.

4.3. Proof of Shifted Identity

In order to prove Theorem 4.2, define the degree of the variable xi,j to be j. Then

Theorem 4.2 follows from the next result by taking N →∞.

Theorem 4.18. The leading term of

∑
(−1)ht(σ\ρ)slσ,N [n]

has degree bounded below by N − kn− l
n
N .

Proof. We define the generating function F l
ρ,N [n] exactly as we defined Fρ,N [n] above,

except we use the shifted weight defined in (4–3). Since the involution I3 preserves the shifted

weight (it only moves boxes along diagonals), Lemma 4.14 carries through unchanged and

proves that

F l
ρ,N [n] = xδ,l

∑
(−1)ht(σ\ρ)slσ,N [n]
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where xδ,l is the shifted monomial associated to the standard tableau on ∅̂, illustrated in

Figure 4.9

1 1 1 1 1

2 2 2 2

3 3 3

4 4

5

Figure 4.9. The standard tableau on ∅̂.

Remark 4.19. It is easy to see that xδ,l has the smallest degree of any tableau on ∅̂

which weakly increases along rows.

Define S ′ ⊂ S to be the subset of S consisting of tableaux of ρ̂i where the entries in the

ith row do not exceed N − kl. We define an involution I4 on the elements of S ′ as follows.

(I) Remove the first kn boxes from row i, slide the remaining boxes kn units to the left

and add kl to each remaining entry.

(II) If m is the rightmost entry of the boxes which were removed in (I) (m ≤ N − kl by

definition of S ′), subtract kl from from each entry of row j where τj = m+kl, and then

slide them to the right by kn units and insert the boxes removed in (I).

(III) Switch τi and τj.

Clearly I4 is sign reversing and it preserves weight (this is the reason for adding/subtracting

kl to the entries when we slide them). Therefore,

F l
ρ,N [n] =

∑
(T,τ)∈S\S′

(−1)τxT,l.
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But the rightmost entry of the ith row of every tableau in S \ S ′ is at least N − kl and this

contributes at least N − kl − l
n
N to the degree of the associated monomial. This implies

that the degree of the associated monomial is at least deg(xδ,l) + N − kl − l
n
N . Therefore,

the degree of the leading term of F l
ρ,N [n] (and hence xδ,l

∑
(−1)ht(σ\ρ)slσ,N [n]) is at least

deg(xδ,l) +N − kl − l
n
N . Dividing by xδ,l proves the theorem. �
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CHAPTER 5

The Gromov-Witten/Donaldson-Thomas

Correspondence

In this chapter we employ gerby localization (cf. [13] for the origins of the adjective gerby)

as well as various tools from combinatorics, linear algebra, Hurwitz theory, and representation

theory of generalized symmetric groups in order to prove the gerby Gopakumar-Mariño-

Vafa formula. We describe how this formula should be viewed as a local orbifold Gromov-

Witten/Donaldson-Thomas correspondence for certain toric CY 3-folds.

5.0.1. Statement of Results. The GMV formula, proven independently in [42] and

[50], evaluates certain generating functions of cubic Hodge integrals on moduli spaces of

curves in terms of Schur functions, a special basis of the ring of symmetric functions. The

formula can be interpreted as one instance of the GW/DT correspondence for CY3s. In

this chapter, we generalize the GMV formula to Zn-Hodge integrals and we show that this

formula can be viewed as one instance of the orbifold GW/DT correspondence.

In particular, we consider generating functions Ṽ •µ (a) of cubic Zn-Hodge integrals on

moduli spaces of stable maps to the classifying space BZn. These generating functions are

indexed by conjugacy classes µ of the generalized symmetric group Zn o Sd and are closely

related to the GW orbifold vertex developed in Chapter 2. In place of the Schur functions in

the usual GMV formula, we introduce generating functions P̃λ(a) which are specializations

of loop Schur functions, discussed in Chapter 4. These generating functions are indexed by

irreducible representations λ of Zn o Sd and are closely related to the DT orbifold vertex

developed in [8]. The main result is a relation via the character values χλ(µ) of Zn o Sd.
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Theorem (Theorem 5.7). After an explicit change of variables,

Ṽ •µ (a) =
∑
λ

P̃λ(a)
χλ(µ)

zµ

There are n distinct Zn-gerbes Gk (0 ≤ k < n) over P1 classified by H2(P1,Zn). We

define X to be a local Zn-gerbe over P1 if X is isomorphic to the total space of a rank

two Calabi-Yau orbifold bundle over some Gk. Applying the gluing algorithm of Theorem

2.17 and [8], Theorem 5.7 leads to a proof of the orbifold GW/DT correspondence for local

Zn-gerbes over P1.

Theorem (Theorem 5.8). After an explicit change of variables, the GW potential of any

local Zn-gerbe over P1 is equal to the reduced, multi-regular DT potential.

This is the first example of the GW/DT correspondence for orbifold targets with non-

trivial curve classes contained in the singular locus.

5.0.2. Outline of Proof. After setting up notation and giving a precise statement

of Theorems 5.7 and 5.8 in Section 5.1, we study the geometry of the framed GW vertex

Ṽ •µ (a) in Section 5.2. In particular, we develop a set of bilinear equations relating the GW

vertex to generating functions of certain rubber integrals. In Section 5.2.5, we interpret

these rubber integrals in terms of wreath Hurwitz numbers and apply the Burnside formula

to write the bilinear relations in terms of the characters of the generalized symmetric group

Zn o Sd. We then show in Sections 5.2.6 and 5.3 that these relations uniquely determine the

GW vertex. Sections 5.4, 5.5, and 5.6 are devoted to proving that the DT vertex also satisfies

these bilinear relations. In Section 5.4, we reinterpret the main results from Chapter 4 in the

current context and we recall a hook-length formula from [24] and [48] which relates the loop

93



Schur functions to the framed DT vertex P̃λ(a). In Section 5.5, we study the representation

theory of Zn oSd where the main tool is the wreath Fock space. Finally, in Section 5.6 we put

everything together to prove Theorem 5.7. In Section 5.7 we use the gluing rules developed

Chapter 2 and [8] to show how the GW/DT correspondence for local Zn-gerbes over P1

follows from Theorem 5.7.

5.1. Definitions and Notation

In this section we set up notation which will be used throughout the chapter and we give

a precise statement of the main results.

5.1.1. Partitions. For each positive integer n we fix a generator of the cyclic group

Zn =
〈
ξn := e

2π
√
−1
n

〉
.

When no confusion arises, we write the generator simply as ξ. It is well known that n-tuples

of partitions naturally correspond to conjugacy classes and irreducible representations of

Zn o Sd, see eg. [44]. We will use µ and ν to denote n-tuples of partitions corresponding to

conjugacy classes and reserve λ and σ to refer to irreducible representations. We let χλ(µ)

denote the value of the character of the irreducible representation λ on the conjugacy class

µ.

Consider the n-tuple of partitions

µ =
(

(d0
1, ..., d

0
l0

), ..., (dn−1
1 , ..., dn−1

ln−1
)
)

with dij ∈ N (we assume when using this notation that di1 ≥ di2 ≥ ...). Let µi = (di1, ..., d
i
li
)

denote the partition indexed by i and let µtw correspond to the n-tuple of twisted partitions
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(∅, µ1, ..., µn−1). At times it will be convenient to write µ as a multiset {ξidij} where the

power of ξ keeps track of which µi the dij came from. Let l(µ) :=
∑
li denote the length

of µ. Set |µi| :=
∑

j d
i
j and |µ| :=

∑
|µi|. Let µ denote the underlying partition of µ that

forgets the Zn decorations. We define −µ := {ξ−idij}, ie. it is the n-tuple of partitions with

opposite twistings. We also define

zµ := |Aut(µ)|
∏

ndij

to be the order of the centralizer of any element in the conjugacy class of µ.

Suppose λ = (λ0, ..., λn−1). Via n-quotients (described explicitly in Section 5.5.2) λ can

be identified with a partition of nd where d = |λ|. We denote this corresponding partition by

λ̄. We write λ̄ = {(i, j)} where i indexes the rows and j indexes the columns of the Young

diagram corresponding to λ̄. We will often think of λ̄ as a colored Young diagram where the

box (i, j) has color j − i mod n. We denote the boxes with color k by λ̄[k]. For � ∈ λ̄, we

let hk(�) denote the number of color k boxes in the hook defined by � and we define

nk(λ̄) :=
∑
i

(i− 1)(# of color k boxes in the ith row).

We let γ denote a tuple of nontrivial elements in Zn. We define mi(γ) to be the number

of occurrences of ξi ∈ Zn in γ.

5.1.2. Gromov-Witten Theory. Given µ and γ as above, let Mg,γ+µ(BZn) denote

the moduli stack of stable maps to the classifying space with mi(γ) + li(µ) marked points

twisted by ξi. The marked points in µ are indexed by {(i, j) : 0 ≤ i < n, 1 ≤ j ≤ li} and we

denote the corresponding psi classes by ψi,j.
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For any a ∈ 1
n
Z, the special cubic Hodge integrals we are interested in are:

Vg,γ(µ; a) :=
(a+ 1)l0

|Aut(µ)|

n−1∏
i=0

li∏
j=1

∏dij−1

k=0 (adij + i
n

+ k)

(−1)d
i
jdij · dij!∫

Mg,γ+µ(BZn)

Λ0(1)Λ1(a)Λ−1(−a− 1)

δ(a)
∏n−1

i=0

∏li
j=1

(
1
dij
− ψi,j

)(5–1)

where

Λi(t) := (−1)rk

rk∑
j=0

(−t)rk−jλξ
i

j

with rk := rk
(
Eξi
)

and δ(a) is the function which takes value −a2 − a on the connected

component of the moduli space which parametrizes trivial covers of the source and takes

value 1 on all other components.

Remark 5.1. The parameter a is often referred to as the framing. In the notation of

Chapter 2, we have ~w = (1,−a− 1, a).

Introduce formal variables, u and xi to track genus and marks. Also introduce the

variables pµ with formal multiplication defined by concatenating the indexing partitions.

Then we define

V •µ (x, u; a) := exp

(∑
g,γ,ν

Vg,γ(ν; a)u2g−2+l(ν)x
γ

γ!
pν

)
[pµ]

where

xγ

γ!
:=

n−1∏
i=1

x
mi(γ)
i

mi(γ)!

and [pµ] denotes “the coefficient of pµ”. By definition, V •µ (x, u; a) is the one-leg An−1 orbifold

GW vertex defined in Chapter 2.
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Definition 5.2. The framed GW vertex is defined by

(5–2) Ṽ •µ (a) :=
n∏
i=1

(
√
−1ξi2n)liV •µ (x, u; a).

where ln := l0.

5.1.3. Donaldson-Thomas Theory. Let q0, ..., qn−1 be formal variables (always as-

sume that the index of qk is computed modulo n) and define q := q0 · · · qn−1. For λ̄ as above,

define

(5–3) Pλ(q0, ..., qn−1) :=
1∏

�∈λ̄

(
1−

∏
i q
hi(�)
i

) .
By Theorem 12 in [8], Pλ(−q0, ..., qn−1) is the reduced, multi-regular one-leg An−1 orbifold

DT vertex.

Remark 5.3. Notice the sign discrepancy between (5–3) and the DT vertex.

Definition 5.4. The framed DT vertex is defined by

(5–4) P̃λ(a) :=

((−ξ2n)|λ|
∏

ξl|λl|n

)n ∏
(i,j)∈λ̄

qj−ij−i

−aχλ̄(nd)
dim(λ)

q
d
2 (−1)d

∏
i

q
ni(λ̄)
i Pλ(q0, ..., qn−1)

Remark 5.5. χλ̄ is a character of Sdn whereas dim(λ) is the dimension of an irreducible

representation of Zn o Sd. As we will see in Section 5.5.4, the quotient
χ
λ̄(nd)

dim(λ)
is simply a

compact way of keeping track of a sign.

Remark 5.6. In Corollary 5.35, we relate P̃λ(0) to loop Schur functions.

5.1.4. The Correspondence. We will prove the following formula.
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Theorem 5.7. After the change of variables

q → e
√
−1u, qk → ξ−1

n e−
∑
i
ξ−ikn
n (ξi2n−ξ

−i
2n)xi (k > 0),

Ṽ •µ (a) =
∑
λ

P̃λ(a)
χλ(µ)

zµ

In Section 5.7, we use Theorem 5.7 to deduce the Gromov-Witten/Donaldson-Thomas

correspondence for local Zn-gerbes over P1.

Theorem 5.8. Let X be a local Zn-gerbe over P1 and let GW (X ) and DT ′mr(X ) denote

the GW potential and the reduced, multi-regular DT potential of X , respectively. After the

change of variables

q → −e
√
−1u, qk → ξ−1

n e−
∑
i
ξ−ikn
n (ξi2n−ξ

−i
2n)xi (k > 0),

GW (X ) = DT ′mr(X ).

Remark 5.9. Notice the sign difference in the change of variables of Theorems 5.7 and

5.8 – this difference is an artifact of Remark 5.3.

Remark 5.10. The change of variables in Theorems 5.7 and 5.8 is predicted by Iritani’s

stacky Mukai vector [34] and previously appeared in [65]. We thank Jim Bryan for explaining

this change of variables to us.

5.2. Geometry

In this section we set up auxilary integrals on moduli spaces of relative maps into P1-

gerbes in order to obtain bilinear relations between the vertex Ṽ •µ (a) and certain rubber
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integrals H̃•ν,µ(a). The rubber integrals in H̃•ν,µ(a) can be interpreted as wreath Hurwitz

numbers and can be computed via Burnside’s formula in terms of the represenation theory

of the wreath product Zn o Sd. We use this interpretation to show that the localization

relations uniquely determine Ṽ •µ (a) from H̃•ν,µ(a). The method of localizing maps into gerbes

in order to obtain useful relations of Hodge integrals first appeared in [13] where it was used

to compute the GW invariants of [C3/Z3].

5.2.1. Cyclic Gerbes over P1. Cyclic P1 gerbes will be important both for the local-

ization computations in Section 5.2.4 and in the GW/DT comparisons in Section 5.7. We

briefly collect the necessary details here. For each line bundle O(−k) with 0 ≤ k < n, we

can define a P1-gerbe Gk with isotropy group Zn and an orbifold line bundle Lk as follows.

Definition 5.11. The gerbe Gk is defined by pullback

Gk −−−→ BC∗y yλ→λn
P1 O(−k)−−−→ BC∗

and Lk is defined to be the line bundle parametrized by the top map.

Note that the numerical degree of Lk is −k/n and the action of Zn on the fibers is given

by multiplication by ξn (cf. Section 2.1.1).

The Gk are only distinct if we choose an isomorphism of each isotropy group with Zn. In

other words, for each φ ∈ Aut(Zn), we obtain an equivalence φ̃k : Gk
∼=−→ Gφ(k) for each k.

However, it is not true in general that φ̃∗k
(
Lφ(k)

)
= Lk. This fact will be important in our

discussion of 3-fold targets in Section 5.7.

One of the most useful aspects of localizing maps of curves into P1 gerbes is that it allows

us to control the orbifold structure over 0 and ∞. To make this precise, let C be an orbifold
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with coarse space P1 and orbifold structure only at 0 and ∞. Let f : C → Gk be a C∗ fixed

degree d map with twisting k0 at 0 and k∞ at ∞. Then

k∞ = −dk − k0 mod n.

A more general characterization of this property was given in Section 2.1.1. To keep track

of this twisting compatibility, we make the following definition.

Definition 5.12. For a decorated partition µ = {ξidij}, we define the involution gk(µ)

by

gk(µ) := {ξdijk−idij}

If f is a C∗ fixed map from a disjoint union of orbifold P1s with degree and twisting over

0 given by µ, then the degree and twisting over∞ is determined by −gk(−µ) (the convention

with signs seems cumbersome at the moment but it will become natural in later formulas).

5.2.2. Auxilary Integrals. In this section we set up integrals on the moduli spaces

Mg,γ(Gk, µ[∞]) which parametrize maps with fixed ramification and isotropy profile over

∞. These moduli spaces were developed in [1]. The integrals we will investigate are the

following.

(A–1)
1

|Aut(µ)|

∫
Mg,γ(G0,µ[∞])

e(R1π∗((f̂
∗L0)(−D)⊕ f̂ ∗L∨0 (−1)))

where D is the locus of relative points on the universal curve with trivial isotropy and f̂

contracts the degenerated target and maps all the way to G0, and for 1 ≤ k ≤ n− 1

(A–2)
1

|Aut(µ)|

∫
Mg,γ(Gk,µ[∞])

e(R1π∗(f̂
∗Lk ⊕ f̂ ∗L∨k (−1))).
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5.2.3. Partial Evaluations. In certain cases, we can evaluate the integrals (A–1) and

(A–2) explicitly. We collect these computations here.

We begin with the first integral. As we will see in Section 5.2.4, (A–1) is equal to

Vg,γ(µ; 0). Therefore, we consider special choices of µ for which we can evaluate Vg,γ(µ; 0).

Recall that {d} denotes the n-tuple of partitions with one untwisted part. The following

evaluation will be extremely useful.

Lemma 5.13.

Vg,γ({d}; 0) = δ|γ|,0
(−1)d−1

n

∫
Mg,1

λg(dψ)2g−2.

Proof. By (5–1), Vg,γ({d}; 0) vanishes away from the locus of maps which parametrize

trivial covers. In particular, since γ consists of nontrivial elements in Zn, the cover can only

be trivial if γ = ∅. On the locus of maps which parametrize trivial covers, Eξ ∼= Eξ−1
∼= E1.

Therefore we can apply the Mumford relation to the integrand in the definition of Vg,∅((d); 0).

The lemma follows by pushing forward to Mg,1 which is a degree 1
n

map. �

Corollary 5.14.

V •µ (0) =

(
1

zµ0

l0∏
j=1

(−1)d
0
j−1

2
csc

(
d0
ju

2

))
V •µtw(0)

Proof. By (5–1), the only nonzero vertex terms Vg,γ(µ, 0) with µ0 6= ∅ are those with

l0 = 1 – these invariants were computed in Lemma 5.13. The evaluations of Lemma 5.13

can be packaged using the Faber-Pandharipande identity ([25]):

∑
g

(∫
Mg ,1

λgψ
2g−2

)
t2g =

t

2
csc

(
t

2

)
.
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The result then follows by passing from the connected invariants to the disconnected ones

by exponentiating. �

From these evaluations, we see that the a = 0 vertex is completely determined once we

know the contributions coming from partitions µ with µ0 = ∅.

For the integral (A–2), we obtain the following vanishing result.

Lemma 5.15. The integral (A–2) vanishes if any of the parts of µ are untwisted.

Proof. The integral vanishes by dimensional reasons. The dimension of the moduli

space is |µ| + 2g − 2 + |γ| + l(µ). The degree of the integrand is |µ| + 2g − 2 + |γ| + l(µtw)

which can be computed by the orbifold Riemann-Roch formula ([2] - Theorem 7.2.1). �

5.2.4. Bilinear Relations. We now compute the integrals (A–1) and (A–2) via lo-

calization. Beginning with (A–1), we give the target the standard C∗ action with weight 1

(−1) on the fibers of the tangent bundle over 0 (∞). This defines a C∗ action on the moduli

space by postcomposing the map with the action. In order to choose an equivariant lift of

the integrand, we lift the action from the target to the bundles T (−∞), L∨0 , and L0(−1) so

that C∗ acts on the fibers over 0 and ∞ with weights summarized in Table 5.1.

Table 5.1. Weights of the torus action.

T (−∞) L0 L∨0 (−1)
0 1 a −a− 1
∞ 0 a −a

Each fixed locus of the torus action on the moduli space can be encoded by a bipartite

graph Γ with white (black) vertices corresponding to the connected components of f̂−1(0)

(f̂−1(∞)). The vertices and edges are decorated with the following data:
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• Each vertex v is labeled with a tuple γv of nontrivial elements in Zn corresponding to

the twisted marks on that component and an integer gv corresponding to the genus.

• Each edge e is labeled with a complex number (ξkede) which induces a n-tuple of parti-

tions νv ∈ Conj(Zn o Sdv) at each white vertex and −νv ∈ Conj(Zn o Sdv) at each black

vertex.

• In addition, each black vertex is labeled with a n-tuple of partitions µv such that |µv| =

|νv| and the union of all µv is µ.

To a white vertex, we associate the contribution

Cont(v) = Vgv ,γv(νv; a)

and to a black vertex we associate the contribution

Cont(v) =
(−1)l0(νv)+g−1+

∑
i 6=0

n−i
n

(mi(γv)+li(µv)+ln−i(νv))(a)2gv−2+|γv |+l(µv)+l(νv)

|Aut(νv)|

·

l(νv)∏
i=1

ndi

∫
Mgv,γv (G0;−νv [0],µv [∞])//C∗

−(−ψ0)2gv−3+|γv |+l(νv)+l(µv),

where ψ0 is the target psi class. By the localization formula for orbifold stable maps we

compute the integral

(A–1) =
1

|Aut(µ)|
∑

Γ

1

|Aut(Γ)|
∏
v

Cont(v).

Remark 5.16. In the simplification of the black vertex contribution, we used the Zn-

Mumford relation ([11]), namely:

Λ1(a)Λ−1(−a) = (a)rk(Eξ)(−a)rk(Eξ−1 )
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where the ranks can be computed by the orbifold Riemann-Roch formula.

Setting a = 0, we observe that the contributions from black vertices vanish and the

integral is equal to Vg,γ(µ; 0).

Define the rubber integral generating function

Hν,µ(x, u) :=
1

|Aut(ν)||Aut(µ)|
∑
g,γ

∫
M
ψ
r+|γ|−1
0 ur

xγ

γ!

where r := 2g − 2 + l(µ) + l(ν), M is the space of relative maps into the rubber target:

Mg,γ(G0; ν[0], µ[∞])//C∗.

For notational convenience, we define

H̃•ν,µ(a) := exp
(
Hν,µ(aξ−1

2n x1, ..., aξ
1−n
2n xn−1,

√
−1au)

)

The above localization computations amount to the following bilinear relations between

V and H:

(R–1) Ṽ •µ (0) =
∑
|ν|=|µ|

Ṽ •ν (a)zνH̃
•
−ν,µ(a).

Remark 5.17. Notice that the −ν appearing in the rubber integrals is equal to g0(ν)

defined in Definition 5.12.

We also compute (A–2) via localization. Again we equip the moduli space with a C∗

action via the standard C∗ action on the target. We lift the integrand with the choice of

linearizations summarized in Table 5.2.
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Table 5.2. Weights of the torus action.

T (−∞) Lk L∨k (−1)
0 1 0 −1
∞ 0 k/n −k/n

The localization computation of (A–2) is nearly identical to that of (A–1) and leads to

the relations

(R–2) 0 =
∑
|ν|=|µ|

Ṽ •ν (0)zνH̃
•
gk(ν),µ

(
k

n

)

where µ is any partition with at least one untwisted part.

5.2.5. Wreath Hurwitz Numbers. In the non-orbifold case, it was shown in [42, 43]

that certain rubber integrals can be interpreted in terms of double Hurwitz numbers. In this

section, we generalize their result to the orbifold case.

Hurwitz numbers classically count degree d ramified covers of Riemann surfaces with

monodromy around the branch points prescribed by conjugacy classes in Sd. Cyclic wreath

Hurwitz numbers are defined to be analogous counts of degree dn ramified covers where the

monodromy is prescribed by conjugacy classes µ in Zn o Sd. Since Zn is in the center of

Zn o Sd, such covers have a natural Zn action and the quotient is a classical Hurwitz cover

with monodromy given by the underlying partitions µ.

We define now the particular wreath Hurwitz numbers which arise in our context.

Definition 5.18. Let Hg,γ
ν,µ be the automorphism-weighted count of wreath Hurwitz

covers f : C → P1 where the branch locus consists of a set of |γ|+ r+ 2 fixed points (we fix

the last two points at 0 and ∞) and the maps satisfy the following conditions:

• The quotient C/Zn is a connected genus g curve,
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• The monodromy around 0 and ∞ is given by ν and µ,

• The monodromy around the branch point corresponding to γi ∈ γ is given by the

conjugacy class {γi, 1, ..., 1},

• The monodromy around the r additional branch points is given by the conjugacy class

{2, 1, ..., 1}.

Remark 5.19. Here we use the multiset notation for n-tuples of partitions introduced

in Section 5.1.1.

The next theorem relates the rubber integrals which arose in the localization computa-

tions to the wreath Hurwitz numbers Hg,γ
ν,µ .

Theorem 5.20.

Hg,γ
ν,µ =

r!

|Aut(ν)||Aut(µ)|

∫
Mg,γ(G0;ν[0],µ[∞])//C∗

ψ
r−1+|γ|
0 .

Proof. Via the forgetful map F : Mg,γ(G0; ν[0], µ[∞]) → Mg,n(P1; ν[0], µ[∞]), we ob-

tain a branch morphism Br : Mg,γ(G0; ν[0], µ[∞]) → SymrP1 ∼= Pr by postcomposing F

with the usual branch morphism. For each of the n (twisted) marked points, we also obtain

maps ẽvi :Mg,γ(G0; ν[0], µ[∞]) → P1 by postcomposing the usual evaluation map with the

natural map to P1. Then the wreath Hurwitz numbers can be expressed as

(5–5) Hg,γ
ν,µ =

1

|Aut(ν)||Aut(µ)|

∫
Mg,γ(G0;ν[0],µ[∞])

Br∗(pt) ·
∏

ẽv∗i (pt).

It is left to show that

∫
Mg,γ(G0;ν[0],µ[∞])

Br∗(pt) ·
∏

ẽv∗i (pt) = r!

∫
Mg,γ(G0;ν[0],µ[∞])//C∗

ψ
r−1+|γ|
0
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and we accomplish this via localization.

We equip the moduli space with a torus action by fixing the C∗ action on the target

t · [z0 : z1] = [z0 : tz1] so that the tangent bundle is linearized with weights 1 at 0 =

[0 : 1] and −1 and ∞ = [1 : 0]. The isomorphism Pr = P(H0(P1,O(r))) → SymrP1

is given by s → Div(s) where the basis 〈zr0, zr−1
0 z1, ..., z

r
1〉 for H0(P1,O(r)) corresponds

to the homogeneous coordinates (y0 : y1 : ... : yr). We equip Pr with the torus action

t · (y0 : y1 : ... : yr) = (y0 : ty1 : ... : tryr) which makes Br an equivariant map. We

lift [pt] ∈ H2r(Pr) to
∏r−1

i=0 (H + i~) ∈ H2r
C∗(Pr) where ~ is the equivariant parameter. The

preimage of this lift is the locus of maps where the simple ramification points map to ∞.

Likewise we lift

ẽv∗i (pt) = c1(ẽv∗iO(1))

by linearizing O(1) with weights 0 at 0 and −1 at ∞.

With these choices of linearizations, we see that the integrand vanishes on all fixed loci

where any of the n + r points with nontrivial monodromy map to 0. This leaves exactly

one fixed locus where the target expands over ∞ and everything interesting happens over

the expansion. On this locus, the integrand specializes to (−~)r+nr! and the inverse of the

equivariant Euler class of the normal bundle is (−~− ψ0)−1.

Therefore the contribution, and hence the integral in (5–5), is equal to

r!

∫
Mg,γ(G0;ν[0],µ[∞])//C∗

ψr+n−1
0 .

�
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Corollary 5.21.

H•ν,µ(x, u) = exp

(∑
g,γ

Hg,γ
ν,µ

ur

r!

xγ

γ!

)

=
∑
g,γ

H
χ,γ•
ν,µ

ur

r!

xγ

γ!

where Hχ,γ•ν,µ is the wreath Hurwitz number with possibly disconnected covers.

By the Burnside formula ([23]), we compute

H
χ,γ•
ν,µ =

∑
|λ|=d

(fT (λ))r
∏

(fi(λ))mi(γ) χλ(µ)

zµ

χλ(ν)

zν

where fT (λ) and fi(λ) are the central characters defined by

fT (λ) :=
nd(d− 1)χλ({2, 1, ..., 1})

2 · dimλ

and

fi(λ) :=
dχλ({ξi, 1, ..., 1})

dimλ
.

We thus obtain the following form for the generating function of wreath Hurwitz numbers:

(5–6) H•ν,µ(x, u) =
∑
|λ|=d

χλ(µ)

zµ

χλ(ν)

zν
efT (λ)u+

∑
fi(λ)xi .

Using the fact that χλ(−ν) = χλ(ν), orthogonality of characters gives us the following

relations:

(5–7) H•ν,µ(x+ y, u+ v) =
∑
σ

H•ν,σ(x, u)zσH
•
−σ,µ(y, v)
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and

(5–8) H•ν,−µ(0, 0) =
1

zµ
δν,µ.

The relations (5–7) and (5–8) also have a geometric meaning – (5–7) is the degeneration

formula for the target P1 where x and y keep track of whether the corresponding point

of ramification maps to one side of the node or the other, and (5–8) counts covers with

ramification only over 0 and ∞.

5.2.6. Invertibility. In this section we show that the relations (R–1) can be inverted

explicitly. We also state the main result concerning the relations (R–2) but we defer the

proof to the next section.

The next lemma follows immediately from Equations (5–7) and (5–8).

Lemma 5.22. Framing dependence in the conjugacy basis:

Ṽ •µ (a) =
∑
|ν|=|µ|

Ṽ •ν (0)zνH̃
•
−ν,µ(−a)

In particular, Lemma 5.22 determines the general framed vertex from the a = 0 vertex

and characters of Zn o Sd.

Define

P̂λ(a) :=
∑
µ

Ṽ •µ (a)χλ(−µ)

or equivalently

Ṽ •µ (a) =
∑
λ

P̂λ(a)
χλ(µ)

zµ
.

Then Lemma 5.22 is equivalent to the following.
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Lemma 5.23. Framing dependence in the representation basis:

P̂λ(a) = e−
√
−1afT (λ)u−a

∑
ξ−i2nfi(λ)xiP̂λ(0)

Therefore, once we know that P̃λ(a) and P̃λ(0) are related by the exponential factor of

Lemma 5.23, we only need to prove Theorem 5.7 for the case a = 0.

The relations (R–2) are significantly more difficult to work with and do not admit a

convenient inverse as far as we know. Nonetheless, we prove that they are invertible.

Theorem 5.24. Relations (R–2) uniquely determine Vµ(0) from the partial evaluations

of Corollary (5.14) and characters of Zn o Sd.

The proof of Theorem 5.24 is rather involved and we defer it to the next section. In the

meantime, we gather formally the reductions which we have made while the formulas are

fresh in our minds.

Reduction 5.25. To prove Theorem 5.7, it suffices to check that the following properties

hold after the prescribed change of variables.

(I) The framing factors are consistent:

((−ξ2n)|λ|
∏

ξl|λl|n

)n ∏
(i,j)∈λ̄

qj−ij−i

a

= e
√
−1afT (λ)u+a

∑
ξ−i2nfi(λ)xi .

(II) P̃λ(0) satisfy the partial evaluations of Corollary 5.14:

∑
|λ|=|µ|

P̃λ(0)
χλ(µ)

zµ
=

(
1

zµ0

l0∏
j=1

√
−1(−1)d

0
j

2
csc

(
d0
ju

2

)) ∑
|σ|=|µtw|

P̃σ(0)
χσ(µtw)

zµtw

 .

110



(III) P̃λ(0) satisfy the relations (R–2) for all µ with at least one untwisted part:

∑
ν

(∑
λ

P̃λ(0)
χλ(ν)

zν

)
zν

(∑
σ

χσ(gk(ν))

zgk(ν)

χσ(µ)

zµ
e
k
n

(
√
−1fT (σ)u+

∑
ξ−i2nfi(σ)xi)

)
= 0.

Proof. If P̃λ(0) satisfies (II) and (III), then Corollary 5.14 and Theorem 5.24 imply

that Theorem 5.7 is true in the case a = 0. The general framed correspondence then follows

from the definition of the framed DT vertex and Lemma 5.23. �

The proofs of identities (I) - (III) are given in Section 5.6 after developing the necessary

combinatorial and representation theoretic identities in Sections 5.4 and 5.5.

5.3. Linear Algebra

This section is devoted to the proof of Theorem 5.24. By Corollary 5.14, the only vertices

left to be determined are those V •ν (0) with νtw = ν. So let us rewrite (R–2) as

(R–2’) 0 =
∑
|ν|=|µ|

Ṽ •νtw(0)Ṽ •ν0(0)zνH̃
•
gk(ν),µ

(
k

n

)
.

Let us begin by reinterpreting relations (R–2’) in terms of matrix equations. Define the

vector αd = (Ṽ •ν (0)) with indexing set {ν : |ν| ≤ d, ν = νtw} and the vector

βd =

− ∑
|τ |=|µ|,τ=τ0

Ṽ •τ (0)zτH̃
•
gk(τ),µ

(
k

n

)
with indexing set {(µ, k) : |µ| ≤ d, µ 6= µtw, k 6= 0}. We introduce a matrix

Φd(u;x) = (Φ
(µ,k),ν
d (u;x))(µ,k),ν
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with the same indexing sets defined by

Φ
(µ,k),ν
d (u;x) =


0, if|ν| > |µ|

zνH̃
•
gk(ν),µ

(
k
n

)
, if|ν| = |µ|∑

|τ |=|µ|−|ν|,τ0=τ Ṽ
•
τ (0)z(τtν)H̃

•
gk(τtν),µ

(
k
n

)
, if|ν| < |µ|

Then the collection of relations (R–2’) is equivalent to the collection of matrix equations

Φd(u;x)αd = βd

Our task is to show that Φd(u;x) has full (column) rank for all d.

5.3.1. Matrix Reductions. We begin by making a sequence of reductions. First note

that Φd is block upper triangular and decomposes as in Figure 5.1 where Φ′d is defined by

restricting the indexing sets to partitions of size d..

Φd =


Φ′d ∗ · · · ∗
0 Φ′d−1

. . .
...

...
. . . . . . ∗

0 · · · 0 Φ′1


Figure 5.1. Decomposition of Φd.

Therefore, it suffices to prove that Φ′d has full rank and to do this we need only prove

that the specialization Φ̃d := Φ′d|x2=...=xn−1=u=0 has full rank.

Remark 5.26. By setting u = 0, notice that Φ̃d is a generating function of wreath

Hurwitz numbers counting covers for which the Zn quotient is a disjoint union of P1s, each

one fully ramified over 0 and ∞. Moreover, by setting x2 = · · · = xn−1 = 0, the only

nontrivial monodromy away from 0 and ∞ is given by conjugacy classes {ξ, 1, . . . , 1}.
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By the first part of Remark 5.26, if µ 6= ν, then the entry Φ̃
(µ,k),ν
d = 0. This implies that

Φ̃d is block diagonal and decomposes as in Figure 5.2 where Φ̃τ is defined by restricting the

indexing sets to a single underlying partition ν = µ = τ of size d.

Φ̃d =


Φ̃τ1 0 · · · 0

0 Φ̃τ2
. . .

...
...

. . . . . . 0

0 · · · 0
. . .


Figure 5.2. Decomposition of Φ̃d.

Therefore, we have reduced our task to showing that Φ̃τ has full rank for a fixed partition

τ .

To this end, fix τ once and for all and write τ = (τ1, ..., τl) with nonincreasing parts. We

henceforth suppress τ from the notation and write Φ̃ for Φ̃τ . We also write x for x1 when

no confusion arises.

In order to prove that Φ̃ has full rank, we will restrict the row index to a suitable subset

and show that the resulting submatrix is invertible. In order to do this, we must first

introduce some subtle notation.

5.3.2. Ordering Convention. We introduce an order on the parts of each µ with

µ = τ . Begin by defining ci := gcd(τi, n). If µ = τ , we can write µ as the multiset

µ = {ξtiτi} where ti ∈ {0, ..., n − 1}. We define t̄i := ti(mod ci) and we set (τi, ti) > (τj, tj)

if one of the following is true

(1) τi > τj, or

(2) τi = τj and t̄i < t̄j, or

(3) τi = τj and t̄i = t̄j and ti < tj.
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Then µ can be written uniquely as

µ = ((τ1,m1), . . . , (τl,ml))

where the pairs are nonincreasing. This ordering convention will be important in defining

the square submatrix Φ̂ in Section 5.3.3 and in proving its invertibility in Section 5.3.4. At

present, we use the ordering convention to define

µ̃ := µ \ (τ1,m1)

and we define the twisting partition of µ to be

t(µ) := (m1, ...,ml).

5.3.3. A Square Submatrix. We now explain a particular way to reduce the row index

of Φ̃ to a suitable subset so that the resulting submatrix Φ̂ is square. We will show in Section

5.3.4 that Φ̂ is invertible which proves that Φ̃ has full rank.

For d ≥ 1 and h ∈ {1, ..., n − 1}, let c := gcd(n, d) and h̄ = h(mod c) ∈ {0, ..., n − 1}.

We define

Σd,h := {k ∈ {1, · · · , n− 1}| − h+ dk = −h̄(mod n)}

Remark 5.27. h̄ has the following interpretation: For each k ∈ {1, ..., n − 1} consider

the unique C∗ fixed map from an effective orbifold P1 with orbifold ramification (d, h) at 0.

Then the twisting over ∞ is fixed (c.f. Section 5.2.1) and h̄ is the smallest possible twisting

at ∞ as we vary k. Moreover, Σd,h is exactly the set of k for which the minimal twisting is

obtained.
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Notice that

|Σd,h| =


c− 1 if h ∈ {1, . . . , c− 1}

c else.

The set Σd,h has a natural order as a subset of {1, ..., n − 1}, so we can write Σd,h =

{k1, ..., k|Σd,h|}. We define

kd(h) :=


kh̄ ∈ Σd,h if h ∈ {1, ..., c− 1}

kh̄+1 ∈ Σd,h else.

Lemma 5.28. kd(−) defines a bijection on the set {1, ..., n− 1}.

Proof. We show that the map is injective. Suppose kd(h) = kd(h
′). This implies that

there is some k ∈ Σd,h ∩Σd,h′ . Chasing the definitions, this implies that h− h̄ = h′− h̄′(mod

n). In particular, if we define the sets

(5–9) Di
d := {j ∈ {1, . . . , n− 1} : (i− 1)c ≤ j < ic},

then h and h′ belong to the same Di
d and it follows that Σd,h = Σd,h′ . But for a fixed i, each

element in Di
d has different reduction mod c. Since kh̄ = kh̄′ ∈ Σd,h = Σd,h′ , then we must

have h̄ = h̄′ implying that h = h′. �

We saw in the proof of Lemma 5.28 that h, h′ ∈ Di
d if and only if Σd,h = Σd,h′ . For this

reason, we adopt the notation Σi
d.

We are now ready to cut down the rows in the matrix Φ̃.
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Using the above ordering convention, for any ν with νtw = ν and ν = τ , we can write

ν = ((τ1, h1), . . . , (τl, hl).

We define Φ̂ to be the matrix obtained from Φ̃ by restricting the row index to the set

{(µ, k) : m1 = 0, k = kτ1(h1), µ̃ = −gk(ν̃) for some ν = νtw}.

The fact that Φ̂ is square follows from Lemma 5.28.

5.3.4. The Invertibility of Φ̂. To prove that Φ̂ is invertible over C((x)), we proceed

in two steps. We first define certain blocks Φ̂i
h in Φ̂ with the following properties:

(1) Each Φ̂i
h is invertible over C((x)).

(2) Each row and column of Φ̂ intersects exactly one Φ̂i
h.

(3) If f(x) is an entry in some Φ̂i
h and g(x) is an entry of Φ̂ in the same column, then

ordxf(x) ≤ ordxg(x).

If the inequality in (3) were strict, we would be done because the least degree term of the

determinant of Φ̂ would be a signed product of the least degree terms in the determinants

of the Φ̂i
h (by (2)) which are nonzero (by (1)). However, the inequality is not always strict

as we will see below. The second step is to use elementary matrix operations to take care of

terms where the inequality is not strict.

We now define the blocks Φ̂i
h. For h ∈ {1, ..., n− 1}l−1 and for 1 ≤ i ≤ n

c1
define

Bi
h = {h1 ∈ Di

τ1
, t(ν̃) = h}

Ci
h = {k ∈ Σi

τ1
, t(gk(−µ̃)) = h}.
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Then we define the sub-matrix Φ̂i
h by intersecting the indexing sets of Φ̂ with Bi

h and Ci
h.

Remark 5.29. The above definitions might seem a bit obscure, a priori, but the moti-

vation is simple. From Remark 5.26, we know that the wreath Hurwitz numbers encoded by

Φ̂ are rather simple. In particular, the Zn quotient of the cover is a disjoint union of P1s and

the only allowable monodromy over C∗ ⊂ P1 are x1 points. For a fixed ν ∈ Bi
h, the pairs

(µ, k) ∈ Ci
h were chosen to be exactly those pairs such that there exists a wreath cover with

the following three properties:

(1) The Zn monodromy over 0 and ∞ for the ith P1 is identified with −hi + τik and mi,

respectively,

(2) The Zn monodromy over the first C∗ ⊂ P1 has the minimal possible number of x1

points as we vary over all choices (µ, k) (this minimal number is h̄1), and

(3) The Zn monodromy over the other C∗s is trivial.

If we vary ν ∈ Bi
h, the set of (µ, k) with these properties remains constant and they define

the matrix Φ̂i
h.

Remark 5.30. That each column and each row of Φ̂ intersects exactly one Φ̂i
h follows

from the fact that Diτ1 and Σi
τ1

both partition the set {1, . . . , n− 1}.

Lemma 5.31. Let Φ̂i
h denote the matrix of leading terms in Φ̂i

h. Then Φ̂i
h is invertible.

In particular, Φ̂i
h is invertible over C((x)).

Proof. By Remark 5.29, the lowest degree term of the ((µ, k), ν) entry of Φ̂i
h has coef-

ficient

(5–10) zν
(ξ−1

2n
k
n
)h̄1

h̄1!
H

2l,γ(h1)•
µ,gk(ν)
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where h̄1 is independent of (µ, k) ∈ Ci
h and γ(h1) is a h̄1-tuple of ξ’s. The wreath Hurwitz

numbers appearing in (5–10) are easy to compute, explicitly we have

zν
(ξ−1

2n
k
n
)h̄1

h̄1!
H

2l,γ(h1)•
µ,gk(ν)

= zν
(ξ−1

2n
k
n
)h̄1

h̄1!

1

|Aut(µ)|
ν h̄1

1

l∏
i=1

1

nτi

=
|Aut(ν)|
|Aut(µ)|

(ξ−1
2n

k
n
τ1)h̄1

h̄1!

Therefore det
(

Φ̂i
h

)
is equal to

 ∏
(µ,k)∈Cih

1

|Aut(µ)|

∏
ν∈Bih

|Aut(ν)|(ξ−1
2n ν1x)h̄1

h̄1!

 det

((
k

n

)h̄1
)

(µ,k)∈Cih,ν∈B
i
h

This is nonzero because det
((

k
n

)h̄1
)

is the determinant of a Vandermonde matrix with

different k in different rows. �

Theorem 5.24 now follows from the next result.

Lemma 5.32. Φ̂ is invertible over C((x)).

Proof. For any fixed column αν of Φ̂, there is a unique sub-matrix Φ̂i
h that intersects

with this column. The degrees of the entries that lie in the intersection of αν and Φ̂i
h are

h̄1. By the ordering convention introduced above, the degrees of the other entries of αν are

greater or equal to h̄1 (note that m1 is always trivial). The equality holds for an entry in

the row indexed by (µ, k) /∈ Ci
h only if the following conditions are satisfied:

(1) There exists a j > 1 such that τj = τ1, h̄1 = h̄j, and h1 < hj,

(2) −hj + τjk = −h̄j(mod n), and
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(3) gk(−µ̃) = ν̂ where ν̂ = ν \ {(τj, hj)}.

If these conditions are met for some (µ, k) /∈ Ci
h, then there is a unique sub-matrix Φ̂i′

h′

that intersects this row. By definition, h′ = t(ν̂) and i′ is determined by the property k ∈ Σi′
τ1

.

It is not hard to see that every other entry that lies in the intersection of αν and a row of

Φ̂i′

h′ also has minimal degree h̄1. See figure 5.3



∗ · · · · · · · · ·
Φ̂i
h ∗ · · · · · · · · ·

∗ · · · · · · · · ·
∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ xh̄1 ∗
...

...
... ∗ Φ̂i′

h′

∗ ∗ xh̄1 ∗


Figure 5.3. General layout of Φ̂i

h and Φ̂i′

h′ .

For every column αν′ that intersects Φ̂i′

h′ , we know ν̃ ′ = ν̂. In particular, h̄′2 = h̄1 implying

that h̄′1 ≤ h̄1 by the ordering convention. If h̄′1 = h̄1, then h̄′1 = h̄j (by (1)) and h′1, hj ∈ Di′
τ1

(the latter inclusion follows from (2)). This would imply that h′1 = h′j, i.e. ν = ν ′ – a

contradiction. Therefore we conclude that h̄′1 < h̄1 = h̄′2. In other words, condition (1)

can never be satisfied by ν ′. In particular, the degrees of the entries in αν′ which are not

contained in Φ̂i′

h′ are strictly greater than h̄′1.

By Lemma 5.31, we can transform the matrix Φ̂i′

h′ to a matrix Ψi′

h′ such that Ψi′

h′ |x=0 is

the identity matrix. More specifically, we first multiply each column by x−h̄
′
1 where ν ′ is the

index of the column, then we apply elementary column operations (over C) to reduce the

matrix of (constant) leading terms to the identity. Extending these column operations to

the columns of Φ̂, we can replace the sub-matrix Φ̂i′

h′ by Ψi′

h′ in such a way that the following

two properties are satisfied (see Figure 5.4):
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(a) For each column intersecting Ψi′

h′ , the entries which do not lie in Ψi′

h′ have vanishing

constant terms, and

(b) The transformed matrix is invertible over C((x)) if and only if the original matrix is

invertible over C((x)).



∗
Φ̂i
h ∗ O(x)

∗
∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ xh̄1 ∗
...

...
... ∗ Ψi′

h′ = I +O(x)

∗ ∗ xh̄1 ∗


Figure 5.4. After transforming the matrix Φ̂i′

h′ .

We can now use the columns intersecting Ψi′

h′ to cancel the degree h̄1 terms of the entries

that lie in the intersection of αν and rows of Ψi′

h′ . By property (a), this does not affect

the degree h̄1 terms in the entries of αν which do not lie in rows which intersect Ψi′

h′ . In

particular, the smallest degree term in det
(

Φ̂i
h

)
is not affected. We can repeat this process

until the least degree terms in each column are contained in the sub-matrix Φ̂i
h (or Ψi

h if it

has been transformed). Call the resulting matrix Ψ. Then the least degree term of det(Ψ)

is the product of least degree terms of determinants of matrices of the form Φ̂i
h or Ψi

h, all of

which are nonzero. Therefore Ψ is invertible over C((x)). By property (b), Φ̂ is invertible

over C((x)). �

5.4. Combinatorics

In this section, we investigate the framed Donaldson-Thomas vertex P̃λ(a) and relate it

to loop Schur functions.
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5.4.1. Loop Schur Functions. We refer the reader to Chapter 4 for the relevant

definitions of the functions sρ[n] and skρ[n]. In the current setting, we are only concerned

with the case where ρ = λ̄ arises from an n-tuple of partitions λ via n-quotients (cf. Section

5.5.2). This is equivalent to the following condition.

Definition 5.33. We call the colored Young diagram ρ balanced if |ρ[i]| = |ρ[j]| for all

i, j.

Denote by Sλ and Skλ the functions in n variables (q0, ..., qn−1) obtained by making the

substitution xi,j = qji in sλ̄[n] and sk
λ̄
[n], respectively. The following result appears in both

[24] and [48].

Lemma 5.34 ([24, 48]).

Sλ =

∏
i q
ni(λ̄)
i∏

�∈λ̄

(
1−

∏
i q
hi(�)
i

) .
As a consequence, we have the following identity:

Corollary 5.35.

P̃λ(0) =
χλ̄(n

d)

dim(λ)
q
d
2 (−1)dSλ.

Remark 5.36. Notice the specialization s0
ρ[n] = sρ[n], and hence similarly with S.

Since Skλ differs from Sλ only by a monomial factor, we have the following natural gen-

eralization of Corollary 5.35.

Lemma 5.37.

P̃λ(0) =
χλ̄(n

d)

dim(λ)
q
d
2 (−1)dSkλ

 ∏
(i,j)∈λ̄

qj−ij−i

−k
n

.
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5.4.2. Combinatorial Identities. We now rephrase the results from Chapter 4.

Theorem 5.38.

1

1− (q0...qn−1)l
Sλ =

∑
(−1)ht(σ̄\λ̄)Sσ

where the sum is over all ways of adding a length ln border strip to λ̄.

Theorem 5.39. For a fixed λ̄ and k 6= 0,

∑
(−1)ht(σ̄\λ̄)Skσ = 0

where the sum is over all ways of adding a length ln border strip to λ̄.

5.5. Representation Theory

In this section we investigate certain characters of the generalized symmetric group which

arose in Section 5.2.5. Our main tool is the wreath Fock space. We begin by recalling the

basic definitions and results concerning the usual Fock space.

5.5.1. The Infinite Wedge. The infinite wedge provides a convenient setting for

studying the representation theory of the symmetric group in terms of combinatorial ma-

nipulations of partitions and Maya diagrams. For a more thorough treatment of the infinite

wedge and some of its applications in Gromov-Witten theory, see for example [50, 51] or for

an application in double Hurwitz numbers, see [36].

Let V be the infinite vector space with spanning set indexed by half integers:

V :=
⊕
i∈Z

〈
i+

1

2

〉
C
.
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Definition 5.40. The infinite wedge
∧∞

2 V is the vector space

∞
2∧
V :=

⊕
(ik)

〈
i1 ∧ i2 ∧ ...

〉

where (ik) is a decreasing sequence of half integers such that

ik + k − 1

2
= c

for some constant c and k � 0. We call c the charge of the vector.

We will only be concerned with the subvector space spanned by vectors of charge 0. We

denote this space by
∧∞

2
0 V .

5.5.1.1. Maya Diagrams. The primary combinatorial tool for us will be Maya diagrams.

A Maya diagram is a collection of stones placed at the half integers such that the half integers

without stones are bounded below and the half integers with stones are bounded above. A

Maya diagram has charge zero if the number of stones at positive half integers is equal to

the number of negative half integers without stones.

The basis vectors of
∧∞

2
0 V can be identified with charge zero Maya diagrams canonically

as follows. Let S = {ik} where (ik) corresponds to a charge 0 vector. Then we canonically

obtain a charge zero Maya diagram from S by placing a stone in the ith place if and only if

i ∈ S.

5.5.1.2. Partitions. The charge zero basis vectors can also be canonically identified with

partitions. If we let α be the increasing sequence of half integers in S ∩ Q>0 and β the

increasing sequence of half integers in −(Sc ∩ Q<0), then (α|β) is the modified Frobenius

coordinate of a partition ρ. In other words, representing ρ as a Young diagram, αi is the
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number of boxes (half-boxes included) in the ith row to the right of the main diagonal and

βi is the number of boxes in the ith column below the main diagonal.

Equivalently, the partition ρ = (ρ1, ρ2, ...) is determined by writing the vector vS in the

following form.

vS = ρ1 − 1/2 ∧ ρ2 − 3/2 ∧ .....

To relate partitions to Maya diagrams, rotate the corresponding Young diagram counter-

clockwise by 135 and place 0 directly below the vertex. The stones in the Maya diagram lie

directly below outer edges of the Young diagram which have slope 1. This correspondence

is illustrated in Figure 5.5.

· · ·
9
2

7
2

5
2

3
2

1
2

|
−1
2
−3
2
−5
2
−7
2
−9
2

· · ·

Figure 5.5. Correspondence between the different combinatorial bases of
∧∞

2
0 V .

5.5.1.3. One Basis. With the above correspondences, we will think of
∧∞

2
0 V simultane-

ously as the vector space spanned by

• Sequences S of the half integers with charge 0,

• Maya diagrams with charge 0, or

• Partitions.

For simplicity, we will denote the basis elements by vρ keeping in mind that the partition ρ

corresponds canonically to a Maya diagram mρ and a set of half integers Sρ. We denote by
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v∅ the vacuum vector which is the vector corresponding to the trivial partition which has no

nonzero parts.

5.5.1.4. Operators. In order to relate the infinite wedge to the representation theory of

Sd, we define several operators on
∧∞

2
0 V via their action on basis elements vρ.

For any half integer k and basis element vρ, the operator Ek,k acts on vρ as follows:

Ek,kvρ =



vρ k > 0, k ∈ Sρ

−vρ k < 0, k /∈ Sρ

0 else.

For k a positive integer, the creation operator α−k acts on vρ as follows:

α−kvρ =
∑
τ

(−1)ht(τ\ρ)vσ

where the sum is over all ways of adding length k border strips to ρ. In terms of Maya

diagrams, the sum is over all ways of moving a stone k places to the left and the sign

corresponds to the number of stones jumped during such a move.

Recall that each partition ρ corresponds to an irreducible representation of Sd with

character χρ. Given a partition τ = (d1, ..., dl) corresponding to a conjugacy class in Sd, we

define the operator

α−τ :=
l∏

i=1

α−di

The following identity follows from the Murnaghan-Nakayama formula.

(5–11) α−τv∅ =
∑
ρ

χρ(τ)vρ.
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We also define the operator

FT :=
∑
k

k2

2
Ek,k.

If T is the conjugacy class of transpositions and fT (λ) := |T |χλ(T )
dim(λ)

, then each vλ is an

eigenvector of FT with eigenvalue fT (λ):

(5–12) FT · vλ = fT (λ)vλ.

5.5.2. Wreath Fock Space. The wreath product generalization of the Fock space

gives a combinatorial tool for manipulating the representation theory of the groups G o Sd.

These spaces and their corresponding operators have been developed in eg. [28, 35, 55]. We

merely focus on the cyclic case which is all we require. To that end, the wreath Fock space

can be defined as

Zn :=
⊗

{0,...,n−1}

∧ ∞
2

0 V.

Basis vectors correspond to n-tuples of partitions λ = (λ0, ..., λn−1) or, equivalently, n-tuples

of Maya diagrams.

In the wreath Fock space, there is an additional way by which we will distinguish a

basis element. Given an n-tuple of Maya diagrams, we can interlace them to get a single

Maya diagram by sending a stone in the kth place of the ith Maya diagram to position

n
(
k − 1

2

)
+ (i+ 1

2
) in the new Maya diagram. An example of this identification is shown in

Figure 5.6.

· · · | · · ·
· · · | · · ·
· · · | · · ·

←→ · · · | · · ·

Figure 5.6. A example of a 3-quotient.
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This new Maya diagram corresponds to a partition of nd which we denote λ̄. Reversing

this process is usually referred to as an n-quotient. It is well known that taking n-quotients

gives a bijection between balanced Young diagrams λ̄ (cf. Definition 5.33) and n-tuples of

partitions λ.

For any operator M on
∧∞

2
0 V and any integer 0 ≤ k ≤ n− 1, we define the operator Mk

to act on the wreath fock space Zn by acting as M on the kth factor and acting trivially on

all of the other factors.

Given λ, we can canonically identify it with an irreducible representation of Zn o Sd

with character χλ. Similarly, given an n-tuple of partitions µ = (µ0, ..., µn−1) with µk =

(dk1, ..., d
k
lk

), we can be canonically identify it with a conjugacy class. We have the following

important generalizations of (5–11) and (5–12):

(5–13)
n−1∏
k=0

lk∏
i=0

(
n−1∑
j=0

ξ−kjαj−dki

)
v∅ =

∑
λ

χλ(µ)vλ.

and

(5–14)

(
n
n−1∑
i=0

F iT

)
· vλ = fT (λ)vλ.

5.5.3. Central Characters. We now use the combinatorics of colored partitions and

Maya diagrams to study the central characters fi(λ) and fT (λ) which arose in the computa-

tions of Section 5.2.5.

Lemma 5.41. Let λ = (λ0, ..., λn−1) with |λi| = di. Then

(i) fi(λ) =
∑

j ξ
−ij
n dj

(ii) fT (λ) =
∑

(i,j)∈λ̄[0] j − i
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Proof. To prove identity (i), recall that

fi(λ) =
dχλ({ξi, 1d−1})

dim(λ)
=
dχλ({ξi, 1d−1})

χλ({1d})

where the exponent of 1 in the multiset denotes repetition. For µ = {1d}, the coefficient of vλ

in (5–13) can be interpreted as the number of ways to build the n-tuple of Young diagrams

λ = (λ0, ..., λn−1) one box at a time. Equivalently, this can be interpreted as the number

of standard Young tableaux of λ, ie. the number of ways to fill the boxes of the λi with

the numbers 1, ..., d with the property that numbers always increase along rows and down

columns. This is easily computed:

(5–15) χλ({1d}) =

(
d

d0, ..., dn−1

)∏
dim(λi)

where we use the fact that dim(λi) is the number of standard tableaux of λi.

On the other hand, for µ = {ξi, 1d−1}, the coefficient of vλ in (5–13) can be interpreted

as a weighted count of ways to build λ one box at a time, where the weight is ξ−ij if the first

box is a part of λj. This is also easily computed:

(5–16) χλ({ξi, 1d−1}) =
n−1∑
j=0

ξ−ijn

(
d− 1

d0, ..., dj − 1, ..., dn−1

)∏
dim(λi).

Identity (i) follows by dividing (5–16) by (5–15) and multiplying by d.

To prove identity (ii), begin by writing λ̄ = (α|β) in modified Frobenius notation (cf.

Section 5.5.1). Then the number of boxes in λ̄[0] to the right (below) the ith diagonal element

is given by
⌊
αi
n

⌋ (⌊
βi
n

⌋)
. If we compute the sum in (ii) over these

⌊
αi
n

⌋ (⌊
βi
n

⌋)
terms, we get

128



a contribution of

n+ 2n+ ...+ n
⌊αi
n

⌋ (
−n− 2n− ...− n

⌊
βi
n

⌋)
.

Therefore, the right side of the (ii) can be written as

(5–17)
∑

(i,j)∈λ̄[0]

j − i = n

∞∑
i=1

(⌊
αi
n

⌋2
+
⌊
αi
n

⌋
2

−
⌊
βi
n

⌋2
+
⌊
βi
n

⌋
2

)
.

To compute the left side of (ii), we consider equation (5–14). Via the n-quotient corre-

spondence described above, we can interpret vλ as a vector vλ̄ ∈
∧∞

2
0 . Under this correspon-

dence, the operator n
∑n−1

i=0 F iT becomes

n
∑
k

1

2

(⌊
k

n

⌋
+

1

2

)2

Ekk.

Each summand acts simply by multiplying vλ̄ by an appropriate scalar. This scalar is zero

unless k = αi > 0 or k = −βi < 0 for some i. In these cases, the scalar is

n
1

2

(⌊αi
n

⌋
+

1

2

)2

and

−n1

2

(⌊
βi
n

⌋
+

1

2

)2

.

We obtain (5–17) by summing over all such i. �

Lemma 5.42. After the change of variables prescribed by Theorem 5.7,

(5–18)

 ∏
(i,j)∈λ̄

qj−ij−i

1/n

= (−ξ2n)−d
(
ξ−

∑
kdk

n

)
e

1
n(
√
−1fT (λ)u+

∑
ξ−k2n fk(λ)xk)
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Proof. If λ = (λ0, ..., λn−1) with |λk| = dk, then in terms of Maya diagrams we can

interpret the di as follows: dk is the number of moves it takes to build the Maya diagram

of λk from the empty Maya diagram by only moving stones one place at a time. Moreover,

each such move has the effect of adding a length n border strip to λ̄, the northeast-most box

in the strip having color k. The quantity j − i decreases uniformly by 1 as we move south

and west along the strip so each such move contributes to
∏

(i,j)∈λ̄ q
j−i
j−i a factor of

(5–19) qlkq
l−1
k−1 · · · q

l−k+1
1 ql−k0 ql−k−1

n−1 · · · ql−n+1
k+1

for some l. In order to apply the change of variables, we need to collect the q0’s into q’s.

Borrowing the necessary qi’s from the other squares in the border strip, (5–19) becomes

ql−k
(
qkkq

k−1
k−1 · · · q

1
1q
−1
n−1 · · · qk−n+1

k+1

)
.

Combining these factors for all k, we find

(5–20)
∏

(i,j)∈λ̄

qj−ij−i = qM
n−1∏
k=0

(
qkkq

k−1
k−1 · · · q

1
1q
−1
n−1 · · · qk−n+1

k+1

)dk
where M =

∑
(i,j)∈λ̄[0](j − i) is the total power of q0 which we know is equal to fT (λ) from

Lemma 5.41.

It is left to investigate what happens to the factors in (5–20) after the change of variables.

Since q → e
√
−1u and M = fT (λ), then we see immediately that the u factors on either side

of (5–18) agree.

We now compute the coefficient of dixj in the exponent of (5–20) after the change of vari-

ables. To do this, we must compute the coefficient of xj in the factor qiiq
i−1
i−1 · · · q1

1q
−1
n−1 · · · qi−n+1

i+1 .
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Applying the change of variables, this coefficient is

(5–21) −
i∑

r=1

rξ−jrn

n

(
ξj2n − ξ

−j
2n

)
−

n−1∑
s=i+1

(s− n)ξ−jsn

n

(
ξj2n − ξ

−j
2n

)
.

Setting y := ξ−jn , (5–21) can be written as

−y− 1
2

n

(
i∑

r=1

(
ryr − ryr+1

)
+

n−1∑
s=i+1

(
(s− n)ys − (s− n)ys+1

))

=
−y− 1

2

n

(
−nyi+1 +

n∑
r=1

yr

)
.(5–22)

Using the fact that
∑n

r=1 y
r = 0, (5–22) is equal to ξ

j(−2i−1)
2n . Therefore, the coefficient of

xj is

ξ−j2n

∑
ξ−ijn di = ξ−j2n fj(λ)

where the equality follows from the first identity of Lemma 5.41.

Finally, notice that the root of unity which factors out of the term

(
qiiq

i−1
i−1 · · · q1

1q
−1
n−1 · · · qi−n+1

i+1

)1/n

after the change of variables is −ξ−1
2n ξ

−i
n . Putting all of this together proves the result. �

5.5.4. Signs. If σ̄ is obtained from λ̄ by adding a length kn border strip, then the Maya

diagrams corresponding to σ are obtained from those corresponding to λ by moving a stone

k places in the ith Maya diagram. Notice that k and i are both determined by σ̄ and λ̄. For

notational convenience, we make the following definition.

Definition 5.43. If σ̄ is obtained from λ̄ by adding a length kn border strip, let β(σ \λ)

denote the number of stones in the ith Maya diagram which are skipped over.
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Notice that (−1)β(σ\λ) is the coefficient of vσ in αi−k(vλ).

The next lemma allows us to deal with the sign
χ
λ̄(nd)

dim(λ)
appearing in Theorem 5.7.

Lemma 5.44. If σ̄ is obtained from λ̄ by adding a length kn border strip, then

χσ̄(nd+k)

dim(σ)
= (−1)β(σ\λ)+ht(σ̄\λ̄)−1

χλ̄(n
d)

dim(λ)
.

Proof. By (5–11), χλ̄(n
d) is the weighted sum of ways to create the Maya diagram of λ̄

from the vacuum diagram by moving stones n places at a time; the weight is ±1 depending

on whether the total number of stones jumped over is even or odd. It is not hard to see that

the weight of any such sequence is equal to the weight of any other. Since dim(λ) is the total

number of such sequences, we see that
χ
λ̄(nd)

dim(λ)
is equal to the weight of any one of them.

Now suppose σ̄ is obtained from λ̄ by adding a length kn border strip. We can think of σ̄

as being obtained from λ̄ by moving a single stone kn places to the left in the Maya diagram

of λ̄, ht(σ̄ \ λ̄)− 1 is the total number of stones jumped while β(σ \ λ) counts the number of

jumped stones which are n, 2n, 3n, ... positions to the left of where the stone sat originally.

On the other hand, the Maya diagram of σ̄ can be obtained from that of λ̄ by choosing a

sequence of length n jumps. As above,
χσ̄(nd+k)

dim(σ)
= (−1)∗

χ
λ̄(nd)

dim(λ)
where ∗ is equal to the total

number of stones jumped during the sequence of moves. With the above interpretations

for ht(σ̄ \ λ̄) − 1 and β(σ \ λ), we see that the number of stones jumped in this process is

(ht(σ̄ \ λ̄)− 1)− β(σ \ λ). �

The final lemma of this section allows us to compare χλ(µ) with χλ(gk(µ)).
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Lemma 5.45. If λ = (λ0, ..., λn−1) with |λj| = dj, then

χλ(gk(µ)) = ξ−k
∑
jdj

n
χλ(−µ).

Proof. Write µ = (µ0, ..., µn−1) with µs = (ds1, ..., d
s
ls

) and define (, ) to be the inner

product for which {vλ} is an orthonormal basis. By (5–13), we have

χλ(gk(µ)) =

(
n−1∏
s=0

ls∏
i=0

(
n−1∑
j=0

ξ
−dsi kj+sj
n αj−dsi

)
v∅, vλ

)

= ξ−k
∑
jdj

n

(
n−1∏
s=0

ls∏
i=0

(
n−1∑
j=0

ξsjn α
j
−dsi

)
v∅, vλ

)

= ξ−k
∑
jdj

n
χλ(−µ).

�

5.6. Proof of the Gerby GMV Formula

We now check identities (I) - (III) of Reduction 5.25.

Identity (I). This follows immediately from Lemma 5.42.

Identity (II). Since zµ = zµ0zµtw , we must show that

∑
|λ|=|µ|

P̃λ(0)χλ(µ) =

(
l0∏
j=1

√
−1(−1)d

0
j

2
csc

(
d0
ju

2

)) ∑
|σ|=|µtw|

P̃σ(0)χσ(µtw)

 .

after the change of variables. To do this, it is equivalent to show

∑
|λ|=|µ|+k

P̃λ(0)χλ(µ ∪ {k})) =

√
−1(−1)k

2
csc

(
ku

2

) ∑
|σ|=|µ|

P̃σ(0)χσ(µ)


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which is equivalent (before the change of variables) to

(5–23)
∑

|λ|=|µ|+k

P̃λ(0)χλ(µ ∪ {k}) =
(−1)kq

k
2

1− qk
∑
|σ|=|µ|

P̃σ(0)χσ(µ).

Fix σ. Then

(−1)kq
k
2

1− qk
P̃σ(0)χσ(µ) =

(−1)k+|µ|q
k
2

1− qk
χσ(µ)

χσ̄(n|µ|)

dim(σ)
q
|µ|
2 Sσ

= (−1)k+|µ|q
|µ|+k

2 χσ(µ)
χσ̄(n|µ|)

dim(σ)

∑
λ̄⊃σ̄

(−1)ht(λ̄\σ̄)−1Sλ

= χσ(µ)
∑
λ̄⊃σ̄

(−1)β(λ\σ)
χλ̄(n

|µ|+k)

dim(λ)
q
|λ|
2 (−1)|λ|Sλ

= χσ(µ)
∑
λ̄⊃σ̄

(−1)β(λ\σ)P̃λ(0).(5–24)

where the sum is over λ̄ obtained from σ̄ by adding a kn strip. The first and fourth equalities

follows from Corollary 5.35, the second equality follows from Theorem 5.38, and the third

equality follows from Lemma 5.44.

From (5–13), we know

(5–25) χλ(µ ∪ {k}) =
∑
σ

χσ(µ)(−1)β(λ\σ),

where the sum is over all σ such that σ̄ is obtained from λ̄ by removing a kn strip. Summing

(5–24) over all σ proves identity (5–23) and thus (II).

Identity (III). Applying Lemma 5.45, (III) is equivalent to

∑
ν

(∑
λ

P̃λ(0)
χλ(ν)

zν

)
zν

(∑
σ

ξ−k
∑
j|σj |

n

χσ(−ν)

zν

χσ(µ)

zµ
e
k
n

(
√
−1fT (σ)u+

∑
ξ−i2nfi(σ)xi)

)
= 0.
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Summing over all ν and using orthogonality of characters, the left side becomes

∑
λ

P̃λ(0)
χλ(µ)

zµ
ξ−k

∑
j|λj |

n e
k
n

(
√
−1fT (λ)u+

∑
ξ−i2nfi(λ)xi).

Applying Lemma 5.42, we then see that (III) is equivalent to

∑
λ

P̃λ(0)χλ(µ)

 ∏
(i,j)∈λ̄

qj−ij−i

k/n

= 0

for any µ with at least one untwisted part. This is equivalent to

(5–26)
∑
λ

P̃λ(0)χλ(ν ∪ {k})

 ∏
(i,j)∈λ̄

qj−ij−i

k/n

= 0

for any ν. Fix σ with |σ| = |ν|. Then

0 =
∑
λ̄⊃σ̄

(−1)ht(λ̄\σ̄)−1Skλ

=
∑
λ̄⊃σ̄

χσ̄(n|σ|)

dim(σ)
χσ(ν)(−1)ht(λ̄\σ̄)−1Skλ

=
∑
λ̄⊃σ̄

(−1)β(λ\σ)χσ(ν)q−
|λ|
2 (−1)|λ|P̃λ(0)

 ∏
(i,j)∈λ̄

qj−ij−i

k/n

.

The first equality is Theorem 5.39, the second holds because σ is fixed, and the third

follows from Lemmas 5.37 and 5.44.

Since |λ| is constant over the sum, it follows that

0 = χσ(ν)
∑
λ̄⊃σ̄

(−1)β(λ\σ)P̃λ(0)

 ∏
(i,j)∈λ̄

qj−ij−i

k/n

.
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Summing over all σ (using equation (5–25)) proves (5–26) and thus finishes the proof of

Theorem 5.7.

5.7. GW/DT for local Zn-gerbes over P1

We conclude by giving an application of the gerby Gopakumar-Mariño-Vafa formula. In

particular, we prove that the Gromov-Witten potential of any local Zn-gerbe over P1 equals

the reduced, multi-regular Donaldson-Thomas potential after an explicit change of variables.

Definition 5.46. A local Zn-gerbe over P1 is the total space of a rank two Calabi-Yau

bundle L1 ⊕ L2 over some Gk with trivial generic isotropy.

The CY condition implies that deg(L1)+deg(L2) = −2. Because of the generically trivial

isotropy, we know that the Zn isotropy acts on the fibers of L1 by a generator ζ ∈ Zn and

on the fibers of L2 by its inverse ζ−1. The automorphism of Zn which maps ζ → ξ induces

an isomorphism of the total space which allows us to assume that the isotropy always acts

on the fibers of L1 and L2 with weights ξ and ξ−1, respectively (cf. remarks after Definition

5.11).

Fix k ∈ {0, ..., n − 1} and set e := gcd(k, n). Then Pic(Gk) = e
n
Z ⊕ Ze. For each

b ∈ e
n
Z⊕ Ze we let Lb denote the corresponding orbifold line bundle. The subset of Pic(Gk)

where Zn acts on fibers as multiplication by ξ is given by (Z− k
n
)⊕{1}. Every local Zn-gerbe

over P1 is isomorphic to Xk,b := Tot (Lb ⊕ L−b−2) for some k ∈ {0, ..., n− 1} and b ∈ Z− k
n
.

By the gluing algorithm of Theorem 2.17, the degree d Gromov-Witten potential of Xk,b

is given by

(5–27) GWd(Xk,b) =
∑
µ

V •µ (b) zµV
•
gk(µ) (0)

∏
i,j

(−1)
dijb+1+δ0,i+δ0,(−di

j
k−i)modn

+ i
n

+
(dijk−i)modn

n .
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where the sign is the gluing term in Theorem 2.17.

Analyzing the modification in (5–2), we see that (5–27) is equivalent to

(5–28) GWd(Xk,b) = (−1)db
∑
µ

Ṽ •µ (b) zµṼ
•
gk(µ) (0) .

Applying the change of variables in Theorem 5.7, then using Lemma 5.45 and orthogo-

nality of characters, we find that

GWd(Xk,b) = (−1)db
∑
µ

(∑
λ

P̃λ (b)
χλ(µ)

zµ

)
zµ

(∑
σ

P̃σ (0)
χσ(gk(µ))

zgk(µ)

)

= (−1)db
∑
λ

ξ−k
∑
i|λi|

n P̃λ (b) P̃λ (0)

From equation (5–4), we see that this last expression is

(5–29)
∑
λ

Pλ(q0, q1, ..., qn−1)EλPλ′(q0, qn−1, ..., q1)

where

Eλ :=
∏

(i,j)∈λ̄

q
(b+2)i−bj−1
j−i (−1)dnb.

By the main result of [8], (5–29) is equal to the reduced, multi-regular, degree d Donaldson-

Thomas potential DT ′mr,d(Xk,b) after the substitution q0 → −q0. This proves Theorem 5.8.
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MA, 1995.
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