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ABSTRACT

THE REFINEMENT BY SUPERPOSITION APPROACH TO HP -ADAPTIVITY FOR FINITE

ELEMENT SIMULATIONS IN COMPUTATIONAL ELECTROMAGNETICS

The Finite Element Method (FEM) is a versatile numerical tool for simulating the behavior of

Partial Differential Equations (PDEs) over geometric models with arbitrary shapes and material

parameters. Its applications are widespread as PDEs are used to model the behavior of almost all

complex physical systems. Common PDEs include Schrödinger’s equation which governs the evo-

lution of quantum systems; the Navier-Stokes equations, which describe the behavior of fluids; and

Maxwell’s Equations, which are a macroscopic description of all Electric and Magnetic Phenom-

ena. When leveraged against Maxwell’s Equations, FEM allows engineers and scientists to rapidly

design a wide range of Radio-Frequency (RF) devices such as antennas, RF filters, waveguides,

and many others, all of which are important to the development of communications networks,

sensing networks, and computing infrastructure.

One open question within FEM research is how to maximize simulation efficiency (i.e., what

is the best strategy to maximize the ratio of simulation accuracy to computational resource us-

age). A typical approach is to use a multi-step process beginning with a coarse (or low resolution)

discretization of the geometric model in question, which uses a small number of computational

resources. This model is then iteratively refined in an intelligent manner, only introducing more

entropy where it is most needed to improve solution accuracy. After several iterations, this ap-

proach will have achieved a desirable balance between resource usage and solution accuracy. This

work focuses on the development and testing of a simple and ergonomic implementation of h- and

p-refinements for FEM. When used in tandem, these two refinement strategies are amenable to the

above procedure and efficiently produce accurate results on challenging Computational Electro-

magnetics problems.
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Chapter 1

Introduction

Computation modeling tools are an essential part of any modern engineering effort. The sys-

tems that engineers are interested in designing have reached a level of complexity that far exceeds

the reach of direct mathematical analysis. As such, many numerical tools have been developed

to predict the behavior of complex physical systems allowing engineers to make design decisions

without the need to construct physical prototypes or perform difficult physical measurements.

Without these tools, much of our modern digital infrastructure (CPUs, memory, high-speed

communication) and physical infrastructure (bridges, dams, large buildings) would be impossible

or prohibitively expensive to develop. The same is true for analyzing and designing mechanical,

chemical, biological, and even quantum systems. As such, the advent of computational modeling

tools has been an important area of research, and the improvement of these methods continues to

be a vital part many engineering disciplines.

Of the known methodologies, the Finite Element Method (FEM) is one of the most popular due

to its versatility and computational scalability. As its name suggests, the premise of the method

is to solve a simulation problem by discretizing a model of a physical system into a finite set of

elements; each of which supports a finite-accuracy basis set. The dynamics of interest–in the form

of a partial differential equation (PDE)–are analyzed individually on each element. The problem is

posed such that a given boundary condition is satisfied and an inter-element continuity condition is

satisfied. The solution to this problem is expressed in terms of a weighted sum of all basis-functions

in the mesh. Generally speaking, this process converts a spatially continuous PDE problem into

a straightforward linear-algebra problem whose solution is a good approximation of the full PDE

solution.

One can improve the accuracy of the numerical solution by increasing the resolution of the dis-

cretization through refinement. We consider two refinement modalities in this work: h-refinement,

which introduces smaller elements into the mesh (improving its spatial resolution), and p-refinement,
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which increases the polynomial expansion order over existing elements (improving resolution

in solution space). The combination of these two techniques is known as hp-adaptivity. This

work investigates a non-standard approach to implementing hp-adaptivity, called Refinement-by-

Superposition (RBS), wherein h-refinements introduce new overlay elements rather than replacing

existing elements. This subtle change massively reduces the complexity of continuity condition

enforcement, allowing for the development of simpler FEM software tools.

RBS also reduces the difficulty of implementing anisotropic (or directional) h-refinement.

Anisotropic hp-adaptivity can yield significant boosts in efficiency for a variety of FEM simu-

lations when compared with a purely isotropic refinement paradigm. Anisotropy is shown to be

particularly useful in the presence of challenging geometric features that can consume many com-

putational resources.

FEM is easily parallelizable due to the element-localized nature of most of the computations

involved; however, the compute resources needed to run FEM simulations in a massively paral-

lelized fashion are generally expensive to use. As such, any alteration or extension to the method

which can improve efficiency is immediately useful to a wide array of software applications. For

many applications, it is also beneficial to be able to run smaller simulations on personal computing

devices and avoid the use of external compute hardware entirely. This motivates the development

of efficiency-improving FEM techniques, like the one discussed in this work.

The following chapters explore the RBS approach to anisotropic hp-adaptivity from three per-

spectives: analysis of the fundamental theory, application to adaptive refinement, and open-source

software implementation. Chapter 2, taken from the author’s work [1], builds on the more fun-

damental theory discussed in previous hp-adaptivity research [2, 3] by summarizing the RBS

approach then introducing anisotropic hp-adaptivity. The efficiency benefits of the method are

demonstrated on a challenging benchmark problem. Chapter 3 then introduces an adaptive re-

finement strategy that can efficiently leverage the implementation discussed in Chapter 2 without

pre-defined knowledge of the given problem. Such a strategy must exist for RBS to be valuable in

real-world applications. Here, we use an error estimation procedure to drive adaptive refinements
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which is based on a more traditional Refinement by Replacement (RBR) exploration of the afore-

mentioned benchmark problem [4]. Lastly, Chapter 4 presents an open-source implementation of

the code used to generate the results in the previous two chapters. We discuss the library’s design

and structure, along with some examples of how it may be used as a simulation tool or to drive

further FEM research. Overall, these chapters aim to provide a deep understanding of RBS based

anisotropic hp-adaptivity both theoretically and practically.
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Chapter 2

Anisotropic hp-Refinement Using the Refinement by

Superposition Method

2.1 Introduction

Fully anisotropic hp-refinement over quadrilateral and hexahedral discretizations, an under-

explored paradigm in Computational Electromagnetics (CEM) and Finite Element Methods (FEM),

facilitates a significant enhancement in the tuning of discretizations for accurate and efficient sim-

ulations. However, given the difficulty of implementing isotropic h-adaptivity over quadrilateral or

hexahedral cells under the constraints of a Continuous Galerkin Formulation, little work has been

done to extend popular methodologies to support anisotropic h-adaptivity. That is not to say that

the necessary theoretical foundations are absent [5, 6], rather, the requisite implementation com-

plexity has impeded adoption of these techniques. The implementation difficulties can be avoided

entirely by employing triangular or tetrahedral discretizations [7] or a discontinuous Galerkin For-

mulation [8]; however, non-rectangular cells are sub optimal for the linear independence of unit

vectors in many CEM applications, and discontinuous Galerkin formulations do not maximize per-

DoF efficiency. Therefore, we explore a far less burdensome approach to anisotropic hp-adaptivity

with quadrilateral cells under a Continous Galerkin formulation by leveraging a Refinement-by-

Superposition (RBS) method.

Previous work has demonstrated the RBS method’s ability to produce state-of-the-art expo-

nential convergence on the 2-D Maxwell eigenvalue problem, even in the presence of singular or

non-smooth behavior [3], of the form depicted in Fig.2.1. We note that without isolation of the

irregular solution behavior through suitable h-refinements, p-refinement alone is insufficient to

achieve exponential convergence. Thus, any computational method that aims to converge quickly
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(a) 1st Eigenfunction (b) 9th Eigenfunction

Figure 2.1: Two solutions to the Maxwell Eigenvalue Problem on a unit size L-Shaped waveguide. Both

solutions are shown as the magnitude of the Electric Field and exhibit sharp behavior around the re-entrant

corner.

regardless of non-idealities in the solution behavior must also implement some form of local h-

adaptivity in concert with p-refinement [9–11].

The distinguishing feature of the RBS method as an approach to h-refinement is its simple

formulation and ease of implementation. This stands in stark contrast to more mainstream h-

adaptivity methods, such as the constrained nodes approach, which necessitate sophisticated al-

gorithms to treat hanging-nodes. As described in [12], the RBS approach enforces continuity re-

quirements by construction and is also able to handle arbitrary degrees of mesh irregularity (edges

or faces can have any number of hanging nodes) without any special treatment.

Additionally, RBS not only supports anisotropic h-refinement without significant theoretical

alterations, but there are also very few practical difficulties associated with its implementation.

This is not the case for other, more traditional approaches to h-refinements over quadrilateral or

hexahedral cells. Although excellent results can be achieved for applications in CEM with isotropic

RBS hp-adaptivity [3], we aim to show the further benefits of introducing anisotropy in both h and

p.
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The remainder of this paper is organized as follows. Section II gives a short overview of the

fully isotropic formulation of the RBS method. This is only intended to set the stage for the

introduction of anisotropic adaptivity. More detailed descriptions of RBS can be found in [3, 12,

13]. Section III explores some practical considerations and implementation details for introducing

anisotropy to the RBS method. A specific framework is discussed for the 2-D case; however, it

generalizes trivially to 3-D. Finally, Section IV presents an experimental analysis of the method

using the 2-D Maxwell Eigenvalue problem as a benchmark.The previously mentioned mesh with

singular and non-smooth eigenpairs is used to show the efficacy of the method in situations where

hp-refinement is required to achieve exponential convergence. The results show that anisotropic

hp-refinements can achieve the same accuracy as fully isotropic refinements with significantly

fewer Degrees of Freedom (DoFs), illustrating the usefulness of the method to other challenging

problems in CEM.

2.2 Overview of the Refinement-by-Superposition Method

The RBS method is an alternative approach to h-refinement that is well suited for a wide variety

of computational methods. We focus here on discretizations that employ H(curl)- or H(div)-

conforming hierarchical basis over quadrilateral or hexahedral cells (such as those in [14]). We

also reference the shape-function classification and coordinate system described in [2].

In contrast to the more typical Refinement-by-Replacement (RBR) method where h-refinements

decompose a cell into a set of smaller cells, RBS superimposes a set of “child cells" over a “par-

ent cell" without removing the parent cell from the mesh. This subtle change obviates the need

for special treatment of hanging nodes as local h-refinements introduce new nodes on a separate

refinement layer and leave the parent edges completely intact.

Alternatively, the direct treatment of hanging nodes calls for more complex enforcement of

continuity. A common RBR-based strategy is to introduce constrained nodes into the mesh. These

nodes add DoFs to the system which are not actually free (they do not contribute entropy to the

system) but are carefully constructed such that boundary conditions are satisfied. As such, local

6



Figure 2.2: Example of a mixed-order 2-D Mesh constructed using the RBS framework. Nodes and Edges

with active shape-functions are highlighted in Purple (those shared across refinement layers are highlighted

on both layers). Cells that have active Edge-Type or Node-Type shape functions with inactive Cell-Type

functions are colored around the edges and transparent in the center. Cells without active shape functions

are completely transparent.

h-refinements are allowed, but per-DoF efficiency is reduced and implementation complexity is

high.

The RBS method makes a different trade-off between implementation difficulty and resource

requirements. By leaving the parent cell in the system, and allowing its DoFs to remain active as

necessary, continuity is enforced by construction. The nature of this approach therefore reduces

the implementation complexity at the expense of reduced matrix sparsity due to the increased inter-

actions between refinement layers. These denser systems can require more memory and compute

to solve; however, the lower implementation complexity often outweighs such a cost.

The following algorithm enforces continuity between neighboring cells and linear indepen-

dence between refinement layers (additional details and illustrations related to this process in the

context of isotropic refinements may be found in [3]):

1. Iterate over each cell and enumerate all possible shape functions based on the cell’s expan-

sion orders, then associate them with the relevant geometric components (cell, face, node, or

edge)

7



• For H(curl), associate the shape functions based on the non-zero tangential components

• For H(div), associate the shape functions based on the non-zero normal components

2. Iterate over each non-cell geometric component (faces, nodes, and edges)

• For each shape function associated with that component, search for matching shape

functions on neighboring cell(s)

• If a match is found, designate it as a new DoF in the connected system

3. Iterate over each non-cell geometric component a second time

• If the component has descendants with active DoFs, deactivate its DoFs (ex: if an

edge has two direct descendant edges which possess sets of matched shape functions,

deactivate the edges DoFs)

4. Iterate over each cell

• If the cell has descendants, leave its cell-type shape functions inactive; otherwise, add

them to the connected system as new DoFs

The above procedure is summarized more succinctly by the following remarks:

• Whenever possible, only the DoFs associated with the most-h-refined geometric components

within an ancestry tree should be active

• If a node, edge, or face does not have an equally h-refined neighbor with which to match

shape functions, then the responsibility falls on the nearest ancestor component (with a valid

neighbor) to enforce continuity

Fig. 2.2 shows an example of an RBS mesh with the active geometric components annotated.

This serves as visual representation of the above algorithm. Some anisotropic h- and p-refinements

are also included to demonstrate that they are fully supported by the RBS framework. (For this

figure and others, the vertical spacing simply represents the addition of refinement layers and has

no physical significance to the geometry of the mesh.)

8



2.3 Introduction of Anisotropic h-refinements to RBS: Practi-

cal Considerations and Implementation Details

2.3.1 Implementation Goals

An anisotropic h-refinement, i.e., a directional h-refinement, is advantageous where the inten-

sity of non-smooth or singular behavior is also directionally dependent or is confined to one small

region of a cell. In such cases, isotropic h-refinement may introduce more DoFs than necessary

to improve solution accuracy. Anisotropic h-adaptivity can therefore contribute to improved effi-

ciency or even faster convergence rates by introducing new unknowns in a more frugal manner [8].

Likewise, anisotropic p-adaptivity permits increasing a cell’s polynomial expansion order in only

one direction to drive more efficient improvements to the solution accuracy.

The methodology described in section II imposes few limitations on the shape or size of the

superimposed cells. Previous works (such as [3]) have limited h-refinements to a simple 4-cell

isotropic superposition; however, any set of child cells is permissible so long as the following

conditions are met:

1. The child cells cover the entirety of the parent cell

2. The child cells do not extend into neighboring cells or beyond the boundary of the mesh

3. No internal hanging nodes are introduced among the child cells S.T. internal continuity is

enforced naturally

For example, a 9-Cell isotropic superposition is equally as valid as a 4-Cell superposition, as the

parent cell uses the same mechanism to enforce continuity in either case.

One can imagine taking advantage of the wide variety of anisotropic h-refinements allowed by

the RBS method; however, it is useful to impose a few practical limitations to generate a simple

implementation with maximum usability. In other words, given so few limitations on the shape,

size, number, and orientation of the child cells, it is difficult to construct a simple h-refinement

scheme that is easily targeted by adaptive methods (such as those described in [4]) or by human

9



(a) T-Type (b) U-Type (c) V-Type

Figure 2.3: The three types of h-refinement used in our 2-D anisotropic h-refinement implementation; all

illustrated as a refinement of a single square cell

users while capturing all possible h-refinements. A practical goal for any anisotropic h-refinement

implementation is to strike a balance between feature-richness and simplicity.

2.3.2 Implementation Details for 2-D FEM

For a specific demonstration of the procedure, we study an anisotropic RBS implementation

designed for 2-D FEM which aims to illustrate the benefits of anisotropy while minimizing imple-

mentation overhead. This framework generalizes to 3-D trivially. The three types of h-refinements

considered here (named T-, U-, and V-Type) are shown in Fig. 2.3. T-Type refinement is identical

to the isotropic h-refinement used in [3]. It is also equivalent to the successive application of a U-

Type refinement and two V-Type refinements (or the inverse); however it is implemented directly

for the sake of simplicity.

The two anisotropic h-refinements, U-Type and V-Type, superimpose only two new cells over

the parent cell improving the u-directed or v-directed resolutions respectively, where the coor-

dinates u and v correspond to those of the reference cell, while leaving the opposite direction

unaffected. We also designate here that horizontal edges (those superimposed with a new node

during a U-Type refinement) are called u-directed edges, and vertical edges (those superimposed

with a new node during a V-Type refinement) are called v-directed edges.

Within this framework, it is useful for each cell to keep track of its “h-refinement level" in the u

and v directions. In other words, each cell must know how many U-Type and V-Type refinements

10



were applied over the history of its construction from the base layer. When a cell is h-refined,

the refinement levels of the child cells are a function of the parent’s refinement levels and the

refinement type:

• T-type:

(uchild, vchild) = (uparent + 1, vparent + 1)

• U-type:

(uchild, vchild) = (uparent + 1, vparent)

• V-type:

(uchild, vchild) = (uparent, vparent + 1)

With this information linked to each cell, it becomes straightforward to determine whether two

adjacent cells can match Edge-Type shape functions or if four adjacent cells can match node-type

shape functions. This is explored first by example, using the mesh configurations in Fig. 2.4, then

a more explicit formulation is given.

The mesh in Fig.2.4(a) has no edges shared between refinement layers, so shape function

matching is relatively simple and resembles the isotropic case. Here, the children of Cell 0 and

Cell 1 have h-refinement levels of (1,1) and (0,1) respectively. Cells 3 and 6 share a v-directed

edge, and their v-directed h-refinement levels match, therefore they can match Edge-Type shape

functions. The same is true for Cells 5 and 7. As explained in Section II, these edges are more

h-refined than their parent edge, and they can both support shape-functions, therefore Edge-Type

functions on Cells 0 and 1 are unnecessary to enforce continuity and are left inactive.

An important feature of the U- and V-Type h-refinements is that only 4 new edges are con-

structed along the border of the parent cell (as opposed to the 8 generated by a T-Type refinement).

The other two edges are shared with the parent cell, which can introduce some ambiguity with

shape function matching. In Fig.2.4(b), the central edge is shared by Cells 0, 1, and 3. As such, the

Edge-Type shape functions on Cell 1 can match with those on Cells 0 or 3 which have h-refinement
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(a) (b)

(c)

Figure 2.4: Examples of Edge-Type shape function matching cases introduced with anisotropic h-

refinement. These cases all focus on continuity enforcement over the v-directed edge shared by Cells 0

and 1. (a) A mesh with a single isotropic h-refinement and one V-Type refinement. (b) A Mesh with one

U-Type and one V-Type h-refinement. Outside the context of RBS, this would introduce a hanging-node

along the central edge. (c) A 3-Layer Mesh with only U-Type h-refinements illustrating the necessity for a

cell-ranking system.
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levels of (0, 0) and (1, 0) respectively. In keeping with the RBS concept that the most h-refined

cells should be responsible for maintaining continuity whenever possible, Cells 3 and 1 will match

Edge-Type shape functions and those on Cell 0 will remain inactive.

This logic extends further when multiple cells of the same relevant h-refinement level share a

single edge. For example in Fig.2.4(c), Cells 0 and 3 share many possible matching combinations

with Cells 1, 4, and 6, which all have v-directed h-refinement levels of zero. To select a single

matching pair, the choices on both sides of the edge are ranked by their u-directed refinement

level, and the highest-ranked cells on either side are chosen. As such, shape-functions on Cells 3

and 6 are used to enforce continuity over the central edge.

The logic in the above examples is captured by the following remarks:

• All edges in the mesh must maintain two lists of adjacent cells—one for each side—which

are ranked first by the cells refinement-level associated with the edges own direction, then

by its refinement level associated with the opposite direction

• The highest-ranked cell on each side of the edge is used to construct a valid pair if and only

if the edge itself is needed to enforce continuity (which is determined by the broader RBS

procedure given in Section 2.2)

An extension of this logic to include four cells is used to match node-type shape functions. In

such cases, cells are ranked by the four relevant edges in the same manner, and each edge must

"agree" with the neighboring two edges on which cells to select.

No major changes to the isotropic RBS method, described in Section 2.2, are required. The

algorithm used to match shape functions on neighboring cells and enforce continuity requirements

remains essentially the same, except for the implementation of Step 2, which is amended to include

the slightly more complex matching procedure described above.
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(a) Isotropic-hp

(b) Isotropic-h Anisotropic-p

(c) Anisotropic-h Isotropic-p

(d) Anisotropic-hp

Figure 2.5: Illustration of the a priori refinement strategies on a fiver-layer mesh (k = 4). Figures in the

left column show the initial mesh and Figures in the right column show the same mesh after one refinement

iteration. In all cases, the refinement (from left to right) increments u- and v-directed expansion orders by 1

on all cells. The color scales on the right designate expansion orders. (p-anisotropy is shown on the dual-

colored cells S.T. the expansion order associated with a given edge is represented by the color touching that

edge.)
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2.4 Numerical Results

2.4.1 Benchmark Problem Description

We now establish the advantages of introducing hp-anisotropy to the RBS method by solving

the Maxwell Eigenvalue problem on an L-shaped waveguide terminated by Dirichlet boundary

conditions proposed by [15]. Additionally, we only consider TE propagation modes by asserting

that the solution is purely transversal. The Maxwell Eigenvalue problem is formulated as follows:

Find U = {uhp, λhp} ∈ Bhp × R such that

a(uhp, φhp) = λhpm(uhp, φhp) ∀φhp ∈ Bhp (2.1)

for Bhp ⊂ H(curl; Ω), where m(uhp, φhp) = ⟨uhp, φhp⟩, a(uhp, φhp) = ⟨∇t × uhp, ∇t × φhp⟩

The convergence behavior is evaluated for the four combinations of (An) Isotropic-h and (An)

Isotropic-p refinement. The solutions express singular and non-smooth behavior making it an ideal

benchmark for evaluating the effectiveness of hp-methods. The two eigenfunctions in question are

the first—shown in Fig. 2.1(a)—which contains a singularity along the re-entrant corner, and the

ninth—shown in Fig. 2.1(b)—which has non-smooth behavior on the re-entrant corner and more

complex behavior elsewhere.

2.4.2 Refinement Strategies

A set of four a priori refinement strategies are used to illustrate the difference in convergence

behavior with and without anisotropy. An example of each is shown in Fig. 2.5. Although the first

and ninth eigenfunctions are quite different, they share a key feature of sharp behavior around the

re-entrant corner, and thus the same strategies are sufficient to produce exponential convergence

on both eigenpairs.

The first strategy, shown in Fig. 2.5(a), is fully isotropic and is identical to the strategy used

in [3] to illustrate the method’s capacity for exponential convergence. Here, a given number of

layers: k, describes the number of refinement layers that were added to the base discretization.
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Each new layer is generated with a T-Type refinement of the three cells surrounding the re-entrant

corner. To construct the starting discretization, the cells on the first layer are assigned an expansion

order of k + 2 (ensuring a minimum order of 3 on the top layer). Subsequent layers have an

expansion order 1 less than the previous layer.

Anisotropic p-refinements are introduced by reducing the expansion order of a few select cells

by 1 in only one direction. The specific pattern of anisotropic expansion orders is shown in Fig.

2.5(b). The targeted cells and expansion directions were chosen based on the areas of the mesh

where the u-directed electric field is much more intense than the v-directed electric field or vice

versa.

Anisotropic h-refinements are introduced by replacing the outer two T-Type refinements with

a U/V-Type refinement followed by a V/U-Type refinement of the resultant cell closest to the re-

entrant corner. As shown in Fig. 2.5(c), the mesh remains courser over the regions that are farther

from the re-entrant corner. As such, new DoFs and smaller-scale cells are only introduced around

the re-entrant corner where they are most needed to capture the sharp solution behavior.

Finally, a strategy with anisotropic hp-refinements is shown in Fig. 2.5(d). This is simply a

combination of the previous two strategies and constitutes the DoF savings from both.

2.4.3 Results and Discussion

Convergence behavior is evaluated as follows: for each of the strategies shown in Fig. 2.5, an

initial mesh is generated based on a given value of k. Then, accuracy data is collected by repeatedly

p-refining each cell in the mesh and solving the Maxwell eigenvalue problem described above.

The relative error at each refinement iteration is computed as the absolute difference between the

solution eigenvalue and an accurate numerical benchmark [4]. Results for the first eigenvalue are

shown in Fig. 2.6 and results for the ninth are shown in Fig. 2.7. Both figures include results for

k=4 and k=8. A maximum expansion order of 14 is employed across experiments, meaning that

the k=4 plots contain more refinement iterations (as those experiments start with a lower maximum

expansion order).

16



In all cases, the relative error is nearly identical across the four refinement strategies for any

given iteration; however, the number of DoFs varies significantly. Universally, the fully anisotropic

refinement pattern performs the most efficiently (requiring fewest NDoFs to achieve a given accu-

racy), then the Anisotropic-h Isotropic-p pattern, then the Isotropic-h Anisotropic-p pattern, and

finally the fully isotropic pattern is the least efficient. Additionally, it is clear that the anisotropic

h-refinements constitute a larger improvement in efficiency than the anisotropic p-refinements.

The efficiency improvements obtained by each of the three anisotropic strategies are given

numerically in Tables 1-4, with the most significant improvements from each iteration highlighted

in bold. Results are given for k=4 and k=8 on both eigenpairs. The values shown are the ratio of the

anisotropic strategies per-DoF efficiency to the isotropic per-DoF efficiency for the same iteration.

In other words, these values express how many times more efficient the anisotropic solution was

than the isotropic solution for some refinement iteration. Or more explicitly, the efficiency gains are

expressed by the following equation, where η denotes per-DoF efficiency, ε denotes the accuracy

(or inverse of the relative error), and N denotes the NDoFs:

η

ηiso
=

(

ε

εiso

)

∗

(

Niso

N

)

(2.2)

For most iterations, the achieved accuracy is approximately equal across strategies, meaning that

the above equation is well approximated by the ratio of the number of DoFs. Thus, for the experi-

ments shown here, efficiency gains are equivalent to the DoF savings introduced by the anisotropic

strategy.

Across all experiments, anisotropic h-refinements present the most significant gains in effi-

ciency, while anisotropic p-refinements present a smaller, but still useful, boost in efficiency. No-

tably, the efficieny gains associated with the first refinement iterations for the 9th eigenvalue ex-

hibit some erratic behavior (which can also be deduced from Fig. 2.7). In all other cases, the

fully anisotropic refinement strategy yielded the largest gains in efficiency, closely followed by the

anisotropic-h isotropic-p strategy, then followed by the isotropic-h anisotropic-p strategy. These

insights align with the data shown in Figures 2.6 and 2.7, and indicate that the combined appli-
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Table 2.1: Efficiency Gains of anisotropic strategies at each refinement iteration for k=4 on the 1st eigen-

value

Refinement Iteration 1 2 3 4 5 6 7 8 9

Isotropic-h Anisotropic-p 1.1463 1.1251 1.1062 1.0906 1.0793 1.0704 1.0633 1.0575 1.0526

Anisotropic-h Isotropic-p 1.2931 1.2866 1.2825 1.2794 1.2769 1.2750 1.2733 1.2720 1.2709

Anisotropic-hp 1.4462 1.4195 1.3951 1.3757 1.3611 1.3497 1.3405 1.3330 1.3267

Table 2.2: Efficiency Gains of anisotropic strategies at each refinement iteration for k=8 on the 1st eigen-

value

Refinement Iteration 1 2 3 4 5

Isotropic-h Anisotropic-p 1.0881 1.0855 1.0774 1.0697 1.0633

Anisotropic-h Isotropic-p 1.2760 1.2901 1.2903 1.2886 1.2872

Anisotropic-hp 1.3673 1.3824 1.3743 1.3643 1.3559

cation of anisotropic h- and p-refinements is a highly effective strategy to increase the per-DoF

efficiency of an FEM simulation.

2.5 Conclusion

We have demonstrated an extension of the capabilities of the Refinement-by-Superposition ap-

proach to full hp-adaptivity by including anisotropic h- and p-refinements. Using the 2-D Maxwell

eigenvalue problem over an L-shaped waveguide as a benchmark; we showed that anisotropic re-

finements, particularly in h, present a significant advantage in computational efficiency. This is

consistent with a theoretical understanding, as anisotropic h-refinements permit the construction

Table 2.3: Efficiency Gains of anisotropic strategies at each refinement iteration for k=4 on the 9th eigen-

value

Refinement Iteration 1 2 3 4 5 6 7 8 9

Isotropic-h Anisotropic-p 1.3281 1.1547 1.1061 1.0897 1.0788 1.0701 1.0631 1.0573 1.0525

Anisotropic-h Isotropic-p 1.2006 1.2612 1.2840 1.2781 1.2768 1.2748 1.2733 1.2719 1.2708

Anisotropic-hp 2.1333 1.4272 1.3971 1.3732 1.3604 1.3492 1.3402 1.3327 1.3265
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Table 2.4: Efficiency Gains of anisotropic strategies at each refinement iteration for k=8 on the 9th eigen-

value

Refinement Iteration 1 2 3 4 5

Isotropic-h Anisotropic-p 0.6199 1.0788 1.0752 1.0683 1.0627

Anisotropic-h Isotropic-p 0.8081 1.1713 1.2875 1.2862 1.2854

Anisotropic-hp 0.6122 1.2517 1.3698 1.3600 1.3526

(a) k = 4 (b) k = 8

Figure 2.6: Convergence behavior of four refinement strategies shown on a log-log scale for the 1st eigen-

value. Results are given for k=4 and k=8.

(a) k = 4 (b) k = 8

Figure 2.7: Convergence behavior of four refinement strategies shown on a log-log scale for the 9th eigen-

value. Results are given for k=4 and k=8.
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of mesh configurations that capture small-scale behavior without introducing redundant DoFs into

the system. Due to the challenging nature of the benchmark problem, we are confident that these

efficiency improvements will be broadly applicable to other difficult problems in CEM.

This work also serves to further illustrate the benefits of the RBS method’s low implementa-

tion complexity. Other approaches to h-refinement on quadrilateral or hexahedral discretizations

involve complex frameworks for boundary condition enforcement which do not easily lend them-

selves to the implementation of anisotropy. The RBS method, by contrast, imposes few limitations

on the configuration of the superimposed cells, and thus supports h-anisotropy essentially for free.

A conservative implementation of h-anisotropy for the 2-D case was described in detail and can

readily be expanded to include more refinement types and can also be generalized for 3D FEM.
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Chapter 3

Adaptive Refinement for Anisotropic hp-Refinement

3.1 Introduction

The a priori strategy discussed in Chapter 2 is not generally useful for practical applications

in CEM. That is, the strategy shown, with its various combinations of isotropic and anisotropic

refinement, was specifically designed for the re-entrant corner mesh and would not generalize to

other scenarios. Thus, we seek an adaptive strategy capable of effectively leveraging anisotropic

hp-adaptivity in a wide variety of situations to take full advantage of the RBS method. Here we

describe an iterative refinement strategy, which progressively transforms a low-quality discretiza-

tion into a highly efficient discretization. The notion of efficiency here is the same as in Chapter

2: achieving maximum solution accuracy with minimum resource utilization. Efficiency can be

conceptualized as seeking the maximum accuracy for a limited set of computational resources or

the minimum resource utilization for a desired accuracy.

This chapter discusses one such adaptive refinement strategy and evaluates its effectiveness

on the benchmark problem defined in Section 2.4.3. We use the same benchmark here, as its

eigenfunctions require hp-adaptivity for efficient solutions, and to show that the adaptive algorithm

arrives at a similar refinement strategy without any prior knowledge of the problem.

The algorithm described here is comprised of two overarching steps: error estimation and

refinement selection. Specifically, we use error estimation to select a subset of elements for re-

finement. Our strategy is based on the dual weighted residual (DWR) error estimate procedure.

Then, a group of heuristics is applied to the mesh to select which refinement modality would be

most profitable. Convergence rate analysis and edge-error discontinuity analysis allow us to select

between h-, p- and hp-refinement. Then, the analysis of edge error terms allows us to select a

refinement direction; namely, a selection is made between the isotropic and various anisotropic

variants of our hp-refinements.
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3.2 Dual Weighted Residual Error Estimation

The Maxwell Eigenvalue Problem described in Section 2.4.1 can be expressed in the following

dual weighted residual (DWR) form [16]:

eλhp
(1− 1

2
M) = a(uhp, u − ϕhp)− λhpm(uhp, u − ϕhp) ∀ϕhp ∈ Bhp (3.1)

This equation expresses the error in the eigenvalue accuracy λhp in terms of an approximate so-

lution to the primal problem uhp and an exact solution to the dual problem u. Because this exact

solution is not available, a higher order solution is used in its place as an approximation. This

gives an accurate estimate of the error. We compute the higher order solution by applying a global

isotropic p-refinement of magnitude 1 to the entire mesh and computing a solution.

The normalization term M = m(u − uhp, u − uhp) ensures that the error estimate is equal to

the absolute difference between the primal eigenvalue and the dual eigenvalue eλhp
= |λhp − λ|.

The validity of this equality relies on a pre-normalization of the primal and dual solutions in terms

of the L2 norm:

⟨u, u⟩ = 1 and ⟨uhp, uhp⟩ = 1 (3.2)

To extract the maximum amount of useful information from the error contribution estimates, ϕ

is chosen to be Πcurl
hp u, which is the curl conforming projection of the dual solution onto the primal

solution space [16]. The subtraction of this information from the dual solution leaves only higher

order information in the error estimate. As such, terms that would cancel in the global assembly of

the error contributions (due to Galerkin orthogonality) are excluded preemptively.

More granular data can be extracted from the DWR procedure by separating the stiffness-matrix

integral, shown below:

a(u,φ) = ⟨∇t × u,∇t × φ⟩ =

∫

ΩK

∇t × u · ∇t × φ dΩK (3.3)
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into its by-parts form. In this expanded form, the surface term is computed separately from the

edge terms, yielding more spatially distinct information [16]:

a(u,φ) =

∫

ΩK

(∇×∇t × u) · φ dΩK −

∫

∂ΩK

(∇t × u)× φ · n̂ dSK (3.4)

The edge-terms will be stored and used later for discontinuity analysis in Section 3.3.2 and re-

finement direction selection in Section 3.3.3. The full-valued solution of a(u,φ) is used For the

purpose of evaluating Equations 3.1 and 3.5.

Error contributions are accumulated in terms of dual DoFs. The following equation shows the

interactions of the ith dual DoF with all primal DoFs; however, in practice, only the overlapping

integrals must be computed. Additionally, we note that the higher-order portions of the dual solu-

tion constitute the only non-zero error terms, as the others are filtered out by the curl conforming

projection operator.

eui =
∑

νhp∈uhp

a(νhp, (u −Π
curl
hp u)i)− λhpm(νhp, (u −Π

curl
hp u)i) (3.5)

The per-DoF error contributions are then accumulated into separate lists of element DoFs and

edge DoFs 1. Specifically, for each element in the mesh, the error terms associated with its local

Element-Type DoFs are summed up to generate an error coefficient for the solution on the ele-

ment’s surface. Then, for each edge in the mesh, the error terms associated with its Edge-Type

DoFs are summed up to produce an error coefficient for the solution which spans the two adja-

cent elements (these coefficients are not to be confused with the by-parts edge-error terms from

Equation 3.4).

A group of elements are then selected for refinement by choosing the top contributors from both

lists. Specifically, any element with an error coefficient greater than the mean element coefficient is

1This separation is made to facilitate more effective h-refinement decisions. In experimental analyses, the presence

of singular or sharp behavior often induces relatively large error terms on nearby Edge-Type DoFs, but does not

necessarily do the same for Element-Type DoFs. As such, generating an error coefficient for all DoFs (Element-

Type and Edge-Type) over an element can cause large edge-error terms to be ignored, leading to a general under

h-refinement of the mesh.
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marked for refinement. Any edge with a coefficient greater than the mean edge coefficient marks

both of its active elements for refinement. Now, with these lists of elements, we must choose

between h- and p-refinement and make direction selections. The following section discusses the

heuristics used to make these decisions.

3.3 Refinement Classification Heuristics

3.3.1 Convergence Trend Analysis

The primary hp-decision heuristic is based on the theoretical difference in convergence rates

associated with h- and p-refinements. This strategy is underpinned by the inequality shown in the

following equation [11]:

|ei| ≤ Ch
min(k−1,pi)
i p

−(k−1)
i ||u||Hk(Ω) (3.6)

where ei is the error associated with a given element i, C is a solution specific constant, k repre-

sents the local regularity of the solution, hi is the diameter of the element, and pi is the polynomial

expansion order on the element. If the regularity is large enough, the error magnitude is domi-

nated by an exponential relationship with the expansion order (as shown in equation 3.7). When

the regularity is too small–or the solution is non-smooth–the error magnitude is dominated by an

algebraic relationship with the expansion order (equation 3.8).

|ei| ≤ C
h
pi
i

pk−1
i

||u||Hk(Ω) (3.7)

|ei| ≤ C
hk−1
i

pk−1
i

||u||Hk(Ω) (3.8)

Thus, in smooth regions of a solution, one can expect the local error to shrink exponentially

with respect to pi, indicating that p-refinement would be appropriate to efficiently move towards

a more accurate solution. Alternatively, if the solution is non-smooth, the accuracy will converge
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algebraically, indicating that h-refinement must be employed to sequester the non-smooth behavior

before p-refinements can be employed profitably.

This fact offers a simple heuristic to identify whether h- or p-refinement would better address

a large error contribution associated with an element. As such, over the course of refinement, each

element maintains a record of it’s error contributions (and the local expansion order associated

with that contribution), as does each edge. If at least three historical records are available for an

element or edge, the following procedure is executed:

1. Separately fit the (pi, |ei|) samples to an exponential function and an algebraic function

2. Compute the sum of the squared residuals for both functional fits (ê(exp) and ê(alg)):

•

ˆβexp =
∑

i

(|ei| − ê(exp)(pi))
2 (3.9)

•

ˆβalg =
∑

i

(|ei| − ê(alg)(pi))
2 (3.10)

3. If the exponential residual sum βexp is smaller than the algebraic residual sum βalg (meaning

that the convergence behavior is better described by an exponential relationship), then the

element is marked for p-refinement, otherwise it is marked for h-refinement

It is important to note that this process is executed for both lists of elements marked for re-

finement. Thus, the refinements indicated by this procedure are combined whenever an element

and one or more of its edges has been marked for refinement. This may mean that an element is

h-refined due to the slow convergence of the error terms associated with its Element-Type func-

tions, but is also p-refined due to the fast convergence of its Edge-Type basis functions. This also

means that higher magnitude p-refinements can be executed, however, we limit the magnitude to 2

in order to prevent over-refinement.

In order to ensure that the functional fits are relevant to the current state of the mesh, each stack

of historical convergence data is limited to 5 entries. This way, if the refinement process begins
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in the pre-asymptotic region, the initially erroneous convergence information will be forgotten

during later iterations. Additionally, after an h-refinement, the most recent data point is inherited

by the child elements, giving them some indication of the local convergence behavior without

over-influencing future refinement decisions.

3.3.2 Edge Error Discontinuity Analysis

During the first few iterations of an adaptive refinement procedure, elements will not be able to

complete the decision procedure defined in section 3.3.1, as they will not have a sufficient number

of error estimates to form functional fits. Specifically, at least three data points are needed to differ-

entiate the algebraic functional fits from exponential. This problem also arises when new elements

are added to the mesh via h-refinement, and have not yet accumulated sufficient local convergence

data. As such, we need a secondary decision procedure to make hp-refinement decisions when

Convergence Trend Analysis cannot be completed.

One alternate heuristic is the analysis of discontinuities in the solution error among neighboring

elements. Here, we analyze the relevant edges by computing the magnitude in the difference

between the edge error terms on both adjacent elements (these are the edge-error terms generated

by the integration-by-parts terms in the DWR procedure). The relevant quantity is described by

the following equation where K− and K+ represent the relevant edges on the adjacent elements:

δedge =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

∂Ω
K−

(∇t × uhp)× (u − ϕhp) · n̂ dSK−

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∫

∂Ω
K+

(∇t × uhp)× (u − ϕhp) · n̂ dSK+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.11)

When the magnitude in the difference between the neighboring error terms is small, this indi-

cates that the discretization is well balanced. In other words, because both neighboring elements

"agree" about the accuracy of the solution in the region of interest, we can assume that there is

no small-scale or discontinuous behavior that the current discretization fails to capture. As such,

p-refinement will be employed on the elements associated with the edge in question. Alternatively,
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when neighboring error terms "disagree" about the solution accuracy on a given edge, this indicates

that there is some discontinuity or small-scale behavior near the edge. As such, an h-refinement is

likely to be more profitable for improving solution accuracy.

Like the previous heuristic, the element-wise and edge-wise analyses may indicate multiple

refinements on the same element. These refinements add constructively. For example, a U-type

and V-type h-refinement indicated on the same element will add to produce a T-type h-refinement.

Furthermore, p-refinements will add constructively, but will be limited to a magnitude of 2.

3.3.3 Directional Selection Using Edge Error Terms

After a group of elements has been marked for refinement and their refinement modalities have

been selected, a separate procedure is used to decide on a direction. Specifically, for h-refinements,

we would like to decide between the three refinement options: T-, U-, and V-Type, as well as some

more advanced composites of these types. For p-refinements, we would like to decide between an

isotropic refinement of degree one (increment the expansion order by 1 in both directions) and the

degree-one anisotropic p-refinements in either direction (increment the expansion order by 1 in

only one direction).

This procedure relies on the edge-error terms computed during the DWR procedure. The vector

of edge error coefficients are ordered in terms of the edge indices shown in figure 3.1. These

coefficients are then multiplied by a directionality matrix. The matrices for h- and p-refinement

are given in equations 3.12 and 3.13 respectively. The rows of these matrices are all magnitude-4

kernels which aim to establish a notion of direcitonality in the edge-error vector. In both cases, the

refinement direction associated with the largest coefficient in R is applied to the element.

There are multiple kernels associated with the isotropic refinement variant within both matrices.

The first, and most obvious, has a large magnitude when the edge-error coefficients are nearly equal

across all edges. The other isotropic kernels produce large coefficients when two adjacent edges

have large error magnitudes. In these cases, isotropic refinement is still preferable as there is

no clear separation in direction. The next two kernels identify cases where two opposing edges
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Figure 3.1: Edge index layout. Edge error terms correspond to this index ordering

have significantly larger error coefficients, indicating that anisotropic refinements are best suited

to improve accuracy without introducing unneeded information.
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The h-refinement matrix has four additional refinement kernels associated with composite h-

refinements. These aim to efficiently address scenarios where most of the error appears to be

concentrated around one edge. An effective strategy is to successively apply anisotropic refine-

ments to the element and of one of its child elements. For example, the refinement type V(bottom)

is invoked when the bottom edge has an overpowering error coefficient. This will apply a V-Type

refinement to the element, then a U-Type refinement to the resultant child element along the bottom

edge. This way, the scale of the bottom edge has been reduced, but the scale of the top edge is left

unchanged, leaving its continuity with neighboring elements intact.

3.4 Numerical Results

To asses the effectiveness of the refinement algorithm described in the previous sections, we

apply it to the re-entrant corner waveguide benchmark described in Chapter 2. Convergence be-

havior is evaluated for six eigenfunctions; three of which are singular about the re-entrant corner

and posses varying degrees of complexity elsewhere in the mesh, the other three are sharp about

the re-entrant corner and present much higher energy variation elsewhere in the mesh. The elec-

tric field magnitudes for these eigenfunctions are shown in Figure 3.2. We also asses the value of

anisotropic hp-adaptivity by executing the same experiment with and without anisotropic refine-

ments enabled. For the isotropic version of the algorithm, the same exact DWR and hp-decision

procedures are used, but the direction selection algorithm always defaults to the isotropic option.
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(a) 1st (b) 6th (c) 8th

(d) 2nd (e) 5th (f) 9th

Figure 3.2: Eigenfunctions of interest for the re-entrant corner waveguide benchmark problem. The Electric

Field Magnitudes are shown for the singular (1st, 6th, 8th) and Sharp (2nd, 5th, 9th) functions. All elements

are plotted with an 8x8 grid of points which is shown superimposed on the fields
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Figure 3.3: Comparison of convergence rates for the isotropic and anisotropic adaptive refinement algo-

rithms. Behavior for the Singular and Sharp eigenfunctions are shown on a cubed-root–log scale

Figure 3.3 shows the solution convergence behavior for both classes of eigenfunction. Results

are plotted on a cube-root–log scale where exponential convergence rates are indicated by straight

lines. Each data point is associated with one refinement iteration and shows the relative error of

the eigenvalue with respect to the number of degrees of freedom used in that iteration.

It is clear that exponential convergence is achieved by the isotropic and anisotropic versions

of the adaptive algorithm. Figure 3.3 also indicates that anisotropic refinements can provide faster

convergence rates and segnificant improvements in efficiency when the algorithm is applied to

singular eigenfunctions. For all three singular cases and for the 2nd eigenpair, there is a significant

reduction in the number of DoFs needed to achieve a given accuarcy, which expands with each

iteration.

The same separation is not achieved for the 5th and 9th eigenpairs, indicating that further tuning

of the algorithm is likely needed for cases where sharp and smooth behavior exist in close vicinity.

Regardless of the small difference in isotropic and anisotorpic results, both algorithms achieve

exponential convergence on these difficult eigenfunctions, clearly exhibiting the general viability

of the methodology for other challenging problems in CEM.

Figure 3.4 shows the final refinement iteration meshes for the singular eigenpair experiments.

The anisotropic and isotropic version are displayed side-by-side for comparison. Referencing
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Figure 2.5, it is clear that the isotropic mesh arrangements are reminiscent of the a priori strategy,

while the anisotropic strategies show less uniform refinement decisions, and tend to introduce

more h-refinement. It is also clear that these algorithms rely heavily on anisotropic p-refinements

which present significant NDoF savings. For example in 3.4f some elements have an expansion

order of 10 in one direction and 4 in the other. An equivalent isotropic refinement would require

the element to support 5 additional degrees of polynomials in the other direction which are not

necessarily beneficial to solution accuracy.

3.5 Conclusion

This chapter summarized the implementation details and theoretical considerations of an adap-

tive refinement algorithm which is able to leverage unconstrained anisotropic hp-adaptivity against

challenging 2D FEM problems. For certain eigenfunctions, the algorithm not only achieved im-

proved efficiency–as described in Chapter 2–but also achieved improved rates of convergence us-

ing anisotropic refinements. This gives significant credence to the value of RBS to practical CEM

applications, particularly those where h-adaptivity is needed to address singular or discontinuous

solution behavior.

It is also evident that there is further room for improvement in this arena, as the algorithm

made some erroneously large refinement steps when applied to the 5th (Fig. 3.2e) and 9th (Fig.

3.2f) eigenfunctions. A more careful tuning of the somewhat arbitrary thresholds and directionality

kernels used in the algorithm would likely overcome these issues without imposing a performance

penalty on the singular cases. It may also be beneficial to train a less structured model (a neural-

network, or the like) to translate the DWR and convergence-history data into a list of optimal

refinements.

Regardless of its shortcomings, the algorithm described here is a solid stepping stone for more

advanced iterative refinement algorithms that can leverage the relatively unconstrained mesh struc-

ture permitted by an RBS implementation of FEM.
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(a) 1st Eigenpair | Anisotropic Refinement (b) 1st Eigenpair | Isotropic Refinement

(c) 6th Eigenpair | Anisotropic Refinement (d) 6th Eigenpair | Isotropic Refinement

(e) 8th Eigenpair | Anisotropic Refinement (f) 8th Eigenpair | Isotropic Refinement

Figure 3.4: Comparison of final mesh states for Isotropic and Anisotropic adaptive refinement algorithms

on singular eigenfunctions. The key in the top left of each figure represents the polynomial expansion orders.

Multi-colored elements have been anisotropically p-refined
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Chapter 4

The FEM_2D Open Source Library

4.1 Introduction

A portion of this research involved the implementation of an FEM software library which

supports the hp-adaptivity model described in Chapter 2. An open source version of the library is

available on Github2 and crates.io 3 [17, 18]. This code was open-sourced for several reasons:

• As a direct proof-of-concept for the methodology

• To inspire and facilitate further research in this area

• To serve as the basis of useful simulation tools

The library is still in its infancy and lacks some of the feature-richness of more developed FEM

libraries such as Deall.II; however, its hp-refinement model is fundamentally different, setting it

apart from the existing FEM implementations. RBS itself prioritizes simplicity, and the design of

fem_2d aims to capitalize on this fact by focusing on clean abstraction layers and easily under-

standable APIs. RBS also allows the code to be small–weighing in at about 7000 lines–making it

straightforward to explore, understand, and contribute to.

4.1.1 Installation and the Rust Language

The fem_2d library was implemented in the Rust Programming Language. Although Rust

is less popular than C++ (or other languages common to computational physics), it was chosen

for its combination of high-performance, memory safety, and modern features such as Trait-based

Generics, Closures, and JavaScript style iterators. The importance of these features is demonstrated

in the example code within the following sections.

2https://github.com/jeremiah-corrado/fem_2d

3https://crates.io/crates/fem_2d
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FEM_2D is easily added to any Rust project by including the following line the the project’s

TOML file under dependencies: fem_2d = "0.1.0". This instructs the Rust compiler to

download and link version 1.0 of the library (along with its dependencies).

4.1.2 Basic Usage

FEM_2D’s clean and expressive nature are clearly exhibited in Figure 4.1. This example

demonstrates a simple implementation of the Maxwell Eigenvalue Problem over a waveguide mesh

while summarizing a few of the libraries key data structures and functions.

1 use fem_2d::prelude::*;

2

3 fn main() {

4 // Load the mesh from a file

5 let mut mesh = Mesh::from_file("./waveguide.json").unwrap();

6

7 // Apply some hp-Refinements

8 mesh.global_p_refinement(PRef::from(5, 3)).unwrap();

9 mesh.h_refine_elems(vec![2, 4, 8], HRef::u())).unwrap();

10

11 // Create a Domain from the refined mesh

12 let domain = Domain::from_mesh(mesh);

13

14 // Execute Galerkin sampling with an 8x8 grid of Guass-Quad points

15 let eigenvalue_problem = domain.galerkin_sample_gep_parallel::<

16 KOLShapeFn, // basis function

17 CurlCurl, // stiffness matrix integral

18 L2Inner, // mass matrix integral

19 >(Some(8));

20

21 // Solve the eigenvalue problem, looking for solutions near 1.0

22 let eigenpair = nalgebra_solve_gep(eigenvalue_problem, 1.0).unwrap();

23 println!("Found Eigenvalue: {:.15}", eigenpair.value);

24 }

Figure 4.1: Solving the Maxwell Eigenvalue Problem using fem_2d

One of fem_2d’s most important features is its generic API over basis functions and inte-

grals shown on lines 16-18 of Figure 4.1. Here, KOLShapeFn defines a space of basis functions

(Denoted by the letter B in previous Chapters). It can be swapped for any other Type that imple-
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ments the libraries ShapeFn Trait. CurlCurl and L2Inner are the integral rules associated with

the Maxwell Eigenvalue Problem as described in Equation 2.1; both of which implement the li-

braries Integral Trait. This generic API gives users a straightforward path to leverage the libraries

functionality against other eigenproblems by creating custom implementations of Integral and

ShapeFn.

One might also notice the invocation of the .unwrap() method after some of the function

calls. Each of these functions returns a Result<T, E> type, where T is the return type upon

success, and E is an error type. This pattern indicates that an error may arise during the function’s

execution. For example, on line 5, the static method Mesh::from_file may return the Err

variant of Result if the specified file is not found by the operating system. Because .unwrap()

is appended to the end of the function call, the program will stop executing if an Error is returned.

1 fn try_solve_group(gep: &GEP, targets: Vec<f64>) -> Vec<EigenPair> {

2 targets

3 .iter()

4 .filter_map(

5 |target_eigenvalue| match slepc_solve_gep(

6 gep.clone(),

7 *target_eigenvalue,

8 ) {

9 Ok(eigenpair) => {

10 println!(

11 "Found Eigenvalue: {:.15} for target: {:.2}",

12 eigenpair.value, target_eigenvalue

13 );

14 Some(eigenpair)

15 },

16 Err(e) => {

17 println!(

18 "Failed to converge: ❵{}❵ for target: {:.2}",

19 e, target_eigenvalue

20 );

21 None

22 },

23 }

24 ).collect()

25 }

26

Figure 4.2: Gracefully failing to converge using the Result return type and the filter_map Iterator
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More generally, the Result<T, E> Type gives the programmer a pathway to explicitly han-

dle errors as they see fit. It is arguably more ergonomic and readable than a try-catch block, and

incurs no additional run-time overhead. For example, if one needed to compute solutions for mul-

tiple target eigenvalues on the same eigenproblem, but wasn’t sure that all of them would converge,

they could implement something like the function shown in Figure 4.2. Here the Result returned

by slepc_solve_gep is deconstructed using the match control flow operator. When the Ok

variant is encountered–indicating that the eigensolver converged successfully–the solution is col-

lected, otherwise if the Err variant is encountered, the error message is printed and the program

moves on.

4.2 The Mesh Structure and hp-Adaptivity API

The Mesh data structure is largely responsible for fem_2d’s unique functionality, and thus

warrants some more in-depth discussion. This data structure embodies two distinct concepts: the

physical characteristics the mesh and its transient refinement state. The library makes a distinction

between these two concepts by separating the "finite element" into two separate data structures: the

Element structure, which represents physical information (like geometric dimensions and material

properties), and the Elem, which is used to keep track of the refinement state.

Upon Mesh construction, a group of Elements are constructed to capture the geometric layout

of the given mode. All Elements are defined by four points in real space and store the material

properties for that region of the model. Each is assigned an Elem which is defined over the same

region in parametric space. The Elem is also assigned a polynomial expansion order of 1 in both

directions and is designated as the root node in a tree of Elems. In other words, the Mesh begins

in the least-refined state possible for the given geometry.

An h-refinement is executed by appending 2 or more Elems to a leaf in an Elem-Tree. All h-

refinement methods return an Err when a non-leaf or non-existent Elem is specified for refinement.

For the purpose of performance and simplicity, the Elems are actually stored in a grow-able vector
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1 let mut mesh = Mesh::from_file("./some_mesh.json").unwrap();

2

3 // isotopically h-refine all elems

4 mesh.global_h_refinement(HRef::t()).unwrap();

5

6 // anisotropically p-refine all elems

7 //(+2 in the u-direction, +4 in the v-direction)

8 mesh.global_p_refinement(PRef::from(2, 4)).unwrap();

9

10 // anisotropically h-refine all elems connected

11 // to some target_node (in the v-direction)

12 let target_node_id = 5;

13 mesh.h_refine_with_filter(|elem| {

14 if elem.nodes.contains(&target_node_id) {

15 Some(HRef::v())

16 } else {

17 None

18 }

19 }).unwrap();

20

21 // positively p-refine all elems on the border of the mesh,

22 // and negatively p-refine all other elems

23 mesh.execute_p_refinements(

24 mesh.elems.iter().filter_map(|elem| {

25 if elem.edges.iter().any(|edge_id| {

26 mesh.edges[*edge_id].is_boundary()

27 }) {

28 Some(PRef::from(1, 1))

29 } else {

30 Some(Pref::from(-1, -1))

31 }

32 }).collect()

33 ).unwrap();

34

Figure 4.3: Simple examples of hp-refinement using fem_2d’s Mesh API

rather than a tree-like data structure. In other words, their ancestors and descendants are referenced

internally as lists of indices instead of direct pointers.

A p-refinement is executed by modifying the polynomial expansion order of an Elem anywhere

in an Elem-Tree. Similar to h-refinements, these methods return an Err if the specified Elem does

not exist. It is important to note that p-refinements may be ineffectual if the DoFs on the designated

Elem are inactive due to a combination of local and surrounding h-refinements.
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A variety of hp-refinement methods are available for a wide range of scenarios in order to

make the implementation of refinement algorithms as straightforward and unimpeded as possible.

A few examples of these methods are shown in Figure 4.3. The entire list of refinement methods

is available in the libraries documentation 4.

To provide a more realistic example of how this API may be used in practice, Figure 4.4 gives

an implementation of the anisotropic hp-refinement strategy shown in Figure 2.5d. This is a finely

tuned a priori strategy which relies on some pre-defied knowledge of the mesh layout (represented

as a group of constants at the top the code example). It is only applicable to the specific mesh

discussed in previous chapters, but gives a concrete example of a useful hp-refinement algorithm.

4.3 Conclusion

The fem_2d library is a small but powerful FEM code which is designed to be extended into

other problem domains. It is also intended to be accessible enough for open-source developers or

other researchers to work on adding new features and improving performance. Some low hanging

fruit are: the implementation of curvilinear elements, vectorization of the integration code (via

SIMD instructions or CUDA Kernels), and some intelligent pre-allocation procedure in the sparse

matrix data structure. Additionally, the existence of a well documented 2D FEM code that supports

RBS is intended to encourage further research in this area. This may include the development of an

open-source 3D FEM code that supports RBS and anisotropic hp-refinement, or the development

of more advanced adaptive refinement procedures.

4https://docs.rs/fem_2d/0.1.0/fem_2d/domain/mesh/struct.Mesh.html
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1 const CENTRAL_NODE_ID: usize = 4;

2

3 const LEFT_ELEMENT_ID: usize = 2;

4 const CENT_ELEMENT_ID: usize = 0

5 const RGHT_ELEMENT_ID: usize = 1;

6

7 fn build_initial_mesh(mesh: &mut Mesh, k: usize) {

8 let mut poly_order = k + 2;

9

10 for i in 0..k {

11 // build new layer around the central node

12 mesh.h_refine_with_filter(|elem| {

13 if elem.nodes.contains(&CENTRAL_NODE_ID) {

14 Some(match elem.element.id {

15 LEFT_ELEMENT_ID => HRef::U(Some(0)),

16 CENT_ELEMENT_ID => HRef::T,

17 RGHT_ELEMENT_ID => HRef::V(Some(0)),

18 _ => unreachable!()

19 }

20 } else {

21 None

22 }

23 }).unwrap();

24

25 // set expansion orders

26 mesh.set_expansions_with_filter(|elem| {

27 let max_h_level = cmp::max(elem.h_levels.u, elem.h_levels.v);

28

29 if max_h_level == (k+1) {

30 if !elem.nodes.contains(&CENTRAL_NODE_ID) {

31 Some(match elem.element.id {

32 LEFT_ELEMENT_ID => [poly_order - 1, poly_order],

33 CENT_ELEMENT_ID => [poly_order, poly_order],

34 RGHT_ELEMENT_ID => [poly_order, poly_order - 1],

35 _ => unreachable!()

36 })

37 } else {

38 Some([poly_order, poly_order])

39 }

40 } else {

41 None

42 }

43 }).unwrap();

44

45 poly_order -= 1;

46 }

47 }

48

Figure 4.4: Example implementation of an a priori anisotropic refinement strategy
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